WorldWideScience

Sample records for bohunice nuclear power

  1. Experience with applying the automated control system to maintenance at the Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    The automated system of maintenance control at the V-1 nuclear power plant at Jaslovske Bohunice uses experience gained with the maintenance of the A-1 nuclear power plant. With regard to the range of work operations, maintenance includes inspection, routine repair, overhaul of equipment and replacement. Also observed is the classification of equipment according to whether it may be repaired without reactor shutdown or whether the reactor will have to be shut down. At present the maintenance of the Jaslovske Bohunice nuclear power plant is being processed by an automated control system into five year variable plans of repairs, annual and monthly plans of repairs, plans of shut-downs and a schedule of unit shutdowns. The repair plan includes over 6000 items. (Z.M.)

  2. Long-term corrosion study at nuclear power plant Bohunice (Slovakia)

    Science.gov (United States)

    Slugen, V.; Lipka, J.; Dekan, J.; Tóth, I.; Smieško, I.

    2010-03-01

    Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filter deposits. The corrosion of new feed water pipelines system (from austenitic steel) in combination to innovated operation regimes goes dominantly to magnetite. The hematite presence is mostly on the internal surface of steam generator body and its concentration increases towards the top of the body. In the results interpretation it is necessary to consider also erosion as well as scope and type of maintenance activities. The long-term study of phase composition of corrosion products at VVER reactors is one of precondition for the safe operation over the projected NPP lifetime.

  3. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  4. What the A-1 nuclear power plant at Jaslovske Bohunice brought and left to experts, the economy and the environment

    International Nuclear Information System (INIS)

    The construction history is outlined of A-1 at Jaslovske Bohunice, the first Czechoslovak nuclear power plant. Characteristic operating data of the plant in 1972-1977 are presented. The period following the second accident at the plant and its final shutdown is described. The adverse environmental impacts of the plant are characterized. A safe decommissioning of the plant is a problem that remains to be solved. (J.B.)

  5. Experience in modernization of safety I and C in VVER 440 nuclear power plants Bohunice V1 and Paks

    International Nuclear Information System (INIS)

    For nuclear power plants which have been in operation for more than 15 years, backfitting or even complete replacement of the instrumentation and control (I and C) equipment becomes an increasingly attractive option, motivated not only by the objective to reduce the cost of I and C system maintenance and repair but also to prolong or at least to safeguard the plant life-time: optimized spare-part management through use of standard equipment; reduction of number and variety of different items of equipment by implementing functions stepwise in application software; adding new functionality in the application software which was not possible in the old technology due to lack of space; safeguarding of long-term After-Sales-Service. Some years ago Bohunice V1 NPP, Slovak Republic and Paks NPP, Hungary intended to replace parts of their Safety I and C, mainly the Reactor Trip System, the Reactor Limitation System and the Neutron Flux Excore Instrumentation and Monitoring Systems. After a Basic Engineering Phase in Bohunice V1 and a Feasibility Study in Paks both plants decided to use the Siemens' Digital Safety I and C System TELEPERM XS to modernize their plants. Both Bohunice, Unit 2 and Paks, Unit 1 have been back on line for over six months with the new Digital Safety I and C. At the present time Bohunice, Unit 1 and within the next few months Paks, Unit 2 will be replaced. Trouble-free start-ups and no major problems under operation in the first two plants were based on: thorough understanding of the VVER 440 technology; comprehensive planning together with the plant operators and authorities; the possibility to adapt TELEPERM XS to every plant type; the execution of extensive pre-operational tests. Regarding these modernization measures Siemens, as well as the above Operators, have gained considerable experience in the field of I and C Modernization in VVER 440 NPPs. Important aspects of this experience are: how to transfer the VVER technology to TELEPERM XS; how to

  6. Nuclear power plant (A-1 NPP) SE a.s., Bohunice A-1

    International Nuclear Information System (INIS)

    The A-1 NPP was connected to the grid on 25 December 1972. The first serious refuelling accident happened on 5 April 1976. The second accident occurred on 22 February 1977 when a fouled fuel assembly was overheated, melted, and consequently radioactivity entered the whole primary circuit of steam generators, and a portion of it also leaked into the secondary circuit. The accident was classified as INES 4 level. There were no leaks of radioactivity into environment during the accident. A programme and schedule of bringing the A-1 NPP into a radiation-safe status was precise by subsequent decrees of the Slovak Government in 1993-1994. In January 1995, the Project was submitted to Nuclear Regulatory Authority of the Slovak Republic (NRA SR) and updated schedule of works was approved by the Government of the Slovak Republic. The radiation-safe status is characterised by minimizing of excluding a risk of negative environmental impacts of a NPP. There were 439 of total of 571 spent fuel assemblies transported to the former Soviet Union in 1984 through 1990. The remaining 132 assemblies are 'difficult-to-handle', ones the assemblies can not be taken out of their cases. Current solution the activities associated with transport and improvement of a safe storage of the spent fuel, issues related to processing, treatment, and storage of liquid radioactive wastes is represented by Bohunice treatment centre that has been built since 1993. In addition to Slovak partners, there are also foreign ones who are involved in bringing A-1 NPP into a radiation-safe status. The largest share of works is taken by British AEA Technology together with SGN, France. Other European countries are involved in A-1 NPP decommissioning, too, by providing technical assistance within PHARE programmes. Japan also provides funding of a broad programme of information exchange about NPPs decommissioning. Activities of nuclear safety inspectors were performed according to NRA SR yearly plan of inspection

  7. Findings from measurement of vertical displacement of V-1 nuclear power plant buildings in Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Vertical displacements were measured of the foundations and of selected bearing structures of the V-1 nuclear power plant buildings during the plant's construction and operation. Measured were displacements of the engine room foundations, the reactor building, the boron management building, the turbogenerator building, the cooling towers, the ventilation stack, and the foundations of buildings showing adverse properties. Some results are presented. (E.J.). 4 figs., 2 refs

  8. A new earthquake catalogue for seismic hazard assessment of the NPP (Nuclear Power Plant) Jaslovske Bohunice, Slovakia, site

    Science.gov (United States)

    Kysel, Robert; Kristek, Jozef; Moczo, Peter; Csicsay, Kristian; Cipciar, Andrej; Srbecky, Miroslav

    2014-05-01

    According to the IAEA (International Atomic Energy Agency) Safety Guide No. SSG-9, an earthquake catalogue should comprise all information on pre-historical, historical and seismometrically recorded earthquakes in the region which should cover geographic area not smaller than a circle with radius of 300 km around the site. Jaslovske Bohunice is an important economic site. Several nuclear facilities are located in Jaslovske Bohunice - either in operation (NPP V2, national radioactive waste repository) or in decommissioning (NPP A1, NPP V1). Moreover, a new reactor unit is being planned for the site. Jaslovske Bohunice site is not far from the Dobra Voda seismic source zone which has been the most active seismic zone at territory of Slovakia since the beginning of 20th century. Relatively small distances to Austria, Hungary, Czech Republic and Slovak capital Bratislava make the site a prominent priority in terms of seismic hazard assessment. We compiled a new earthquake catalogue for the NPP Jaslovske Bohunice region following the recommendations of the IAEA Safety Guide. The region includes parts of the territories of Slovakia, Hungary, Austria, the Czech Republic and Poland, and it partly extends up to Germany, Slovenia, Croatia and Serbia. The catalogue is based on data from six national earthquake catalogues, two regional earthquake catalogues (ACORN, CENEC) and a catalogue from the local NPP network. The primarily compiled catalogue for the time period 350 - 2011 consists of 9 142 events. We then homogenized and declustered the catalogue. Eventually we checked the catalogue for time completeness. For homogenization, we divided the catalogue into preseismometric (350 - 1900) and seismometric (1901-2011) periods. For earthquakes characterized by the epicentral intensity and local magnitude we adopted relations proposed for homogenization of the CENEC catalogue (Grünthal et al. 2009). Instead of assuming the equivalency between local magnitudes reported by the

  9. 30th and 29th anniversary of reactor accidents in A-1 nuclear power plant Jaslovske Bohunice - radioecological and radiobiological consequences

    International Nuclear Information System (INIS)

    In this paper authors present facts about construction, operation and reactor accidents in A-1 Nuclear Power Plant Jaslovske Bohunice, Slovakia. There was the reactor KS 150 (HWGCR) cooled with carbon dioxide and moderated with heavy water. A-1 NPP was commissioned on December 25, 1972. The first reactor accident happened on January 5, 1976 during fuel loading. Two persons of personal died by suffocation with carbon dioxide. This accident has been not evaluated according to the INES scale up to present time. The second serious accident in A-1 NPP occurred in February 22, 1977 also during fuel loading. This INES level 4 of reactor accident resulted in damaged fuel integrity with extensive corrosion damage of fuel cladding and release of radioactivity into the plant area. The A-1 NPP was consecutively shut down and is being decommissioned in the present time. Both reactor accidents are described in this paper. Some radioecological and radiobiological consequences of accidents and contamination of area of A-1 NPP as well as of Manivier canal and Dudvah River as result of flooding during the decommissioning are presented. (authors)

  10. Monitoring of I-131 after Fukushima nuclear power plant disaster and a correction of contribution of I-131 in the discharges of Slovenske elektrarne, Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    After the earthquake and subsequent tsunami in March 2011 Fukushima nuclear power reactors in Japan were damaged. As a result of damage of reactors escaped into air iodine radioactive isotopes which were dispersed by air masses over Europe and Slovakia. Isotope I-131 was identified in samples of the atmosphere and the abstraction of Radiation Control SE EBO. The air from the atmosphere contaminated with isotopes of iodine from the Fukushima ventilation systems that do not contain iodine filters, sucked into the interior of the controlled area, then released in organised way and then measured in the ventilation chimneys of EBO NPP. The measured values thus entered a balance of radioactive discharges. Drain of I-131 from SE EBO was in that period plus a contribution coming from Fukushima NPP and measured activity I-131 had to be corrected.

  11. Lifetime evaluation of Bohunice NPP components

    International Nuclear Information System (INIS)

    The paper discuss some aspects of the main primary components lifetime evaluation program in Bohunice NPP which is performed by Nuclear Power Plant Research Institute (NPPRI) Trnava in cooperation with Bohunice and other organizations involved. Facts presented here are based on the NPPRI research report which is regularly issued after each reactor fuel campaign under conditions of project resulted from the contract between NPPRI and Bohunice NPP. For the calculations, there has been used some computer codes adapted (or made) by NPPRI and the results are just the conclusive and very brief, presented here in Tables (Figures). (authors)

  12. Personnel education and training at Bohunice NPP

    International Nuclear Information System (INIS)

    Procedure for education and training of all the personnel employed at Bohunice Nuclear power plant is presented in detail describing the training system structure, kinds of training, staff members qualification development, short term and long term tasks needed to assure attaining the training objectives. The proposed Staff Members Lifetime education implementation project contains basic starting points, measures to be implemented by 1998. It was prepared on the basis of a primary analysis which confirmed the existing need for implementing the lifetime education system

  13. Bituminization plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    In this leaflet the principle of the bituminization plant for radioactive concentrate (the intermediate liquid radioactive waste generated during the NPP A1, V-1, V-2 operations) solidification used in the Bohunice Radwaste Treatment Centre (BSC RAO) is presented

  14. Bohunice NPPs - Part of the Slovak's economy (sustainable) development

    International Nuclear Information System (INIS)

    Of the total consumption of electricity in Slovakia, 42% was generated in nuclear power plant units in 1999. Slovakia operates 6 units with a WWER 440 nuclear reactors, 4 of them are at Bohunice site and 2 at Mochovce. The Nuclear Regulatory Authority of SR is not the only regulatory body controlling nuclear activity. Both - the system of nuclear activities regulation in Slovakia as well as the approach to Nuclear Safety enhancement of the operator were positively judged by IAEA and WENRA. In 1993 -Slovakia has accepted the commitments of the UN Convention on Climate Changes, including a reduction of greenhouse gases to 1990 levels by the year 2000. Moreover, as an internal target Slovakia has set the reaching of the ,'Toronto Objective', i.e. 20% reduction in COx emissions through the year 2005 as compared to 1988. Taking into account the actual situation as well as natural conditions for some renewable sources utilisation, the target won't be reached without nuclear energy. The nuclear energy is free of emissions, does not burn oxygen, and with the share of production in Slovakia will remain significant contributor. To the environment protection it contributes also by replacing fossil heat plants with heat delivery for the region. In case of radiological wastes the environment protection is ensured by very strict system of control, evidence, treatment and repository. To conclude, Bohunice NPPs were, are and will remain very important part of the Slovak's economy, creating conditions for its (sustainable) development

  15. Applications of power from Temelin nuclear power plant

    International Nuclear Information System (INIS)

    The proceedings contain 10 papers of which 9 fall under the INIS scope. They all concern the intentions and possibilities of using heat from nuclear power plants, especially from the Temelin power plant. Waste heat will be used for district heating of adjacent conurbations and for agricultural purposes. Various projects are presented using heat from nuclear power plants, such as greenhouse heating, soil heating, cultivation of algae and fish in warmed-up water. The existing experience is described with the use of heat from the Bohunice nuclear power plant. (M.D.). 15 figs., 6 tabs., 17 refs

  16. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    Science.gov (United States)

    Ješkovský, Miroslav; Povinec, Pavel P.; Steier, Peter; Šivo, Alexander; Richtáriková, Marta; Golser, Robin

    2015-10-01

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO2 absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for 14C analysis by accelerator mass spectrometry. The 14C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual 14C concentrations in atmospheric CO2.

  17. Nuclear power

    International Nuclear Information System (INIS)

    The subject is covered in chapters entitled: nuclear power certainties and doubts; nuclear power in the Western World to 2000; the frequency of core meltdown accidents; hidden costs of the accident at Three Mile Island; costs of nuclear accidents - implications for reactor choice; defining the risks of nuclear power; the uncertain economics of a nuclear power program; the economics of enabling decisions (Sizewell B as an enabling decision); trade in nuclear electricity; some pointers to the future. (U.K.)

  18. Nuclear power

    OpenAIRE

    Waller, David; McDonald, Alan; Greenwald, Judith; Mobbs, Paul

    2005-01-01

    David Waller and Alan McDonald ask whether a nuclear renaissance can be predicted; Judith M. Greenwald discusses keeping the nuclear power option open; Paul Mobbs considers the availability of uranium and the future of nuclear energy.

  19. Nuclear power

    International Nuclear Information System (INIS)

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  20. Response of native flora to inducible genotoxic damage from increased radioactivity around NPP Jaslovske Bohunice, Slovakia

    International Nuclear Information System (INIS)

    It is not generally known that the first serious failure of nuclear power plant (NPP) technology with loss of human lives occurred in NPP Jaslovske Bohunice (Czechoslovakia) in January 1976. A year later the second accident finally broken reactor A1 with large radioactive contamination. This material was later (in 1980) washed into the nearby drainage by the heavy rain. In cleaning procedure, the contaminated soil particles contaminated the slopes of the drainage. These spots have the shape of 'blurs' about 15 cm wide with a scale of contamination from 0,067; 0,15; 2,38; 9,5; 45.5 up to 322 kBq/kg 137Cs. The research was done in cooperation with the Institute of Tumorbiology, University of Vienna, within the grant Action Austria - Slovak Republic. Details of radioactivity at the area were obtained thanks to the Research Institute of the Nuclear Energy in Trnava, Slovakia. In our ten years long-term study of contaminated soil around nuclear power plant (NPP) Jaslovske Bohunice 24 species of local flora were used to show impact of these accidents. The 19 km long banks of the Jaslovske Bohunice NPP waste water recipient has been identified as contaminated by 137Cs. In total, more than 67,000 m2 of river banks have been found as being contaminated at levels exceeding 1 Bq 137Cs/g of soil. Used phytotoxic and cytogenetic -in situ' tests were extended by analyses of pollen grains. Although the dose of some samples of radioactive soil was relatively high (322 kBq kg-1) no any significant impact on the biological level of tested wild plant species was observed. Possible explanation (such as adaptation and resistance) is discussed. (author)

  1. Radwaste Treatment Centre Jaslovske Bohunice

    International Nuclear Information System (INIS)

    In this leaflet the Bohunice Radwaste Treatment Centre (BSC RAO) is presented. BSC RAO is designed to process and treat liquid and solid radwaste, arising from the NPP A-1 decommissioning, from NPPs V-1, V-2, and Mochovce operations, as well as institutional radwaste of diverse institutional (hospitals, research institutes) in the Slovak Republic. Transport, sorting, incineration, compacting, concentration and cementation of radwaste as well as monitoring of emission are described

  2. The nuclear power plant A1 in cube

    International Nuclear Information System (INIS)

    In this book the history of constructing, main characteristics, complex examination, physical commissioning, energetic commissioning, exploitation, active zone, fuel elements, nuclear reactor, primary circuits, circuits of heavy water, secondary circuits, gaseous management, transport-technologic equipment, measurement and regulation, electric schema, dosimetry, system of tightness control of covering fuel elements, equipment of chemical technology and chemical regime, emergency circuits of the reactor, serious accident in A1 NPP, leakages of vapour-generators of the A1 nuclear power plant in Jaslovske Bohunice (the Slovak Republic) are described.

  3. Analysis of Steam Generators Corrosion Products from Slovak NPP Bohunice

    Directory of Open Access Journals (Sweden)

    Jarmila Degmová

    2012-01-01

    Full Text Available One of the main goals of the nuclear industry is to increase the nuclear safety and reliability of nuclear power plants (NPPs. As the steam generator (SG is the most corrosion sensitive component of NPPs, it is important to analyze the corrosion process and optimize its construction materials to avoid damages like corrosion cracking. For this purpose two different kinds of SGs and its feed water distributing systems from the NPP Jaslovske Bohunice were studied by nondestructive Mössbauer spectroscopy. The samples were scraped from the surface and analyzed in transmission geometry. Magnetite and hematite were found to be the main components in the corrosion layers of both SGs. Dependant of the material the SG consisted of, and the location in the system where the samples were taken, the ratios between magnetite and hematite and the paramagnetic components were different. The obtained results can be used to improve corrosion safety of the VVER-440 secondary circuit as well as to optimize its water chemistry regime.

  4. Program increasing of nuclear power plant safeness

    International Nuclear Information System (INIS)

    The results achieved within the project of national task 'Program increasing of nuclear power plant safeness' are presented in the document. The project was aimed to extend and deepen activities relating to safety increase of nuclear power units WWER-440 which play significant part in electricity production in the Slovak Republic. The application of advanced foreign calculating programs and calculation of radionuclide spreading in environment and techniques will influence the increase of extent, quality and international acceptance of safety analysis of nuclear power plant blocks WWER-440 and the risk valuation from operating nuclear power plants. Methodic resources for coping in emergency situation in nuclear energetics will be used for support in decision making in real time during radiation emergency on nuclear plant, region and state level. A long-term strategy in dealing with burnt fuel and radioactive substance formatting during nuclear power plant liquidation particularly with waste which is un acceptable in regional dump, has developed into a theoretical and practical preparation of solvable group for operating the converting centre Bohunice and in inactivating the nuclear power plant A-1. The diagnostic activities in nuclear power plants in the Slovak Republic have been elaborated into a project of norm documents in accordance with international norms for diagnostic systems. Presentation of new technologies and materials for repairs and reconstructions of components and nuclear power plant knots qualify increase in their reliability, safety and life. New objective methods and criterions for valuation and monitoring of the residual life and safety of fixed nuclear power plants. Results of problem solving linked with connecting the blocks of nuclear power plants to frequency regulation in electric network in the Slovak Republic are also presented in the document

  5. Safety of nuclear installations in the Slovak Republic

    International Nuclear Information System (INIS)

    This report describes all nuclear installations in the Slovak Republic. It informs the public about the safety of nuclear installations. The spent fuel activities and nuclear wastes storage matters are discussed separately ((NPP Bohunice V-1, NPP Bohunice V-2, NPP Mochovce, NPP Bohunice A-1, Radioactive wastes repository Mochovce, Interim spent fuel storage Bohunice)

  6. Fuel reliability of Bohunice NPP

    International Nuclear Information System (INIS)

    Paper summarizes experience from last 15 years of operation at NPP Jaslovske Bohunice. During this period, leaking fuel assemblies have had been identified by in-core sipping method and verified by vendor specified canister sipping method. Methodology of operational and outage fuel integrity monitoring is described. Full survey of identified leaking assemblies is given. Fuel failure rates are calculated separately for V-1 (V-230 type) and V-2 (V-213 type) units. Systematic difference - significantly lower fuel failure rate at V-213 units exists for all period investigated. Analysis of potential fuel failure reasons and all related measures (planned and already implemented) are presented. Design, operation and fabrication features have been analyzed with the aim to identify dominant factors contributing to fuel failure. No unambiguous reasons have been found so far. It is believed that there is a superposition of several factors and differences causing higher failure rate at V-230 type units. (author)

  7. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  8. Nuclear power data 2016

    International Nuclear Information System (INIS)

    The brochure on nuclear power data 2016 covers the following topics: (I) nuclear power in Germany: nuclear power plants in Germany; shut-down and decommissioned nuclear power plants, gross electricity generation, primary energy consumption; (II) nuclear power worldwide: nuclear electricity production, nuclear power plants.

  9. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  10. Nuclear Theory - Nuclear Power

    Science.gov (United States)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  11. Nomogram of economic efficiency of extending the life of the V-1 nuclear power plant

    International Nuclear Information System (INIS)

    The evaluation was processed of the economic efficiency of extending the life of the V-1 nuclear power plant in Jaslovske Bohunice. The power plant is expected to be shut down for reconstruction in 1995, i.e., in its 16th year in operation. The evalulation considered reconstruction within a 2 to 5 years' period, the costs at 6 to 12 thousand million crowns and decommissioning between the years 2005 to 2015. The results are processed in a nomogram of specific annual updated costs for supplied electric power. (Z.M.). 2 figs., 1 tab., 2 refs

  12. Corrosion at Nuclear Power Plant from Mössbauer Spectroscopy Point of View

    Science.gov (United States)

    Slugeň, V.; Lipka, J.; Dekan, J.; Tóth, I.; Smieško, I.

    2010-07-01

    Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in the 1994-1998 period. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during the last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in the form of filters deposits. The corrosion of new feed water pipelines system (from austenitic steel) in combination to innovated operation regimes goes dominantly to magnetite. The hematite presence is mostly on the internal surface of steam generator body and its concentration increases towards the top of the body. In the results interpretation it is necessary to consider also erosion as well as scope and type of maintenance activities. The long-term study of phase composition of corrosion products at VVER reactors is one of precondition for the safe operation over the projected NPP lifetime. Keywords: Enter Keywords here. Text should remain 10-pt.

  13. Living near a nuclear power station

    International Nuclear Information System (INIS)

    The need to expand nuclear power and its advantages are discussed publicly nearly each week. According to politicians and the nuclear lobby investing tens of billions Sk at Mochovce will bring Slovakia the often cited 'independence and energy self-sufficiency'. It will also mean profit for Slovenske elektrarne and the company's shareholders - the state and Italian company, Enel. In addition to the lively discussion on the pros and cons of nuclear energy, TREND was also interested in the living conditions around the concrete and strictly guarded, potentially dangerous plants and in the opinion of the people most affected by Mochovce and Jaslovske Bohunice on expansion of the existing and the building of new nuclear power plants. The construction of nuclear powers stations in these regions was not only about new jobs. The state 'prescribed' iodine pills and did not allow any construction in the region and, in the case of Mochovce, ordered the complete demolition of a village. The only thing that remained from Mochovce village was the church. 'And when it was found that the power plant would not reach it, it was even given a new roof. Former inhabitants, especially the older ones that had problems accepting the evacuation, used to visit it often,' explained Jan Foldy, the head of the local municipality in Kalna nad Hronom. After many years, life in the neighbouring villages is not bad. Their budgets are overflowing and so they can afford to spoil their inhabitants with free cable TV and high standard sport facilities, which should partly compensate for the fact that the people are living so close to a nuclear facility. (authors)

  14. Nuclear power economic database

    International Nuclear Information System (INIS)

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  15. Foundations and practical applications of the theory of nuclear power plant reliability

    International Nuclear Information System (INIS)

    The reliability of nuclear power installations is discussed with regard to material fatigue. The concept of reliability is defined and on the basis of the probability theory the probability was computed of failure-free operation. The parametric and nonparametric methods are given of estimating the reliability parameters, and the basic terms introduced of systems analysis. Reliability is assessed using the fault tree method. The probability of accident chains was analysed using the event tree. The reliability information system is described implemented in nuclear power plants with WWER-440 reactors. The system of standardization in nuclear power engineering in the capitalist countries and in CMEA countries is given. The method of stochastic prediction is used for mathematical modelling of the failure-free operation of engineering parts of a nuclear reactor. Operating experience and reliability of the V-1 nuclear power plant in Jaslovske Bohunice is compared with foreign experience. (E.F.)

  16. Nuclear power in Canada

    International Nuclear Information System (INIS)

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  17. Prospects for Nuclear Power

    OpenAIRE

    Lucas W. Davis

    2012-01-01

    Nuclear power has long been controversial because of concerns about nuclear accidents, storage of spent fuel, and how the spread of nuclear power might raise risks of the proliferation of nuclear weapons. These concerns are real and important. However, emphasizing these concerns implicitly suggests that unless these issues are taken into account, nuclear power would otherwise be cost effective compared to other forms of electricity generation. This implication is unwarranted. Throughout the h...

  18. Nuclear Power in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China’s vigorous efforts to propel development of nuclear power are paying off as the country’s nuclear power sector advances at an amazing pace. At present, China has set up three enormous nuclear power bases, one each in Qinshan of Zhejiang Province, Dayawan of Guangdong

  19. Chapter No.3. Assessment and inspection of nuclear installations

    International Nuclear Information System (INIS)

    The assessment activity of UJD in relation to nuclear installation lies in assessment of safety documentation for constructions realised as nuclear installations, or construction through which changes on nuclear installations are realised. The assessment activity of UJD in 2001 was focused on National Repository of Radwaste in Mochovce, on Radwaste conditioning and treatment technology in Jaslovske Bohunice and on the assessment of documentation for the project of modernisation of Bohunice V-2 NPPs which is under preparation. The assessment of the technical condition of equipment, important in terms of nuclear safety, primarily based on results of in-service inspections and surveillance testing of safety related components and systems, is also a part of the safety assessment of nuclear installation operation. The inspectors take part in training courses and participate in other technical meetings and workshops organised by the IAEA and also take part in special training courses organised by the Nuclear Authorities of European countries, USA and Japan. Bohunice V-1 NPP is equipped with two reactors of WWER 440 type V-230 and was put into operation in 1978-1980 as one of the last nuclear power plants with this type of reactor. Both units of NPP V-1 Bohunice operated in 2001 according to the requirements of energy dispatching at nominal power, or in a regime of tertiary regulation. November 2000, a mission of experts invited by UJD and delegated by IAEA took place at the Bohunice NPPs. The mission members together with experts of the plant operator assessed the safety of the units of WWER-440/V-230 of Bohunice V-1 NPP after the reconstruction. The members of the mission prepared the report on the current status of safety of these units for the IAEA. In 2001, UJD by its decision, issued the approval for further operation of both reactor units of Bohunice V-1 NPP. In sense of the relevant decree on operational events, 20 events have been recorded, at Bohunice V-1 NPP in

  20. Design basis and design features of WWER-440 model 213 nuclear power plants. Reference plant: Bohunice V2 (Slovakia)

    International Nuclear Information System (INIS)

    The prime objective of the IAEA Technical Co-operation Project on Evaluation of Safety Aspects of WWER-440 model 213 NPPs is to co-ordinate and to integrate assistance to national organizations in studying selected aspects of safety for the same type of reactors. Consequently, the study integrated the results generated by national activities carried out in the Czech Republic, Hungary, Slovakia and Ukraine and co-ordinated through the IAEA. Valuable assistance in carrying out the tasks was also provided by Bulgaria and Poland. A set of publications is being prepared to present the results of the project. The publications are intended to facilitate the review and utilization of the results of the project. They are also providing assistance in further refinement and/or extension of plant specific safety evaluation of model 213 NPPs. This Technical Document addressing the design basis and safety related design features of WWER-440 model 213 plants is the first of the series to be published. It is hoped that this document will be useful to anyone working in the field of WWER safety, and in particular to experts planning, executing or reviewing studies related to the subject. Refs, 36 figs, tabs

  1. Nuclear power prospects

    International Nuclear Information System (INIS)

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  2. Programmes design for Bohunice NPP personnel other than control room operators

    International Nuclear Information System (INIS)

    This paper deals with project development of training programmes for non-licenced NPP personnel-masters, field operators, maintenance and technical supporting personnel. The programme development focuses on the part stage and on the job training at NPP. Bohunice NPP belongs to plants with higher specific number of personnel per installed power capacity. This factor also influenced the choice of programmes design. Undermentioned procedure is one of various approaches to SAT exploitation for training programmes design. (author)

  3. RETHINKING NUCLEAR POWER SAFETY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Fukushima nuclear accident sounds alarm bells in China’s nuclear power industry In the wake of the Fukushima nucleara ccident caused by the earthquake andt sunami in Japan,the safety of nuclearp ower plants and the development of nuclear power have raised concerns,

  4. Nuclear Power in Sweden

    International Nuclear Information System (INIS)

    This book presents how Swedish technology has combined competence in planning, building, commissioning, maintenance, and operation of nuclear power and waste facilities. The items are elaborated in the following chapters: Nuclear power today and for the future, Sweden and its power supply, The history of nuclear power in Sweden, Nuclear Sweden today, Operating experience in 10 nuclear power units, Maintenance experience, Third-generation BWR-plants commissioned in five years, Personnel and training, Reactor safety, Quality assurance and quality control, Characteristic features of the ASEA-ATOM BWR, Experience of PWR steam generators, Nuclear fuel supply and management, Policy and techniques of radioactive waste management, Nuclear energy authorities and Inherently safe LWR. The publication is concluded by facts in brief and a statement by the Director General of IAEA. (G.B.)

  5. Nuclear power and safety

    International Nuclear Information System (INIS)

    The paper deals with the problem of necessity to develop nuclear power, conceivable consequences of this development, its disadvantages and advantages. It is shown that the nuclear power is capable of supplying the world's economy with practically unlimited and the most low-cost energy resources providing the transition from the epoch of organic fuel to the epoch with another energy sources. The analysis of various factors of nuclear power effects on population and environment is presented. Special attention is focused on emergency situations at NPPs. The problem of raising the nuclear power safety is considered. 11 refs.; 5 figs.; 2 tabs

  6. Nuclear power debate

    International Nuclear Information System (INIS)

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  7. Nuclear power in Belgium

    International Nuclear Information System (INIS)

    In the energy sector Belgium is 90% dependent on imports. This was clearly felt by the electricity generating economy when the share of hydrocarbons in the energy resources used for electricity generation increased to more than 85% in 1973 as a consequence of rising electricity consumption. Although Belgium had been early to start employing nuclear power for peaceful purposes, only little use had initially been made of this possibility. After the first oil price crisis the Belgian electricity utilities turned more attention to nuclear power. To this day, seven nuclear power plants have been started up, and Belgian utilities hold a fifty percent share in a French nuclear power plant, while the French EdF holds fifty percent in one Belgian nuclear generating unit. The Belgian nuclear power plants, which were built mostly by Belgian industries, have an excellent operating record. Their availabilities are considerably above the worldwide average and they contributed some 60% to the electricity production in Belgium in 1985. Thanks to nuclear power, the cumulative percentage shares of heating oil and gas in electricity production were reduced to well over 15%, compared to 1973, thus meeting the objectives of using nuclear power, i.e., to save foreign exchange and become self-sufficient in supplying the country's needs. The use of nuclear power allowed the Belgian utilities to reduce the price per kilowatthour of electricity and, in this way, remain competitive with other countries. The introduction of nuclear power continues to have a stabilizing influence on electricity generating costs. In the light of the forecast future development of consumption it is regarded as probable that another nuclear power plant of 1390 MWe will have to be built and commissioned before the year 2000. (orig.)

  8. Sydkraft and nuclear power

    International Nuclear Information System (INIS)

    This article summarizes the report made by G. Ekberg for the Swedish Sydkraft Power Co. at the company's annual meeting in June 1976. The report comprises the year 1975 and the first five months of 1976 and largely discusses nuclear power. Experience with the running of Oskarshamn and Barsebaeck nuclear power stations is reported. Nuclear power has enabled production in the oil-fired power stations at Karlshamn and Malmoe to be reduced. 750 000 tons of oil have been saved. In the first five months of 1976, nuclear power accounted for 48% of Sydkraft's electricity production, water power 36% and oil only 16%. In 1975, Sydkraft produced 13% of Sweden's electricity. (H.E.G.)

  9. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  10. Economics of nuclear power

    International Nuclear Information System (INIS)

    A comparison of the economics of nuclear and coal-fired power plants operated by Commonwealth Edison was developed. In this comparison, fuel costs, total busbar costs and plant performance were of particular interest. Also included were comparisons of construction costs of nuclear and coal-fired power plants over the past two decades

  11. Talk About Nuclear Power

    Science.gov (United States)

    Tremlett, Lewis

    1976-01-01

    Presents an overview of the relation of nuclear power to human health and the environment, and discusses the advantages and disadvantages of nuclear power as an energy source urging technical educators to inculcate an awareness of the problems associated with the production of energy. Describes the fission reaction process, the hazards of…

  12. Nuclear Power Day '86

    International Nuclear Information System (INIS)

    The proceedings in two volumes of the event ''Nuclear Power Day '86'' held in the Institute of Nuclear Research, contain full texts of 13 papers which all fall under the INIS Scope. The objective of the event was to acquaint broad technical public with the scope of the State Research and Development Project called ''Development of Nuclear Power till the Year 2000''. The papers were mainly focused on increased safety and reliability of nuclear power plants with WWER reactors, on the development of equipment and systems for disposal and burial of radioactive wastes, the introduction of production of nuclear power facilities of an output of 1,000 MW, and on the construction of nuclear heat sources. (Z.M.)

  13. The most extensive reconstruction of nuclear power plant with VVER 440/V230 reactor

    International Nuclear Information System (INIS)

    The nuclear power plant V-1 Bohunice consists of two VVER-440 units with V-230 reactors. Unit 1 was commissioned in 1978 and Unit 2 in 1980. Large experience and knowledge from the operation of previous units with V-230 reactors were incorporated into the V-1 design, which resulted in a higher level of safety and operational reliability of these units. The Siemens company which won an international bidding process developed these basic goals for the Gradual Upgrading into the so called Basic Engineering (BE). For the implementation of the Gradual Upgrading in line with the BE, Rekon consortium was established consisting of Siemens and VUJE. The implementation of the Gradual Upgrading is scheduled for the time period of 1996 - 2000. Siemens was responsible for the upgrading strategy - based on the approved results of the basic engineering phase and the PSAR, the engineering and realization of all I and C improvements, and also for the seismic upgrade. VUJE's responsibility covered the detailed engineering and implementation of mechanical, electrical and civil part of upgrading measures as well as overall organisation and evaluation of verification tests. The consortium awarded contracts for final planning and design, installation services and commissioning to other Slovakian subcontractors in order to ensure the largest possible local content. The gradual reconstruction of the V-1 Bohunice with V230 reactors represents a comprehensive reconstruction of safety-related systems and equipment. Following its completion, the units will be operated with a safety level accepted internationally. (author)

  14. Nuclear Power in Space

    Science.gov (United States)

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  15. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  16. Nuclear power experience

    International Nuclear Information System (INIS)

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  17. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  18. Nuclear power plant construction

    International Nuclear Information System (INIS)

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.)

  19. Safeguarding nuclear power stations

    International Nuclear Information System (INIS)

    The basic features of nuclear fuel accounting and control in present-day power reactors are considered. Emphasis is placed on reactor operations and spent-fuel characteristics for Light-Water Reactors (LWRs) and Heavy-Water Reactors (HWRs)

  20. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  1. Turkey's nuclear power effort

    International Nuclear Information System (INIS)

    This paper discusses the expected role of nuclear energy in the production of electric power to serve the growing needs of Turkey, examining past activities and recent developments. The paper also reviews Turkey's plans with respect to nuclear energy and the challenges that the country faces along the way

  2. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  3. No to nuclear power

    International Nuclear Information System (INIS)

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  4. Nuclear power and leukaemia

    International Nuclear Information System (INIS)

    This booklet describes the nature of leukaemia, disease incidence in the UK and the possible causes. Epidemiological studies observing rates of leukaemia near nuclear power stations in the UK and other parts of the world are discussed. Possible causes of leukaemia excesses near nuclear establishments include radioactive discharges into the environment, paternal radiation exposure and viral causes. (UK)

  5. Globalization and nuclear power

    International Nuclear Information System (INIS)

    Different aspects of the experience of nuclear power as recounted by well-known commentators and new contributors are included in two special issues. In general, the discussions are historical and theoretical and most are retrospective. The current position of nuclear power world wide is considered. Its future seems less than secure especially as it will have to compete alongside other energy sources with many problems of control of its materials still unresolved. (UK)

  6. Nuclear power in space

    International Nuclear Information System (INIS)

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  7. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  8. Country nuclear power profiles

    International Nuclear Information System (INIS)

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  9. The nuclear power alternative

    International Nuclear Information System (INIS)

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  10. Nuclear power in perspective

    International Nuclear Information System (INIS)

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  11. Physics and nuclear power

    Science.gov (United States)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  12. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  13. France without nuclear power

    International Nuclear Information System (INIS)

    As coal production declined and France found herself in a condition of energy dependency, the country decided to turn to nuclear power and a major construction program was undertaken in 1970. The consequences of this step are examined in this article, by imagining where France would be without its nuclear power. At the end of the sixties, fuel-oil incontestably offered the cheapest way of producing electricity; but the first petroleum crisis was to upset the order of economic performance, and coal then became the more attractive fuel. The first part of this article therefore presents coal as an alternative to nuclear power, describing the coal scenario first and then comparing the relative costs of nuclear and coal investment strategies and operating costs (the item that differs most is the price of the fuel). The second part of the article analyzes the consequences this would have on the electrical power market, from the supply and demand point of view, and in terms of prices. The third part of the article discusses the macro-economic consequences of such a step: the drop in the level of energy dependency, increased costs and the disappearance of electricity exports. The article ends with an analysis of the environmental consequences, which are of greater and greater concern today. The advantage here falls very much in favor of nuclear power, if we judge by the lesser emissions of sulfur dioxide, nitrogen oxides and especially carbon dioxide. 22 refs.; 13 figs.; 10 tabs

  14. Nuclear power in Germany

    International Nuclear Information System (INIS)

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  15. How nuclear power began

    International Nuclear Information System (INIS)

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  16. Nuclear power plants: 2006 atw compact statistics; atw Schnellstatistik Kernkraftwerke 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-01-15

    At the turn of 2006/2007, nuclear power plants were available for energy supply, or under construction, in 32 countries of the world. A total of 437 nuclear power plants, which is 7 plants less than at the 2005/2006 turn, were in operation in 31 countries with an aggregate gross power of approx. 388 GWe and an aggregate net power, respectively, of 369 GWe. The available gross power of nuclear power plants dropped by approx. 1.6 GWe, the available net power, by approx. 1.2 GWe. The Tarapur 3 nuclear generating unit was commissioned in India, a D{sub 2}O PWR of 540 MWe gross power. Power operation was discontinued for good in 2006 only in nuclear power plants in Europe: Bohunice 1 (Slovak Republic, 440/408 MWe, VVER PWR); Kozloduy 3 and Kozloduy 4 (Bulgaria, 440/408 MWe each, VVER PWR); Dungeness A1 and Dungeness A2 (United Kingdom, 245/219 MWe each, Magnox GGR); Sizewell A1 and Sizewell A2 (United Kingdom, 236/210 MWe each, Magnox GGR), and Jose Cabrera 1 (Zorita) (Spain, 160/153 MWe, PWR). 29 nuclear generating units, i.e. 8 plants more than at the end of 2005, with an aggregate gross power of approx. 28 GWe, were under construction in 10 countries end of 2006. In China, construction of the Qinshan II-3, Qinshan II-4 nuclear generating units was started. In the Republic of Korea, construction work began on 4 new projects: Shin Kori 1, Shin Kori 2, and Shin Wolsong 1, Shin Wolsong 2. In Russia, work was resumed on the BN-800 sodium-cooled fast breeder reactor project at Beloyarsk and the RBMK Kursk 5. Some 40 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately seventy units are in their preliminary project phases. (orig.)

  17. Nuclear power and nuclear safety 2007

    International Nuclear Information System (INIS)

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2007 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  18. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  19. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  20. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  1. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  2. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  3. Nuclear Power in Japan.

    Science.gov (United States)

    Powell, John W.

    1983-01-01

    Energy consumption in Japan has grown at a faster rate than in any other major industrial country. To maintain continued prosperity, the government has embarked on a crash program for nuclear power. Current progress and issues/reactions to the plan are discussed. (JN)

  4. Economics of nuclear power

    International Nuclear Information System (INIS)

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.)

  5. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  6. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  7. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  8. Nuclear power for desalination

    International Nuclear Information System (INIS)

    Water is one of the most important assets to mankind and without which the human race would cease to exist. Water is required by us right from domestic to industrial levels. As notified by the 'American Nuclear Society' and 'World Nuclear Association' about 1/5th of the world population does not access to portable water especially in the Asian and African subcontinent. The situation is becoming adverse day by day due to rise in population and industrialization. The need of alternative water resource is thus becoming vital. About 97.5% of Earth is covered by oceans. Desalination of saline water to generate potable water is thus an important topic of research. Currently about 12,500 desalination plants are operating worldwide with a capacity of about 35 million m3/day using mainly fossil fuels for generation of large amount of energy required for processing water. These thermal power station release large amount of carbon dioxide and other green house gases. Nuclear reactors are capable of delivering energy to the high energy-intensive processes without any environmental concerns for climate change etc., giving a vision to sustainable growth of desalination process. These projects are currently employed in Kazakhstan, India, Japan, and Pakistan and are coupled to the nuclear reactor for generating electricity and potable water as well. The current climatic scenario favors the need for expanding dual purpose nuclear power plants producing energy and water at the same location. (author)

  9. Pragmatics of nuclear power

    International Nuclear Information System (INIS)

    In context of depletion of fossil fuels and continuous increase of global warming, nuclear power is highly solicited by world energy congress for solving energy crisis for ever. No doubt, a small amount of nuclear fuel can provide immense amount of energy but in exchange of what? Safety, security, large compensation and huge risk of lives, gift of radio-activity to environment and so many adverse effects. Yet are we in a position to reject or neglect it exclusively? Can we show such luxury? Again are we capable to control such a demon for the benefit of human being. Either is it magic lamp of Aladdin or a Frankenstein? Who will give the answer? Likely after nuclear war, is there anybody left in this planet to hide or is there any place available to hide. Answers are not yet known. (author)

  10. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG)

  11. Nuclear turbine power plant

    International Nuclear Information System (INIS)

    Purpose : To improve the heat cycle balance in a nuclear turbine power plant or the like equipped with a moisture separating and reheating device, by eliminating undesired overcooling of the drains in the pipes of a heat transmission pipe bundle. Constitution : A high pressure turbine is driven by main steams from a steam generator. The steams after driving the high pressure turbine are removed with moistures by way of a moisture separator and then re-heated. Extracted steams from the steam generator or the high pressure turbine are used as a heating source for the reheating. In the nuclear turbine power plant having such a constitution, a vessel for separating the drains and the steams resulted from the heat exchange is provided at the outlet of the reheating device and the steams in the vessel are introduced to the inlet of the moisture separator. (Aizawa, K.)

  12. Nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To suppress corrosion at the inner surfaces of equipments and pipeways in nuclear power plants. Constitution: An injection device comprising a chemical injection tank and a plunger type chemical injection pump for injecting hydrazine as an oxygen remover and ammonia as a pH controller is disposed to the downstream of a condensate desalter column for primary coolant circuits. Since dessolved oxygen in circuit water injected with these chemicals is substantially reduced to zero and pH is adjuted to about 10 - 11, occurrence of stress corrosion cracks in carbon steels and stainless steels as main constituent materials for the nuclear power plant and corrosion products are inhibited in high temperature water, and of corrosion products are inhibited from being introduced as they are through leakage to the reactor core, by which the operators' exposure does can be decreased significantly. (Sekiya, K.)

  13. Initiative against nuclear power plants

    International Nuclear Information System (INIS)

    This publication of the Initiative of Austrian Nuclear Power Plant Opponents contains articles on radiactive waste dispoasal in Austria and and discusses safety issues of the nuclear power plant 'Zwentendorf'. (kancsar)

  14. Nuclear power in Italy

    International Nuclear Information System (INIS)

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  15. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    The lecture describes the energy-political situation in Sweden after the change of Government in October 1976. The present announced nuclear power plant-hostile energy politic, has to face the viewpoints of a technical and economical dependent reality. Disagreements and transgressions of political competences must be reduced, due to the fact that a constructive cooperation between politicians and energy producing corporations is a necessity, to guarantee a safe energy supply in Sweden. (orig.)

  16. Submarine nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To provide a ballast tank, and nuclear power facilities within the containment shell of a pressure resistance structure and a maintenance operator's entrance and a transmission cable cut-off device at the outer part of the containment shell, whereby after the construction, the shell is towed, and installed by self-submerging, and it can be refloated for repairs by its own strength. Constitution: Within a containment shell having a ballast tank and a pressure resisting structure, there are provided nuclear power facilities including a nuclear power generating chamber, a maintenance operator's living room and the like. Furthermore, a maintenance operator's entrance and exit device and a transmission cable cut-off device are provided within the shell, whereby when it is towed to a predetermined a area after the construction, it submerges by its own strength and when any repair inspection is necessary, it can float up by its own strength, and can be towed to a repair dock or the like. (Yoshihara, H.)

  17. Overview paper on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  18. The future of nuclear power

    International Nuclear Information System (INIS)

    Nuclear power is an extremely sensitive issue and its future has been hotly debated. Conflicting arguments have been put forward regarding the viability of nuclear power. The question of whether the world should look to nuclear power for its electricity generating needs is addressed. 2 ills

  19. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  20. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  1. The need for nuclear power

    International Nuclear Information System (INIS)

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  2. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  3. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  4. Nuclear power and nuclear safety 2010

    International Nuclear Information System (INIS)

    The report is the eighth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2010 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, and conflicts and the Fukushima accident. (LN)

  5. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  6. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  7. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  8. Is nuclear power acceptable

    International Nuclear Information System (INIS)

    The energy shortage forecast for the early 21st century is considered. Possible energy sources other than fossil fuel are stated as geothermal, fusion, solar and fission, of which only fission has been demonstrated technically and economically. The environmental impacts of fission are examined. The hazards are discussed under the following headings: nuclear accident, fatality risk, safe reactor, property damage, acts of God, low-level release of radioactivity, diversion of fissile material and sabotage, radioactive waste disposal, toxicity of plutonium. The public reaction to nuclear power is analyzed, and proposals are made for a programme of safety and security which the author hopes will make it acceptable as the ultimate energy source. (U.K.)

  9. International nuclear power status 2002

    International Nuclear Information System (INIS)

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  10. International nuclear power status 2001

    International Nuclear Information System (INIS)

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  11. International nuclear power status 1999

    International Nuclear Information System (INIS)

    This report is the sixth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 1999, the report contains: General trends in the development of nuclear power; The past and possible future of Barsebaeck Nuclear Power Plant; Statistical information on nuclear power production (in 1998); An overview of safety-relevant incidents in 1999; The development in Sweden; The development in Eastern Europe; The development in the rest of the world; Trends in the development of reactor types; Trends in the development of the nuclear fuel cycle. (au)

  12. The Brazilian nuclear power programme

    International Nuclear Information System (INIS)

    The booklet contains survey articles on the nuclear power problems of Brazil, the German-Brazilian nuclear power agreement, the application of international safety measures, and 'Brazil and the non-proliferation of nuclear weapons'. The agreement is given in full wording. (HP)

  13. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  14. Obrigheim nuclear power plant

    International Nuclear Information System (INIS)

    The gross output of the 345MWe pressurized water nuclear power station at Obrigheim, operation on base load, amounted to about 2.57TWh in 1974, the net power fed to the grid being about 2.44TWh. The core was used to its full capacity until 10 May 1974. Thereafter, the reactor was on stretch-out operation with steadily decreasing load until refuelled in August 1974. Plant availability in 1974 amounted to 92.1%. Of the 7.9% non-availability, 7.87% was attributable to the refuelling operation carried out from 16 August to 14 September and to the inspection, overhaul and repair work and the routine tests performed during this period. The plant was in good condition. Only two brief shutdowns occurred in 1974, the total outage time being 21/2 hours. From the beginning of trial operation in March 1969 to the end of 1974, the plant achieved an availability factor of 85.2%. The mean core burnup at the end of the fifth cycle was 19600 MWd/tonne U, with one fuel element that had been used for four cycles achieving a mean burnup of 39000 MWd/tonne U. The sipping test on the fuel elements revealed defective fuel-rods in a prototype plutonium fuel element, a high-efficiency uranium fuel element and a uranium fuel element. The quantities of radioactive substances released to the environment in 1974 were far below the officially permitted values. In july 1974, a reference preparation made up in the nuclear power station in October 1973 was discovered by outsiders on the Obrigheim municipality rubbish tip. The investigations revealed that this reference preparation had very probably been abstracted from the plant in October 1973 and arrived at the rubbish tip in a most irregular manner shortly before its discovery

  15. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  16. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  17. Manpower development for nuclear power

    International Nuclear Information System (INIS)

    This Guidebook provides policy-makers and managers of nuclear power programmes with information and guidance on the role, requirements, planning and implementation of manpower development programmes. It presents and discusses the manpower requirements associated with the activities of a nuclear power programme, the technical qualifications of this manpower and the manpower development corresponding to these requirements and qualifications. The Guidebook also discusses the purpose and conditions of national participation in the activities of a nuclear power programme

  18. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  19. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  20. International nuclear power status 2000

    International Nuclear Information System (INIS)

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  1. Nuclear Power Development in China

    Institute of Scientific and Technical Information of China (English)

    Lin Chengge; Li Shulan

    2009-01-01

    @@ China's nuclear power industry experienced such three stages as initiation, moderate development and active development. So far, there have been 11 nuclear power units in service in the Chinese mainland with a total installed capacity of 9 100 MW. In addition, there are 24 units being constructed or to be constructed as listed in the 11th Five-Year Plan.

  2. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  3. Strategy for utilizing nuclear power

    International Nuclear Information System (INIS)

    One of the national goals is to achieve independence in the area of energy supplies in the next few years. It is believed that attaining this goal will require extensive utilization of nuclear power in conventional fission reactors. It is proposed that the best way to develop the nuclear resource is through government ownership of the reactors. It is argued that this will minimize the risks associated with the nuclear-power option and clear the way for its exploitation

  4. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    In early 1988, 417 nuclear power plants were in opration worldwide, which is twenty more than in early 1987. The total installed power of 300 GWe corresponds to 11% of the total generating capacity and contributes more than 16% of the worldwide electricity production. Fifty of these nuclear power plants, with an aggregate 28 GWe, have been built in developing countries, where they contribute 7% to the electricity requirement. With respect to installed power, the growth of nuclear power lags behind the plans made ten years ago, because some developing countries have stretched out their nuclear power programs for the next decade. This is due to various reasons. In some cases, the availability of alternative energies has reduced the use of nuclear power. In other cases, the delay has been due to funding and to the long planning and construction periods. The main problem facing the developing countries, however, is financing nuclear power plant projects in the light of the high capital costs of nuclear power plants. (orig.)

  5. Developing countries curtail nuclear power

    International Nuclear Information System (INIS)

    The nuclear power programmes in developing countries, following the accident at the Chernobyl power plant are summarized. Many of these have abandoned plans for nuclear power (eg Gabon), mothballed existing reactors (eg Philippines) or deferred decisions on a reactor programme (eg Egypt, Taiwan, Libya). Economic and political pressures are usually the underlying reasons, but the Chernobyl incident has proved a useful excuse. Other countries (Nigeria, Korea, India, Pakistan) have not let the accident change their nuclear policy. In China, Israel and Turkey the debate about nuclear power has been sharpened by the accident. Although Chernobyl has hastened decisions on nuclear power in some countries it has not affected the long-term policies of developing countries. (UK)

  6. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  7. Obrigheim nuclear power plant

    International Nuclear Information System (INIS)

    In 1973 the 345 MW pressurized water nuclear power plant at Obrigheim operated on base load, generating approximately 2.63 TWh, approximately 2.5 TWh of which was supplied to the KWO members. The plant availability for the year was 89.9%. Of the 10.1% non-availability, 6.4% (23 d) was caused by refuelling, including inspection, overhaul and repair operations and routine tests carried out in September 1973. 3.3% was due to stoppages for repairs to a steam generator and the two main cooling pumps, while 0.4% resulted from failures in the electrical section of the plant. The plant was shut down seven times in all, including three scrams. The average core burnup at the end of the fourth cycle (1 September 1973) was 18900 MWd/tU, representing an average burnup of approximately 37500 MWd/tU for a fuel element used in all four cycles. The operating performance of the steam generators and the result of the steam generator inspection carried out during refuelling in 1973 suggest no progressive damage. The quantities of radioactive materials released to the environment in 1973 were well below the officially permitted levels. The availability of the plant from the beginning of pilot operation in 1969 to the end of 1973 was 83.7 %

  8. Garigliano nuclear power plant

    International Nuclear Information System (INIS)

    During the period under review, the Garigliano power station produced 1,028,77 million kWh with a utilization factor of 73,41% and an availability factor of 85,64%. The disparity between the utilization and availability factors was mainly due to a shutdown of about one and half months owing to lack of staff at the plant. The reasons for nonavailability (14.36%) break down as follows: nuclear reasons 11,49%; conventional reasons 2,81%; other reasons 0,06%. During the period under review, no fuel replacements took place. The plant functioned throughout with a single reactor reticulation pump and resulting maximum available capacity of 150 MWe gross. After the month of August, the plant was operated at levels slightly below the maximum available capacity in order to lengthen the fuel cycle. The total number of outages during the period under review was 11. Since the plant was brought into commercial operation, it has produced 9.226 million kWh

  9. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Nuclear power does not produce CO2 or other greenhouse gases, and also does not produce any SO2, NOx or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO2: 12,000 t of SO2; and 6,000 t of NOx, the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO2. This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO2 annually. This is 8% of the 20,000 million tons of CO2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  10. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  11. Nuclear power in the Midwest

    International Nuclear Information System (INIS)

    The Twelfth Annual Illinois Energy Conference, held in Chicago, Illinois, October 1984 was sponsored by the Energy Resources Center, University of Illinois at Chicago in cooperation with the U.S. Department of Energy, the Illinois Department of Energy and Natural Resources, the Illinois Energy Resources Commission, and the Illinois Commerce Commission. The theme for the conference was ''Nuclear Power in the Midwest.'' The topic of Nuclear Power is particularly appropriate in view of the fact that the State of Illinois, as well as the Midwest region, has made a major commitment to the use of this option for electric power generation. This is evidenced by the fact that some twenty-three of the eighty-six currently licensed nuclear reactors in the United States are located in the Midwest region. Illinois alone contains ten licensed nuclear reactors with four other nuclear plants either under construction or waiting for an operating license. In rated capacity of electric power generated by nuclear reactors, the region is capable of producing 21.5% of the national total of 70,000 MWe. The problems surrounding nuclear power involve complex technologies, environmental and public health concerns, economic and legal factors as well as numerous other policy questions. The goal of the 12th Annual Illinois Energy Conference was to review these issues in order to educate the public and to assist government policy makers in making rational judgements regarding the use and development of the nuclear power option

  12. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  13. On PA of nuclear power

    International Nuclear Information System (INIS)

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  14. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  15. Nuclear power stations licensing

    International Nuclear Information System (INIS)

    The judicial aspects of nuclear stations licensing are presented. The licensing systems of the United States, Spain, France and Federal Republic of Germany are focused. The decree n0 60.824 from July 7 sup(th), 1967 and the following legislation which define the systematic and area of competence in nuclear stations licensing are analysed

  16. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  17. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  18. The economics of nuclear power

    International Nuclear Information System (INIS)

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO2 at baseload power plant capture CO2 at H2 plant; capture CO2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  19. Nuclear power and the environment

    International Nuclear Information System (INIS)

    The environmental impacts and the impacts on man are compared for nuclear power plants and solid-fossil-fuel power plants. Practical experience points to significant advantages of nuclear power facilities. While coal-fired power plants in normal operation pollute the environment up to 30% of the permissible limits, the actual exposures caused by nuclear power plants are less than one per mille of the limits given by legal regulations. Some problems are also discussed of radiation protection. It is stated that thanks to the systematic research in this field which has been carried out for nearly sixty years, the knowledge of ionizing radiation hazards is now much more profound and complex than, e.g., that of toxic chemical pollutants released from fossil-fuel power plants and from chemical plants or contained in vehicle exhaust gases. (Z.M.). 5 tabs

  20. The debate on nuclear power

    International Nuclear Information System (INIS)

    The need for nuclear power is pointed out. The Study Group on Nuclear Fuel Cycles of the American Physical Society has studied the problem of waste disposal in detail and has found that geological emplacement leads to safe waste disposal. The relation between nuclear power and weapons proliferation is discussed. The problem of preventing proliferation is primarily a political problem, and the availability of nuclear power will contribute little to the potential for proliferation. However, to further reduce this contribution, it may be desirable to keep fast-breeder reactors under international control and to use only converters for national reactors. The desirable converter is one which has a high conversion ratio, probably one using the thorium cycle, 233U, and heavy water as the moderator. The nuclear debate in the United States of America is discussed. Work on physical and technical safeguards in the USA against diversion of fissile materials is mentioned. (author)

  1. Nuclear power - razing and creating

    International Nuclear Information System (INIS)

    In the book a studies fulfilled by the author is summarized, and issues of modern status for nuclear reactors safety; worldwide statement of nuclear power; nuclear waste disposal; radiation ecology; military polygons infrastructure conversion are considered. Works - fulfilled under scientific supervision of the author - on getting a new information about nuclear tests consequences on the Kazakhstan territory, its effect on the environment and human health, problems of determination of radiation contamination levels of the Republic's regions, suffered population rehabilitation from these tests, reimbursement of former agricultural areas after nuclear tests activity into national economy are discussed, and implementation of up-to-date technologies is given. The book is intended for a wide circle of readers, specialists, teachers, postgraduates and students and all who are interesting of nuclear power use issues for a prosperity and well-being of mankind

  2. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  3. Investor perceptions of nuclear power

    International Nuclear Information System (INIS)

    Evidence is provided that investor concerns about nuclear power have recently been reflected in the common stock returns of all utilities with such facilities and have resulted in a risk premium. In particular, over the 1978-1982 period, three nuclear-related events occurred at the same time as, and therefore appear to have caused, significant drops in the market values of nuclear utilities relative to their non-nuclear counterparts. The three events were as follows: the accident at TMI, which occurred in March 1979; the realization in the summer of 1980 that an accident of the magnitude of TMI could result in cleanup costs of over $1 billion, which are not completely insurable and could therefore result in substantial losses; and the summer 1982 decision by the Tennessee Valley Authority (TVA) to cancel some if its nuclear power plant construction projects, and the Nuclear Regulatory Commission (NRC) decision to stop work on the construction of the Zimmer reactor, followed by a warning that it might close the Indian Point 2 and 3 reactors. If an individual had invested $100 in an average nuclear utility on the day before the TMI accident and reinvested all dividends, the value of this investment would have fallen by 10% relative to an identical investment in the average non-nuclear utility. The risk of investments in nuclear power versus conventional generating technologies shows nuclear power to be a relatively risky investment. However, relative to all investments, nuclear power was less risky in terms of the type of risk that would cause investors to require a premium before purchasing their securities. 6 figures, 6 tables

  4. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  5. Space nuclear power systems

    International Nuclear Information System (INIS)

    Materials of the 19-th Symposium on Space Nuclear Energetic and Engine Units taking place in 2002, in Albuquerque, USA are reviewed. Reports on transformation of heat energy produced by nuclear reactors in electrical one are presented in the reports. Result of works on improvement as traditional (Brayton and Rankine cycles, thermoelectricity and thermionic emission), so innovation converter systems (Stirling engine, alkali metal thermal to electric converter - AMTEC, thermoacoustic engine) are represented

  6. Is nuclear power safe enough

    International Nuclear Information System (INIS)

    The vice-chairman of the Nuclear Power Safety Commission presents here the background for the Commission's work. He summarises informally the conclusions reached and quotes the minority dissensions. He also criticises many of the arguments made by anti-nuclear organisations. (JIW)

  7. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    The sustainability of specific technology became the important issue in future developement perspective as the environmental issue occupies the most priority in adopting the relevant technology. This study summarizes the concepts of sustainable development and analyses the nuclear future under the pressure of sustainable development. Also, it shows the fields that need the concentrated research in nuclear power

  8. Nuclear power and childhood leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Grimston, M. (AEA Technology, London (UK))

    1991-06-19

    The possibility of illness caused by exposure to emissions from nuclear power plants continues to raise enormous public concern. Nowhere is this more evident than in the debate over the aetiology of childhood leukaemias. This review explores the evidence in relation to this and other diseases which are linked in the public's mind to nuclear power. The scientific evidence presented suggests that these links are more tenuous than is commonly believed. (author).

  9. Nuclear Power Development in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China's nuclear power industry experienced such three stages as initiation,moderate development and active development.So far,there have been 11 nuclear power units in service in the Chinese mainland with a total installed capacity of 9 100 MW.In addition,there are 24 units being constructed or to be constructed as listed in the 11th Five-Year Plan.

  10. Nuclear power: Issues and misunderstandings

    International Nuclear Information System (INIS)

    A sizeable sector of the public remains hesitant or opposed to the use of nuclear power. With other groups claiming nuclear power has a legitimate role in energy programs, there is a need to openly and objectively discuss the concerns limiting its acceptance: the perceived health effects, the consequences of severe accidents, and the disposal of high level waste. This paper discusses these concerns using comparisons with other energy sources. (author)

  11. Nuclear power - the glittering prizes

    Energy Technology Data Exchange (ETDEWEB)

    Horton, C.C.

    The paper on the benefits of nuclear power is based on a lecture given for the Institution of Nuclear Engineers, London, 1986. Suggestions for short term benefits include a clean environment and a cheap energy source, whereas suggestions for long term benefits include freedom from want in the world and avoidance of 'energy wars'. These benefits are discussed along with alternative energy sources, the financial savings to be saved from nuclear power, world energy wealth, depletion of world energy reserves, and risks due to radiation exposure.

  12. Nuclear power - the glittering prizes

    International Nuclear Information System (INIS)

    The paper on the benefits of nuclear power is based on a lecture given for the Institution of Nuclear Engineers, London, 1986. Suggestions for short term benefits include a clean environment and a cheap energy source, whereas suggestions for long term benefits include freedom from want in the world and avoidance of 'energy wars'. These benefits are discussed along with alternative energy sources, the financial savings to be saved from nuclear power, world energy wealth, depletion of world energy reserves, and risks due to radiation exposure. (UK)

  13. Training Nuclear Power Specialists

    International Nuclear Information System (INIS)

    Situation of preparation of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. In view with decision to shut down Unit 1, the Ignalina NPP is limiting the number of new personnel to fill in vacancies. The main attention is given to the training courses for improvement skills of existing Ignalina NPP, VATESI personnel. Main topics of the training courses are listed. Information on number of the personnel who extended their knowledge and improved skills by the type of training is presented

  14. Infrastructure needs for nuclear power

    International Nuclear Information System (INIS)

    Nuclear power is a significant component of electricity systems world-wide and in OECD countries as a whole it accounts for about 25% of the electricity supply. The current stagnation in nuclear power orders and the expectation of diminishing nuclear programmes in several countries might jeopardize industrial infrastructures based on nuclear activities. Questions arise as to whether special measures are needed to ensure that the nuclear option will be available when wanted and if so, who would take these measures. This paper provides at first an attempt to define what can be considered as ''structure'' and ''infrastructure'' and then a review of relevant issues related to industrial and governmental supporting infrastructure. In particular, the manpower availability and educational implications are examined

  15. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    The public is influenced against nuclear power by fear of a large accident, fear of radiation, worry about nuclear waste, and by the fact that it is a symbol of the bureaucratic, impersonal aspects of industrialized society. The nuclear industry must do several things to overcome this public concern. It must be more articulate in speaking to the public in a language the public understands and not in nuclear jargon; it must be strictly accurate and truthful in all statements, and if it believes the case it is putting forward is sound, it should defend the proposal and not promise to do even more to buy off criticism. Acceptance of nuclear power will either have to wait until the energy situation is desperate, or until the industry puts enough effort into presenting and defending its case to convince all objective people

  16. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  17. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  18. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made

  19. Topics in nuclear power

    International Nuclear Information System (INIS)

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come

  20. Nuclear power: in perspective

    International Nuclear Information System (INIS)

    Dr. Agnew, former director of Los Alamos Scientific Lab., observes that modern communications have made the over-populated and less-developed countries impatient to have the energy-intensive living standards enjoyed by Europe and the US. More cartels can be expected, he feels, to give these people economic leverage unless they are supplied with cheap, available energy. He notes that all energy sources, including nuclear, have a role and must be developed. The economic and environmental impacts of nuclear energy compare favorably with other major energy sources, but the public neds to be given factual rather than sensational information about nuclear energy so that realistic comparisons can be made. Dr. Agnew points to new types of reactors for land-based facilities that can be designed and that will be safer than the water-cooled design and eliminate some risks. He also finds fuel reprocessing removing some risks, in contrast to the failing nonproliferation policy. He admonishes opponents of nuclear energy to recognize that their position has serious social and economic implications for developing countries and possibly grave political and security repercussions for the US

  1. Nuclear power plant

    International Nuclear Information System (INIS)

    The nuclear part with the negative pressure control system is installed in an underground chamber of a mountain. The containment consists of a sealing concrete layer directly sprayed to the rock and containing reinforcement inserts as well as of a consolidating concrete shell. The sealing concrete layer is combined with the rock by means of prestressed concrete tie rods. (DG)

  2. Topics in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Budnitz, Robert J. [Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  3. Providing emergency supply of nuclear power plants

    OpenAIRE

    ROZMILER, Jiří

    2013-01-01

    Work "Providing emergency power nuclear power plant" describes how solving their own consumption nuclear power plant, as emergency power supply is designed and how it should be a solution of known states of emergency, having an immediate impact on the power consumption of their own nuclear power plants. The aim of this thesis is to propose options to strengthen its own emergency power consumption of nuclear power plants, one might say-more resistant to harsh extremes, which could lead to loss...

  4. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Nuclear power provides the world with an important option for generating electricity. To successfully and safely utilize this power, engineering and environmental factors should be carefully considered throughout a nuclear power plant project, especially during the planning stages. This paper discusses the major environmental aspects of a nuclear power plant project from site selection to retirement. During the site selection process, both engineering and environmental resources must be identified and evaluated. Environmental resources include areas that support agricultural or aquatic commercial activities, habitats for commercial or endangered species, population centers, transportation systems, and recreational areas. Also, during the site selection process, the potential impacts of both construction and operating activities must be considered. In addition to the area actually disturbed by construction, construction activities also affect local services, such as transportation systems, housing, school systems, and other social services. Since nuclear power plants use a 'clean fuel,' generally the most significant operating activity having a potential environmental impact is the discharge of cooling water. The potential effect of this discharge on commercial activities and sensitive habitats should be thoroughly evaluated. Lastly, the method of decommissioning can affect long-range land use planning and should therefore be considered during the planning process. With appropriate planning, nuclear power plants can be constructed and operated with minimum environmental impact. (author)

  5. Starting of nuclear power stations

    International Nuclear Information System (INIS)

    The procedure is briefly characterized of jobs in nuclear power plant start-up and the differences are pointed out from those used in conventional power generation. Pressure tests are described oriented to tightness, tests of the secondary circuit and of the individual nodes and facilities. The possibility is shown of increased efficiency of such jobs on an example of the hydraulic tests of the second unit of the Dukovany nuclear power plant where the second and the third stages were combined in the so-colled integrated hydraulic test. (Z.M.). 5 figs

  6. Nuclear power and durable development

    International Nuclear Information System (INIS)

    This paper highlights the role that the nuclear power can play in a durable development of society. From a comparative analysis of different energy sources capable to fulfil the national energy demand it turns out that for Romania the optimal alternative is nuclear power. The nuclear power proved its attributes and characteristics in ensuring durable development by: 1. the technological maturation of the CANDU system as demonstrated by the good functioning of Cernavoda NPP Unit 1; 2. optimal utilization of the uranium national resources as well as the mining industry; 3. uranium processing and nuclear fuel and heavy water manufacturing as entailed by an educational infrastructure, research and industrial development; 4. low environmental impact; 5. high professional skill of the nuclear personnel. In addition, the low cost of the energy produced by the nuclear sector, as well as the social effects, namely, a 100% utilization of industrial infrastructure and national research capacity, urges the decision makers to develop the Cernavoda NPP, to increase the weight of nuclear energy in the energy production of the country

  7. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA)

  8. The abuse of nuclear power

    International Nuclear Information System (INIS)

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view. (U.K.)

  9. Nuclear power data; Kernenergie in Zahlen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The report ''nuclear power data'' includes data on the following issues: nuclear power plants in Germany including their operational characteristics, gross data on electricity generation in Germany, primary energy consumption in Germany, nuclear power plants worldwide, top ten nuclear power plants worldwide with respect to electricity generation in 2012.

  10. Elections: nuclear power confirmed

    International Nuclear Information System (INIS)

    2007 was an election year in France and the presidential campaign was an opportunity to bring in the debate a lot of topics, it appears that this year sustainable development was a concern shared by a lot of politicians. Candidate Sarkozy said that nuclear energy is consistent with the preservation of the environment and must be an essential part of the energy mix. He compelled himself to pursue the construction of the EPR reactor on the Flamanville site and to organize as soon as possible a large debate on all the topics involved in sustainable development. (A.C.)

  11. Nuclear power world report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  12. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  13. The benefits of nuclear power

    International Nuclear Information System (INIS)

    The object of the article is to indicate in fairly general terms the nature and magnitude of the benefits of nuclear power. The paper argues that significant economic gains have been obtained and that investment in civil nuclear development has fully justified itself. The justification for these claims is discussed under the topic headings: scale of the industry and world fuel savings, environment, health, fuel prices, United Kingdom benefits, generation costs, security of fuel supply, and the third world. (U.K.)

  14. Nuclear fuel procurement management at nuclear power plant

    International Nuclear Information System (INIS)

    The market situation of nuclear fuel cycles is highlighted. It also summarises the possible contract models and the elements of effective management for nuclear fuel procurement at nuclear power station based upon the nuclear fuel procurement practice of Guangdong Daya Bay Nuclear Power Station (GNPS)

  15. Assessment of influence on the environment at closing down of nuclear facilities

    International Nuclear Information System (INIS)

    In this paper author presents the duties of the Nuclear Regulatory Authority of the Slovak Republic at the assessment of the influence on the environment at closing down of the nuclear facilities. Legislative aspect of decommissioning of the A-1 Jaslovske Bohunice NPP as well as closing down of the V-1 Jaslovske Bohunice NPP are discussed

  16. Manufacturing industry and nuclear power

    International Nuclear Information System (INIS)

    The manufacturing industry and nuclear power is discussed at two levels. There is the supplier level where the problems tend to be orthodox but take on a special peculiarity when applied to the nuclear market, and there is the level that may be termed nuclear politics and which has a number of aspects including energy policy, choice of reactor system, efficient uses of industrial resources and public acceptability. The role of the supplier is seen as searching for new orders, having secured an order performing the contract, and finally looking at the long term requirements of the industry. The choice of thermal reactor system, PWR, AGR, or BWR is discussed. (author)

  17. The future of nuclear power

    International Nuclear Information System (INIS)

    When it was announced in June that France had beaten Japan in the race to host the world's next big fusion lab, the news made headlines around the world. The media reported in generally positive tones how the 10 bn Euro International Thermonuclear Experimental Reactor (ITER) will be the next step on the path to a commercially viable nuclear fusion reactor (Physics World August p5). The coverage was a clear sign of the growing debate surrounding the future of nuclear power. Nuclear Renaissance is a welcome contribution to that debate. The book bills itself as a 'semi-technical overview of modern technologies', which perhaps underplays what the author has achieved. It reviews past, current and prospective nuclear technologies, but links them clearly to the wider topics of energy policy, climate change and energy supply. Apart from being 'semi-technical', the book is also 'semi-British'. Although those sections on technology have a global scope, the lengthy first part - devoted to the 'policy landscape' - is firmly UK in its perspective. It provides a basic description of nuclear power, the economics of nuclear generation, and how nuclear energy could combat climate change. The contribution of nuclear power to a balanced energy supply and its links with weapons proliferation are also discussed. This opening part ends with a chapter on waste management. While the first part of the book could be a stand-alone introduction to nuclear power for layreaders, the second and third parts - on nuclear fission and nuclear fusion - seem to be aimed at a different readership altogether. In particular, they will help students who have some scientific training to understand in more detail how specific types of nuclear technology work. If you want to know how a Westinghouse Advanced Passive Reactor differs from a European Pressurised Water Reactor - or learn the specifics of the Canadian CANDU reactor or the South African pebble-bed modular reactor - then this is for you. Nuttall

  18. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  19. Nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To prevent liquid wastes from being discharged out of the system by processing to recover them in the nuclear reactor and reusing them. Constitution: Discharge of liquid wastes to the surrounding atmosphere are completely eliminated by collecting floor drains, a part of processing water for the regeneration of liquid wastes, non-radioactive steam drains and laundry drains conventionally discharged so far out of the system, processing them in a concentrator, a desalter or the like into water of a high purity and extremely low radioactive concentration, storing the water in an exclusive storage tank and supplying it as a steam or supplementing water to each portion in the plant that requires water of such high purity and extremely low radioactivity. (Yoshihara, H.)

  20. Nuclear power, society and environment

    International Nuclear Information System (INIS)

    This rubric reports on 12 short notes about sociological and environmental aspects of nuclear power in France and other countries: the epidemiological inquiry widened to all French nuclear sites; the sanitary and radioecological effects of nuclear activities in Northern Cotentin (France); the WONUC (World National Council of Nuclear Workers) anger with the French government about the shutdown of Superphenix reactor; the new more informative promotional campaign of Electricite de France (EdF) for nuclear power; the scientific and research prices attributed by the French Atomic Energy Commission (CEA) to its searchers; the creation of a committee of inquiry in the French senate for the careful examination of the economical, social and financial consequences of the shutdown of Superphenix; the 31.2% increase of CEA-Industrie benefits for 1997; the decrease of nuclear contestation in Germany; the French-German communication efficiency during the Fessenheim accident simulation in October 7, 1997; the 3.5% increase of CO2 emissions in the USA; the decommissioning of 3 Russian reactors for military plutonium production; Greenpeace condemnation for abusive purposes against British Nuclear Fuel plc (BNFL) and its activities at Sellafield (UK). (J.S.)

  1. The future of nuclear power

    CERN Document Server

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  2. Safe and green nuclear power

    International Nuclear Information System (INIS)

    Energy development plays an important role in the national economic growth. Presently the per capita consumption of energy in our country is about 750 kWh including captive power generation which is low in comparison to that in the developed countries like USA where it is about 12,000 kWh. As of now the total installed capacity of electricity generation is about 152,148 MW(e) which is drawn from Thermal (65%), Hydel (24%), Nuclear (3%) power plants and Renewables (8%). It is expected that by the end of year 2020, the required installed capacity would be more than 3,00,000 MW(e), if we assume per capita consumption of about 800-1000 kWh for Indian population of well over one billion. To meet the projected power requirement in India, suitable options need to be identified and explored for generation of electricity. For choosing better alternatives various factors such as availability of resources, potential to generate commercial power, economic viability, etc. need to be considered. Besides these factors, an important factor which must be taken into consideration is protection of environment around the operating power stations. This paper attempts to demonstrate that the nuclear power generation is an environmentally benign option for meeting the future requirement of electricity in India. It also discusses the need for creating the public awareness about the safe operations of the nuclear power plants and ionising radiation. (author)

  3. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  4. Experiences with electronic personal dosimeters at Dukovany Nuclear Power Plant-Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Jurochova, Bozena; Zelenka, Zdenik [Personal Dosimetry Department NPP Dukovany (Czech Republic)

    2004-07-01

    The Dukovany Nuclear Power Plant operates four WWER-440 type reactors. Unit 1 has been operating since 1985, Unit 2 and Unit 3 since 1986, Unit 4 was connected to the grid in 1987. At Dukovany NPP occupational dosimetry is performed by approved Personal Dosimetry Service. The basic facilities for measuring external exposure are film badge (legal dosimeter), electronic personal dosimeter (EPD) and radio-photoluminescent dosimeter (RPL) as operational dosimeter, TLD for measuring doses to the extremities and TLD albedo dosimeter as neutron dosimeter. The presentation is based on the experiences with electronic personal dosimeters gathered at Dukovany NPP for the last three years. Electronic Personal Dosimetry System (EPDS) was developing by Czech company VF, a.s. and from 2002 year is also used at Temelin NPP (Czech Republic), SE VYZ Bohunice (Slovakia) and SE Mochovce NPP (Slovakia) as well. EPDS is designed for Merlin Gerin, Siemens and RADOS electronic dosimeters. Application SW for data analysis is used for daily monitoring of personal doses and for evaluation of collective doses during outages. System gives information about collective doses on devices and collective doses for select work tasks during outages. In addition EPDS allows the calculation of dose indexes I{sub D}. (I{sub D} is the ratio of the relevant collective dose and the number of equivalent working hours). This information is applicable for planning doses on special working activities for next outages and allows a detection radiation sources also.

  5. Nuclear power program in Indonesia

    International Nuclear Information System (INIS)

    The nuclear program in Indonesia is derived from the long-range national development plan. The main aim of this plan is to realize a just and prosperous society within a united and democratic nation, and to contribute to world peace. A research and development infrastructure is being developed to establish the necessary technological foundations, to train technical personnel, and to develop the capacity for technical adaptation and innovation. BATAN, the National Atomic Energy Agency, is responsible for nuclear R and D, and also has a regulatory function and implements the national nuclear program. The author describes the functions of the eight BATAN laboratories, and surveys the energy resources available to Indonesia. In the ten years preceding 1983 electric energy consumption increased at a rate of 12.4 percent per year. It is projected that an electric capacity of 42,000 MW(e) will be required in the year 2003. The nuclear contribution could be around 10 percent. The decision to adopt nuclear power generation depends, among other factors, on financial considerations, the perception that nuclear power would perpetuate the dependence on developed nations, and safety concerns

  6. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  7. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW)

  8. A renaissance in nuclear power

    International Nuclear Information System (INIS)

    This paper presents an analysis of the worldwide evolution of the fleet of nuclear power plants until the 1980s; the reasons why in the same era this contingent was rejected in various developed countries due to a complete lack of public acceptance, being condemned to a phaseout planned to eliminate more than half of the operating power plants by 2020; and finally, what are the reasons for this competent base-load power source to silently resist for more than a quarter of a century, having been the focus of studies and improvements in the most renowned research centers in the world and the most traditional universities of the developed countries, resurging as one of the main allies of worldwide sustainable development, even with all the difficulties of deployment, ecological risks, and nuclear proliferation. However, after more than 30 years of intense debates involving a wide variety of interrelated problems, scientists have collected irrefutable proof that the actions of humankind have caused climate changes that represent an imminent threat to the survival of the human species on Earth, requiring coordinated international action that seeks to determine the economic aspects of the stabilization of levels of GHGs (greenhouse gases) in the atmosphere. The transition to a worldwide low-carbon economy presents political challenges, where, the most complex political question, is the supply of energy which would depends on a change in the supply of energy from fossil fuels to renewable, hydro and nuclear. Undoubtedly the nuclear power plants are, by far, the most controversial. (author)

  9. How safe is nuclear power

    International Nuclear Information System (INIS)

    The subject is discussed, with particular reference to nuclear power in the UK, as follows: ionising radiations; components of the radiation dose to which on average each person in the UK is exposed; regulation and control; mining; reactor operations - accidents, safety; transport of spent fuel; radioactive wastes; fast reactors and plutonium; insurance. (U.K.)

  10. Nuclear Power on Energy Agenda

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The big debate on whether or not to use nuclear power as an energy option has raged among countries like the U.S., Britain, and Germany for decades, with not even the advent and threat of global warming forcing a conclusion. China, however, has always stressed energy diversity and been determined to develop and use this alternative energy source.

  11. Nuclear power and its alternatives

    International Nuclear Information System (INIS)

    For nuclear power to contribute significantly to the alleviation of demands for increased electricity by the year 2000, a further obstacle must be overcome, namely the present nuclear phobia of the American public. This phobia can be addressed only through public education leading to a balanced perspective of the benefits and hazards of nuclear power compared with those of alternate sources of energy and to the risks associated with an insufficient supply of energy in a few years. Also to be considered in a public education effort should be the precarious and capricious nature of this country's continued reliance on energy sources imported from politically unstable countries, as well as the risk this importation poses for the nation's economic, social and military security

  12. The future for nuclear power

    International Nuclear Information System (INIS)

    Lord Marshall explains how the situation for nuclear power in late 1989 in the United Kingdom had come about. Despite warnings that for a successful nuclear programme a large generator which has the obligation to supply in a defined geographical area should operate, this is not what will happen under the plans to privatise the electricity supply industry in the UK. Under these no body will have the obligation to supply electricity and the distribution Company will not have the obligation to supply after the first few years. Other problems with the privatisation plans are discussed. The implications of the government's decisions on nuclear power, first to maintain the Magnox stations in the government sector, second to abandon the full PWR construction programme and thirdly not to transfer the AGRs to the private sector, are discussed. (UK)

  13. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  14. Nuclear power consensus and nuclear transports

    International Nuclear Information System (INIS)

    Transports of spent fuel elements to the reprocessing plants of La Hague, France, and Sellafield, UK, as well as of casks with vitrified high-level waste returned to Germany were resumed in early 2001. These transports had been interrupted in 1998 after elevated levels of surface contamination had been found on the out-sides of the shipping casks. The transport issue was settled immediately in all countries affected except Germany, after the situation had been clarified. Numerous agencies involved as well as independent ones found that the increased contamination had to be removed, but had been neither dangerous nor, at that time, notifiable. The outcome of the German federal parliamentary elections in 1998 had produced a new government majority, thus changing the political environment for nuclear power. Opting out of the peaceful use of nuclear power in a properly arranged way and without having to pay compensation is the declared goal of the federal government. Accordingly, also transports of fuel elements for reprocessing are to be abandoned from 2005 on, and transports of spent fuel elements are to be minimized, for the time being, by building on-site-interim stores. The government's policy and opt-out legislation raise a number of questions which will have to be answered in a satisfactory way in the future. (orig.)

  15. Nuclear power and energy planning

    International Nuclear Information System (INIS)

    With the rapid depletion of conventional energy sources such as coal and oil and the growing world demand for energy the question of how to provide the extra energy needed in the future is addressed. Relevant facts and figures are presented. Coal and oil have disadvantages as their burning contributes to the greenhouse gases and they will become scarcer and more expensive. Renewable sources such as wind and wave power can supply some but not all future energy requirements. The case made for nuclear power is that it is the only source which offers the long term prospect of meeting the growing world energy demand whilst keeping energy costs close to present levels and which does not add to atmospheric pollution. Reassurance as to the safety of nuclear power plants and the safe disposal of radioactive wastes is given. (UK)

  16. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  17. Swedish Opinion on Nuclear Power 1986 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren

    2012-11-01

    This report contains the Swedish opinion on Nuclear Power and European Attitudes on Nuclear Power. It also includes European Attitudes Towards the Future of Three Energy Sources; Nuclear Energy, Wind Power and Solar Power - with a focus on the Swedish opinion. Results from measurements done by the SOM Inst. are presented.

  18. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  19. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  20. Insurance of nuclear power stations

    International Nuclear Information System (INIS)

    Electrical utility companies have invested large sums in the establishment of nuclear facilities. For this reason it is normal for these companies to attempt to protect their investments as much as possible. One of the methods of protection is recourse to insurance. For a variety of reasons traditional insurance markets are unable to function normally for a number of reasons including, the insufficient number of risks, an absence of meaningful accident statistics, the enormous sums involved and a lack of familiarity with nuclear risks on the part of insurers, resulting in a reluctance or even refusal to accept such risks. Insurers have, in response to requests for coverage from nuclear power station operators, established an alternative system of coverage - insurance through a system of insurance pools. Insurers in every country unite in a pool, providing a net capacity for every risk which is a capacity covered by their own funds, and consequently without reinsurance. All pools exchange capacity. The inconvenience of this system, for the operators in particular, is that it involves a monopolistic system in which there are consequently few possibilities for the negotiation of premiums and conditions of coverage. The system does not permit the establishment of reserves which could, over time, reduce the need for insurance on the part of nuclear power station operators. Thus the cost of nuclear insurance remains high. Alternatives to the poor system of insurance are explored in this article. (author)

  1. 77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station

    Science.gov (United States)

    2012-12-28

    ... COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory... requested by Entergy Nuclear Operations, Inc. (the licensee), for operation of the Pilgrim Nuclear Power... Impact Statement for ] License Renewal of Nuclear Plants Regarding Pilgrim Nuclear Power Station,...

  2. Loviisa nuclear power plant analyzer

    International Nuclear Information System (INIS)

    The APROS Simulation Environment has been developed since 1986 by Imatran Voima Oy (IVO) and the Technical Research Centre of Finland (VTT). It provides tools, solution algorithms and process components for use in different simulation systems for design, analysis and training purposes. One of its main nuclear applications is the Loviisa Nuclear Power Plant Analyzer (LPA). The Loviisa Plant Analyzer includes all the important plant components both in the primary and in the secondary circuits. In addition, all the main control systems, the protection system and the high voltage electrical systems are included. (orig.)

  3. Nuclear power a reference handbook

    CERN Document Server

    Henderson, Harry R

    2014-01-01

    In the 21st century, nuclear power has been identified as a viable alternative to traditional energy sources to stem global climate change, and condemned as risky to human health and environmentally irresponsible. Do the advantages of nuclear energy outweigh the risks, especially in light of the meltdown at the Fukushima plant in 2011? This guide provides both a comprehensive overview of this critical and controversial technology, presenting reference tools that include important facts and statistics, biographical profiles, a chronology, and a glossary. It covers major controversies and proposed solutions in detail and contains contributions by experts and important stakeholders that provide invaluable perspective on the topic.

  4. Nuclear power in New Brunswick

    International Nuclear Information System (INIS)

    New Brunswick Power is a medium-utility with gross production for the past fiscal year for domestic and external sales of about 16.5 billion kilowatt hours. Of this figure 33.5% was supplied through nuclear generation. The financial risks involved with the production of the Point Lepreau nuclear generating station were discussed. Further, questions of assurances given for schedule and cost, licencing, and long-term plant performance of the Point Lepreau no. 2 unit were addressed. These were discussed with particular emphasis on the competition for the New England market

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  6. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  7. Docommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  8. Economic challenges of nuclear power

    International Nuclear Information System (INIS)

    The costs of nuclear power is detailed. Concerning the construction costs, the mean value over the French fleet of reactors is 1,2 billions euros/GWe and 1.5 billions euros/GWe when the engineering and pre-exploitation costs are included. The construction costs of future reactors will be far higher than expected: 6 billion euros versus 3.5 billions euros for the EPR. The Audit Office has recently made public the real cost of today's nuclear electricity in France: 54 euros/MWh, this value is given by the CCE method and includes all the aspects of nuclear energy: construction, operation, dismantling, maintenance, upgrading works required for life extension, new safety requirements due to Fukushima feedback and long-term managing of wastes. The cost of nuclear accidents is not taken into account. The costs of dismantling can be estimated from the feedback experience from the dismantling of nuclear reactors in the Usa, the value obtained is consistent with the OECD rule that states that it represents 15% of the construction cost. The economic impact of decommissioning a plant after 40 years of operating life while its operating life could have been extended to reach 50 or even 60 years has a cost of losing 1 billion to 2 billion euros per reactor. Despite the fact that tomorrow's nuclear systems will be more expensive than today's, it will stay in a competitive range. (A.C.)

  9. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  10. Alternative institutional arrangements for nuclear power

    International Nuclear Information System (INIS)

    This paper investigates how alternative organizations of nuclear power generation would effect the regulatory environment for nuclear power production, how it would effect financial constraints on new construction, and what governmental barriers to such reorganization exist

  11. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  12. Sabotage at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented

  13. Nuclear power plants and environment

    International Nuclear Information System (INIS)

    The question of nuclear power plants is analysed in details. The fundamental principles of reactors are described as well as the problems of safety involved with the reactor operation and the quantity and type of radioactive released to the environment. It shows that the amount of radioactive is very long. The reactor accidents has occurred, as three mile island, are also analysed. (M.I.A.)

  14. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    This Safety Guide provides detailed guidance on the provisions of the Code on the Safety in Nuclear Power Plants: Operation, IAEA Safety Series No. 50-C-O(Rev.1) on the maintenance of structures, systems and components. Like the Code, the Guide forms part of the IAEA's programme, referred to as the NUSS programme, for establishing Codes and Safety Guides relating to nuclear power plants. Effective maintenance is essential for safe operation of a nuclear power plant. It not only ensures that the level of reliability and effectiveness of all plant structures, systems and components having a bearing on safety remains in accordance with design assumptions and intent, but also that the safety status of the plant is not adversely affected after commencement of operation. Nuclear power plant maintenance requires special attention because of: Limitations set by requirements that a minimum number of components remain operable even when the plant is shut down in order to ensure that all necessary safety functions are guaranteed; Difficulty of access to some plant items even when the plant is shut down, due to radiation protection constraints; Potential radiological hazards to site personnel and the public. This Guide covers the organizational and procedural aspects of maintenance but does not give detailed technical advice on the maintenance of particular plant items. It gives guidance on preventive and remedial measures necessary to ensure that all structures, systems and components important to safety are capable of performing as intended. The Guide covers the organizational and administrative requirements for establishing and implementing preventive maintenance schedules, repairing defective plant items, selecting and training maintenance personnel, providing maintenance facilities and equipment, procuring stores and spare parts, reviewing, controlling and carrying out plant modifications, and generating, collecting and retaining maintenance records for establishing and

  15. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Power demands throughout the world are increasing: energy is essential to assure public health and to provide for the quality of life to which man aspires. Interest in the environmental aspects of nuclear power stations led the IAEA, in co-operation with the US Atomic Energy Commission, to convene a symposium in New York on this topic in August 1970. The enthusiastic response both during and after that meeting, and the interest in environmental matters evidenced by the convening of the United Nations Conference on the Human Environment in Stockholm in June this year, led to a decision to summarize the information presented in New York in a condensed and readily understandable form for those not engaged directly in this field of work. The resultant booklet, prepared in co-operation with the World Health Organization, has now been published under the title of this note. It is intended for wide distribution, especially among delegates and others attending the Stockholm conference. This initial distribution is free; it is probable that the booklet will be up-dated later for re-issue as a sales publication at a price to be fixed. 'Nuclear Power and the Environment' is presented in five sections, each treating a specific aspect of the general topic: the role of atomic energy in meeting future power needs; radiation protection standards; safe handling of radioactive materials; other impacts of the nuclear power industry; and public health considerations. The booklet concludes with a summary of the material presented, and annexes listing pertinent publications of the IAEA, WHO and other international organizations, for further reading. Contributions to the booklet were supplied by 28 experts from the IAEA and WHO and a number of Member States; these were compiled and edited in house. The interests and technical background of the prospective audience have a broader spectrum than one would normally try to cover with a single publication. For the lay public the IAEA has

  16. Nuclear power in Czech and Slovak Republics

    International Nuclear Information System (INIS)

    The nuclear power in Czech and Slovak Republics has been described. Nuclear power plants contribute 28% to the whole energy production (12.1 TWh in Czech republic and 11.7 in Slovak Republic). The Czech and Slovak Republics' nuclear power generation programme assumes to build in these Republics further nuclear power stations with higher efficiency and better safety parameters. 12 figs, 5 tabs

  17. Czechoslovakia: nuclear power in a socialist society

    OpenAIRE

    Carter, F. W.

    1988-01-01

    This paper is an evaluation of the impact nuclear power planning policies have had on Czechoslovakia's socialist society, particularly for the post-Chernobyl era. Poor indigenous energy resources and the leading role that nuclear power has played in the COMECON's energy-intensive manufacturing sector has made nuclear power into an attractive proposition from the 1960s onwards. Discussion in this paper centres around nuclear-power plant siting and operation, and media coverage of the industry ...

  18. Nuclear power revolution is far away

    International Nuclear Information System (INIS)

    The real nuclear debate is as much about money and time as it is about radioactivity and security. While the industry's own people want nuclear power plant to be recognized as climate initiative, said UNFCCC currently no. Nuclear power is virtually CO2-free. The world has 436 nuclear reactors and build 44 new right now. Total this will give a capacity of over 400 G Wh of power. But straightforward power is it not. (AG)

  19. Nuclear power development in the Far East

    International Nuclear Information System (INIS)

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  20. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  1. A future for nuclear power

    International Nuclear Information System (INIS)

    Two decades after the Chernobyl accident, Tony Goddard believes that nuclear power must continue to be used to generate electricity. Exactly 20 years ago this month, on 21 April 1986, workers at the Chernobyl nuclear plant in the former Soviet Union carried out an experiment at very low power with one of the facility's two 'RBMK' reactors. They were, however, unaware that their actions would make the reactor dangerously unstable. Its power rapidly increased, leading to the destruction of the core and a massive chemical explosion. The World Health Organisation estimates that between 40 and 50 staff and emergency workers died as a result of radiation released during the accident. It also resulted in widespread contamination and radiation exposure. The Chernobyl disaster was a significant moment in the development of nuclear power, particularly in terms of the public's attitude to this form of energy. It also highlighted how the Soviet nuclear industry was badly regulated, suffered from lax operation and training, and tolerated weak reactor designs. Surprisingly, one power station in Lithuania and three in Russia are still using RBMK reactors after design deficiencies related to Chernobyl were corrected, although the former is due to close in 2009 following appeals by the European Union on safety grounds. Now, however, it appears that the tide is turning back in favour of nuclear power as countries contemplate the problems of climate change, rising energy prices and the fact that many nuclear plants are reaching the end of their lives. The review contains a consultation document entitled 'Our energy challenge' that sets out four goals: to cut carbon-dioxide emissions; to ensure reliable supplies of energy; to achieve sustainable economic growth; and to ensure that every home is adequately and affordably heated. While the UK hesitates, several other countries are already taking action. Finland has commissioned a new European pressurised water (EPR) reactor at Olkiluoto

  2. Public enlightment seminar on nuclear power. Proceedings

    International Nuclear Information System (INIS)

    The seminar considered different aspects of nuclear power development, including the following issues: electricity generation, power supply and demand, energy sources, consumption of electricity, energy outlook in Europe, comparative analysis of energy options, safety of modern nuclear power plants, radiation and human health, radioactive waste management, nuclear techniques to promote world food security, public information issues

  3. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  4. The economics of nuclear power

    Science.gov (United States)

    Horst, Ronald L.

    We extend economic analysis of the nuclear power industry by developing and employing three tools. They are (1) compilation and unification of operating and accounting data sets for plants and sites, (2) an abstract industry model with major economic agents and features, and (3) a model of nuclear power plant operators. We build a matched data set to combine dissimilar but mutually dependant bodies of information. We match detailed information on the activities and conditions of individual plants to slightly more aggregated financial data. Others have exploited the data separately, but we extend the sets and pool available data sets. The data reveal dramatic changes in the industry over the past thirty years. The 1980s proved unprofitable for the industry. This is evident both in the cost data and in the operator activity data. Productivity then improved dramatically while cost growth stabilized to the point of industry profitability. Relative electricity prices may be rising after nearly two decades of decline. Such demand side trends, together with supply side improvements, suggest a healthy industry. Our microeconomic model of nuclear power plant operators employs a forward-looking component to capture the information set available to decision makers and to model the decision-making process. Our model includes features often overlooked elsewhere, including electricity price equations and liability. Failure to account for changes in electricity price trends perhaps misled earlier scholars, and they attributed to other causes the effects on profits of changing price structures. The model includes potential losses resulting from catastrophic nuclear accidents. Applications include historical simulations and forecasts. Nuclear power involves risk, and accident costs are borne both by plant owners and the public. Authorities regulate the industry and balance conflicting desires for economic gain and safety. We construct an extensible model with regulators, plant

  5. Nuclear power data 2016; Kernenergie in Zahlen 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-04-15

    The brochure on nuclear power data 2016 covers the following topics: (I) nuclear power in Germany: nuclear power plants in Germany; shut-down and decommissioned nuclear power plants, gross electricity generation, primary energy consumption; (II) nuclear power worldwide: nuclear electricity production, nuclear power plants.

  6. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  7. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  8. Nuclear power development, safety and environmental problems

    International Nuclear Information System (INIS)

    The current state is described of power production by conventional power plants and the problems of burning fossil fuels are discussed. A survey is presented of the development of world nuclear power production and of the planned construction of nuclear power plants in Czechoslovakia. The questions of the safety of nuclear installations and their environmental impacts in normal operation and in case of accident are outlined. In the analysis of these aspects of nuclear power production the probability data on the potential hazards of operating nuclear reactors as published in the Rasmussen Safety Report are discussed. (O.K.)

  9. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  10. The future of nuclear power in Mexico

    International Nuclear Information System (INIS)

    The future of nuclear power in Mexico shows interesting aspects: the nuclear power is the source of energy that can supply large proportions of energy, that the country needs; the Kw/h of nuclear power is the most economic energy; the installation of 20 nucleoelectric plants will grant future jobs, the associated nuclear industry can be nationally integrated in the natural uranium cycle. (author)

  11. Design of nuclear power plants

    International Nuclear Information System (INIS)

    The criteria of design and safety, applied internationally to systems and components of PWR type reactors, are described. The main criteria of the design analysed are: thermohydraulic optimization; optimized arrangement of buildings and components; low costs of energy generation; high level of standardization; application of specific safety criteria for nuclear power plants. The safety criteria aim to: assure the safe reactor shutdown; remove the residual heat and; avoid the release of radioactive elements for environment. Some exemples of safety criteria are given for Angra-2 and Angra-3 reactors. (M.C.K.)

  12. Nuclear power and nuclear safety 2003 (in Danish)

    International Nuclear Information System (INIS)

    The report, 'Kernekraft og nuklear sikkerhed 2003' (Nuclear power and nuclear safe-ty 2003) is the first report in a new series of annual reports on the international devel-opment of nuclear power production, with special emphasis on safety issues and nu-clear emergency preparedness. The report series is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency and re-places the previous series, 'International kernekraftstatus' (International Nuclear Po-wer Status). The report for 2003 covers the following topics: status of nuclear power production and regional trends, development of reactors and emergency management systems, safety-related events with nuclear power production, and international rela-tions and conflicts. (au)

  13. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  14. Project Management Unit for decommissioning of NPP Bohunice VI (2003-2014); Project Management Unit para el desmantelamiento de CN Bohunice V1 (2003-2014)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Fernandez-conde, A.; Brochet, I.; Ferreira, A.

    2015-07-01

    From October 2003 until december 2014 the Consortium consisting of Iberdrola Engineering and Construction (leader). Empresarios Agrupados Internacional, and Indra Sistemas has carried out the project Project Management Unit ((PMU) for the decommissioning of Bohunice V1 NPP (units 1 and 2), type VVER-440/V-230 in Slovakia. during the first phase (2003-2007) EdF was also part of the Consortium. The project is funded by the Bohunice International Decommissioning Support Fund (BIDSF) administered by the RBRD. The main objective of the project is to provide the necessary engineering and resources of project management for planning, execution, management, coordination and monitoring of all tasks in support of the decommissioning. (Author)

  15. Simulators of nuclear power stations

    International Nuclear Information System (INIS)

    The report deals with the simulators of nuclear power stations used for the training of operators and for the analysis of operations. It reviews the development of analogical, hybrid and digital simulators up to the present, indicating the impact resulting from the TMI-2 accident. It indicates, the components of simulators and the present accepted terminology for a classification of the various types of simulators. It reviews the present state of the art of the technology: how a basic mathematical model of a nuclear power system is worked out and what are the technical problems associated with more accurate models. Examples of elaborate models are given: for a PWR pressurizer, for an AGR steam generator. It also discusses certain problems of hardware technology. Characteristics of present replica simulators are given with certain details: simulated transient evolutions and malfunctions, accuracy of simulation. The work concerning the assessment of the validity of certain simulators is reported. A list of simulator manufacturers and a survey of the principal simulators in operation in the countries of the European Community, in the United States, and in certain other countries are presented. Problem associated with the use of simulators as training facilities, and their use as operational devices are discussed. Studies and research in progress for the expected future development of simulators are reviewed

  16. Country Nuclear Power Profiles - 2009 Edition

    International Nuclear Information System (INIS)

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2009 edition issued on CD-ROM and Web pages. It updates the country information for 44 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 30 countries that have operating nuclear power plants, as well as 14 countries having past or planned nuclear power programmes (Bangladesh, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Kazakhstan, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2009 edition, 26 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases

  17. Nuclear proliferation and the future of nuclear power

    International Nuclear Information System (INIS)

    The author expresses concerns felt worldwide, both within and outside the nuclear industry, that expansion of nuclear power systems will be impossible without safeguards against nuclear weapons proliferation. Present problems include: countries with nuclear programs who are not full participants in the non-proliferation regime; the ease with which countries can withdraw from the treaty; obtaining accurate nuclear material inventories; and compliance. He discusses conditions and improvements that would address many of the proliferation concerns

  18. Thirty years of Czechoslovak nuclear power

    International Nuclear Information System (INIS)

    Nuclear power in the CSSR in its 30 years old history has occupied an important position in the current power base of the country. In 1987, the nuclear power plant share of the total installed capacity was roughly 16% and their share of the total electricity production was 24.3%. By the year 2000, the installed capacity of nuclear power plants should reach a minimum of 10,000 MW and it is envisaged that this value might be exceeded by another 1,000 MW. In addition to the completion of the Mochovce and Temelin nuclear power plants currently under construction, this would require putting into operation two more WWER-1000 units in other localities. It has been decided that new nuclear power plants will be sited at Kecerovce in Eastern Slovakia and at Blahutovice in Northern Moravia. The preparation has considerably progressed of sites for other nuclear power plants. With the envisaged rate of nuclear power plant construction, the production of nuclear electric power should inscrease to 15 TWh in 1990, 41 TWh in 1995 and 58 TWh in the year 2000. Thus, nuclear power plant share of the total electricity production would be more than 50% in the year 2000 and the plant would cover about 16 to 17% of needs of primary power resources. (Z.M.). 3 tabs., 4 refs

  19. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    Energy Technology Data Exchange (ETDEWEB)

    Cepcek, S. [Nuclear Regulatory Authority of the Slovak Republic, Trnava (Slovakia)

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  20. Nuclear power a very short introduction

    CERN Document Server

    Irvine, Maxwell

    2011-01-01

    With the World desperate to find energy sources that do not emit carbon gasses, nuclear power is back on the agenda and in the news, following the increasing cost of fossil fuels and concerns about the security of their future supply. However, the term 'nuclear power' causes anxiety in many people and there is confusion concerning the nature and extent of the associated risks. Here, Maxwell Irvine presents a concise introduction to the development of nuclear physics leading up to the emergence of the nuclear power industry. He discusses the nature of nuclear energy and deals with various aspec

  1. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  2. Review on the role of nuclear power

    International Nuclear Information System (INIS)

    This report consists of 2 parts. The first part reviews opinions against nuclear power on the aspects: waste disposal, safety and environment, financial; technology, etc. and gives results of a preliminary survey for nuclear power in Vietnam among scientists in 1990. The second part presents advanced reactor concepts and advantages of nuclear power to economy and environment in comparison with other energy sources. (N.H.A). 39 refs, 9 figs, 2 tabs

  3. Getting More Out Of Nuclear Power

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China’s first nuclear power plant generated 31 billion kw/h electricity from 1991 to 2007 Major repair work on the first phase of the Qinshan nuclear power plant,which began operation in 1991 as China’s first nuclear power plant,was completed on January 13,2008.The overhaul has improved the reliability and safety of the reactors and given the oper- ators experience for running,repairing

  4. Nuclear power: the moral question

    International Nuclear Information System (INIS)

    Reference is made to an article under this title by P. Searby, the UKAEA Secretary, which appeared in the May 1978 issue of Atom and which considered some of the moral and ethical aspects of the current public discussion of nuclear power and, in particular, the position adopted on these by the British Council of Churches. This article had previously appeared in the Church of England publication 'Crucible'. The July issue of 'Crucible' contained a letter from Dr. D. Gosling of the Theology Department of Hull University (UK) commenting on the article together with a reply from Searby. These letters are here produced, together with a letter from Dr. J. Davoll, Director of the U.K. Conservation Society, commenting on Searby's views. (U.K.)

  5. Nuclear power: consolidation or change

    International Nuclear Information System (INIS)

    Currently about 45% of the electricity consumed in Scotland comes from nuclear sources and when the power station at Torness, near Edinburgh, is fully commissioned it will be about 60%. Torness is an AGR type reactor and the Scottish Electricty Board (SSEB) consider that there is no case for changing to a PWR type design for any future reactor built in the UK. The economics of 'a next AGR' and a PWR reactor are compared. The construction times for the Torness programme, the electrical output, station life, load factor, fuel costs and additional support costs are also considered, and compared with costs estimated by the Central Elecricity Generating Board (CEGB) for the proposed Sizewell-B reactor. Exposure of station staff to radiation, safety, public acceptibility and development potential, impact on industry, job creation and export potential are also discussed briefly. (UK)

  6. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    trend regarding new materials for nuclear power installations is briefly indicated. (J.B.)

  7. Nuclear power: necessity or self-interest?

    International Nuclear Information System (INIS)

    In part one of this document a survey is presented, via a number of articles, of the power balances in the Netherlands with respect to nuclear power, the role of various institutions and concerns therein and the consequences of the parliamental decision-making in the Netherlands. In part two the development of nuclear power in the third world is explained by means of some examples, the interests of Western industrial countries in the stimulation of nuclear power in the developing countries and the power structures in these countries which play a role with respect to the atom lobby. Part three starts the discussion on the strategy to be followed by the Anti Nuclear Power movement with three strategies for resistance against the building of new nuclear power plants: via the parliamentary route, by means of direct action (base groups), by combining direct action with broadening and actions against supply industries. 59 refs.; 41 figs.; 6 tabs

  8. Environmental impacts of nuclear power

    International Nuclear Information System (INIS)

    The principal effects of radiation on people are acute radiation sickness, cancer, and genetic effects. Acute radiation sickness results from exposures in excess of 100 rem and can be fatal in a matter of days. There have been about ten deaths in the U.S. from this malady. Cancer induction by radiation has been a much broader threat, the largest single source being the Japanese atomic bomb victims--about 24,000 persons exposed to about 130 rem resulting in over a hundred excess deaths. There is no evidence from human data for genetic defects in offspring from radiation to parents, so the estimate--150 x 10-6 eventual defects per man-rem exposure of the entire population--is based on animal tests. Studies of the survivors of the Japanese bombings have yielded no evidence for additional genetic defects among offspring, a result which assures that the above estimate is not too small; a recent assessment indicates it may be an order-of-magnitude too large. Routine emissions of long half-life radionuclides, power plant accidents, transportation accidents, hazards from plutonium dispersal, theft of plutonium for weapons fabrication, and radioactive waste disposal are ways discussed that members of the public can receive radiation exposure from the nuclear industry. The likelihood of death from these situations is shown to be very small compared to other-than-nuclear situations, namely: automobile driving and riding, smoking cigarettes, the generation of electricity from coal, and coal mining. 82 references

  9. Guidebook on the introduction of nuclear power

    International Nuclear Information System (INIS)

    This ''Guidebook on the Introduction of Nuclear Power'' has been structured into three parts. The first part contains a survey of nuclear power, with the objective of providing general background information to the reader on the present status and future prospects of nuclear power and on the technical and economic aspects of available power reactor types and nuclear fuel cycles. In the second part of the Guidebook, the special aspects and considerations relevant to the introduction of nuclear power in a country are discussed. The subject is subdivided into three main headings: the technical aspects and national requirements; the safety and environmental considerations; and the international aspects of nuclear power. Emphasis is placed on the tasks to be performed within the country introducing nuclear power, on responsibilities that cannot be delegated and on the need for adequate national infrastructures and long-term commitments. Finally, the third part of the Guidebook contains more detailed information and guidance on the planning and preparatory stages of launching a first nuclear power project, including in particular: nuclear power programme planning, siting, feasibility studies, bidding and contracting. Design, construction and operation are covered in a brief overview for the sake of completeness

  10. Benefits and risks of nuclear power

    International Nuclear Information System (INIS)

    Discussion, in a popular form, of issues of interest for an unemotional information of the public on problems of nuclear power: 1) Energy consumption, its assumed growth, and possible ways of supply; 2) the physical fundamental and technical realisation of power generation by nuclear fission; 3) problems of the fuel cycle and possible solutions; 4) the effects of radioactive radiation; 5) the safety of nuclear power plants and the risks of nuclear power as compared to other technical and natural risks. (orig./HP)

  11. Small nuclear power: challenges and solutions

    International Nuclear Information System (INIS)

    Estimates show that, for remote localities difficult of access, nuclear power technologies offer a reasonable alternative to conventional power based on fossil fuels. Still, the deployment of nuclear power sources in the country's northern and eastern territories with hard climatic and complicated social conditions calls for novel designs that satisfy to the requirements beyond the scope of those for the conventional nuclear plant designs. A small nuclear power plant with a water-cooled water-moderated reactor facility, called Unitherm, is one of the most advanced autonomous nuclear heat and power supply designs that satisfies the best to the above requirements, based on the experience in design, manufacture and operation of nuclear propulsion systems. (author)

  12. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Science.gov (United States)

    2012-03-27

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 4.11, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. ADDRESSES:...

  13. Advanced nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Full text: Korea Hydro and Nuclear Power Co., Ltd (KHNP) is the largest power company among the six subsidiaries that separated from Korea Electric Power Corporation (KEPCO) in 2001, accounting for approximately 25% of electricity producing facilities, hydro and nuclear combined. KHNP operates 20 nuclear power plants in Kori, Yonggwang, Ulchin and Wolsong site and several hydroelectric power generation facilities, providing approximately 36% of the national power supply. As a major source of electricity generation in Korea, nuclear energy contributes greatly to the stability of national electricity supply and energy security. KHNP's commercial nuclear power plant operation, which started with Kori Unit 1 in 1978, has achieved an average capacity factor more than 90% since 2000 and a high record of 93.4% in 2008. Following the introduction of nuclear power plants in the 1970's, Korea accumulated its nuclear technology in the 1980's, developed OPR 1000(Optimized Power Reactor) and demonstrated advanced level of its nuclear technology capabilities in the 2000's by developing an advanced type reactor, APR 1400(Advanced Power Reactor) which is being constructed at Shin-Kori Unit 3 and 4 for the first time. By 2022, KHNP will construct additional 12 nuclear power plants in order to ensure a stable power supply according to the Government Plan of Long-Term Electricity supply and Demand. 4 units of OPR 1000 reactor model will be commissioned by 2013 and 8 units of APR 1400 are under construction and planned. At the end of 2022, the nuclear capacity will reach 33% share of total generation capacity in Korea and account for 48% of national power generation. (author)

  14. Nuclear Power in the 21st Century

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency helps its Member States to use nuclear technology for a broad range of peaceful purposes, one of the most important of which is generating electricity. The accident at the Fukushima Daiichi nuclear power plant in Japan in March 2011 caused anxiety about nuclear safety throughout the world and raised questions about the future of nuclear power. Two years on, it is clear that the use of nuclear power will continue to grow in the coming decades, although growth will be slower than was anticipated before the accident. Many countries with existing nuclear power programmes plan to expand them. Many new countries, both developed and developing, plan to introduce nuclear power. The factors contributing to this growing interest include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices, and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. The IAEA helps countries that opt for nuclear power to use it safely and securely. Countries that have decided to phase out nuclear power will have to deal with issues such as plant decommissioning, remediation, and waste management for decades to come. The IAEA also assists in these areas. I am grateful to the Russian Federation for hosting the 2013 International Ministerial Conference on Nuclear Power in the 21st Century in St Petersburg in June. This timely conference provides a valuable opportunity to take stock of nuclear power in the wake of the Fukushima Daiichi accident. A high level of public confidence in the safety of nuclear power is essential for the future of the sector. Much valuable work has been done in the past two years to improve safety. But much remains to be done. It is vitally important that the momentum is maintained and that everything is done to ensure that nuclear power is as safe as humanly

  15. Under control. An archeology of nuclear power

    International Nuclear Information System (INIS)

    The volume includes a variety of photographs from different German research and power reactors, simulators, the infrastructure of power plants, working situations in the power plant, including fuel exchange and inspection procedures, the dismantling of decommissioned power nuclear facilities and radioactive waste storage facilities. The second part includes interviews with scientists concerning radiobiology, nuclear waste storage, fuel reprocessing, reactor physics, reactor operation, training in the simulator and risk research.

  16. Nuclear power newsletter Vol. 2, no. 1

    International Nuclear Information System (INIS)

    This newsletter presents information on the following topics: 7th meeting of the INPRO Steering Committee; Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; 1st European Nuclear Assembly

  17. A Basic Guide to Nuclear Power.

    Science.gov (United States)

    Martocci, Barbara; Wilson, Greg

    More than 100 nuclear power plants supply over 17 percent of the electricity in the United States. The basic principles of how nuclear energy works and how it is used to make electricity are explained in this profusely illustrated booklet written for the average sixth grade reader. Discussions include: (1) atomic structure; (2) nuclear fission;…

  18. Methods of estimating nuclear power costs

    International Nuclear Information System (INIS)

    An international panel of experts appointed by the Agency's Director General, after examining costing methods in detail, has recently produced a report entitled 'Introduction to Methods of Estimating Nuclear Power Generating Costs'. The report is intended to help the Agency's Member States, particularly those which are less-developed in nuclear technology, in making a preliminary economic assessment before the construction of a nuclear power station. It gives a description of the different cost items involved in a nuclear power project, some suggestions as to the extrapolation of available data, and an evaluation of different methods of allocating the costs to the units of energy produced

  19. A journalist's guide to nuclear power

    International Nuclear Information System (INIS)

    This guidebook is meant to assist journalists in communicating information about nuclear power. It provides basic information about the CANDU reactor and its use by Ontario Hydro, radiation, and fission, as well as background and statistics on the use of nuclear power in Canada and around the world

  20. Questions and Answers About Nuclear Power Plants.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  1. Foundations of nuclear power engineering safety

    International Nuclear Information System (INIS)

    Report is devoted to justification of nuclear power industry safety. The maximum improvement of safety may be ensured by accident prevention in one of reactor functional units. One presents four basic physical principles ensuring the limiting safety and economical expedience of nuclear power industry

  2. Nuclear power plants for protecting the atmosphere

    International Nuclear Information System (INIS)

    Some figures are presented comparing date on the CO2 emission and oxygen consumption of nuclear, natural gas fired, advanced coal fired and oil fired power plants, for the same amounts of electricity generated. The data were deduced from the Paks Nuclear Power Plant, Hungary. (R.P.)

  3. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  4. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  5. Sustaining the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    This paper describes the approach taken to establish the information base required prior to a decision on a nuclear power programme, and the strategy adopted and the rationale behind the development of the basic core expertise on nuclear reactor technology. The effect of a lack of decision on the question of nuclear power generation on efforts to build this core technical expertise is also described. (author)

  6. Nuclear Power: Africa and the Future

    International Nuclear Information System (INIS)

    Africa is a home to around 800 million people. The total population is expected to reach 1.3 billion by 2020. Efficient, clean energy forms are vital to Africa's sustainable development and fight against poverty. Nuclear power is a sustainable, clean, safe and economic way to met the African countries demand for electrical energy and water desalination As of 29 January 2007, there were 435 nuclear power plants in operation around the world. They total about 369 G We of generating capacity and supply about 16% of the world electricity. Of the 435 nuclear power plants in operation, just two are in Africa: Koeberg-1 and Koeberg-2 in South Africa. Both are 900 M We PWRs.There are also 28 new nuclear power plants under construction none in Africa. In this paper, varies factors , which support the attractiveness of nuclear power for African countries are identified and discussed

  7. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  8. U.S. Forward Operating Base Applications of Nuclear Power

    International Nuclear Information System (INIS)

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  9. U.S. Forward Operating Base Applications of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  10. Maintenance of nuclear power plant

    International Nuclear Information System (INIS)

    Maintenance action of nuclear power plant (NPP) was described. Maintenance of NPP aimed at assurance of required function of NPP's equipment so as to prevent release of radioactive materials into the environment as well as attainment of stable operation of NPP. Philosophy of NPP safety was based on defense-in-depth or multiple barriers requiring specified function for the equipment. Preventive maintenance was essential to NPP's equipment and the scope of maintenance was decided on priority with adequate method and frequency of inspection. Most inspection was conducted during periodic inspection at outage. Repair or improvement works were performed if needed. Periodic inspection period was very long and then capacity factor of NPP was low in Japan compared with foreign data although frequency of unscheduled shutdown was very low. Introduction of reability- centered maintenance was requested based on past experiences of overhaul inspection. Technical evaluation of aged NPP had been conducted on aging phenomena and promotion of advanced maintenance was more needed. (T. Tanaka)

  11. Citizens contra nuclear power plants

    International Nuclear Information System (INIS)

    Is Wyhl the beginning of a new citizens' movement against official policies concerning atomic energy or is it the end of citizens' initiatives of latter years. Did democracy pass its test in Wyhl, or was the state's authority undermined. The danger of atomic energy was not the only concern of the citizens of the Rhine valley who demonstrated against the planned nuclear power plant, but also the quality of industrial and energy planning in which the democratic foundations have to be safeguarded. In the meantime, the doubts increase that this source of energy is of a not dangerous nature, and the myth of supposedly cheap atomic energy has been scattered. The dangers in connection with waste transport and storage were made public beyond the boundaries of the places in question, in particular as a result of the demonstrations. The publication documents the course of the demonstration and the site occupation from the beginning of Febuary 1975 onwards. The occupation still continued when the booklet was published despite the decision of the Administrative Court in Freiburg at the end of March (prohibition of commencement of building until the verdict on the principal suit against the overall project has been reached, the final decision to be made by the Higher Administrative Court in Mannheim). The author aims at describing the new quality of citizens' commitments in this booklet. (orig./LN)

  12. Country Nuclear Power Profiles - 2010 Edition

    International Nuclear Information System (INIS)

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2010 edition issued on CD-ROM and Web pages. It updates the country information for 48 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 19 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Lithuania, Morocco, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2010 edition, 24 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases. The CNPP reports have been prepared by each Member State in accordance with the IAEA format. The IAEA is not responsible for the content of these reports

  13. Country Nuclear Power Profiles - 2011 Edition

    International Nuclear Information System (INIS)

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2011 edition issued on CD-ROM and Web pages. It updates the country information for 50 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 21 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Kuwait, Lithuania, Morocco, Nigeria, Philippines, Poland, Syrian Arab Republic, Thailand, Tunisia, Turkey and Vietnam). For the 2011 edition, 23 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases.

  14. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  15. Government support for the export of nuclear power plants after Fukushima Daiichi nuclear power accident

    International Nuclear Information System (INIS)

    Depending on the surge of a global evaluation for the nuclear power generation, our country strengthened government support for the export of nuclear power plants. However, under the influence of a Fukushima Daiichi Nuclear Power Plant accident, the internal and external situation surrounding nuclear power has been changing. Should our country continue government support for the nuclear power plant export according to this? This report outlined the world trend around nuclear power before the Fukushima accident, surveyed merits and problems of the nuclear power plant export, and introduced what kind of export aid package the government took. And then, it showed the situation change after the Fukushima accident and the point at issue on thinking about the way of the government support. The Fukushima accident raised concern for the safety of the nuclear power plant and might have a big influence on the construction trend of the world nuclear power plant in the future. The criticism to conventional government support for the nuclear power plant export has risen, too. However, the role of government support for the nuclear power plant export was not the problem that should be discussed only by the side of safety and the economy. The nuclear power plant export carried an international contribution, reinforcement of the thickness of a technique and the talented person of the nuclear power industry, and a role such as the contribution to economic growth in medium-and-long term energy policy and nuclear energy policy until now. It may be said that we were asked how was placed nuclear power plant export again while these policies were reviewed after the Fukushima accident. (T. Tanaka)

  16. Building infrastructure for new nuclear power programmes

    International Nuclear Information System (INIS)

    In recent years, more than sixty countries have indicated that they are considering or launching nuclear power programmes. It has been more than a decade since a country commissioned its first nuclear power plant. In meantime, the global nuclear community has faced greater concerns about safety, security and non-proliferation, resulting in increased international obligations and a greater expectation for transparency and openness regarding nuclear power programmes. Many of these 'nuclear newcomers' are turning to International Atomic Energy Agency (IAEA) to understand the implications of the nuclear power option and to receive advice about how to proceed with implementing a national programme. In response to growing demand for assistance, the IAEA developed a comprehensive, phased approach to establishing the infrastructure necessary to support a national nuclear power programme. This 'Milestones' approach is described in Nuclear Energy Series Guide NG-G-3.1 'Milestones in the Development of a National Infrastructure for Nuclear Power' (2007). From establishing the national position and legal framework to nuclear safety, security and safeguards, the Milestones covers 19 issues that need to be addressed. This approach also places special emphasis on the need for involvement of the Government, utility, industry, academic, and other stakeholders in a national decision-making process. The IAEA is also helping 'newcomers' to better understand its Safety Standards, which were written from the perspective of operating nuclear power programmes. A new safety guide is in development which provides a Road-map to the safety standards and identifies the standards that are relevant for each phase consistent with the Milestones. Several countries in the Europe region are working with the IAEA to understand the issues associated with a nuclear power programme in preparation for making a knowledgeable commitment. The starting points and approaches vary widely: some are European

  17. Nuclear Power Sources for Space Systems

    Science.gov (United States)

    Kukharkin, N. E.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

  18. Country Nuclear Power Profiles - 2007 Edition

    International Nuclear Information System (INIS)

    The preparation of Country Nuclear Power Profiles (CNPP) was initiated within the framework of the IAEA's programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. It covers background information on the status and development of nuclear power programmes in countries having nuclear plants in operation and/or plants under construction. This is the 2007 edition issued on CD-ROM and Web pages. It updates the country information, in general, to the end of 2006 for 39 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 30 countries that have operating nuclear power plants, as well as nine countries having past or planned nuclear power programmes (Bangladesh, Egypt, Indonesia, the Islamic Republic of Iran, Italy, Kazakhstan, Poland, Turkey, and Vietnam). For the 2007 edition, 21 countries provided information to the IAEA to update their profiles. For the 18 other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases. These 18 countries are Argentina, Belgium, Bulgaria, Canada, China, Egypt, Finland, Indonesia, Japan, Mexico, Netherlands, Poland, Romania, Slovenia, South Africa, Spain, Switzerland, and Ukraine. Overall, the CNPP reviews the organizational and industrial aspects of nuclear power programmes in participating countries, and provides information about the relevant legislative, regulatory and international frameworks in each country. It compiles the current issues in the new environment within which the electricity and nuclear sector operates, i.e. energy policy, and privatization and deregulation in

  19. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 1996. Annual report 1996

    International Nuclear Information System (INIS)

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1996 is presented. These activities are reported under the headings: (1) Foreword; (2) NPP V-1 Bohunice; (3) NPP V-2 Bohunice; (4) NPP Mochovce; (5) Nuclear materials; ((6) NPP A-1 Bohunice; (7) Treatment; (8) Qualification and personnel training; (9) Emergency management; (10) Legislation; (11) Quality assurance; (12) International cooperation; (13) Public relations; (14) Organization structure of the NRA SR; (15) Conclusions; (16) Appendices

  20. Nuclear power newsletter Vol. 4, no. 1, March 2007

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: Workshop on Issues for the Introduction of Nuclear Power; Message from the Director of the Division of Nuclear Power: The Nuclear Energy Series documents: Structure and the process; Nuclear power plant operation; Strengthening nuclear power infrastructures; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional posts in Nuclear Power Division; Meetings in 2007

  1. 78 FR 61400 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision

    Science.gov (United States)

    2013-10-03

    ... COMMISSION Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision... and ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim... (non- EQ) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of...

  2. Nuclear power planning study for Saudi Arabia

    International Nuclear Information System (INIS)

    The prospects of application of nuclear energy for production of electricity and desalinated water in the Kingdom are evaluated. General economic development of the country and data on reserves, production and consumption of oil and natural gas are reviewed. Electrical power system is described with data on production and consumption. Estimates of future power demand are made using Aoki method. Costs of production of electricity from 600 MW, 900 MW and 1200 MW nuclear and oil-fired power plants are calculated along with the costs of production of desalinated water from dual purpose nuclear and oil-fired plants. The economic analysis indicates that the cost of production of electricity and desalinated water are in general cheaper from the nuclear power plants. Suggests consideration of the use of nuclear energy for production of both electricity and desalinated water from 1415 H. Further detailed studies and prepartory organizational steps in this direction are outlined. 38 Ref

  3. Public opinion factors regarding nuclear power

    International Nuclear Information System (INIS)

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible

  4. Nuclear power and the logic of globalization

    International Nuclear Information System (INIS)

    The article discusses effects and results of globalization for nuclear power and other options of electricity generation. According to the present state of knowledge, it will not be possible to meet the growing worldwide energy requirement with fossil and renewable energy sources only - also because of the CO2 problem. Consequently, nuclear power will remain an important alternative. On an international scale, this applies in particular to large countries, such as China and India, as large national economies particularly benefit from the economies of scale offered by nuclear power. This could well make Chinese nuclear technology a product for the world market. Thinking along these lines has not really gained ground in Germany, as nuclear power, being a technology requiring considerably capital outlay, is considered unsuitable for southern countries. It is an illusion to believe that Germany's opting out of the use of nuclear power could be a model to others. Instead, we are faced by the ethical question of how we can help to minimize the accident risks of nuclear facilities worldwide. We can do so only by maintaining the use of nuclear power and exporting our level of safety, for the risks will not become any smaller merely as a result of our opting out. (orig.)

  5. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  6. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  7. Innovation design of power nuclear systems

    International Nuclear Information System (INIS)

    Efforts to ensure design and manufacturing innovations in the sphere of power reactors have reached the level of the large-scale inter-state cooperation. Some nuclear power systems are under evaluation in terms of the IAEA International Project dealing with the innovative power reactors and fuel cycles. In Japan the efforts to design fast sodium low-power reactor to serve as a power source in high-cost power regions and in developing power low-consuming countries are in progress. In South Korea the efforts to design a high-power reactor, that is, the APR1400 reactor based on the KSNP Korean available standard plant are in progress

  8. Climate Change and Nuclear Power 2013

    International Nuclear Information System (INIS)

    Climate change is one of the most important issues facing the world today. Nuclear power can make an important contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for global socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. The accident at the Fukushima Daiichi nuclear power plant of March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power - a reminder that safety can never be taken for granted. Yet, in the wake of the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The International Atomic Energy Agency provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report has been substantially revised, updated and extended since the 2012 edition. It summarizes the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change-nuclear energy nexus, such as cost, safety, waste management and non-proliferation. New developments in resource supply, innovative reactor technologies and related fuel cycles are also presented

  9. Nuclear power. Protest and violence

    International Nuclear Information System (INIS)

    Following an introductory survey of the anti-nuclear movement, its activities in the following countries are discussed in detail: USA, West Germany, France, United Kingdom. Motives, methods and organization - including international organization - are considered. The interaction of environmental and political motives, and the contrast between peaceful and violent approaches are analyzed. Appendices cover the following: brief description of the nuclear fuel cycle; chronology of 40 anti-nuclear incidents in the above and other countries between February 1975 and September 1978; brief statement on the 'neutron bomb' controversy. In the course of the document reference is made to anti-nuclear activities in 18 countries in all. (U.K.)

  10. The export of China nuclear power

    International Nuclear Information System (INIS)

    The article first introduces the meaning of nuclear power export, and then analyses the advantages of China nuclear industry based on the status and development of this industry. At the same time. the collection of nuclear development for the next 30 years of several nations in south-east Asia, south Asia, Middle East, Africa and South America is compiled, which could be a valuable reference for foreseeing nuclear power export market. Finally, as the situation throughout the world is considered, some suggestions are made that what else could be done for future development and export. (author)

  11. Project Management Unit for decommissioning of NPP Bohunice VI (2003-2014)

    International Nuclear Information System (INIS)

    From October 2003 until december 2014 the Consortium consisting of Iberdrola Engineering and Construction (leader). Empresarios Agrupados Internacional, and Indra Sistemas has carried out the project Project Management Unit ((PMU) for the decommissioning of Bohunice V1 NPP (units 1 and 2), type VVER-440/V-230 in Slovakia. during the first phase (2003-2007) EdF was also part of the Consortium. The project is funded by the Bohunice International Decommissioning Support Fund (BIDSF) administered by the RBRD. The main objective of the project is to provide the necessary engineering and resources of project management for planning, execution, management, coordination and monitoring of all tasks in support of the decommissioning. (Author)

  12. Space nuclear power: a strategy for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J. Jr.

    1981-01-01

    Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

  13. Nuclear power propulsion system for spacecraft

    Science.gov (United States)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  14. Climate Change and Nuclear Power 2015

    International Nuclear Information System (INIS)

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than four years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, energy and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in electricity generation and distribution technologies and their impacts on nuclear power are also presented. This edition has been

  15. Climate Change and Nuclear Power 2014

    International Nuclear Information System (INIS)

    Climate change is the foremost global environmental issue today. Nuclear power is one of the low carbon technologies that can contribute to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power — a reminder that safety can never be taken for granted. Yet, more than three years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in

  16. Second nuclear era: a new start for nuclear power

    International Nuclear Information System (INIS)

    The thrust of this book is that nuclear power should be fixed, not buried. It is based on a study sponsored by the Andrew W. Mellon Foundation at Oak Ridge National Laboratory. This book is a sober, technically based study of how to make the second nuclear era safe and successful

  17. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Cliffs Nuclear Power Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant... for light-water nuclear power reactors,'' which requires that the calculated emergency core...

  18. Constitutional aspects of a nuclear power phaseout

    International Nuclear Information System (INIS)

    In the current political debate in Germany about the Federal Government's plans to opt out of nuclear power, the time horizon for implementation of the policy and the nuclear power phaseout is a focal point of interest. This aspect is discussed from the angle of German constitutional law. The author analyses in this context the protective scope of Art. 14 GG (German Basic Law), relating to the protection of ownership rights and the principle of legal protection for bona fide acts, which is a vital aspect for the nuclear industry and the power industry. (orig./CB)

  19. Nuclear power programmes in developing countries

    International Nuclear Information System (INIS)

    The paper on ''Nuclear power programmes in developing countries'' is a report to the IAEA by a Senior Expert Group. A description is given of the requirements for a successful nuclear power programme, including the constraints that developing countries might face in the introduction and execution of the programme. The group attempted to identify the main issues affecting the financing of nuclear power projects and suggested specific actions that could be undertaken in order to reduce economic and financial risks. The various issues were discussed under the topic headings:-programme-project-related factors, investment climate, financing plan, export credits and creditworthiness. (U.K.)

  20. Public concerns and alternative nuclear power systems

    International Nuclear Information System (INIS)

    The basic task undertaken in this study was to assess the relative public acceptability of three general types of nuclear power systems as alternatives to the existing Light Water Reactor (LWR) system. Concerns registered toward nuclear power constituted the basic data for this assessment. The primary measure adopted for determining the significance of concerns was the degree of difficulty posed by the concern to the nuclear power decisional structure in the establishment and maintenance of norms to control risks or to advance intended energy objectives. Alleviations or exacerbations of concern resulting from particular attributes of alternative systems were measured from an LWR baseline

  1. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    The speeches by Bethe and Alfven, delivered at the 1977 Conference in Salzburg, and the report of the World Council of Churches are surveyed, as well as the nuclear controversy and the state-of-the-art reports from various countries on public information and public acceptance of nuclear energy provision

  2. Country nuclear power profiles. 2003 ed

    International Nuclear Information System (INIS)

    The preparation of Country Nuclear Power Profiles (CNPP) was initiated within the framework of the IAEA's programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. The CNPP covers background information on the status and development of nuclear power programmes in countries having nuclear plants in operation and/or plants under construction. It reviews the organizational and industrial aspects of nuclear power programmes in participating countries, and provides information about the relevant legislative, regulatory and international frameworks in each country. The CNPP compiles the current issues in the new environment within which the electricity and nuclear sector operates, i.e. energy policy, and privatization and deregulation in these sectors, the role of government, nuclear energy and climate change, and safety and waste management, which differ from country to country

  3. Worldwide perspectives of nuclear power use

    International Nuclear Information System (INIS)

    The article covers the topic of nuclear power from the point of view of a representative of the World Nuclear Association (WNA). It is to address not only global trends, but also to provide an opportunity to describe his impressions to a German whose main job is with an international company in Paris, and whose WNA desk is set up in London. In retrospect, there had hardly been a time when nuclear power was held in the same high regard, internationally, as it is now. In the most recent World Climate Report, which is always the result of international consensus, nuclear power is referred to as one of the currently available, economically viable key technologies in the fight against climate change. Worldwide, roughly half the electricity generated practically without any CO2 emissions is produced in nuclear power plants. Moreover, it is not only climate protection which gives a boost to nuclear power. Also the threats facing important sources of fossil fuel supply have greatly contributed to this development. As regards the use of nuclear power in Germany, the facts are known: Longer periods of operation of nuclear power plants could save a lot of money and even more CO2. This is good for the environment, the economy and, ultimately, for the population in Germany. Competence preservation is an important topic in our industry. We are on the right way, worldwide, in this respect. One example to be mentioned is the common initiative of international organizations, co-initiated especially also by WNA, to establish the World Nuclear University. This institution is in the process of becoming a wellspring of talent specializing in nuclear technology worldwide. (orig.)

  4. Nuclear power generation of electricity in Sri Lanka?

    International Nuclear Information System (INIS)

    Brief description of how nuclear power is used to generate electricity, advantages and disadvantages of nuclear power, and the main factors that should be taken into consideration in dividing to use nuclear power in Sri Lanka

  5. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  6. Managing the first nuclear power plant project

    International Nuclear Information System (INIS)

    Energy is essential for national development. Nearly every aspect of development - from reducing poverty and raising living standards to improving health care, industrial and agricultural productivity - requires reliable access to modern energy resources. States may have different reasons for considering starting a nuclear power project to achieve their national energy needs, such as: lack of available indigenous energy resources, the desire to reduce dependence upon imported energy, the need to increase the diversity of energy resources and/or mitigation of carbon emission increases. The start of a nuclear power plant project involves several complex and interrelated activities with long duration. Experience shows that the time between the initial policy decision by a State to consider nuclear power up to the start of operation of its first nuclear power plant is about 10 to 15 years and that before specific project management can proceed, several key infrastructure issues have to be in place. The proper management of the wide scope of activities to be planned and implemented during this period represents a major challenge for the involved governmental, utility, regulatory, supplier and other supportive organizations. The main focus is to ensure that the project is implemented successfully from a commercial point of view while remaining in accordance with the appropriate engineering and quality requirements, safety standards and security guides. This publication is aimed at providing guidance on the practical management of a first nuclear power project in a country. There are many other issues, related to ensuring that the infrastructure in the country has been prepared adequately to ensure that the project will be able to be completed, that are only briefly addressed in this publication. The construction of the first nuclear power plant is a major undertaking for any country developing a nuclear power programme. Worldwide experience gained in the last 50 years

  7. Construction and operation of nuclear power plants

    International Nuclear Information System (INIS)

    How does a nuclear power plant work. Which reactor types are in use. What safety measures are being taken. These questions and the like are frequently asked by those interested in nuclear power generation. The respective answers are to be found in the report ''Construction and Operation of Nuclear Power Plants''. Nuclear-physical fundamentals and the basic safety measures are explained, and four reactor types that are most common in the Federal Republic of Germany are described: PWR-, BWR-, HTR-type and faster breeder reactors. For each reactor type, the principle of operation, steam generator system, auxiliary and service buildings as well as the respective safety devices are indicated, and visualized by means of numerous illustrations. The report is meant to be instrumental to the purpose of getting objectiveness into the public discussion on the peaceful use of nuclear energy. (orig.)

  8. Nuclear power and the electronics revolution

    International Nuclear Information System (INIS)

    This article mentions a number of innovations and electronic tools, which are influencing nuclear plant operations. Examples are: The incorporation of digital computer devices in safety systems; The application of noise analysis techniques to serveillance systems of nuclear power plants; The use of nuclear power plant training simulators; The attention period to the man-machine interface; The developments in the field of robot uses and remote systems in nuclear power plants. A recommendation is made to all countries to make the best use of the IAEA policy to promote international cooperation and exchange of experience in this field. Reference is made to the international conference on ''Man-Machine Interface in the Nuclear Industry; Control and Instrumentation, Robot Uses and Artificial Intelligence'' that IAEA is planning to hold in 1987

  9. Nuclear power newsletter Vol. 4, no. 2, June 2007

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: International Conference on Non-Electric Application of Nuclear Power; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management systems, nuclear power infrastructures and human resources; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional post in Nuclear Power Division; Upcoming meetings; 2nd International Symposium on PLiM; 8th IAEA-FORATOM Joint Workshop

  10. Global cooperation on nuclear power projects

    International Nuclear Information System (INIS)

    Throughout the world today, expanding economies will dictate an increase in electrical energy. Over the next decade we will see different scenarios in the various regions of the world as countries begin to expand their generating capacities. Nuclear power is a proven, safe, economic, and environmentally friendly source of electric power that will continue to be a necessary part of the world's energy mix. Through cooperation with and among the nuclear generating countries, the benefits and responsibilities of choosing nuclear energy can be shared. Today we continue to find high activity worldwide on nuclear energy. Many countries have extensive programs focusing on nuclear electricity as a major element. For the West, particularly in the United States and Europe, the focus will be on improved operation and economics of existing nuclear plants. Plant safety upgrades and limited plant construction will be the main thrust in Eastern Europe and Russia. Significant new plant activity will occur in Asia, particularly in the Pacific Rim. (author)

  11. Nuclear power training programmes in Spain

    International Nuclear Information System (INIS)

    The introduction of nuclear power in Spain is developing very rapidly. At present 1.1GW(e) are installed in Spain and this is expected to increase to 8GW(e) in 1980 and to 28GW(e) in 1990. Spanish industry and technology are also rapidly increasing their participation in building nuclear stations, in manufacturing the necessary components and in the activities related to the nuclear fuel cycle. All of this requires properly trained personnel, which is estimated to become approximately 1200 high-level technicians, 1100 medium-level technicians and 1500 technical assistants by 1980. This personnel is trained: (a) in engineering schools; (b) in the Nuclear Studies Institute; (c) in the electric companies with nuclear programmes. The majority of the high-level engineering schools in the country include physics and basic nuclear technology courses in their programmes. Some of them have an experimental low-power nuclear reactor. The Nuclear Studies Institute is an official organism dependent on the Nuclear Energy Commission and responsible, among other subjects, for training personnel for the peaceful use and development of nuclear energy in the country. The electric companies also participate in training personnel for future nuclear stations and they plan to have advanced simulators of PWR and BWR type stations for operator training. The report deals with the personnel requirement forecasts and describes the training programmes. (author)

  12. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Science.gov (United States)

    2013-08-19

    ... COMMISSION Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission... petitioners'') has requested that the NRC take action with regard to James A. Fitzpatrick Nuclear Power......

  13. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias Christopher; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  14. Industrial accidents in nuclear power plants

    International Nuclear Information System (INIS)

    In 12 nuclear power plants in the Federal Republic of Germany with a total of 3678 employees, 25 notifiable company personnel accidents and 46 notifiable outside personnel accidents were reported for an 18-month period. (orig./HP)

  15. Technical support for nuclear power operations

    International Nuclear Information System (INIS)

    This report prepared by the group of senior experts from nuclear operating organizations in Member states, addresses the problem of improving the operating performance of nuclear power plants. Safe and reliable operation is essential for strengthening the viability of nuclear power in the increasingly competitive market of electric power. Basic principles and requirements concerning technical procedures and developed practices are discussed. Report reflects the best current international practices and presents those management initiatives that go beyond the mandated regulatory compliance and could lead to enhancement od operational safety and improved plant performance. By correlating experiences and presenting collective effective practices it is meant to assist nuclear power plant managers in achieving improvement in operation through the contribution of effective technical support

  16. Half life: nuclear power and future society

    International Nuclear Information System (INIS)

    A definitive critique of nuclear power in Canada is delivered. Also analyzed are reprocessing and waste disposal hazards and the conventional wisdom of energy source mix and energy demand growth. (E.C.B.)

  17. Environmental hazards from nuclear power plants

    International Nuclear Information System (INIS)

    The article discusses the radiation exposure due to nuclear power stations in normal operation and after reactor incidents. Also mentioned is the radiation exposure to the emissions from fuel reprocessing plants and radioactive waste facilities. (RW/AK)

  18. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  19. Nuclear power planning and feasibility studies

    International Nuclear Information System (INIS)

    This lecture will review the basic steps associated with planning the introduction of nuclear power. Areas covered will include power market surveys, energy resources evaluations, potential alternative strategies, organisational factors and implementational requirements. The lecture will then consider the implications and requirements associated with establishing the feasibility of a nuclear project. Among others, aspects of power systems integration, site selection reactor type evaluation, cost and economic analysis, influence of contracting strategies, comparison with alternative power generation solutions, financial impact, etc. will be discussed and reviewed. (HK)

  20. Chapter 4. Assessment and inspection of safety at nuclear installations

    International Nuclear Information System (INIS)

    Supervisory activity of the Nuclear Regulatory Authority of the Slovak Republic (UJD) over the safety of nuclear installations in compliance with the 'Atomic Act' and other regulations includes also inspection and assessment activities of UJD. In 1999 the assessment activity were focused on newly constructed nuclear installations or their parts - Unit 2 of NPP Mochovce, National Repository of rad-waste in Mochovce, and the first phase of technology for treatment and conditioning of rad-waste in Jaslovske Bohunice. Inspection activity specified in the 'Atomic Act' is governed by internal guideline, an important part of which is an annual inspection plan that considers the routine inspections, special inspections, team inspections, and extraordinary inspections - there they are briefly described. Assessment as well as inspection activities in the NPP V-1 Bohunice, NPP V-2 Bohunice, NPP Mochovce, as well as NPP A-1 Bohunice (under decommissioning) are reviewed in detail. Assessment and inspection activities of UJD in the Interim spent fuel storage Bohunice, and in the nuclear facility 'Technology for treatment and conditioning of radioactive waste' Bohunice are described in detail, too. National radioactive waste repository Mochovce is determined for disposal low and intermediate radioactive waste. UJD issued a resolution on approval for commissioning of this nuclear facility in October 1999. VUJE bituminization facility was out of operation in 1999, The incinerator treated the burnable waste from NPP V-1 Bohunice. The technology of cementing sludge from NPP V-2 Bohunice was verified on cementing equipment. Assessment and inspection activities of UJD in 1999, which were completed by issuing UJD decisions are presented in the table form

  1. Nuclear power plant safety in Brazil

    International Nuclear Information System (INIS)

    The Code of Practice for the Safe Operation of Nuclear Power Plants states that: 'In discharging its responsibility for public health and safety, the government should ensure that the operational safety of a nuclear reactor is subject to surveillance by a regulatory body independent of the operating organization'. In Brazil this task is being carried out by the Comissao Nacional de Energia Nuclear in accordance with the best international practice. (orig./RW)

  2. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  3. European climate targets achievable without nuclear power

    OpenAIRE

    Kemfert, Claudia; Gerbaulet, Clemens; von Hirschhausen, Christian; Lorenz, Casimir; Reitz, Felix

    2015-01-01

    The upcoming Climate Change Conference in Paris will once again highlight the need for action to reduce global greenhouse gas emissions in order to mitigate climate change. The relevant global energy scenarios are often still based on the assumption that the expansion of nuclear power can contribute to climate change mitigation. The spiraling investment and operating costs of nuclear plants, the unresolved issues concerning the dismantling of these plants and permanent storage of nuclear wast...

  4. Nuclear power plant construction activity, 1986

    International Nuclear Information System (INIS)

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors

  5. Nuclear power infrastructure - issues, strategy and possibilities

    International Nuclear Information System (INIS)

    Full text: Today humanity faces daunting challenges: the pressing need for development in many parts of the world and the desire for a more effective system of international security. At the outset of the 21st century, the Millennium Development Goals and the Johannesburg Plan of Implementation have both set global objectives for sustainable development (SD) that give high priority to the eradication of poverty and hunger, environmental sustainability, universal access to plentiful fresh water and energy. In this context there are many expectations about Nuclear Renascence supported by many national and international studies, by discussions in the mass media and international forums, etc. The Agency has taken an integrated approach outlining all considerations that have to be taken into account for the introduction of a nuclear power programme, providing guiding documents, forums for sharing information, consultancies and technical meetings and sending multidisciplinary teams to countries requesting assistance with nuclear power infrastructure. The process also includes specific assistance and review services in the areas of infrastructure readiness, feasibility studies, draft nuclear law, regulatory frameworks and organization, siting issues, human resource development and planning, bid evaluation and technology assessment, owner/operator competence, and safety and security. It is important to support the decision making processes of States introducing nuclear power to ensure they can make informed choices on the role of nuclear power in their energy mixes. The IAEA helps countries prepare for the introduction or expansion of nuclear power by 1) helping them ensure that nuclear energy is used safely, securely and with minimal proliferation risk, and 2) meeting the need of developing countries to build capacity in terms of human resources, energy analysis, regulatory capabilities and other infrastructure necessary for nuclear power. The process also includes

  6. Global Protest Against Nuclear Power

    DEFF Research Database (Denmark)

    Kirchhof, Astrid Mignon; Meyer, Jan-Henrik

    2014-01-01

    . This focus issue approaches the phenomenon from a transnational perspective for the first time. Against the backdrop of the debate on transnational history, this article develops a framework of analysis, and contextualizes anti-nuclear protest in a broader postwar perspective. The contributions show...... that anti-nuclear movements across the globe were transnationally connected. First, scientific expertise and protest practices were transferred between movements, and subsequently adapted to local requirements. Secondly, transnational cooperation and networks did indeed emerge, playing an important role...

  7. Nuclear power: Yes or no

    International Nuclear Information System (INIS)

    The author deals with the problems of nuclear energy by drawing many comparisons to other fields of engineering and causes of dangers and he does it in a way that the laity can understand him and is informed. Advocates and opponents would act bona fide: the ones were not in fear and would believe in the realization of nuclear energy; the others were in fear for themselves and their environment. So the layman too could either believe or not believe. (HSCH)

  8. Country nuclear power profiles. 2001 ed

    International Nuclear Information System (INIS)

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical document containing a description of the economic situation, the energy and the electricity sector and the primary organizations involved in nuclear power in IAEA Member States. In 1998, the first edition of the Country Nuclear Power Profiles was published focusing on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. The compilation was made based on contributions of 29 Member States with operating nuclear power plants by the end of 1995 and Italy. It also incorporated the 'Fact Sheets' on international, multilateral and bilateral agreements as collected by EXPO. The second edition, issued on CD-ROM only, covered the changes in the new environment of the electricity and the nuclear sector, i.e. the impact of privatization and deregulation on these sectors, be it that the situation differs from country to country. The third edition, issued as hard copy and CD-ROM, updates the country information, in general, to the end of 2000. This publication compiles background information on the status and development of nuclear power programmes in countries having operating nuclear plants and/or plants under construction as of 1 January 2001 and in countries actively engaged in planning such a programme. It presents historical information on energy supply and demand; reviews the organizational and industrial aspects of nuclear power programmes in participating countries for the same period; and provides information about the relevant legislative, regulatory, and international framework in each country. Topics such as reactor safety, the nuclear fuel cycle, radioactive waste management and research programmes are for the most part not discussed in detail

  9. The Role of Nuclear Power in Eurpoe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The World Energy Council has published the results of an in-depth review of the current state of nuclear power in Europe, and the possible role of this energy source in Europe's energy future. This regional study combines policy insights, technical details and an analysis of the potential for nuclear as a part of the energy-mix.

  10. Effort on Nuclear Power Plants safety

    International Nuclear Information System (INIS)

    Prospects of nuclear power plant on designing, building and operation covering natural safety, technical safety, and emergency safety are discussed. Several problems and their solutions and nuclear energy operation in developing countries especially control and permission are also discussed. (author tr.)

  11. Radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    The organization of workers' protection in a nuclear power plant is stated. Considering the nature and magnitude of potential risks and protection procedures, an inventory of occupational safety is made, taking account of accident statistics. It shows the credit to nuclear energy can be granted as to occupational safety

  12. Human factors in nuclear power plant operations

    International Nuclear Information System (INIS)

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants

  13. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.)

  14. Report concerning Zarnowiec nuclear power plant

    International Nuclear Information System (INIS)

    Report of the Team of the President of the National Atomic Energy Agency regarding Zarnowiec nuclear power plant contains the analysis of situation in Poland in June 1990, the assessment of public opinion, as well as the description of ecological, technical and economical problems. The team's conclusions are given together with the general conclusion to stop the construction of Zarnowiec nuclear power plant. 5 appendixes, 6 enclosures, 1 documents list, 1 tab. (A.S.)

  15. Concepts for a modular nuclear powered containership

    OpenAIRE

    Gravina, Jonathan; James I.R. Blake; Shenoi, R. Ajit; Turnock, Stephen R.; Hirdaris, Spyros

    2013-01-01

    With the amendments to the MARPOL Annex VI regulations to control NOx and SOx emissions, fuel prices will increase considerably by 2020. Coupled with depleting fossil fuel reserves and owners’ perceptions on their environmental impact, fossil fuel alternatives are being actively sought. The IMarEST reports that nuclear power is the only emissions free energy which can replace fossil fuels entirely (Jenkins, 2011). Two critical drawbacks for a nuclear powered ship are route restrictions and...

  16. Quality assurance organization for nuclear power plants

    International Nuclear Information System (INIS)

    This Safety Guide provides requirements, recommendations and illustrative examples for structuring, staffing and documenting the organizations that perform activities affecting quality of a nuclear power plant. It also provides guidance on control of organization interfaces, and establishment of lines for direction, communication and co-ordination. The provisions of this Guide are applicable to all organizations participating in any of the constituent areas of activities affecting quality of a nuclear power plant, such as design, manufacture, construction, commissioning and operation

  17. Argentina: Nuclear power development and Atucha 2

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2015-08-15

    In 2014, nuclear energy generated about 5,257 GWh of electricity or a total share of 4.05 % of the total electrical energy of about 129,747.63 GWh kWh produced in Argentina and there has been a trend for this production to increase. Argentina currently has a nuclear production capacity of 1,010 megawatts of electrical energy. However, when the Atucha 2 nuclear power plant is completed and starts commercial operation, it will add 745 megawatts to this electrical production capacity. There are two sites with nuclear power plants in Argentina: Atucha and Embalse. The Embalse nuclear power plant went into operation in 1984. At the Atucha site, the Atucha-1 nuclear power plant started operation in 1974. It was the first nuclear power plant in Latin America. Construction of Atucha-2 started in 1981 but advanced slowly due to funding and was suspended in 1994 when the plant was 81 % built. In 2003, new plans were approved to complete the Atucha 2. I summer 2014 the plant went critical for the first time. The construction was completed under a contract with AECL.

  18. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  19. Developing a Nuclear Workforce. IAEA, Nuclear Power Institute Collaborate in Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Safe and sustainable nuclear power plant operation is one of the many areas that depend upon sustained nuclear knowledge management. The IAEA's Nuclear Knowledge Management programs help Member States strengthen their nuclear education and training programmes. As a part of that on-going effort, the IAEA signed a 'practical arrangement' with the Nuclear Power Institute (NPI), based at Texas A and M University, USA, on 24 September

  20. Iran's nuclear program - for power generation or nuclear weapons?

    International Nuclear Information System (INIS)

    This report addresses the development of a nuclear infrastructure in Iran, and assessments are made on the near-term potential this infrastructure might yield of either nuclear power or nuclear arms production. The most significant facilities are treated in a more elaborate fashion, as these are assumed to have key roles in either a true civilian programme, or in the prospect of weapons-grade fissile material production. The future potential capacity for the latter is calculated under certain presumptions, both in the case that Iran focuses its efforts on uranium-based nuclear weapons, and in the case that it should choose the plutonium path to nuclear weapons. All the conclusions and findings in this report are based on technological considerations. This means that social or political assessments have not prevailed, rather the picture of Iran's nuclear programme is drawn through descriptions and assessments of facilities and systems, and their role in the bigger context. Definite conclusions have not been made as to whether Iran's nuclear programme currently is aimed towards nuclear arms or nuclear power. The secrecy surrounding some of the most prominent nuclear sites together with more or less credible allegations of purely weapons-related activities in the past, make it hard not to conclude that Iran until the disclosures in 2002 made as great an effort as it could on its way on developing nuclear weapons covertly. The scope of today's nuclear programme seems, on the other hand, most likely to be in part to help relieve the ever-increasing need for energy, although considerable deficits to this strategy are identified, at the same time as the Iranian people are united in a giant, high-prestige project in defiance of massive international pressure. Adding to this is a much-feared ability to rapidly being able to redirect their nuclear efforts, and develop nuclear arms in perhaps as little as one year. This so-called break-out scenario, where Iran presumably

  1. Nuclear power in Asia: Experience and plans

    International Nuclear Information System (INIS)

    Asian countries have developed ambitious energy supply programs to expand their energy supply systems to meet the growing needs of their rapidly expanding economies. Most of their new electrical generation needs will be met by coal, oil and gas. However, the consideration of growing energy demand, energy security, environmental conservation, and technology enhancement is inducing more Asian countries toward the pursuit of nuclear power development. At present, nuclear power provides about 30% of electricity in Japan, and about 40% of electricity in Korea. These and other Asian countries are presumed to significantly increase their nuclear power generation capacities in coming years. Korea's nuclear power generation facilities are projected to grow from 12 gigawatt in 1998 to 16.7 gigawatt by 2004. On the other hand, China and India have now installed nuclear capacities of about 2 gigawatt, respectively, which will increase by a factor of two or more by 2004. The installed nuclear capacity in the Asian region totalled 67 gigawatt as of the end of 1997, representing about sixteen percent of the world capacity of 369 gigawatt. Looking to the year 2010, it is anticipated that most of the world's increase in nuclear capacity will come from Asia. It is further forecasted that Asian nations will continue to expand their nuclear capacity as they move into the 21st century. For example, China plans to develop additional 18 gigawatt of nuclear power plants by the year 2010. Nuclear power is also of particular interest to a number of emerging Asian countries in view of environmental conservation and mitigation of greenhouse gas emissions in particular. Nuclear power appeals to some countries because of its high technology content. The strength in an advanced technology, such as the technological capability related to nuclear power, contributes to the overall development of the corresponding country's engineering base, enhancement of industrial infrastructure and expansion of

  2. Studying dynamics of indicators of nuclear power stations exploitation (the case of US nuclear power stations)

    OpenAIRE

    Varshavsky, Leonid

    2013-01-01

    Analysis of external and internal factors influencing significant improvement of economic indicators of US nuclear power stations in the 1990s is carried out. Approaches to modeling dynamics of capacity factors of nuclear power stations are proposed. Comparative analysis of dynamics of capacity factors and occupational radiation exposure for various generations of US nuclear power plants is carried out. Dynamical characteristics of «learning by doing» effects for analyzed indicators are measu...

  3. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  4. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Science.gov (United States)

    2012-08-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC (the licensee) is the holder of Renewed..., ``Fatigue Management for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI)...

  5. Nuclear power economics and technology: an overview

    International Nuclear Information System (INIS)

    Intended for the non-specialist reader interested in energy and environmental policy matters, this report presents an overview of the current expert consensus on the status of nuclear power technology and its economic position. It covers the potential demand for nuclear energy, its economic competitivity, and the relevant aspects of reactor performance and future technological developments. The report provides an objective contribution to the ongoing scientific and political debate about what nuclear power can offer, now and in the future, in meeting the world's growing demand for energy and in achieving sustainable economic development. 24 refs., 18 figs;, 12 tabs., 5 photos

  6. Changes in attitude structure toward nuclear power in the nuclear power plant locations of Tohoku district

    International Nuclear Information System (INIS)

    This survey was examined the changes in structure of attitude toward nuclear power and the influence of environmental value on the attitude structure before and after the accident at the Fukushima No. 1 nuclear power plant. With residents of Aomori, Miyagi, and Fukushima prefectures as participants, we conducted online surveys in November 2009 and October 2011. Comparing the results before and after the accident, we found that trust in the management of nuclear power plants had a stronger influence on the perceived risk and benefit regarding nuclear power after the accident than before the accident. The value of concern about environmental destruction resulted in reduced trust in the management. (author)

  7. Chapter 22. Serious accidents in the A1 nuclear power plant

    International Nuclear Information System (INIS)

    In this chapter two serious reactor accidents in the A1 nuclear power plant in Jaslovske Bohunice (Slovak Republic) are described. The first accident - during replacement of the fuel assembly the fuel element went off from the reactor on January 1976. Residual power of reactor at the time of the fuel assembly outspreaded from the channel H05 (January 5, 1976, 11:55 hours) was determined at 0.63% of the nominal power of the reactor where he worked before shutdown, i. e. residual power of the reactor was about 2.9 MWt. Leakage of carbon dioxide was stopped by loading machine. Maximum temperature 565 grad C was registered by measurement of uranium temperature. As it appeared later, overheating damaged the cover of several fuel assemblies in the central zone and the inner peripheral border zone. During the accident power radiation situation grew worse in most areas of plant. Released radioactive gases caused the maximum effective dose 10-8 Sv per capita in the territory to a distance of 25 km from the plant. At that time permitted individual dose per individual of the population was 5 mSv/year. The consequences of the accident on technological equipment are analyzed. Dealing with the aftermath of the accident on the technological equipment is described. Planned replacement of spent nuclear fuel in a reactor in the technology channel C05 started on 22 February 1977 in the afternoon. The exchange was taking place in the reactor operation. The electrical power was 93 MW during refuelling. Exchange by filling machine took place normally. Launching of the fuel assembly from cool zone into the reactor core came after. In this operation, which began at about 18:13 pm fuel assembly was overheated. Consequently, the influence of high temperature induced its destruction, which caused damage of 'decompression' heavy water tube container. Big leaking was formed and heavy water began to penetrate into the gas of the primary circuit. The operator immediately stopped the reactor

  8. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Science.gov (United States)

    2010-01-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA....

  9. Nuclear power in an age of uncertainty

    International Nuclear Information System (INIS)

    The present nuclear era is drawing to a close. Unit 1 of the Washington Public Power Supply System was indefinitely, perhaps permanently, deferred even though it was 60% complete and $2.1 billion had been invested. This plant and others such as Zimmer and Marble Hill epitomize the difficulties facing the nuclear industry. It is important to remember, however, that other nuclear plants have been very successful and produce reliable, low cost electricity. The future of nuclear power poses a complex dilemma of policymakers. It has advantages that may prove crucial to this nation's energy system in the coming decades, but at present it is an option that no electric utility would seriously consider. OTA examined questions of demand growth, costs, regulation, and public acceptance to evaluate how these factors affect nuclear power's future. We reviewed research directions which could improve conventional light water reactor technology and opportunities to develop other types of reactor concepts that might enhance safe and reliable operation. In addition, the crucial role of utility management in constructing and operating nuclear powerplants is examined at length. The controversy about nuclear safety regulation is also analyzed, and is presented with a review of current proposals for regulatory reform. Finally, the study discusses policy approaches that could assist a revival of the nuclear option should that be a choice of Congress

  10. The market value of nuclear power

    International Nuclear Information System (INIS)

    What are the factors and circumstances that have made some plants more valuable to others than to their original owners? What is currently keeping nuclear plants, with their relatively low operating cost and environmental impacts, at the bottom of the heap? Why will some nuclear plants have significantly higher market values in the future while others will fail? What circumstances are likely to change in the near future that could significantly alter this market? In this article, the authors address these questions and attempt to provide insights into the unique market for nuclear power. The authors will proceed by first introducing the components of generation asset valuation, then discussing recent experiences with the sales of non-nuclear and nuclear power plants. Next, the authors will provide some explanation for why non-nuclear assets are enjoying a robust market while the market for nuclear plants remains immature. Finally, the authors present an analysis of the future value of nuclear power and a view of one road to take to get there

  11. Nuclear power technologies. Abstracts of reports

    International Nuclear Information System (INIS)

    In May 14-17, 2000, and on the initiative of the Ministry of Science and High Education of the Republic of Kazakstan with cooperation of Department of Energy US, International Seminar on Nuclear Power Technologies was held in Astana, Kazakhstan. More than 70 reports of scientists from different countries (USA, Russia, Japan and Kazakhstan) were presented during the Seminar. Representatives from different international organizations (European Commission Delegation, IAEA), from organizations of Kazakstan, Russia, USA, Japan took part in the Seminar. In all at the Seminar there were more then 100 participants. The Seminar included Plenary Session, two sections: 1) Nuclear Safety and Nuclear Technologies; 2) Material Investigations for Nuclear and Thermonuclear Power; Workshop: Nuclear Facilities Decommissioning and Decontamination; and Posters

  12. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 1997. Annual report 1997

    International Nuclear Information System (INIS)

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1997 is presented. These activities are reported under the headings: (1) Foreword; (2) Role of the Nuclear Regulatory Authority of the Slovak Republic; (3) Supervisory and assessment activities in activities; (3.1) NPP V-1 Bohunice; (3.2) NPP V-2 Bohunice; (3.3) NPP Mochovce; (3.4) NPP A-1 Bohunice; (3.5) Radioactive wastes repository in Mochovce; (3.6) Interim spent fuel storage in Jaslovske Bohunice; (4) Nuclear materials and physical protection; (5) Radioactive wastes; (6) Quality assurance; (7) Personnel qualification and training; (8) Emergency management; (9) Legislation; (10) International co-operation; (11) Public information; (12) Conclusions; (13) Appendices

  13. Economic consideration for Indonesia's nuclear power program

    International Nuclear Information System (INIS)

    Indonesia experienced relatively high economic growth during the 1970s and the energy supply system was strained to keep up with demand. Several energy studies were thus carried out around 1980, including a nuclear power planning study and a nuclear plant feasibility study. During the 1980s, economic growth rates were subtantially lower, but surprisingly electricity demand remained fairly high. In 1984 it was therefore decided to update previous nuclear power studies. This effort was completed in 1986. Using energy projections and cost estimates developed during the updating of previous nuclear power studies, the paper discusses the economic justification for a nuclear power program in Indonesia. Results of the update, including computer runs of MAED and WASP models supplied by the IAEA, will be presented along with appropriate sensitivity analysis. These results are then analyzed in the light of 1986 developments in international oil price. Preparations for the forthcoming nuclear power program are described, including the construction of a multi-purpose reactor and associated laboratories in Serpong, near Jakarta. (author)

  14. Nuclear Power and Sustainable Development (Spanish Edition)

    International Nuclear Information System (INIS)

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  15. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  16. Nuclear power - why do we need it

    International Nuclear Information System (INIS)

    It is maintained that a fundamental aspect of energy policy must be to reduce the consumption of oil. The four main alternative energy sources, coal, nuclear, gas and water power are then compared point for point. Regarding technical feasiblity, economy, environmental aspects and raw material resources. All are found to be technically feasible, and, with reservations for coal and water power, environmentally acceptable. Likewise all exhibit reasonable economy but only nuclear and coal have satisfactory raw material resources. Comparing these two regarding waste, it is stated that nuclear wastes are highly concentrated and contained out of contact with the biosphere, while the wastes from coal combustion cannot be separated from the biosphere. Nuclear power is marginally more economical. Finally nuclear power is much less dependent on fuel costs than coal-fired power, and, when breeder reactors are considered, the fuel resources are practically infinite. Referring to Sweden, it is pointed out that, while Sweden is the world's largest per capita user of oil, she has no oil resources herself, but the world's largest known reserves of uranium, and a nuclear industrial capacity sufficient for her own needs. (JIW)

  17. Nuclear power in the Soviet Bloc

    International Nuclear Information System (INIS)

    The growth of Soviet Bloc nuclear power generation to the end of the century is evaluated on the basis of policy statements of objectives, past and current nuclear power plant construction, and trends in the potential for future construction. Central to this study is a detailed examination of individual reactor construction and site development that provides specific performance data not given elsewhere. A major commitment to nuclear power is abundantly clear and an expansion of ten times in nuclear electric generation is estimated between 1980 and 2000. This rate of growth is likely to have significant impact upon the total energy economy of the Soviet Bloc including lessening demands for use of coal, oil, and gas for electricity generation

  18. Studies of Fourteen Nuclear-Powered Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, J. N.; McCulloch, J. C.; Schmill, W. C.; Ward, W. H.

    1952-09-01

    A representative series of aircraft which could be powered by a relatively low-temperature liquid-coolant-cycle nuclear power plant are described. Present aircraft such as the B-36, B-52, and B-47 bombers as well as new designs were investigated. Design and performance characteristics of all the aircraft are presented.

  19. Thoughts on nuclear power plants

    International Nuclear Information System (INIS)

    In this article published before the Chernobyl accident (and the greenhouse effect issue), the author comments the evolution of the perception people have on nuclear energy: it was supposed to be the beginning of a golden age, and is finally perceived as a source of thermal and radioactive pollution and a major industrial risk. He outlines and criticizes the various and more or less violent reactions and debates about the fact that choosing nuclear energy means choosing a certain type of society. He considers that this point of view refuses reality. He states that the emerging new and renewable energies cannot be the solution. He comments the emergence of an energy crisis after the first oil crisis, and the associated questions about a possible reduction of consumption, the replacement of oil, the potential of renewable energies. He criticizes the excessive fear about nuclear materials and energy, discusses the actual risks associated with electronuclear production, and discusses the energy issue in the international context to outline the importance of nuclear energy. He finally addresses issues related to the definition and implementation of an energy policy, with EDF as a major actor

  20. Chernobyl lesson and the nuclear power prospects

    International Nuclear Information System (INIS)

    At sixteen years from the disaster which made the commercial power reactor nr. 4 of the Chernobyl NPP known worldwide, the radiation effects and the consequences are still vivid. A basic statement is to be underlined, namely, the Chernobyl event was not an accident in a nuclear power plant being in an industrial, commercial state of operation but an accident following an experiment done on the reactor. Lack of professionalism, of nuclear safety culture, the outrageous violation of basic rules and regulations, established for the unit operation, represent some of the causes originating the Chernobyl disaster. One of the most unfair consequences enhanced by an incorrect mass media information and political manipulation was the ensuing antinuclear media campaign. The paper quotes recent monographs and United Nations Documents showing how the facts were distorted to render arguments and support for various political, economical or humanistic goals. Thus, over more than 15 years due to the hard controversies and irrational campaigns on a global scale the nuclear power was discredited. Practically, all the nuclear power plant constructions were either delayed or cancelled. Moreover, some governments have sustained even closing the existing nuclear stations. The author asks himself rhetorically whether somebody has considered and quantified the immense losses produced by such unmotivated policy or else the additional damage and abuse caused to our home planet by the additional burning of fossil fuels to replace the nuclear fuel burning in nuclear power plants. The paper ends by mentioning the environmental advantages and economic efficiency of that clean energy source which is the nuclear power

  1. Nuclear power plant security assessment technical manual.

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  2. Annex I. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Throughout its 52 year history nuclear power has been mainly used in industrialized countries. Of the world's 441 currently operating nuclear power reactors, 403 (or 91%) are in either OECD countries or countries with economies in transition. In terms of electrical generating capacity, 349 GW(e) out of 368 GW(e), or 95% of nuclear generating capacity is installed in these countries. In terms of new construction, however, the pattern is largely reversed. Sixteen of the 27 new reactors under construction (59%), and 11.1 GW(e) out of 21.8 GW(e) (51%), are in developing countries. The most ambitious plans for nuclear expansion are in China and India. China, with three nuclear power plants under construction at the end of 2005, plans to expand nuclear capacity from 6.6 GW(e) today to 40 GW(e) by 2020. India, with eight plants under construction, plans to expand from 3 GW(e) to 29 GW(e) by 2022. Pakistan, with 425 MW(e) and one plant under construction at the end of 2005, plans to add approximately 8 GW(e) by 2030. For nuclear power in general, 2005 was a year of rising expectations, partly because of the potential expansion in developing countries due to their continuing need for substantially increased energy supplies, and partly because of concerns about greenhouse gas (GHG) emissions from fossil fired electricity generation, particularly coal. In March, high level representatives of 74 governments, including representatives from 31 developing countries, gathered in Paris at a conference organized by the Agency to consider the future role of nuclear power. The vast majority of participants, among them several countries currently without nuclear power programmes, affirmed that nuclear power can make a major contribution to meeting energy needs and sustaining the world's development in the 21st century. This annex reviews the prospects and challenges for the expansion of nuclear power in developing countries. Each country is unique, and its national plans and approach

  3. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  4. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  5. Ukrainian Nuclear Society International Conference 'Strategy of the nuclear power development: The choice of Ukraine'

    International Nuclear Information System (INIS)

    Abstracts of the papers presented at the International Conference of the Ukrainian Nuclear Society 'Strategy of the nuclear power development'. The following problems are considered: present situation with the nuclear power and its safety; nuclear fuel cycle development; waste and spent nuclear fuel management; reactors' decommissioning issues; modernization of the NPP with WWER reactors; future reactors; economics of nuclear power; safety culture; legal and regulatory framework, state nuclear regulatory control; PR in nuclear power industry; staff training

  6. Nuclear power station and environmental protection

    International Nuclear Information System (INIS)

    Environmental pollution has become a major problem of the present times. In addition to the pollution of air, water, noise and food, there is pollution by industries and factories. Nuclear power plant is the best option to meet the increasing demand for power and to make use of available uranium and thorium in the country. It is generally believed that nuclear power plants increase pollution and are hazardous and not safe. An attempt has been made to analyse these beliefs on a scientific basis. (author). 5 refs., 3 figs

  7. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  8. Nuclear power development and nuclear data activities in Malaysia

    International Nuclear Information System (INIS)

    In this paper, research activities on nuclear power requirement carried out jointly by MINT and other organizations are described. Also discussed are activities on neutronics such as TRIGA reactor fuel management, storage pool criticality, and reactor fuel transfer cask calculations. In addition, recent work on radiation transport activities in MINT such as skyshine and photon phantom dose calculations using the MCNP and MRIPP computer codes are presented. Finally, nuclear data measurement works by researchers in Malaysian universities are described. (author)

  9. Nuclear power development and nuclear data activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Gui Ah Auu [Malaysian Institute for Nuclear Technology Research, Ministry of Science, Technology and the Environment, Selangor (Malaysia)

    1999-03-01

    In this paper, research activities on nuclear power requirement carried out jointly by MINT and other organizations are described. Also discussed are activities on neutronics such as TRIGA reactor fuel management, storage pool criticality, and reactor fuel transfer cask calculations. In addition, recent work on radiation transport activities in MINT such as skyshine and photon phantom dose calculations using the MCNP and MRIPP computer codes are presented. Finally, nuclear data measurement works by researchers in Malaysian universities are described. (author)

  10. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  11. Nuclear power and nuclear technology in Germany and worldwide; Kernenergie und Kerntechnik in Deutschland und weltweit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The report on nuclear power and nuclear technology in Germany covers the following topics: Nuclear energy and the German energy mix, the German energy turnaround, shutdown - decommissioning and dismantling of nuclear power stations, safety and radiation protection, final disposal of radioactive wastes, nuclear technology in the future: competence preservation and professional perspectives, alternative use, nuclear power worldwide.

  12. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear... Accounting Systems for Nuclear Power Plants.'' This regulatory guide provides guidance on recordkeeping and... nuclear material control and accounting system requirements for nuclear power plants. This guide...

  13. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In DG-5028... Control and Accounting Systems for Nuclear Power Plants.'' DATES: Submit comments by July 16,...

  14. Climate Change and Nuclear Power

    International Nuclear Information System (INIS)

    The 1992 United Nations Framework Convention on Climate Change is one of a series of recent agreements through which countries around the world are banding together to meet the challenge of altering the global climate. In 1997, in respond to the growing public pressure and questions on climate change governments adopted the Kyoto Protocol. The 5th Conference of the Parties to the UN Framework Convention on Climate Change (COP5 UNFCCC) was a rather technical and complex conference which focused in particular on the development of a detailed framework for the application of ''flexible mechanisms'' as laid down in the Kyoto Protocol. Young Generation Network as a part of the International Nuclear Forum at COP5 took part in the debate saying that nuclear is the part of the solution. (author)

  15. SWOT of nuclear power plant sustainable development

    International Nuclear Information System (INIS)

    SWOT Analysis is a Useful tool that can he applied to most projects or business ventures. In this article we are going to examine major strengths, weaknesses, opportunities and threats of nuclear power plants in view of sustainable development. Nuclear power plants have already attained widespread recognition for its benefits in fossil pollution abatement, near-zero green house gas emission, price stability and security of energy supply. The impressive new development is that these virtues are now a cost -free bonus, because, in long run, nuclear energy has become an inexpensive way to generate electricity. Nuclear energy's pre-eminence economically and environmentally has two implications for government policy. First, governments should ensure that nuclear licensing and safety oversight arc not only rigorous but also efficient in facilitating timely development of advanced power plants. Second, governments should be bold incentivizing the transformation to clean energy economics, recognizing that such short-term stimulus will, in the case of nuclear plants, simply accelerate desirable changes that now have their own long-term momentum. The increased competitiveness of nuclear power plant is the result of cost reductions in all aspects of nuclear economics: Construction, financing, operations, waste management and decommissioning. Among the cost-lowering factors are the evolution to standardized reactor designs, shorter construction periods, new financing techniques, more efficient generation technologies, higher rates of reactor utilization, and longer plant lifetimes. U.S World Nuclear Association report shows that total electricity costs for power plant construction and operation were calculated at two interest rates. At 10%, midrange generating costs per kilowatt-hour are nuclear at 4 cents, coal at 4.7 cents and natural gas at 5.1 cent. At a 5% interest rate, mid-range costs per KWh fall to nuclear at 2.6 cents, coal at 3.7 cents and natural gas at 4.3 cents

  16. Public acceptance of nuclear power

    International Nuclear Information System (INIS)

    The lecture addresses the question why we need public acceptance work and provides some clues to it. It explains various human behaviour patterns which determine the basics for public acceptance. To some extent, the opposition to nuclear energy and the role the media play are described. Public acceptance efforts of industry are critically reviewed. Some hints on difficulties with polling are provided. The lecture concludes with recommendations for further public acceptance work. (author)

  17. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  18. Nuclear power within liberalised electricity markets

    International Nuclear Information System (INIS)

    Competition between various methods of generating electricity in liberalised markets means that all power plants must be cost-effective. The price of electricity from nuclear power includes all waste disposal and decommissioning costs, unlike other electricity generating technologies. Most existing nuclear power plants are likely to prosper under electricity liberalization. Many will receive operating life extensions and be able to compete in the electricity market for many years to come. Investment costs are particularly heavy for nuclear plants. Capital expenditure appraisal methodologies mean that such plants suffer financial disadvantages in times of high interest rates. Low and stable fuel costs are the prime advantage of nuclear plants against other sources of generating electricity. There will be significant demand for new generating capacity, both incremental and replacement, in the next 20 years. Under present conditions, where there is access to a stable and cheap supply of piped gas, nuclear and coal plants find it difficult to compete against gas-fired plants. The nuclear industry is addressing the need for new reactor designs, offering significant capital and operating cost reductions from the previous generation of reactors. This development and the need for carbon abatement on a worldwide basis offers nuclear plants a further economic advantage against alternative technologies. (author)

  19. The challenge of financing nuclear power plants

    International Nuclear Information System (INIS)

    To date, more then 500 nuclear power reactors have been successfully financed and built. Experience in recent nuclear projects confirms that nuclear power will not cease to be a viable option due to a worldwide financing constraint. For financing nuclear plants there are special considerations: large investment; long lead and construction times; complex technology; regulatory risk and political risk. The principal preconditions to financing are a national policy supporting nuclear power; creditworthiness; economic competitiveness; project feasibility; assurance of adequate revenues; acceptability of risks; and no open-ended liabilities. Generally, nuclear power plants are financed conventionally through multi-sources, where a package covers the entire cost. The first source, the investor/owner/operator responsible for building and operating the plant, should cover a sizable portion of the overall investment. In addition, bond issues, domestic bank credits etc. and, in case of State-owned or controlled enterprises, donations and credits from public entities or the governmental budget, should complete the financing. A financially sound utility should be able to meet this challenge. For importing technology, bids are invited. Export credits should form the basis of foreign financing, because these have favorable terms and conditions. Suppliers from several countries may join in a consortium subdividing the scope of supply and involve several Export Credit Agencies (ECAs). There are also innovative financing approaches that could be applied to nuclear projects. Evolutionary Reactors with smaller overall investment, shorter construction times, reliance on proven technology, together with predictable regulatory regimes and reliable long-term national policies favorable to nuclear power, should make it easier to meet the future challenges of financing. (author)

  20. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  1. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  2. Nuclear Power: Entering the Stage of Active Development

    Institute of Scientific and Technical Information of China (English)

    Xu Lianyi; Zhu Li

    2009-01-01

    @@ Development course Since 1970 when the construction preparation of Qinshan No. 1 Nuclear Power Plant started, China's nuclear power industry has grown out of nothing, and then adjusted the step from moderate development to vigorous development. In this course, China's nuclear power equipment manufacturing industry has also been unceasingly developing and strengthening itself with the construction of nuclear power plants one by one.

  3. Multimegawatt nuclear power systems for nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  4. Safety of technical facilities in the nuclear power industry

    International Nuclear Information System (INIS)

    Five papers were submitted on the activities of the Czech Labor Safety Office dealing with the results of surveillance in 1988, draft measures aimed at improving nuclear power installation safety, problems of the construction, start-up and operation of the Dukovany nuclear power plant, production of regulations and technical safety during the construction of the Temelin nuclear power plant, qualifications of organizations, responsibilities of authorized organizations, requirements for enclosed and primary technical documentation in producing equipment for nuclear power, and obligations of authorized organizations in nuclear power unit operations, maintenance of nuclear power installations and education of nuclear power plant personnel. (J.B.)

  5. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modular Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be sold to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike: 1) political enabling framework, 2) regulatory framework, 3) responsible owner, 4) responsible operator, 5) finance, 6) contact management, 7) fuel supply and waste management framework, 8) training and education, and 9) industrial infrastructure. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. (author)

  6. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modulator Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be solid to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. These considerations are included in the paper. (author)

  7. (MAL)practice of nuclear power economics

    International Nuclear Information System (INIS)

    Nuclear cost evaluations traditionally use the cost of concurrent coal-fired electricity as their benchmark, but these comparisons are now moot because cash-poor utilities aren't shopping for new power plants. A breakeven capital-cost ratio measures the capital cost handicap that a nuclear plant can stand and still break even with coal power by means of its fuel savings. Although different regions have different breakeven ratios, primarily due to variations in coal prices, a national average breakeven ratio can be placed between 1.2 and 1.4, meaning that nuclear plants could stand between a 20 and 40% higher capital cost and still end up with equal lifetime generating cost. The nuclear promoter's failure to represent costs competently and candidly show that there is a need for independent analysis of the economic and other consequences of major public investments. 24 references, 3 figures, 2 tables

  8. Nuclear power as a feminist issue

    Energy Technology Data Exchange (ETDEWEB)

    Nelkin, D.

    1981-01-01

    Women consistently show more opposition to nuclear power than men in public opinion polls, and they participate more in antinuclear organizations. Their concerns range from the health effects of radiation on women and on future generations to ideological and political matters. The diversity of their concern is reflected in the wide spectrum of women's organizations opposing nuclear power and how their positions are translated into political action. Women's publications and organizations which represent a national constituency have increased women's participation as informed educators and intervenors in hearings to raise health and safety questions, while the feminists groups use a shock approach in their moral crusade to establish a separate women's culture. The feminists have had an impact on the nuclear industry, which responded by promoting pro-nuclear women to public relations positions. (DCK)

  9. Prospects of Nuclear Power for Developing Countries

    International Nuclear Information System (INIS)

    The demand for electricity in developing countries of the world is expected to grow rapidly in the coming decades as these countries undergo the process of industrialization, accompanied by increased urbanization, and seek to improve the living standards of their growing population. The continued heavy reliance of the power sector on fossil fuels will result in an increased dependence of a number of the developing countries on energy imports, with consequentbalance of payment difficulties and implications in terms of reduced energy security, cause severe degradation of the local and regional environment, and will also lead to increasing emissions of greenhouse gases. Increasing the share of hydropower in most of the developing countries is constrained by the limited potential of hydro resources as well as environmental considerations. Other renewable energy technologies such as solar PV and wind power are not expected to play a significant role in the commercial supply of electricity in the foreseeable future in the most part of the developing world. Thus nuclear power as a non-fossil alternative with a proven and mature technology may be called upon to play an increasing role in the future supply of electricity to developing countries. The paper discusses the main factors that are likely to affect, both positively and negatively, the deployment of nuclear power in developing countries and presents the results of the recent IAEA projections on nuclear power capacity growth up to the 2020. The paper also briefly reviews the prospects of nuclear power in Central and Eastern European countries. (author)

  10. Nuclear power for under-developed areas

    International Nuclear Information System (INIS)

    In evaluating the needs of the less developed countries for nuclear power and in determining how and to what extent these needs can be met, the fundamental questions to be decided are: (a) to what extent can the total power needs of these countries be met by conventional (thermal and hydro) means, (b) in which sectors would it be immediately possible - from both technical and economic points of view - to generate power from nuclear energy, and (c) in which areas would it be imperative to resort to nuclear power in the immediate future. The IAEA Second General Conference recommended a survey of the nuclear power needs of the less developed countries, a study on a continuing basis of the technology and economics of small and medium power reactors suited to these countries, dissemination of the information obtained and assistance in training personnel in the technology and economic utilization of such nuclear stations. And on the basis of this recommendation, the Agency has initiated an integrated two-year programme of work for examining the possibilities of utilizing nuclear power in under-developed countries. In carrying out this programme, the Agency is seeking potentially promising cases in which nuclear energy can yield necessarily limited but early benefits. That would help an assessment of the technical and economic possibilities of small and medium reactors in specific situations. It would also enable under-developed countries to compare and ascertain whether nuclear energy can provide an early solution to some of their pressing power problems. The first three phases of IAEA's work programme are: (i) studies on the technical suitability of reactors with a power level of up to 50 mw; (ii) economic studies in regard to reactor systems, including a systematic analysis of power costs; and (iii) selection of characteristic situations that appear to favour utilization of nuclear power. A survey of special interest in this connexion will be carried out by an Agency

  11. Human Factors in Nuclear Power Engineering in Polish Conditions

    OpenAIRE

    Agnieszka Kaczmarek-Kacprzak; Martin Catlow

    2014-01-01

    The paper “Human factors in nuclear power engineering in Polish conditions” focuses on analysis of dynamics of preparing Polish society to build fi rst nuclear power plant in XXI century in Poland. Authors compare experience from constructing nuclear power plant Sizewell B (Great Britain) and Sizewell C, which is in preparation phase with polish nuclear power program. Paper includes aspects e.g. of creating nuclear safety culture and social opinion about investment. Human factors in nuclear p...

  12. Phasing out Britain's nuclear power stations

    International Nuclear Information System (INIS)

    This report examines the technical and economic feasibility of phasing-out Britain's nuclear power stations. It considers a range of strategies, from complete closure by 1990, to allowing them to run the full course of their planned lives, which for some reactors would be well into the next century. For reasons stated, closure of all Britain's nuclear power stations by 1990 or shortly afterwards would be likely to lead to a shortfall in generating capacity. Sufficient new generating capacity could not be provided quickly enough to avoid this shortfall, so power cuts at times of winter peak demand would probably occur. However, the older Magnox reactors, which comprise nine of the sixteen nuclear power stations, could be closed by the end of the present decade without risking power cuts. The seven AGRs, which are all newer, could be closed between 1995 and 2000, as replacement capacity was completed. 6 GW of new capacity, equivalent to three coal-fired power stations of standard design, would be needed for this purpose. The phasing out of nuclear power would add to the electricity industry operating costs. Taking all costs together - decommissioning, operating costs and the capital cost of replacement - the increase in electricity price is unlikely to exceed 10%. It is essential that the phasing-out of nuclear power is supported by new investment in the UK coal industry. Given the long time lag in completing new developments, it would be wise to make an early start on this new capacity in order to avoid large coal imports in the 1990s. (author)

  13. Nuclear power - assures the energy future. V. 2

    International Nuclear Information System (INIS)

    Papers presented at the conference surveyed the present status of nuclear projects and future nuclear power plans, the export of electricity and technology, Canada's nuclear industry, and innovative nuclear opportunities

  14. The Role of Nuclear Power in Pakistan

    International Nuclear Information System (INIS)

    Although the energy and electricity demand in Pakistan have been steadily growing, the per capita electricity consumption at around 300 kWh is still rather small when compared to most countries. The current installed capacity is around 17,700 MW with fossil fuels providing nearly two-third of this capacity, hydro a little less than one-third and nuclear around 2.5%. A major fraction of the oil used in Pakistan has to be imported while hydro remains subject to seasonal changes. The next 20 year projections point to a serious electrical energy generation shortfall even when the contribution from indigenous gas, coal, and hydro is increased optimistically. It is estimated that a deficit of some 3000-5000 MW may exist which will have to be met from an alternate energy resource like nuclear. Two small nuclear power plants (KANUPP, a 137 MWe CANDU which has been operating safely for nearly three decades, and CHASNUPP, the newly built 325 MWe PWR supplied by China) are already on-line. KANUPP has essentially been operated without any vendor support thanks to a systematic self-reliance program. The experience gained through procuring, operating and maintaining these power plants, coupled with the need to meet the projected electrical energy shortfall which cannot be met through conventional resources, makes nuclear a very viable option, and Pakistan an ideal case to study the current and future role of nuclear in a developing country with medium sized grid. This paper will describe an overview of the experience of development of nuclear power in Pakistan. Future strategies, which involve negotiating a case for nuclear with the energy policy makers, interacting with the vendor on matters of obtaining new plants, and increasing self-reliance in the area of nuclear power technology, will also be discussed. (author)

  15. Broad economic impact of nuclear power

    International Nuclear Information System (INIS)

    The decision to adopt, expand or reject a nuclear programme has implications that go beyond economic considerations limited to the cost of electricity produced. This report attempts to illustrate the treatment of macroeconomic factors in the decision-making process of various countries, and discusses the macroeconomic impacts of nuclear power, such as employment, balance of payments, security of supply, as well as environmental, health and socio-cultural issues. 274 refs., 14 figs., 14 tabs., 9 appendices

  16. Special aspects of nuclear power plant construction

    International Nuclear Information System (INIS)

    The very strict safety and quality requirements as well as the necessity of strengthened schedule and investment control make good project management even more important to the construction of nuclear power plant than conventional projects. For developing countries, to increase the extent of local participation becomes an essential way to reduce the construction costs and improve the nuclear competitiveness. Modular construction approach and design for construct ability are discussed as viable means to further reduce construction time and costs

  17. Nuclear power and the proliferation issue

    International Nuclear Information System (INIS)

    The purpose of the lecture is to discuss nuclear proliferation, analyse which problems are real and which are a misapprehension, and to suggest a way forward which retains the benefits of nuclear power while providing a more certain protection against undesirable proliferation. After an introductory section the lecture continues under the following headings: plutonium production and accessibility; the use of plutonium; fast reactor fuel; the interim period; conclusions. (U.K.)

  18. Thermodynamics in nuclear power plant systems

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor powersystems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibilit

  19. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those plants, against the action of earth quarks is described. The instrumentation is based on the nuclear standards and other components used, as well as their general localization is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The accelerometer is described in detail. (Author)

  20. Ground acceleration in a nuclear power plant

    International Nuclear Information System (INIS)

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  1. Artificial intelligence in nuclear power plants

    International Nuclear Information System (INIS)

    The IAEA Specialists' Meeting on Artificial Intelligence in Nuclear Power Plants was arranged in Helsink/Vantaa, Finland, on October 10-12, 1989, under auspices of the International Working Group of Nuclear Power Plant Control and Instrumentation of the International Atomic Energy Agency (IAEA/IWG NPPCI). Technical Research Centre of Finland together with Imatran Voima Oy and Teollisuuden Voima Oy answered for the practical arrangements of the meeting. 105 participants from 17 countries and 2 international organizations took part in the meeting and 58 papers were submitted for presentation. These papers gave a comprehensive picture of the recent status and further trends in applying the rapidly developing techniques of artificial intelligence and expert systems to improve the quality and safety in designing and using of nuclear power worldwide

  2. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  3. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  4. North Korea's nuclear power programme revealed

    International Nuclear Information System (INIS)

    The extent of the nuclear programme in the Democratic People's Republic of Korea (DPRK) was revealed in May 1992: reports on the country's facilities were handed to the International Atomic Energy Agency and an Agency group visited Korea on a ''familiarisation visit''. DPRK's nuclear programme had been the subject of speculation for some time. While the country had signed the Non-Proliferation Treaty and two facilities were already under IAEA safeguards - a research reactor and a critical facility, both at the Institute of Nuclear Physics - there were a number of indicators that DPRK was pursuing a nuclear programme aimed at military use. The new openness was prompted by a number of factors including discussions on closer relations with South Korea. DPRK signed a comprehensive Safeguards Agreement on 30 January 1992. On the familiarisation visit by the IAEA director general in May the DPRK revealed nuclear facilities in operation or under construction at five sites. At Pakchon and Pyongsan: each site housed a uranium mine and uranium-ore concentration plant. At Pyongyang: the two facilities already under safeguards at the Institute of Nuclear Physics; and a sub critical facility at Kim Il Sung university. At Nyongbyon: a fuel fabrication plant; an 5MWe experimental power reactor, in operation; a 50MWe prototype power reactor under construction; and a facility ultimately intended as a reprocessing plant, but described by North Korea, because of its unfinished state, as a laboratory. At Taechon: a 200MWe power reactor under construction. (author)

  5. Nuclear power: Public opinion in social crisis

    International Nuclear Information System (INIS)

    Nuclear power in Russia found itself in new conditions, if compared with first five years after Chernobyl. It is coming out of the technology crisis from 1986 and the political crisis of 1991, going deeper and deeper in the hard economic crisis, when the nuclear power plants receive about 10 percent of payments for electricity, produced and supplied to the customers. Economic crisis forms the public attitude about nuclear power under conditions, different from opinion formed during the previous decades, when energy supply was considered practically free of charge. These realities have moved ecological problems to the periphery of public conscience. This was, in particular, shown with all evidence during the parliamentary elections in Russia in 1993, when the Russian 'Green Party' had not achieved any seats in the State Duma. This is also confirmed by sociological polls of Russians done in the last two years. It seems, however, that change of priorities in public opinion had increased attention to the problems of environment in the nearest future are as inevitable, as the forthcoming Russia's and Its nearest neighbours getting out of the state of economic fail down. In these conditions the possibility of nuclear power development will be determined not only by economic factors, but also by the factor of public confidence. The progress in the development of public information programme in the field of nuclear power, if compared with the first years after Chernobyl, is evident. Several governing and coordinating structures exist and work in Russia (Department of Minatom, Inter-departmental Council for information and public relations, similar Department in Rosenergoatom Concern), regional public information centres, special services at many nuclear science and industry enterprises. Similar system works in Ukraine and is being established in Kazakhstan. In antinuclear Belarus, where, nevertheless, the objective need of nuclear power is already reflected in the national

  6. Risks of potential accidents of nuclear power plants in Europe

    OpenAIRE

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed on an integrated assessment of probabilistic cancer mortality risks due to possible accidental releases from the European nuclear power plants. For each of the European nuclear power plants the prob...

  7. Human survival depends on nuclear power

    International Nuclear Information System (INIS)

    Both the Wall Street Journal and the New York Times published feature articles Dec. 1 advertising a report by the U.S. government's General Accounting Office as evidence that the breeder reactor component of this nation's nuclear energy program was properly on its way to the scrap heap. According to the author, these and similar press accounts are intended to further legitimize the widely believed (and totally false) notion that increased plutonium use and nuclear fission generally represent a danger to humanity. Purposefully ignored in such accounts, he says, is the evidence that the elimination of plutonium as a nuclear fuel will mean the demise of the entire U.S. nuclear power industry and ultimately the human race itself. At stake in the short term, in addition to the breeder reactor program, is the well-established use of light water reactors for generating electricity, since these must, within a matter of years, be fueled with plutonium. The attack is also directed at the more advanced, more capital-intensive nuclear fusion technology, since the elimination of fission programs will wipe out the trained cadre force of engineers, scientists, technicians, and skilled workers needed to develop fusion power. The growth of fission power over the next two decades is absolutely necessary for the transition to a full fusion-based economy, according to Mr. Gilbertson. Only nuclear fusion has the inherent capability of transforming industry to the necessary higher mode of production and output, as well as providing a limitless source of usable power in several forms, thus insuring the survival of the human race beyond this century. Fission power and conventional fossil power must be expanded and possibly even exhausted during this transition in order to guarantee the achievement of this goal, he says

  8. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  9. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed...

  10. Neutronics of nuclear power reactors

    International Nuclear Information System (INIS)

    This review, prepared on the occasion of 25th ETAN Conference describes the research activities in the field of neutronics which started in 1947. A number of researchers in Yugoslav Institutes was engaged in development of neutronics theory and calculation methods related to power reactors since 1960. To illustrate the activities of Yugoslav authors, this review contains the list of the most important relevant papers published in international journals

  11. Ground assessment methods for nuclear power plant

    International Nuclear Information System (INIS)

    It is needless to say that nuclear power plant must be constructed on the most stable and safe ground. Reliable assessment method is required for the purpose. The Ground Integrity Sub-committee of the Committee of Civil Engineering of Nuclear Power Plant started five working groups, the purpose of which is to systematize the assessment procedures including geological survey, ground examination and construction design. The works of working groups are to establishing assessment method of activities of faults, standardizing the rock classification method, standardizing assessment and indication method of ground properties, standardizing test methods and establishing the application standard for design and construction. Flow diagrams for the procedures of geological survey, for the investigation on fault activities and ground properties of area where nuclear reactor and important outdoor equipments are scheduled to construct, were established. And further, flow diagrams for applying investigated results to design and construction of plant, and for determining procedure of liquidification nature of ground etc. were also established. These systematized and standardized methods of investigation are expected to yield reliable data for assessment of construction site of nuclear power plant and lead to the safety of construction and operation in the future. In addition, the execution of these systematized and detailed preliminary investigation for determining the construction site of nuclear power plant will make much contribution for obtaining nation-wide understanding and faith for the project. (Ishimitsu, A.)

  12. Sustainable nuclear power - the human dimension

    International Nuclear Information System (INIS)

    The availability of a well-prepared workforce is fundamental to the increased use of nuclear energy. Significant numbers of new employees will be needed not only for the new plants, but to replace retirees at the existing plants. In addition, a wide variety of disciplines and levels of educational backgrounds are needed. The Nuclear Power Institute is a partnership of industry, higher education, secondary and middle schools, state government and civic and community leadership that has come together to meet the challenge of attracting and preparing the nuclear workforce. (authors)

  13. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  14. Is it possible to reinstate nuclear power?

    International Nuclear Information System (INIS)

    In order to understand the safety of nuclear power, structure of peace of mind, structure of acceptance, collapse of feasibility and acceptance, and some conditions of reinstatement of nuclear power are necessary to be understudied.. On the some conditions of its reinstatement, 1) construction of 'deterministic brake', 2) decontamination, 3) a regulation system to be clear to protect the safety of people and inhabitants, 4) adaptability to change of general idea in home area, and 5) justice for acceptance are discussed. The structure of peace of mind, structure of acceptance and collapse of feasibility of freedom from care are illustrated. (S.Y.)

  15. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted

  16. Nuclear power plant siting: Hydrogeologic aspects

    International Nuclear Information System (INIS)

    This Safety Guide gives guidelines and methods for determining the ground water concentration of radionuclides that could result from postulated releases from nuclear power plants. The Guide gives recommendations on the data to be collected and the investigations to be performed at various stages of nuclear power plant siting in relation to the various aspects of the movement of accidentally released radioactive material through the ground water, the selection of an appropriate mathematical or physical model for the hydrodynamic dispersion even two-phase distribution of the radioactive material and an appropriate monitoring programme

  17. Virtual environments for nuclear power plant design

    International Nuclear Information System (INIS)

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP)

  18. Nuclear power engineering in the 21 century

    International Nuclear Information System (INIS)

    Analysis and main aspects of comprehending the role and structure of nuclear power (NP) in solution of crucial problems in power generation of the new century are presented briefly. The following problems are considered, in particular: requirements for future NP; optimal structure and major elements of future NP; solution of nuclear weapons nonproliferation problem; main tasks and anticipated results of the international project implemented for providing solutions to vital problems of NP, suggested by president of the RF; arrangement of collaboration in the framework of the international project

  19. Natural Circulation Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    The present paper deals with a study of natural circulation in PWR systems, The study consists of two parts: in the first one, natural circulation in experimental facilities simulating PWR plants was analyzed. This made it possible to gather a broad data base which was assumed as a reference for the subsequent part of the research. Seven Nuclear Power Plants nodalizations and additional experimental data from ''non-PWR'' facilities have been considered in the second part of the paper. Conclusions are drawn about natural circulation capabilities derived for the seven Nuclear Power Plants nodalizations and from data base pertinent to three ''non-PWR'' facilities. (author)

  20. Slovak power stations, Nuclear Power Plants Mochovce (Annual report 1997)

    International Nuclear Information System (INIS)

    A brief account of activities carried out by the Nuclear power plants Mochovce in 1997 is presented. These activities are reported under the headings: (1) Director's foreword; (2) Power plant management; (3) Highlights of 1997; (4) Capital construction; (5) Nuclear safety; (6) Radiation safety; (7) Work safety and health protection at work; (9) Fire protection; (10) Units upgrading - safety measures; (11) Maintenance; (12) Operation; (13) Environmental impacts of operations; (14) List of balances; (15) Human sources; (16) International co-operation; (17) Public relations

  1. Localization of nuclear power plant technology

    International Nuclear Information System (INIS)

    Asia, and particularly China, has an enormous need for power and must deal with the practicalities of building large base load units. In China, as in other countries, there are limitations on the use of large quantities of fossil fuel. This raises the possibility of turning to nuclear power to satisfy their energy needs. Other issues tend to point to the nuclear option for these growing economies, including economic considerations, environmental concerns, energy independence and raising the technological capabilities of the country. When a country embarks on a nuclear power program with the intention of localizing the technology, a long-term commitment is necessary to achieve this objective. Localization of nuclear technology is not a new phenomenon. The nature of the industry from the early beginnings has always involved transfer of technology when a new country initiated a nuclear power construction program. In fact, most previous experiences with this localization process involved heavy governmental, political and financial support to drive the success of the program. Because of this strong governmental support, only the receiving nation's companies were generally allowed to participate in the local business operations of the technology recipient. What is new and different today is the retreat from heavy financial support by the receiving country's government. This change has created a strong emphasis on cost-effectiveness in the technology transfer process and opportunities for foreign companies to participate in local business activities. ABB is a world-wide company with two parent companies that have been very active over many years in establishing cost-justified local operations throughout the world. Today, ABB has become the largest electrical engineering company in the world with respected local operations in nearly every country. Lessons learned by ABB in their world-wide localization initiatives are being applied to the challenge of cost

  2. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  3. Synopsis of sustainability and nuclear power

    International Nuclear Information System (INIS)

    Full text: World population is steadily increasing and yet one-third of them - over two billion people - lack access to electricity. Development depends on energy, including electricity, and the alternative to development is poverty, disease, misery, and death. This is a recipe for chaos, instability and widespread violence. During the next fifty years energy demand is expected to triple while the demand for electricity will grow nearly five-fold; a substantial portion of the demand coming from developing countries. It will be an immense challenge to meet the increased demand in energy without sustaining long term damage to the environment including the surface and air pollution as well as global warming and associated ecological disasters. While most of world's energy is derived from fossil fuels and hydroelectric power, still with 434 nuclear reactors operating worldwide, nuclear power is meeting 16% of the world's annual electricity needs and providing it to more than a billion people. Nuclear power has the potential for meeting a substantial portion of the world's growing energy needs in an environment friendly and sustainable manner contributing to a prosperous and safe world for posterity. The problems that developing countries face in imbibing nuclear technology and promoting the use of nuclear power are daunting. However, as nuclear technology is a proven technology, then in a shrinking world a sharing of knowledge and technology should make it much easier. If the world has to move towards shared political values and a global economy it is imperative that there should be a global access to civilian nuclear technology. (author)

  4. Management of delayed nuclear power plant projects

    International Nuclear Information System (INIS)

    According to the available information at the IAEA PRIS (Power Reactor Information System) at the end of 1998 there were more than 40 nuclear power plant projects with delays of five or more years with respect to the originally scheduled commercial operation. The degree of conformance with original construction schedules showed large variations due to several issues, including financial, economic and public opinion factors. Taking into account the number of projects with several years delay in their original schedules, it was considered useful to identify the subject areas where exchange of experience among Member States would be mutually beneficial in identification of problems and development of guidance for successful management of the completion of these delayed projects. A joint programme of the IAEA Departments of Nuclear Energy (Nuclear Power Engineering Section) and Technical Co-operation (Europe Section, with additional support from the Latin America and West Asia Sections) was set up during the period 1997-1998. The specific aim of the programme was to provide assistance in the management of delayed nuclear power plants regarding measures to maintain readiness for resuming the project implementation schedule when the conditions permit. The integration of IAEA interdepartmental resources enabled the participation of 53 experts from 14 Member States resulting in a wider exchange of experience and dissemination of guidance. Under the framework of the joint programme, senior managers directly responsible for delayed nuclear power plant projects identified several issues or problem areas that needed to be addressed and guidance on management be provided. A work plan for the development of several working documents, addressing the different issues, was established. Subsequently these documents were merged into a single one to produce the present publication. This publication provides information and practical examples on necessary management actions to preserve

  5. Training of nuclear power plant operating personnel

    International Nuclear Information System (INIS)

    Proceedings are presented containing 13 papers on the training of nuclear power plant personnel, especially personnel of WWER type plants. The questions are discussed such as care of personnel, the position of operators and maintenance workers, factors affecting their reliable work, the human factor in reliability and safety of big power facilities, the assurance of a standard system of operators' training with associated social and sociological aspects, the development of psychodiagnostic methodologies for testing and selecting workers for individual jobs. (B.S.)

  6. Multi-mode nuclear space power systems

    International Nuclear Information System (INIS)

    This paper is concerned with early versions of multi-mode nuclear space power systems (M-M NSPS) and their important mission applications for the early years of the next century. These systems are characterized as being capable of selectively operating over wide ranges of electric power levels and duty cycles and also produce direct propulsive thrust. Their special configurations will be composed of both current and neoteric elements and special configurations requiring substantial analysis, research, development and test

  7. Climate change and nuclear power 2008

    International Nuclear Information System (INIS)

    The possibility of global climate change resulting from increasing anthropogenic emissions of greenhouse gases (GHGs) is a major concern. A principal source of GHGs, particularly carbon dioxide (CO2), is the fossil fuels burned by the energy sector. Energy demand is expected to increase dramatically in the 21st century, especially in developing countries, where population growth is fastest and, even today, some 1.6 billion people have no access to modern energy services. Without significant efforts to limit future GHG emissions from the energy sector, therefore, the expected global increase in energy production and use could well trigger 'dangerous anthropogenic interference with the climate system', to use the language of Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC). To reduce the risk of global climate change, industrialized countries (listed in Annex I of the Convention) have made commitments to reduce their collective GHG emissions under the Kyoto Protocol to the UNFCCC during 2008-2012 by at least 5.2% below 1990 levels. Since the USA did not ratify the Kyoto Protocol, the actual reduction level will be only about 3.8% of the 1990 Annex I emissions, even if all Parties achieve full compliance. This reduction is by far outweighed by increases of emissions in non-Annex I countries in the same period. However, much deeper global emissions cuts will be necessary over the next few decades to stabilize atmospheric GHG concentrations at levels such that the increase in the mean annual surface temperature of the Earth will not exceed 2.5 oC relative to the pre-industrial level. Nuclear power plants produce virtually no GHG emissions during their operation and very low amounts of emissions on a life cycle basis. Nuclear energy could, therefore, be an important part of future strategies to reduce GHG emissions. Nuclear power is already an important contributor to the world's electricity needs. In 2007, it supplied about one seventh of

  8. Regional economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    This study of economic and social impacts of nuclear power facilities compares a nuclear energy center (NEC) consisting of three surrogate sites in Ocean County, New Jersey with nuclear facilities dispersed in the Pennsylvania - New Jersey - Maryland area. The NEC studied in this report is assumed to contain 20 reactors of 1200 MW(e) each, for a total NEC capacity of 24,000 MW(e). Following the Introductory chapter, Chapter II discusses briefly the methodological basis for estimating impacts. This part of the analysis only considers impacts of wages and salaries and not purchase of construction materials within the region. Chapters III and IV, respectively, set forth the scenarios of an NEC at each of three sites in Ocean County, N.J. and of a pattern of dispersed nuclear power plants of total equivalent generating capacity. In each case, the economic impacts (employment and income) are calculated, emphasizing the regional effects. In Chapter V these impacts are compared and some more general conclusions are reported. A more detailed analysis of the consequences of the construction of a nuclear power plant is given in Chapter VI. An interindustry (input-output) study, which uses rather finely disaggregated data to estimate the impacts of a prototype plant that might be constructed either as a component of the dispersed scenario or as part of an NEC, is given. Some concluding remarks are given in Chapter VII, and policy questions are emphasized

  9. International nuclear fuel cycle centers in global nuclear power infrastructure

    International Nuclear Information System (INIS)

    Interest among the nations of the world to use nuclear energy is increasing due to economic, environmental and energy security reasons. The increase in the number of nations using nuclear energy might raise political risk of non-peaceful use of sensitive nuclear technologies. Therefore, additional measures should be taken in order to minimize risk of proliferation in connection with the awaited renaissance of nuclear power. The problem of nuclear nonproliferation is an extremely complicated one and in order to mitigate it different dimensions should be taken into account: political, technological and institutional. Early in 2006 Russia proposed an initiative on global nuclear power infrastructure which will permit nondiscrimination access to nuclear energy of all interested countries observing requirements of nonproliferation regime. The key element of such infrastructure should be system of International Centers (IC) to provide services of nuclear fuel cycle including at first stage uranium enrichment and later on management of spent nuclear fuel (SNF) under the IAEA control. For effective management of SNF it is necessary to have developed technologies at least in four areas including fast reactors (FR) and closed fuel cycle technologies, SNF reprocessing, transuranium (TRU) fuel fabrication, nuclear waste management. At present the technology for only one area mentioned above have reached commercial level - LWR SNF aqueous reprocessing. Two other areas - technologies of sodium FR, MOX fuel for FR - have been demonstrated at semi-industrial level. Other technologies are still at R and D level - reprocessing of FR SNF, multi recycling of TRU fuel in FR, and nuclear waste management. Business as usual scenario of ICs establishment for SNF management might be to wait until some nations commercialize all associated with FR and closed fuel cycle areas driven mainly by national interest in addressing uranium resource shortages. Obviously this way needs significant time

  10. Public participation and trust in nuclear power development in China

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2013-01-01

    Rapid expansion of nuclear power in China requires not only increasing institutional capacity to prevent and adequately cope with nuclear risks, but also increasing public trust in governmental agencies and nuclear enterprises managing nuclear risks. Using a case study on Haiyang nuclear power plant

  11. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Science.gov (United States)

    2011-10-25

    ... COMMISSION Access Authorization Program for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide 5.66, ``Access Authorization Program for Nuclear Power Plants.'' This guide... Authorization Requirements for Nuclear Power Plants,'' and 10 CFR part 26, ``Fitness for Duty Programs.'' The...

  12. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Science.gov (United States)

    2013-09-09

    ... COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION..., ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition... Safety Analysis Reports for Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to...

  13. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years...

  14. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things, that... physical protection of licensed activities in nuclear power reactors against radiological...

  15. The role of nuclear power in a low carbon economy

    OpenAIRE

    Sustainable Development Commission

    2006-01-01

    Report is based on: An introduction to nuclear power : science, technology and UK policy context -- Reducing CO2 emissions : nuclear and the alternatives -- Landscape, environment and community impacts of nuclear power -- The economics of nuclear power -- Waste and decommissioning -- Safety and security -- Public perceptions and community issues -- Uranium resource availability.

  16. Fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    The Safety Guide gives design and some operational guidance for protection from fire and fire-related explosions in nuclear power plants (NPP). It confines itself to fire protection of items important to safety, leaving the aspects of fire protection not related to safety in NPP to be decided upon the basis of the national practices and regulations

  17. Nuclear power - is it the only way

    International Nuclear Information System (INIS)

    The chapter discusses the following: whether nuclear power is needed; decision related to democracy; public attitudes; government policies; energy policy; hazards; proposal to build PWR at Sizewell; moral issues; attitudes of CEGB; energy conservation; political aspects; renewable energy sources. (U.K.)

  18. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  19. Report of Nuclear Powered Ship Council

    International Nuclear Information System (INIS)

    From the forecast of energy balance in the world to 21st century, the diversification of energy supply and the technical development enabling it are necessary in Japan. The stable supply of marine fuel is important to maintain and develop the national life. At present, as the marine fuel substituting for petroleum, atomic energy is at the position nearest to practical use. In advanced countries, the basic technology required for the practical use of nuclear-powered merchant ships seems to have been established, but Japan is about 10 years behind them due to the delay of the Mutsu project. In order to maintain and improve the technical level of shipbuilders, the independent technology related to nuclear-powered ships must be established in Japan. In the economical examination of nuclear-powered ships, ice breakers and ice breaking tankers are advantageous, but in other types of ships, a number of conditions must be satisfied to be economical. The Mutsu must be operated to collect the data and experience, and the project of an improved marine prototype reactor must be decided. Also a demonstration ship must be built. The standards for the design, construction and operation of nuclear-powered ships and the public acceptance are necessary. (Kako, I.)

  20. Programmed system for nuclear power plant protection

    International Nuclear Information System (INIS)

    The progress in the field of microprocessors and large scale integration circuits, have incited to introduce this new technologies into nuclear power plant protection system. The hardware and software design principles are briefly listed; then, a quad-redundant protection system for 1300 MWe PWR, developed in France is described

  1. Emergency plans for nuclear power accidents

    International Nuclear Information System (INIS)

    The report presents an evaluation of an exercise of emergency services during a simulated accident at the nuclear power plant of Barsebaeck, Sweden. The aim of the exercise was to test Swedish and Danish organizations and various collaborative co-ordinations. Recommendations for future exercises are given. (G.B.)

  2. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  3. Agriculture protected against nuclear power hazards

    International Nuclear Information System (INIS)

    Near the Koeberg-1 reactor agriculture is being protected against nuclear power hazards. Radioactivity is frequently tested in e.g. milk and soils. This article discusses the tests and the measurements of radioactivity in the vicinity of the Koeberg-1 reactor

  4. Nuclear Power: Problems in Information Management.

    Science.gov (United States)

    Beaver, William

    1990-01-01

    Discusses the problems encountered at the Duquesne Light Company of Pittsburgh's nuclear power plant as the result of an inability to process information effectively and keep pace with technological change. The creation of a separate division trained and directed to manage the plant's information flows is described and evaluated. (CLB)

  5. Geodesy problems in nuclear power plant construction

    International Nuclear Information System (INIS)

    The special geodetic problems encountered during the construction of the Paks nuclear power plants are treated. The main building with its hermetically connected components including the reactor, the steam generators, the circulation pumps etc. impose special requirements on the control net of datum points. The geodesy tasks solved during the construction of the main building are presented in details. (R.P.)

  6. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.)

  7. Operations quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    This standard covers the quality assurance of all activities concerned with the operation and maintenance of plant equipment and systems in CANDU-based nuclear power plants during the operations phase, the period between the completion of commissioning and the start of decommissioning

  8. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  9. Constitutional determinants of nuclear power plant upgrading

    International Nuclear Information System (INIS)

    Around half a year ago the European stress test for nuclear power plants, a precautionary measure initiated by the European Council in March 2011 in response to the Fukushima disaster, revealed that while German nuclear power plants show a high degree of robustness compared with those in other European countries, they nevertheless required upgrading in one or the other respect (earthquake warning systems, protection against crashing civil passenger airplanes). The present article investigates whether this upgrading requirement can justify an injunction to carry out structural retrofitting measures or whether obligations to this end can be excluded on grounds of reasonability in view of the recent decision taken by the German parliament to phase out nuclear energy.

  10. Does Brazil need new nuclear power plants?

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Joaquim F. de [Graduate Program on Energy, University of Sao Paulo, SP (Brazil)], E-mail: jfdc35@uol.com.br; Sauer, Ildo L. [Graduate Program on Energy, University of Sao Paulo, SP (Brazil); Institute of Electrotechnics and Energy, University of Sao Paulo, SP (Brazil)], E-mail: illsauer@iee.usp.br

    2009-04-15

    In October 2008, the Brazilian Government announced plans to invest US$212 billion in the construction of nuclear power plants, totaling a joint capacity of 60,000 MW. Apart from this program, officials had already announced the completion of the construction of the nuclear plant Angra III; the construction of large-scale hydroelectric plans in the Amazon and the implantation of natural gas, biomass and coal thermoelectric plants in other regions throughout the country. Each of these projects has its proponents and its opponents, who bring forth concerns and create heated debates in the specialized forums. In this article, some of these concerns are explained, especially under the perspective of the comparative analysis of costs involved. Under such merit figures, the nuclear option, when compared to hydro plants, combined with conventional thermal and biomass-fueled plants, and even wind, to expand Brazilian power-generation capacity, does not appear as a priority.

  11. Does Brazil need new nuclear power plants?

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Joaquim F. [Graduate Program on Energy, University of Sao Paulo, SP (Brazil); Sauer, Ildo L. [Graduate Program on Energy, University of Sao Paulo, SP (Brazil)]|[Institute of Electrotechnics and Energy, University of Sao Paulo, SP (Brazil)

    2009-04-15

    In October 2008, the Brazilian Government announced plans to invest US$212 billion in the construction of nuclear power plants, totaling a joint capacity of 60,000 MW. Apart from this program, officials had already announced the completion of the construction of the nuclear plant Angra III; the construction of large-scale hydroelectric plans in the Amazon and the implantation of natural gas, biomass and coal thermoelectric plants in other regions throughout the country. Each of these projects has its proponents and its opponents, who bring forth concerns and create heated debates in the specialized forums. In this article, some of these concerns are explained, especially under the perspective of the comparative analysis of costs involved. Under such merit figures, the nuclear option, when compared to hydro plants, combined with conventional thermal and biomass-fueled plants, and even wind, to expand Brazilian power-generation capacity, does not appear as a priority. (author)

  12. Implications of inherent safe nuclear power system

    International Nuclear Information System (INIS)

    The safety of present day nuclear power reactors and research reactors depends on a combination of design features of passive and active systems, and the alert judgement of their operators. A few inherently safe designs of nuclear reactors for power plants are currently under development. In these designs, the passive systems are emphasized, and the active systems are minimized. Also efforts are made to eliminate the potential for human failures that initiate the series of accidents. If a major system fails in these designs, the core is flooded automatically with coolants that flow by gravity, not by mechanical pumps or electromagnetic actuators. Depending on the choice of the coolants--water, liquid metal and helium gas--there are three principal types of inherently safe reactors. In this paper, these inherently safe reactor designs are reviewed and their implications are discussed. Further, future perspectives of their acceptance by nuclear industries are discussed. (author)

  13. Public's perception and judgment on nuclear power

    International Nuclear Information System (INIS)

    A public's perception and judgment model on nuclear power is developed to reveal the structure of public acceptance toward nuclear power in Korea. This is somewhat a verification of an earlier study by the author using two independent sets of survey data. A perception model makes it possible to construct two major exploratory variables, perceived risk and perceived benefit. The difference of perception is analyzed for different groups such as gender, education difference, and different information channels. A judgment model helps identify influential factors that improve the acceptance of nuclear energy. Estimates of model parameters from independent data sets were not significantly different, which implies the validity of the model. Methodologies of this study can be used as the basis for investigating the structure of public perception of technological risks and benefits, designing a public information and risk communication program, and developing remedial policy actions to improve public acceptance

  14. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  15. Financing aspects of nuclear power in India

    International Nuclear Information System (INIS)

    This paper addresses economic scenarios and trends toward deregulation in India. Growth of the power sector must precede economic growth. Nuclear power growth, now at a rate lower than the average growth of other power, is expected to accelerate over the next two decades. Capacity growth would be funded through equity and debt in the ratio of 1:1. While a substantial portion of the equity capital would be mobilized internally, the initial flow of equity for this growth must come from the Government. The debt capital is to be substantially funded by the domestic capital market and part would flow from external sources. (author)

  16. Distributed systems for protecting nuclear power stations

    International Nuclear Information System (INIS)

    The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France

  17. The Daya Bay nuclear power plant

    International Nuclear Information System (INIS)

    The Daya Bay plant is nearing completion for the Guangdong Nuclear Power Joint Venture Company (GNPJVC), formed by the Chinese Government (75%) in conjunction with China Light Power, the Hong Kong utility (25%). 70% of generated power from two French-design 900 MWe class PWRs will be supplied to Hong Kong (the reference units: France's Gravelines-5 and -6). The Advanced Fuel Assembly designed by Framatome is used. The turbines are British-built (GEC) and designed differently from those installed in French units. 1 fig

  18. Safety culture in nuclear power plants. Proceedings

    International Nuclear Information System (INIS)

    As a consequence of the INSAG-4 report on 'safety culture', published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of 'safety culture', with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs

  19. Business as usual and nuclear power

    International Nuclear Information System (INIS)

    Energy and nuclear policy makers face many challenges as they evaluate options to ensure an adequate supply of electricity while pursuing environmental, economic and energy security goals. Many analysts suggest that nuclear's share of global energy supply could decrease in coming decades. If energy markets and national energy policies continue along 'business as usual' lines, what are the issues that arise? what are the consequences for the long-term availability of nuclear technology and expertise? This book identifies the issues in a series of papers presented at a recent meeting jointly organised by the International Energy Agency and the OECD Nuclear Energy Agency. Senior energy policy makers and industry executives from OECD Member countries contributed these analyses. They offer a realistic assessment of nuclear's potential contribution, and the major challenges awaiting nuclear energy and energy supply in general. For those seeking a review of the current issues facing nuclear power within the broad context of energy policy, this is an essential report. (authors)

  20. Energy problems and nuclear power in Japan

    International Nuclear Information System (INIS)

    International petroleum situation maintains the balance between demand and supply for the time being, but hereafter, it seems to be more serious and uncertain. Japanese economy tided over the first oil crisis with difficulty, and moreover, responded to the second oil crisis after the Iranian revolution somehow or other. But oil price has continued to rise, and the acceleration of inflation, the serious depression of businesses and electric power crisis are feared. In Japan where the dependence on imported petroleum is as high as 75%, it is necessary to establish the long term energy policy making energy saving and the development of substitute energy as its mainstay. In August, 1979, the report concerning the interim prospect of long term energy demand and supply was made. Largest efforts will be exerted to reduce the oil import. Then the total demand of energy in 1985 will be 582 million kl calculated in terms of petroleum. The law concerning energy saving was enacted in June, 1979. As the substitute energy, imported coal, LNG and nuclear power generation should be adopted. However, in order to put these energies in practical use, many problems to be solved remain. 21 nuclear power plants of 14.9 million kW capacity are in operation, and provide with 12% of total power generation installations. 30 million kW of nuclear power generation will be attained by 1985. (Kako, I.)

  1. Project management skills for nuclear power plants

    International Nuclear Information System (INIS)

    Full text: The E and C Division of L and T has executed several power projects in India and abroad and thus possesses the requisite wherewithal to execute nuclear power projects on a fast track basis. To achieve this L and T has set up a separate Strategic Business Unit (SBU) to have a focused attention to the nuclear power industry in the country. All the four important and necessary hallmarks for successful implementation of any project namely (i) engineering capabilities, (ii) sophisticated project management tools, (iii) ability to mobilize resources, and (iv) skilled personnel to execute the project have been adequately addressed. These could be realized either by establishing fruitful collaborations with other specialist Companies and/or creating powerful and multitasking software tools for effective implementation. The execution of nuclear power projects on a fast track basis could be implemented by following the EPC route and by minimizing the number of packages. Details of this scheme for project implementation will be highlighted during the talk

  2. Nuclear power as a regional energy supply

    International Nuclear Information System (INIS)

    The author describes the Point Lepreau nuclear power plant and its impact on the electric power grid and the economy of the small province of New Brunswick. The 600 MW CANDU reactor is considered suitable for small operations and has an excellent world record. Although nuclear energy has high capital costs, its fuel costs are low, thus rendering it comparatively inflation free. Its fuel costs of 3 to 4 mills are contrasted with 40 mills for oil-fuelled units. The cost advantage of uranium over coal and oil permits New Brunswick to put aside funds for waste management and decommissioning. Regulatory streamlining is needed to reduce both expense and time of construction. The CANDU system is ideally suited to providing base load, with coal as an intermediate load supply and hydro for peaking. There is room for tidal power as a future part of the mix

  3. Safety assessment of emergency power systems for nuclear power plants

    International Nuclear Information System (INIS)

    This publication is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing the safety of a given design of the emergency power systems (EPS) for a nuclear power plant. The present publication refers closely to the NUSS Safety Guide 50-SG-D7 (Rev. 1), Emergency Power Systems at Nuclear Power Plants. It covers therefore exactly the same technical subject as that Safety Guide. In view of its objective, however, it attempts to help in the evaluation of possible technical solutions which are intended to fulfill the safety requirements. Section 2 clarifies the scope further by giving an outline of the assessment steps in the licensing process. After a general outline of the assessment process in relation to the licensing of a nuclear power plant, the publication is divided into two parts. First, all safety issues are presented in the form of questions that have to be answered in order for the assessor to be confident of a safe design. The second part presents the same topics in tabulated form, listing the required documentation which the assessor has to consult and those international and national technical standards pertinent to the topics. An extensive reference list provides information on standards. 1 tab

  4. The realities of nuclear power: international economic and regulatory experience

    International Nuclear Information System (INIS)

    The book is aimed at the energy industry, energy ministries, nuclear power organisations and national agencies. A description is given of a framework for evaluating nuclear power technology development, along with the economic evaluation of nuclear power. The contrasting records are examined of four of the major users of nuclear power - the USA, the Federal Republic of Germany, Canada and France, and factors are identified which have been important in determining the success or otherwise of each of the four nuclear power programmes. Finally the future of nuclear power is discussed. (U.K.)

  5. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  6. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  7. Strategies for competitive nuclear power plants

    International Nuclear Information System (INIS)

    This technical publication on competitive strategies for nuclear power plants (NPPs) is part of an ongoing project on management of NPP operations in a competitive environment. The overall objective of this project is to assist the management of operating organizations and NPPs in identifying and implementing appropriate measures to remain competitive in a rapidly changing business environment. Other documents that have been written on this topic have focused on how the environment in which NPPs operate is changing. This report instead focuses on strategies and techniques that operating organization and NPP managers can use to succeed in this environment. Of particular note is ongoing OECD/NEA work to describe the environment for nuclear power in competitive electricity markets. The main objective of the OECD/NEA study is to review the impacts of increasing market competition on the nuclear power sectors in OECD Member countries. The OECD/NEA study is identifying various nuclear aspects which have to be considered in relation to the regulatory reform of the electricity sector in OECD Member States. The OECD/NEA work was co-ordinated with the development of this IAEA report; staff members from the two organizations participated in the development and review of the associated documents. Thus, the strategies and techniques identified in this report are consistent with the impacts of increasing market competition identified in the OECD/NEA study

  8. Alternative evacuation strategies for nuclear power accidents

    International Nuclear Information System (INIS)

    In the U.S., current protective-action strategies to safeguard the public following a nuclear power accident have remained largely unchanged since their implementation in the early 1980s. In the past thirty years, new technologies have been introduced, allowing faster computations, better modeling of predicted radiological consequences, and improved accident mapping using geographic information systems (GIS). Utilizing these new technologies, we evaluate the efficacy of alternative strategies, called adaptive protective action zones (APAZs), that use site-specific and event-specific data to dynamically determine evacuation boundaries with simple heuristics in order to better inform protective action decisions (rather than relying on pre-event regulatory bright lines). Several candidate APAZs were developed and then compared to the Nuclear Regulatory Commission’s keyhole evacuation strategy (and full evacuation of the emergency planning zone). Two of the APAZs were better on average than existing NRC strategies at reducing either the radiological exposure, the population evacuated, or both. These APAZs are especially effective for larger radioactive plumes and at high population sites; one of them is better at reducing radiation exposure, while the other is better at reducing the size of the population evacuated. - Highlights: • Developed framework to compare nuclear power accident evacuation strategies. • Evacuation strategies were compared on basis of radiological and evacuation risk. • Current strategies are adequate for smaller scale nuclear power accidents. • New strategies reduced radiation exposure and evacuation size for larger accidents

  9. Safety goals for nuclear power plant operation

    International Nuclear Information System (INIS)

    This report presents and discusses the Nuclear Regulatory Commission's, Policy Statement on Safety Goals for the Operation of Nuclear Power Plants. The safety goals have been formulated in terms of qualitative goals and quantitative design objectives. The qualitative goals state that the risk to any individual member of the public from nuclear power plant operation should not be a significant contributor to that individual's risk of accidental death or injury and that the societal risks should be comparable to or less than those of viable competing technologies. The quantitative design objectives state that the average risks to individual and the societal risks of nuclear power plant operation should not exceed 0.1% of certain other risks to which members of the US population are exposed. A subsidiary quantitative design objective is established for the frequency of large-scale core melt. The significance of the goals and objectives, their bases and rationale, and the plan to evaluate the goals are provided. In addition, public comments on the 1982 proposed policy statement and responses to a series of questions that accompanied the 1982 statement are summarized

  10. International status and prospects of nuclear power

    International Nuclear Information System (INIS)

    Nuclear power plants are primarily used for electricity production. Currently, 439 reactors are operating in 30 countries and are contributing approximately 14% to global electricity generation. The share of nuclear in global electricity generation has declined slightly in recent years. However, the total amount of nuclear electricity generation is increasing as plant availability, power uprating, and new plants offset the loss from older plants that are being shut down. Due to the economic benefits of continuing operation of a plant after the capital cost has been repaid, and with careful plant life management assessments, a number of reactors have had their operating licences extended for an additional 20 years. Light water reactors (LWRs) are by far the most prevalent reactors in use today, followed by pressurized heavy water reactors, gas cooled reactors and, currently, two fast reactors. The safety and reliability of nuclear facilities have been steadily improving. Strong networks among countries with operating nuclear power plants have enabled operators to learn from each other and to address common issues. Ongoing efforts have continuously strengthened safety culture and regulatory oversight. The current available supply of uranium meets the demand. Current enrichment and fuel fabrication capacities are adequate to meet the expected demand for the next decade. There is also substantial experience in the storage and reprocessing of spent fuel and the treatment of high level waste. Existing reprocessing capacity is adequate to meet present demand. Most spent fuel continues, however, to be stored awaiting a decision on future policy, i.e. whether to reprocess and recycle it or to dispose of it as waste. To date, no ultimate disposal facilities are available. Only a few countries currently use civil nuclear energy for purposes other than electricity production - mainly for seawater desalination and district heating - and even then only to a limited extent

  11. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ∼12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ∼30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  12. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  13. Nuclear power plant outage optimisation strategy

    International Nuclear Information System (INIS)

    Competitive environment for electricity generation has significant implications for nuclear power plant operations, including among others the need of efficient use of resources, effective management of plant activities such as on-line maintenance and outages. Nuclear power plant outage management is a key factor for good, safe and economic nuclear power plant performance which involves many aspects: plant policy, co-ordination of available resources, nuclear safety, regulatory and technical requirements and, all activities and work hazards, before and during the outage. This technical publication aims to communicate these practices in a way they can be used by operators and utilities in the Member States of the IAEA. It intends to give guidance to outage managers, operating staff and to the local industry on planning aspects, as well as examples and strategies experienced from current plants in operation on the optimization of outage period. This report discusses the plant outage strategy and how this strategy is actually implemented. The main areas identified as most important for outage optimization by the utilities and government organizations participating in this report are: organization and management; outage planning and preparation, outage execution, safety outage review, and counter measures to avoid extension of outages and to easier the work in forced outages. This report was based on discussions and findings by the authors of the annexes and the participants of an Advisory Group Meeting on Determinant Causes for Reducing Outage Duration held in June 1999 in Vienna. The report presents the consensus of these experts regarding best common or individual good practices that can be used at nuclear power plants with the aim to optimize

  14. Management of National Nuclear Power Programs for assured safety

    International Nuclear Information System (INIS)

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA)

  15. Management of National Nuclear Power Programs for assured safety

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.J. (ed.)

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  16. Projected role of nuclear power in Egypt and problems encountered in implementing the first nuclear plant

    International Nuclear Information System (INIS)

    This paper reviews the present and projected power demands in Egypt and the factors behind the decision to introduce a nuclear power generation program. Different problems encountered and anticipated in introducing the first nuclear power plant are also discussed

  17. Design and construction of nuclear power plants

    CERN Document Server

    Schnell, Jürgen; Meiswinkel, Rüdiger; Bergmeister, Konrad; Fingerloos, Frank; Wörner, Johann-Dietrich

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply.Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overv

  18. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  19. Multivariable control in nuclear power stations

    International Nuclear Information System (INIS)

    Multivariable methods have the potential to improve the control of large systems such as nuclear power stations. Linear-quadratic optimal control is a multivariable method based on the minimization of a cost function. A related technique leads to the Kalman filter for estimation of plant state from noisy measurements. A design program for optimal control and Kalman filtering has been developed as part of a computer-aided design package for multivariable control systems. The method is demonstrated on a model of a nuclear steam generator, and simulated results are presented

  20. Integrated CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    The design and engineering of nuclear power plant covers various technical fields. The information created in many fields is exchanged and utilized in many places at the same time. As CAE systems are applied to several plants, large and diverse information has been accumulated on the data base management system. Discrepancies in information and complicated data handling has come to light at routine work on large scale CAE systems. In view of the above, TOSHIBA has integrated CAE system to utilize information more efficiently. This paper describes that TOSHIBA has been improving user interface in an integrated environment and building intelligent applications specialized for nuclear engineering. (author)

  1. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those Plants, against the action of earthquakes is described. The instrumentation described is based on the nuclear standards in force. The minimum amount of sensors and other components used, as well as their general localization, is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The various devices used are not covered in detail, except for the accelerometer, which is the seismic instrumentation basic component. (Author)

  2. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  3. Nuclear power development, financing and delivery

    International Nuclear Information System (INIS)

    Full text: This presentation outlines the challenges facing the development of new nuclear power projects in particular in the emerging electricity markets. The decision to employ nuclear power has always been a strategic government decision tied to national energy and infrastructure policy. The first generations of nuclear power plants were financed through government debt or sovereign guarantees. The government guarantees attracted favorable financing and repayment terms. In addition, the associated risks of construction and delivery were primarily secured by government backstops. These guarantee programs were necessary to support the size and risk of these projects that were integrated into government regulated energy markets. In some markets such as the US, the public utility boards were authorized to recover their full investment costs through adjustment of the electricity selling rate. There are new nuclear projects under consideration in mature, regulated and deregulated markets that have not built a new nuclear plant for many years. In addition, emerging countries are also planning to build nuclear plants and are in the process of assessing the necessary steps to create the foundation for a nuclear energy program. In all countries the regulatory process, legislation, legal framework, and industrial and commercial infrastructure are required as the basis to go forward. In many countries, the project models have changed from government sponsored projects, to private and in some cases public-private structures. This open market approach is driven by the reluctance of governments to incur further national debt and through promotion of deregulated energy markets. The viability of such projects hinges on the generation costs versus the acceptable market rate for selling price as well as the strength and maturity of the electricity market. This new ownership and delivery model also has to deal with the risk associated with regulatory approval process, financing

  4. Analysis of nuclear power plant component failures

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  5. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Science.gov (United States)

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and...

  6. New nuclear power plants for Ontario

    International Nuclear Information System (INIS)

    Towards the end of this year the Ontario government will select the technology for its future nuclear power plants. To clarify the differences between the contending reactors I have put together the following quick overview. Ontario's requirement is for a stand-alone two-unit nuclear power plant to provide around 2,000 to 3,500 MWe of baseload generating capacity at a site to he specified with an option for one or two additional units. It is likely that the first units will be located at either the Darlington site near Bowmanville or the Bruce site near Kincardine. However the output from the Bruce site is presently transmission constrained. All nuclear-electric generation in Ontario comes from Atomic Energy of Canada Limited's (AECL) CANDU reactors at Pickering, Darlington and Bruce. The contenders are, AECL's 1085 MWe (net) ACR-1000 (Advanced CANDU Reactor), Westinghouse Electric Company's 1117 MWe (net) AP1000 (Advanced Passive), AREVA NP's 1600 MWe (net) U.S. EPR (United States Evolutionary Pressurized Reactor) and the 1550 MWe (net) GE Hitachi Nuclear Energy's ESBWR (Economic and Simplified Boiling Water Reactor). Westinghouse has Toshiba as a majority shareholder, AREVA has the government of France as a majority shareholder and GE-Hitachi has GE as the major shareholder. AECL is a federal crown corporation and is part of Team CANDU consisting of Babcock and Wilcox Canada, GE-Hitachi Nuclear Energy Canada Inc., Hitachi Canada Limited and SNC-Lavalin Nuclear Inc. Generally the engineering split in Team CANDU would be, AECL, Mississauga, Ontario, responsible for the design of the nuclear steam plant including reactor and safety systems; Babcock and Wilcox Canada, Cambridge, Ontario, responsible for supply of the steam generators and other pressure retaining components; GE-Hitachi Nuclear Energy Canada Inc., Peterborough, Ontario for the fuel handling equipment; Hitachi Canada Limited, Mississauga, for the balance of plant steam to electricity conversion

  7. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  8. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  9. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  10. Selecting safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    Today, many thousands of documents are available describing the requirements, guidelines, and industrial standards which can be used as bases for a nuclear power plant programme. Many of these documents relate to nuclear safety which is currently the focus of world-wide attention. The multitude of documents available on the subject, and their varying status and emphasis, make the processes of selection and implementation very important. Because nuclear power plants are technically intricate and advanced, particularly in relation to the technological status of many developing countries, these processes are also complicated. These matters were the subject of a seminar held at the Agency's headquarters in Vienna last December. The IAEA Nuclear Safety Standards (NUSS) programme was outlined and explained at the Seminar. The five areas of the NUSS programme for nuclear power plants cover, governmental organization, siting, design; operation; quality assurance. In each area the Agency has issued Codes of Practice and is developing Safety Guides. These provide regulatory agencies with a framework for safety. The Seminar recognized that the NUSS programme should enable developing countries to identify priorities in their work, particularly the implementation of safety standards. The ISO activities in the nuclear field are carried out in the framework of its Technical Committee 85 (ISO/TC85). The work is distributed in sub-committees. Seminar on selection and implementation of safety standards for nuclear power plants, jointly organized by the IAEA and the International Organization for Standardization (ISO), and held in Vienna from 15 to 18 December 1980 concerned with: terminology, definitions, units and symbols (SC-1), radiation protection (SC-2), power reactor technology (SC-3), nuclear fuel technology (SC-5). There was general agreement that the ISO standards are complementary to the NUSS codes and guides. ISO has had close relations with the IAEA for several years

  11. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  12. Nuclear power siting conditions from social standpoint

    International Nuclear Information System (INIS)

    For solving the problem of the siting of nuclear power stations, including that of the facilities for the nuclear fuel cycle, it is essential to prepare a social system which enables the acceptance of such sites by the local people. For the purpose, it is first necessary to grasp properly the nature and degree of the regional burdens accompanying the acceptance. As such efforts, there is a report by Japan Atomic Industrial Forum, Inc., in which the course of discussion and the conscience toward the problem were revealed, and proposals were presented. These concern the establishment of governmental responsibility, the definition of the safety roles by the central and local governments, the measures for regional improvement, the coexistence with fisheries, and the special legislation for nuclear-site regions. To realize them, however, comprehensive administrative efforts by the Government will be indispensable. (J.P.N.)

  13. Wireless Technology Application to Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack [KOPEC, Daejeon (Korea, Republic of)

    2009-10-15

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs.

  14. Climate Change and Nuclear Power (French Edition)

    International Nuclear Information System (INIS)

    Ahead of the UN Climate Change Conference, including COP 21, to be held in Paris from 30 November to 11 December 2015, the IAEA released the French version of its scientific assessment of nuclear power’s role in meeting the climate–energy challenge: Changements Climatiques et Énergie Nucléaire. The report reiterates the fact that nuclear power is the second lowest CO2 emitter, considering emissions through entire life cycles, after hydro but ahead of wind and solar-based electricity. It also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in energy markets and technological developments are also presented

  15. Nuclear power plant transients: where are we

    International Nuclear Information System (INIS)

    This document is in part a postconference review and summary of the American Nuclear Society sponsored Anticipated and Abnormal Plant Transients in Light Water Reactors Conference held in Jackson, Wyoming, September 26-29, 1983, and in part a reflection upon the issues of plant transients and their impact on the viability of nuclear power. This document discusses state-of-the-art knowledge, deficiencies, and future directions in the plant transients area as seen through this conference. It describes briefly what was reported in this conference, emphasizes areas where it is felt there is confidence in the nuclear industry, and also discusses where the experts did not have a consensus. Areas covered in the document include major issues in operational transients, transient management, transient events experience base, the status of the analytical tools and their capabilities, probabilistic risk assessment applications in operational transients, and human factors impact on plant transients management

  16. Construct ability Improvement for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Soo; Lee, Jong Rim; Kim, Jong Ku [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The purpose of this study was to identify methods for improving the construct ability of nuclear power plants. This study reviewed several references of current construction practices of domestic and overseas nuclear plants in order to identify potential methods for improving construct ability. The identified methods for improving construct ability were then evaluated based on the applicability to domestic nuclear plant construction. The selected methods are expected to reduce the construction period, improve the quality of construction, cost, safety, and productivity. Selection of which methods should be implemented will require further evaluation of construction modifications, design changes, contract revisions. Among construction methods studied, platform construction methods can be applied through construction sequence modification without significant design changes, and Over the Top construction method of the NSSS, automatic welding of RCL pipes, CLP modularization, etc., are considered to be applied after design modification and adjustment of material lead time. (author). 49 refs., figs., tabs.

  17. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  18. The Resurgence of U.S. Nuclear Power, 2. edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The updated report provides an overview of the opportunities for nuclear power in the U.S. electric industry, including a concise look at the challenges faced by nuclear power, the ability of advanced nuclear reactors to address these challenges, and the current state of nuclear power generation. Topics covered in the report include: an overview of U.S. Nuclear Power including its history, the current market environment, and the future of nuclear power in the U.S.; an analysis of the key business factors that are driving renewed interest in nuclear power; an analysis of the barriers that are hindering the implementation of new nuclear power plants; a description of nuclear power technology including existing reactors, as well as 3rd and 4th generation reactor designs; a review of the economics of new nuclear power projects and comparison to other generation alternatives; a discussion of the key government initiatives supporting nuclear power development; profiles of the key reactor manufacturers participating in the U.S. nuclear power market; and, profiles of the leading U.S. utilities participating in the U.S. nuclear power market.

  19. Economic performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    From a global perspective, it is clear that there is no single group of key economic and financial measures that are applicable and useful for all countries and regions. The extent to which deregulation and privatization is occurring varies considerably throughout the world, with some countries continuing to foster regulated monopolies or government subsidies for power generation, while in others retail and wholesale electricity is sold in truly open market, competitive situations. Consequently, the requirement for key measures of financial and economic success for the nuclear power industry will continue to be diverse from one region or country to another. This report has been prepared for the benefit of nuclear plant managers and operators. Its primary purpose is to identify and define a number of economic performance measures for use at nuclear power plants operating in deregulated, competitive electricity markets. In addressing the value of economic measures, the report presents and discusses a general definition and classifications of nuclear economic indicators within the context of regulation, competition and the economic requirements for constructing, operating and decommissioning nuclear plants. Categories of economic measures, traditionally used in competitive enterprises, that have potential application in the operation of nuclear plants are also presented. A number of industry observations are discussed and presented as critical factors leading to a series of improvement strategies for the continued development and implementation of economic indicators, beyond those provided in this report, as well as for other related IAEA activities on the implementation and further development of the Nuclear Economic Performance Information System. On the basis of the collective opinions and judgements of the representatives of the participating countries, the report provides a 'preliminary' set of nuclear economic performance indicators, presented in standard Excel

  20. Nuclear Power for Sustainable Development : Current Status and Future Prospects

    OpenAIRE

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactor...