WorldWideScience

Sample records for bohr-van leeuwen theorem

  1. Fluctuation theorems and orbital magnetism in nonequilibrium state

    Indian Academy of Sciences (India)

    There has been an explosion in the number of fluctuation theorems relating var- ious physical quantities ... well-known Bohr–van-Leeuwen theorem states that a classical thermodynamic equi- librium system does not ... Thermodynamic work done on the system for case (i) (or the input energy injected into the system) for an ...

  2. Poncelet's theorem

    CERN Document Server

    Flatto, Leopold

    2009-01-01

    Poncelet's theorem is a famous result in algebraic geometry, dating to the early part of the nineteenth century. It concerns closed polygons inscribed in one conic and circumscribed about another. The theorem is of great depth in that it relates to a large and diverse body of mathematics. There are several proofs of the theorem, none of which is elementary. A particularly attractive feature of the theorem, which is easily understood but difficult to prove, is that it serves as a prism through which one can learn and appreciate a lot of beautiful mathematics. This book stresses the modern appro

  3. Frege's theorem

    CERN Document Server

    Heck, Richard G

    2011-01-01

    Frege's Theorem collects eleven essays by Richard G Heck, Jr, one of the world's leading authorities on Frege's philosophy. The Theorem is the central contribution of Gottlob Frege's formal work on arithmetic. It tells us that the axioms of arithmetic can be derived, purely logically, from a single principle: the number of these things is the same as the number of those things just in case these can be matched up one-to-one with those. But that principle seems so utterlyfundamental to thought about number that it might almost count as a definition of number. If so, Frege's Theorem shows that a

  4. The quantitative Morse theorem

    OpenAIRE

    Loi, Ta Le; Phien, Phan

    2013-01-01

    In this paper, we give a proof of the quantitative Morse theorem stated by {Y. Yomdin} in \\cite{Y1}. The proof is based on the quantitative Sard theorem, the quantitative inverse function theorem and the quantitative Morse lemma.

  5. Intersection theorems, inclusion theorems and related results

    International Nuclear Information System (INIS)

    Jiang Jiahe.

    1986-07-01

    In the present paper derived from the principle of KKM (Knaster, Kuratowski, and Mazurkiewicz) mappings are some intersection theorems, inclusion theorems and related results, generalizing a number of known results. (author)

  6. Cantor's Little Theorem

    Indian Academy of Sciences (India)

    This article discusses two theorems of Georg Can- tor: Cantor's Little Theorem and Cantor's Diag- onal Theorem. The results are obtained by gen- eralizing the method of proof of the well known. Cantor's theorem about the cardinalities of a set and its power set. As an application of these,. Godel's first incompleteness ...

  7. Formalizing Arrow's theorem

    Indian Academy of Sciences (India)

    Keywords. formalization of mathematics; Mizar; social choice theory; Arrow's theorem; Gibbard–Satterthwaite theorem; proof errors. ... Author Affiliations. Freek Wiedijk1. Institute for Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands ...

  8. Some approximation theorems

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Theorem 1. Suppose K is a compact set in the complex plane and 0 belongs to the boundary ∂K. Let A(K) denote the space of all functions f on K such that f is holo- .... Now by Hahn–Banach, we have Theorem 3. □. Proof of Theorem 1. Fix a z outside K and write the Taylor formula of order m for the. Cauchy kernel: 1 x − z.

  9. The Jordan Curve Theorem

    Indian Academy of Sciences (India)

    Institute, Calcutta. Apart from mathematics, he likes painting and reading. Unlike most others he dislikes computers. Ritabrata Munshi. Introduction. In this two-part article we will consider one of the classi- cal theorems of mathematics, the Jordan curve theorem. It states that a simple closed curve (i.e., a closed curve which.

  10. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    This article elucidates the important role the no- tion of symmetry has played in physics. It dis- cusses the proof of one of the important theorems of quantum mechanics, viz., Wigner's Symmetry. Representation Theorem. It also shows how the representations of various continuous and dis- crete symmetries follow from the ...

  11. Trigonometry, Including Snell's Theorem.

    Science.gov (United States)

    Kent, David

    1980-01-01

    Aspects of the instruction of trigonometry in secondary school mathematics are reviewed. Portions of this document cover basic introductions, a student-developed theorem, the cosine rule, inverse functions, and a sample outdoor activity. (MP)

  12. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  13. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  14. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...... singular points nor closed orbits. In this paper, we redefine the standard notion of safety to comply with dynamical systems with multiple singular elements. Hereafter, we prove the converse barrier certificate theorems and highlight the differences between our results and previous work by a number...

  15. The PCP theorem

    OpenAIRE

    Homar, Ambrož

    2011-01-01

    Solutions to NP-problems are deterministically verifiable in polynomial time. But the classic verification process has a drawback - typically we need to (at least) read the entire proof to decide whether the proof is correct or incorrect. In the thesis we present the PCP theorem which claims that solutions to NP- problems can be checked by only a small number of queries to bits in their corresponding proof strings. We describe the equivalent version of the theorem which is at the heart of man...

  16. A game generalizing Hall's theorem

    OpenAIRE

    Rabern, Landon

    2012-01-01

    We characterize the initial positions from which the first player has a winning strategy in a certain two-player game. This provides a generalization of Hall's theorem. Vizing's edge coloring theorem follows from a special case.

  17. Multivariable Chinese Remainder Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    number as sought since N could be negative. However, we may add a suitable multiple of m1m2 to N ... Further, we note that negative numbers are dealt on an equal footing; the statement that x leaves a remainder .... classical Chinese remainder theorem can be thou- ght of as the special case when the matrix {aij} has only.

  18. Tutte's spring theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2004-01-01

    We present a short proof of the theorem of Tutte that every planar 3-connected graph has a drawing in the plane such that every vertex which is not on the outer cycle is the barycenter of its neighbors. Moreover, this holds for any prescribed representation of the outer cycle. (C) 2004 Wiley Peri...

  19. Weyl's Equidistribution Theorem

    Indian Academy of Sciences (India)

    groups and matrix representations. It was during his re- search into representation theory that Weyl discovered his theorem on equidistribution. Subsequently a vast amount of literature was devoted to the review of his proof. However, there remain to this day, several unan- swered questions which arose in the aftermath of ...

  20. Gödel's Theorem

    NARCIS (Netherlands)

    Dalen, D. van

    The following pages make form a new chapter for the book Logic and Structure. This chapter deals with the incompleteness theorem, and contains enough basic material for the treatment of the required notions of computability, representability and the like. This chapter will appear in the next

  1. Discovering the Theorem of Pythagoras

    Science.gov (United States)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  2. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  3. Fully Quantum Fluctuation Theorems

    Directory of Open Access Journals (Sweden)

    Johan Åberg

    2018-02-01

    Full Text Available Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce “conditional” fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  4. THE PARKER MAGNETOSTATIC THEOREM

    International Nuclear Information System (INIS)

    Low, B. C.

    2010-01-01

    We demonstrate the Parker Magnetostatic Theorem in terms of a small neighborhood in solution space containing continuous force-free magnetic fields in small deviations from the uniform field. These fields are embedded in a perfectly conducting fluid bounded by a pair of rigid plates where each field is anchored, taking the plates perpendicular to the uniform field. Those force-free fields obtainable from the uniform field by continuous magnetic footpoint displacements at the plates have field topologies that are shown to be a restricted subset of the field topologies similarly created without imposing the force-free equilibrium condition. The theorem then follows from the deduction that a continuous nonequilibrium field with a topology not in that subset must find a force-free state containing tangential discontinuities.

  5. Multivariable Chinese Remainder Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    to sleep. The 3rd thief wakes up and finds the rest of the coins make 7 equal piles excepting a coin which he pockets. If the total number of coins they stole is not more than 200, what is the exact number? With a bit of hit and miss, one can find that 157 is a possible number. The Chinese remainder theorem gives a systematic ...

  6. Goedel's theorem and leapfrog

    International Nuclear Information System (INIS)

    Lloyd, Mark Anthony

    1999-01-01

    We in the nuclear power industry consider ourselves to be at the forefront of civilised progress. Yet, all too often, even we ourselves don't believe our public relations statements about nuclear power. Why is this? Let us approach the question by considering Godel's Theorem. Godel's Theorem is extremely complicated mathematically, but for our purposes can be simplified to the maxim that one cannot validate a system from within that system. Scientists, especially those in the fields of astronomy and nuclear physics, have long realised the implications of Godel's Theorem. The people to whom we must communicate look to us, who officially know everything about our industry, to comfort and reassure them. And we forget that we can only comfort them by addressing their emotional needs, not by demonstrating our chilling o bjectivity . Let us try something completely new in communication. Instead of looking for incremental rules which will help us marginally differentiate the way we communicate about minor or major incidents, let us leapfrog across 'objectivity' to meaning and relevance. If we truly believe that nuclear energy is a good thing, this leap should not be difficult. Finally, if we as communicators are not prepared to be meaningful and relevant - not prepared to leapfrog beyond weasel terms like 'minor incident' - what does that say about the kinds of people we believe the nuclear community to be? Are nuclear people a group apart, divisible from the rest of the human race by their evil? In fact the nuclear community is a living, laughing, normal part of a whole society; and is moreover a good contributor to the technological progress that society demands. When we ourselves recognise this, we will start to communicate nuclear issues in the same language as the rest of society. We will start to speak plainly and convincingly, and our conviction will leapfrog our audience into being able to believe us

  7. A general vanishing theorem

    Indian Academy of Sciences (India)

    The last two inequalities imply δ(x) = [√. 8x + 1 + 1. 2. ] ,. 479. Page 2. 480. F Laytimi and W Nahm where the symbol [ ] denotes the integral part, i.e., δ(0) = 1, δ(1) = δ(2) = 2,δ(3) = δ(4) = δ(5) = 3, δ(6) = δ(7) = δ(8) = δ(9) = 4, .... Theorem 1.2. Let α, β ∈ N. If S α+β. E ⊗ L is ample, then. H p,q(X, Sα. E ⊗ ∧β. E ⊗ L) = 0 for q + p ...

  8. From Simulations to Theorems

    DEFF Research Database (Denmark)

    Krukow, Karl Kristian; Nielsen, Mogens

    2006-01-01

    Since the millennium, a quickly increasing number of research papers in the field of ``computational trust and reputation'' have appeared in the Computer Science literature. However, it remains hard to compare and evaluate the respective merits of proposed systems. We argue that rigorous use...... specified. We show how to compute (in this model) the so-called predictive probability: The probability that the next interaction with a specific principal will have a specific outcome. We sketch preliminary ideas and first theorems indicating how the use of probabilistic models could enable us...

  9. Bertrand's theorem and virial theorem in fractional classical mechanics

    Science.gov (United States)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  10. Interactive Theorem Proving and Verification

    Indian Academy of Sciences (India)

    The goal of Auto- mated Theorem Proving, as the name suggests, is to try to prove a wide range of mathematical theorems using a computer in an automatic fashion. On the other hand, Interactive Theo- rem Proving tries to achieve similar goals, but in the form of a collaborative effort between human beings and computers.

  11. Legendre's and Kummer's Theorems Again

    Indian Academy of Sciences (India)

    mathematical education and mathematical contests. Dorel Mihet». Some results related to Legendre's Theorem and ... mentioned theorems in problem solving. We will see that many olympiad-type problems as: `If f(m) denotes the greatest k such that 2k divides m, prove that there are infinite many numbers m such that ...

  12. Abelian theorems for Whittaker transforms

    Directory of Open Access Journals (Sweden)

    Richard D. Carmichael

    1987-01-01

    Full Text Available Initial and final value Abelian theorems for the Whittaker transform of functions and of distributions are obtained. The Abelian theorems are obtained as the complex variable of the transform approaches 0 or ∞ in absolute value inside a wedge region in the right half plane.

  13. A Decomposition Theorem for Finite Automata.

    Science.gov (United States)

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  14. Stochastic separation theorems.

    Science.gov (United States)

    Gorban, A N; Tyukin, I Y

    2017-10-01

    The problem of non-iterative one-shot and non-destructive correction of unavoidable mistakes arises in all Artificial Intelligence applications in the real world. Its solution requires robust separation of samples with errors from samples where the system works properly. We demonstrate that in (moderately) high dimension this separation could be achieved with probability close to one by linear discriminants. Based on fundamental properties of measure concentration, we show that for M1-ϑ, where 1>ϑ>0 is a given small constant. Exact values of a,b>0 depend on the probability distribution that determines how the random M-element sets are drawn, and on the constant ϑ. These stochastic separation theorems provide a new instrument for the development, analysis, and assessment of machine learning methods and algorithms in high dimension. Theoretical statements are illustrated with numerical examples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. MVT a most valuable theorem

    CERN Document Server

    Smorynski, Craig

    2017-01-01

    This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mat...

  16. Studies on Bell's theorem

    Science.gov (United States)

    Guney, Veli Ugur

    In this work we look for novel classes of Bell's inequalities and methods to produce them. We also find their quantum violations including, if possible, the maximum one. The Jordan bases method that we explain in Chapter 2 is about using a pair of certain type of orthonormal bases whose spans are subspaces related to measurement outcomes of incompatible quantities on the same physical system. Jordan vectors are the briefest way of expressing the relative orientation of any two subspaces. This feature helps us to reduce the dimensionality of the parameter space on which we do searches for optimization. The work is published in [24]. In Chapter 3, we attempt to find a connection between group theory and Bell's theorem. We devise a way of generating terms of a Bell's inequality that are related to elements of an algebraic group. The same group generates both the terms of the Bell's inequality and the observables that are used to calculate the quantum value of the Bell expression. Our results are published in [25][26]. In brief, Bell's theorem is the main tool of a research program that was started by Einstein, Podolsky, Rosen [19] and Bohr [8] in the early days of quantum mechanics in their discussions about the core nature of physical systems. These debates were about a novel type of physical states called superposition states, which are introduced by quantum mechanics and manifested in the apparent inevitable randomness in measurement outcomes of identically prepared systems. Bell's huge contribution was to find a means of quantifying the problem and hence of opening the way to experimental verification by rephrasing the questions as limits on certain combinations of correlations between measurement results of spatially separate systems [7]. Thanks to Bell, the fundamental questions related to the nature of quantum mechanical systems became quantifiable [6]. According to Bell's theorem, some correlations between quantum entangled systems that involve incompatible

  17. Fluctuation theorem: A critical review

    Science.gov (United States)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  18. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  19. Nonrenormalization Theorems without Supersymmetry

    Science.gov (United States)

    Cheung, Clifford; Shen, Chia-Hsien

    2015-08-01

    We derive a new class of one-loop nonrenormalization theorems that strongly constrain the running of higher dimension operators in a general four-dimensional quantum field theory. Our logic follows from unitarity: cuts of one-loop amplitudes are products of tree amplitudes, so if the latter vanish then so too will the associated divergences. Finiteness is then ensured by simple selection rules that zero out tree amplitudes for certain helicity configurations. For each operator we define holomorphic and antiholomorphic weights, (w ,w ¯)=(n -h ,n +h ), where n and h are the number and sum over helicities of the particles created by that operator. We argue that an operator Oi can only be renormalized by an operator Oj if wi≥wj and w¯i≥w¯j, absent nonholomorphic Yukawa couplings. These results explain and generalize the surprising cancellations discovered in the renormalization of dimension six operators in the standard model. Since our claims rely on unitarity and helicity rather than an explicit symmetry, they apply quite generally.

  20. The Levy sections theorem revisited

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Silva, Sergio Da

    2007-01-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets

  1. Factor and Remainder Theorems: An Appreciation

    Science.gov (United States)

    Weiss, Michael

    2016-01-01

    The high school curriculum sometimes seems like a disconnected collection of topics and techniques. Theorems like the factor theorem and the remainder theorem can play an important role as a conceptual "glue" that holds the curriculum together. These two theorems establish the connection between the factors of a polynomial, the solutions…

  2. The Second Noether Theorem on Time Scales

    Directory of Open Access Journals (Sweden)

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  3. A generalized saddle point theorem

    International Nuclear Information System (INIS)

    Liu, J.Q.

    1988-11-01

    The well-known saddle point theorem is extended to the case of functions defined on a product space X x V, where X is a Banach space and V is a compact manifold. Under some linking conditions, the existence of at least cuplength (V) + 1 critical points is proved. The abstract theorems are applied to the existence problems of periodic solutions of Hamiltonian systems with periodic nonlinearity and/or resonance. (author). 8 refs

  4. The General Free Will Theorem

    OpenAIRE

    Suarez, Antoine

    2010-01-01

    It is argued that the Strong Free Will Theorem (Conway-Kochen) does not prove nonlocal determinism wrong. This is done by the before-before (Suarez-Scarani) experiment, which is used here to prove the following General Free Will Theorem: If humans have a certain amount of free will, there are other free beings outside space-time producing nonlocal effects in our world, which are both random and lawful.

  5. A fermionic de Finetti theorem

    Science.gov (United States)

    Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens

    2017-12-01

    Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.

  6. Generalized Dandelin’s Theorem

    Science.gov (United States)

    Kheyfets, A. L.

    2017-11-01

    The paper gives a geometric proof of the theorem which states that in case of the plane section of a second-order surface of rotation (quadrics of rotation, QR), such conics as an ellipse, a hyperbola or a parabola (types of conic sections) are formed. The theorem supplements the well-known Dandelin’s theorem which gives the geometric proof only for a circular cone and applies the proof to all QR, namely an ellipsoid, a hyperboloid, a paraboloid and a cylinder. That’s why the considered theorem is known as the generalized Dandelin’s theorem (GDT). The GDT proof is based on a relatively unknown generalized directrix definition (GDD) of conics. The work outlines the GDD proof for all types of conics as their necessary and sufficient condition. Based on the GDD, the author proves the GDT for all QR in case of a random position of the cutting plane. The graphical stereometric structures necessary for the proof are given. The implementation of the structures by 3d computer methods is considered. The article shows the examples of the builds made in the AutoCAD package. The theorem is intended for the training course of theoretical training of elite student groups of architectural and construction specialties.

  7. Soft theorems from anomalous symmetries

    Science.gov (United States)

    Huang, Yu-tin; Wen, Congkao

    2015-12-01

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α' expansion of string theory amplitudes, we study the matrix elements of operator R 4 with half maximal supersymmetry. We construct the non-linear completion of R 4 that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R 4.

  8. Soft theorems from anomalous symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, ROC (China); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-12-22

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α{sup ′} expansion of string theory amplitudes, we study the matrix elements of operator R{sup 4} with half maximal supersymmetry. We construct the non-linear completion of R{sup 4} that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R{sup 4}.

  9. Logical errors on proving theorem

    Science.gov (United States)

    Sari, C. K.; Waluyo, M.; Ainur, C. M.; Darmaningsih, E. N.

    2018-01-01

    In tertiary level, students of mathematics education department attend some abstract courses, such as Introduction to Real Analysis which needs an ability to prove mathematical statements almost all the time. In fact, many students have not mastered this ability appropriately. In their Introduction to Real Analysis tests, even though they completed their proof of theorems, they achieved an unsatisfactory score. They thought that they succeeded, but their proof was not valid. In this study, a qualitative research was conducted to describe logical errors that students made in proving the theorem of cluster point. The theorem was given to 54 students. Misconceptions on understanding the definitions seem to occur within cluster point, limit of function, and limit of sequences. The habit of using routine symbol might cause these misconceptions. Suggestions to deal with this condition are described as well.

  10. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  11. On the Putnam-Fuglede theorem

    Directory of Open Access Journals (Sweden)

    Yin Chen

    2004-01-01

    Full Text Available We extend the Putnam-Fuglede theorem and the second-degree Putnam-Fuglede theorem to the nonnormal operators and to an elementary operator under perturbation by quasinilpotents. Some asymptotic results are also given.

  12. The development of the princial genus theorem

    OpenAIRE

    Lemmermeyer, Franz

    2002-01-01

    In this article we sketch the development of the principal genus theorem from its conception by Gauss in the case of binary quadratic forms to the cohomological formulation of the principal genus theorem of class field theory by Emmy Noether.

  13. Dynamic Newton-Puiseux Theorem

    DEFF Research Database (Denmark)

    Mannaa, Bassel; Coquand, Thierry

    2013-01-01

    A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization...

  14. Lenstra theorem in number fields

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 4, November 2014, pp. 481– 485. c Indian Academy of Sciences. Lenstra theorem in number fields. S SUBBURAM. Department of Mathematics, SASTRA University, Thanjavur 613 401, India. Present Address: The Institute of Mathematics, CIT Campus, Taramani,. Chennai 600 113 ...

  15. Opechowski's theorem and commutator groups

    International Nuclear Information System (INIS)

    Caride, A.O.; Zanette, S.I.

    1985-01-01

    It is shown that the conditions of application of Opechowski's theorem for double groups of subgroups of O(3) are directly associated to the structure of their commutator groups. Some characteristics of the structure of classes are also discussed. (Author) [pt

  16. Kolmogorov-Arnold-Moser Theorem

    Indian Academy of Sciences (India)

    system (not necessarily the 2-body system). Kolmogorov was the first to provide a solution to the above general problem in a theorem formulated in 1954 (see Suggested. Reading). However, he provided only an outline of the proof. The actual proof (with all the details) turned to be quite difficult and was provided by Arnold ...

  17. Lenstra theorem in number fields

    Indian Academy of Sciences (India)

    2000 Mathematics Subject Classification. 11R04; 11R21. 1. Introduction. In 1984, Lenstra [1] proved the following theorem: Let r, s and n be integers satisfying. 0 ≤ r n1/3, (r, s) = 1. Then n has at most 11 positive divisors which are congruent to r modulo s. This result has been applied to solve many problems.

  18. The Completeness Theorem of Godel

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. The Completeness Theorem of Godel. 2. Henkin's Proof for First Order Logic. S M Srivastava is with the. Indian Statistical,. Institute, Calcutta. He received his PhD from the Indian Statistical. Institute in 1980. His research interests are in descriptive set theory. I Part 1. An Introduction to Math- ematical ...

  19. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  20. Angle Defect and Descartes' Theorem

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    Rene Descartes lived from 1596 to 1650. His contributions to geometry are still remembered today in the terminology "Descartes' plane". This paper discusses a simple theorem of Descartes, which enables students to easily determine the number of vertices of almost every polyhedron. (Contains 1 table and 2 figures.)

  1. A definability theorem for first order logic

    NARCIS (Netherlands)

    Butz, C.; Moerdijk, I.

    1997-01-01

    In this paper we will present a definability theorem for first order logic This theorem is very easy to state and its proof only uses elementary tools To explain the theorem let us first observe that if M is a model of a theory T in a language L then clearly any definable subset S M ie a subset S

  2. Generalizations of Ptolemy and Brahmagupta Theorems

    Science.gov (United States)

    Ayoub, Ayoub B.

    2007-01-01

    The Greek astronomer Ptolemy of Alexandria (second century) and the Indian mathematician Brahmagupta (sixth century) each have a significant theorem named after them. Both theorems have to do with cyclic quadrilaterals. Ptolemy's theorem states that: In a cyclic quadrilateral, the product of the diagonals is equal to the sum of the products of two…

  3. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  4. The de Finetti theorem for test spaces

    International Nuclear Information System (INIS)

    Barrett, Jonathan; Leifer, Matthew

    2009-01-01

    We prove a de Finetti theorem for exchangeable sequences of states on test spaces, where a test space is a generalization of the sample space of classical probability theory and the Hilbert space of quantum theory. The standard classical and quantum de Finetti theorems are obtained as special cases. By working in a test space framework, the common features that are responsible for the existence of these theorems are elucidated. In addition, the test space framework is general enough to imply a de Finetti theorem for classical processes. We conclude by discussing the ways in which our assumptions may fail, leading to probabilistic models that do not have a de Finetti theorem.

  5. Generalized Bloch theorem and chiral transport phenomena

    Science.gov (United States)

    Yamamoto, Naoki

    2015-10-01

    Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.

  6. The Classical Version of Stokes' Theorem Revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2005-01-01

    of the vector field in a tubular shell around the given surface. The intuitive appeal of the divergence theorem is thus applied to bootstrap a corresponding intuition for Stokes' theorem. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version...... of Stokes' theorem for differential forms on manifolds. The main points in the present paper, however, is firstly that this latter fact usually does not get within reach for students in first year calculus courses and secondly that calculus textbooks in general only just hint at the correspondence alluded...... to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well known and often used exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together...

  7. Navier Stokes Theorem in Hydrology

    Science.gov (United States)

    Narayanan, M.

    2005-12-01

    In a paper presented at the 2004 AGU International Conference, the author outlined and stressed the importance of studying and teaching certain important mathematical techniques while developing a course in Hydrology and Fluid Mechanics. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. In an article entitled "Corrections to Fluid Dynamics" R. F. Streater, (Open Systems and Information Dynamics, 10, 3-30, 2003.) proposes a kinetic model of a fluid in which five macroscopic fields, the mass, energy, and three components of momentum, are conserved. The dynamics is constructed using the methods of statistical dynamics, and results in a non-linear discrete-time Markov chain for random fields on a lattice. In the continuum limit he obtains a non-linear coupled parabolic system of field equations, showing a correction to the Navier-Stokes equations. In 2001, David Hoff published an article in Journees Equations aux derivees partielles. (Art. No. 7, 9 p.). His paper is entitled : Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions. In his paper, David Hoff proves the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time

  8. A Randomized Central Limit Theorem

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Klafter, Joseph

    2010-01-01

    The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√(n)), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √(n). This Letter considers scaling schemes which are stochastic and non-uniform, and presents a 'Randomized Central Limit Theorem' (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Levy laws.

  9. Recursion relations from soft theorems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hui [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, Hamburg, D-22761 (Germany); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, Roma, 00133 (Italy)

    2016-03-14

    We establish a set of new on-shell recursion relations for amplitudes satisfying soft theorems. The recursion relations can apply to those amplitudes whose additional physical inputs from soft theorems are enough to overcome the bad large-z behaviour. This work is a generalization of the recursion relations recently obtained by Cheung et al. for amplitudes in scalar effective field theories with enhanced vanishing soft behaviours, which can be regarded as a special case of those with non-vanishing soft limits. We apply the recursion relations to tree-level amplitudes in various theories, including amplitudes in the Akulov-Volkov theory and amplitudes containing dilatons of spontaneously-broken conformal symmetry.

  10. Bell's theorem, accountability and nonlocality

    International Nuclear Information System (INIS)

    Vona, Nicola; Liang, Yeong-Cherng

    2014-01-01

    Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)

  11. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  12. Lectures on Fermat's last theorem

    International Nuclear Information System (INIS)

    Sury, B.

    1993-09-01

    The report presents the main ideas involved in the approach towards the so-called Fermat's last theorem (FLT). The discussion leads to the point where recent work of A. Wiles starts and his work is not discussed. After a short history of the FLT and of the present approach, are discussed the elliptic curves and the modular forms with their relations, the Taniyama-Shimura-Well conjecture and the FLT

  13. Notes on the area theorem

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    Hawking's area theorem can be understood from a quasi-stationary process in which a black hole accretes positive energy matter, independent of the details of the gravity action. I use this process to study the dynamics of the inner as well as the outer horizons for various black holes which include the recently discovered exotic black holes and three-dimensional black holes in higher derivative gravities as well as the usual BTZ black hole and the Kerr black hole in four dimensions. I find that the area for the inner horizon 'can decrease', rather than increase, with the quasi-stationary process. However, I find that the area for the outer horizon 'never decreases' such that the usual area theorem still works in our examples, though this is quite non-trivial in general. There exists an instability problem of the inner horizons but it seems that the instability is not important in my analysis. I also find a generalized area theorem by combining those of the outer and inner horizons

  14. On Krasnoselskii's Cone Fixed Point Theorem

    Directory of Open Access Journals (Sweden)

    Man Kam Kwong

    2008-04-01

    Full Text Available In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.

  15. The classical version of Stokes' Theorem revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2008-01-01

    of the vector field in a tubular shell around the given surface. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version of Stokes' theorem for differential forms on manifolds. The main points in the present paper, however, is firstly...... that this latter fact usually does not get within reach for students in first year calculus courses and secondly that calculus textbooks in general only just hint at the correspondence alluded to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well known and often used...... exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together with a 'fattening' technique for surfaces and the inverse function theorem....

  16. Expanding the Interaction Equivalency Theorem

    Directory of Open Access Journals (Sweden)

    Brenda Cecilia Padilla Rodriguez

    2015-06-01

    Full Text Available Although interaction is recognised as a key element for learning, its incorporation in online courses can be challenging. The interaction equivalency theorem provides guidelines: Meaningful learning can be supported as long as one of three types of interactions (learner-content, learner-teacher and learner-learner is present at a high level. This study sought to apply this theorem to the corporate sector, and to expand it to include other indicators of course effectiveness: satisfaction, knowledge transfer, business results and return on expectations. A large Mexican organisation participated in this research, with 146 learners, 30 teachers and 3 academic assistants. Three versions of an online course were designed, each emphasising a different type of interaction. Data were collected through surveys, exams, observations, activity logs, think aloud protocols and sales records. All course versions yielded high levels of effectiveness, in terms of satisfaction, learning and return on expectations. Yet, course design did not dictate the types of interactions in which students engaged within the courses. Findings suggest that the interaction equivalency theorem can be reformulated as follows: In corporate settings, an online course can be effective in terms of satisfaction, learning, knowledge transfer, business results and return on expectations, as long as (a at least one of three types of interaction (learner-content, learner-teacher or learner-learner features prominently in the design of the course, and (b course delivery is consistent with the chosen type of interaction. Focusing on only one type of interaction carries a high risk of confusion, disengagement or missed learning opportunities, which can be managed by incorporating other forms of interactions.

  17. Symbolic logic and mechanical theorem proving

    CERN Document Server

    Chang, Chin-Liang

    1969-01-01

    This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.

  18. Adiabatic Theorem without a Gap Condition

    International Nuclear Information System (INIS)

    Avron, J.E.; Elgar, A.

    1999-01-01

    We prove the adiabatic theorem for quantum evolution without the traditional gap condition. All that this adiabatic theorem needs is a (piecewise) twice differentiable finite dimensional spectral projection. The result implies that the adiabatic theorem holds for the ground state of atoms in quantized radiation field. She general result we prove gives no information on the rate at which the adiabatic limit is approached. With additional spectral information one can also estimate this rate

  19. The Bell's theorem: GHZ states

    International Nuclear Information System (INIS)

    Cereceda Berdiel, J.L.

    1997-01-01

    In this paper we review a striking new version of Bell's theorem discovered some time ago for three spin-1/2 particles and derive explicitly the states leading to a direct (all or nothing) contradiction between the quantum-mechanical and locally realistic prediction. Due to the fact that perfect correlations exist between the spin measurements the resulting contradiction arises without using inequalities. The treatment that follows only presupposes some acquaintance with elementary quantum mechanics. In doing so, we attempt to outline some recent developments in the field of foundations at a level suitable for the early or intermediate part of introductory courses in quantum mechanics. (Author) 15 refs

  20. K-Kolmogorov duality theorem

    International Nuclear Information System (INIS)

    Abd El-Sattar, A. Dabbour.

    1987-07-01

    The K-Kolmogorov cohomology construction H k over a pair of discrete coefficient groups is given and discussed from the point of view of Eilenberg-Steenrod's axiom of the cohomology theory. This construction has many points of contiguity with other cohomology groups. The K-Kolmogorov cohomology groups on a pair of compact groups have been topologized by using their duality with the K-Kolmogorov homology groups. In the present work the Kolmogorov duality theorem is proved for H k . 11 refs

  1. Confinement, diquarks and goldstone's theorem

    International Nuclear Information System (INIS)

    Determinations of the gluon propagator in the continuum and in lattice simulations are compared. A systematic truncation procedure for the quark Dyson-Schwinger and bound state Bethe-Salpeter equations is described. The procedure ensures the flavor-octet axial- vector Ward identity is satisfied order-by-order, thereby guaranteeing the preservation of Goldstone's theorem; and identifies a mechanism that simultaneously ensures the absence of diquarks in QCD and their presence in QCD N c =2 , where the color singlet diquark is the ''baryon'' of the theory

  2. Abstract decomposition theorem and applications

    CERN Document Server

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  3. Integral fluctuation theorems for stochastic resetting systems

    Science.gov (United States)

    Pal, Arnab; Rahav, Saar

    2017-12-01

    We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well-known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [Europhys. Lett. 113, 60009 (2016), 10.1209/0295-5075/113/60009] can be recovered from this integral fluctuation theorem with the help of Jensen's inequality.

  4. Bit-Blasting ACL2 Theorems

    Directory of Open Access Journals (Sweden)

    Sol Swords

    2011-10-01

    Full Text Available Interactive theorem proving requires a lot of human guidance. Proving a property involves (1 figuring out why it holds, then (2 coaxing the theorem prover into believing it. Both steps can take a long time. We explain how to use GL, a framework for proving finite ACL2 theorems with BDD- or SAT-based reasoning. This approach makes it unnecessary to deeply understand why a property is true, and automates the process of admitting it as a theorem. We use GL at Centaur Technology to verify execution units for x86 integer, MMX, SSE, and floating-point arithmetic.

  5. A density Corradi-Hajnal theorem

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, Jan; Piguet, D.

    2015-01-01

    Roč. 67, č. 4 (2015), s. 721-758 ISSN 0008-414X Institutional support: RVO:67985840 Keywords : extremal graph theory * Mantel's theorem * Corradi-Hajnal theorem Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2015 http://cms.math.ca/10.4153/CJM-2014-030-6

  6. Integrating Testing and Interactive Theorem Proving

    Directory of Open Access Journals (Sweden)

    Harsh Raju Chamarthi

    2011-10-01

    Full Text Available Using an interactive theorem prover to reason about programs involves a sequence of interactions where the user challenges the theorem prover with conjectures. Invariably, many of the conjectures posed are in fact false, and users often spend considerable effort examining the theorem prover's output before realizing this. We present a synergistic integration of testing with theorem proving, implemented in the ACL2 Sedan (ACL2s, for automatically generating concrete counterexamples. Our method uses the full power of the theorem prover and associated libraries to simplify conjectures; this simplification can transform conjectures for which finding counterexamples is hard into conjectures where finding counterexamples is trivial. In fact, our approach even leads to better theorem proving, e.g. if testing shows that a generalization step leads to a false conjecture, we force the theorem prover to backtrack, allowing it to pursue more fruitful options that may yield a proof. The focus of the paper is on the engineering of a synergistic integration of testing with interactive theorem proving; this includes extending ACL2 with new functionality that we expect to be of general interest. We also discuss our experience in using ACL2s to teach freshman students how to reason about their programs.

  7. SOME LIMIT-THEOREMS IN LOG DENSITY

    NARCIS (Netherlands)

    BERKES, [No Value; DEHLING, H

    Motivated by recent results on pathwise central limit theorems, we study in a systematic way log-average versions of classical limit theorems. For partial sums S(k) of independent r.v.'s we prove under mild technical conditions that (1/log N)SIGMA(k less-than-or-equal-to N)(1/k)I{S(k)/a(k)

  8. A density Corradi-Hajnal theorem

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, Jan; Piguet, D.

    2015-01-01

    Roč. 67, č. 4 (2015), s. 721-758 ISSN 0008-414X Institutional support: RVO:67985840 Keywords : extremal graph theory * Mantel's theorem * Corradi-Hajnal theorem Subject RIV: BA - General Math ematics Impact factor: 0.618, year: 2015 http://cms. math .ca/10.4153/CJM-2014-030-6

  9. Generalized Elitzur's theorem and dimensional reductions

    Science.gov (United States)

    Batista, C. D.; Nussinov, Zohar

    2005-07-01

    We extend Elitzur’s theorem to systems with symmetries intermediate between global and local. In general, our theorem formalizes the idea of dimensional reduction. We apply the results of this generalization to many systems that are of current interest. These include liquid crystalline phases of quantum Hall systems, orbital systems, geometrically frustrated spin lattices, Bose metals, and models of superconducting arrays.

  10. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  11. On Newton’s shell theorem

    Science.gov (United States)

    Borghi, Riccardo

    2014-03-01

    In the present letter, Newton’s theorem for the gravitational field outside a uniform spherical shell is considered. In particular, a purely geometric proof of proposition LXXI/theorem XXXI of Newton’s Principia, which is suitable for undergraduates and even skilled high-school students, is proposed. Minimal knowledge of elementary calculus and three-dimensional Euclidean geometry are required.

  12. A Metrized Duality Theorem for Markov Processes

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2014-01-01

    We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the way...

  13. Theorems of low energy in Compton scattering

    International Nuclear Information System (INIS)

    Chahine, J.

    1984-01-01

    We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt

  14. The Euler Line and Nine-Point-Circle Theorems.

    Science.gov (United States)

    Eccles, Frank M.

    1999-01-01

    Introduces the Euler line theorem and the nine-point-circle theorem which emphasize transformations and the power of functions in a geometric concept. Presents definitions and proofs of theorems. (ASK)

  15. The Refined Lecture Hall Theorem via Abacus Diagrams

    OpenAIRE

    Bradford, Laura; Harris, Meredith; Jones, Brant; Komarinski, Alex; Matson, Carly; O'Shea, Edwin

    2012-01-01

    Bousquet-M\\'elou & Eriksson's lecture hall theorem generalizes Euler's celebrated distinct-odd partition theorem. We present an elementary and transparent proof of a refined version of the lecture hall theorem using a simple bijection involving abacus diagrams.

  16. Riemannian and Lorentzian flow-cut theorems

    Science.gov (United States)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  17. A Comment on Holographic Luttinger Theorem

    CERN Document Server

    Hashimoto, Koji

    2012-01-01

    Robustness of the Luttinger theorem for fermionic liquids is examined in holography. The statement of the Luttinger theorem, the equality between the fermion charge density and the volume enclosed by the Fermi surface, can be mapped to a Gauss's law in the gravity dual, a la Sachdev. We show that various deformations in the gravity dual, such as inclusion of magnetic fields, a parity-violating theta-term, dilatonic deformations, and higher-derivative corrections, do not violate the holographic derivation of the Luttinger theorem, as long as the theory is in a confining phase. Therefore a robustness of the theorem is found for strongly correlated fermions coupled with strongly coupled sectors which admit gravity duals. On the other hand, in the deconfined phase, we also show that the deficit appearing in the Luttinger theorem is again universal. It measures a total deficit which measures the charge of the deconfined ("fractionalized") fermions, independent of the deformation parameters.

  18. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  19. Singlet and triplet instability theorems

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomonori; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree–Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree–Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree–Fock-theory-based explanations of Hund’s rule, a singlet instability in Jahn–Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  20. OTTER, Resolution Style Theorem Prover

    International Nuclear Information System (INIS)

    McCune, W.W.

    2001-01-01

    1 - Description of program or function: OTTER (Other Techniques for Theorem-proving and Effective Research) is a resolution-style theorem-proving program for first-order logic with equality. OTTER includes the inference rules binary resolution, hyper-resolution, UR-resolution, and binary para-modulation. These inference rules take as small set of clauses and infer a clause. If the inferred clause is new and useful, it is stored and may become available for subsequent inferences. Other capabilities are conversion from first-order formulas to clauses, forward and back subsumption, factoring, weighting, answer literals, term ordering, forward and back demodulation, and evaluable functions and predicates. 2 - Method of solution: For its inference process OTTER uses the given-clause algorithm, which can be viewed as a simple implementation of the set of support strategy. OTTER maintains three lists of clauses: axioms, sos (set of support), and demodulators. OTTER is not automatic. Even after the user has encoded a problem into first-order logic or into clauses, the user must choose inference rules, set options to control the processing of inferred clauses, and decide which input formulae or clauses are to be in the initial set of support and which, if any, equalities are to be demodulators. If OTTER fails to find a proof, the user may try again different initial conditions. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 characters in an input string, 64 distinct variables in a clause, 51 characters in any symbol. The maxima can be changed by finding the appropriate definition in the header.h file, increasing the limit, and recompiling OTTER. There are a few constraints on the order of commands

  1. The pointwise Hellmann-Feynman theorem

    Directory of Open Access Journals (Sweden)

    David Carfì

    2010-02-01

    Full Text Available In this paper we study from a topological point of view the Hellmann-Feynman theorem of Quantum Mechanics. The goal of the paper is twofold: On one hand we emphasize the role of the strong topology in the classic version of the theorem in Hilbert spaces, for what concerns the kind of convergence required on the space of continuous linear endomorphisms, which contains the space of (continuous observables.On the other hand we state and prove a new pointwise version of the classic Hellmann-Feynman theorem. This new version is not yet present in the literature and follows the idea of A. Bohm concerning the topology which is desiderable to use in Quantum Mechanics. It is indeed out of question that this non-trivial new version of the Hellmann-Feynman theorem is the ideal one - for what concerns the continuous observables on Hilbert spaces, both from a theoretical point of view, since it is the strongest version obtainable in this context - we recall that the pointwise topology is the coarsest one compatible with the linear structure of the space of continuous observables -, and from a practical point of view, because the pointwise topology is the easiest to use among topologies: it brings back the problems to the Hilbert space topology. Moreover, we desire to remark that this basic theorem of Quantum Mechanics, in his most desiderable form, is deeply interlaced with two cornerstones of Functional Analysis: the Banach-Steinhaus theorem and the Baire theorem.

  2. Levinson's theorem for non-local interactions

    International Nuclear Information System (INIS)

    Ma Zhongqi; Dai Anying

    1987-08-01

    The Levinson theorem for a Schroedinger equation with both local and non-local symmetric potentials is studied in terms of the Sturm-Liouville theorem. A new convention for the phase shifts is applied instead of the usual one. It is proved that the usual Levinson theorem holds for the case with both local potential and non-local symmetric cutoff potential which is not necessary to be separable. The problems related with the positive energy bound states and the physical redundant states are also discussed in this paper. (author). 17 refs

  3. The Nelson-Seiberg theorem revised

    Science.gov (United States)

    Kang, Zhaofeng; Li, Tianjun; Sun, Zheng

    2013-12-01

    The well-accepted Nelson-Seiberg theorem relates R-symmetries to supersymmetry (SUSY) breaking vacua, and provides a guideline for SUSY model building which is the most promising physics beyond the Standard Model. In the case of Wess-Zumino models with perturbative superpotentials, we revise the theorem to a combined necessary and sufficient condition for SUSY breaking which can be easily checked before solving the vacuum. The revised theorem provides a powerful tool to construct either SUSY breaking or SUSY vacua, and offers many practicable applications in low energy SUSY model building and string phenomenology.

  4. Existence theorems for ordinary differential equations

    CERN Document Server

    Murray, Francis J

    2007-01-01

    Theorems stating the existence of an object-such as the solution to a problem or equation-are known as existence theorems. This text examines fundamental and general existence theorems, along with the Picard iterants, and applies them to properties of solutions and linear differential equations.The authors assume a basic knowledge of real function theory, and for certain specialized results, of elementary functions of a complex variable. They do not consider the elementary methods for solving certain special differential equations, nor advanced specialized topics; within these restrictions, th

  5. Linear electrical circuits. Definitions - General theorems; Circuits electriques lineaires. Definitions - Theoremes generaux

    Energy Technology Data Exchange (ETDEWEB)

    Escane, J.M. [Ecole Superieure d' Electricite, 91 - Gif-sur-Yvette (France)

    2005-04-01

    The first part of this article defines the different elements of an electrical network and the models to represent them. Each model involves the current and the voltage as a function of time. Models involving time functions are simple but their use is not always easy. The Laplace transformation leads to a more convenient form where the variable is no more directly the time. This transformation leads also to the notion of transfer function which is the object of the second part. The third part aims at defining the fundamental operation rules of linear networks, commonly named 'general theorems': linearity principle and superimposition theorem, duality principle, Thevenin theorem, Norton theorem, Millman theorem, triangle-star and star-triangle transformations. These theorems allow to study complex power networks and to simplify the calculations. They are based on hypotheses, the first one is that all networks considered in this article are linear. (J.S.)

  6. Security Theorems via Model Theory

    Directory of Open Access Journals (Sweden)

    Joshua Guttman

    2009-11-01

    Full Text Available A model-theoretic approach can establish security theorems for cryptographic protocols. Formulas expressing authentication and non-disclosure properties of protocols have a special form. They are quantified implications for all xs . (phi implies for some ys . psi. Models (interpretations for these formulas are *skeletons*, partially ordered structures consisting of a number of local protocol behaviors. *Realized* skeletons contain enough local sessions to explain all the behavior, when combined with some possible adversary behaviors. We show two results. (1 If phi is the antecedent of a security goal, then there is a skeleton A_phi such that, for every skeleton B, phi is satisfied in B iff there is a homomorphism from A_phi to B. (2 A protocol enforces for all xs . (phi implies for some ys . psi iff every realized homomorphic image of A_phi satisfies psi. Hence, to verify a security goal, one can use the Cryptographic Protocol Shapes Analyzer CPSA (TACAS, 2007 to identify minimal realized skeletons, or "shapes," that are homomorphic images of A_phi. If psi holds in each of these shapes, then the goal holds.

  7. Fixed point theorems for paracompact convex sets

    International Nuclear Information System (INIS)

    Jiang Jiahe.

    1986-08-01

    In the present paper a few fixed point theorems are given for upper hemi-continuous mappings from a paracompact convex set to its embracing space, a real, locally convex, Hausdorff topological vector space. (author)

  8. Dimensional analysis beyond the Pi theorem

    CERN Document Server

    Zohuri, Bahman

    2017-01-01

    Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...

  9. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  10. Generalized characterization theorem for quantum logics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M.K. (Birkbeck Coll., London (UK). Dept. of Mathematics)

    1984-08-11

    In this paper the underlying methematical structure of a quantum logic is assumed to form a partially ordered set and not a lattice and a theorem which characterizes orthomodular partially ordered sets is proved.

  11. Generalized monotone convergence and Radon-Nikodym theorems

    Science.gov (United States)

    Gudder, S.; Zerbe, J.

    1981-11-01

    A measure and integration theory is presented in the quantum logic framework. A generalization of the monotone convergence theorem is proved. Counterexamples are used to show that the dominated convergence theorem, Fatou's lemma, Egoroff's theorem, and the additivity of the integral do not hold in this framework. Finally, a generalization of the Radon-Nikodym theorem is proved.

  12. Sahoo- and Wayment-Type Integral Mean Value Theorems

    Science.gov (United States)

    Tiryaki, Aydin; Cakmak, Devrim

    2010-01-01

    In this article, by using Rolle's theorem, we establish some results related to the mean value theorem for integrals. Our results are different from the set of integral mean value theorems which are given by Wayment ["An integral mean value theorem", Math. Gazette 54 (1970), pp. 300-301] and Sahoo ["Some results related to the integral mean value…

  13. Convergence Theorems for Partial Sums of Arbitrary Stochastic Sequences

    Directory of Open Access Journals (Sweden)

    Wang Xiaosheng

    2010-01-01

    Full Text Available By using Doob's martingale convergence theorem, this paper presents a class of strong limit theorems for arbitrary stochastic sequence. Chow's two strong limit theorems for martingale-difference sequence and Loève's and Petrov's strong limit theorems for independent random variables are the particular cases of the main results.

  14. Commentaries on Hilbert's Basis Theorem | Apine | Science World ...

    African Journals Online (AJOL)

    The famous basis theorem of David Hilbert is an important theorem in commutative algebra. In particular the Hilbert's basis theorem is the most important source of Noetherian rings which are by far the most important class of rings in commutative algebra. In this paper we have used Hilbert's theorem to examine their unique ...

  15. On Newton’s shell theorem

    International Nuclear Information System (INIS)

    Borghi, Riccardo

    2014-01-01

    In the present letter, Newton’s theorem for the gravitational field outside a uniform spherical shell is considered. In particular, a purely geometric proof of proposition LXXI/theorem XXXI of Newton’s Principia, which is suitable for undergraduates and even skilled high-school students, is proposed. Minimal knowledge of elementary calculus and three-dimensional Euclidean geometry are required. (letters and comments)

  16. The large deviations theorem and ergodicity

    International Nuclear Information System (INIS)

    Gu Rongbao

    2007-01-01

    In this paper, some relationships between stochastic and topological properties of dynamical systems are studied. For a continuous map f from a compact metric space X into itself, we show that if f satisfies the large deviations theorem then it is topologically ergodic. Moreover, we introduce the topologically strong ergodicity, and prove that if f is a topologically strongly ergodic map satisfying the large deviations theorem then it is sensitively dependent on initial conditions

  17. Central limit theorem and almost sure central limit theorem for the ...

    Indian Academy of Sciences (India)

    where I denotes indicator function. Berkes and Csáki [2] extended this theory and showed that not only the central limit theorem, but every weak limit theorem for independent random variables, subject to minor technical conditions, has an analogous almost sure version. However under our model we only need the simplest ...

  18. Anti-Bell - Refutation of Bell's theorem

    Science.gov (United States)

    Barukčić, Ilija

    2012-12-01

    In general, Albert Einstein as one of "the founding fathers of quantum mechanics" had some problems to accept especially the Copenhagen dominated interpretation of quantum mechanics. Einstein's dissatisfaction with Copenhagen's interpretation of quantum mechanics, the absence of locality and causality within the Copenhagen dominated quantum mechanics lead to the well known Einstein, Podolsky and Rosen thought experiment. According to Einstein et al., the Copenhagen dominated quantum mechanics cannot be regarded as a complete physical theory. The Einstein, Podolsky and Rosen thought experiment was the origin of J. S. Bell's publication in 1964; known as Bell's theorem. Meanwhile, some dramatic violations of Bell's inequality (by so called Bell test experiments) have been reported which is taken as an empirical evidence against local realism and causality at quantum level and as positive evidence in favor of the Copenhagen dominated quantum mechanics. Thus far, Quantum mechanics is still regarded as a "strictly" non-local theory. The purpose of this publication is to refute Bell's original theorem. Thus far, if we accept Bell's theorem as correct, we must accept that +0> = +1. We can derive a logical contradiction out of Bell's theorem, Bell's theorem is refuted.

  19. Adiabatic Theorem for Quantum Spin Systems

    Science.gov (United States)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  20. Lindeberg theorem for Gibbs–Markov dynamics

    Science.gov (United States)

    Denker, Manfred; Senti, Samuel; Zhang, Xuan

    2017-12-01

    A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs–Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs–Markov dynamical systems for convenience.

  1. Gleason-Busch theorem for sequential measurements

    Science.gov (United States)

    Flatt, Kieran; Barnett, Stephen M.; Croke, Sarah

    2017-12-01

    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957), 10.1512/iumj.1957.6.56050]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003), 10.1103/PhysRevLett.91.120403], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach.

  2. Pauli and the spin-statistics theorem

    CERN Document Server

    Duck, Ian M

    1997-01-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that

  3. Spectral mapping theorems a bluffer's guide

    CERN Document Server

    Harte, Robin

    2014-01-01

    Written by an author who was at the forefront of developments in multi-variable spectral theory during the seventies and the eighties, this guide sets out to describe in detail the spectral mapping theorem in one, several and many variables. The basic algebraic systems – semigroups, rings and linear algebras – are summarised, and then topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Spectral Mapping Theorems is written in an easy-to-read and engaging manner and will be useful for both the beginner and expert. It will be of great importance to researchers and postgraduates studying spectral theory.

  4. A Dual of the Compression-Expansion Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Henderson Johnny

    2007-01-01

    Full Text Available This paper presents a dual of the fixed point theorems of compression and expansion of functional type as well as the original Leggett-Williams fixed point theorem. The multi-valued situation is also discussed.

  5. Vector Valued Martingale-Ergodic and Ergodic-Martingale Theorems

    OpenAIRE

    Shahidi, Farruh; Ganiev, Inomjon

    2012-01-01

    We prove martingale-ergodic and ergodic-martingale theorems for vector valued Bochner integrable functions. We obtain dominant and maximal inequalities. We also prove weighted and multiparameter martingale-ergodic and ergodic martingale theorems.

  6. Answering Junior Ant's "Why" for Pythagoras' Theorem

    Science.gov (United States)

    Pask, Colin

    2002-01-01

    A seemingly simple question in a cartoon about Pythagoras' Theorem is shown to lead to questions about the nature of mathematical proof and the profound relationship between mathematics and science. It is suggested that an analysis of the issues involved could provide a good vehicle for classroom discussions or projects for senior students.…

  7. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating ...

  8. Some Generalizations of Jungck's Fixed Point Theorem

    Directory of Open Access Journals (Sweden)

    J. R. Morales

    2012-01-01

    Full Text Available We are going to generalize the Jungck's fixed point theorem for commuting mappings by mean of the concepts of altering distance functions and compatible pair of mappings, as well as, by using contractive inequalities of integral type and contractive inequalities depending on another function.

  9. The Story of Fermat's Last Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 3. The Story of Fermat's Last Theorem. Shailesh A Shirali. Book Review Volume 4 Issue 3 March 1999 pp 81-84. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/03/0081-0084. Author Affiliations.

  10. On Viviani's Theorem and Its Extensions

    Science.gov (United States)

    Abboud, Elias

    2010-01-01

    Viviani's theorem states that the sum of distances from any point inside an equilateral triangle to its sides is constant. Here, in an extension of this result, we show, using linear programming, that any convex polygon can be divided into parallel line segments on which the sum of the distances to the sides of the polygon is constant. Let us say…

  11. General Correlation Theorem for Trinion Fourier Transform

    OpenAIRE

    Bahri, Mawardi

    2017-01-01

    - The trinion Fourier transform is an extension of the Fourier transform in the trinion numbers setting. In this work we derive the correlation theorem for the trinion Fourier transform by using the relation between trinion convolution and correlation definitions in the trinion Fourier transform domains.

  12. On Callan's proof of the BPHZ theorem

    International Nuclear Information System (INIS)

    Lesniewski, A.

    1984-01-01

    The author gives an elementary proof of the BPHZ theorem in the case of the Euclidean lambdaphi 4 theory. The method of proof relies on a detailed analysis of the skeleton structure of graphs and estimates based on the Callan-Symanzik equations. (Auth.)

  13. A note on the Pfaffian integration theorem

    International Nuclear Information System (INIS)

    Borodin, Alexei; Kanzieper, Eugene

    2007-01-01

    Two alternative, fairly compact proofs are presented of the Pfaffian integration theorem that surfaced in the recent studies of spectral properties of Ginibre's Orthogonal Ensemble. The first proof is based on a concept of the Fredholm Pfaffian; the second proof is purely linear algebraic. (fast track communication)

  14. A Short Proof of Klee's Theorem

    OpenAIRE

    Zanazzi, John J.

    2013-01-01

    In 1959, Klee proved that a convex body $K$ is a polyhedron if and only if all of its projections are polygons. In this paper, a new proof of this theorem is given for convex bodies in $\\mathbb{R}^3$.

  15. A Density Turán Theorem

    Czech Academy of Sciences Publication Activity Database

    Narins, L.; Tran, Tuan

    2017-01-01

    Roč. 85, č. 2 (2017), s. 496-524 ISSN 0364-9024 Institutional support: RVO:67985807 Keywords : Turán’s theorem * stability method * multipartite version Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.601, year: 2016

  16. H-theorems from macroscopic autonomous equations

    Czech Academy of Sciences Publication Activity Database

    De Roeck, W.; Maes, C.; Netočný, Karel

    2006-01-01

    Roč. 123, č. 3 (2006), s. 571-583 ISSN 0022-4715 Institutional research plan: CEZ:AV0Z10100520 Keywords : H-theorem, entropy * irreversible equations Subject RIV: BE - Theoretical Physics Impact factor: 1.437, year: 2006

  17. Bell's theorem and the nature of reality

    International Nuclear Information System (INIS)

    Bertlmann, R.A.

    1988-01-01

    We rediscuss the Einstein-Podolsky-Rosen paradox in Bohm's spin version and oppose to it Bohr's controversial point of view. Then we explain Bell's theorem, Bell inequalities and its consequences. We describe the experiment of Aspect, Dalibard and Roger in detail. Finally we draw attention to the nonlocal structure of the underlying theory. 61 refs., 8 tabs. (Author)

  18. Kempe's Linkages and the Universality Theorem

    Indian Academy of Sciences (India)

    sriranga

    . He is currently ... Theorem, has a distinctive standing in kinematics. He was the first to uniquely address the precise tracing of ... A simple transformation from Cartesian (i.e., x, y) to polar (i.e, r, µ) coordinates allows f(x; y) to be ex- pressed as a ...

  19. A composition theorem for decision tree complexity

    OpenAIRE

    Montanaro, Ashley

    2013-01-01

    We completely characterise the complexity in the decision tree model of computing composite relations of the form h = g(f^1,...,f^n), where each relation f^i is boolean-valued. Immediate corollaries include a direct sum theorem for decision tree complexity and a tight characterisation of the decision tree complexity of iterated boolean functions.

  20. An integrality theorem for spinc manifolds

    International Nuclear Information System (INIS)

    Seade, J.A.

    1990-04-01

    A spin c manifold M n is an oriented, Riemannian manifold with an associated hermitian live bundle det(M), together with a lifting to B(spin n c ) of the classifying map of the bundle TMxU(1). We prove here an integrality theorem for spin c manifolds. 11 refs

  1. Mean value theorem in topological vector spaces

    International Nuclear Information System (INIS)

    Khan, L.A.

    1994-08-01

    The aim of this note is to give shorter proofs of the mean value theorem, the mean value inequality, and the mean value inclusion for the class of Gateaux differentiable functions having values in a topological vector space. (author). 6 refs

  2. Student Research Project: Goursat's Other Theorem

    Science.gov (United States)

    Petrillo, Joseph

    2009-01-01

    In an elementary undergraduate abstract algebra or group theory course, a student is introduced to a variety of methods for constructing and deconstructing groups. What seems to be missing from contemporary texts and syllabi is a theorem, first proved by Edouard Jean-Baptiste Goursat (1858-1936) in 1889, which completely describes the subgroups of…

  3. The Embedding Theorems of Whitney and Nash

    Indian Academy of Sciences (India)

    We begin by briefly motivating the idea of amanifold and then discuss the embedding theorems of Whitney and Nash that allow us toview these objects inside appropriately large Euclidean spaces. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 2. Current Issue Volume 23 | Issue 2. February 2018.

  4. Nash-Williams’ cycle-decomposition theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2016-01-01

    We give an elementary proof of the theorem of Nash-Williams that a graph has an edge-decomposition into cycles if and only if it does not contain an odd cut. We also prove that every bridgeless graph has a collection of cycles covering each edge at least once and at most 7 times. The two results...

  5. The Embedding Theorems of Whitney and Nash

    Indian Academy of Sciences (India)

    We begin by briefly motivating the idea of amanifold and then discuss the embedding theorems of Whitney and Nash that allow us toview these objects inside appropriately large Euclidean spaces. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018.

  6. On the exactness of soft theorems

    Science.gov (United States)

    Guerrieri, Andrea L.; Huang, Yu-tin; Li, Zhizhong; Wen, Congkao

    2017-12-01

    Soft behaviours of S-matrix for massless theories reflect the underlying symmetry principle that enforces its masslessness. As an expansion in soft momenta, sub-leading soft theorems can arise either due to (I) unique structure of the fundamental vertex or (II) presence of enhanced broken-symmetries. While the former is expected to be modified by infrared or ultraviolet divergences, the latter should remain exact to all orders in perturbation theory. Using current algebra, we clarify such distinction for spontaneously broken (super) Poincaré and (super) conformal symmetry. We compute the UV divergences of DBI, conformal DBI, and A-V theory to verify the exactness of type (II) soft theorems, while type (I) are shown to be broken and the soft-modifying higher-dimensional operators are identified. As further evidence for the exactness of type (II) soft theorems, we consider the α' expansion of both super and bosonic open strings amplitudes, and verify the validity of the translation symmetry breaking soft-theorems up to O({α}^' 6}) . Thus the massless S-matrix of string theory "knows" about the presence of D-branes.

  7. Ptolemy's Theorem and Familiar Trigonometric Identities.

    Science.gov (United States)

    Bidwell, James K.

    1993-01-01

    Integrates the sum, difference, and multiple angle identities into an examination of Ptolemy's Theorem, which states that the sum of the products of the lengths of the opposite sides of a quadrilateral inscribed in a circle is equal to the product of the lengths of the diagonals. (MDH)

  8. Central Limit Theorem for Coloured Hard Dimers

    Directory of Open Access Journals (Sweden)

    Maria Simonetta Bernabei

    2010-01-01

    Full Text Available We study the central limit theorem for a class of coloured graphs. This means that we investigate the limit behavior of certain random variables whose values are combinatorial parameters associated to these graphs. The techniques used at arriving this result comprise combinatorics, generating functions, and conditional expectations.

  9. Automated theorem proving theory and practice

    CERN Document Server

    Newborn, Monty

    2001-01-01

    As the 21st century begins, the power of our magical new tool and partner, the computer, is increasing at an astonishing rate. Computers that perform billions of operations per second are now commonplace. Multiprocessors with thousands of little computers - relatively little! -can now carry out parallel computations and solve problems in seconds that only a few years ago took days or months. Chess-playing programs are on an even footing with the world's best players. IBM's Deep Blue defeated world champion Garry Kasparov in a match several years ago. Increasingly computers are expected to be more intelligent, to reason, to be able to draw conclusions from given facts, or abstractly, to prove theorems-the subject of this book. Specifically, this book is about two theorem-proving programs, THEO and HERBY. The first four chapters contain introductory material about automated theorem proving and the two programs. This includes material on the language used to express theorems, predicate calculus, and the rules of...

  10. ON A LAGUERRE’S THEOREM

    Directory of Open Access Journals (Sweden)

    SEVER ANGEL POPESCU

    2015-03-01

    Full Text Available In this note we make some remarks on the classical Laguerre’s theorem and extend it and some other old results of Walsh and Gauss-Lucas to the so called trace series associated with transcendental elements of the completion of the algebraic closure of Q in C, with respect to the spectral norm:

  11. Lagrange’s Four-Square Theorem

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2015-02-01

    Full Text Available This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23].

  12. Anomalous Levinson theorem and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Boya, L.J.; Casahorran, J.; Esteve, J.G.

    1993-01-01

    We analyse the symmetry breaking associated to anomalous realization of supersymmetry in the context of SUSY QM. In this case one of the SUSY partners is singular; that leads to peculiar forms of the Levinson theorem relating phase shifts and bound states. Some examples are exhibited; peculiarities include negative energies, incomplete pairing of states and extra phases in scattering. (Author) 8 refs

  13. Another look at the second incompleteness theorem

    NARCIS (Netherlands)

    Visser, A.

    2017-01-01

    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is xed and the representation of the axiom set varies. We extend the Feferman framework in one important point: we allow the interpretation

  14. Another look at the second incompleteness theorem

    NARCIS (Netherlands)

    Visser, Albert

    2017-01-01

    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the axiom set varies. We extend the Feferman framework in one important point: we allow the

  15. Explorations of the Gauss-Lucas Theorem

    Science.gov (United States)

    Brilleslyper, Michael A.; Schaubroeck, Beth

    2017-01-01

    The Gauss-Lucas Theorem is a classical complex analysis result that states the critical points of a single-variable complex polynomial lie inside the closed convex hull of the zeros of the polynomial. Although the result is well-known, it is not typically presented in a first course in complex analysis. The ease with which modern technology allows…

  16. The Archimedes Principle and Gauss's Divergence Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. The Archimedes Principle and Gauss's Divergence Theorem. Subhashis Nag. General Article Volume 3 Issue 11 November 1998 pp 18-29. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. On the Schwartz space isomorphism theorem for rank one ...

    Indian Academy of Sciences (India)

    consists of analytic functions on the strip a. ∗. ϵ = {λ ∈ C||Im λ| ≤ ϵ}. Anticipating these and other ..... R>0 HR(a∗. C. ). We state the following topological Paley–. Wiener theorem for the K-types. The proof of this theorem follows from III, Theorem 5.11 of [9] and Lemma 2.1. Theorem 3.7. The δ-spherical transform defined in ...

  18. Theorems of Tarski's Undefinability and Godel's Second Incompleteness - Computationally

    OpenAIRE

    Salehi, Saeed

    2015-01-01

    We present a version of Godel's Second Incompleteness Theorem for recursively enumerable consistent extensions of a fixed axiomatizable theory, by incorporating some bi-theoretic version of the derivability conditions (first discussed by M. Detlefsen 2001). We also argue that Tarski's theorem on the Undefinability of Truth is Godel's First Incompleteness Theorem relativized to definable oracles; here a unification of these two theorems is given.

  19. Applications of square-related theorems

    Science.gov (United States)

    Srinivasan, V. K.

    2014-04-01

    The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.

  20. Unitarity-Cuts, Stokes' Theorem and Berry's Phase

    CERN Document Server

    Mastrolia, Pierpaolo

    2010-01-01

    Two-particle unitarity-cuts of scattering amplitudes can be efficiently computed by applying Stokes' Theorem, in the fashion of the Generalised Cauchy Theorem. Consequently, the Optical Theorem can be related to the Berry Phase, showing how the imaginary part of arbitrary one-loop Feynman amplitudes can be interpreted as the flux of a complex 2-form.

  1. No-go theorems for the minimization of potentials

    International Nuclear Information System (INIS)

    Chang, D.; Kumar, A.

    1985-01-01

    Using a theorem in linear algebra, we prove some no-go theorems in the minimization of potentials related to the problem of symmetry breaking. Some applications in the grand unified model building are mentioned. Another application of the algebraic theorem is also included to demonstrate its usefulness

  2. A new proof of the theorem: Harmonic manifolds with minimal ...

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  3. Fluctuation theorems and orbital magnetism in nonequilibrium state

    Indian Academy of Sciences (India)

    Fluctuation theorem; Jarzynski equality; orbital magnetism. PACS Nos 05.70.Ln; 05.40.Jc; 05.40.-a; 05.40.Ca. 1. Introduction. Recent developments in nonequilibrium statistical mechanics has led to the discov- ery of several rigorous theorems for systems far away from equilibrium [1–10]. The fluctuation theorems describe ...

  4. Goedel incompleteness theorems and the limits of their applicability. I

    International Nuclear Information System (INIS)

    Beklemishev, Lev D

    2011-01-01

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  5. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    NARCIS (Netherlands)

    Visser, Albert

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  6. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  7. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered o...

  8. Oseledec multiplicative ergodic theorem for laminations

    CERN Document Server

    Nguyên, Viêt-Anh

    2017-01-01

    Given a n-dimensional lamination endowed with a Riemannian metric, the author introduces the notion of a multiplicative cocycle of rank d, where n and d are arbitrary positive integers. The holonomy cocycle of a foliation and its exterior powers as well as its tensor powers provide examples of multiplicative cocycles. Next, the author defines the Lyapunov exponents of such a cocycle with respect to a harmonic probability measure directed by the lamination. He also proves an Oseledec multiplicative ergodic theorem in this context. This theorem implies the existence of an Oseledec decomposition almost everywhere which is holonomy invariant. Moreover, in the case of differentiable cocycles the author establishes effective integral estimates for the Lyapunov exponents. These results find applications in the geometric and dynamical theory of laminations. They are also applicable to (not necessarily closed) laminations with singularities. Interesting holonomy properties of a generic leaf of a foliation are obtained...

  9. Subleading soft graviton theorem for loop amplitudes

    Science.gov (United States)

    Sen, Ashoke

    2017-11-01

    Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.

  10. H-theorem in quantum physics.

    Science.gov (United States)

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  11. Theorem of comparative sensitivity of fibre sensors

    Science.gov (United States)

    Belovolov, M. I.; Paramonov, V. M.; Belovolov, M. M.

    2017-12-01

    We report an analysis of sensitivity of fibre sensors of physical quantities based on different types of interferometers. We formulate and prove the following theorem: under the time-dependent external physical perturbations at nonzero frequencies (i.e., except the static and low-frequency ones) on the sensitive arms of an interferometer in the form of multiturn elements (coils), there exist such lengths L of the measuring arms of the fibre interferometers at which the sensitivity of sensors based on the Sagnac fibre interferometers can be comparable with the sensitivity of sensors based on Michelson, Mach - Zehnder, or Fabry - Perot fibre interferometers, as well as exceed it under similar other conditions (similar-type perturbations, similar arm lengths and single-mode fibre types). The consequences that follow from the theorem, important for practical implementation of arrays of fibre sensors for measurement purposes and the devices with stable metrological properties, are discussed.

  12. An elementary approach to gap theorems

    Indian Academy of Sciences (India)

    In the second class, it is assumed that the sectional curvature has a definite sign and approaches zero at a certain rate. One of the early results in this direction was by Siu and Yau [5]. A by-product of this paper is a completely elementary and short proof of the main result in [5]. A host of theorems was also proved by Greene.

  13. Remarks on some zero-sum theorems

    Indian Academy of Sciences (India)

    (1996) 100–103. [9] Griffiths Simon, The Erd˝os-Ginzburg-Ziv theorem with units, Discrete Math. 308(23). (2008) 5473–5484, doi:10.1016/j.disc.2007.09.060. [10] Luca Florian, A generalization of a classical zero-sum problem, Discrete Math. 307(13). (2007) 1672–1678. [11] Nathanson Melvyn B, Additive number theory.

  14. Some generalizations of the virial theorem

    International Nuclear Information System (INIS)

    Teller, E.

    1986-01-01

    Generalizations of the virial theorem are derived: In atomic physics, in systems including electromagnetic radiation, in Newtonian gravitation, and in general relativity and also some types of nuclear forces. The cases discussed are limited to potentials which can be produced by the exchange of one particle, which include potentials of the form 1/r. The method used is to set equal a change in energy produced by an infinitesimal similarity transformation to a change of energy obtained by a first-order perturbation

  15. A remark on three-surface theorem

    International Nuclear Information System (INIS)

    Lu Zhujia

    1991-01-01

    The three-surface theorem for uniformly elliptic differential inequalities with nonpositive coefficient of zero-order term in some domain D is included in R n becomes trivial if the maximum of u on two separate boundary surface of D is nonpositive. We give a method in this paper for obtaining a nontrivial estimate of the maximum of u on a family of closed surfaces. (author). 2 refs

  16. A reduction theorem for supremum operators

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Pick, L.

    2007-01-01

    Roč. 208, č. 1 (2007), s. 270-279 ISSN 0377-0427 R&D Projects: GA ČR GA201/05/2033 Grant - others:GAČR(CZ) GA201/03/0935 Institutional research plan: CEZ:AV0Z10190503 Keywords : reduction theorems * Hardy operators * supremum operators Subject RIV: BA - General Mathematics Impact factor: 0.943, year: 2007

  17. On the Hahn–Banach Theorem

    Indian Academy of Sciences (India)

    The space C[0,1] is also not reflexive. One of the nice consequences of the Riesz representation theorem is that every Hilbert space is reflexive. 5. Vector Valued Integration. Let us consider the unit interval [0,1] endowed with the Lebesgue- measure. Let V be a normed linear space over R. Let ϕ : [0,1] →. V be a continuous ...

  18. Convergence theorems for quasi-contractive mappings

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1992-01-01

    It is proved that each of two well known fixed point iteration methods (the Mann and Ishikawa iteration methods) converges strongly, without any compactness assumption on the domain of the map, to the unique fixed point of a quasi-contractive map in real Banach spacers with property (U, α, m+1, m). These Banach spaces include the L p (or l p ) spaces, p ≥ 2. Our theorems generalize important known results. (author). 29 refs

  19. Central limit theorem and deformed exponentials

    International Nuclear Information System (INIS)

    Vignat, C; Plastino, A

    2007-01-01

    The central limit theorem (CLT) can be ranked among the most important ones in probability theory and statistics and plays an essential role in several basic and applied disciplines, notably in statistical thermodynamics. We show that there exists a natural extension of the CLT from exponentials to so-called deformed exponentials (also denoted as q-Gaussians). Our proposal applies exactly in the usual conditions in which the classical CLT is used. (fast track communication)

  20. Applications of Wck's theorem, ch. 17

    International Nuclear Information System (INIS)

    Brussaard, P.J.; Glaudemans, P.W.M.

    1977-01-01

    Wick's theorem is introduced and used to write the many-body Hamiltonian in a selfconsistent basis. The terms of a perturbation expansion are evaluated with the use of the second-quantization formalism.The correspondence with Feyman diagrams is demonstrated. For some nuclei a description in terms of particle-hole configurations is quite convenient. The simplest case, i.e. one-particle, one-hole states, is treated

  1. Theorem Proving In Higher Order Logics

    Science.gov (United States)

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  2. Soft theorems from conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lipstein, Arthur E. [II. Institute for Theoretical Physics, University of Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany)

    2015-06-24

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  3. The universality of the Carnot theorem

    International Nuclear Information System (INIS)

    Gonzalez-Ayala, Julian; Angulo-Brown, F

    2013-01-01

    It is common in many thermodynamics textbooks to illustrate the Carnot theorem through the use of diverse state equations for gases, paramagnets, and other simple thermodynamic systems. As is well known, the universality of the Carnot efficiency is easily demonstrated in a temperature–entropy diagram, which means that η C is independent of the working substance. In this paper we remark that the universality of the Carnot theorem goes beyond conventional state equations, and is fulfilled by gas state equations that do not correspond to an ideal gas in the dilution limit, namely V → ∞. Some of these unconventional state equations have certain thermodynamic ‘anomalies’ that nonetheless do not forbid them from obeying the Carnot theorem. We discuss how this very general behaviour arises from Maxwell relations, which are connected with a geometrical property expressed through preserving area transformations. A rule is proposed to calculate the Maxwell relations associated with a thermodynamic system by using the preserving area relationships. In this way it is possible to calculate the number of possible preserving area mappings by giving the number of possible Jacobian identities between all pairs of thermodynamic variables included in the corresponding Gibbs equation. This paper is intended for undergraduates and specialists in thermodynamics and related areas. (paper)

  4. Four theorems on the psychometric function.

    Directory of Open Access Journals (Sweden)

    Keith A May

    Full Text Available In a 2-alternative forced-choice (2AFC discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise x β(Transducer, where β(Noise is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer depends on the transducer. We derive general expressions for β(Noise and β(Transducer, from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx(b, β ≈ β(Noise x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is

  5. The implicit function theorem history, theory, and applications

    CERN Document Server

    Krantz, Steven G

    2003-01-01

    The implicit function theorem is part of the bedrock of mathematics analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash-Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex store, and intimately bound up with the development of fundamental ideas in a...

  6. Some fixed point theorems in fuzzy reflexive Banach spaces

    International Nuclear Information System (INIS)

    Sadeqi, I.; Solaty kia, F.

    2009-01-01

    In this paper, we first show that there are some gaps in the fixed point theorems for fuzzy non-expansive mappings which are proved by Bag and Samanta, in [Bag T, Samanta SK. Fixed point theorems on fuzzy normed linear spaces. Inf Sci 2006;176:2910-31; Bag T, Samanta SK. Some fixed point theorems in fuzzy normed linear spaces. Inform Sci 2007;177(3):3271-89]. By introducing the notion of fuzzy and α- fuzzy reflexive Banach spaces, we obtain some results which help us to establish the correct version of fuzzy fixed point theorems. Second, by applying Theorem 3.3 of Sadeqi and Solati kia [Sadeqi I, Solati kia F. Fuzzy normed linear space and it's topological structure. Chaos, Solitons and Fractals, in press] which says that any fuzzy normed linear space is also a topological vector space, we show that all topological version of fixed point theorems do hold in fuzzy normed linear spaces.

  7. Logic for computer science foundations of automatic theorem proving

    CERN Document Server

    Gallier, Jean H

    2015-01-01

    This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in fir

  8. Fatou type theorems for series in Mittag-Leffler functions

    Science.gov (United States)

    Paneva-Konovska, Jordanka

    2012-11-01

    In studying the behaviour of series, defined by means of the Mittag-Leffler functions, on the boundary of its domain of convergence in the complex plane, we give analogues of the classical theorems for the power series like Cauchy-Hadamard, Abel, as well as Fatou theorems. The asymptotic formulae for the Mittag-Leffler functions in the cases of "large" values of indices that are used in the proofs of the convergence theorems for the considered series are also provided.

  9. On Upper Bounds on the Church-Rosser Theorem

    Directory of Open Access Journals (Sweden)

    Ken-etsu Fujita

    2017-01-01

    Full Text Available The Church-Rosser theorem in the type-free lambda-calculus is well investigated both for beta-equality and beta-reduction. We provide a new proof of the theorem for beta-equality with no use of parallel reductions, but simply with Takahashi's translation (Gross-Knuth strategy. Based on this, upper bounds for reduction sequences on the theorem are obtained as the fourth level of the Grzegorczyk hierarchy.

  10. Borsuk-Ulam theorem in infinite-dimensional Banach spaces

    International Nuclear Information System (INIS)

    Gel'man, B D

    2002-01-01

    The well-known classical Borsuk-Ulam theorem has a broad range of applications to various problems. Its generalization to infinite-dimensional spaces runs across substantial difficulties because its statement is essentially finite-dimensional. A result established in the paper is a natural generalization of the Borsuk-Ulam theorem to infinite-dimensional Banach spaces. Applications of this theorem to various problems are discussed

  11. Fixed point theorems for generalized weakly contractive mappings

    Directory of Open Access Journals (Sweden)

    Ramendra Krishna Bose

    2009-12-01

    Full Text Available In this paper several fixed point theorems for generalized weakly contractive mappings in a metric space setting are proved. The set of generalized weakly contractive mappings considered in this paper contains the family of weakly contractive mappings as a proper subset. Fixed point theorems for single and multi-valued mappings, approximating scheme for common fixed point for some mappings, and fixed point theorems for fuzzy mappings are presented. It extends the work of several authors including Bose and Roychowdhury.

  12. The Surprise Examination Paradox and the Second Incompleteness Theorem

    OpenAIRE

    Kritchman, Shira; Raz, Ran

    2010-01-01

    We give a new proof for Godel's second incompleteness theorem, based on Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that resembles the surprise examination paradox. We then go the other way around and suggest that the second incompleteness theorem gives a possible resolution of the surprise examination paradox. Roughly speaking, we argue that the flaw in the derivation of the paradox is that it contains a hidden assumption that one can prove the consistency of the...

  13. Goedel incompleteness theorems and the limits of their applicability. I

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, Lev D [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-01-25

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  14. A Many-Body RAGE Theorem

    Science.gov (United States)

    Lampart, Jonas; Lewin, Mathieu

    2015-12-01

    We prove a generalized version of the RAGE theorem for N-body quantum systems. The result states that only bound states of systems with {0 ≤slant n ≤slant N} particles persist in the long time average. The limit is formulated by means of an appropriate weak topology for many-body systems, which was introduced by the second author in a previous work, and is based on reduced density matrices. This topology is connected to the weak-* topology of states on the algebras of canonical commutation or anti-commutation relations, and we give a formulation of our main result in this setting.

  15. Interval logic. Proof theory and theorem proving

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Marthedal

    2002-01-01

    of a direction of an interval, and present a sound and complete Hilbert proof system for it. Because of its generality, SIL can conveniently act as a general formalism in which other interval logics can be encoded. We develop proof theory for SIL including both a sequent calculus system and a labelled natural...... deduction system. We conduct theoretical investigations of the systems with respect to subformula properties, proof search, etc. The generic theorem proving system Isabelle is used as a framework for encoding both proof theoretical systems. We consider a number of examples/small case-studies and discuss...

  16. A Levinson-Sjoeberg type theorem. Applications

    International Nuclear Information System (INIS)

    Gaisin, A M; Kinzyabulatov, I G

    2008-01-01

    A generalization of the well-known Levinson-Sjoeberg theorem is obtained for a family of analytic functions f that have estimates of the form |f(z)|≤M(dist(z,γ)) outside an arc γ, where M is a decreasing function on (0,∞) that is unbounded in a neighbourhood of the origin. Applications to questions of quasianalyticity for Carleman classes are indicated as well as to the completeness of a system of exponentials on arcs, to analytic continuation and to representation by Dirichlet series. Bibliography: 24 titles.

  17. Central limit theorems under special relativity.

    Science.gov (United States)

    McKeague, Ian W

    2015-04-01

    Several relativistic extensions of the Maxwell-Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior.

  18. Applicability constraints of the equivalence theorem

    Energy Technology Data Exchange (ETDEWEB)

    Dobado, A.; Pelaez, J.R. [Departamento de Fisica Teorica, Universidad Complutense, 28040 Madrid (Spain); Urdiales, M.T. [Departamento de Fisica Teorica, Universidad Autonoma, 28049 Madrid (Spain)

    1997-12-01

    In this work we study the applicability of the equivalence theorem, either for unitary models or within an effective Lagrangian approach. There are two types of limitations: the existence of a validity energy window and the use of the lowest order in the electroweak constants. For the first kind, we consider some methods, based on dispersion theory or the large N limit, that allow us to extend the applicability. For the second, we obtain numerical estimates of the effect of neglecting higher orders in the perturbative expansion. {copyright} {ital 1997} {ital The American Physical Society}

  19. Fixed point theorems in spaces and -trees

    Directory of Open Access Journals (Sweden)

    Kirk WA

    2004-01-01

    Full Text Available We show that if is a bounded open set in a complete space , and if is nonexpansive, then always has a fixed point if there exists such that for all . It is also shown that if is a geodesically bounded closed convex subset of a complete -tree with , and if is a continuous mapping for which for some and all , then has a fixed point. It is also noted that a geodesically bounded complete -tree has the fixed point property for continuous mappings. These latter results are used to obtain variants of the classical fixed edge theorem in graph theory.

  20. No-cloning theorem on quantum logics

    International Nuclear Information System (INIS)

    Miyadera, Takayuki; Imai, Hideki

    2009-01-01

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloning on effect algebras and hidden variables.

  1. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Woolgar, Eric, E-mail: ewoolgar@ualberta.ca [Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1 (Canada); Wylie, William, E-mail: wwylie@syr.edu [215 Carnegie Building, Department of Mathematics, Syracuse University, Syracuse, New York 13244 (United States)

    2016-02-15

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  2. Central limit theorem and almost sure central limit theorem for the ...

    Indian Academy of Sciences (India)

    College of Mathematics and Information Science, Henan Normal University,. 453007 Henan, China ... theorem for products of some partial sums of independent identically distributed random variables. Keywords. ... Let (Xn)n≥1 be a sequence of independent identically distributed (i.i.d.) positive random variables (r.v.).

  3. Generalizations of the Nash Equilibrium Theorem in the KKM Theory

    Directory of Open Access Journals (Sweden)

    Sehie Park

    2010-01-01

    Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for G-convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.

  4. Birth of a theorem a mathematical adventure

    CERN Document Server

    Villani, Cédric

    2015-01-01

    This man could plainly do for mathematics what Brian Cox has done for physics" (Sunday Times). What goes on inside the mind of a rock-star mathematician? Where does inspiration come from? With a storyteller's gift, Cedric Villani takes us on a mesmerising journey as he wrestles with a new theorem that will win him the most coveted prize in mathematics. Along the way he encounters obstacles and setbacks, losses of faith and even brushes with madness. His story is one of courage and partnership, doubt and anxiety, elation and despair. We discover how it feels to be obsessed by a theorem during your child's cello practise and throughout your dreams, why appreciating maths is a bit like watching an episode of Columbo, and how sometimes inspiration only comes from locking yourself away in a dark room to think. Blending science with history, biography with myth, Villani conjures up an inimitable cast of characters including the omnipresent Einstein, mad genius Kurt Godel, and Villani's personal hero, John Nash. Bir...

  5. Microscopic Irreversibility and the H Theorem

    Science.gov (United States)

    Magpantay, Jose A.

    2013-02-01

    Time-reversal had always been assumed to be a symmetry of physics at the fundamental level. In this paper we will explore the violations of time-reversal symmetry at the fundamental level and the consequence on thermodynamic systems. First, we will argue from current physics that the universe dynamics is not time-reversal invariant. Second, we will argue that any thermodynamic system cannot be isolated completely from the universe. We then discuss how these two make the dynamics of thermodynamics systems very weakly irreversible at the classical and quantum level. Since time-reversal is no longer a symmetry of realistic systems, the problem of how macroscopic irreversibility arises from microscopic reversibility becomes irrelevant because there is no longer microscopic reversibility. At the classical level of a thermodynamic system, we show that the H theorem of Boltzmann is still valid even without microscopic reversibility. We do this by deriving a modified H theorem, which still shows entropy monotonically increasing. At the quantum level, we explicitly show the effect of CP violation, small irreversible changes on the internal states of the nuclear and atomic energy levels of thermodynamic systems. Thus, we remove Loschmidt's objection to Boltzmann's ideas.

  6. A perceptron network theorem prover for the propositional calculus

    NARCIS (Netherlands)

    Drossaers, M.F.J.

    In this paper a short introduction to neural networks and a design for a perceptron network theorem prover for the propositional calculus are presented. The theorem prover is a representation of a variant of the semantic tableau method, called the parallel tableau method, by a network of

  7. Generalizations of Karp's theorem to elastic scattering theory

    Science.gov (United States)

    Tuong, Ha-Duong

    Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.

  8. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    Science.gov (United States)

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  9. Leaning on Socrates to Derive the Pythagorean Theorem

    Science.gov (United States)

    Percy, Andrew; Carr, Alistair

    2010-01-01

    The one theorem just about every student remembers from school is the theorem about the side lengths of a right angled triangle which Euclid attributed to Pythagoras when writing Proposition 47 of "The Elements". Usually first met in middle school, the student will be continually exposed throughout their mathematical education to the…

  10. The Boundary Crossing Theorem and the Maximal Stability Interval

    Directory of Open Access Journals (Sweden)

    Jorge-Antonio López-Renteria

    2011-01-01

    useful tools in the study of the stability of family of polynomials. Although both of these theorem seem intuitively obvious, they can be used for proving important results. In this paper, we give generalizations of these two theorems and we apply such generalizations for finding the maximal stability interval.

  11. On Frobenius, Mazur, and Gelfand-Mazur theorems on division ...

    African Journals Online (AJOL)

    ... R of real numbers, the field C of complex numbers, or the non-commutative algebra Q of quaternions. Gelfand [15] proved that every normed division algebra over the field C is isomorphic to C. He named this theorem, which is fundamental for the development of the theory of Banach Algebras, the Gelfand-Mazur theorem.

  12. On the Weighted Mean Value Theorem for Integrals

    Science.gov (United States)

    Polezzi, M.

    2006-01-01

    The Mean Value Theorem for Integrals is a powerful tool, which can be used to prove the Fundamental Theorem of Calculus, and to obtain the average value of a function on an interval. On the other hand, its weighted version is very useful for evaluating inequalities for definite integrals. This article shows the solutions on applying the weighted…

  13. Caristi Fixed Point Theorem in Metric Spaces with a Graph

    Directory of Open Access Journals (Sweden)

    M. R. Alfuraidan

    2014-01-01

    Full Text Available We discuss Caristi’s fixed point theorem for mappings defined on a metric space endowed with a graph. This work should be seen as a generalization of the classical Caristi’s fixed point theorem. It extends some recent works on the extension of Banach contraction principle to metric spaces with graph.

  14. An integral Riemann-Roch theorem for surface bundles

    DEFF Research Database (Denmark)

    Madsen, Ib Henning

    2010-01-01

    This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles.......This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles....

  15. A new proof of the positive energy theorem

    International Nuclear Information System (INIS)

    Witten, E.

    1981-01-01

    A new proof is given of the positive energy theorem of classical general relativity. Also, a new proof is given that there are no asymptotically Euclidean gravitational instantons. (These theorems have been proved previously, by a different method, by Schoen and Yau). The relevance of these results to the stability of Minkowski space is discussed. (orig.)

  16. K S Krishnan's 1948 Perception of the Sampling Theorem

    Indian Academy of Sciences (India)

    K S Krishnan's 1948 Perception of the. Sampling Theorem. Raiiah Simon is a. Professor at the Institute of Mathematical. Sciences, Chennai. His primary interests are in classical and quantum optics, geometric phases, group theoretical techniques and quantum information science. Keywords. Sompling theorem, K S ...

  17. Szemerédi's theorem and problems on arithmetic progressions

    Science.gov (United States)

    Shkredov, I. D.

    2006-12-01

    Szemerédi's famous theorem on arithmetic progressions asserts that every subset of integers of positive asymptotic density contains arithmetic progressions of arbitrary length. His remarkable theorem has been developed into a major new area of combinatorial number theory. This is the topic of the present survey.

  18. Rank theorem in infinite dimension and lagrange multipliers

    OpenAIRE

    Blot, Joël

    2018-01-01

    We use an extension to the infinite dimension of the rank theorem of the differential calculus to establish a Karush-Huhn-Tucker theorem for optimization problems in Banach spaces. We provide an application to variational problems on bounded processus under equality constraints.

  19. Computer Algebra Systems and Theorems on Real Roots of Polynomials

    Science.gov (United States)

    Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.

    2010-01-01

    A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)

  20. A note on the Fuglede–Putnam theorem

    Indian Academy of Sciences (India)

    Introduction and preliminaries. In this note, we use the notion of a bounding sequence for an unbounded normal opera- tor to prove the unbounded version and a generalization of the Fuglede–Putnam theorem. [6]. This paper gives a new and much simpler proof of the rather complicated proof of Theorem 5 of [3] due to ...

  1. On the Riesz representation theorem and integral operators ...

    African Journals Online (AJOL)

    We present a Riesz representation theorem in the setting of extended integration theory as introduced in [6]. The result is used to obtain boundedness theorems for integral operators in the more general setting of spaces of vector valued extended integrable functions. Keywords: Vector integral, integral operators, operator ...

  2. Level reduction and the quantum threshold theorem

    Science.gov (United States)

    Aliferis, Panagiotis (Panos)

    Computers have led society to the information age revolutionizing central aspects of our lives from production and communication to education and entertainment. There exist, however, important problems which are intractable with the computers available today and, experience teaches us, will remain so even with the more advanced computers we can envision for tomorrow.Quantum computers promise speedups to some of these important but classically intractable problems. Simulating physical systems, a problem of interest in a diverse range of areas from testing physical theories to understanding chemical reactions, and solving number factoring, a problem at the basis of cryptographic protocols that are used widely today on the internet, are examples of applications for which quantum computers, when built, will offer a great advantage over what is possible with classical computer technology.The construction of a quantum computer of sufficient scale to solve interesting problems is, however, especially challenging. The reason for this is that, by its very nature, operating a quantum computer will require the coherent control of the quantum state of a very large number of particles. Fortunately, the theory of quantum error correction and fault-tolerant quantum computation gives us confidence that such quantum states can be created, can be stored in memory and can also be manipulated provided the quantum computer can be isolated to a sufficient degree from sources of noise.One of the central results in the theory of fault-tolerant quantum computation, the quantum threshold theorem shows that a noisy quantum computer can accurately and efficiently simulate any ideal quantum computation provided that noise is weakly correlated and its strength is below a critical value known as the quantum accuracy threshold. This thesis provides a simpler and more transparent non-inductive proof of this theorem based on the concept of level reduction. This concept is also used in proving the

  3. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  4. On a curvature-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es

    2008-08-15

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  5. Theorem Proving in Intel Hardware Design

    Science.gov (United States)

    O'Leary, John

    2009-01-01

    For the past decade, a framework combining model checking (symbolic trajectory evaluation) and higher-order logic theorem proving has been in production use at Intel. Our tools and methodology have been used to formally verify execution cluster functionality (including floating-point operations) for a number of Intel products, including the Pentium(Registered TradeMark)4 and Core(TradeMark)i7 processors. Hardware verification in 2009 is much more challenging than it was in 1999 - today s CPU chip designs contain many processor cores and significant firmware content. This talk will attempt to distill the lessons learned over the past ten years, discuss how they apply to today s problems, outline some future directions.

  6. An interlacing theorem for reversible Markov chains

    International Nuclear Information System (INIS)

    Grone, Robert; Salamon, Peter; Hoffmann, Karl Heinz

    2008-01-01

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  7. Support theorems for the Radon transform and Cram\\'er-Wold theorems

    OpenAIRE

    Boman, Jan; Lindskog, Filip

    2008-01-01

    This article presents extensions of the Cram{\\'e}r-Wold theorem to measures that may have infinite mass near the origin. Corresponding results for sequences of measures are presented together with examples showing that the assumptions imposed are sharp. The extensions build on a number of results and methods concerned with injectivity properties of the Radon transform. Using a few tools from distribution theory and Fourier analysis we show that the presented injectivity results for the Radon ...

  8. On Pythagoras Theorem for Products of Spectral Triples

    Science.gov (United States)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  9. Theorems on Positive Data: On the Uniqueness of NMF

    Directory of Open Access Journals (Sweden)

    Hans Laurberg

    2008-01-01

    Full Text Available We investigate the conditions for which nonnegative matrix factorization (NMF is unique and introduce several theorems which can determine whether the decomposition is in fact unique or not. The theorems are illustrated by several examples showing the use of the theorems and their limitations. We have shown that corruption of a unique NMF matrix by additive noise leads to a noisy estimation of the noise-free unique solution. Finally, we use a stochastic view of NMF to analyze which characterization of the underlying model will result in an NMF with small estimation errors.

  10. Theorems on positive data: on the uniqueness of NMF.

    Science.gov (United States)

    Laurberg, Hans; Christensen, Mads Graesbøll; Plumbley, Mark D; Hansen, Lars Kai; Jensen, Søren Holdt

    2008-01-01

    We investigate the conditions for which nonnegative matrix factorization (NMF) is unique and introduce several theorems which can determine whether the decomposition is in fact unique or not. The theorems are illustrated by several examples showing the use of the theorems and their limitations. We have shown that corruption of a unique NMF matrix by additive noise leads to a noisy estimation of the noise-free unique solution. Finally, we use a stochastic view of NMF to analyze which characterization of the underlying model will result in an NMF with small estimation errors.

  11. Convergence theorems for certain classes of nonlinear mappings

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1992-01-01

    Recently, Xinlong Weng announced a convergence theorem for the iterative approximation of fixed points of local strictly pseudo-contractive mappings in uniformly smooth Banach spaces, (Proc. Amer. Math. Soc. Vol.113, No.3 (1991) 727-731). An example is presented which shows that this theorem of Weng is false. Then, a convergence theorem is proved, in certain real Banach spaces, for approximation a solution of the inclusion f is an element of x + Tx, where T is a set-valued monotone operator. An explicit error estimate is also presented. (author). 26 refs

  12. The CAP Theorem Versus Databases with Relaxed ACID properties

    DEFF Research Database (Denmark)

    Frank, Lars; Ulslev Pedersen, Rasmus; Frank, Christian Havnø

    2014-01-01

    The CAP theorem combines the three desirable properties C (data consistency), A (data availability), and P (partition-tolerance: tolerance of inconsistencies between data stored in a distributed database where partitions are allowed). The CAP theorem asserts that any distributed system that uses ...... data from different locations can have at most two of the three desirable CAP properties [5]. The NoSQL movement has applied the CAP theorem as an argument against traditional ACID (atomicity, consistency, isolation, and durability) databases, which prioritize consistency and partition...

  13. Quantum voting and violation of Arrow's impossibility theorem

    Science.gov (United States)

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  14. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    Science.gov (United States)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  15. Soft pion theorem, asymptotic symmetry and new memory effect

    Science.gov (United States)

    Hamada, Yuta; Sugishita, Sotaro

    2017-11-01

    It is known that soft photon and graviton theorems can be regarded as the Ward-Takahashi identities of asymptotic symmetries. In this paper, we consider soft theorem for pions, i.e., Nambu-Goldstone bosons associated with a spontaneously broken axial symmetry. The soft pion theorem is written as the Ward-Takahashi identities of the S-matrix under asymptotic transformations. We investigate the asymptotic dynamics, and find that the conservation of charges generating the asymptotic transformations can be interpreted as a pion memory effect.

  16. Davis-type theorems for martingale difference sequences

    Directory of Open Access Journals (Sweden)

    George Stoica

    2005-01-01

    Full Text Available We study Davis-type theorems on the optimal rate of convergence of moderate deviation probabilities. In the case of martingale difference sequences, under the finite pth moments hypothesis (1≤p<∞, and depending on the normalization factor, our results show that Davis' theorems either hold if and only if p>2 or fail for all p≥1. This is in sharp contrast with the classical case of i.i.d. centered sequences, where both Davis' theorems hold under the finite second moment hypothesis (or less.

  17. A primer on Higgs boson low-energy theorems

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; California Univ., Santa Cruz, CA

    1989-05-01

    We give a pedagogical review of Higgs boson low-energy theorems and their applications in the study of light Higgs boson interactions with mesons and baryons. In particular, it is shown how to combine the chiral Lagrangian method with the Higgs low-energy theorems to obtain predictions for the interaction of Higgs bosons and pseudoscalar mesons. Finally, we discuss the relation between the low-energy theorems and a technique which makes use of the trace of the QCD energy-momentum tensor. 35 refs

  18. Quantum fluctuation theorems and power measurements

    International Nuclear Information System (INIS)

    Prasanna Venkatesh, B; Watanabe, Gentaro; Talkner, Peter

    2015-01-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics. (paper)

  19. The Michaelis-Menten-Stueckelberg Theorem

    Directory of Open Access Journals (Sweden)

    Alexander N. Gorban

    2011-05-01

    Full Text Available We study chemical reactions with complex mechanisms under two assumptions: (i intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS and (ii they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE. Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without microreversibility, when the detailed balance is not applicable. Even though QE and QSS produce useful approximations by themselves, only the combination of these assumptions can render the possibility beyond the “rarefied gas” limit or the “molecular chaos” hypotheses. We do not use any a priori form of the kinetic law for the chemical reactions and describe their equilibria by thermodynamic relations. The transformations of the intermediate compounds can be described by the Markov kinetics because of their low density (low density of elementary events. This combination of assumptions was introduced by Michaelis and Menten in 1913. In 1952, Stueckelberg used the same assumptions for the gas kinetics and produced the remarkable semi-detailed balance relations between collision rates in the Boltzmann equation that are weaker than the detailed balance conditions but are still sufficient for the Boltzmann H-theorem to be valid. Our results are obtained within the Michaelis-Menten-Stueckelbeg conceptual framework.

  20. Luttinger's theorem, superfluid vortices and holography

    Science.gov (United States)

    Iqbal, Nabil; Liu, Hong

    2012-10-01

    Strongly coupled field theories with gravity duals can be placed at finite density in two ways: electric field flux emanating from behind a horizon, or bulk charged fields outside of the horizon that explicitly source the density. We discuss field-theoretical observables that are sensitive to this distinction. If the charged fields are fermionic, we discuss a modified Luttinger's theorem that holds for holographic systems, in which the sum of boundary theory Fermi surfaces counts only the charge outside of the horizon. If the charged fields are bosonic, we show that the resulting superfluid phase may be characterized by the coefficient of the transverse Magnus force on a moving superfluid vortex, which again is sensitive only to the charge outside of the horizon. For holographic systems, these observables provide a field-theoretical way to distinguish how much charge is held by a dual horizon, but they may be useful in more general contexts as measures of deconfined (i.e. ‘fractionalized’) charge degrees of freedom.

  1. Flat deformation theorem and symmetries in spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, Josep [Departament de Fisica Fonamental, Universitat de Barcelona (Spain); Carot, Jaume [Departament de Fisica, Universitat de les Illes Balears (Spain)

    2009-03-07

    The flat deformation theorem states that given a semi-Riemannian analytic metric g on a manifold, locally there always exists a two-form F, a scalar function c, and an arbitrarily prescribed scalar constraint depending on the point x of the manifold and on F and c, say PSI(c, F, x) = 0, such that the deformed metric eta = cg - epsilonF{sup 2} is semi-Riemannian and flat. In this paper we first show that the above result implies that every (Lorentzian analytic) metric g may be written in the extended Kerr-Schild form, namely eta{sub ab} := ag{sub ab} - 2bk{sub (al{sub b})} where eta is flat and k{sub a}, l{sub a} are two null covectors such that k{sub a}l{sup a} = -1; next we show how the symmetries of g are connected to those of eta, more precisely; we show that if the original metric g admits a conformal Killing vector (including Killing vectors and homotheties), then the deformation may be carried out in a way such that the flat deformed metric eta 'inherits' that symmetry.

  2. Subexponential estimates in Shirshov's theorem on height

    International Nuclear Information System (INIS)

    Belov, Aleksei Ya; Kharitonov, Mikhail I

    2012-01-01

    Suppose that F 2,m is a free 2-generated associative ring with the identity x m =0. In 1993 Zelmanov put the following question: is it true that the nilpotency degree of F 2,m has exponential growth? We give the definitive answer to Zelmanov's question by showing that the nilpotency class of an l-generated associative algebra with the identity x d =0 is smaller than Ψ(d,d,l), where Ψ(n,d,l)=2 18 l(nd) 3log 3 (nd)+13 d 2 . This result is a consequence of the following fact based on combinatorics of words. Let l, n and d≥n be positive integers. Then all words over an alphabet of cardinality l whose length is not less than Ψ(n,d,l) are either n-divisible or contain x d ; a word W is n-divisible if it can be represented in the form W=W 0 W 1 …W n so that W 1 ,...,W n are placed in lexicographically decreasing order. Our proof uses Dilworth's theorem (according to V.N. Latyshev's idea). We show that the set of not n-divisible words over an alphabet of cardinality l has height h 87 l·n 12log 3 n+48 . Bibliography: 40 titles.

  3. Browder-Krasnoselskii-Type Fixed Point Theorems in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Taoudi Mohamed-Aziz

    2010-01-01

    Full Text Available Abstract We present some fixed point theorems for the sum of a weakly-strongly continuous map and a nonexpansive map on a Banach space . Our results cover several earlier works by Edmunds, Reinermann, Singh, and others.

  4. An imbedding theorem and its applications in degenerate elliptic equations

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-06-01

    We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs

  5. Quantum nonlocality and reality 50 years of Bell's theorem

    CERN Document Server

    Gao, Shan

    2016-01-01

    Description Contents Resources Courses About the Authors Combining twenty-six original essays written by an impressive line-up of distinguished physicists and philosophers of physics, this anthology reflects some of the latest thoughts by leading experts on the influence of Bell's theorem on quantum physics. Essays progress from John Bell's character and background, through studies of his main work, and on to more speculative ideas, addressing the controversies surrounding the theorem, and investigating the theorem's meaning and its deep implications for the nature of physical reality. Combined, they present a powerful comment on the undeniable significance of Bell's theorem for the development of ideas in quantum physics over the past 50 years. Questions surrounding the assumptions and significance of Bell's work still inspire discussion in the field of quantum physics. Adding to this with a theoretical and philosophical perspective, this balanced anthology is an indispensable volume for students and researc...

  6. Analogy to Derive an Extended Pythagorean Theorem to ''N'' Dimensions

    Directory of Open Access Journals (Sweden)

    Acosta-Robledo J.U.

    2012-01-01

    Full Text Available This article demonstrates that it is possible to extend the Pythagorean Theorem to ''N'' dimensions. This demonstration is mainly done based on linear algebra, especially in the vector product of ''N'' dimensions.

  7. Two proofs of Fine's theorem

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    2014-01-01

    Fine's theorem concerns the question of determining the conditions under which a certain set of probabilities for pairs of four bivalent quantities may be taken to be the marginals of an underlying probability distribution. The eight CHSH inequalities are well-known to be necessary conditions, but Fine's theorem is the striking result that they are also sufficient conditions. Here two transparent and self-contained proofs of Fine's theorem are presented. The first is a physically motivated proof using an explicit local hidden variables model. The second is an algebraic proof which uses a representation of the probabilities in terms of correlation functions. - Highlights: • A discussion of the various approaches to proving Fine's theorem. • A new physically-motivated proof using a local hidden variables model. • A new algebraic proof. • A new form of the CHSH inequalities

  8. A Coordinate-Based Proof of the Scallop Theorem

    OpenAIRE

    Ishimoto, Kenta; Yamada, Michio

    2012-01-01

    We reconsider fluid dynamics for a self-propulsive swimmer in Stokes flow. With an exact definition of deformation of a swimmer, a coordinate-based proof is first given to Purcell's scallop theorem including the body rotation.

  9. An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem

    OpenAIRE

    Ephremidze, Lasha

    2010-01-01

    A very simple and short proof of the polynomial matrix spectral factorization theorem (on the unit circle as well as on the real line) is presented, which relies on elementary complex analysis and linear algebra.

  10. Tauberian theorems for generalized functions with values in Banach spaces

    International Nuclear Information System (INIS)

    Drozhzhinov, Yu N; Zav'yalov, B I

    2002-01-01

    We state and prove Tauberian theorems of a new type. In these theorems we give sufficient conditions under which the values of a generalized function (distribution) that are assumed to lie in a locally convex topological space actually belong to some narrower (Banach) space. These conditions are stated in terms of 'general class estimates' for the standard average of this generalized function with a fixed kernel belonging to a space of test functions. The applications of these theorems are based, in particular, on the fact that asymptotical (and some other) properties of the generalized functions under investigation can be described in terms of membership of certain Banach spaces. We apply these theorems to the study of asymptotic properties of solutions of the Cauchy problem for the heat equation in the class of generalized functions of small growth (tempered distributions), and to the study of Banach spaces of Besov-Nikol'skii type

  11. Limit theorems for solutions of stochastic differential equation problems

    Directory of Open Access Journals (Sweden)

    J. Vom Scheidt

    1980-01-01

    Full Text Available In this paper linear differential equations with random processes as coefficients and as inhomogeneous term are regarded. Limit theorems are proved for the solutions of these equations if the random processes are weakly correlated processes.

  12. A priori knowledge and the Kochen-Specker theorem

    International Nuclear Information System (INIS)

    Brunet, Olivier

    2007-01-01

    We introduce and formalize a notion of 'a priori knowledge' about a quantum system, and show some properties about this form of knowledge. Finally, we show that the Kochen-Specker theorem follows directly from this study

  13. On a fixed point theorem Krasnoselskii-Shafer type

    Directory of Open Access Journals (Sweden)

    Bapurao Dhage

    2002-01-01

    Full Text Available In this paper a variant of a fixed point theorem to Krasnoselskii-Schaefer type is proved and it is further applied to certain nonlinear integral equation of mixed type for proving the existence of the solution.

  14. Forest Carbon Uptake and the Fundamental Theorem of Calculus

    Science.gov (United States)

    Zobitz, John

    2013-01-01

    Using the fundamental theorem of calculus and numerical integration, we investigate carbon absorption of ecosystems with measurements from a global database. The results illustrate the dynamic nature of ecosystems and their ability to absorb atmospheric carbon.

  15. A Computer Science Version of Goedel’s Theorem.

    Science.gov (United States)

    1983-08-01

    The author presents a simplified proof of Godel’s theorem by appealing to well-known programming concepts. The significance of Goedel’s result to computer science , mathematics and logic is discussed. (Author)

  16. Two time physics and Hamiltonian Noether theorem for gauge systems

    International Nuclear Information System (INIS)

    Nieto, J. A.; Ruiz, L.; Silvas, J.; Villanueva, V. M.

    2006-01-01

    Motivated by two time physics theory we revisited the Noether theorem for Hamiltonian constrained systems. Our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints

  17. Thermodynamic proof of Rosseland's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, A.M.; Strel' nitskii, V.S. Chugai, N.N.

    1985-11-01

    A proof of Rosseland's theorem for all regions of the spectrum is given on the basis of the use of the brightness temperature to describe a nonequilibrium radiation field. Such a method of proof reveals the simple thermodynamic significance of the theorem. The classical explanation of the fluorescence of gas nebulas in the optical lines of atoms is provided by Rosseland's theorem, that in a three-level quantum system in a field of dilute Planck radiation the direct cycles proceed more rapidly than the reverse cycles. The method presented was used to prove Rosseland's theorem for the Wien part of the spectrum, to which a restriction can be made when the optical fluorescence of gas nebulas is being analyzed. Also considered is the opposite limiting case, which is the Rayleigh-Jeans region, as well as the spectrum as a whole.

  18. Generalized Optical Theorem Detection in Random and Complex Media

    Science.gov (United States)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar

  19. Fatou's Lemma and Lebesgue's convergence theorem for measures

    Directory of Open Access Journals (Sweden)

    Onésimo Hernández-Lerma

    2000-01-01

    Full Text Available Analogues of Fatou's Lemma and Lebesgue's convergence theorems are established for ∫fdμn when {μn} is a sequence of measures. A “generalized” Dominated Convergence Theorem is also proved for the asymptotic behavior of ∫fndμn and the latter is shown to be a special case of a more general result established in vector lattices and related to the Dunford-Pettis property in Banach spaces.

  20. Existence Theorems for Generalized Distance on Complete Metric Spaces

    Directory of Open Access Journals (Sweden)

    Ume JeongSheok

    2010-01-01

    Full Text Available We first introduce the new concept of a distance called -distance, which generalizes -distance, Tataru's distance, and -distance. Then we prove a new minimization theorem and a new fixed point theorem by using a -distance on a complete metric space. Our results extend and unify many known results due to Caristi, Ćirić, Ekeland, Kada-Suzuki-Takahashi, Kannan, Ume, and others.

  1. A short list color proof of Grotzsch's theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We give a short proof of the result that every planar graph of girth $5$is $3$-choosable and hence also of Gr\\"{o}tzsch's theorem saying that everyplanar triangle-free graph is $3$-colorable.......We give a short proof of the result that every planar graph of girth $5$is $3$-choosable and hence also of Gr\\"{o}tzsch's theorem saying that everyplanar triangle-free graph is $3$-colorable....

  2. An Abstract Existence Theorem at Resonance and Its Applications

    Science.gov (United States)

    Ma, Shiwang; Wang, Zhicheng; Yu, Jianshe

    1998-05-01

    By using Brouwer degree theory and a continuation theorem based on Mawhin's coincidence degree, an abstract existence theorem at resonance for operator equations is developed. As applications of this result, some sufficient conditions are given for the existence of periodic solutions of semilinear equations at resonance where the kernel of the linear part has dimensionN(N⩾2). The results due to Nagle and Sinkala are generalized, improved, and unified.

  3. Experimental studies of the transient fluctuation theorem using liquid ...

    Indian Academy of Sciences (India)

    (kχ) of the harmonic potential associated with χ for a given applied voltage can be determined by measuring the thermal fluctuation of χ and by the application of the equipartition theorem kχ = kBT/σ2 χ where σ2 χ is the variance of χ. Equipartition theorem has been used extensively for the study of thermal fluctuations of the.

  4. More on soft theorems: Trees, loops, and strings

    Science.gov (United States)

    Bianchi, Massimo; He, Song; Huang, Yu-tin; Wen, Congkao

    2015-09-01

    We study soft theorems in a broader context, their universality in effective field theories and string theory, as well as continue the analysis of their fate at loop level. In effective field theories with F3 and R3 interactions, the soft theorems are not modified. However, for gravity theories with R2ϕ interactions, the sub-subleading order soft graviton theorem, which is beyond what is implied by the extended Bondi, van der Burg, Metzner, and Sachs symmetry, requires modifications at tree level for nonsupersymmetric theories and at loop level for N ≤4 supergravity due to anomalies. For open and closed superstrings at finite α', via explicit calculation for lower-point examples as well as world sheet operator product expansion analysis for arbitrary multiplicity, we show that scattering amplitudes satisfy the same soft theorem as their field-theory counterpart. This is no longer true for closed bosonic or heterotic strings due to the presence of R2ϕ interactions. We also consider loop corrections to gauge theories in the planar limit, where we show that tree-level soft gluon theorems are respected at the integrand level for 1 ≤N ≤4 SYM. Finally, we discuss the fate of soft theorems for finite loop amplitudes in pure Yang-Mills theory and gravity.

  5. Central limit theorem: the cornerstone of modern statistics.

    Science.gov (United States)

    Kwak, Sang Gyu; Kim, Jong Hae

    2017-04-01

    According to the central limit theorem, the means of a random sample of size, n , from a population with mean, µ, and variance, σ 2 , distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.

  6. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Science.gov (United States)

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  7. Formalization of the Integral Calculus in the PVS Theorem Prover

    Directory of Open Access Journals (Sweden)

    Ricky Wayne Butler

    2009-04-01

    Full Text Available The PVS Theorem prover is a widely used formal verification tool used for the analysis of safetycritical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht’s classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  8. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  9. Deviations from Wick's theorem in the canonical ensemble

    Science.gov (United States)

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  10. Limit theorems for multi-indexed sums of random variables

    CERN Document Server

    Klesov, Oleg

    2014-01-01

    Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes. Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals. The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who ...

  11. Towards a Novel no-hair Theorem for Black Holes

    CERN Document Server

    Hertog, T

    2006-01-01

    We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.

  12. A general product measurability theorem with applications to variational inequalities

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2016-03-01

    Full Text Available This work establishes the existence of measurable weak solutions to evolution problems with randomness by proving and applying a novel theorem on product measurability of limits of sequences of functions. The measurability theorem is used to show that many important existence theorems within the abstract theory of evolution inclusions or equations have straightforward generalizations to settings that include random processes or coefficients. Moreover, the convex set where the solutions are sought is not fixed but may depend on the random variables. The importance of adding randomness lies in the fact that real world processes invariably involve randomness and variability. Thus, this work expands substantially the range of applications of models with variational inequalities and differential set-inclusions.

  13. Quantum de Finetti theorem in phase-space representation

    International Nuclear Information System (INIS)

    Leverrier, Anthony; Cerf, Nicolas J.

    2009-01-01

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form σ xn . Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states).

  14. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open...... thus obtained can be extended to a large class of distributions containing the rapidly decreasing smooth functions and the compactly supported distributions. For these transforms we derive support theorems in which the support of ϕ is (partially) characterized in terms of the support of RPϕ. The proof...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  15. A Macro for Reusing Abstract Functions and Theorems

    Directory of Open Access Journals (Sweden)

    Sebastiaan J. C. Joosten

    2013-04-01

    Full Text Available Even though the ACL2 logic is first order, the ACL2 system offers several mechanisms providing users with some operations akin to higher order logic ones. In this paper, we propose a macro, named instance-of-defspec, to ease the reuse of abstract functions and facts proven about them. Defspec is an ACL2 book allowing users to define constrained functions and their associated properties. It contains macros facilitating the definition of such abstract specifications and instances thereof. Currently, lemmas and theorems derived from these abstract functions are not automatically instantiated. This is exactly the purpose of our new macro. instance-of-defspec will not only instantiate functions and theorems within a specification but also many more functions and theorems built on top of the specification. As a working example, we describe various fold functions over monoids, which we gradually built from arbitrary functions.

  16. A variational proof of Thomson's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Fiolhais, Miguel C.N., E-mail: miguel.fiolhais@cern.ch [Department of Physics, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031 (United States); Department of Physics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); LIP, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Essén, Hanno [Department of Mechanics, Royal Institute of Technology (KTH), Stockholm SE-10044 (Sweden); Gouveia, Tomé M. [Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-08-12

    Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.

  17. On the proof of the first Carnot theorem in thermodynamics

    International Nuclear Information System (INIS)

    Morad, M R; Momeni, F

    2013-01-01

    The proof of the first Carnot theorem in classical thermodynamics is revisited in this study. The underlying conditions of a general proof of this principle presented by Senft (1978 Phys. Educ. 13 35–37) are explored and discussed. These conditions are analysed in more detail using a physical description of heat and work to present a simpler proof of the first principle prior to using the violation of the second law of thermodynamics. Finally, a new simple proof is also presented based on Gibbs relation. This discussion will benefit the teaching of classical thermodynamics and promote better understanding of the proof of the first Carnot theorem in general form. (paper)

  18. Vanishing theorems and effective results in algebraic geometry

    International Nuclear Information System (INIS)

    Demailly, J.P.; Goettsche, L.; Lazarsfeld, R.

    2001-01-01

    The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks

  19. A *-mixing convergence theorem for convex set valued processes

    Directory of Open Access Journals (Sweden)

    A. de Korvin

    1987-01-01

    Full Text Available In this paper the concept of a *-mixing process is extended to multivalued maps from a probability space into closed, bounded convex sets of a Banach space. The main result, which requires that the Banach space be separable and reflexive, is a convergence theorem for *-mixing sequences which is analogous to the strong law of large numbers. The impetus for studying this problem is provided by a model from information science involving the utilization of feedback data by a decision maker who is uncertain of his goals. The main result is somewhat similar to a theorem for real valued processes and is of interest in its own right.

  20. Bell's theorem based on a generalized EPR criterion of reality

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Rosselet, P.

    1993-04-01

    First, the demonstration of Bell's theorem, i.e. of the non-local character of quantum theory, is spelled out using the EPR criterion of reality as premises and a gedanken experiment involving two particles. Then, the EPR criterion is extended to include quantities predicted almost with certainty, and Bell's theorem is demonstrated on these new premises. The same experiment is used but in conditions that become possible in real life, without the requirements of ideal efficiencies and zero background. Very high efficiencies and low background are needed, but these requirements may be met in the future. (author) 1 fig., 11 refs

  1. Towards a Reverse Newman's Theorem in Interactive Information Complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Buhrman, Harry; Koucký, Michal

    2016-01-01

    that uses private randomness and convert it into one that only uses public randomness while preserving the information revealed to each player? We prove that the answer is yes, at least for protocols that use a bounded number of rounds. As an application, we prove new direct sum theorems through......Newman’s theorem states that we can take any public-coin communication protocol and convert it into one that uses only private randomness with only a little increase in communication complexity. We consider a reversed scenario in the context of information complexity: can we take a protocol...

  2. Twelve years before the quantum no-cloning theorem

    Science.gov (United States)

    Ortigoso, Juan

    2018-03-01

    The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.

  3. On Fixed Point Theorems in Probabilistic Metric Spaces and Applications

    Science.gov (United States)

    Goleţ, Ioan; Goleţ, Ionuţ

    2008-09-01

    In [4] S. Gähler formulated an appropriate system of axioms for a distance between three points and developed a theory of 2-metric spaces. A slight enlargement of the concept of 2-metric space was given in [3], where B. C. Dhage studied so called generalized metric spaces. In the present paper we have studied contraction conditions for mappings defined on a class of probabilistic metric space and fixed point theorems for such mappings. As a particular cases we have obtain fixed point theorems for random operator and for mappings defined on deterministic metric spaces.

  4. Weyl type theorems for algebraically Quasi-$\\mathcal{HNP}$ operators

    OpenAIRE

    Rashid, M. H. M.; Prasad, T.

    2015-01-01

    In this paper, by introducing the class of quasi hereditarily normaloid polaroid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations $f(T + A)$, where $A$ is algebraic and commutes with $T,$ and $f$ is an analytic function, defined on an open neighborhood of the spectrum of $T +A$, such that $f$ is non constant on each of the c...

  5. A vizing-type theorem for matching forests

    OpenAIRE

    Keijsper, J.C.M.

    2000-01-01

    A well known Theorem of Vizing states that one can colour the edges of a graph by $\\Delta +\\alpha$ colours, such that edges of the same colour form a matching. Here, $\\Delta$ denotes the maximum degree of a vertex, and $\\alpha$ the maximum multiplicity of an edge in the graph. An analogue of this Theorem for directed graphs was proved by Frank. It states that one can colour the arcs of a digraph by $\\Delta +\\alpha$ colours, such that arcs of the same colour form a branching. For a digraph, $\\...

  6. Strong limit theorems in noncommutative L2-spaces

    CERN Document Server

    Jajte, Ryszard

    1991-01-01

    The noncommutative versions of fundamental classical results on the almost sure convergence in L2-spaces are discussed: individual ergodic theorems, strong laws of large numbers, theorems on convergence of orthogonal series, of martingales of powers of contractions etc. The proofs introduce new techniques in von Neumann algebras. The reader is assumed to master the fundamentals of functional analysis and probability. The book is written mainly for mathematicians and physicists familiar with probability theory and interested in applications of operator algebras to quantum statistical mechanics.

  7. Decomposing Borel functions using the Shore-Slaman join theorem

    OpenAIRE

    Kihara, Takayuki

    2013-01-01

    Jayne and Rogers proved that every function from an analytic space into a separable metric space is decomposable into countably many continuous functions with closed domains if and only if the preimage of each $F_\\sigma$ set under it is again $F_\\sigma$. Many researchers conjectured that the Jayne-Rogers theorem can be generalized to all finite levels of Borel functions. In this paper, by using the Shore-Slaman join theorem on the Turing degrees, we show the following variant of the Jayne-Rog...

  8. Testing subleading multiple soft graviton theorem for CHY prescription

    Science.gov (United States)

    Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay

    2018-01-01

    In arXiv:1707.06803 we derived the subleading multiple soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. In this paper we verify this explicitly using the CHY formula for tree level scattering amplitudes of arbitrary number of gravitons in Einstein gravity. We pay special care to fix the signs of the amplitudes and resolve an apparent discrepancy between our general results in arXiv:1707.06803 and previous results on soft graviton theorem from CHY formula.

  9. Abelian theorems for the stieltjes transform of functions, II

    Directory of Open Access Journals (Sweden)

    Richard D. Carmichael

    1981-01-01

    is a result in which known behavior of the function as its domain variable approaches zero (approaches ∞ is used to infer the behavior of the transform as its domain variable approaches zero (approaches ∞. We obtain such theorems in this paper concerning the Stieltjes transform. In our results all parameters are complex; the variable s of the transform is complex in the right half plane; and the initial (final value Abelian theorems are obtained as |s|→0(|s|→∞ within an arbitrary wedge in the right half plane.

  10. Non-renormalization theorems andN=2 supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Butter, Daniel; Wit, Bernard de; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed

  11. Refinement of Representation Theorems for Context-Free Languages

    Science.gov (United States)

    Fujioka, Kaoru

    In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L = h (D ∩ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3, 0) and strictly 4-testable languages.

  12. Restriction Theorem for Principal bundles in Arbitrary Characteristic

    DEFF Research Database (Denmark)

    Gurjar, Sudarshan

    2015-01-01

    The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...

  13. An Extension of the Mean Value Theorem for Integrals

    Science.gov (United States)

    Khalili, Parviz; Vasiliu, Daniel

    2010-01-01

    In this note we present an extension of the mean value theorem for integrals. The extension we consider is motivated by an older result (here referred as Corollary 2), which is quite classical for the literature of Mathematical Analysis or Calculus. We also show an interesting application for computing the sum of a harmonic series.

  14. A Basic Elementary Extension of the Duchet-Meyniel Theorem

    DEFF Research Database (Denmark)

    Pedersen, Anders Sune; Toft, Bjarne

    2010-01-01

    $ by $2\\alpha - 2$ when $\\alpha$ is at least 3. In this paper a basic elementary extension of the Theorem of Duchet and Meyniel is presented. This may be of help to avoid dealing with basic cases when looking for more substantial improvements. The main unsolved problem (due to Seymour) is to improve, even...

  15. Multiphonon theory: generalized Wick's theorem and recursion formulas

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1982-04-01

    Overlaps and matrix elements of one and two-body operators are calculated in a space spanned by multiphonons of different types taking properly the Pauli principle into account. Two methods are developped: a generalized Wick's theorem dealing with new contractions and recursion formulas well suited for numerical applications

  16. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  17. A general theorem characterizing some absolute summability methods

    Indian Academy of Sciences (India)

    ... theorem is given which gives the necessary and sufficient conditions satisfied by a sequence ( n ) in order to have the series ∑ a n n summable to || whenever ∑ a n is summable to || for some summability method . Author Affiliations. W T Sulaiman1. Ajman University, P.O. Box 346, Ajman, United Arab Emirates ...

  18. The Unforgettable Experience of a Workshop on Pythagoras Theorem

    Science.gov (United States)

    Arwani, Salima Shahzad

    2011-01-01

    The author conducted a workshop with colleagues in which awareness of Pythagoras' theorem was raised. This workshop was an unforgettable event in the author's life because it was the first time that she had interacted with teachers from a different school system, and it allowed her to develop presentation skills and confidence in her own…

  19. The Great Theorems of Mathematics -8-6 ...

    Indian Academy of Sciences (India)

    cal culture by reading books that reveal the exciting, inspirational, and human aspects of mathematics. This is ... theorem using modern terminology. He faithfully follows that scheme throughout the Journey. The author ... turer can use it as a source book for lectures. - either in the classroom or on more popu- lar occasions.

  20. A stochastic Ergodic Theorem in Von-Neumann algebras | Tijani ...

    African Journals Online (AJOL)

    In this paper we introduce the notion of stochastic convergence of τ- measurable operators and prove a noncommutative extension of pointwise ergodic theorem of G. D. Birkhoff by means of it by using the techniques developed by Petz in [12] Journal of the Nigerian Association of Mathematical Physics Vol. 9 2005: pp.

  1. Fluctuation theorem for the effusion of an ideal gas.

    Science.gov (United States)

    Cleuren, B; Van den Broeck, C; Kawai, R

    2006-08-01

    The probability distribution of the entropy production for the effusion of an ideal gas between two compartments is calculated explicitly. The fluctuation theorem is verified. The analytic results are in good agreement with numerical data from hard disk molecular dynamics simulations.

  2. A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems.

    Science.gov (United States)

    Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok

    2018-03-17

    Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target's trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes.

  3. A Classroom Simulation of the Central Limit Theorem.

    Science.gov (United States)

    McLean, James E.

    This simple method for simulating the Central Limit Theorem with students in a beginning nonmajor statistics class requires students to use dice to simulate drawing samples from a discrete uniform distribution. On a chalkboard, the distribution of sample means is superimposed on a graph of the discrete uniform distribution to provide visual…

  4. Understanding the Sampling Distribution and the Central Limit Theorem.

    Science.gov (United States)

    Lewis, Charla P.

    The sampling distribution is a common source of misuse and misunderstanding in the study of statistics. The sampling distribution, underlying distribution, and the Central Limit Theorem are all interconnected in defining and explaining the proper use of the sampling distribution of various statistics. The sampling distribution of a statistic is…

  5. The Jordan curve theorem in the Khalimsky plane

    Directory of Open Access Journals (Sweden)

    Ezzeddine Bouassida

    2008-10-01

    Full Text Available The connectivity in Alexandroff topological spaces is equivalent to the path connectivity. This fact gets some specific properties to Z2, equipped with the Khalimsky topology. This allows a sufficiently precise description of the curves in Z2 and permit to prove a digital Jordan curve theorem in Z2.

  6. Fixed point theorems for densifying mappings and compact mappings

    Directory of Open Access Journals (Sweden)

    Zeqing Liu

    2002-01-01

    Full Text Available The purpose of this note is to establish fixed point theorems for densifying mappings and compact mappings which are contractive in metric spaces and to investigate the existence of fixed points for a family of mappings in bounded metric spaces. The results of this note generalize the results of Bailey (1966 and Liu (1994.

  7. Babylonian Pythagoras' Theorem, the Early History of Zero and a ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 1. Babylonian Pythagoras' Theorem, the Early History of Zero and a Polemic on the Study of the History of Science. Rahul Roy. General Article Volume 8 Issue 1 January 2003 pp 30-40 ...

  8. A Converse to the Cayley-Hamilton Theorem

    Indian Academy of Sciences (India)

    Polynomials Satisfied by Square Matrices: A. Converse to the Cayley-Hamilton Theorem. Anandam Banerjee. Some Linear Algebra. Given a matrix A E Mn( R), the polynomial XA(X) = det(A - xl) is called the characteristic polynomial of. A. We can also define it for matrices over C or more generally for any arbitrary field K, ...

  9. An Elementary Proof of a Converse Mean-Value Theorem

    Science.gov (United States)

    Almeida, Ricardo

    2008-01-01

    We present a new converse mean value theorem, with a rather elementary proof. [The work was supported by Centre for Research on Optimization and Control (CEOC) from the "Fundacaopara a Ciencia e a Tecnologia" FCT, co-financed by the European Community Fund FEDER/POCTI.

  10. Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics

    Czech Academy of Sciences Publication Activity Database

    Glivický, Petr; Kala, V.

    2017-01-01

    Roč. 63, 3-4 (2017), s. 162-174 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : Fermat's last theorem * Catalan's conjecture Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 0.250, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/malq.201500069/full

  11. Transient state work fluctuation theorem for a classical harmonic ...

    Indian Academy of Sciences (India)

    Abstract. Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative.

  12. Regularity theorem for functions that are extremal to Paley inequality ...

    African Journals Online (AJOL)

    Regularity theorem for functions that are extremal to Paley inequality. Seid Mohammed. Abstract. In this paper we study the asymptotic behavior of functions that are extremal to the inequality introduced by Paley (1932) via a normal family of subharmonic functions. SINET: Ethiopian Journal of Science Volume 24, No.

  13. Reflections on the PBR Theorem: Reality Criteria & Preparation Independence

    Directory of Open Access Journals (Sweden)

    Shane Mansfield

    2014-12-01

    Full Text Available This paper contains initial work on attempting to bring recent developments in the foundations of quantum mechanics concerning the nature of the wavefunction within the scope of more logical and structural methods. A first step involves dualising a criterion for the reality of the wavefunction proposed by Harrigan & Spekkens, which was central to the Pusey-Barrett-Rudolph theorem. The resulting criterion has several advantages, including the avoidance of certain technical difficulties relating to sets of measure zero. By considering the 'reality' not of the wavefunction but of the observable properties of any ontological physical theory a new characterisation of non-locality and contextuality is found. Secondly, a careful analysis of preparation independence, one of the key assumptions of the PBR theorem, leads to a precise analogy with the kind of locality prohibited by Bell's theorem. Motivated by this, we propose a weakening of the assumption to something analogous to no-signalling. This amounts to allowing global or non-local correlations in the joint ontic state, which nevertheless do not allow for superluminal signalling. This is, at least, consistent with the Bell and Kochen-Specker theorems. We find a counter-example to the PBR argument, which violates preparation independence, but does satisfy this physically motivated assumption. The question of whether the PBR result can be strengthened to hold under the relaxed assumption is therefore posed.

  14. Another proof of Gell-Mann and Low's theorem

    OpenAIRE

    Molinari, Luca Guido

    2006-01-01

    The theorem by Gell-Mann and Low is a cornerstone in QFT and zero-temperature many-body theory. The standard proof is based on Dyson's time-ordered expansion of the propagator; a proof based on exact identities for the time-propagator is here given.

  15. Another proof of Gell-Mann and Low's theorem

    International Nuclear Information System (INIS)

    Molinari, Luca Guido

    2007-01-01

    The theorem by Gell-Mann and Low is a cornerstone in quantum field theory and zero-temperature many-body theory. The standard proof is based on Dyson's time-ordered expansion of the propagator; a proof based on exact identities for the time propagator is here given

  16. Lyapunov convexity type theorems for non-atomic vector measures ...

    African Journals Online (AJOL)

    atomic, and σ-additive X-valued measure has a convex closure. We give a survey of Lyapunov convexity type theorems pertaining to this problem. We also give a necessary and sufficient condition that will insure the convexity of the closure of the ...

  17. Critical types of Krasnoselskii fixed point theorems in weak topologies

    African Journals Online (AJOL)

    In this note, by means of the technique of measures of weak noncompactness, we establish a generalized form of fixed point theorem for the sum of T + S in weak topology setups of a metrizable locally convex space, where S is not weakly compact, I − T allows to be noninvertible, and T is not necessarily continuous.

  18. Transient state work fluctuation theorem for a classical harmonic ...

    Indian Academy of Sciences (India)

    transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the ...

  19. Asymptotic representation theorems for poverty indices | Lo | Afrika ...

    African Journals Online (AJOL)

    Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...

  20. The generalized Mayer theorem in the approximating hamiltonian method

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Bogoliubov, N.N. Jr.; Kurbatov, A.M.

    1982-07-01

    With the help of the generalized Mayer theorem we obtain the improved inequality for free energies of model and approximating systems, where only ''connected parts'' over the approximating hamiltonian are taken into account. For the concrete system we discuss the problem of convergency of appropriate series of ''connected parts''. (author)

  1. Modulus of smoothness and theorems concerning approximation on compact groups

    Directory of Open Access Journals (Sweden)

    H. Vaezi

    2003-01-01

    Full Text Available We consider the generalized shift operator defined by (Shuf(g=∫Gf(tut−1gdt on a compact group G, and by using this operator, we define “spherical” modulus of smoothness. So, we prove Stechkin and Jackson-type theorems.

  2. Bounding the number of remarkable values via Jouanolou's theorem

    OpenAIRE

    Chèze , Guillaume

    2015-01-01

    In this article we bound the number of remarkable values of a polynomial vector field. The proof is short and based on Jouanolou's theorem about rational first integrals of planar polynomial derivations. Our bound is given in term of the size of a Newton polygon associated to the vector field. We prove that this bound is almost reached.

  3. An analogous of Jouanolou's Theorem in positive characteristic

    OpenAIRE

    Pereira, Jorge Vitorio

    2000-01-01

    We show that a generic vector field on an affine space of positive characteristic admits an invariant algebraic hypersurface. This contrast with Jouanolou's Theorem that shows that in characteristic zero the situation is completely opposite. That is a generic vector field in the complex plane does not admit any invariant algebraic curve.

  4. Bounding the number of remarkable values via Jouanolou's theorem

    Science.gov (United States)

    Chèze, Guillaume

    2015-05-01

    In this article we bound the number of remarkable values of a polynomial vector field. The proof is short and based on Jouanolou's theorem about rational first integrals of planar polynomial derivations. Our bound is given in term of the size of a Newton polygon associated to the vector field. We prove that this bound is almost reached.

  5. Szegö's theorem on Parreau-Widom sets

    DEFF Research Database (Denmark)

    Christiansen, Jacob Stordal

    2012-01-01

    In this paper, we generalize Szego's theorem for orthogonal polynomials on the real line to infinite gap sets of Parreau–Widom type. This notion includes Cantor sets of positive measure. The Szego condition involves the equilibrium measure which in turn is absolutely continuous. Our approach builds...

  6. The Wiener-Khinchin theorem and recurrence quantification

    Energy Technology Data Exchange (ETDEWEB)

    Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653 W. Congress, Chicago, IL 60612 (United States)], E-mail: jzbilut@rush.edu; Marwan, Norbert [Potsdam Institute for Climate Impact Research (PIK), 14412 Potsdam (Germany)

    2008-10-27

    The Wiener-Khinchin theorem states that the power spectrum is the Fourier transform of the autocovariance function. One form of the autocovariance function can be obtained through recurrence quantification. We show that the advantage of defining the autocorrelation function with recurrences can demonstrate higher dimensional dynamics.

  7. Rigidity theorem for Willmore surfaces in a sphere

    Indian Academy of Sciences (India)

    (Math. Sci.) Vol. 126, No. 2, May 2016, pp. 253–260. c Indian Academy of Sciences. Rigidity theorem for Willmore surfaces in a sphere. HONGWEI XU1 and DENGYUN YANG2,∗. 1Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027,. People's Republic of China. 2College of Mathematics and ...

  8. Sturm-Picone type theorems for nonlinear differential systems

    Directory of Open Access Journals (Sweden)

    Aydin Tiryaki

    2015-06-01

    Full Text Available In this article, we establish a Picone-type inequality for a pair of first-order nonlinear differential systems. By using this inequality, we give Sturm-Picone type comparison theorems for these systems and a special class of second-order half-linear equations with damping term.

  9. Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics

    Czech Academy of Sciences Publication Activity Database

    Glivický, Petr; Kala, V.

    2017-01-01

    Roč. 63, 3-4 (2017), s. 162-174 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : Fermat's last theorem * Catalan's conjecture Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.250, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/malq.201500069/full

  10. Negating Four Color Theorem with Neutrosophy and Quadstage Method

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2015-03-01

    Full Text Available With the help of Neutrosophy and Quad-stage Method, the proof for negation of “the four color theorem” is given. In which the key issue is to consider the color of the boundary, thus “the two color theorem” and “the five color theorem” are derived to replace "the four color theorem".

  11. A note on the Fuglede–Putnam theorem

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 2. A Note on the Fuglede-Putnam Theorem. Fotios C Paliogiannis. Volume 123 Issue 2 May 2013 ...

  12. On the Applicability of the Surface Equivalence Theorem Inside Enclosures

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    A scenario of a generic printed circuit board (PCB) representing an electronic module inside a metallic enclosure is studied numerically. Following the surface equivalence theorem, the PCB is replaced with surface currents running on a Huygens box (HB) inside the enclosure and near-field errors w...

  13. A General Representation Theorem for Integrated Vector Autoregressive Processes

    DEFF Research Database (Denmark)

    Franchi, Massimo

    We study the algebraic structure of an I(d) vector autoregressive process, where d is restricted to be an integer. This is useful to characterize its polynomial cointegrating relations and its moving average representation, that is to prove a version of the Granger representation theorem valid...

  14. Radon transformation on reductive symmetric spaces: support theorems

    NARCIS (Netherlands)

    Kuit, J.J.|info:eu-repo/dai/nl/313872589

    2011-01-01

    In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.

  15. The Second Fundamental Theorem of Welfare Economics: A Pedagogical Note

    OpenAIRE

    Parrinello Sergio

    1998-01-01

    The author extends the criticism that W. Bryant (1994) levelled against the usual treatment given to the Second Fundamental Theorem of Welfare Economics in many microeconomics textbooks and economic journal literature. He argues that the omission of basic caveats makes the usual interpretation misleading and an obstacle to better economic education.

  16. Pólya's One Theorem with 100 Pages of Applications

    Indian Academy of Sciences (India)

    IAS Admin

    before proceeding to some other applications of Pólya's theorem. As mentioned earlier, one could assign a value for each shape/colour in R and enumerate the number of configurations with a given value. It is convenient to constrain values of shapes to be non-negative integers. One forms the generating function c(x) = c0 ...

  17. A vizing-type theorem for matching forests

    NARCIS (Netherlands)

    Keijsper, J.C.M.

    2000-01-01

    A well known Theorem of Vizing states that one can colour the edges of a graph by $\\Delta +\\alpha$ colours, such that edges of the same colour form a matching. Here, $\\Delta$ denotes the maximum degree of a vertex, and $\\alpha$ the maximum multiplicity of an edge in the graph. An analogue of this

  18. Modified intuitionistic fuzzy metric spaces and some fixed point theorems

    International Nuclear Information System (INIS)

    Saadati, R.; Sedghi, S.; Shobe, N.

    2008-01-01

    Since the intuitionistic fuzzy metric space has extra conditions (see [Gregori V, Romaguera S, Veereamani P. A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006;28:902-5]). In this paper, we consider modified intuitionistic fuzzy metric spaces and prove some fixed point theorems in these spaces. All the results presented in this paper are new

  19. The Semantic Isomorphism Theorem in Abstract Algebraic Logic

    Czech Academy of Sciences Publication Activity Database

    Moraschini, Tommaso

    2016-01-01

    Roč. 167, č. 12 (2016), s. 1298-1331 ISSN 0168-0072 R&D Projects: GA ČR GA13-14654S Institutional support: RVO:67985807 Keywords : algebraizable logic s * abstract algebraic logic * structural closure operators * semantic isomorphism theorem * evaluational frames * compositional lattice Subject RIV: BA - General Mathematics Impact factor: 0.647, year: 2016

  20. Externalities and the Coase Theorem: A Diagrammatic Presentation

    Science.gov (United States)

    Halteman, James

    2005-01-01

    In intermediate microeconomic textbooks the reciprocal nature of externalities is presented using numerical examples of costs and benefits. This treatment of the Coase theorem obscures the fact that externality costs and benefits are best understood as being on a continuum where costs vary with the degree of intensity of the externality. When…

  1. Farmer Brown v. Rancher Wyatt: Teaching the Coase Theorem

    Science.gov (United States)

    Gourley, Patrick

    2018-01-01

    The Coase Theorem is a fundamental tenet of environmental economics and is taught to thousands of principles of microeconomics students each year. Its counterintuitive conclusion, that a Pareto optimal solution can result between private parties regardless of the initial allocation of property rights over a scarce resource, is difficult for…

  2. No-go theorem for static boson stars

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2018-03-01

    Full Text Available It is proved that self-gravitating static scalar fields whose self-interaction potential V(ψ2 is a monotonically increasing function of its argument cannot form spherically symmetric asymptotically flat bound matter configurations. Our compact theorem rules out, in particular, the existence of spatially regular static boson stars made of nonlinear massive scalar fields.

  3. Cowling–Price Theorem and Characterization of Heat Kernel on ...

    Indian Academy of Sciences (India)

    We extend the uncertainty principle, the Cowling–Price theorem, on non-compact Riemannian symmetric spaces . We establish a characterization of the heat kernel of the Laplace–Beltrami operator on from integral estimates of the Cowling–Price type.

  4. Experimental studies of the transient fluctuation theorem using liquid ...

    Indian Academy of Sciences (India)

    Boltzmann constant and T being the absolute temperature of the system, thermal noise is expected to play an important role. In particular, the validity of the second law of thermodynamics for small systems is under considerable debate since the time of Boltzmann. Recently, a nonequilibrium fluctuation theorem (FT) known.

  5. Transient state work fluctuation theorem for a classical harmonic ...

    Indian Academy of Sciences (India)

    Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we ...

  6. Cowling–Price theorem and characterization of heat kernel on ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Hardy's theorem; spherical harmonics; symmetric space; Jacobi function; heat kernel. 1. Introduction. Our starting point in this paper is the classical Hardy's ... solutions of the heat equation of the Laplace–Beltrami operator. .... similar argument with the role of ˜z and zn reversed and the induction hypothesis for d =.

  7. A general theorem characterizing some absolute summability methods

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Ajman University, P.O. Box 346, Ajman, United Arab Emirates. MS received 29 October 2001; revised 26 March 2002. Abstract. A general theorem is given which gives the necessary and sufficient con- ditions satisfied by a sequence (εn) in order to have the series. ∑ anεn summable to |A| whenever. ∑ an is summable to ...

  8. Hamiltonian Noether theorem for gauge systems and two time physics

    International Nuclear Information System (INIS)

    Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J

    2005-01-01

    The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics

  9. Fluctuation theorems and orbital magnetism in nonequilibrium state

    Indian Academy of Sciences (India)

    We study Langevin dynamics of a driven charged particle in the presence as well as in the absence of magnetic field. We discuss the validity of various work fluctuation theorems using different model potentials and external drives. We also show that one can generate an orbital magnetic moment in a nonequilibrium state ...

  10. Instability of Nagaoka's Theorem within The Hubbard Model ...

    African Journals Online (AJOL)

    Hence the t – J model is a better model for studying magnetism than the t – U model. Investigation also revealed that the inclusion of the on-site Coulomb interaction term U, in the t – J model enhances ferromagnetic tendencies in the systems studied. In this work, Nagaoka's theorem on ferromagnetism has been extended ...

  11. A very simple proof of Pascal's hexagon theorem and some ...

    Indian Academy of Sciences (India)

    In this article we present a simple and elegant algebraic proof of Pascal's hexagon theorem which requires only knowledge of basics on conic sections without theory of projective transformations. Also, we provide an efficient algorithm for finding an equation of the conic containing five given points and a criterion for ...

  12. The Nielsen-Ninomiya theorem, \\renewcommand{\\P}{{{ P}}} \

    Science.gov (United States)

    Chernodub, M. N.

    2017-09-01

    The Nielsen-Ninomiya theorem implies that any local, Hermitian and translationally invariant lattice action in even-dimensional spacetime possesses an equal number of left- and right-handed chiral fermions. We argue that if one sacrifices the property of Hermiticity while keeping the locality and translation invariance, and imposing invariance of the action under the space-time ( \\renewcommand{\\P}{{{ P}}} \

  13. An Experiment on a Physical Pendulum and Steiner's Theorem

    Science.gov (United States)

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  14. Limit Theorems For the Grover Walk Without Memory

    OpenAIRE

    Ampadu, Clement

    2011-01-01

    We consider the Grover walk as a 4-state quantum walk without memory in one dimension. The walker in our 4-state quantum walk moves to the left or right. We compute the stationary distribution of the walk, in addition, we obtain the weak limit theorem

  15. The Completeness Theorem of Gödel - An Introduction to ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. The Completeness Theorem of Gödel - An Introduction to Mathematical Logic. S M Srivastava. General Article Volume 6 Issue 7 July 2001 pp 29-41. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. No-go theorem for static boson stars

    Science.gov (United States)

    Hod, Shahar

    2018-03-01

    It is proved that self-gravitating static scalar fields whose self-interaction potential V (ψ2) is a monotonically increasing function of its argument cannot form spherically symmetric asymptotically flat bound matter configurations. Our compact theorem rules out, in particular, the existence of spatially regular static boson stars made of nonlinear massive scalar fields.

  17. Testing the No-Hair Theorem with Sgr A*

    Directory of Open Access Journals (Sweden)

    Tim Johannsen

    2012-01-01

    Full Text Available The no-hair theorem characterizes the fundamental nature of black holes in general relativity. This theorem can be tested observationally by measuring the mass and spin of a black hole as well as its quadrupole moment, which may deviate from the expected Kerr value. Sgr A*, the supermassive black hole at the center of the Milky Way, is a prime candidate for such tests thanks to its large angular size, high brightness, and rich population of nearby stars. In this paper, I discuss a new theoretical framework for a test of the no-hair theorem that is ideal for imaging observations of Sgr A* with very long baseline interferometry (VLBI. The approach is formulated in terms of a Kerr-like spacetime that depends on a free parameter and is regular everywhere outside of the event horizon. Together with the results from astrometric and timing observations, VLBI imaging of Sgr A* may lead to a secure test of the no-hair theorem.

  18. Quasi-gedanken experiment challenging the no-signalling theorem

    Indian Academy of Sciences (India)

    Keywords. Quantum information; quantum entanglement; no-signalling theorem ... the construction of empirically testable schemes wherein superluminal exchange of information can occur. In light of this thesis,we present a potentially feasible quantum-optical scheme that purports to enable superluminal signalling.

  19. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    Science.gov (United States)

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  20. Can we make the second incompleteness theorem coordinate free?

    NARCIS (Netherlands)

    Visser, A.

    2008-01-01

    Is it possible to give a coordinate free formulation of the Second Incompleteness Theorem? We pursue one possible approach to this question. We show that (i) cutfree consistency for finitely axiomatized theories can be uniquely characterized modulo EA-provable equivalence, (ii) consistency

  1. Gauss-Bonnet's Theorem and Closed Frenet Frames

    DEFF Research Database (Denmark)

    Røgen, Peter

    1997-01-01

    curves are found using Gauss-Bonnet's Theorem after cutting the curve into simple closed sub-curves. At this point an error in the litterature is corrected. If the spherecal curve is the tangent indicatrix of a space-curve we obtain a new short proof of a formula for integrated torsion presented...

  2. Quantum optical ABCD theorem in two-mode case

    International Nuclear Information System (INIS)

    Fan Hongyi; Hu Liyun

    2008-01-01

    By introducing the entangled Fresnel operator (EFO) this paper demonstrates that there exists ABCD theorem for two-mode entangled case in quantum optics. The canonical operator method as mapping of ray-transfer ABCD matrix is explicitly shown by EFO's normally ordered expansion through the coherent state representation and the technique of integration within an ordered product of operators

  3. Uniqueness theorems for differential pencils with eigenparameter boundary conditions and transmission conditions

    Science.gov (United States)

    Yang, Chuan-Fu

    Inverse spectral problems are considered for differential pencils with boundary conditions depending polynomially on the spectral parameter and with a finite number of transmission conditions. We give formulations of the associated inverse problems such as Titchmarsh-Weyl theorem, Hochstadt-Lieberman theorem and Mochizuki-Trooshin theorem, and prove corresponding uniqueness theorems. The obtained results are generalizations of the similar results for the classical Sturm-Liouville operator on a finite interval.

  4. Weak Characterizations of Stochastic Integrability and Dudley's Theorem in Infinite Dimensions

    Czech Academy of Sciences Publication Activity Database

    Ondreját, Martin; Veraar, M.

    2014-01-01

    Roč. 27, č. 4 (2014), s. 1350-1374 ISSN 0894-9840 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic integration in Banach spaces * almost sure limit theorems * Dudley representation theorem * universal representation theorem * weak characterization of stochastic integrability * Doob representation theorem Subject RIV: BA - General Mathematics Impact factor: 0.857, year: 2014 http://library.utia.cas.cz/separaty/2013/SI/ondrejat-0392394.pdf

  5. Using Computers To Teach the Concepts of the Central Limit Theorem.

    Science.gov (United States)

    Mittag, Kathleen Cage

    A pivotal theorem which is of critical importance to statistical inference in probability and statistics is the Central Limit Theorem (CLT). The theorem concerns the sampling distribution of random samples taken from a population, including population distributions that do not have to be normal distributions. This paper contains a brief history of…

  6. Action-angle variables and a KAM theorem for b-Poisson manifolds

    OpenAIRE

    Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey

    2015-01-01

    In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.

  7. Two fixed point theorems on quasi-metric spaces via mw- distances

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, C.

    2017-07-01

    In this paper we prove a Banach-type fixed point theorem and a Kannan-type theorem in the setting of quasi-metric spaces using the notion of mw-distance. These theorems generalize some results that have recently appeared in the literature. (Author)

  8. Logical strength of complexity theory and a formalization of the PCP theorem in bounded arithmetic

    OpenAIRE

    Pich, Ján

    2014-01-01

    We present several known formalizations of theorems from computational complexity in bounded arithmetic and formalize the PCP theorem in the theory PV1 (no formalization of this theorem was known). This includes a formalization of the existence and of some properties of the (n,d,{\\lambda})-graphs in PV1.

  9. Graph-like continua, augmenting arcs, and Menger's theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten; Vella, Antoine

    2008-01-01

    , connected graph. While closed subsets of such a space behave nicely in that they are compact and locally connected (and therefore locally arcwise connected), the general subspaces do not: They may be connected without being arcwise connected. Nevertheless, they satisfy Menger's Theorem.......We show that an adaptation of the augmenting path method for graphs proves Menger's Theorem for wide classes of topological spaces. For example, it holds for locally compact, locally connected, metric spaces, as already known. The method lends itself particularly well to another class of spaces......, namely the locally arcwise connected, hereditarily locally connected, metric spaces. Finally, it applies to every space where every point can be separated from every closed set not containing it by a finite set, in particular to every subspace of the Freudenthal compactification of a locally finite...

  10. Rotating and rolling rigid bodies and the "hairy ball" theorem

    Science.gov (United States)

    Bormashenko, Edward; Kazachkov, Alexander

    2017-06-01

    Rotating and rolling rigid bodies exemplify a fascinating theorem of topology, jokingly called the "hairy ball" theorem, which demands that any continuous tangent vector field on the sphere has at least one point where the field is zero. We demonstrate via a gedanken experiment how drilling through a rotating ball, thereby converting it into a torus, leads to the elimination of zero-velocity points on the ball surface. Using the same reasoning, zero-velocity points can be removed from the surface of a drilled spinning top. We discuss the location of zero-velocity points on the surfaces of rigid bodies rolling with no slip and with slip. Observations made from different reference frames identify various zero-velocity points. Illustrative experiments visualizing zero-velocity points are presented.

  11. Learning-assisted theorem proving with millions of lemmas.

    Science.gov (United States)

    Kaliszyk, Cezary; Urban, Josef

    2015-07-01

    Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.

  12. Strong-Weak CP Hierarchy from Non-Renormalization Theorems

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, Gudrun

    2002-01-28

    We point out that the hierarchy between the measured values of the CKM phase and the strong CP phase has a natural origin in supersymmetry with spontaneous CP violation and low energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the strong CP phase is protected by an exact non-renormalization theorem while the CKM phase is not. We present explicit examples of models which exploit this fact and discuss corrections to the non-renormalization theorem in the presence of supersymmetry breaking. This framework for solving the strong CP problem has generic predictions for the superpartner spectrum, for CP and flavor violation, and predicts a preferred range of values for electric dipole moments.

  13. Fluctuation-dissipation theorem for frequency-dependent specific heat

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Nielsen, Johannes K.

    1996-01-01

    A derivation of the fluctuation-dissipation (FD) theorem for the frequency-dependent specific heat of a system described by a master equation is presented. The FD theorem is illustrated by a number of simple examples, including a system described by a linear Langevin equation, a two-level system......, and a system described by the energy master equation. It is shown that for two quite different models with low-energy cutoffs—a collection of two-level systems and a system described by the energy master equation—the frequency-dependent specific heat in dimensionless units becomes universal at low temperatures......, i.e., independent of both energy distribution and temperature. These two models give almost the same universal frequency-dependent specific heat, which compares favorably to experiments on supercooled alcohols....

  14. Whiteheadian approach to quantum theory and the generalized bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1979-01-01

    The model of the world proposed by Whitehead provides a natural theoretical framework in which to imbed quantum theory. This model accords with the ontological ideas of Heisenberg, and also with Einstein's view that physical theories should refer nominally to the objective physical situation, rather than our knowledge of that system. Whitehead imposed on his model the relativistic requirement that what happens in any given spacetime region be determined only by what has happened in its absolute past, i.e., in the backward light-cone drawn from that region. This requirement must be modified, for it is inconsistent with the implications of quantum theory expressed by a generalized version of Bell's theorem. Revamping the causal spacetime structure of the Whitehead-Heisenberg ontology to bring it into accord with the generalized Bell's theorem creates the possibility of a nonlocal causal covariant theory that accords with the statistical prediction of quantum theory

  15. Euler's pioneering equation the most beautiful theorem in mathematics

    CERN Document Server

    Wilson, Robin

    2018-01-01

    In 1988 The Mathematical Intelligencer, a quarterly mathematics journal, carried out a poll to find the most beautiful theorem in mathematics. Twenty-four theorems were listed and readers were invited to award each a 'score for beauty'. While there were many worthy competitors, the winner was 'Euler's equation'. In 2004 Physics World carried out a similar poll of 'greatest equations', and found that among physicists Euler's mathematical result came second only to Maxwell's equations. The Stanford mathematician Keith Devlin reflected the feelings of many in describing it as "like a Shakespearian sonnet that captures the very essence of love, or a painting which brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence."

  16. A Fusion Link Prediction Method Based on Limit Theorem

    Directory of Open Access Journals (Sweden)

    Yiteng Wu

    2017-12-01

    Full Text Available The theoretical limit of link prediction is a fundamental problem in this field. Taking the network structure as object to research this problem is the mainstream method. This paper proposes a new viewpoint that link prediction methods can be divided into single or combination methods, based on the way they derive the similarity matrix, and investigates whether there a theoretical limit exists for combination methods. We propose and prove necessary and sufficient conditions for the combination method to reach the theoretical limit. The limit theorem reveals the essence of combination method that is to estimate probability density functions of existing links and nonexistent links. Based on limit theorem, a new combination method, theoretical limit fusion (TLF method, is proposed. Simulations and experiments on real networks demonstrated that TLF method can achieve higher prediction accuracy.

  17. Entanglement, space-time and the Mayer-Vietoris theorem

    Science.gov (United States)

    Patrascu, Andrei T.

    2017-06-01

    Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).

  18. State Prices and Implementation of the Recovery Theorem

    Directory of Open Access Journals (Sweden)

    Alex Backwell

    2015-01-01

    Full Text Available It is generally held that derivative prices do not contain useful predictive information, that is, information relating to the distribution of future financial variables under the real-world measure. This is because the market’s implicit forecast of the future becomes entangled with market risk preferences during derivative price formation. A result derived by Ross [1], however, recovers the real-world distribution of an equity index, requiring only current prices and mild restrictions on risk preferences. In addition to being of great interest to the theorist, the potential practical value of the result is considerable. This paper addresses implementation of the Ross Recovery Theorem. The theorem is formalised, extended, proved and discussed. Obstacles to application are identified and a workable implementation methodology is developed.

  19. Relativistic corrections for the conventional, classical Nyquist theorem

    International Nuclear Information System (INIS)

    Theimer, O.; Dirk, E.H.

    1983-01-01

    New expressions for the Nyquist theorem are derived under the condition in which the random thermal speed of electrons, in a system of charged particles, can approach the speed of light. Both the case in which, the electron have not drift velocity relative to the ions or neutral particles and the case in which drift occours are investigated. In both instances, the new expressions for the Nyquist theorem are found to contain relativistic correction terms; however for electron temperatures T approx. 10 9 K and drift velocity magnitudes w approx. 0.5c, where c is the speed of light, the effects of these correction terms are generally small. The derivation of these relativistic corrections is carried out by means of procedures developed in an earlier work. A relativistic distribution function, which incorporates a constant drift velocity with a random thermal velocity for a given particle species, is developed

  20. On a theorem of Faltings on formal functions

    Directory of Open Access Journals (Sweden)

    Paola Bonacini

    2007-12-01

    Full Text Available In 1980, Faltings proved, by deep local algebra methods, a local resultregarding formal functions which has the following global geometric factas a consequence. Theorem. − Let k be an algebraically closed field (ofany characteristic. Let Y be a closed subvariety of a projective irreduciblevariety X defined over k. Assume that X ⊂ P^n , dim(X = d > 2 and Yis the intersection of X with r hyperplanes of P^n , with r ≤ d − 1. Then,every formal rational function on X along Y can be (uniquely extended toa rational function on X . Due to its importance, the aim of this paper is toprovide two elementary global geometric proofs of this theorem.

  1. A Necessary Moment Condition for the Fractional Central Limit Theorem

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Morten

    2012-01-01

    We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x(t)=¿^{-d}u(t) , where -1/2classical condition is existence of q=2 and q>1/(d+1/2) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that when -1/2conditions on u(t), the existence of q=1/(d+1/2) moments is in fact necessary for the FCLT for fractionally integrated processes and that q>1/(d+1....../2) moments are necessary for more general fractional processes. Davidson and de Jong (2000, Econometric Theory 16, 643-- 666) presented a fractional FCLT where onlyq>2 finite moments are assumed. As a corollary to our main theorem we show that their moment condition is not sufficient and hence...

  2. The g-theorem and quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Casini, Horacio; Landea, Ignacio Salazar; Torroba, Gonzalo [Centro Atómico Bariloche and CONICET,S.C. de Bariloche, Río Negro, R8402AGP (Argentina)

    2016-10-25

    We study boundary renormalization group flows between boundary conformal field theories in 1+1 dimensions using methods of quantum information theory. We define an entropic g-function for theories with impurities in terms of the relative entanglement entropy, and we prove that this g-function decreases along boundary renormalization group flows. This entropic g-theorem is valid at zero temperature, and is independent from the g-theorem based on the thermal partition function. We also discuss the mutual information in boundary RG flows, and how it encodes the correlations between the impurity and bulk degrees of freedom. Our results provide a quantum-information understanding of (boundary) RG flow as increase of distinguishability between the UV fixed point and the theory along the RG flow.

  3. Proofs of the Cantor-Bernstein theorem a mathematical excursion

    CERN Document Server

    Hinkis, Arie

    2013-01-01

    This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly an...

  4. Testability of the Pusey-Barrett-Rudolph Theorem

    Science.gov (United States)

    Halataei, Seyyed Mohammad Hassan

    2014-03-01

    Pusey, Barrett, and Rudolph (PBR) proved a mathematically neat theorem which assesses the reality of the quantum state. They proposed a test such that if any pair of quantum states could pass it, then for small deviation in the probabilities of measurement outcomes, ɛ, from the predicted quantum probabilities, one can conclude that the physical state λ ``is normally closely associated with only one of the two quantum states.'' While the mathematics of their theorem is correct, the physical conclusion is incomplete. In this talk, I present an argument which greatly limits the conclusion one can draw from even a successful PBR test. Specifically, I show that the physical state can be associated with several quantum states and, thus, the reality of quantum states cannot be deduced. This work was supported by the MacArthur Professorship endowed by the John D. and Catherine T. MacArthur Foundation at the University of Illinois.

  5. Induction, bounding, weak combinatorial principles, and the homogeneous model theorem

    CERN Document Server

    Hirschfeldt, Denis R; Shore, Richard A

    2017-01-01

    Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.

  6. Applications of the theorem of Pythagoras in R3

    Science.gov (United States)

    Srinivasan, V. K.

    2010-01-01

    Three distinct points ? and ? with ? are taken, respectively on the x, y and the z-axes of a rectangular coordinate system in ? Using the converse of the theorem of Pythagoras, it is shown that the triangle ? can never be a right-angled triangle. The result seems to be intuitive, but nevertheless requires a proof. As an application, some intuitive results about a tetrahedron are confirmed.

  7. Log-Optimal Portfolio Selection Using the Blackwell Approachability Theorem

    OpenAIRE

    V'yugin, Vladimir

    2014-01-01

    We present a method for constructing the log-optimal portfolio using the well-calibrated forecasts of market values. Dawid's notion of calibration and the Blackwell approachability theorem are used for computing well-calibrated forecasts. We select a portfolio using this "artificial" probability distribution of market values. Our portfolio performs asymptotically at least as well as any stationary portfolio that redistributes the investment at each round using a continuous function of side in...

  8. A String of Pearls: Proofs of Fermat's Little Theorem

    Directory of Open Access Journals (Sweden)

    Hing Lun Chan

    2013-01-01

    Full Text Available We discuss mechanised proofs of Fermat's Little Theorem in a variety of styles, focusing in particular on an elegant combinatorial ``necklace'' proof that has not been mechanised previously.What is elegant in prose turns out to be long-winded mechanically, and so we examine the effect of explicitly appealing to group theory. This has pleasant consequences both for the necklace proof, and also for some of the direct number-theoretic approaches.

  9. A block diagonalization theorem in the energy-momentum method

    OpenAIRE

    Marsden, J. E.; Simo, J. C.; Lewis, D.; Posbergh, T. A.

    1989-01-01

    We prove a geometric generalization of a block diagonalization theorem first found by the authors for rotating elastic rods. The result here is given in the general context of simple mechanical systems with a symmetry group acting by isometries on a configuration manifold. The result provides a choice of variables for linearized dynamics at a relative equilibrium which block diagonalizes the second variation of an augmented energy these variables effectively separate the rotationa...

  10. Cauchy-Kovalevskaya extension theorem in fractional Clifford analysis

    OpenAIRE

    Vieira, Nelson

    2015-01-01

    In this paper, we establish the fractional Cauchy-Kovalevskaya extension (FCK-extension) theorem for fractional monogenic functions defined on R^d. Based on this extension principle, fractional Fueter polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous polynomials, are introduced. We studied the connection between the FCK-extension of functions of the form x^\\alpha P_l and the classical Gegenbauer polynomials. Finally we present two examp...

  11. A note on the proof of Bertrand's theorem

    Directory of Open Access Journals (Sweden)

    Jovanović Vladimir

    2015-01-01

    Full Text Available In this paper we fill a common gap in the proof of Bertrand' theorem present both the in Bertrand's original paper Théorème relatif au movement d'un point attiré vers un centre fixe and in the Arnold's book Mathematical methods of classical mechanics, by providing missing details which pertain to the problem of how to single out elastic and gravitational potentials among the power law ones.

  12. Quantum Kolmogorov Complexity and Information-Disturbance Theorem

    Science.gov (United States)

    Miyadera, Takayuki

    2011-03-01

    In this paper, a representation of the information-disturbance theorem based on the quantum Kolmogorov complexity that was defined by P. Vitanyi has been examined. In the quantum information theory, the information-disturbance relationship, which treats the trade-off relationship between information gain and its caused disturbance, is a fundamental result that is related to Heisenberg's uncertainty principle. The problem was formulated in a cryptographic setting and quantitative relationships between complexities have been derived.

  13. From Foucault's Pendulum to the Gauss--Bonnet Theorem

    OpenAIRE

    Stoytchev, Orlin

    2017-01-01

    We present a self-contained proof of the Gauss-Bonnet theorem for two-dimensional surfaces embedded in $R^3$ using just classical vector calculus. The exposition should be accessible to advanced undergraduate and non-expert graduate students. It may be viewed as an illustration and exercise in multivariate calculus and a motivation to go deeper into the fields of geometry and topology.

  14. ON A GENERALIZATION OF THE MAXIMUM ENTROPY THEOREM OF BURG

    Directory of Open Access Journals (Sweden)

    JOSÉ MARCANO

    2017-01-01

    Full Text Available In this article we introduce some matrix manipulations that allow us to obtain a version of the original Christoffel-Darboux formula, which is of interest in many applications of linear algebra. Using these developments matrix and Jensen’s inequality, we obtain the main result of this proposal, which is the generalization of the maximum entropy theorem of Burg for multivariate processes.

  15. A note on the Fuglede–Putnam theorem

    Indian Academy of Sciences (India)

    of Theorem 5 of [3] due to Mortad. We begin with some definitions and preliminary results. Let H be a complex Hilbert space and let B(H) be the algebra of bounded linear oper- ators on H. We denote by Op(H) the set of unbounded densely defined linear operators on H. For A ∈ Op(H) we denote the domain of A by D(A).

  16. Bayes' theorem: A paradigm research tool in biomedical sciences

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... accurate test, but Bayes' theorem will reveal a potential flaw. Let us assume a corporation decides to test its employees for opium use, and 0.5% of the employees use the drug. We want to know the probability that, given a positive drug test, an employee is actually a drug user. Let “D” be the event of being a ...

  17. Fan beam image reconstruction with generalized Fourier slice theorem.

    Science.gov (United States)

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  18. On the Salas Theorem and Hypercyclicity of f(T)

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír

    2010-01-01

    Roč. 67, č. 3 (2010), s. 439-448 ISSN 0378-620X R&D Projects: GA ČR GA201/09/0473 Institutional research plan: CEZ:AV0Z10190503 Keywords : supercyclic operators * hypercyclicity criterion * Salas' theorem Subject RIV: BA - General Mathematics Impact factor: 0.521, year: 2010 http://www.springerlink.com/content/f245731531550638/

  19. Pengembangan Perangkat Pembelajaran Geometri Ruang dengan Model Proving Theorem

    Directory of Open Access Journals (Sweden)

    Bambang Eko Susilo

    2016-03-01

    Full Text Available Kemampuan berpikir kritis dan kreatif mahasiswa masih lemah. Hal ini ditemukan pada mahasiswa yang mengambil mata kuliah Geometri Ruang yaitu dalam membuktikan soal-soal pembuktian (problem to proof. Mahasiswa masih menyelesaikan secara algoritmik atau prosedural sehingga diperlukan pengembangan perangkat pembelajaran Geometri Ruang berbasis kompetensi dan konservasi dengan model Proving Theorem. Dalam penelitian ini perangkat perkuliahan yang dikembangkan yaitu Silabus, Satuan Acara Perkuliahan (SAP, Kontrak Perkuliahan, Media Pembelajaran, Bahan Ajar, Tes UTS dan UAS serta Angket Karakter Konservasi telah dilaksanakan dengan baik dengan kriteria (1 validasi perangkat pembelajaran mata kuliah Geometri ruang berbasis kompetensi dan konservasi dengan model proving theorem berkategori baik dan layak digunakan dan (2 keterlaksanaan RPP pada pembelajaran yang dikembangkan secara keseluruhan berkategori baik.Critical and creative thinking abilities of students still weak. It is found in students who take Space Geometry subjects that is in solving problems to to prove. Students still finish in algorithmic or procedural so that the required the development of Space Geometry learning tools based on competency and conservation with Proving Theorem models. This is a research development which refers to the 4-D models that have been modified for the Space Geometry learning tools, second semester academic year 2014/2015. Instruments used include validation sheet, learning tools and character assessment questionnaire. In this research, the learning tools are developed, namely Syllabus, Lesson Plan, Lecture Contract, Learning Media, Teaching Material, Tests, and Character Conservation Questionnaire had been properly implemented with the criteria (1 validation of Space Geometry learning tools based on competency and conservation with Proving Theorem models categorized good and feasible to use, and (2 the implementation of Lesson Plan on learning categorized

  20. Noether's theorems applications in mechanics and field theory

    CERN Document Server

    Sardanashvily, Gennadi

    2016-01-01

    The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

  1. Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Hanung, Umi Mahnuna; Tvrdý, Milan

    2016-01-01

    Roč. 180, č. 3 (2016), s. 409-434 ISSN 0026-9255 R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : Kurzweil-Stieltjes integral * bounded convergence theorem * integral over elementary set Subject RIV: BA - General Mathematics Impact factor: 0.716, year: 2016 http://link.springer.com/article/10.1007%2Fs00605-015-0774-z

  2. Isomorphism Theorem on Vector Spaces over a Ring

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-10-01

    Full Text Available In this article, we formalize in the Mizar system [1, 4] some properties of vector spaces over a ring. We formally prove the first isomorphism theorem of vector spaces over a ring. We also formalize the product space of vector spaces. ℤ-modules are useful for lattice problems such as LLL (Lenstra, Lenstra and Lovász [5] base reduction algorithm and cryptographic systems [6, 2].

  3. Fueter's theorem and its generalizations in Dunkl-Clifford analysis

    International Nuclear Information System (INIS)

    Fei Minggang; Cerejeiras, Paula; Kaehler, Uwe

    2009-01-01

    In this paper, we give a construction of Dunkl monogenic and Dunkl harmonic functions starting from holomorphic functions in the plane. This construction has the advantage of not needing Dunkl's intertwining operator or Dunkl spherical harmonics. To this end we study Vekua-type systems and prove a version of Fueter's theorem in the case of finite reflection groups. Important examples, such as a Dunkl monogenic Gaussian distribution or a Cauchy kernel, will be given at the end.

  4. Rowlands' Duality Principle: A Generalization of Noether's Theorem?

    Science.gov (United States)

    Karam, Sabah E.

    This paper will examine a physical principle that has been used in making valid predictions and generalizes established conservation laws. In a previous paper it was shown how Rowlands' zero-totality condition could be viewed as a generalization of Newton's third law of motion. In this paper it will be argued that Rowlands' Duality Principle is a generalization of Noether's Theorem and that the two principles taken together are truly foundational principles that have tamed Metaphysics.

  5. On the Goldberg-Sachs Theorem in Five Dimensions

    Science.gov (United States)

    Ortaggio, Marcello; Pravda, Vojtěch Pravdová, Alena; Reall, Harvey S.

    2015-01-01

    Main results on a generalization of the Goldberg-Sachs theorem to five-dimensional Einstein spacetimes are briefly overviewed. In particular, we focus on necessary conditions on the optical matrix of a multiple WAND. We point out that there are three canonical classes of 3 × 3 optical matrices, each involving just two parameters. We refer to explicit examples of spacetimes corresponding to each of these forms.

  6. A Goldberg-Sachs theorem in dimension three

    Science.gov (United States)

    Nurowski, Paweł; Taghavi-Chabert, Arman

    2015-06-01

    We prove a Goldberg-Sachs theorem in dimension three. To be precise, given a three-dimensional Lorentzian manifold satisfying the topological massive gravity equations, we provide necessary and sufficient conditions on the tracefree Ricci tensor for the existence of a null line distribution whose orthogonal complement is integrable and totally geodetic. This includes, in particular, Kundt spacetimes that are solutions of the topological massive gravity equations.

  7. Energy gap, clustering, and the Goldstone theorem in statistical mechanics

    International Nuclear Information System (INIS)

    Landau, L.; Perez, J.F.; Wreszinski, W.F.

    1981-03-01

    A Goldstone type theorem for a wide class of lattice and continuum quantum systems is proved, both for the ground state and at non-zero temperature. For the ground state (T=0) spontaneous breakdown of a continuous symmetry implies no energy gap. For non-zero temperature, spontaneous symmetry breakdown implies slow clustering (no L sup(1) clustering). The methods apply also to non-zero temperature classical systems. (Author) [pt

  8. Gibbs' theorem for open systems with incomplete statistics

    OpenAIRE

    Bagci, G. B.

    2008-01-01

    Gibbs' theorem, which is originally intended for canonical ensembles with complete statistics has been generalized to open systems with incomplete statistics. As a result of this generalization, it is shown that the stationary equilibrium distribution of inverse power law form associated with the incomplete statistics has maximum entropy even for open systems with energy or matter influx. The renormalized entropy definition given in this paper can also serve as a measure of self-organization ...

  9. A maximum modulus theorem for the Oseen problem

    Czech Academy of Sciences Publication Activity Database

    Kračmar, S.; Medková, Dagmar; Nečasová, Šárka; Varnhorn, W.

    2013-01-01

    Roč. 192, č. 6 (2013), s. 1059-1076 ISSN 0373-3114 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : Oseen problem * maximum modulus theorem * Oseen potentials Subject RIV: BA - General Mathematics Impact factor: 0.909, year: 2013 http://link.springer.com/article/10.1007%2Fs10231-012-0258-x

  10. Closed graph and open mapping theorems for normed cones

    Indian Academy of Sciences (India)

    Abstract. A quasi-normed cone is a pair (X, p) such that X is a (not necessarily cancellative) cone and q is a quasi-norm on X. The aim of this paper is to prove a closed graph and an open mapping type theorem for quasi-normed cones. This is done with the help of appropriate notions of completeness, continuity and ...

  11. Some theorems on a class of harmonic manifolds

    International Nuclear Information System (INIS)

    Rahman, M.S.; Chen Weihuan.

    1993-08-01

    A class of harmonic n-manifold, denoted by HM n , is, in fact, focussed on a Riemannian manifold with harmonic curvature. A variety of results, with properties, on HM n is presented in a fair order. Harmonic manifolds are then touched upon manifolds with recurrent Ricci curvature, biRicci-recurrent curvature and recurrent conformal curvature, and, in consequence, a sequence of theorems are deduced. (author). 21 refs

  12. Fixed Point Theorems for Generalized Mizoguchi-Takahashi Graphic Contractions

    Directory of Open Access Journals (Sweden)

    Nawab Hussain

    2016-01-01

    Full Text Available Remarkable feature of contractions is associated with the concept Mizoguchi-Takahashi function. For the purpose of extension and modification of classical ideas related with Mizoguchi-Takahashi contraction, we define generalized Mizoguchi-Takahashi G-contractions and establish some generalized fixed point theorems regarding these contractions in this paper. Some applications to the construction of a fixed point of multivalued mappings in ε-chainable metric space are also discussed.

  13. Extremely localized nonorthogonal orbitals by the pairing theorem.

    Science.gov (United States)

    Zoboki, T; Mayer, I

    2011-03-01

    Using the concepts of Löwdin pairing theorem, a method is developed to calculate extremely localized, but nonorthogonal, sets of molecular orbitals and their strictly localized counterparts. The method is very suitable to study to what extent a given model of bonding in a given molecule can be considered adequate from the point of view of the actual LCAO-MO (Hartree Fock or DFT) wave function and is expected to be useful for doing local approximations of electron correlation.

  14. Pólya's One Theorem with 100 Pages of Applications

    Indian Academy of Sciences (India)

    IAS Admin

    Musings on Music. Pólya's theorem has been applied to the theory of music. One may determine the number of chords. To define this, one takes the n-scale to be the integers from 0 to n − 1 under addition modulo n. There are translations a ↦→ a + i, where 0 ≤ i < n. An equivalence class. (that is, an orbit) is called a chord, ...

  15. A no-hair theorem for stars in Horndeski theories

    Energy Technology Data Exchange (ETDEWEB)

    Lehébel, A.; Babichev, E.; Charmousis, C., E-mail: antoine.lehebel@th.u-psud.fr, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2017-07-01

    We consider a generic scalar-tensor theory involving a shift-symmetric scalar field and minimally coupled matter fields. We prove that the Noether current associated with shift-symmetry vanishes in regular, spherically symmetric and static spacetimes. We use this fact to prove the absence of scalar hair for spherically symmetric and static stars in Horndeski and beyond theories. We carefully detail the validity of this no-hair theorem.

  16. Note on Deduction Theorems in contraction-free logics

    Czech Academy of Sciences Publication Activity Database

    Chvalovský, Karel; Cintula, Petr

    2012-01-01

    Roč. 58, č. 3 (2012), s. 236-243 ISSN 0942-5616 R&D Projects: GA ČR GAP202/10/1826 Grant - others:Austrian Science Fund (FWF)(AT) START Y544-N23 Institutional research plan: CEZ:AV0Z10300504 Keywords : Local Deduction Theorem * BCI- logic * Substructural logic s * Rule of contraction Subject RIV: BA - General Mathematics Impact factor: 0.376, year: 2012

  17. BliStrTune: Hierarchical Invention of Theorem Proving Strategies

    OpenAIRE

    Jakubuv, Jan; Urban, Josef

    2016-01-01

    Inventing targeted proof search strategies for specific problem sets is a difficult task. State-of-the-art automated theorem provers (ATPs) such as E allow a large number of user-specified proof search strategies described in a rich domain specific language. Several machine learning methods that invent strategies automatically for ATPs were proposed previously. One of them is the Blind Strategymaker (BliStr), a system for automated invention of ATP strategies. In this paper we introduce BliSt...

  18. Approximation theorems by Meyer-Koenig and Zeller type operators

    International Nuclear Information System (INIS)

    Ali Ozarslan, M.; Duman, Oktay

    2009-01-01

    This paper is mainly connected with the approximation properties of Meyer-Koenig and Zeller (MKZ) type operators. We first introduce a general sequence of MKZ operators based on q-integers and then obtain a Korovkin-type approximation theorem for these operators. We also compute their rates of convergence by means of modulus of continuity and the elements of Lipschitz class functionals. Furthermore, we give an rth order generalization of our operators in order to get some explicit approximation results.

  19. Noether Theorem of Relativistic-Electromagnetic Ideal Hydrodynamics

    OpenAIRE

    Elsas, J. H. Gaspar; Koide, T.; Kodama, T.

    2014-01-01

    We present a variational approach for relativistic ideal hydrodynamics interacting with electromagnetic fields. The momentum of fluid is introduced as the canonical conjugate variable of the position of a fluid element, which coincides with the conserved quantity derived from the Noether theorem. We further show that our formulation can reproduce the usual electromagnetic hydrodynamics which is obtained so as to satisfy the conservation of the inertia of fluid motion.

  20. Local and Global Existence Theorems for the Einstein Equations

    Directory of Open Access Journals (Sweden)

    Alan D. Rendall

    1998-01-01

    Full Text Available This article is a guide to the literature on existence theorems for the Einstein equations which also draws attention to open problems in the field. The local in time Cauchy problem, which is relatively well understood, is treated first. Next global results for solutionswith symmetry are discussed. This is followed by a presentation of global results in the case of small data, and some miscellaneous topics connected with the main theme.

  1. A reciprocal Wald theorem for varying gravitational function

    International Nuclear Information System (INIS)

    Fay, Stephane

    2004-01-01

    We study when a cosmological constant is a natural issue if it is mimicked by the potential of a massive Hyperextended Scalar Tensor theory with a perfect fluid for Bianchi type I and V models. We then deduce a reciprocal Wald theorem giving the conditions such that the potential tends to a non vanishing constant when the gravitational function varies. We also get the conditions allowing the potential to vanish or diverge. (orig.)

  2. The Shannon–McMillan theorem for doubly stochastic operators

    International Nuclear Information System (INIS)

    Frej, Bartosz; Frej, Paulina

    2012-01-01

    In this paper we introduce and study an information function for doubly stochastic operators. This generalization of the notion, which is well known for classical dynamical systems, follows the earlier results on the entropy of operators by Downarowicz, Frej and Frej. As a main result we prove two versions of the Shannon–McMillan theorem for doubly stochastic operators, using the relations between the entropy of an operator and the entropy of a shift on a space of trajectories. (paper)

  3. Interpretation of the quantum formalism and Bell's theorem

    International Nuclear Information System (INIS)

    Santos, E.

    1991-01-01

    It is argued that quantum mechanics must be interpreted according to the Copenhagen interpretation. Consequently the formalism must be used in a purely operational way. The relation between realism, hidden variables, and the Bell inequalities is discussed. The proof of impossibility of local hidden-variables theories (Bell theorem) is criticized on the basis that the quantum mechanical states violating local realism are not physically realizable states

  4. Gibbs' theorem for open systems with incomplete statistics

    International Nuclear Information System (INIS)

    Bagci, G.B.

    2009-01-01

    Gibbs' theorem, which is originally intended for canonical ensembles with complete statistics has been generalized to open systems with incomplete statistics. As a result of this generalization, it is shown that the stationary equilibrium distribution of inverse power law form associated with the incomplete statistics has maximum entropy even for open systems with energy or matter influx. The renormalized entropy definition given in this paper can also serve as a measure of self-organization in open systems described by incomplete statistics.

  5. Sach's peeling-off theorem as applied to supergravity

    International Nuclear Information System (INIS)

    Pilot, C.

    1983-01-01

    Using Sach's peeling-off theorem we are able to show how for every Petrov class for Csub((ABCD)), the supergravitational generalization of the conformal tensor of gravity, there is one and only one Petrov class for Ssub((ABC)), its supersymmetric analog in N=1 supergravity. This work is based on the results of a previous paper where the transformation properties of supergravity were analyzed. We also go into the physical significance of the classification scheme. (orig.)

  6. Does Kirk's Theorem Hold for Multivalued Nonexpansive Mappings?

    Directory of Open Access Journals (Sweden)

    T. Domínguez Benavides

    2010-01-01

    Full Text Available Fixed Point Theory for multivalued mappings has many useful applications in Applied Sciences, in particular, in Game Theory and Mathematical Economics. Thus, it is natural to try of extending the known fixed point results for single-valued mappings to the setting of multivalued mappings. Some theorems of existence of fixed points of single-valued mappings have already been extended to the multivalued case. However, many other questions remain still open, for instance, the possibility of extending the well-known Kirk's Theorem, that is: do Banach spaces with weak normal structure have the fixed point property (FPP for multivalued nonexpansive mappings? There are many properties of Banach spaces which imply weak normal structure and consequently the FPP for single-valued mappings (for example, uniform convexity, nearly uniform convexity, uniform smoothness,…. Thus, it is natural to consider the following problem: do these properties also imply the FPP for multivalued mappings? In this way, some partial answers to the problem of extending Kirk's Theorem have appeared, proving that those properties imply the existence of fixed point for multivalued nonexpansive mappings. Here we present the main known results and current research directions in this subject. This paper can be considered as a survey, but some new results are also shown.

  7. Statistical properties of entropy production derived from fluctuation theorems

    International Nuclear Information System (INIS)

    Merhav, Neri; Kafri, Yariv

    2010-01-01

    Several implications of well-known fluctuation theorems, on the statistical properties of entropy production, are studied using various approaches. We begin by deriving a tight lower bound on the variance of the entropy production for a given mean of this random variable. It is shown that the Evans–Searles fluctuation theorem alone imposes a significant lower bound on the variance only when the mean entropy production is very small. It is then nonetheless demonstrated that upon incorporating additional information concerning the entropy production, this lower bound can be significantly improved, so as to capture extensivity properties. Another important aspect of the fluctuation properties of the entropy production is the relationship between the mean and the variance, on the one hand, and the probability of the event where the entropy production is negative, on the other hand. Accordingly, we derive upper and lower bounds on this probability in terms of the mean and the variance. These bounds are tighter than previous bounds that can be found in the literature. Moreover, they are tight in the sense that there exist probability distributions, satisfying the Evans–Searles fluctuation theorem, that achieve them with equality. Finally, we present a general method for generating a wide class of inequalities that must be satisfied by the entropy production. We use this method to derive several new inequalities that go beyond the standard derivation of the second law

  8. Projection-slice theorem based 2D-3D registration

    Science.gov (United States)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  9. Derivation of the Direct-Interaction Approximation Using Novikov's Theorem

    Science.gov (United States)

    Krommes, J. A.

    2015-11-01

    The direct-interaction approximation (DIA) is a crucially important statistical closure for both neutral fluids and plasmas. Kraichnan's original derivation proceeded in k space and assumed a large number N of interacting Fourier modes. That is problematic; the DIA can be formulated even for N = 3 . In the present work an alternate x-space procedure based on Novikov's theorem is described. That theorem is a statement about the correlations of certain Gaussian functionals. Turbulence cannot be Gaussian due to nonlinearity, but Novikov's theorem can be used to formulate self-consistent equations for a Gaussian component of the turbulence. The DIA emerges under the assumption that certain higher-order correlations are small. In essence, this procedure is merely a restatement of Kraichnan's arguments, but it adds additional perspective because the assumption of large N is not required. Details can be found in a lengthy set of tutorial Lecture Notes. Work supported by U.S.D.o.E. Contract DE-AC02-09CH11466.

  10. Weyl's theorem for algebraically totally hereditarily normaloid operators

    Science.gov (United States)

    Duggal, B. P.

    2005-08-01

    A Banach space operator is said to be totally hereditarily normaloid, T[set membership, variant]THN, if every part of T is normaloid and every invertible part of T has a normaloid inverse. The operator T is said to be an H(q) operator for some integer q[greater-or-equal, slanted]1, T[set membership, variant]H(q), if the quasi-nilpotent part H0(T-[lambda])=(T-[lambda])-q(0) for every complex number [lambda]. It is proved that if T is algebraically H(q), or T is algebraically THN and is separable, then f(T) satisfies Weyl's theorem for every function f analytic in an open neighborhood of [sigma](T), and T* satisfies a-Weyl's theorem. If also T* has the single valued extension property, then f(T) satisfies a-Weyl's theorem for every analytic function f which is non-constant on the connected components of the open neighborhood of [sigma](T) on which it is defined.

  11. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  12. A non-renormalization theorem for conformal anomalies

    International Nuclear Information System (INIS)

    Petkou, Anastasios; Skenderis, Kostas

    1999-01-01

    We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields

  13. A Class of Fan-Browder Type Fixed-Point Theorem and Its Applications in Topological Space

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    2010-01-01

    Full Text Available A fixed-point theorem is proved under noncompact setting of general topological spaces. By applying the fixed-point theorem, several new existence theorems of solutions for equilibrium problems are proved under noncompact setting of topological spaces. These theorems improve and generalize the corresponding results in related literature.

  14. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    Science.gov (United States)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  15. On Some Basic Theorems of Continuous Module Homomorphisms between Random Normed Modules

    Directory of Open Access Journals (Sweden)

    Guo Tiexin

    2013-01-01

    Full Text Available We first prove the resonance theorem, closed graph theorem, inverse operator theorem, and open mapping theorem for module homomorphisms between random normed modules by simultaneously considering the two kinds of topologies—the -topology and the locally -convex topology for random normed modules. Then, for the future development of the theory of module homomorphisms on complete random inner product modules, we give a proof with better readability of the known orthogonal decomposition theorem and Riesz representation theorem in complete random inner product modules under two kinds of topologies. Finally, to connect module homomorphism between random normed modules with linear operators between ordinary normed spaces, we give a proof with better readability of the known result connecting random conjugate spaces with classical conjugate spaces, namely, , where and are a pair of Hölder conjugate numbers with a random normed module, the random conjugate space of the corresponding (resp., space derived from (resp., , and the ordinary conjugate space of

  16. Special relativity theorem and Pythagoras’s magic

    Science.gov (United States)

    Korkmaz, S. D.; Aybek, E. C.; Örücü, M.

    2016-03-01

    In the modern physics unit included in the course curriculum of grade 10 physics introduced in the 2007-2008 education year, the aim is that students at this grade level are aware of any developments which constitute modern physics and may be considered new, and interpret whether mass, length and time values of the motions at any velocities close to the speed of light vary or not. One of the scientific concepts and subjects among the final ones to be learned in the unit of modern physics with 12 course hours includes the special relativity theorem and its results. The special relativity theorem, the foundation of which was laid by Einstein in 1905, has three significant predictions proven by experiments and observations: time extension, dimensional shortening and mass relativity. At the first stage of this study, a simple and fast solution that uses the Pythagorean relation for problems and must be treated by using the mathematical expressions of the predictions as specified above is given, and this way of solution was taught while the relativity subject was explained to the secondary education students who are fifteen years old from grade 10 in the 2013-2014 education year. At the second stage of the study, a qualitative study is released together with grade 11 students who are sixteen years old in 2014-2015, who learnt to solve any problems in both methods, while the special relativity subject is discussed in the physics course in grade 10. The findings of the study show that the students have a misconception on the relativity theorem and prefer to solve any relativity-related problems by using the Pythagorean method constituting the first stage of this study.

  17. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    Science.gov (United States)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  18. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.

    Science.gov (United States)

    Altürk, Ahmet

    2016-01-01

    Mean value theorems for both derivatives and integrals are very useful tools in mathematics. They can be used to obtain very important inequalities and to prove basic theorems of mathematical analysis. In this article, a semi-analytical method that is based on weighted mean-value theorem for obtaining solutions for a wide class of Fredholm integral equations of the second kind is introduced. Illustrative examples are provided to show the significant advantage of the proposed method over some existing techniques.

  19. Weak compatibility and fixed point theorems for four self-maps in D-metric spaces

    Directory of Open Access Journals (Sweden)

    Bijendra Singh

    2005-01-01

    Full Text Available This paper establishes one common coincident point theorem and three unique common fixed point theorems for four self-maps in D-metric spaces, which improve and generalize, significantly, the results of Dhage et al. (2003, Dhage (1999, and Rhoades (2003 under weaker assumption using a more general contractive condition. An example, in support of these theorems, has also been constructed. All the results of this paper are new.

  20. A maximal element theorem in FWC-spaces and its applications.

    Science.gov (United States)

    Lu, Haishu; Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature.

  1. Hyperbolic functions with configuration theorems and equivalent and equidecomposable figures

    CERN Document Server

    Shervatov, V G; Skornyakov, L A; Boltyanskii, V G

    2007-01-01

    This single-volume compilation of three books centers on Hyperbolic Functions, an introduction to the relationship between the hyperbolic sine, cosine, and tangent, and the geometric properties of the hyperbola. The development of the hyperbolic functions, in addition to those of the trigonometric (circular) functions, appears in parallel columns for comparison. A concluding chapter introduces natural logarithms and presents analytic expressions for the hyperbolic functions.The second book, Configuration Theorems, requires only the most elementary background in plane and solid geometry. It dis

  2. Bernstein - Von Mises theorem and its application in survival analysis

    Czech Academy of Sciences Publication Activity Database

    Timková, Jana

    2010-01-01

    Roč. 22, č. 3 (2010), s. 115-122 ISSN 1210-8022. [16. letní škola JČMF Robust 2010. Králíky, 30.01.2010-05.02.2010] R&D Projects: GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z10750506 Keywords : Cox model * bayesian asymptotics * survival function Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2010/SI/timkova-bernstein - von mises theorem and its application in survival analysis.pdf

  3. Stochastic Fixed Points and Nonlinear Perron-Frobenius Theorem

    OpenAIRE

    Babaei, E.; Evstigneev, I. V.; Pirogov, S. A.

    2016-01-01

    We provide conditions for the existence of measurable solutions to the equation $\\xi(T\\omega)=f(\\omega,\\xi(\\omega))$, where $T:\\Omega \\rightarrow\\Omega$ is an automorphism of the probability space $\\Omega$ and $f(\\omega,\\cdot)$ is a strictly non-expansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping $D(\\omega)$ of a random closed cone $K(\\omeg...

  4. The equivalence theorem and the production of gravitinos after inflation

    CERN Document Server

    Maroto, A L; Maroto, Antonio L.; Pelaez, Jose R.

    2000-01-01

    We study the application of the high-energy equivalence between helicity $\\pm 1/2$ gravitinos and goldstinos in order to calculate the production of helicity derive this equivalence for equations of motion, paying attention to several subtleties that appear in this context and are not present in the standard derivations of the theorem, mainly because of the presence of external sources. We also propose the Landau gauge as an alternative to the usual gauge choices given in the standard proofs at the Lagrangian level.

  5. Nonextensive kinetic theory and H-theorem in general relativity

    Science.gov (United States)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  6. Conditioned Limit Theorems for Some Null Recurrent Markov Processes

    Science.gov (United States)

    1976-08-01

    observed by Lamperti in [25]): Theorem 3.2 If (i) and (ii) hold there is a 5 > 0 so that for all C > 0 VX cvX (.c). (M) This sealing relationship...assumptions (i) and (ii) hold, there is a 6 0 so that for all c > 0 Vcx cvX (c 6 ) , (2) 1];=t/6 (hrm 1, for all t > 0 lim c /c t (here, t= lim tm). (3) W...processes which can occur as limits in cx d x (ii). If 6 = 0, however, (2) becomes V = cVx and we can no e x We have not been able to characterize

  7. Lefschetz Fixed Point Theorem and Lattice Points in Convex Polytopes

    OpenAIRE

    Sardo-Infirri, Sacha

    1993-01-01

    A simple convex lattice polytope $\\Box$ defines a torus-equivariant line bundle $\\LB$ over a toric variety $\\XB.$ Atiyah and Bott's Lefschetz fixed-point theorem is applied to the torus action on the $d''$-complex of $\\LB$ and information is obtained about the lattice points of $\\Box$. In particular an explicit formula is derived, computing the number of lattice points and the volume of $\\Box$ in terms of geometric data at its extreme points. We show this to be equivalent the results of Brion...

  8. A Littlewood-Paley type theorem and a corollary

    Science.gov (United States)

    Kudryavtsev, S. N.

    2013-12-01

    We prove an analogue of the Littlewood-Paley theorem for orthoprojectors onto mutually orthogonal subspaces of piecewise-polynomial functions on the cube I^d. This yields upper bounds for the norms of functions in L_p(I^d) in terms of the corresponding norms of the projections to subspaces of piecewise-polynomial functions of several variables. We use these results to obtain upper bounds for the Kolmogorov widths of Besov classes of (non-periodic) functions satisfying mixed Hölder conditions.

  9. Quantum Kolmogorov Complexity and Information-Disturbance Theorem

    Directory of Open Access Journals (Sweden)

    Takayuki Miyadera

    2011-03-01

    Full Text Available In this paper, a representation of the information-disturbance theorem based on the quantum Kolmogorov complexity that was defined by P. Vit´anyi has been examined. In the quantum information theory, the information-disturbance relationship, which treats the trade-off relationship between information gain and its caused disturbance, is a fundamental result that is related to Heisenberg’s uncertainty principle. The problem was formulated in a cryptographic setting and the quantitative relationships between complexities have been derived.

  10. Graph Edge Coloring Vizing's Theorem and Goldberg's Conjecture

    CERN Document Server

    Stiebitz, Michael; Toft, Bjarne; Favrholdt, Lene M

    2012-01-01

    Features recent advances and new applications in graph edge coloring Reviewing recent advances in the Edge Coloring Problem, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring. The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explor

  11. A Concise and Direct Proof of "Fermat's Last Theorem"

    OpenAIRE

    Ellman, Roger

    1998-01-01

    The recently developed proof of Fermat's Last Theorem is very lengthy and difficult, so much so as to be beyond all but a small body of specialists. While certainly of value in the developments that resulted, that proof could not be, nor was offered as being, possibly the proof Fermat had in mind. The present proof being brief, direct and concise is a candidate for being what Fermat had in mind. It is also completely accessible to any one trained in common algebra. That critical suggestions o...

  12. On the c-theorem in more than two dimensions

    CERN Document Server

    Cappelli, A; Guida, R; Magnoli, N

    2000-01-01

    Several pieces of evidence have been recently brought up in favour of the c-theorem in four and higher dimensions, but a solid proof is still lacking. We present two basic results which could be useful for this search: i) the values of the putative c-number for free field theories in any even dimension, which illustrate some properties of this number; ii) the general form of three-point function of the stress tensor in four dimensions, which shows some physical consequences of the c-number and of the other trace-anomaly numbers.

  13. Comment on the Adler-Bardeen theorem and related problems

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    1987-06-01

    Some aspects of the constructive proof of the Adler-Bardeen theorem in the sense of exact bare identities are discussed by using the higher derivative regularization. It is argued that the formal path integral derivation of chiral and scale (counting identity) anomalies is compatible with the construction of those regularized Green's functions. We also comment on the T*-product in the Lagrangian formalism and discuss how the complications associated with the (anomalous) symmetry charges in the operator approach are avoided in a suitably defined path integral formalism. (author)

  14. Birkhoff's Theorem from a geometric perspective: A simple example

    Directory of Open Access Journals (Sweden)

    F. William Lawvere

    2016-02-01

    Full Text Available ‎From Hilbert's theorem of zeroes‎, ‎and from Noether's ideal theory‎, ‎Birkhoff derived certain algebraic concepts (as explained by Tholen that have a dual significance in general toposes‎, ‎similar to their role in the original examples of algebraic geometry‎. ‎I will describe a simple example that illustrates some of the aspects of this relationship‎. The dualization from algebra to geometry in the basic Grothendieck spirit can be accomplished (without intervention of topological spaces by the following method‎, ‎known as Isbell conjugacy.

  15. Local and Global Existence Theorems for the Einstein Equations.

    Science.gov (United States)

    Rendall, Alan D

    2000-01-01

    This article is a guide to the literature on existence theorems for the Einstein equations which also draws attention to open problems in the field. The local in time Cauchy problem, which is relatively well understood, is treated first. Next global results for solutions with symmetry are discussed. A selection of results from Newtonian theory and special relativity which offer useful comparisons is presented. This is followed by a survey of global results in the case of small data and results on constructing spacetimes with given singularity structure. The article ends with some miscellaneous topics connected with the main theme.

  16. Local and Global Existence Theorems for the Einstein Equations

    Directory of Open Access Journals (Sweden)

    Rendall Alan D.

    2000-01-01

    Full Text Available This article is a guide to the literature on existence theorems for the Einstein equations which also draws attention to open problems in the field. The local in time Cauchy problem, which is relatively well understood, is treated first. Next global results for solutions with symmetry are discussed. A selection of results from Newtonian theory and special relativity which offer useful comparisons is presented. This is followed by a survey of global results in the case of small data and results on constructing spacetimes with given singularity structure. The article ends with some miscellaneous topics connected with the main theme.

  17. On a theorem of Cattabriga related to Stokes equations

    International Nuclear Information System (INIS)

    Georgescu, V.

    1978-01-01

    We study the ''generalized Stokes boundary value problem'', which is a (generalization of a) linearized version of Navier-Stokes equations and we show the existence and unicity of the weak solution. It is known that these results can be used to prove the existence of weak (local) solutions to the Navier-Stokes equations. However, we are mainly interested in the method of proving it will be seen how easy the result follows from some general theorems about differential forms on a Riemannian manifold. (author)

  18. Central limit theorems for large graphs: Method of quantum decomposition

    International Nuclear Information System (INIS)

    Hashimoto, Yukihiro; Hora, Akihito; Obata, Nobuaki

    2003-01-01

    A new method is proposed for investigating spectral distribution of the combinatorial Laplacian (adjacency matrix) of a large regular graph on the basis of quantum decomposition and quantum central limit theorem. General results are proved for Cayley graphs of discrete groups and for distance-regular graphs. The Coxeter groups and the Johnson graphs are discussed in detail by way of illustration. In particular, the limit distributions obtained from the Johnson graphs are characterized by the Meixner polynomials which form a one-parameter deformation of the Laguerre polynomials

  19. Subspace gaps and Weyl's theorem for an elementary operator

    Directory of Open Access Journals (Sweden)

    B. P. Duggal

    2005-01-01

    Full Text Available A range-kernal orthogonality property is established for the elementary operators ℰ(X=∑i=1nAiXBi and ℰ*(X=∑i=1nAi*XBi*, where A=(A1,A2,…,An and B=(B1,B2,…,Bn are n-tuples of mutually commuting scalar operators (in the sense of Dunford in the algebra B(H of operators on a Hilbert space H. It is proved that the operator ℰ satisfies Weyl's theorem in the case in which A and B are n-tuples of mutually commuting generalized scalar operators.

  20. Note on soft theorems and memories in even dimensions

    Directory of Open Access Journals (Sweden)

    Pujian Mao

    2017-11-01

    Full Text Available Recently, it has been shown that the Weinberg's formula for soft graviton production is essentially a Fourier transformation of the formula for gravitational memory which provides an effective way to understand how the classical calculation arises as a limiting case of the quantum result. In this note, we propose a general framework that connects the soft theorems to the radiation fields obtained from classical computation for different theories in even dimensions. We show that the latter is nothing but Fourier transformation of the former. The memory formulas can be derived from radiation fields explicitly.

  1. Set-Valued Stochastic Lebesque Integral and Representation Theorems

    Directory of Open Access Journals (Sweden)

    Jungang Li

    2008-06-01

    Full Text Available In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral, we shall introduce a new definition of Lebesgue integral of a set-valued stochastic process with respect to the time t . Finally we shall prove the presentation theorem of set-valued stochastic integral and dis- cuss further properties that will be useful to study set-valued stochastic differential equations with their applications.

  2. The Reciprocal of the Fundamental Theorem of Riemannian Geometry

    Science.gov (United States)

    Calderon, Hector

    2008-05-01

    The fundamental theorem of Riemannian geometry is inverted for analytic Christoffel symbols. The inversion formula, henceforth dubbed Ricardo's formula, is obtained without ancillary assumptions and it is well suited to compute the uncertainty in the metric that arises from the uncertainty in the measurement of positions. The solution is given up to a constant conformal factor, in part, because there are no experiments that can fix such factor without probing the whole universe. Ricardo's formula excludes some pathological examples and works for manifolds of any dimension and metrics of any signature.

  3. Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    E.U. Ofoedu

    2015-11-01

    Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$.  Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.

  4. Analytical and numerical verification of the Nernst theorem for metals.

    Science.gov (United States)

    Høye, Johan S; Brevik, Iver; Ellingsen, Simen A; Aarseth, Jan B

    2007-05-01

    In view of the current discussion on the subject, an effort is made to show very accurately both analytically and numerically how the Drude dispersion model gives consistent results for the Casimir free energy at low temperatures. Specifically, for the free energy near T=0 we find the leading term proportional to T2 and the next-to-leading term proportional to T(5/2). These terms give rise to zero Casimir entropy as T-->0 and are thus in accordance with Nernst's theorem.

  5. Examples of the Zeroth Theorem of the History of Science

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    2007-08-24

    The zeroth theorem of the history of science, enunciated byE. P. Fischer, states that a discovery (rule,regularity, insight) namedafter someone (often) did not originate with that person. I present fiveexamples from physics: the Lorentz condition partial muAmu = 0 definingthe Lorentz gauge of the electromagnetic potentials; the Dirac deltafunction, delta(x); the Schumann resonances of the earth-ionospherecavity; the Weizsacker-Williams method of virtual quanta; the BMTequation of spin dynamics. I give illustrated thumbnail sketches of boththe true and reputed discoverers and quote from their "discovery"publications.

  6. The PCP theorem for NP over the reals

    OpenAIRE

    Baartse, Martijn; Meer, Klaus

    2013-01-01

    In this paper we show that the PCP theorem holds as well in the real number computational model introduced by Blum, Shub, and Smale. More precisely, the real number counterpart NP_R of the classical Turing model class NP can be characterized as NP_R = PCP_R(O(log n), O(1)). Our proof structurally follows the one by Dinur for classical NP. However, a lot of minor and major changes are necessary due to the real numbers as underlying computational structure. The analogue result holds fo...

  7. Fundamentals of classical statistical thermodynamics dissipation, relaxation, and fluctuation theorems

    CERN Document Server

    Evans, Denis James; Williams, Stephen Rodney

    2016-01-01

    Both a comprehensive overview and a treatment at the appropriate level of detail, this textbook explains thermodynamics and generalizes the subject so it can be applied to small nano- or biosystems, arbitrarily far from or close to equilibrium. In addition, nonequilibrium free energy theorems are covered with a rigorous exposition of each one. Throughout, the authors stress the physical concepts along with the mathematical derivations. For researchers and students in physics, chemistry, materials science and molecular biology, this is a useful text for postgraduate courses in statistical mechanics, thermodynamics and molecular simulations, while equally serving as a reference for university teachers and researchers in these fields.

  8. Commutativity theorems for rings and groups with constraints on commutators

    Directory of Open Access Journals (Sweden)

    Evagelos Psomopoulos

    1984-01-01

    Full Text Available Let n>1, m, t, s be any positive integers, and let R be an associative ring with identity. Suppose xt[xn,y]=[x,ym]ys for all x, y in R. If, further, R is n-torsion free, then R is commutativite. If n-torsion freeness of R is replaced by “m, n are relatively prime,” then R is still commutative. Moreover, example is given to show that the group theoretic analogue of this theorem is not true in general. However, it is true when t=s=0 and m=n+1.

  9. On the six-dimensional Kerr theorem and twistor equation

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro da Cunha, Bruno [Universidade Federal de Pernambuco, Departamento de Fisica, Recife, Pernambuco (Brazil)

    2014-04-15

    The Kerr theorem is revisited as part of the twistor program in six dimensions. The relationship between pure spinors and integrable 3-planes is investigated. The real condition for Lorentzian spacetimes is seen to induce a projective property in the space of solutions, reminiscent of the quaternionic structure of the six-dimensional Lorentz group. The twistor equation (or Killing spinor equations generically) also has an interpretation as integrable null planes, and a family of Einstein spacetimes with this property are presented in the Kerr-Schild fashion. (orig.)

  10. Splitting spacetime and cloning qubits: linking no-go theorems across the ER=EPR duality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Pollack, Jason; Remmen, Grant N. [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-15

    We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Generalized Floquet theory: application to dynamical systems with memory and Bloch's theorem for nonlocal potentials.

    Science.gov (United States)

    Traversa, Fabio L; Di Ventra, Massimiliano; Bonani, Fabrizio

    2013-04-26

    Floquet theory is a powerful tool in the analysis of many physical phenomena, and extended to spatial coordinates provides the basis for Bloch's theorem. However, in its original formulation it is limited to linear systems with periodic coefficients. Here, we extend the theory by proving a theorem for the general class of systems including linear operators commuting with the period-shift operator. The present theorem greatly expands the range of applicability of Floquet theory to a multitude of phenomena that were previously inaccessible with this type of analysis, such as dynamical systems with memory. As an important extension, we also prove Bloch's theorem for nonlocal potentials.

  12. Radon-Nikodym type theorem for α-completely positive maps

    International Nuclear Information System (INIS)

    Heo, Jaeseong; Ji, Un Cig

    2010-01-01

    We introduce a new notion of α-completely positive map on a C*-algebra as a generalization of the notion of completely positive map. Then we study a theorem of the Radon-Nikodym type that there is a one-to-one correspondence between α-completely positive maps and positive operators and, as an application of the Radon-Nikodym type theorem, we give a characterization of pure α-completely positive maps. Finally, we study a covariant version of the Stinespring's theorem for a covariant α-completely positive map (see Theorem 4.3).

  13. A theorem on the methodology of positive economics

    Directory of Open Access Journals (Sweden)

    Eduardo Pol

    2015-12-01

    Full Text Available It has long been recognized that the Milton Friedman’s 1953 essay on economic methodology (or F53, for short displays open-ended unclarities. For example, the notion of “unrealistic assumption” plays a role of absolutely fundamental importance in his methodological framework, but the term itself was never unambiguously defined in any of the Friedman’s contributions to the economics discipline. As a result, F53 is appealing and liberating because the choice of premises in economic theorizing is not subject to any constraints concerning the degree of realisticness (or unrealisticness of the assumptions. The question: “Does the methodology of positive economics prevent the overlapping between economics and science fiction?” comes very naturally, indeed. In this paper, we show the following theorem: the Friedman’s methodology of positive economics does not exclude science fiction. This theorem is a positive statement, and consequently, it does not involve value judgements. However, it throws a wrench on the formulation of economic policy based on surreal models.

  14. No-hair theorem for black holes in astrophysical environments.

    Science.gov (United States)

    Gürlebeck, Norman

    2015-04-17

    According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.

  15. Three theorems on near horizon extremal vanishing horizon geometries

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2016-02-01

    Full Text Available EVH black holes are Extremal black holes with Vanishing Horizon area, where vanishing of horizon area is a result of having a vanishing one-cycle on the horizon. We prove three theorems regarding near horizon geometry of EVH black hole solutions to generic Einstein gravity theories in diverse dimensions. These generic gravity theories are Einstein–Maxwell-dilaton-Λ theories, and gauged or ungauged supergravity theories with U(1 Maxwell fields. Our three theorems are: (1 The near horizon geometry of any EVH black hole has a three dimensional maximally symmetric subspace. (2 If the energy momentum tensor of the theory satisfies strong energy condition either this 3d part is an AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part. (3 These results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry.

  16. The life and times of the central limit theorem

    CERN Document Server

    Adams, William J

    2009-01-01

    About the First Edition: The study of any topic becomes more meaningful if one also studies the historical development that resulted in the final theorem. …This is an excellent book on mathematics in the making. -Philip Peak, The Mathematics Teacher, May, 1975 I find the book very interesting. It contains valuable information and useful references. It can be recommended not only to historians of science and mathematics but also to students of probability and statistics. -Wei-Ching Chang, Historica Mathematica, August, 1976 In the months since I wrote…I have read it from cover to cover at least once and perused it here and there a number of times. I still find it a very interesting and worthwhile contribution to the history of probability and statistics. -Churchill Eisenhart, past president of the American Statistical Association, in a letter to the author, February 3, 1975 The name Central Limit Theorem covers a wide variety of results involving the determination of necessary and sufficient conditions und...

  17. A note on asymptotic symmetries and soft-photon theorem

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Arif [SISSA - International School for Advanced Studies, via Bonomea, 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Trieste (Italy)

    2015-02-10

    We use the asymptotic data at conformal null-infinity ∋ to formulate Weinberg’s soft-photon theorem for Abelian gauge theories with massless charged particles. We show that the angle-dependent gauge transformations at ∋ are not merely a gauge redundancy, instead they are genuine symmetries of the radiative phase space. In the presence of these symmetries, Poisson bracket between gauge potentials is not well-defined. This does not pose an obstacle for the quantization of the radiative phase space, which proceeds by treating the conjugate electric field as the fundamental variable. Denoting by G{sub +} and G{sub −} as the group of gauge transformations at I{sup +} and I{sup −} respectively, Strominger has shown that a certain diagonal subgroup G{sub diag}⊂G{sub +}×G{sub −} is the symmetry of the S-matrix and Weinberg’s soft-photon theorem is the corresponding Ward identity. We give a systematic derivation of this result for Abelian gauge theories with massless charged particles. Our derivation is a slight generalization of the existing derivations since it is applicable even when the bulk spacetime is not exactly flat, but is only “almost” Minkowskian.

  18. Cosmological singularity theorems for f ( R ) gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)

    2016-05-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  19. Cosmological singularity theorems for f ( R ) gravity theories

    International Nuclear Information System (INIS)

    Alani, Ivo; Santillán, Osvaldo P.

    2016-01-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  20. Classification of simple surface points and a global theorem for simple closed surfaces in three-dimensional digital spaces

    Science.gov (United States)

    Chen, Li; Zhang, Jianping

    1993-12-01

    In this paper, we present two theorems: classification theorem and corner point theorem for closed digital surfaces. The classification theorem deals with the categorization of simple surface points and states that there are exactly six different types of simple surface points. On the basis of the classification theorem and Euler formula on planar graph, we have proved the corner point theorem: Any simple closed surface has at least eight corner points, where a corner point of a closed surface is a point in the surface which has exactly three adjacent points in the closed surface. Another result reported in this paper is that any simple closed surface has at least fourteen points.

  1. Generalized virial theorem for the Liénard-type systems

    Indian Academy of Sciences (India)

    1. Introduction. The virial theorem (VT) is an important theorem of classical mechanics which has been successfully applied in the last century to a number of relevant physics problems, mainly in astrophysics, cosmology, molecular physics, quantum mechanics and in statistical mechanics. In mechanics, it provides a general ...

  2. Extension of Kirk-Saliga Fixed Point Theorem in a Metric Space with a Reflexive Digraph

    Directory of Open Access Journals (Sweden)

    Karim Chaira

    2018-01-01

    Full Text Available We extend the result of Kirk-Saliga and we generalize Alfuraidan and Khamsi theorem for reflexive graphs. As a consequence, we obtain the ordered version of Caristi’s fixed point theorem. Some concrete examples are given to support the obtained results.

  3. Confusion and Clarification: Albert Einstein and Walther Nernst's Heat Theorem, 1911-1916

    NARCIS (Netherlands)

    Kox, A.J.

    2006-01-01

    This paper discusses the early history of Walther Nernst's Heat Theorem and the first stages of its development into the Third Law of Thermodynamics. In addition to published papers, informal discussions were important in shaping the understanding of the meaning and validity of the Theorem. Special

  4. On estimates of the rate of convergence In the global limit theorems for Homogeneous markov chains

    OpenAIRE

    Gharib, M. [محمد غريب محمود

    1997-01-01

    In this paper some estimates are obtained for the remainder term in the limit theorems for the weighted sum of random variables forming a homogeneous Markov chain with arbitrary set of possible states . The achieved results make it possible to estimate the rate of convergence in these theorems in the metric of the space Lp, 1

  5. A complete analogue of Hardy's theorem on SL2(R) and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. A theorem of Hardy characterizes the Gauss kernel (heat kernel of the. Laplacian) on R from estimates on the function and its Fourier transform. In this article we establish a full group version of the theorem for SL2(R) which can accommodate functions with arbitrary K-types. We also consider the 'heat equation' of ...

  6. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    Science.gov (United States)

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  7. On the non-interaction theorems in relativistic classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jauregui, R.

    1990-01-01

    The non-interaction theorem of Currie-Jordan-Sudarshan in relativistic classical mechanics and the non-interaction Haag theorem in relativistic quantum field theory are stated. It is shown explicitly that the consequences of the latter can be avoided in quantum electrodynamics by dispensing the condition of taking the field variables as canonical variables. (Author)

  8. Limit theorems for stationary increments Lévy driven moving averages

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Lachièze-Rey, Raphaël; Podolskij, Mark

    of the kernel function g at 0. First order asymptotic theory essentially comprise three cases: stable convergence towards a certain infinitely divisible distribution, an ergodic type limit theorem and convergence in probability towards an integrated random process. We also prove the second order limit theorem...

  9. Quantum and classical strong direct product theorems and optimal time-space tradeoffs

    NARCIS (Netherlands)

    H. Klauck (Hartmut); R. Spalek (Robert); R. M. de Wolf (Ronald)

    2007-01-01

    textabstractA strong direct product theorem says that if we want to compute $k$ independent instances of a function, using less than $k$ times the resources needed for one instance, then our overall success probability will be exponentially small in $k$. We establish such theorems for the

  10. Approximate Fixed Point Theorems in Banach Spaces with Applications in Game Theory

    NARCIS (Netherlands)

    Brânzei, R.; Morgan, J.; Scalzo, V.; Tijs, S.H.

    2002-01-01

    In this paper some new approximate fixed point theorems for multifunctions in Banach spaces are presented and a method is developed indicating how to use approximate fixed point theorems in proving the existence of approximate Nash equilibria for non-cooperative games.

  11. Bell's Theorem and Einstein's "Spooky Actions" from a Simple Thought Experiment

    Science.gov (United States)

    Kuttner, Fred; Rosenblum, Bruce

    2010-01-01

    In 1964 John Bell proved a theorem allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they "do". Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at "any" level. And a simple, semi-classical derivation of…

  12. On the Stone-Weierstrass theorem for scalar and vector valued functions

    International Nuclear Information System (INIS)

    Khan, L.A.

    1991-09-01

    In this paper we discuss the formulation of the Stone-Weierstrass approximation theorem for vector-valued functions and then determine whether the classical Stone-Weierstrass theorem for scalar-valued functions can be deduced from the above one. We also state some open problems in this area. (author). 15 refs

  13. Approximate Fixed Point Theorems for the Class of Almost - Mappings in Abstract Convex Uniform Spaces

    Directory of Open Access Journals (Sweden)

    Chang Tong-Huei

    2009-01-01

    Full Text Available We use a concept of abstract convexity to define the almost - property, al- - family, and almost -spaces. We get some new approximate fixed point theorems and fixed point theorems in almost -spaces. Our results extend some results of other authors.

  14. Hwang\\'s quasi-power-theorem in dimension two | Heuberger ...

    African Journals Online (AJOL)

    In a frequently used theorem, H.K. Hwang proved convergence rates for the central limit theorem of a class of random variables whose moment generating function has a “quasi-power” structure. We generalise this result to random vectors of two variables. Quaestiones Mathematicae 30(2007), 507–512 ...

  15. A complete analogue of Hardy's theorem on SL2 (R) and ...

    Indian Academy of Sciences (India)

    A theorem of Hardy characterizes the Gauss kernel (heat kernel of the Laplacian) on R from estimates on the function and its Fourier transform. In this article we establish a full group version of the theorem for S L 2 ( R ) which can accommodate functions with arbitrary -types. We also consider the `heat equation' of the ...

  16. Stability theorems for stochastic differential equations driven by G-Brownian motion

    OpenAIRE

    Zhang, Defei

    2011-01-01

    In this paper, stability theorems for stochastic differential equations and backward stochastic differential equations driven by G-Brownian motion are obtained. We show the existence and uniqueness of solutions to forward-backward stochastic differential equations driven by G-Brownian motion. Stability theorem for forward-backward stochastic differential equations driven by G-Brownian motion is also presented.

  17. A Borsuk-Ulam type generalization of the Leray-Schauder fixed point theorem

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.

    2007-05-01

    A generalization of the classical Leray-Schauder fixed point theorem, based on the infinite-dimensional Borsuk-Ulam type antipode construction, is proposed. Two completely different proofs based on the projection operator approach and on a weak version of the well known Krein-Milman theorem are presented. (author)

  18. A Fascinating Application of Steiner's Theorem for Trapezium: Geometric Constructions Using Straightedge Alone

    Science.gov (United States)

    Stupel, Moshe; Ben-Chaim, David

    2013-01-01

    Based on Steiner's fascinating theorem for trapezium, seven geometrical constructions using straight-edge alone are described. These constructions provide an excellent base for teaching theorems and the properties of geometrical shapes, as well as challenging thought and inspiring deeper insight into the world of geometry. In particular, this…

  19. Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

    NARCIS (Netherlands)

    Klauck, H.; Spalek, R.; de Wolf, R.M.

    2004-01-01

    A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum

  20. Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

    NARCIS (Netherlands)

    Klauck, H.; Špalek, R.; de Wolf, R.

    2007-01-01

    A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum