Body wave travel times and amplitudes for present-day seismic model of Mars
Raevskiy, Sergey; Gudkova, Tamara
At the moment Martian interior structure models are constrained by the satellite observational data (the mass, the moment of inertia factor, the Love number k _{2}) (Konopliv et al., 2011) and high pressure experimental data (Bertka and Fei, 1997). Seismological observations could provide unparalleled capability for studying Martian interiors. Future missions include seismic experiments on Mars (Lognonné et al., 2012). The main instrument for these seismic experiments is a broadband seismometer (Robert et al., 2012). When seismic measurements are not yet available, physically consistent interior models, characterized by properties of relevant minerals, make possible to study of the seismic response of the planet. \\To estimate travel times for direct P, S, core reflected PcP, ScS and core refracted PKP body waves as a function of epicentral distance and hypocentral depth, as well as their amplitudes at the surface for a given marsquake, software product was developed in MatLab, as it encompasses many plotting routines that plot resulting travel times and ray paths. The computational results have been compared with the program TTBox (Knapmeyer, 2004). The code computes seismic ray paths and travel times for a one-dimentional spherical interior model (density and seismic velocities are functions of a radius only). Calculations of travel times tables for direct P, S, core reflected PcP, ScS and core refracted PKP waves and their amplitudes are carried out for a trial seismic model of Mars M14_3 from (Zharkov et al., 2009): the core radius is 1800 km, the thickness of the crust is 50 km. Direct and core reflected P and S waves are recorded to a maximum epicentral distance equal to about 100(°) , and PKP arrivals can be detected for epicental distances larger than 150(°) . The shadow zone is getting wider in comparison with previous results (Knapmeyer, 2010), as the liquid core radius of the seismic model under consideration is larger. Based on the estimates of
Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data
Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.
2009-12-01
We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.
Ellipticity and crustal corrections for seismic body wave paths: application to Mars and Moon
Hempel, S.; Garcia, R.; Wieczorek, M. A.
2015-12-01
Forward modeling of seismic body wave travel times and ray parameters for a given density and seismic velocity model is an important tool to investigate the interior structure of planets. The popular toolbox TauP by Crotwell et al. (1999) facilitates application to planets other than Earth, but does not consider a planet's ellipticity nor its surface topography. Due to their ellipticity, smaller radii and larger relative surface topography, these corrections become more significant in predicting seismic observations for celestial bodies like the Moon and Mars. In preparation for NASA's INSIGHT discovery mission (launch in March 2016), we include ellipticity corrections, geometrical spreading and topography corrections into TauP. The respective TauP extensions, as well as Lunar and Martian applications are presented: Previously, Lunar and Martian seismic velocity models have been proposed based on mass, moment of inertia, Love numbers and estimated bulk composition, and in case of the Moon also based on seismic data acquired during the Apollo Program (1969-1977). Due to the lack of direct seismic evidence, current Martian seismic velocity models vary widely and exhibit large travel time excursions, as well as considerable variations in epicentral distance ranges for which a given body wave is predicted to arrive. We discuss the effects of Lunar and Martian ellipticity and crustal structure on seismic travel times for a set of seismic velocity models and compare these to variations observed between the different 1D models. This comparison demonstrates the relevance of modeling the effects of ellipticity and crustal thickness during interpretation of seismic data acquired on planets like Mars or Moon.
Noise-based body-wave seismic tomography in an active underground mine.
Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.
2014-12-01
Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the
Body-wave retrieval and imaging from ambient seismic fields with very dense arrays
Nakata, N.; Boué, P.; Beroza, G. C.
2015-12-01
Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.
Quantifying Regional Body Wave Attenuation in a Seismic Prone Zone of Northeast India
Bora, Nilutpal; Biswas, Rajib
2017-03-01
We evaluated the body wave attenuation parameter in Kopili region of northeast India. Using the modified algorithm of coda normalization method, we delineated frequency-dependent attenuation for both P and S waves. Taking more than 300 seismograms as input, we comprehensively studied microearthquake spectra in the frequency range of 1.5-12 Hz. The estimated values of {Q}_{P}^{-1} and {Q}_{S}^{-1} show strong frequency dependence. Based on this, we formulated empirical relationships corresponding to {Q}_{P}^{-1} and {Q}_{S}^{-1} for the study region. The relationships emerge to be {Q}_{P}^{-1} = ( {23.8 ± 6} ) × 10^{-3} {f}^{{( {-1.2 ± 0.008} )}} and {Q}_{S}^{-1} = ( {10.2 ± 2} ) × 10^{-3} {f}^{{( {-1.3 ± 0.02} )}} , respectively. The ratio {Q}_{P}^{-1} /{Q}_{S}^{-1} is found to be larger than unity for the entire frequency band which implies profound seismic activity and macroscale heterogeneity prevailing in the region. The study may act as the building block towards determination of source parameter and hazard-related studies in the region.
Seismic interferometry of railroad induced ground motions: body and surface wave imaging
Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon
2016-04-01
Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.
Institute of Scientific and Technical Information of China (English)
张海明; 陈晓非
2003-01-01
The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.
Making Waves: Seismic Waves Activities and Demonstrations
Braile, S. J.; Braile, L. W.
2011-12-01
The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.
P- and S-wave seismic attenuation for deep natural gas exploration and development
Energy Technology Data Exchange (ETDEWEB)
Walls, Joel [Rock Solid Images, Houston, TX (United States); Uden, Richard [Rock Solid Images, Houston, TX (United States); Singleton, Scott [Rock Solid Images, Houston, TX (United States); Shu, Rone [Rock Solid Images, Houston, TX (United States); Mavko, Gary [Stanford Univ., CA (United States)
2005-04-12
Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy.The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P- and S-waves. Phase I specific technical objectives: Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs; Create P-wave and S-wave Synthetic Seismic Modeling Algorithms with Q; and, Compute P-wave and S-wave Q Attributes from Multi-component Seismic Data. All objectives defined in the Phase I proposal were accomplished. During the course of this project, a new class of seismic analysis was developed based on compressional and shear wave inelastic rock properties (attenuation). This method provides a better link between seismic data and the presence of hydrocarbons. The technique employs both P and S-wave data to better discriminate between attenuation due to hydrocarbons versus energy loss due to other factors such as scattering and geometric spreading. It was demonstrated that P and S attenuation can be computed from well log data and used to generate synthetic seismograms. Rock physics models for P and S attenuation were tested on a well from the Gulf of Mexico. The P- and S-wave Q attributes were computed on multi-component 2D seismic data intersecting this well. These methods generated reasonable results, and most importantly, the Q attributes indicated gas saturation.
Apparent Attenuation and Dispersion Arising in Seismic Body-Wave Velocity Retrieval
Wirgin, Armand
2016-07-01
The fact that seismologists often make measurements, using natural seismic solicitations, of properties of the Earth on rather large scales (laterally and in terms of depth) has led to interrogations as to whether attenuation of body waves is dispersive and even significant. The present study, whose aim is to clarify these complicated issues, via a controlled thought measurement, concerns the retrieval of a single, real body wave velocity of a simple geophysical configuration (involving two homogeneous, isotropic, non-dissipative media, one occupying the layer, the other the substratum), from its simulated response to pulsed plane wave probe radiation. This inverse problem is solved, at all frequencies within the bandwidth of the pulse. Due to discordance between the models associated with the assumed and trial responses, the imaginary part of the retrieved velocity turns out to be non-nil even when both the layer and substratum are non-lossy, and, in fact, to be all the greater, the larger is the discordance. The reason for this cannot be due to intrinsic attenuation, scattering, or geometrical spreading since these phenomena are absent in the chosen thought experiment, but rather to uncertainty in the measurement model.
Body-wave seismic interferometry applied to earthquake- and storm-induced wavefield
Ruigrok, E.N.
2012-01-01
Seismology is the study of the vibration of the Earth. Seismologists pay much attention to the main source of Earth vibration: earthquakes. But also other seismic sources, like mining blasts, ocean storms and windmills, are studied. All these sources induce seismic waves, which can eventually be rec
Seismic wave velocities of rare gas solids through elastic properties in Earth’s lower mantle
Institute of Scientific and Technical Information of China (English)
Seema; GUPTA; Suresh; C.; GOYAL
2009-01-01
The expressions for second (SOE) and third order elastic (TOE) constants for rare gas solids are derived for comparative study of elastic behavior within the framework of many body potentials including the effect of pressure. The derived expressions are used to obtain the relations for pressure derivatives of bulk and shear moduli of RGS solids. The values of SOE, TOE constants and pressure derivative of bulk and shear modulus for Ne up to 100 GPa, Ar up to 75 GPa, for Kr up to 136 GPa and Xe up to 53.4 GPa pressure are computed. The results are in agreement with available experimental results. The computed results are then used to analyze the pressure up to high compression and the elastic and seismic wave velocities (P & S) in Earth’s deep interior.
Oren, C.; Nowack, R. L.
2015-12-01
It is known that the positive lags of the auto-correlation for the seismic transmission response of a layered medium correspond to the reflection seismogram (Claerbout, 1968). In this study, we investigate the use of ambient seismic noise recorded at selected broadband USArray EarthScope Transportable Array (TA) stations to obtain effective reflection seismograms for frequencies up to 1 Hz. The goal is to determine the most suitable parameters used for the processing of ambient seismic noise for the identification of crustal and upper mantle reflections and to minimize unwanted artifacts in the noise correlations. In order to best retrieve the body-wave components of the Green's function beneath a station, a number of processing steps are required. We first remove the instrument response and apply a temporal normalization to remove the effects of the most energetic sources. Next we implement spectral whitening. We test several operators for the spectral whitening where the undulations of the power spectrum are related to the strengths of later arrivals in the auto-correlation. Different filters are then applied to the auto-correlation functions, including Gaussian and zero phase Butterworth filters, in order to reduce the effect of side lobes. Hourly auto-correlations are then stacked for up to one year. On the final stack, Automatic Gain Control (AGC) is applied to equalize the correlation amplitudes in the time domain. The robustness of the resulting ambient noise auto-correlation is first tested on selected TA stations in Nevada, where we are able to identify PmP and SmS arrivals similar to those found by Tibuleac and von Seggern (2012). We then investigate noise auto-correlations applied to selected USArray TA stations in the central US.
S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben
Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe
2007-07-01
An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined
Korneev, Valeri A [LaFayette, CA
2009-05-05
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J.
2016-11-01
In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface observations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined from SRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio from the SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ratios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics.
DEFF Research Database (Denmark)
Soliman, Mohammad Youssof Ahmad; Yuan, Xiaohui; Tilmann, Frederik;
2015-01-01
We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated...
Palomeras, I.; Marti, D.; Carbonell, R.; Ayarza, P.; Simancas, F.; Martinez-Poyatos, D.; Azor, A.; Gonzalez-Lodeiro, F.; Perez-Estaun, A.
2009-04-01
The IBERSEIS wide-angle seismic reflection transects acquired in 2003 in SW-Iberia Peninsula provided constraints on the P-wave seismic velocity structure across the three tectonic provinces in the area: the South Portuguesse Zone (SPZ), the Ossa-Morena Zone (OMZ) and the Central Iberia Zone (CIZ). These data were acquired by 650 vertical component seismographs (TEXAN seismic recorders) from the IRIS-PASSCAL Instrument center, using explosive sources with charge sizes ranging from 500 to 1000 kg. Both transects A and B are, approximately, 300 km long with a station spacing of 400 m and of 150 m respectively. The relatively small station spacing favored the lateral correlation of the seismic events and provided enough resolution for the identification of shear-wave arrivals. The most prominent S-wave phase recorded by the vertical component sensors corresponds to the SmS which is nearly horizontal for a velocity reduction of 4600 m/s. This phase can even be followed up to near vertical incidence at 18 s(twtt). A few S-wave crustal arrivals can be also identified, although at small offsets they interfere with the previous P-wave arrivals. The Sn phase can be observed at very far offsets providing additional constraints on the nature of the shallow subcrustal mantle. Furthermore, slant stacks of the shot gathers (tau-p sections) reveal the existing of PS energy. PS phases are more difficult to identify in the shot gathers. Finally, a preliminary S-wave velocity model has been derived by iterative forward modeling to provide additional constraints on the nature of the deep crust and upper mantle beneath the Variscan of SW-Iberia.
Seismic wave propagation in granular media
Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion
2016-10-01
Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The 2008 Wenchuan earthquake occurred in an active earthquake zone, i.e., Longmenshan tectonic zone. Seismic waves triggered by this earthquake can be used to explore the characteristics of the fault rupture process and the hierarchical structure of the Earth’s interior. We employ spectral element method incorporated with large-scale parallel computing technology, to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. The AK135 model is employed as a prototype of our numerical global Earth model. The Earth’s ellipticity, Earth’s medium attenuation, and topography data are taken into consideration. These wave propagation processes are simulated by solving three-dimensional elastic wave governing equations. Three-dimensional visualization of our numerical results displays the profile of the seismic wave propagation. The three-point source, which is proposed from the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture process than the one-point source. We take comparison of synthetic seismograms with observational data recorded at 16 observatory stations. Primary results show that the synthetic seismograms calculated from three-point source agree well with the observations. This can further reveal that the source rupture process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes.
Brule, Stephane; Guenneau, Sebastien
2016-01-01
A prerequisite for achieving seismic invisibility is to demonstrate the ability of civil engineers to control seismic waves with artificially structured soils. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (< 10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of an effective negative refraction index. Such a flat lens reminiscent of what Veselago and Pendry envisioned for light opens avenues in seismic metamaterials to counteract the most devastating components of seismic signals.
P- and S-body wave tomography of the state of Nevada.
Energy Technology Data Exchange (ETDEWEB)
Preston, Leiph
2010-04-01
P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
Fuenzalida, H.; Rivera, L.; Haessler, H.; Legrand, D.; Philip, H.; Dorbath, L.; McCormack, D.; Arefiev, S.; Langer, C.; Cisternas, A.
1997-01-01
The Racha-Dzhava earthquake (Ms = 7.0) that occurred on 1991 April 29 at 09:12:48.1 GMT in the southern border of the Great Caucasus is the biggest event ever recorded in the region, stronger than the Spitak earthquake (Ms = 6.9) of 1988. A field expedition to the epicentral area was organised and a temporary seismic network of 37 stations was deployed to record the aftershock activity. A very precise image of the aftershock distribution is obtained, showing an elongated cloud oriented N105??, with one branch trending N310?? in the western part. The southernmost part extends over 80 km, with the depth ranging from 0 to 15 km, and dips north. The northern branch, which is about 30 km long, shows activity that ranges in depth from 5 to 15 km. The complex thrust dips northwards. A stress-tensor inversion from P-wave first-motion polarities shows a state of triaxial compression, with the major principal axis oriented roughly N-S, the minor principal axis being vertical. Body-waveform inversion of teleseismic seismograms was performed for the main shock, which can be divided into four subevents with a total rupture-time duration of 22 s. The most important part of the seismic moment was released by a gentle northerly dipping thrust. The model is consistent with the compressive tectonics of the region and is in agreement with the aftershock distribution and the stress tensor deduced from the aftershocks. The focal mechanisms of the three largest aftershocks were also inverted from body-wave records. The April 29th (Ms = 6.1) and May 5th (Ms = 5.4) aftershocks have thrust mechanisms on roughly E-W-oriented planes, similar to the main shock. Surprisingly, the June 15th (Ms = 6.2) aftershock shows a thrust fault striking N-S. This mechanism is explained by the structural control of the rupture along the east-dipping geometry of the Dzirula Massif close to the Borzhomi-Kazbeg strike-slip fault. In fact, the orientation and shape of the stress tensor produce a thrust on a N-S
Directory of Open Access Journals (Sweden)
Hartmut Kern
2011-01-01
Full Text Available Lithologic interpretations of the earth crust from seismic wave velocities are non-unique so that inferences about composition can not be drawn. In order to evaluate how elastic properties of rock materials are controlled by lithology at in situ pressures and temperatures, compressional (Vp, shear wave velocities (Vs and velocity anisotropy of crustal rocks were measured at conditions of greater depth. The first part deals with the interdependence of elastic wave propagation and the physical and lithological parameters. In the second part data from laboratory seismic measurements and theoretical calculations are used to interpret (1 a shallow seismic reflection line (SE Finland and (2 a refraction profile of a deep crust (Central China. The comparison of the calculated velocities with the experimentally-derived in situ velocities of the Finnish crustal rocks give hints that microcracks have an important bearing on the in situ seismic velocities, velocity anisotropy and the reflectivity observed at relative shallow depth. The coupling of the experimentally-derived in situ velocities of P- and S-wave and corresponding Poisson's ratios of relevant exhumed high-grade metamorphic crustal rocks from Central China with respective data from seismic refraction profiling provided a key for the lithologic interpretation of a deep seismic crustal structure.
Pugin, Andre J.M.; Larson, T.H.; Sargent, S.L.; McBride, J.H.; Bexfield, C.E.
2004-01-01
SH-wave and P-wave high-resolution seismic reflection combined with land-streamer technology provide 3D regional maps of geologic formations that can be associated with aquifers and aquitards. Examples for three study areas are considered to demonstrate this. In these areas, reflection profiling detected near-surface faulting and mapped a buried glacial valley and its aquifers in two settings. The resulting seismic data can be used directly to constrain hydrogeologic modeling of shallow aquifers.
Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.
2013-12-01
Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.
Modeling Regional Seismic Waves
1992-06-29
80107 6 3.36 0.13 RAT minersiron 80305 11 4.40 0.05 YAT baseball 81015 10 4.18 0.07 YBT rousanne 81316 9 4.67 0.05 YBT jornada 82028 10 4.52 0.06 PBR...Livermore National Laborator ,- A Division of Maxwell Laboratory L-025 P.O. Box 1620 PO. Box 808 La Jolla, CA 92038-1620 Livermore, CA 945(50 Stephen Miller...for Earth Sciences S-CUBBED University of Southern California A Division of Maxwell Laborator .- University Park P.O. Box 1620 Los Angeles, CA 90089
Nacif, Silvina; Triep, Enrique G.
2016-04-01
S-wave splitting from local earthquakes within the Nazca plate that are deeper than the interplate seismogenic zone enabled the determination of the fast velocity direction, Φ, and the lag time, δt, in the forearc of the overriding plate. Data were collected from 20 seismic stations, most of which were temporary, deployed between ~33.5°S and ~34.5°S and included part of the normal subduction section to the south and part of the transitional section to flat subduction to the north. The fast velocity direction has a complex pattern with three predominant directions northwest-southeast, north-south and northeast-southwest and relatively high δt. A quality evaluation of the highest measurements enabled us to identify possible cycle skipping in some of the measurements, which could be responsible for the large observed lag time. We consider that most of the anisotropy that was observed in the forearc is probably located in the mantle wedge, and a minor part is located in the crust. The complex pattern of splitting parameters when the anisotropy is associated at the mantle wedge could be the result of three-dimensional variations in the subducting Nazca plate at these latitudes. Also, similarities between the splitting parameters and the principal compressional stress direction from Pliocene and Quaternary rocks suggest that the anisotropy in the crust could originate by tectonic local stress.
Seismic Waves in Rocks with Fluids and Fractures
Energy Technology Data Exchange (ETDEWEB)
Berryman, J G
2006-02-06
Seismic wave propagation through the earth is often strongly affected by the presence of fractures. When these fractures are filled with fluids (oil, gas, water, CO{sub 2}, etc.), the type and state of the fluid (liquid or gas) can make a large difference in the response of the seismic waves. This paper will summarize some early work of the author on methods of deconstructing the effects of fractures, and any fluids within these fractures, on seismic wave propagation as observed in reflection seismic data. Methods to be explored here include Thomsen's anisotropy parameters for wave moveout (since fractures often induce elastic anisotropy), and some very convenient fracture parameters introduced by Sayers and Kachanov that permit a relatively simple deconstruction of the elastic behavior in terms of fracture parameters (whenever this is appropriate).
Seismic Wave Propagation on the Tablet Computer
Emoto, K.
2015-12-01
Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the
GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds
Energy Technology Data Exchange (ETDEWEB)
Simmons, N A; Forte, A M; Boschi, L; Grand, S P
2010-03-30
GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are
Takemura, Shunsuke; Furumura, Takashi; Maeda, Takuto
2015-04-01
Based on 3-D finite difference method simulations of seismic wave propagation, we examined the processes by which the complex, scattered high-frequency (f > 1 Hz) seismic wavefield during crustal earthquakes is developed due to heterogeneous structure, which includes small-scale velocity inhomogeneity in subsurface structure and irregular surface topography on the surface, and compared with observations from dense seismic networks in southwestern Japan. The simulations showed the process by which seismic wave scattering in the heterogeneous structure develops long-duration coda waves and distorts the P-wave polarization and apparent S-wave radiation pattern. The simulations revealed that scattering due to irregular topography is significant only near the station and thus the topographic scattering effects do not accumulate as seismic waves propagate over long distances. On the other hand, scattering due to velocity inhomogeneity in the subsurface structure distorts the seismic wavefield gradually as seismic waves propagate. The composite model, including both irregular topography and velocity inhomogeneity, showed the combined effects. Furthermore, by introducing irregular topography, the effects of seismic wave scattering on both body and coda waves were stronger than in the model with velocity inhomogeneity alone. Therefore, to model the high-frequency seismic wavefield, both topography and velocity inhomogeneity in the subsurface structure should be taken into account in the simulation model. By comparing observations with the simulations including topography, we determined that the most preferable small-scale velocity heterogeneity model for southwestern Japan is characterized by the von Kármán power spectral density function with correlation distance a = 5 km, rms value of fluctuation ɛ = 0.07 and decay order κ = 0.5. We also demonstrated that the relative contribution of scattering due to the topography of southwestern Japan is approximately 12 per cent.
Observation of equipartition of seismic waves.
Hennino, R; Trégourès, N; Shapiro, N M; Margerin, L; Campillo, M; van Tiggelen, B A; Weaver, R L
2001-04-09
Equipartition is a first principle in wave transport, based on the tendency of multiple scattering to homogenize phase space. We report observations of this principle for seismic waves created by earthquakes in Mexico. We find qualitative agreement with an equipartition model that accounts for mode conversions at the Earth's surface.
Cardarelli, E.; Cercato, M.; De Donno, G.
2014-07-01
The determination of the current state of buildings and infrastructures through non-invasive geophysical methods is a topic not yet covered by technical standards, since the application of high resolution geophysical investigations to structural targets is a relatively new technology. Earth-filled dam investigation is a typical engineering application of this type. We propose the integration of Electrical Resistivity Tomography and P- and SH-wave seismic measurements for imaging the geometry of the dam's body and the underlying soil foundations and to characterize the low strain elastic properties. Because S-wave velocity is closely tied to engineering properties such as shear strength, low-velocity zones in the S-wave velocity models are of particular interest. When acquiring seismic data on earth filled dams, it is not uncommon to encounter highly attenuative surface layers. If only lightweight seismic sources are available, the seismic data generally exhibit a narrow frequency bandwidth: the lack of high frequency components generally prevents from having good quality shallow reflections. If there is no possibility to increase the power as well as the frequency content of the seismic source, the integration of other seismic methods than reflection may be the only available way to achieve a reliable near surface seismic characterization. For these reasons, we combined P- and SH-wave tomography with Multichannel Analysis of Surface Waves to image the internal and the underlying soil foundations of an earth filled dam located in Central Italy. In the presence of moderate velocity contrasts, tomographic methods have proven successful in imaging near surface variations along both the horizontal and vertical directions. On the other hand, body wave propagation is severely affected by attenuation under the previously described conditions, so that the quality of picked traveltimes dramatically decreases with offset and, consequently, the tomographic investigation
Attenuation of seismic waves in Central Egypt
Directory of Open Access Journals (Sweden)
Mamdouh Abbas Morsy
2013-06-01
Full Text Available Attenuation of seismic waves in central Egypt had never been studied before. The results of the research on the seismic attenuation are based upon the information collected by the seismological network from 1998 to 2011. 855 earthquakes were selected from the Egyptian seismological catalog, with their epicenter distances between 15 and 150 km, their magnitudes ranging from 2 and 4.1 and focal depths reaching up to 30 km. The first systematic study of attenuation derived from the P-, S- and coda wave in the frequency range 1–24 Hz is presented. In the interpretation of the results both single and multiple scattering in a half space are considered. The single scattering model proposed by Sato (1977 was used. Two methods, the coda (Qc and the Multiple Lapse Time Window (MLTW method are used. The aim of this study is to validate these interpretations in the region and to try to identify the effects of attenuation due to intrinsic (Qi and scattering attenuation (Qsc. The mean Qc value calculated was Qc = (39 ± 1f1.0±0.009. The average Qc at 1.5 Hz is (53 ± 6 and Qc = (900 ± 195 at 24 Hz with Qo ranging between 23 and 107, where η ranging between 0.9 and 1.3. The quality factor (Q was estimated from spectra of P- and S-waves by applying a spectral ratio technique. The results show variations in Qp and QS as a function of frequency, according to the power law Q = 56η1.1. The seismic albedo is 0.7 at all stations and it mean that the earthquake activity is due to tectonic origin. The attenuation and frequency dependency for different paths and the correlation of the results with the geotectonic of the region are presented. The Qc values were calculated and correlated with the geology and tectonics of the area. The relatively low Qo and the high frequency dependency agree with the values of a region characterized by a low tectonic activity and vise versa.
Zhong-ye Tian; Meng-lin Lou
2014-01-01
The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due t...
The S to P convert wave from the bottom of sediment basin in the near-field seismic records
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
From the near-field records of aftershocks of October 1989 and March 1991 Datong earthquakes, an extra phase between P and S arrivals is found. High-precision epicenter location shows that some of these records are obtained with the incidental angle less than the critical angle. This excludes the possibility that the extra wave phase is a refractive wave from ground surface. Particle motion analysis shows that the characteristic of the extra wave is similar to that of P wave, therefore it is very possible that the extra phase is an S to P convert wave from the bottom of sediment basin. Suppose a low velocity layer covers on a high velocity basement. Successful simulation by synthetic seismogram conforms that the extra phase is an S-P convert wave from the interface of basin bottom. Modifying the depth of interface at each ray path to match the waveform, we obtain an interface distribution in space. In this way a brief imagine of bottom could be shown, and Datong basin has a (V( shape basin bottom.
Engineered metabarrier as shield from seismic surface waves
2016-01-01
Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by bu...
Energy Technology Data Exchange (ETDEWEB)
Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray
2004-02-01
Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.
Multisymplectic Geometry for the Seismic Wave Equation
Institute of Scientific and Technical Information of China (English)
CHEN Jing-Bo
2004-01-01
The multisymplectic geometry for the seismic wave equation is presented in this paper.The local energy conservation law,the local momentum evolution equations,and the multisymplectic form are derived directly from the variational principle.Based on the covariant Legendre transform,the multisymplectic Hamiltonian formulation is developed.Multisymplectic discretization and numerical experiments are also explored.
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed, creat
Directory of Open Access Journals (Sweden)
A. E. Vinogradov
2008-01-01
Full Text Available An induction seismic receiver is widely applied in many guarding devices (1К18 «Realiya», PS-75 «Gerb» and others which are used for detection of moving surface objects. The receiver makes it possible to register soil vibrations caused by the object action. An inertial element of such seismic receiver is a cylindrical coil connected with the body by means of two flat springs.The paper proposes a method for calculation of electromotive force (EMF at induction seismic receiver output when it is exposed to seismic Relay wave on the basis of a differential equation for motion of the inertial element with due account of transient processes of forced vibrations and damping. The seismic receiver damping is a coil form where k of the spool, in which surface Foucault currents are induced.Results of modeling and experimental investigations have shown that the proposed methodology for EMF calculation, which is induced in the seismic receiver, allows faithfully to model signals at induction seismic receiver output that can be rather useful for mathematical modeling of surface object motion seismograms.
Seismic structure of the oceanic lithosphere inferred from guided wave
Shito, A.; Suetsugu, D.; Furumura, T.; Sugioka, H.; Ito, A.
2012-12-01
Characteristic seismic waves are observed by seismological experiment using Broad-Band Ocean Bottom Seismometers (BBOBSs) conducted in the northwestern Pacific from 2007 to 2008 and from 2010 to 2011. The seismic waves have low frequency onset (phases (2.5-10 Hz). The high frequency later phases have large amplitude and long duration for both P and S waves. The seismic waves are observed commonly at the BBOBS array from events in the subducting Pacific plate. To investigate generation and propagation mechanisms of the seismic wave will help us to understand the seismic structure and the origin of the oceanic lithosphere. High frequency phases travelling efficiently through the oceanic lithosphere more than 3000 km are well known phenomenon. These phases were previously called as Po/So waves. Po/So waves were observed as early as 1935, and were studied actively from the 1970s to 1990s. However, the mechanism of generation and propagation of the phases are still controversial. The guided waves propagating in subducting plate are also common phenomenon in the subduction zone. The waves are generally characterized by separation of low frequency and high frequency components. In order to explain the separation, Martin and Rietbrock [2003] considered the trapping of waves in the waveguide formed by thin low velocity former oceanic crust at the top of the plate. However, large amplitude and long duration of the high frequency component cannot be achieved by the model. From the analysis of waveform observed at the eastern seaboard of northern Japan and numerical simulation of seismic wave propagation, Furumura and Kennet [2005] demonstrate that the guided wave travelling in the subducting plate is produced by multiple forward scattering of high-frequency seismic waves due to small-scale random heterogeneity in the plate structure. We apply the method proposed by Furumura and Kennett [2005] to reproduce the seismograms recorded by the BBOBS array. We conduct 2D numerical
Imaging of converted-wave ocean-bottom seismic data
Rosales Roche, Daniel Alejandro
Converted-wave data can be imaged with several methodologies. The transformation of data into the image space, is defined by an imaging operator, the simplest of which is normal moveout correction plus stack. Most of the converted-wave processing is carried out in the data domain, that is in time, data midpoint location, and data offset, this processing is not ideal for this type of seismic data. The processing should be carried out in the image domain, that is the one composed of depth, image midpoint location and image subsurface offset. Different processing techniques are created for an accurate image of converted wave seismic data. First, in 2-D Ocean-Bottom Seismic (OBC), the image space for converted-wave data is defined in the angle domain to form converted-wave angle-domain common-image gathers (PS-ADCIGs). The PS-ADCIGs can also be mapped into two complementary ADCIGs, the first one is function only of the P-incidence angle, the second ADCIG is function of the S-reflection angle. The method to obtain PS-ADCIGs is independent of the migration algorithm implemented, as long as the migration algorithm is based on wavefield downward-continuation, and the final prestack image is a function of the horizontal subsurface offset. The final process is done for 3-D seismic data, the creation of the converted-wave azimuth moveout operator (PS-AMO) and the converted-wave common-azimuth migration (PS-CAM) allows the definition and accurate image of 3-D prestack ocean-bottom seismic data.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Seismic wave interaction with underground cavities
Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz
2016-04-01
Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show
Directory of Open Access Journals (Sweden)
Zhong-ye Tian
2014-01-01
Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.
Identifying seismic noise sources and their amplitude from P wave microseisms.
Neale, Jennifer; Harmon, Nicholas; Srokosz, Meric
2016-04-01
Understanding sources of seismic noise is important for a range of applications including seismic imagery, time-lapse, and climate studies. For locating sources from seismic data, body waves offer an advantage over surface waves because they can reveal the distance to the source as well as direction. Studies have found that body waves do originate from regions predicted by models (Obrebski et al., 2013), where wave interaction intensity and site effect combine to produce the source (Ardhuin & Herbers, 2013). Here, we undertake a quantitative comparison between observed body wave microseisms and modelled sources- in terms of location, amplitude, and spectral shape- with the aim of understanding how well sources are observed and potentially what they reveal about the underlying ocean wavefield. We used seismic stations from the Southern California Seismic Network, and computed beamformer output as a function of time, frequency, slowness and azimuth. During winter months (October - mid March) the dominant arrivals at frequencies 0.18-0.22 Hz were P waves that originated from the North Pacific, whilst arrivals from the North Atlantic dominated at slightly lower frequencies of 0.16-0.18 Hz. Based on this, we chose to focus on P waves during winter, and back-projected the beamformer energy onto a global grid using P wave travel timetables (following Gerstoft et al., 2008). We modelled the seismic sources using Wavewatch III and site effect coefficients calculated following Ardhuin and Herbers (2013). We output the beamformer and the modelled sources on a 2° global grid averaged over 6 hour periods from September 2012 to September 2014, at seismic frequencies of 0.06 to 0.3 Hz. We then integrated the spectra over the full frequency range. Here we focus on results from the first winter in the North Pacific. Preliminary results indicate that the logarithm of the modelled source and the logarithm of the beamformer output are well described by a two-term exponential model
Kono, Yoshio; Ishikawa, Masahiro; Harigane, Yumiko; Michibayashi, Katsuyoshi; Arima, Makoto
2009-03-01
P- (Vp) and S-wave (Vs) velocities of garnet-free (two-pyroxene granulite) and garnet-bearing (garnet granulite and garnet pyroxenite) lowermost crustal rocks collected from the Kohistan arc, northern Pakistan, were measured at 0.1-1.0 GPa and 25-400 °C. Garnet granulite had higher Vp (+ 0.31 km/s) and Vs (+ 0.27 km/s) than two-pyroxene granulite. Although Vp and Vs increased with increasing volume percent of garnet, plagioclase-free garnet pyroxenite showed significantly higher Vp and Vs than plagioclase-rich garnet granulite mainly due to the low Vp and Vs of plagioclase. In contrast, we observed two quasi-linear relationships between Vp (Vs) and SiO 2 content for the garnet-bearing and garnet-free rocks. The garnet-bearing rocks had relatively higher Vp and Vs and stronger SiO 2 dependences than the garnet-free rocks. The stronger SiO 2 dependences of Vp and Vs in the garnet-bearing rocks suggest that the garnet formation in mafic to ultramafic rocks (e.g., pyroxenite and hornblendite), having relatively lower SiO 2, leads to more pronounced increases in Vp and Vs than that of relatively felsic rocks (e.g., felsic-to-mafic granulite). Indeed, the Vp and Vs of the garnet pyroxenite were significantly higher than those of garnet granulite but comparable to those of dunite. The significantly high Vp and Vs of the garnet pyroxenite yielded high reflection coefficients between the garnet granulite and garnet pyroxenite of up to 0.13 for P-waves and 0.14 for S-waves, comparable to values expected for Moho reflection. Thus the lithological boundary between plagioclase-rich garnet granulite and plagioclase-free garnet pyroxenite in the lowermost crust of the Kohistan arc corresponds to the seismic Moho discontinuity.
Seismic wave extrapolation using lowrank symbol approximation
Fomel, Sergey
2012-04-30
We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.
Horizontal Acoustic Barriers for Protection from Seismic Waves
Directory of Open Access Journals (Sweden)
Sergey V. Kuznetsov
2011-01-01
Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.
Saygin, Erdinc; Cummins, Phil R.; Lumley, David
2017-01-01
We autocorrelate the continuously recorded seismic wavefield across a dense network of seismometers to map the P wave reflectivity response of the Jakarta Basin, Indonesia. The proximity of this mega city to known active faults and the subduction of the Australian plate, especially when the predominance of masonry construction and thick sedimentary basin fill are considered, suggests that it is a hot spot for seismic risk. In order to understand the type of ground motion that earthquakes might cause in the basin, it is essential to obtain reliable information on its seismic velocity structure. The body wave reflections are sensitive to the sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with reflected-wave travel time variations, which reflect the variation in basement depth across the thick sedimentary basin. We also confirm the validity of the observed autocorrelation waveforms by conducting a 2-D full waveform modeling.
Yasui, M.; Matsumoto, E.; Arakawa, M.; Matsue, K.; Kobayashi, N.
2014-07-01
Introduction: A seismic wave survey is a direct method to investigate the sub-surface structures of solid bodies, so we measured and analyzed these seismic waves propagating through these interiors. Earthquake and Moonquake are the only two phenomena that have been observed to explore these interiors until now, while the future surveys on the other bodies, (solid planets and/or asteroids) are now planned. To complete a seismic wave survey during the mission period, an artificial method that activates the seismic wave is necessary and one candidate is a projectile collision on the target body. However, to utilize the artificial seismic wave generated on the target body, the relationship between the impact energy and the amplitude and the decay process of the seismic wave should be examined. If these relationships are clarified, we can estimate the required sensitivity of seismometers installed on the target body and the possible distance from the seismic origin measurable for the seismometer. Furthermore, if we can estimate the impact energy from the observed seismic wave, we expect to be able to estimate the impact flux of impactors that collided on the target body. McGarr et al. (1969) did impact experiments by using the lexan projectile and two targets, quartz sand and sand bonded by epoxy cement, at 0.8-7 km/s. They found a difference of seismic wave properties between the two targets, and calculated the conversion efficiency to discuss the capability of detection of seismic waves on the Moon. However, they did not examine the excitation and propagation properties of the seismic waves in detail. In this study, we carried out impact experiments in the laboratory to observe the seismic waves by accelerometers, and examined the effects of projectile properties on the excitation and propagation properties of the seismic waves. Experimental methods: We made impact experiments by using a one-stage gas gun at Kobe University. Projectiles were a polycarbonate cylinder
Seismic waves in rocks with fluids and fractures
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
2007-05-14
Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.
On the relative scattering of P- and S-waves
Malin, P. E.; Phinney, R. A.
1985-01-01
Using a single-scattering approximation, equations for the scattering attenuation coefficients of P-body and S-body waves are derived. The results are discussed in the light of the energy-renormalization approaches of Wu (1980, 1982) and Sato (1982) to seismic wave scattering. Practical methods for calculating the scattering attenuation coefficients for various earth models are emphasized. The conversions of P-waves to S-waves and S-waves to P-waves are included in the theory. The earth models are assumed to be randomly inhomogeneous, with their properties known only through their average-wavenumber power spectra. The power spectra are approximated with piecewise constant functions, each segment of which contributes to the net frequency-dependent scattering attenuation coefficient. The smallest and largest wavenumbers of a segment can be plotted along with the wavevectors of the incident and scattered waves on a wavenumber diagram. This diagram gives a geometric interpretation for the frequency behavior associated with each spectral segment, including a transition peak that is due entirely to the wavenumber limits of the segment. For regions of the earth where the inhomogeneity spectra are concentrated in a band of wavenumbers, it should be possible to observe such a peak in the apparent attenuation of seismic waves. Both the frequency and distance limits on the accuracy of the theoretical results are given.
Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; vanÂ derÂ Hilst, Robert D.
2016-05-01
We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.
Seismic wave propagation through an extrusive basalt sequence
Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick
2016-04-01
Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s-1) and the lower velocity fragmented and weathered flow crusts (3-4 km s-1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent velocity
Karakostas, F. G.; Rakoto, V.; Lognonne, P. H.
2015-12-01
Meteor impacts are a very important seismic source for planetary seismology, since their locations and, in some cases, their occurence times can be accurately known from orbiters, tracking or optical observations. Their importance becomes greater in the case of a seismic experiment with one seismometer, as the SEIS (Seismic Experiment of Interior Structure) of the future Martian mission "InSight", as the known location allows a direct inversion of differential travel times and wave forms in terms of structure. Meteor impacts generate body and surface seismic waves when they reach the surface of a planet. But when they explode into the atmosphere, due to ablation, they generate shock waves, which are converted into linear, seismic waves in the solid part and acoustic waves in the atmosphere. This effect can be modeled when the amplitude of Rayleigh and other Spheroidal normal modes is made with the atmospheric/ground coupling effects. In this study, meteor impacts are modeled as seismic sources in a comparative analysis for the cases of Earth and Mars. Using the computed seismograms, calculated by the summation of the normal modes of the full planet (e.g. with atmosphere) the properties of the seismic source can be obtained. Its duration is typically associated to the radiation duration of shock waves until they reach the linear regime of propagation. These transition times are comparatively analyzed, for providing constraints on the seismic source duration on Earth and Mars. In the case of Earth, we test our approach with the Chelyabinsk superbolide. The computed seismograms are used in order to perform the inversion of the source, by comparison with the data of the Global Seismographic Network. The results are interpreted and compared with other observations. In the case of Mars, equivalent sources are similarly modeled in different atmospheric, impact size and lithospheric conditions.
Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.
2016-09-01
Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.
Micromechanics of Seismic Wave Propagation in Granular Rocks
Nihei, Kurt Toshimi
1992-09-01
This thesis investigates the details of seismic wave propagation in granular rocks by examining the micromechanical processes which take place at the grain level. Grain contacts are identified as the primary sites of attenuation in dry and fluid-saturated rocks. In many sedimentary rocks such as sandstones and limestones, the process of diagenesis leaves the grains only partially cemented together. When viewed at the micron scale, grain contacts are non-welded interfaces similar in nature to large scale joints and faults. Using a lumped properties approximation, the macroscopic properties of partially cemented grain contacts are modeled using a displacement-discontinuity boundary condition. This model is used to estimate the magnitude and the frequency dependence of the grain contact scattering attenuation for an idealized grain packing geometry. Ultrasonic P- and S-wave group velocity and attenuation measurements on sintered glass beads, alundum, and Berea sandstones were performed to determine the effects of stress, frequency, and pore fluid properties in granular materials with sintered and partially sintered grain contacts. P - and S-wave attenuation displayed the same overall trends for tests with n-decane, water, silicone oil, and glycerol. The magnitudes of the attenuation coefficients were, in general, higher for S-waves. The experimental measurements reveal that viscosity-dependent attenuation dominates in material with sintered grain contacts. Viscosity-dependent attenuation is also observed in Berea sandstone but only at hydrostatic stresses in excess of 15 MPa where the grain contacts are highly stiffened. Fluid surface chemistry-related attenuation was observed in Berea sandstone loaded uniaxially. These measurements suggest that attenuation in fluid-saturated rocks with partially cemented grain contacts is dependent on both the fluid properties and the state of stress at the grain contacts. A numerical method for simulating seismic wave propagation in
Multichannel analysis of forward scattered body waves
Neal, Scott Lawrence
We describe a series of innovations which are the basis for a multichannel approach to direct imaging of forward scattered body waves recorded on broadband seismic arrays. The foundation is a method through which the irregularly sampled observed seismograms are interpolated onto an arbitrarily fine grid by means of a convolution between a spatial window function and the actual station locations. The result is a weighted stack which employs all the data to compute a robust and stable multichannel estimate of the wavefield. Deconvolution of the stacked data is shown to be equivalent to a multichannel deconvolution, with spatially variable weights equal to those used in stacking. Application to data from the Lodore array in Colorado and Wyoming shows variations in crustal structure across the array and also images upper mantle discontinuities. A second innovation focuses on the design of deconvolution operators that account for the loss of high frequency components of P-to- S conversions. Two variants are presented, the first increases linearly with P-to-S lag time, the second is based on convolutional quelling and a t* attenuation model. Both methods account for the high attentuation of S waves in the upper mantle. The quelling approach however, has two advantages; it is physically based, and it provides a unified framework for the combination of stacking and deconvolution. We apply multichannel stacking to derive three quantities from the observed data and the associated receiver functions: (1) correlation between stacks of the entire array and local subarray stacks, (2) RMS amplitude of the receiver functions, and (3) Pms-to- P amplitude variations. Application of these attributes to data from recent broadband array deployments in southern Africa, Colorado and Wyoming, and the Tien Shan of central Asia shows these attributes to be highly correlated with the geology of the study areas and to be indicative of major lithospheric discontinuities beneath an array
Seismic-wave attenuation associated with crustal faults in the new madrid seismic zone.
Hamilton, R M; Mooney, W D
1990-04-20
The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.
Kobayashi, Manabu; Takemura, Shunsuke; Yoshimoto, Kazuo
2015-09-01
Frequency and distance changes in the apparent P-wave radiation pattern (0.75-12 Hz) are investigated using velocity seismograms of shallow strike-slip earthquakes occurring in Chugoku region, southwestern Japan. Data from a dense seismic monitoring network revealed that the four-lobe apparent P-wave radiation pattern was gradually distorted with increasing frequency and propagation distance. Observed features suggest that seismic wave scattering due to small-scale velocity heterogeneity in the crust may be a major cause of this distortion. The effects of seismic wave scattering on apparent P-wave radiation pattern were investigated via 3-D finite difference simulation of seismic wave propagation. Our simulations demonstrated that the scattering of seismic waves modified the apparent P-wave radiation pattern from the original four-lobe shape, and that the small-scale velocity heterogeneity, characterized by the von Kármán-type power spectral density function with correlation distance of 1 km, root-mean-square value of 0.03 and decay rate parameter of 0.5, might be adequate for modelling crustal heterogeneity in the target region. It was also found that the scattering attenuation of P wave expected from this heterogeneity is significantly smaller than the apparent P-wave attenuation and S-wave scattering attenuation reported by Multiple Lapse Time Window Analysis of previous studies in Japan. These results might imply that scattering attenuation is not the dominant mechanism of P-wave attenuation in the crust of Chugoku region.
Institute of Scientific and Technical Information of China (English)
James B Harris
2009-01-01
Shallow shear-wave seismic reflection imaging, using a sledgehammer and mass energy source and standard processing, has become increasingly common in mapping near-surface geologic features, especially in water-saturated, unconsolidated sediments. Tests of the method in the Mississippi Embayment region of the central United States show Interpretable reflection arrivals in the depth range of 100 m with the potential for increased resolution when compared with compresslonal-wave data. Shear-wave reflection profiles were used to help interpret the significance of neotectonic surface deformation at five sites in the Mississippi Embayment. The interpreted profiles show a range of shallow structural styles that include reverse faulting, fault propagation folding, and reactivated normal faulting, and provide crucial subsurface evidence in support of paleuseismologic trenching and shallow drilling.
Mesoscopics of ultrasound and seismic waves: application to passive imaging
Larose, É.
2006-05-01
This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des
Seismic metamaterial: how to shake friends and influence waves?
Brûlé, Stéphane; Enoch, Stefan; Guenneau, Sébastien
2013-01-01
Materials engineered at the micro- and nano-meter scale have had a tremendous and lasting impact in photonics and phononics, with applications ranging from periodic structures disallowing light and sound propagation at stop band frequencies, to subwavelength focussing and cloaking with metamaterials. Here, we present the description of a seismic test held on a soil structured at the meter scale using vibrocompaction probes. The most simplistic way to interact with a seismic wave is to modify the global properties of the medium, acting on the soil density and then on the wave velocity. The main concept is then to reduce the amplification of seismic waves at the free surface, called site effects in earthquake engineering. However, an alternative way to counteract the seismic signal is by modifying the distribution of seismic energy thanks to a metamaterial made of a grid of vertical, cylindrical and empty inclusions bored in the initial soil, in agreement with numerical simulations using an approximate plate mo...
Almendros, J.; Chouet, B.; Dawson, P.; Huber, Caleb G.
2002-01-01
Seismic antennas constitute a powerful tool for the analysis of complex wave fields. Well-designed antennas can identify and separate components of a complex wave field based on their distinct propagation properties. The combination of several antennas provides the basis for a more complete understanding of volcanic wave fields, including an estimate of the location of each individual wave-field component identified simultaneously by at least two antennas. We used frequency-slowness analyses of data from three antennas to identify and locate the different components contributing to the wave fields recorded at Kilauea volcano, Hawaii, in February 1997. The wave-field components identified are (1) a sustained background volcanic tremor in the form of body waves generated in a shallow hydrothermal system located below the northeastern edge of the Halemaumau pit crater; (2) surface waves generated along the path between this hydrothermal source and the antennas; (3) back-scattered surface wave energy from a shallow reflector located near the southeastern rim of Kilauea caldera; (4) evidence for diffracted wave components originating at the southeastern edge of Halemaumau; and (5) body waves reflecting the activation of a deeper tremor source between 02 hr 00 min and 16 hr 00 min Hawaii Standard Time on 11 February.
The influence of physical properties on propagation velocity of seismic waves of the rocks
Directory of Open Access Journals (Sweden)
Radoslav Schügerl
2010-01-01
Full Text Available Dynamic load are very important for determination physical properties of the rocks. Dynamic load propagates in the rocks by seismic waves (subsurface waves – longitudinal and transverse, and surface – Rayleigh´s waves. Laboratory (ultrasound machine and hydraulic jack and field methods (cross – hole, down – hole and up – hole on the determination to propagation velocity of seismic waves of the rocks can be used. This article presents selected problems of the research of the influence of physical properties (bulk density, porosity, change of temperature, stage of saturation on propagation velocity of seismic waves of the rocks and compares the values of dynamic modulus of elasticity Edyn obtain by means of ultrasound machine and by hydraulic jack. These parameters were obtained by laboratory testing of sandstone samples from locality of Jánovce – Jablonov (Šibenik tunnel.
Directory of Open Access Journals (Sweden)
S. I. Sherman
2015-09-01
Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with
GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves
Nie, Zhaosheng; Zhang, Rui; Liu, Gang; Jia, Zhige; Wang, Dijin; Zhou, Yu; Lin, Mu
2016-12-01
High-rate global navigation satellite systems (GNSS) can potentially be used as seismometers to capture short-period instantaneous dynamic deformation waves from earthquakes. However, the performance and seismic phase recognition of the GNSS seismometer in the real-time mode, which plays an important role in GNSS seismology, are still uncertain. By comparing the results of accuracy and precision of the real-time solution using a shake table test, we found real-time solutions to be consistent with post-processing solutions and independent of sampling rate. In addition, we analyzed the time series of real-time solutions for shake table tests and recent large earthquakes. The results demonstrated that high-rate GNSS have the ability to retrieve most types of seismic waves, including P-, S-, Love, and Rayleigh waves. The main factor limiting its performance in recording seismic phases is the widely used 1-Hz sampling rate. The noise floor also makes recognition of some weak seismic phases difficult. We concluded that the propagation velocities and path of seismic waves, macro characteristics of the high-rate GNSS array, spatial traces of seismic phases, and incorporation of seismographs are all useful in helping to retrieve seismic phases from the high-rate GNSS time series.
Institute of Scientific and Technical Information of China (English)
Jin Xing; Li Jun; Lin Shu; Zhou Zhengrong; Kang Lanchi; Ou Yiping
2008-01-01
This paper uses the 8 broad-band stations' microseism data recorded by the Seismic Monitoring Network of Fujian Province to calculate the vertical correlation coefficient between two stationsat intervals of 5 minutes. According to the time intervals technique we obtain the different coefficients and then add the correlative coefficients. Depending on this, we extract the group velocity of Rayleigh waves from the cross correlation of the ambient seismic noise between two seismic stations and figure out the group velocity' spatial distribution. The results show that the signal noise ratio (SNR) increases proportionally to the superposition times, but the results from different days are similar to one another. Synchronously, the arrival-time is also stable and there is no obvious change when coming across typhoons. It is found the velocity of the surface wave is 2.9～3. 1km/s in Fujian Province, which is close to the observationally attained value.
Present State of Explosion Seismic Wave Research and Primary Investigation on Its Characteristics
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. The spectra characteristics of explosion seismic waves, functions of the isolated-seismic grooves and influences of the detonating methods on explosion seismic waves are investigated by experiments. The experimental method is introduced. Some experimental results are presented which are concerned with the influences of topographical conditions, explosive charges, ignition patterns, isolated-seismic grooves and the other related factors on the characteristics of seismic waves.
Energy Technology Data Exchange (ETDEWEB)
Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)
1997-05-27
With an objective to measure a behavior of the surface ground during a strong earthquake directly on the actual ground and make evaluation thereon, a proposal was made on an original location measuring and analyzing method using an S-wave vibrator and seismic cones. This system consists of an S-wave vibrator and a static cone penetrating machine, and different types of measuring cones. A large number of measuring cones are inserted initially in the object bed of the ground, and variation in the vibration generated by the vibrator is measured. This method can derive decrease in rigidity rate of the actual ground according to dynamic strain levels, or in other words, the dynamic nonlinearity. The strain levels can be controlled with a range from 10 {sup -5} to 10 {sup -3} by varying the distance from the S-wave vibrator. Furthermore, the decrease in the rigidity rate can be derived by measuring variations in the S-wave velocity by using the plank hammering method during the vibration. Field measurement is as easy as it can be completed in about half a day including preparatory works, and the data analysis is also simple. The method is superior in mobility and workability. 9 figs.
Experimental illustrations of seismic-wave properties of interest for hydrogeological studies
Bodet, L.; Pasquet, S.; Bergamo, P.; Martin, R.; Mourgues, R.; Tournat, V.
2015-12-01
The joint study of pressure (P-) and shear (S-) wave velocities (VP and VS, respectively), as well as their ratio (VP/VS), has been used for many years at large scales (compared to near-surface applications) to study fluids in earth materials. Theoretical and experimental developments have been aimed at understanding the effect of saturation and pore fluids on body wave velocities, more particularly in consolidated media. In the field of hydrocarbon exploration for instance, the measurement of VP/VS ratio helps discriminating different pore fluids in reservoirs. But it is only until recently that this approach has been successfully applied to the characterization of hydrosystems. We showed, thanks to controlled field experiments, the ability of VP/VS ratio in imaging spatial and/or temporal variations of water content at the critical zone scale. These promising results still lack quantitative links between water saturation and seismic properties in such materials and context. We consequently developed laboratory experiments to simulate seismic acquisitions on small-scale controlled granular media with varying water levels. The first results clearly showed the influence of the water level on first arrival times, dispersion and amplitude of the recorded wavefields, and how these measurements could be used as monitoring tools.
Engineered metabarrier as shield from seismic surface waves
Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara
2016-12-01
Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.
Directory of Open Access Journals (Sweden)
Hao Wang
2015-06-01
Full Text Available As one of the main characteristics of seismic waves, apparent wave velocity has great influence on seismic responses of long-span suspension bridges. Understanding these influences is important for seismic design. In this article, the critical issues concerning the traveling wave effect analysis are first reviewed. Taizhou Bridge, the longest triple-tower suspension bridge in the world, is then taken as an example for this investigation. A three-dimensional finite element model of the bridge is established in ABAQUS, and the LANCZOS eigenvalue solver is employed to calculate the structural dynamic characteristics. Traveling wave effect on seismic responses of these long-span triple-tower suspension bridges is investigated. Envelopes of seismic shear force and moment in the longitudinal direction along the three towers, relative displacements between the towers and the girder, and reaction forces at the bottoms of the three towers under different apparent wave velocities are calculated and presented in detail. The results show that the effect of apparent wave velocity on the seismic responses of triple-tower suspension bridge fluctuates when the velocity is lower than 2000 m/s, and the effects turn stable when the velocity becomes larger. In addition, the effects of traveling wave are closely related to spectral characteristics and propagation direction of the seismic wave, and seismic responses of components closer to the source are relatively larger. Therefore, reliable estimation of the seismic input and apparent wave velocity according to the characteristics of the bridge site are significant for accurate prediction of seismic responses. This study provides critical reference for seismic analysis and design of long-span triple-tower suspension bridges.
Joint body and surface wave tomography applied to the Toba caldera complex (Indonesia)
Jaxybulatov, Kairly; Koulakov, Ivan; Shapiro, Nikolai
2016-04-01
We developed a new algorithm for a joint body and surface wave tomography. The algorithm is a modification of the existing LOTOS code (Koulakov, 2009) developed for local earthquake tomography. The input data for the new method are travel times of P and S waves and dispersion curves of Rayleigh and Love waves. The main idea is that the two data types have complementary sensitivities. The body-wave data have good resolution at depth, where we have enough crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution. The surface wave dispersion curves can be retrieved from the correlations of the ambient seismic noise and in this case the sampled path distribution does not depend on the earthquake sources. The contributions of the two data types to the inversion are controlled by the weighting of the respective equations. One of the clearest cases where such approach may be useful are volcanic systems in subduction zones with their complex magmatic feeding systems that have deep roots in the mantle and intermediate magma chambers in the crust. In these areas, the joint inversion of different types of data helps us to build a comprehensive understanding of the entire system. We apply our algorithm to data collected in the region surrounding the Toba caldera complex (north Sumatra, Indonesia) during two temporary seismic experiments (IRIS, PASSCAL, 1995, GFZ, LAKE TOBA, 2008). We invert 6644 P and 5240 S wave arrivals and ~500 group velocity dispersion curves of Rayleigh and Love waves. We present a series of synthetic tests and real data inversions which show that joint inversion approach gives more reliable results than the separate inversion of two data types. Koulakov, I., LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. seism. Soc. Am., 99(1), 194-214, 2009, doi:10.1785/0120080013
Attenuation of high-frequency seismic waves in northeast India
Padhy, Simanchal; Subhadra, N.
2010-04-01
We studied attenuation of S and coda waves, their frequency and lapse time dependencies in northeast India in the frequency range of 1-24 Hz. We adopted theories of both single and multiple scattering to bandpass-filtered seismograms to fit coda envelopes to estimate Q for coda waves (QC) and Q for S-waves (QS) at five central frequencies of 1.5, 3, 6, 12 and 24 Hz. The selected data set consists of 182 seismograms recorded at ten seismic stations within epicentral distance of 22-300 km in the local magnitude range of 2.5-5.2. We found that with the increase in lapse time window from 40 to 60 s, Q0 (QC at 1 Hz) increases from 213 to 278, while the frequency dependent coefficient n decreases from 0.89 to 0.79. Both QC and QS increase with frequency. The average value of QS obtained by using coda normalization method for NE India has the power law form of (96.8 +/- 21.5)f(1.03+/-0.04) in 1-24 Hz. We adopted energy flux model (EFM) and diffusion model for the multiple scattered wave energy in three-dimensions. The results show that the contribution of multiple scattering dominates for longer lapse time close to or larger than mean free time of about 60 s. The estimates of QC are overestimated at longer lapse time by neglecting the effects of multiple scattering. Some discrepancies have been observed between the theoretical predictions and the observations, the difference could be due to the approximation of the uniform medium especially at large hypocentral distances. Increase in QC with lapse time can be explained as the result of the depth dependent attenuation properties and multiple scattering effect.
2008-03-31
1.9 to 1.45 s, after the inversion. [14] High velocities dominate in western China. Beneath several large depressed basins, such as the Tarim...velocity image of Moho discontinuity beneath the Weihe fault depression and its adjacent areas obtained by inversion of travel-time data of Sn waves...the crust and upper mantle. Geo- phys. J. Int. 151, 1–18. Sol, S.J., Meltzer , A., Zurek, B., Zhang, X., Zhang, J., 2004. Insight into the
Stresses and strains developed by the reflection of seismic waves at a free surface
Energy Technology Data Exchange (ETDEWEB)
Banister, J.R.; Ellett, D.M.; Mehl, C.R.; Dean, F.F.
1978-07-01
Exact and approximate equations have been derived for the stresses and strains beneath a free surface when an incoming longitudinal wave and an incoming shear wave reflect from the surface. Results of the approximate solution for depths much less than the wave length of the incoming wave are given in tabular form and are graphed for Poisson's ratios of 0.25, 0.3, and 0.333. The results should be of use in categorizing the magnitude of near-surface stresses and strains resulting from seismic waves produced by deeply buried explosives or earthquakes.
Seismic wave velocities of rare gas solids through elastic properties in Earth's lower mantle
Institute of Scientific and Technical Information of China (English)
Seema GUPTA; Suresh C. GOYAL
2009-01-01
The expressions for second (SOE) and third order elastic (TOE) constants for rare gas solids are de-rived for comparative study of elastic behavior within the framework of many body potentials including the effect of pressure. The derived expressions are used to obtain the relations for pressure derivatives of bulk and shear moduli of RGS solids. The values of SOE, TOE constants and pressure derivative of bulk and shear modulus for Ne up to 100 GPa, Ar up to 75 GPa, for Kr up to 136 GPa and Xe up to 53.4 GPa pressure are computed. The results are in agreement with available experimental results. The computed results are then used to analyze the pressure up to high compression and the elastic and seismic wave velocities (P & S) in Earth's deep interior.
Aquatic vertebrate locomotion : Wakes from body waves
Videler, JJ; Muller, UK; Stamhuis, EJ
1999-01-01
Vertebrates swimming with undulations of the body and tail have inflection points where the curvature of the body changes from concave to convex or vice versa. These inflection paints travel down the body at the speed of the running wave of bending, In movements with increasing amplitudes, the body
Mapping the Hawaiian plume conduit with converted seismic waves
Li; Kind; Priestley; Sobolev; Tilmann; Yuan; Weber
2000-06-22
The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (effects of the Hawaiian plume conduit in the asthenosphere and mantle transition zone with excess temperature of approximately 300 degrees C. Large variations in the transition-zone thickness suggest a lower-mantle origin of the Hawaiian plume similar to the Iceland plume, but our results indicate a 100 degrees C higher temperature for the Hawaiian plume.
Lowrank seismic-wave extrapolation on a staggered grid
Fang, Gang
2014-05-01
© 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.
Fault zone characterization using P- and S-waves
Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger
2014-05-01
Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.
Frozen Gaussian approximation for 3-D seismic wave propagation
Chai, Lihui; Tong, Ping; Yang, Xu
2017-01-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.
Frozen Gaussian approximation for three-dimensional seismic wave propagation
Chai, Lihui; Tong, Ping; Yang, Xu
2016-09-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in three-dimensional earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a three-dimensional (3D) seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3D waveguide model and smoothed Marmousi model respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3D crust-over-mantle model.
Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.
2012-01-01
The purpose of this study is to develop and test a modiﬁcation to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but conﬁdence ellipses are smallest when both types of waves are used.
Numerical simulation of seismic wave field in graded geological media containing multiple cavities
Fontara, Ioanna-Kleoniki; Dineva, Petia S.; Manolis, George D.; Wuttke, Frank
2016-08-01
In this study, we develop an efficient boundary integral equation method for estimation of seismic motion in a graded medium with multiple cavities under antiplane strain conditions. This inhomogeneous and heterogeneous medium is subjected to either time-harmonic incident shear seismic waves or to body waves radiating from a point seismic source. Three different types of soil material gradient are considered: (i) density and shear modulus vary proportionally as quadratic functions of depth, but the wave velocity remains constant; (ii) the soil material is viscoelastic, with a shear modulus and density that vary with respect to the spatial coordinates in an arbitrary fashion, so that the wave velocity is both frequency and position-dependent and (iii) the soil material has position-dependent shear modulus and constant density, yielding a linear profile for the wave velocity. Three different, frequency-dependent boundary integral equation schemes are respectively developed for the aforementioned three types of graded soil materials based on: (i) Green's function for the quadratically graded elastic half-plane; (ii) a fundamental solution for the viscoelastic full-plane with position-dependent wave speed profiles and (iii) a fundamental solution for an elastic full-plane with a linearly varying wave speed profile. Next, a number of cases involving geological media with position-dependent material properties and any number of cavities of various shapes and geometry are solved in the frequency domain. The numerical results reveal the dependency of the wave fields and zones of stress concentration on the following key factors: (i) type and properties of the soil material gradient; (ii) type and characteristics of the applied seismic load; (iii) shape, position and number of cavities and (iv) interaction phenomena between the cavities and the free surface.
Cárdenas-Soto, M.; Valdes, J. E.; Escobedo-Zenil, D.
2013-05-01
In June 2006, the base of the artificial lake in Chapultepec Park collapsed. 20 thousand liters of water were filtered to the ground through a crack increasing the dimensions of initial gap. Studies indicated that the collapse was due to saturated material associated with a sudden and massive water filtration process. Geological studies indicates that all the area of this section the subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. Currently, the Lake is rehabilitated and running for recreational activities. In this study we have applied two methods of seismic noise correlation; seismic interferometry (SI) in time domain and the Spatial Power Auto Correlation (SPAC) in frequency domain, in order to explore the 3D subsoil velocity structure. The aim is to highlight major variations in velocity that can be associated with irregularities in the subsoil that may pose a risk to the stability of the Lake. For this purpose we use 96 vertical geophones of 4.5 Hz with 5-m spacing that conform a semi-circular array that provide a length of 480 m around the lake zone. For both correlation methods, we extract the phase velocity associated with the dispersion characteristics between each pair of stations in the frequency range from 4 to 12 Hz. In the SPAC method the process was through the dispersion curve, and in SI method we use the time delay of the maximum amplitude in the correlation pulse, which was previously filtered in multiple frequency bands. The results of both processes were captured in 3D velocity volumes (in the case SI a process of traveltime tomography was applied). We observed that in the frequency range from 6 to 8 Hz, appear irregular structures, with high velocity contrast in relation with the shear wave velocity of surface layer (ten thick m of saturated sediments). One of these anomalies is related
Laboratory Scale Seismic Surface Wave Testing for the Determination of Soil Elastic Profiles
Directory of Open Access Journals (Sweden)
Aziman Madun
2012-10-01
Full Text Available Seismic surface wave testing is well-adapted to the study of elastic parameters and, hence, the elastic profile of soils in the field. Knowledge of a ground’s stiffness profile enables the prediction of ground movement and, thus, the quality of the foundation. The stiffness parameter obtained in this research corresponds to the measurement of the seismic surface wave phase velocity of materials, which relates to the very small strain shear modulus. This paper describes a methodology for performing surface wave testing in the laboratory. In comparison with field tests, a laboratory-scale experiment offers the advantage of allowing the process of data collection to be calibrated, and analytical studies can be carried out as the properties of the material under test are controllable and known a priori. In addition, a laboratory scale experiment offers insight into the interaction between the seismic surface wave, the soil, the boundary and, hence, the constraints associated with the seismic surface wave technique. Two simplified models of different sizes were developed using homogeneous remoulded Oxford Clay (from Midlands region of the UK. The laboratory experimental methodology demonstrated that the seismic surface wave equipment used in the laboratory was directly influenced by the clay properties as well as the size of the test model. The methodology also showed that the arrangement of the seismic source and the receivers had an impact on the range of reliable frequencies and wavelengths obtained.
Attenuation of Seismic Waves at Regional Distances
1984-11-27
States (SALMON, GASBUOG, RULISON and RIO BLANCA) and in the French Sahara ( SAPHIR and RUBIS). The hard-rook ITS calibration curve, when applied to these...so that two of the explosions, SAPHIR and RUBIS, had measure- able Lg-wave amplitudes. Figure 4 gives an example of Lg waves of SAPHIR recorded at...for RUBIS and SAPHIR . Station HLW is in Egypt, and SDB in Angola. Both shots were in granite. For the Nevada explosions SHOAL and PILEDRIVER, also in
Seismic wave detection system based on fully distributed acoustic sensing
Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang
2016-11-01
This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.
Seismic wave imaging in visco-acoustic media
Institute of Scientific and Technical Information of China (English)
WANG Huazhong; ZHANG Libin; MA Zaitian
2004-01-01
Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.
Seismic waves estimation and wavefield decomposition: application to ambient vibrations
Maranò, Stefano; Reller, Christoph; Loeliger, Hans-Andrea; Fäh, Donat
2012-10-01
Passive seismic surveying methods represent a valuable tool in local seismic hazard assessment, oil and gas prospection, and in geotechnical investigations. Array processing techniques are used in order to estimate wavefield properties such as dispersion curves of surface waves and ellipticity of Rayleigh waves. However, techniques presently in use often fail to properly merge information from three-components sensors and do not account for the presence of multiple waves. In this paper, a technique for maximum likelihood estimation of wavefield parameters including direction of propagation, velocity of Love waves and Rayleigh waves, and ellipticity of Rayleigh waves is described. This technique models jointly all the measurements and all the wavefield parameters. Furthermore it is possible to model the simultaneous presence of multiple waves. The performance of this technique is evaluated on a high-fidelity synthetic data set and on real data. It is shown that the joint modelling of all the sensor components, decreases the variance of wavenumber estimates and allows the retrieval of the ellipticity value together with an estimate of the prograde/retrograde motion.
Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge.
Zheng, Yingcai; Lay, Thorne; Flanagan, Megan P; Williams, Quentin
2007-05-11
Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.
Removing Love waves from shallow seismic SH-wave data
Van Zanen, L.F.
2004-01-01
Geophysical exploration measurements are used to obtain an image of the geological structures of the subsurface, as detailed as possible. To this end, a wavefield is generated by a seismic source. This wavefield propagates through the subsurface, and will partly reflect on boundaries between layers
Cheng, Feng; Xia, Jianghai; Xu, Yixian; Xu, Zongbo; Pan, Yudi
2015-06-01
We proposed a new passive seismic method (PSM) based on seismic interferometry and multichannel analysis of surface waves (MASW) to meet the demand for increasing investigation depth by acquiring surface-wave data at a low-frequency range (1 Hz ≤ f ≤ 10 Hz). We utilize seismic interferometry to sort common virtual source gathers (CVSGs) from ambient noise and analyze obtained CVSGs to construct 2D shear-wave velocity (Vs) map using the MASW. Standard ambient noise processing procedures were applied to the computation of cross-correlations. To enhance signal to noise ratio (SNR) of the empirical Green's functions, a new weighted stacking method was implemented. In addition, we proposed a bidirectional shot mode based on the virtual source method to sort CVSGs repeatedly. The PSM was applied to two field data examples. For the test along Han River levee, the results of PSM were compared with the improved roadside passive MASW and spatial autocorrelation method (SPAC). For test in the Western Junggar Basin, PSM was applied to a 70 km long linear survey array with a prominent directional urban noise source and a 60 km-long Vs profile with 1.5 km in depth was mapped. Further, a comparison about the dispersion measurements was made between PSM and frequency-time analysis (FTAN) technique to assess the accuracy of PSM. These examples and comparisons demonstrated that this new method is efficient, flexible, and capable to study near-surface velocity structures based on seismic ambient noise.
Shallow Water Body Data Processing Based on the Seismic Oceanography
Institute of Scientific and Technical Information of China (English)
LIU Huaishan; HU Yi; YIN Yanxin; WANG Linfei; TONG Siyou; MA Hai
2013-01-01
Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.
Regional Body-Wave Corrections and Surface-Wave Tomography Models to Improve Discrimination
Energy Technology Data Exchange (ETDEWEB)
Walter, W R; Pasyanos, M E; Rodgers, A J; Meyeda, K M; Sicherman, A
2003-07-18
Our identification research for the past several years has focused on the problem of correctly discriminating small-magnitude explosions from a background of earthquakes, mining tremors, and other events. Small magnitudes lead to an emphasis on regional waveforms. The goal is to reduce the variance within the population of each type of event, while increasing the separation between the explosions and the other event types. We address this problem for both broad categories of seismic waves, body waves, and surface waves. First, we map out the effects of propagation and source size in advance so that they can be accounted for and removed from observed events. This can dramatically reduce the population variance. Second, we try to optimize the measurement process to improve the separation between population types. For body waves we focus on the identification power of the short-period regional phases Pn, Pg, Sn and Lg, and coda that can often be detected down to very small magnitudes. It is now well established that particular ratios of these phases, such as 6- to 8-Hz Pn/Lg, can effectively discriminate between closely located explosions and earthquakes. To extend this discrimination power over broad areas, we developed a revised Magnitude and Distance Amplitude Correction (MDAC2) procedure (Walter and Taylor, 2002). This joint source and path model fits the observed spectra and removes magnitude and distance trends from the data. It allows for the possibility of variable apparent stress scaling in earthquakes, an unresolved issue that is the subject of investigation under separate funding. The MDACZ procedure makes use of the extremely stable coda estimates of Mw for source magnitude and can also use independent Q tomography to help reduce trade-offs in fitting spectra. We can then apply the kriging operation to the MDAC2 residuals to provide full 2-D path corrections by phase and frequency band. These corrections allow the exploration of all possible ratios and
Energy Technology Data Exchange (ETDEWEB)
Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)
1996-05-01
For the purpose of evaluating liquefaction in situ, it was proposed that an S-wave vibrator designed to serve as a source in a reflection exploration method be utilized as a strong vibration generating source, and measurement was conducted in this connection. Equipment used in this test included an S-wave vibrator, static cone penetration machine, and various measuring cones. A multiplicity of measuring cones had been inserted beforehand into the target layers and comparison layers, and changes upon vibrator activation were measured. On a dry bed of the Tonegawa river, a 40m{sup 2} field was set up, and 41 cone penetration tests were conducted, with the cones positioned zigzag at 5m intervals. In this way, the ground structure was disclosed from the surface to the 10m-deep level. For the measurement, 3-component cones and seismic cones were placed at prescribed depths, and fluctuations and waveforms presented by pore water pressure at each level were determined with the vibration source changing its place. It was found that the changes in the pore water pressure exposed to vibration assume characteristic patterns corresponding to the conditions of vibration application. 5 figs., 1 tab.
Studying propagation of seismic waves across the Valley of Mexico from correlations of seismic noise
Rivet, D. N.; Campillo, M.; Shapiro, N. M.; Singh, S.; Cruz Atienza, V. M.; Quintanar, L.; Valdés, C.
2009-12-01
We reconstruct Rayleigh and Love waves from cross-correlations of ambient seismic noise recorded at 22 broad-band stations of the MesoAmerica Seismic Experiment (MASE) and Valley of Mexico Experiment (VMEX). The cross-correlations are computed over 2 years of noise data for the 9 MASE stations and over 1 year for the 13 VMEX stations. Surface waves with sufficient signal-to-noise ratio are then used in the group velocity dispersion analysis. We use the reconstructed waveforms to measure group velocity dispersion curves at period of 0.5 to 5 seconds. For traveling path inside the lake-bed zone, the maximum energy is observed at velocity higher than expected for the fundamental mode. This indicates that the propagation within the Mexico basin is dominated by higher modes of surface waves that propagate deeper in the basin. We identify the propagation modes by comparing observations with theoretical dispersion curves and eigenfunctions calculated for Rayleigh and Loves waves associated with a given model of the upper crust. The fundamental mode shows a very low group velocity, Valley of Mexico may be a determining factor in the long duration of the seismic signal. A better velocity constraint on the deeper structure of the basin is thus needed to fully understand this phenomenon.
Fundamentals of Seismic Wave Propagation by Chris Chapman
Aster, Richard
2005-03-01
The analytic characterization and modeling of seismic wave propagation using ray theory based formulations is a core aspect of seismology with a distinguished and very important history. Fundamentals of Seismic Wave Propagation, by Chris Chapman, provides a mathematically rigorous and substantially complete summary of theory and techniques, with exercises, written at an accessible level for intermediate-to-advanced seismology graduate students and for the general research community. I was particularly pleased to see that much relevant mathematics is well summarized in a valuable ``preliminaries'' section containing mathematical and physics background material, coupled with four focused mathematical Appendices covering relevant integrals, Fourier transforms, ordinary differential equations, and saddle-point methods. This bodes well for the text as a teaching resource.
Characteristics and method of synthesis seismic wave based on wavelet reconstruction
Institute of Scientific and Technical Information of China (English)
ZOU Li-hua; LIU Ai-ping; YANG Hong; CHAI Xin-jian; SHANG Xin; DAI Su-liang; DONG Bo
2007-01-01
A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it as criterion, the formula of synthesizing seismic wave is deduced. Using the design parameters specified in Chinese Seismic Design Code for buildings, seismic waves are synthesized. Moreover, the method of selecting wavelet bases in synthesizing seismic wave and the influence of the damping ratio on synthesizing results are analyzed.The results show that the synthesis seismic waves using wavelet bases can represent the characteristics of the seismic wave as well as the ground characteristic period, and have good time-frequency non-stationary.
Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling
Pollitz, F.
2006-01-01
We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.
Applications of elastic full waveform inversion to shallow seismic surface waves
Bohlen, Thomas; Forbriger, Thomas; Groos, Lisa; Schäfer, Martin; Metz, Tilman
2015-04-01
Shallow-seismic Rayleigh waves are attractive for geotechnical site investigations. They exhibit a high signal to noise ratio in field data recordings and have a high sensitivity to the S-wave velocity, an important lithological and geotechnical parameter to characterize the very shallow subsurface. Established inversion methods assume (local) 1-D subsurface models, and allow the reconstruction of the S-wave velocity as a function of depth by inverting the dispersion properties of the Rayleigh waves. These classical methods, however, fail if significant lateral variations of medium properties are present. Then the full waveform inversion (FWI) of the elastic wave field seems to be the only solution. Moreover, FWI may have the potential to recover multi-parameter models of seismic wave velocities, attenuation and eventually mass density. Our 2-D elastic FWI is a conjugate-gradient method where the gradient of the misfit function is calculated by the time-domain adjoint method. The viscoelastic forward modelling is performed with a classical staggered-grid 2-D finite-difference forward solver. Viscoelastic damping is implemented in the time-domain by a generalized standard linear solid. We use a multi-scale inversion approach by applying frequency filtering in the inversion. We start with the lowest frequency oft the field data and increase the upper corner frequency sequentially. Our modelling and FWI software is freely available under the terms of GNU GPL on www.opentoast.de. In recent years we studied the applicability of two-dimensional elastic FWI using numerous synthetic reconstruction tests and several field data examples. Important pre-processing steps for the application of 2-D elastic FWI to shallow-seismic field data are the 3D to 2D correction of geometrical spreading and the estimation of a priori Q-values that must be used as a passive medium parameter during the FWI. Furthermore, a source-wavelet correction filter should be applied during the FWI
Seismic anisotropy of the crust in Yunnan,China: Polarizations of fast shear-waves
Institute of Scientific and Technical Information of China (English)
SHI Yu-tao; GAO Yuan; WU Jing; LUO Yan; SU You-jin
2006-01-01
Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003,the dominant polarization directions of fast shear-waves are obtained at l0 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan.The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.
The damping of seismic waves and its determination from reflection seismograms
Engelhard, L.
1979-01-01
The damping in theoretical waveforms is described phenomenologically and a classification is proposed. A method for studying the Earth's crust was developed which includes this damping as derived from reflection seismograms. Seismic wave propagation by absorption, attenuation of seismic waves by scattering, and dispersion relations are considered. Absorption of seismic waves within the Earth as well as reflection and transmission of elastic waves seen through boundary layer absorption are also discussed.
Miah, Khalid; Bellefleur, Gilles
2014-05-01
The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to
MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS
Directory of Open Access Journals (Sweden)
Alexander V. Vikulin
2015-09-01
Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse
Sunspot seismic halos generated by fast MHD wave refraction
Khomenko, E
2009-01-01
We suggest an explanation for the high-frequency power excess surrounding active regions known as seismic halos. The idea is based on numerical simulations of magneto-acoustic waves propagation in sunspots. We propose that such an excess can be caused by the additional energy injected by fast mode waves refracted in the higher atmosphere due to the rapid increase of the Alfven speed. Our model qualitatively explains the magnitude of the halo and allows to make some predictions of its behavior that can be checked in future observations.
A modified symplectic PRK scheme for seismic wave modeling
Liu, Shaolin; Yang, Dinghui; Ma, Jian
2017-02-01
A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.
Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle
Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.
2004-01-01
Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in determining the value of lithospheric VS and QS. At 100 km depth, where the resolution of seismic models is the highest, we compare observed seismic VS and QS with theoretical VST and QST values, respectively, that are calculated solely from temperature anomalies and constrained by experimental data on temperature dependencies of velocity and attenuation. This comparison shows that
Crustal Structure of the Pakistan Himalayas from Ambient Noise and Seismic Rayleigh Wave Inversion
Li, A.
2007-05-01
The western Himalayan syntaxi is a unique feature resulted from the India-Asia collision and its formation remains poorly understood. To image crustal structure in the western syntaxi, we analyze Rayleigh waves from ambient seismic noise and earthquake data recorded during the Pakistan Broadband Seismic Experiment. The Pakistan experiment included 9 broadband stations with an aperture of ~200 km and operated from September to December in 1992. We compute cross-correlations of ambient noise data on an hourly base and stack all the cross-correlations for 70 days to produce the estimated Green functions. Power spectrum analysis shows that the dominant energy is from 0.15 to 0.25 Hz and from 0.05 to 0.07 Hz, consistent with the well-know background seismic noise. A phase with large amplitude appears at near zero time on almost all stacked cross- correlations and its origin is not clear to us at this moment. Rayleigh waves can be clearly observed for station pairs at the distance of 80 km and larger but are contaminated by the near zero time phase at shorter station spacing. Rayleigh wave phase velocities at periods of 4 to 15 s will be produced from the ambient noise data. Using regional and teleseismic earthquakes, we expect to obtain Rayleigh wave dispersions at periods from 15 to 50 s. The phase velocities from both datasets will be inverted for crustal thickness and shear-wave structure beneath the Pakistan Himalayas.
Polarized seismic and solitary waves run-up at the sea bed
Energy Technology Data Exchange (ETDEWEB)
Dennis, L. C.C.; Zainal, A. A.; Faisal, S. Y. [Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)
2012-09-26
The polarization effects in hydrodynamics are studied. Hydrodynamic equation for the nonlinear wave is used along with the polarized solitary waves and seismic waves act as initial waves. The model is then solved by Fourier spectral and Runge-Kutta 4 methods, and the surface plot is drawn. The output demonstrates the inundation behaviors. Consequently, the polarized seismic waves along with the polarized solitary waves tend to generate dissimilar inundation which is more disastrous.
Workman, Eli; Lin, Fan-Chi; Koper, Keith D.
2017-01-01
We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.
Body Wave Crustal Attenuation Characteristics in the Garhwal Himalaya, India
Negi, Sanjay S.; Paul, Ajay; Joshi, Anand; Kamal
2015-06-01
We estimate frequency-dependent attenuation of P and S waves in Garhwal Himalaya using the extended coda normalization method for the central frequencies 1.5, 2, 3, 4, 6, 8, 10, 12, and 16 Hz, with earthquake hypocentral distance ranging from 27 to 200 km. Forty well-located local earthquake waveforms were used to study the seismic attenuation characteristics of the Garhwal Himalaya, India, as recorded by eight stations operated by Wadia Institute of Himalayan Geology, Dehradun, India, from 2007 to 2012. We find frequency-dependent P and S wave quality factors as defined by the relations Q P = 56 ± 8 f 0.91±0.002 and Q S = 151 ± 8 f 0.84±0.002 by fitting a power-law frequency dependence model for the estimated values over the whole region. Both the Q P and Q S values indicate strong attenuation in the crust of Garhwal Himalaya. The ratio of Q S/ Q P > 1 obtained for the entire analyzed frequency range suggests that the scattering loss is due to a random and high degree of heterogeneities in the earth medium, playing an important role in seismic wave attenuation in the Himalayan crust.
Finite-frequency sensitivity kernels of seismic waves to fault zone structures
Allam, A. A.; Tape, C.; Ben-Zion, Y.
2015-12-01
We analyse the volumetric sensitivity of fault zone seismic head and trapped waves by constructing finite-frequency sensitivity (Fréchet) kernels for these phases using a suite of idealized and tomographically derived velocity models of fault zones. We first validate numerical calculations by waveform comparisons with analytical results for two simple fault zone models: a vertical bimaterial interface separating two solids of differing elastic properties, and a `vertical sandwich' with a vertical low velocity zone surrounded on both sides by higher velocity media. Establishing numerical accuracy up to 12 Hz, we compute sensitivity kernels for various phases that arise in these and more realistic models. In contrast to direct P body waves, which have little or no sensitivity to the internal fault zone structure, the sensitivity kernels for head waves have sharp peaks with high values near the fault in the faster medium. Surface wave kernels show the broadest spatial distribution of sensitivity, while trapped wave kernels are extremely narrow with sensitivity focused entirely inside the low-velocity fault zone layer. Trapped waves are shown to exhibit sensitivity patterns similar to Love waves, with decreasing width as a function of frequency and multiple Fresnel zones of alternating polarity. In models that include smoothing of the boundaries of the low velocity zone, there is little effect on the trapped wave kernels, which are focused in the central core of the low velocity zone. When the source is located outside a shallow fault zone layer, trapped waves propagate through the surrounding medium with body wave sensitivity before becoming confined. The results provide building blocks for full waveform tomography of fault zone regions combining high-frequency head, trapped, body, and surface waves. Such an imaging approach can constrain fault zone structure across a larger range of scales than has previously been possible.
A seismic attenuation zone below Popocatépetl volcano inferred from coda waves of local earthquakes
D. A. Novelo-Casanova; A. Martínez-Bringas
2005-01-01
Using a single scattering model, weighted averages of the quality factor Qc were estimated at 6 Hz for coda wave windows 25s after S-wave arrival at depths ranging from 2 to 10 km and magnitudes between 2 and 3. Considering Qc -1 as intrinsic attenuation, we find a zone of seismic wave attenuation between 6 and 8 km depth attributed to the presence of magma and partial melting of rock.
Comparison of seismic and infrasound wave fields generated by snow avalanches
Suriñach, Emma; Tapia, Mar; Pérez-Guillén, Cristina; Khazaradze, Giorgi; Roig, Pere
2016-04-01
Snow avalanches are a source of waves that are transmitted through the ground and the air. These wave fields are detected by seismic and infrasound sensors. During the winter seasons 2008 -2016, a good quality database of avalanches was obtained at the VdlS test site with an accurate instrumentation. These avalanches were both natural and artificially triggered and were of varying types and sizes. Distances involved were 0.5 -3 km. Seismic signals were acquired using three seismometers (3-components, 1Hz) spaced 600 m apart along the avalanche track. One infrasound sensor (0.1Hz) and one seismometer (3-components, 1Hz) were placed one next to the other with a common base of time on the slope opposite the path. The database obtained enables us to compare the different signals generated. Differences in the frequency content and shape of the signals depending on the type and size of the avalanche are detected. A clear evolution of the recorded seismic signals along the path is observed. The cross correlation of the infrasound and seismic signals generated by the avalanches allows us to determine different characteristics for powder, transitional and wet avalanches concerning their wave fields. The joint analysis of infrasound and seismic waves enables us to obtain valuable information about the internal parts of the avalanche as a source of each wave field. This study has repercussions on avalanche dynamics and on the selection of the appropriate avalanche detection system. This study is supported by the Spanish Ministry of Science and Innovation project CHARMA: CHAracterization and ContRol of MAss Movements. A Challenge for Geohazard Mitigation (CGL2013-40828-R), and RISKNAT group (2014GR/1243).
de Basabe, Jonás D.
2011-08-01
Zhou & Greenhalgh have recently presented an application of the Gaussian quadrature grid to seismic modelling in which the authors propose a meshing scheme that partitions the domain independently of the discontinuities in the media parameters. This comment aims to clarify the implications that this strategy has on the accuracy.
A physical model study of effect of fracture aperture on seismic wave
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on Hudson’s theoretical hypothesis of equivalent fracture model,inserting aligned round chips in solid model can simulate fractured media. The effect of fractures on the propagation of P and S waves can be observed by changing the fracture thickness. The base model is made of epoxy resin,and the material of fractures is a kind of low-velocity mixture containing silicon rubber. With constant diameter and number of fractures in each model,one group of models can be formed through changing the thickness of fracture. These models have the same fracture density. By using the ultrasonic pulse transmission method,the experiment records time and waveform of P and S waves in the direction parallel and perpendicular to the fracture orientation. The result shows that,with the same fracture density,changing fracture aperture will affect both velocity and amplitude of P and S waves,and the effect on P-wave amplitude is much greater than that on the velocity. Moreover,the variation in velocity of S wave is more obvious in the slow shear wave (S2),while the variation in amplitude is more obvious in the fast shear wave (S1). These properties of wave propagation are useful for seismic data processing and interpretation.
Seismic Evidence for Possible Slab Melting from Strong Scattering Waves
Directory of Open Access Journals (Sweden)
Cheng-Horng Lin
2011-01-01
Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.
Topographic effects on seismic response of long-span rigid-frame bridge under SV seismic wave
Institute of Scientific and Technical Information of China (English)
WANG Lei; ZHAO Cheng-gang; QU Tie-jun
2008-01-01
Seismic ground motions of two neighboring mountains and the free surface between them are calculated under the SV seismic waves with three different incident angles. The results are then taken as the inputs of multi-point seismic excitations for the foundation of a long-span bridge built over the valley in the analysis considering the inte-grated influence of traveling wave and topography. On the basis of a dynamic analytical method, a finite element model is created for the seismic responses of a four-span rigid-frame bridge of 440 m. The pier-top displacement and the pier-bottom internal force of the bridge are calculated. Then the results are compared with those considering traveling-wave effect only. The conclusions can serve as a seismic design reference for the structures located on the complex mountain topography.
Topographic effects on seismic response of long-span rigid-frame bridge under SV seismic wave
Wang, Lei; Zhao, Cheng-Gang; Qu, Tie-Jun
2008-05-01
Seismic ground motions of two neighboring mountains and the free surface between them are calculated under the SV seismic waves with three different incident angles. The results are then taken as the inputs of multi-point seismic excitations for the foundation of a long-span bridge built over the valley in the analysis considering the integrated influence of traveling wave and topography. On the basis of a dynamic analytical method, a finite element model is created for the seismic responses of a four-span rigid-frame bridge of 440 m. The pier-top displacement and the pier-bottom internal force of the bridge are calculated. Then the results are compared with those considering traveling-wave effect only. The conclusions can serve as a seismic design reference for the structures located on the complex mountain topography.
Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao
2015-08-01
Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance
Toyokuni, Genti; Takenaka, Hiroshi
2012-06-01
We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic
Toward reliable automated estimates of earthquake source properties from body wave spectra
Ross, Zachary E.; Ben-Zion, Yehuda
2016-06-01
We develop a two-stage methodology for automated estimation of earthquake source properties from body wave spectra. An automated picking algorithm is used to window and calculate spectra for both P and S phases. Empirical Green's functions are stacked to minimize nongeneric source effects such as directivity and are used to deconvolve the spectra of target earthquakes for analysis. In the first stage, window lengths and frequency ranges are defined automatically from the event magnitude and used to get preliminary estimates of the P and S corner frequencies of the target event. In the second stage, the preliminary corner frequencies are used to update various parameters to increase the amount of data and overall quality of the deconvolved spectral ratios (target event over stacked Empirical Green's function). The obtained spectral ratios are used to estimate the corner frequencies, strain/stress drops, radiated seismic energy, apparent stress, and the extent of directivity for both P and S waves. The technique is applied to data generated by five small to moderate earthquakes in southern California at hundreds of stations. Four of the five earthquakes are found to have significant directivity. The developed automated procedure is suitable for systematic processing of large seismic waveform data sets with no user involvement.
Array processing of teleseismic body waves with the USArray
Pavlis, Gary L.; Vernon, Frank L.
2010-07-01
We introduce a novel method of array processing for measuring arrival times and relative amplitudes of teleseismic body waves recorded on large aperture seismic arrays. The algorithm uses a robust stacking algorithm with three features: (1) an initial 'reference' signal is required for initial alignment by cross-correlation; (2) a robust stacking method is used that penalizes signals that are not well matched to the stack; and (3) an iterative procedure alternates between cross-correlation with the current stack and the robust stacking algorithm. This procedure always converges in a few iterations making it well suited for interactive processing. We describe concepts behind a graphical interface developed to utilize this algorithm for processing body waves. We found it was important to compute several data quality metrics and allow the analyst to sort on these metrics. This is combined with a 'pick cutoff' function that simplifies data editing. Application of the algorithm to data from the USArray show four features of this method. (1) The program can produce superior results to that produced by a skilled analyst in approximately 1/5 of the time required for conventional interactive picking. (2) We show an illustrative example comparing residuals from S and SS for an event from northern Chile. The SS data show a remarkable ±10 s residual pattern across the USArray that we argue is caused by propagation approximately parallel to the subduction zones in Central and South America. (3) Quality metrics were found to be useful in identifying data problems. (4) We analyzed 50 events from the Tonga-Fiji region to compare residuals produced by this new algorithm with those measured by interactive picking. Both sets of residuals are approximately normally distributed, but corrupted by about 5% outliers. The scatter of the data estimated by waveform correlation was found to be approximately 1/2 that of the hand picked data. The outlier populations of both data sets are
Ghobakhloo E.; Pourlak M.; Razmkhah A.
2015-01-01
The study of the effect of seismic wave scattering has attracted extensive attention in the past couple of decades especially in infrastructures like tunnels. A seismic wave, meeting the tunnel, can generate scattering which, in most cases, may incur damages in adjacent structures. In this study, using Finite Element Method (FEM), the effect of seismic wave scattering in far field has been investigated. The twin tunnels of Shiraz subway system are selected as the case study in this research a...
Spectrum analysis of seismic surface waves and its applications in seismic landmine detection.
Alam, Mubashir; McClellan, James H; Scott, Waymond R
2007-03-01
In geophysics, spectrum analysis of surface waves (SASW) refers to a noninvasive method for soil characterization. However, the term spectrum analysis can be used in a wider sense to mean a method for determining and identifying various modes of seismic surface waves and their properties such as velocity, polarization, etc. Surface waves travel along the free boundary of a medium and can be easily detected with a transducer placed on the free surface of the boundary. A new method based on vector processing of space-time data obtained from an array of triaxial sensors is proposed to produce high-resolution, multimodal spectra from surface waves. Then individual modes can be identified in the spectrum and reconstructed in the space-time domain; also, reflected waves can be separated easily from forward waves in the spectrum domain. This new SASW method can be used for detecting and locating landmines by analyzing the reflected waves for resonance. Processing examples are presented for numerically generated data, experimental data collected in a laboratory setting, and field data.
Plastic-Flow Waves ("Slow-Waves") and Seismic Activity in Central-Eastern Asia
Institute of Scientific and Technical Information of China (English)
Wang Shengzu; Zhang Zongchun
2005-01-01
The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, "fast-waves" and "slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle ) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wavecrest belts. "Fast-waves" propagated with velocities of orders of magnitude of 100 ～ 102km/a have been verified by wave-controlled earthquake migration, showing the "decade waves" and "century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the beltlike distribution of strong earthquakes with Ms ≥ 7.0, it is indicated further in this paper that the "slow-waves" with velocities of orders of magnitude of 100 ～ 101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with Ms ≥ 7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accmnulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81～2.80 m/a and periods of 0.16 ～ 0.55 Ma. The wavegenerating time at the Himalayan driving boundary is about 1.34 ～ 4.59 Ma before present for the "slow-waves", corresponding to the stage from the Mid Pliocene to the Mid EarlyPleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of
Zhang, Yu; Xu, Yixian; Xia, Jianghai
2012-12-01
A better understanding of the influences of different surface fluid drainage conditions on the propagation and attenuation of surface waves as the stipulated frequency is varied is a key issue to apply surface wave method to detect subsurface hydrological properties. Our study develops three-dimensional dynamical Green's functions in poroelastic media for Rayleigh waves of possible free surface conditions: permeable - "open pore," impermeable - "closed pore," and partially permeable boundaries. The full transient response of wave fields and spectra due to a stress impulse wavelet on the surface are investigated in the exploration seismic frequency band for typical surface drainage conditions, viscous coupling-damping, solid frame properties and porous fluid flowing configuration. Our numerical results show that, due to the slow dilatational wave - P2 wave, two types of Rayleigh waves, designated as R1 and R2 waves, exist along the surface. R1 wave possesses high energy as classic Rayleigh waves in pure elastic media for each porous materials. A surface fluid drainage condition is a significant factor to influence dispersion and attenuation, especially attenuation of R1 waves. R2 wave for closed pore and partially permeable surfaces is only observed for a low coupling-damping coefficient. The non-physical wave for partially surface conditions causes the R1 wave radiates into the R2 wave in the negative attenuation frequency range. It makes weaker R1 wave and stronger R2 wave to closed pore surface. Moreover, it is observed that wave fields and spectra of R1 wave are sensitive to frame elastic moduli change for an open pore surface, and to pore fluid flow condition change for closed pore and partially permeable surface.
Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.
2003-01-01
Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are
Seismic waves in a three-dimensional block medium
Aleksandrova, N. I.
2016-08-01
We study numerically the propagation of seismic waves in a three-dimensional block medium. The medium is modelled by a spatial lattice of masses connected by elastic springs and viscous dampers. We study Lamb's problem under a surface point vertical load. The cases of both step and pulse load are considered. The displacements and velocities are calculated for surface masses. The influence of the viscosity of the dampers on the attenuation of perturbations is studied. We compare our numerical results for the block medium with known analytical solutions for the elastic medium.
Seismic waves in a three-dimensional block medium
Aleksandrova, Nadezhda
2016-01-01
We study numerically the propagation of seismic waves in a three-dimensional block medium. The medium is modeled by a spatial lattice of masses connected by elastic springs and viscous dampers. We study Lamb's problem under a surface point vertical load. The cases of both step and pulse load are considered. The displacements and velocities are calculated for surface masses. The influence of the viscosity of the dampers on the attenuation of perturbations is studied. We compare our numerical results for the block medium with known analytical solutions for the elastic medium.
McGarr, Arthur; Gupta, Harsh K.
2011-01-01
Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from an earthquake.
Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise
Institute of Scientific and Technical Information of China (English)
Kai Wang; Yinhe Luo; Kaifeng Zhao; Limeng Zhang
2014-01-01
ABSTRCT: Theoretical and experimental studies indicate that complete Green’s Function can be retrieved from cross-correlation in a diffuse field. High SNR (signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases (ScS, PKIKPPKIKP, PcPPKPPKP) and crustal-mantle phases (Pn, P, PL, Sn, S, SPL, SnSn, SS, SSPL) at distances ranging from 0 to 4 000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations.Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.
Institute of Scientific and Technical Information of China (English)
YAN Rui; CHEN Yong; GAO Fu-wang; HUANG Fu-qiong
2008-01-01
Based on linear poroelastic theory of ideal poroelastic media, we apply the mathematic expression between pore pressure and volume strain for well-aquifer system to analyzing the observed data of water level and volume strain changes aroused by Sumatra Ms8.7 (determined by China Seismic Networks Center) seismic waves at Changping, Beijing, station on December 26, 2004 from both time and frequency domain. The response coefficients of water level fluctuation to volume strain are also calculated when seismic waves were passing through confined aquifer. A method for estimating Skempton constant B is put forward, which provide an approach for understanding of the characteristics of aquifer.
低信噪比转换波地震资料静校正%Static corrections for low S/N ratio converted-wave seismic data
Institute of Scientific and Technical Information of China (English)
李国发; 彭苏萍
2008-01-01
Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't be effectively used for solving converted-wave statics problems. This has become the main obstacle to breakthroughs in converted-wave data processing. To improve converted-wave static corrections, first, a statics method based on the common-receiver-point (CRP) stack is used for the initial receiver static correction to enhance the coherency of the CRP stack. Second, a stack-power-maximization static correction which improves the continuity of the CCP stack is used for detailed receiver statics. Finally, a non-surface-consistent residual moveout correction of the CCP gathers is used to enhance the stack power of reflection signals from different depths. Converted-wave statics are solved by the joint use of the three correction methods.
Scattering of homogeneous and inhomogeneous seismic waves in low-loss viscoelastic media
Moradi, Shahpoor; Innanen, Kristopher A.
2015-09-01
Motivated by the need to derive and characterize increasingly sophisticated seismic data analysis and inversion methods incorporating wave dissipation, we consider the problem of scattering of homogeneous and inhomogeneous waves from perturbations in five viscoelastic parameters (density, P- and S-wave velocities, and P- and S-wave quality factors), as formulated in the context of the Born approximation. Within this approximation the total wave field is the superposition of an incident plane wave and a scattered wave, the latter being a spherical wave weighted by a function of solid angle called the scattering potential. In elastic media the scattering potential is real, but if dissipation is included through a viscoelastic model, the potential becomes complex and thus impacts the amplitude and phase of the outgoing wave. The isotropic-elastic scattering framework of Stolt and Weglein, extended to admit viscoelastic media, exposes these amplitude and phase phenomena to study, and in particular allows certain well-known layered-medium viscoelastic results due to Borcherdt to be re-considered in an arbitrary heterogeneous Earth. The main theoretical challenge in doing this involves the choice of coordinate system over which to evaluate and analyse the waves, which in the viscoelastic case must be based on complex vector analysis. We present a candidate system within which several of Borcherdt's key results carry over; for instance, we show that elliptically polarized P and SI waves cannot be scattered into linearly polarized SII waves. Furthermore, the elastic formulation is straightforwardly recovered in the limit as P- and S-wave quality factors tend to infinity.
Seismic Tomography Around the Eastern Edge of the Alps From Ambient-Noise-Based Rayleigh Waves
Zigone, Dimitri; Fuchs, Florian; Kolinsky, Petr; Gröschl, Gidera; Apoloner, Maria-Theresia; Qorbani, Ehsan; Schippkus, Sven; Löberich, Eric; Bokelmann, Götz; AlpArray Working Group
2016-04-01
Inspecting ambient noise Green's functions is an excellent tool for monitoring the quality of seismic data, and for swiftly detecting changes in the configuration of a seismological station. Those Green's functions readily provide stable information about structural variations near the Earth's surface. We apply the technique to a network consisting of about 40 broadband stations in the area of the Easternmost Alps, in particular those operated by the University of Vienna (AlpArrayAustria) and the Vienna University of Technology. Those data are used to estimate Green's functions between station pairs; the Green's function consist mainly of surface waves, and we use them to investigate crustal structure near the Eastern edge of the Alps. To obtain better signal-to-noise ratios in the noise correlation functions, we adopt a procedure using short time windows (2 hr). Energy tests are performed on the data to remove effects of transient sources and instrumental problems. The resulting 9-component correlation tensor is used to make travel time measurements on the vertical, radial and transverse components. Those measurements can be used to evaluate dispersion using frequency-time analysis for periods between 5-30 seconds. After rejecting paths without sufficient signal-to-noise ratio, we invert the velocity measurements using the Barmin et al. (2001) approach on a 10 km grid size. The obtained group velocity maps reveal complex structures with clear velocity contrasts between sedimentary basins and crystalline rocks. The Bohemian Massif and the Northern Calcareous Alps are associated with fast-velocity bodies. By contrast, the Vienna Basin presents clear low-velocity zones with group velocities down to 2 km/s at period of 7 s. The group velocities are then inverted to 3D images of shear wave speeds using the linear inversion method of Herrmann (2013). The results highlight the complex crustal structure and complement earthquake tomography studies in the region. Updated
Nyamwandha, Cecilia A.; Powell, Christine A.
2016-11-01
Shear wave splitting associated with the Mississippi Embayment (ME) is determined using teleseismic SKS phases recorded by the Northern Embayment Lithosphere Experiment (NELE), the USArray Transportable Array (TA), and the New Madrid seismic network for the period 2005-2016. Our data set consists of 5900 individual splitting measurements from 257 earthquakes recorded at 151 stations within and outside the ME. Stations outside of the ME exhibit significant shear wave splitting, with average delay times between 0.4 s and 1.8 s. To the northeast and east of the ME, nearly all observed fast orientations are approximately oriented northeast-southwest, in agreement with absolute plate motion (APM) predicted by HS3-Nuvel-1A. The homogeneity of the fast orientations in this region suggests that the splitting is due to active flow in the asthenosphere. A counterclockwise rotation in the splitting orientation is observed moving northeast to northwest across the study area. Inside the ME, some stations show large and systematic deviations of the measured fast orientations from the APM. The delay times within the entire ME range from 0.9 s to 2.1 s. Splitting complexity is attributed to relic lithospheric fabrics formed during past tectonic events including passage of a hot spot in mid-Cretaceous time. The anisotropy may also be linked to the presence of a southwest dipping region of low P and S wave velocities below the ME or to deeper flow in the asthenosphere.
Assessment of seismic wave effects on soil-structure interaction
Energy Technology Data Exchange (ETDEWEB)
Bernreuter, D.L.
1977-03-01
It is normally assumed in the seismic analysis of structures that the free-field motion which is used as input is the same for all points on a given level beneath the foundation mat. This represents a simplification, as not all particles of soil describe the same motion simultaneously. As the foundation mat of the structure is rigid in the horizontal direction, it will tend to average the ground motion. Abandoning the assumption of the uniformity of the input motion may lead to a reduction of the translational motion which a foundation mat will experience, as the displacement components will cancel each other to a certain extent. This is of considerable interest for the design of nuclear power plants which are very stiff, large structures. To investigate these effects, the extremely complex phenomenon of the passage of a seismic wave has to be simplified considerably. It is the purpose of this paper to determine if wave passage effects can be determined from the simplified analyses currently used.
Savage, M. K.; Schmid, A.; Battaglia, J.; Ferrazzini, V.; Brenguier, F.; Peltier, A.
2012-12-01
Piton de la Fournaise, an active basaltic volcano on the hotspot-derived island of Réunion in the Indian Ocean, provides a natural laboratory to develop new tools for monitoring changes in the earth. It has frequent eruptions, which are preceded by seismic swarms of repeating earthquakes. Here we examine the crisis of Oct. 14, 2010, during which 684 similar earthquakes were recorded by a portable seismic network of 15 broadband and six permanent 3-component seismometers. We determine shear wave splitting and its relationship to other geophysical measurements. 2031 measurements were ranked as high (A or B) quality with automatic shear wave splitting algorithm (MFAST). Shear wave splitting fast polarisations (Φ) align with cracks and hence with the compressive stress field. Delay times (dt) are a product of the density of the cracks and the length of the path. For the sequence as a whole, Φ are radial from the central cone of the caldera. This may be due to stress-controlled cracks in a regime with a central magma chamber in an area with small regional horizontal differential stress. However, the average field is punctuated by strong changes in Φ, dt and Vp/Vs ratios, which correlate to tilt changes that are interpreted to be evidence of dike propagation. The sequence was separated into two main families of events, which evolved with slightly different timing at the different stations, interpreted to be due to movement of the dyke closer or further from the stations. Family 02 disappeared before the changes in tilt and Vp/Vs ratio were observed. Using only the twelve best measurements from Family 01 at station UV11, the first six earthquakes all have positive P wave polarities and visual inspection of their waveforms suggests the S arrivals are not identical (Figure). Φ averages 45° and dt blue, color coded to waveforms at right). Red bar corresponds to the dyke initiation time. Red rose diagrams summarize Φ.
Institute of Scientific and Technical Information of China (English)
陈景波
2004-01-01
Based on the Lagrangian density and covariant Legendre transform, we obtain the multisymplectic Hamiltonian formulation for a one-way seismic wave equation of high-order approximation. This formulation provides a new perspective for studying the one-way seismic wave equation. A multisymplectic integrator is also derived.
SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES
Energy Technology Data Exchange (ETDEWEB)
John Beecherl; Bob A. Hardage
2004-07-01
The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than
Effective wave identification and interference analysis of the seismic reflection method in mines
Institute of Scientific and Technical Information of China (English)
HU Yun-bing; WU Yan-qing; KANG Hou-qing
2009-01-01
Through discussion of the time-distance curve characteristics of the direct wave and from the front, side and rear of the reflection waves of the seismic reflection method for advanced exploration in mines, and analysis of several major interference waves in mines, the differences in time-distance curve, frequency, apparent velocity between the effective wave and interference wave in the seismic reflection method for advanced ex-ploration are obtained. According to the differences, the effective wave is extracted and the interference wave is filtered and the system's precision and accuracy is improved.
Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio
2016-05-01
The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.
Response of massive bodies to gravitational waves
Hannibal, L; Hannibal, Ludger; Warkall, Jens
2000-01-01
The repsonse of a massive body to gravitational waves is decribed on the microscopic level, taking the metric perturbations of the electromagnetic and gravitational forces into account. The effects found substantially differ from those obtained in the commonly used oscillator model. The electromagnetic coupling induces a dominant surface effect, the gravitational coupling gives rise to the excitation of quadrupole modes, but several oredes of magnitude smaller.
Rahman, Md. Zillur; Siddiqua, Sumi; Kamal, A. S. M. Maksud
2016-11-01
The average shear wave velocity of the near-surface materials down to a depth of 30 m (Vs30) is essential for seismic site characterization to estimate the local amplification factor of the seismic waves during an earthquake. Chittagong City is one of the highest risk cities of Bangladesh for its seismic vulnerability. In the present study, the Vs30 is estimated for Chittagong City using the multichannel analysis of surface waves (MASW), small scale microtremor measurement (SSMM), downhole seismic (DS), and correlation between the shear wave velocity (Vs) and standard penetration test blow count (SPT-N). The Vs30 of the near-surface materials of the city varies from 123 m/s to 420 m/s. A Vs30 map is prepared from the Vs30 of each 30 m grid using the relationship between the Holocene soil thickness and the Vs30. Based on the Vs30, the near-surface materials of Chittagong City are classified as site classes C, D, and E according to the National Earthquake Hazards Reduction Program (NEHRP), USA and as site classes B, C, and D according to the Eurocode 8. The Vs30 map can be used for seismic microzonation, future planning, and development of the city to improve the earthquake resiliency of the city.
Institute of Scientific and Technical Information of China (English)
Xu Yan; George C Lee
2007-01-01
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.
P-wave seismic imaging through dipping transversely isotropic media
Leslie, Jennifer Meryl
2000-10-01
P-wave seismic anisotropy is of growing concern to the exploration industry. The transmissional effects through dipping anisotropic strata, such as shales, cause substantial depth and lateral positioning errors when imaging subsurface targets. Using anisotropic physical models the limitations of conventional isotropic migration routines were determined to be significant. In addition, these models were used to validate both anisotropic depth migration routines and an anisotropic, numerical raytracer. In order to include anisotropy in these processes, one must be able to quantify the anisotropy using two parameters, epsilon and delta. These parameters were determined from headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular- and 45°-to-bedding directions. This new method was developed using refraction seismic techniques to measure the necessary velocities in the Wapiabi Formation shales, the Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks were determined to be anisotropic with epsilon = 0.23 +/- 0.05, delta = --0.05 +/- 0.07 and epsilon = 0.11 +/- 0.04, delta = 0.42 +/- 0.06, respectively. The sandstones and limestones of the Cardium and Palliser formations were both determined to be isotropic, in these studies. In a complementary experiment, a new procedure using vertical seismic profiling (VSP) techniques was developed to measure the anisotropic headwave velocities. Using a multi-offset source configuration on an appropriately dipping, uniform panel of anisotropic strata, the required velocities were measured directly and modelled. In this study, the geologic model was modelled using an anisotropic raytracer, developed for the experiment. The anisotropy was successfully modelled using anisotropic parameters based on the refraction seismic results. With a firm idea of the anisotropic parameters from the
P- and S-wave delays caused by thermal plumes
Maguire, Ross; Ritsema, Jeroen; van Keken, Peter E.; Fichtner, Andreas; Goes, Saskia
2016-08-01
Many studies have sought to seismically image plumes rising from the deep mantle in order to settle the debate about their presence and role in mantle dynamics, yet the predicted seismic signature of realistic plumes remains poorly understood. By combining numerical simulations of flow, mineral-physics constraints on the relationships between thermal anomalies and wave speeds, and spectral-element method based computations of seismograms, we estimate the delay times of teleseismic S and P waves caused by thermal plumes. Wave front healing is incomplete for seismic periods ranging from 10 s (relevant in traveltime tomography) to 40 s (relevant in waveform tomography). We estimate P-wave delays to be immeasurably small (20 s), measurements of instantaneous phase misfit may be more useful in resolving narrow plume conduits. To detect S-wave delays of 0.4-0.8 s and the diagnostic frequency dependence imparted by plumes, it is key to minimize the influence of the heterogeneous crust and upper mantle. We argue that seismic imaging of plumes will advance significantly if data from wide-aperture ocean-bottom networks were available since, compared to continents, the oceanic crust and upper mantle are relatively simple.
Rivet, Diane; Campillo, Michel; Sanchez-Sesma, Francisco; Shapiro, Nikolaï M.; Singh, Shri Krishna
2015-11-01
Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.
The imprint of crustal density heterogeneities on regional seismic wave propagation
Płonka, Agnieszka; Blom, Nienke; Fichtner, Andreas
2016-11-01
Density heterogeneities are the source of mass transport in the Earth. However, the 3-D density structure remains poorly constrained because travel times of seismic waves are only weakly sensitive to density. Inspired by recent developments in seismic waveform tomography, we investigate whether the visibility of 3-D density heterogeneities may be improved by inverting not only travel times of specific seismic phases but complete seismograms.As a first step in this direction, we perform numerical experiments to estimate the effect of 3-D crustal density heterogeneities on regional seismic wave propagation. While a finite number of numerical experiments may not capture the full range of possible scenarios, our results still indicate that realistic crustal density variations may lead to travel-time shifts of up to ˜ 1 s and amplitude variations of several tens of percent over propagation distances of ˜ 1000 km. Both amplitude and travel-time variations increase with increasing epicentral distance and increasing medium complexity, i.e. decreasing correlation length of the heterogeneities. They are practically negligible when the correlation length of the heterogeneities is much larger than the wavelength. However, when the correlation length approaches the wavelength, density-induced waveform perturbations become prominent. Recent regional-scale full-waveform inversions that resolve structure at the scale of a wavelength already reach this regime.Our numerical experiments suggest that waveform perturbations induced by realistic crustal density variations can be observed in high-quality regional seismic data. While density-induced travel-time differences will often be small, amplitude variations exceeding ±10 % are comparable to those induced by 3-D velocity structure and attenuation. While these results certainly encourage more research on the development of 3-D density tomography, they also suggest that current full-waveform inversions that use amplitude
Numerical modeling of seismic waves using frequency-adaptive meshes
Hu, Jinyin; Jia, Xiaofeng
2016-08-01
An improved modeling algorithm using frequency-adaptive meshes is applied to meet the computational requirements of all seismic frequency components. It automatically adopts coarse meshes for low-frequency computations and fine meshes for high-frequency computations. The grid intervals are adaptively calculated based on a smooth inversely proportional function of grid size with respect to the frequency. In regular grid-based methods, the uniform mesh or non-uniform mesh is used for frequency-domain wave propagators and it is fixed for all frequencies. A too coarse mesh results in inaccurate high-frequency wavefields and unacceptable numerical dispersion; on the other hand, an overly fine mesh may cause storage and computational overburdens as well as invalid propagation angles of low-frequency wavefields. Experiments on the Padé generalized screen propagator indicate that the Adaptive mesh effectively solves these drawbacks of regular fixed-mesh methods, thus accurately computing the wavefield and its propagation angle in a wide frequency band. Several synthetic examples also demonstrate its feasibility for seismic modeling and migration.
Local Wave Propagation in the Kachchh Basin, India: Synergy With the New Madrid Seismic Zone
Langston, C. A.; Kang, D.; Bodin, P.; Horton, S.
2002-12-01
Aftershocks of the Mw7.6 Bhuj earthquake are used to infer velocity structure and the nature of wave propagation within the Kachchh Basin, India. The data were collected from a joint MAEC/ISTAR deployment of seismographs within 3 weeks of the main event and from existing broadband stations in the region under the India Meteorological Department. Waveforms are available from events that span the entire thickness of the crust and display a variety of wave propagation effects due to low-velocity near-surface site structure and larger structure of the Mesozoic Kachchh basin. These effects include near-site, high frequency reverberations in P and S waves, Sp and Ps mode conversions, PL waves within the Mesozoic basin, basin S multiples, and surface waves. Surface wave group velocity dispersion yields estimates of basin shear wave velocity, and when coupled to analysis of large observed Sp conversions, give a migrated image of stratigraphy within the Banni plains that agrees favorably with published stratigraphy. Identification of basin structure effects allows constraints to be placed on aftershock source depths that are needed in evaluating standard earthquake locations. Structure models are used to construct Green's functions for determining source parameters through waveform modeling. Although stations of the aftershock network were situated on a variety of sites that varied from consolidated Mesozoic bedrock to unconsolidated recent sediments, all stations show major wave propagation effects due to basin fill that must be included in source parameter estimation. These effects seen in India have many similarities to wave propagation effects observed within the Mississippi embayment from microearthquakes in the New Madrid Seismic Zone (NMSZ) of the central U.S. Joint waveform studies are motivating new ways of understanding wave propagation and source processes within both areas.
Seismic wave separation by the gray-scale Hough transform
Hadjadj, Asma; Benaïssa, Zahia; Benaissa, Abdelkader; Boudella, Amar; Ouadfeul, Sid Ali
2016-04-01
In a Vertical Seismic Profile (VSP) recording, the useful signal is composed of the superposition of two wavefields: 1/ a downgoing wavefield with positive apparent velocities, and 2/ an upgoing wavefield with negative apparent velocities. To make best use of them, they need to be separated. Several methods exist to perform this separation, each with its advantages and disadvantages. The most frequently used in the industry is median filtering which remains, however, unsuitable when amplitude preservation is critical. In this study, we purpose a new method based on the gray-scale Hough transform (GSHT) which is an extension of the conventional Hough transform used to detect straight lines and other curves. The GSHT has been proposed to detect thick lines or bands in a gray-scale image. The technique, we suggest here, directly maps the gray-scale PSV image, including the downgoing and upgoing events linear bands, in image coordinate space (x, t, G) to the gray Hough parameter counting space (ρ, θ, G). In this new space, the downgoing events appear in the negative angles θ quadrant and the upgoing in the positive quadrant. The inverse GSHT algorithm, we developed, is then performed to extract the bands that satisfy the filtering conditions: θ negative for the downgoing PSV wavefield and θ positive for the upgoing PSV wavefield. The experimental results on synthetic and real VSP datasets are convincing. The wave separation is well performed, even in the presence of loud noise levels, with signal to noise ratio improvement and amplitude preservation, in contrast to median filtering. Key words: Conventional Hough transform - Gray-scale Hough transform - Inverse gray-scale Hough transform - VSP - Seismic wave - Upgoing wavefield - Downgoing wavefield.
Engelmann, C. A.; Waite, G. P.; Huntoon, J. E.; Hungwe, K.
2011-12-01
Seismologists have found visualization of scientific data to be useful in analysis and therefore expect that using visualizations as a pedagogical tool will increase student understanding of seismic waves. This project examines how seismic wave visualization activities should be designed to best take advantage of how students think and learn science as determined by research in cognitive science. Student activities using visualization and auditization of seismic waves as they propagate through the earth and activities using real-time seismometry, the Quake Catcher Network sensors, have been designed or modified for use in 7-12 Earth System Science classrooms, taking into account how students learn science. The activities will incorporate three visualizations introduced at the 2011 On the Cutting Edge workshop, Visualizing Seismic Waves for Teaching and Research: the USArray Visualizations developed by Dr. Charles Ammon, Penn State University; the Quake Catcher Network sensors in conjunction with IRIS's Exploring Seismic Data with Accelerometers; and The Sound of Seismic, John N. Louie's auditization of seismic waves. As part of the Michigan Teacher Excellence Program, a NSF funded Math Science Partnership between Michigan Tech University and Michigan public schools, these activities are being implemented and tested to determine in what ways and to what extent these visualizations impact student learning and understanding of seismic waves.
Pollitz, F.F.
2002-01-01
I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.
P and S wave delays caused by thermal plumes
Maguire, Ross; Ritsema, Jeroen; van Keken, Peter E.; Fichtner, Andreas; Goes, Saskia
2016-05-01
Many studies have sought to seismically image plumes rising from the deep mantle in order to settle the debate about their presence and role in mantle dynamics, yet the predicted seismic signature of realistic plumes remains poorly understood. By combining numerical simulations of flow, mineral-physics constraints on the relationships between thermal anomalies and wave speeds, and spectral-element method based computations of seismograms, we estimate the delay times of teleseismic S and P waves caused by thermal plumes. Wavefront healing is incomplete for seismic periods ranging from 10 s (relevant in traveltime tomography) to 40 s (relevant in waveform tomography). We estimate P wave delays to be immeasurably small ( 20 s), measurements of instantaneous phase misfit may be more useful in resolving narrow plume conduits. To detect S wave delays of 0.4-0.8 s and the diagnostic frequency dependence imparted by plumes, it is key to minimize the influence of the heterogeneous crust and upper mantle. We argue that seismic imaging of plumes will advance significantly if data from wide-aperture ocean-bottom networks were available since, compared to continents, the oceanic crust and upper mantle is relatively simple.
Reflection seismic survey across a fault zone in the Leinetal Graben, Germany, using P- and SH-waves
Musmann, P.; Polom, U.; Buness, H.; Thomas, R.
2012-04-01
Fault systems are considered as a valuable hydro-geothermal reservoir for heat and energy extraction, as permeability may be enhanced compared to the surrounding host rock. Seismic measurements are a well established tool to reveal their structure at depth. Apart from structural parameters like dip, extent and throw, they allow us to derive lithologic parameters, e.g. seismic velocities and impedance. Usually, only compressional waves have been used so far. In the context of the "gebo" Collaborative Research Program, seismic methods are revised to image and characterize geological fault zones in order to minimize the geological and technical risk for geothermal projects. In doing so, we evaluate and develop seismic acquisition, processing and interpretation techniques both for compressional and shear wave surveys to estimate the geothermal potential of fault zones. Here, we present results from high-resolution P- and SH-wave reflection seismic surveys along one and the same profile. They were carried out across the eastern border of the Leinetal Graben, Lower Saxony, Germany. At this survey site, primarily Triassic units crop out that are disrupted by major fault system probably extending down into Permian Zechstein. The seismic P-wave measurements (2.5 m CDP spacing, 20 - 180 Hz sweep sent out by a small vibrator) imaged the structure of the subsurface and its fault inventory with high resolution. Imaging ranges from approximately 50 m (base Keuper) to approximately 1.8 km (within Zechstein) depth. The profiles reveal that the area has undergone multiphase tectonics. This becomes manifest in a complex seismic reflection pattern. In addition the P-wave velocity model shows several features that can be related to folding and faulting. Preliminary results of the SH-wave measurements (0.5 m CDP spacing, 10 - 100 Hz sweep) show that the complex structural geological settings in the subsurface, as imaged by the P-wave survey, can also be imaged by a reflection shear-waves
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Seismic attenuation due to wave-induced flow
Energy Technology Data Exchange (ETDEWEB)
Pride, S.R.; Berryman, J.G.; Harris, J.M.
2003-10-09
Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.
Absorption of strain waves in porous media at seismic frequencies
Chelidze, T. L.; Spetzler, H. A.; Sobolev, G. A.
1996-06-01
An understanding of strain wave propagation in fluid containing porous rocks is important in reservoir geophysics and in the monitoring in underground water in the vicinity of nuclear and toxic waste sites, earthquake prediction, etc. Both experimental and theoretical research are far from providing a complete explanation of dissipation mechanisms, especially the observation of an unexpectedly strong dependence of attenuation Q -1 on the chemistry of the solid and liquid phase involved. Traditional theories of proelasticity do not take these effects into account. In this paper the bulk of existing experimental data and theoretical models is reviewed briefly in order to elecidate the effect of environmental factors on the attenuation of seismic waves. Low fluid concentrations are emphasized. Thermodynamical analysis shows that changes in surface energy caused by weak mechanical disturbances can explain observed values of attenuation in real rocks. Experimental dissipation isotherms are interpreted in terms of monolayered surface adsorption of liquid films as described by Langmuir's equation. In order to describe surface dissipation in consolidated rocks, a surface tension term is added to the pore pressure term in the O'Connell-Budiansky proelastic equation for effective moduli of porous and fractured rocks. Theoretical calculations by this modified model, using reasonable values for elastic parameters, surface energy, crack density and their geometry, lead to results which qualitatively agree with experimental data obtained at low fluid contents.
Seismic wave propagation on heterogeneous systems with CHAPEL
Gokhberg, Alexey; Fichtner, Andreas
2014-05-01
Simulations of seismic wave propagation play a key role in the exploration of the Earth's internal structure, the prediction of earthquake-induced ground motion, and numerous other applications. In order to harness modern heterogeneous HPC systems, we implement a spectral-element discretization of the seismic wave equation using the emerging parallel programming language Chapel. High-performance massively parallel computing systems are widely used for solving seismological problems. A recent trend in the evolution of such systems is a transition from homogeneous architectures based on the conventional CPU to faster and more energy-efficient heterogeneous architectures that combine CPU with the special purpose GPU accelerators. These new heterogeneous architectures have much higher hardware complexity and are thus more difficult to program. Therefore transition to heterogeneous computing systems widens the well known gap between the performance of the new hardware and the programmers' productivity. In particular, programming heterogeneous systems typically involves a mix of various programming technologies like MPI, CUDA, or OpenACC. This conventional approach increases complexity of application code, limits its portability and reduces the programmers' productivity. We are approaching this problem by introducing a unified high-level programming model suitable for both conventional and hybrid architectures. Our model is based on the Partitioned Global Address Space (PGAS) paradigm used by several modern parallel programming languages. We implemented this model by extending Chapel, the emerging parallel programming language created at Cray Inc. In particular, we introduced the language abstractions for GPU-based domain mapping and extended the open source Chapel compiler (version 1.8.0) with facilities designed to translate Chapel high-level parallel programming constructs into CUDA kernels. We used this extended Chapel implementation to re-program the package for the
DEFF Research Database (Denmark)
Dahl, Jens Peder; Varro, S.; Wolf, A.
2007-01-01
We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....
Effects of seismic surge waves and implications for moraine-dammed lake outburst
Du, Cui; Yao, Lingkan; Huang, Yidan; Yan, Jiahong; Shakya, Subhashsagar
2016-09-01
Moraine dams usually collapse due to overtopping by the surge wave in the dammed lake, and the surge wave is most likely caused by an earthquake. The seismic water wave (SWW) is a major factor causing the dam to break in the earthquake zone. This paper focused on the SWW by model experiments with a shaking water tank under conditions of various water depths, seismic waves, and peak ground accelerations. Two empirical equations were obtained for estimating maximal wave height for the low and high frequency, respectively. Finally, we present the application of the empirical equations on Midui Glacier Lake in Tibet plateau.
Seismic wave speed structure of the Ontong Java Plateau
Covellone, Brian M.; Savage, Brian; Shen, Yang
2015-06-01
The Ontong Java Plateau (OJP) represents the result of a significant event in the Earth's geologic history. Limited geophysical and geochemical data, as well as the plateau's relative isolation in the Pacific ocean, have made interpretation of the modern day geologic structure and its 120 Ma formation history difficult. Here we present the highest resolution image to date of the wave speed structure of the OJP region. We use a data set that combines Rayleigh waves extracted from both ambient noise and earthquake waveforms and an iterative finite-frequency tomography methodology. The combination of datasets allow us to best exploit the limited station distribution in the Pacific and image wave speed structures between 35 km and 300 km into the Earth. We image a region of fast shear wave speeds, greater than 4.75 km/s, that extends to greater than 100 km beneath the plateau. The wave speeds are similar to as observed in cratonic environments and are consistent with a compositional anomaly that resulted from the residuum of eclogite entrainment during the plateau's formation. The combination of our imaged wave speed structure and previous geochemical work suggest that a surfacing plume head entrained eclogite from the deep mantle and accounts for the anomalous buoyancy characteristics of the plateau and observed fast wave speeds.
Fault zone damage, nonlinear site response, and dynamic triggering associated with seismic waves
Wu, Chunquan
, followed by a logarithmic recovery with time. The observed weak reductions of peak frequencies with near instantaneous recovery likely reflect nonlinear response with essentially fixed level of damage, while the larger drops followed by logarithmic recovery reflect the generation (and then recovery) of additional rock damage. The results indicate clearly that nonlinear site response may occur during medium-size earthquakes, and that the PGA threshold for in situ nonlinear site response is lower than the previously thought value of ˜100--200 Gal. The recent Mw9.0 off the Pacific coast of Tohoku earthquake and its aftershocks generated widespread strong shakings as large as ˜3000 Gal along the east coast of Japan. I systematically analyze temporal changes of material properties and nonlinear site response in the shallow crust associated with the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KIK-Net. I compute the spectral ratios of windowed records from a pair of surface and borehole stations, and then use the sliding-window spectral ratios to track the temporal changes in the site response of various sites at different levels of PGA The preliminary results show clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites with PGA from 600 to 1300 Gal. The third part of my thesis mostly focuses on how seismic waves trigger additional earthquakes at long-range distance, also known as dynamic triggering. Here I perform a comprehensive analysis of dynamic triggering around the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, China. The triggered earthquakes are identified as impulsive seismic arrivals with clear P- and S-waves in 5 Hz high-pass-filtered three-component velocity seismograms during the passage of large amplitude body and surface waves of large teleseismic earthquakes. The results suggest that triggered earthquakes in this region likely occur near the transition between the velocity
Institute of Scientific and Technical Information of China (English)
ZHAO Tong-bin; LI Jian-gong; XIAO Ya-xun; CHENG Guo-qiang
2007-01-01
The energy caused by the dynamic impact in mining engineering forth release and spread by the way of seismic waves, monitoring is an effective way for forecasting mine dynamical disasters, such as rockburst and coal and gas outburst. Three-dimensional dynamic model was built to simulate the propagating progress of seismic waves in the elastoplastic tunnel rock and analyzed the propagating law of perturbation acceleration around tunnel, based on the finite element dynamic analysis software ANSYS/LS-DYNA.The simulation results indicate that: (1) The propagation attenuation of seismic wave is a negative index relationship; (2) The acceleration amplitude of seismic wave decays rapidly in near-field and decays slowly in far-field; (3) When the perturbation is generated in the dead ahead of tunnel, the acceleration of seismic wave become smaller and smaller away from the roadway-rib;(4) The elastic and plastic stress state of tunnel rock is also an important factor for propagation process of wave, the energy of seismic wave is mainly consumed for geometric spreading and plastic deformation in propagation in the elastoplastic medium model.
Directory of Open Access Journals (Sweden)
Ghobakhloo E.
2015-09-01
Full Text Available The study of the effect of seismic wave scattering has attracted extensive attention in the past couple of decades especially in infrastructures like tunnels. A seismic wave, meeting the tunnel, can generate scattering which, in most cases, may incur damages in adjacent structures. In this study, using Finite Element Method (FEM, the effect of seismic wave scattering in far field has been investigated. The twin tunnels of Shiraz subway system are selected as the case study in this research and three far field seismic waves were chosen for time history analyses. Investigating the normal mode (before tunnel construction in comparison to the excavation mode (after tunnel construction enables calculation of the effect of displacement in adjacent structures. The analysis results indicate there is a significant difference between before and after tunnel construction (P-value<0.05. Accordingly, the influence of constructing a tunnel on adjacent surface structures is very important for tunnel design.
Variation of Seismic Coda Wave Attenuation in the Garhwal Region, Northwestern Himalaya
Tripathi, Jayant N.; Singh, Priyamvada; Sharma, Mukat L.
2012-01-01
Seismic coda wave attenuation ( Q_{text{c}}^{ - 1} ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250 km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( Q_{text{c}}^{ - 1} ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28 Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( Q_{text{c}}^{ - 1} ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( Q_{text{c}}^{ - 1} left( f right) = Q0^{ - 1} f^{ - n} ). The Q 0 ( Q c at 1 Hz) estimates vary from about 50 for a 10 s lapse time and 10 s window length, to about 350 for a 60 s lapse time and 60 s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q {c/-1} values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.
The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle
Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne
2017-03-01
The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH
The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle
Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne
2016-12-01
The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH
Seismic waves damping with arrays of inertial resonators
Achaoui, Younes; Enoch, Stefan; Brûlé, Stéphane; Guenneau, Sébastien
2015-01-01
We investigate the elastic stop band properties of a theoretical cubic array of iron spheres con- nected to a bulk of concrete via iron or rubber ligaments. Each sphere can move freely within a surrounding air cavity, but ligaments couple it to the bulk and further facilitate bending and ro- tational motions. Associated low frequency local resonances are well predicted by an asymptotic formula. We ?nd complete stop bands (for all wave-polarizations) in the frequency range [16-21] Hz (resp. [6-11] Hz) for 7:4-meter (resp. 0:74-meter) diameter iron spheres with a 10-meter (resp. 1-meter) center-to-center spacing, when they are connected to concrete via steel (resp. rubber) liga- ments. The scattering problem shows that only bending modes are responsible for damping and that the rotational modes are totally overwritten by bending modes. Regarding seismic applications, we further consider soil as a bulk medium, in which case the relative bandwidth of the low frequency stop band can be enlarged through ligaments o...
Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.
2013-01-01
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems
Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.
Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich
2014-06-20
Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.
Flecha, I.; Marti, D.; Escuder, J.; Perez-Estaun, A.; Carbonell, R.
2003-04-01
A detailed characterization of the internal structure and physical properties of shallow surface can be obtained using high-resolution seismic tomography. Two applications of high resolution seismic tomography are presented in this study. Several synthetics simulations have been carried out to asses the resolving power of this methodology in different cases. The first studied case is the detection of low velocity anomalies in the shallow subsoil. Underground cavities (mines), water flows (formation wich loose sand), etc., are geological features present in the shallow subsurface characterized by low seismic velocities, and are targets of considerable social interest. We have considered a 400m×50m two dimensional velocity model consisting of a background velocity gradient in depth from 3 to 4 Km/s which included a rectangular low velocity anomaly (300 m/s). This anomaly was placed between 10m and 30m in depth and between 180m and 220m in length. The inversions schemes provided estimates of the velocity, however the tomograms and the ray tracing diagrams indicated a low resolution for the anomaly. In the second case we have applied wave-equation datuming to pre-stack layer replacement. The standard seismic data processing applies a vertical time shift to the data traces. However, it is not a good option when we are dealing with rugged topography or bathymetry, and when the media presents a high heterogeneity. Wave-equation datuming extrapolates seismic time data to some level datum keeping consistency between raypaths and wavefield propagation. It improves considerably seismic reflectors imaging. In order to implement this technique a velocity model is required, and usually a constant velocity is used to propagate the wavefield; instead of it we have used seismic tomography to provide an accurate velocity model.
Energy Technology Data Exchange (ETDEWEB)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)
2014-09-25
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic
Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi
2016-04-01
People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.
Kennett, B. L. N.
2002-12-01
The two volumes of The Seismic Wavefield are a comprehensive guide to the understanding of seismograms in terms of physical propagation processes within the Earth. The focus is on the observation of earthquakes and man-made sources on all scales, for both body waves and surface waves. Volume I provides a general introduction and a development of the theoretical background for seismic waves. Volume II looks at the way in which observed seismograms relate to the propagation processes. Volume II also discusses local and regional seismic events, global wave propagation, and the three-dimensional Earth.
Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments
Semblat, Jean-François; Dangla, Patrick; 10.1016/S0267-7261(00)00016-6
2009-01-01
The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium an...
Nurhandoko, Bagus Endar B.; Wardaya, Pongga Dikdya; Adler, John; Siahaan, Kisko R.
2012-06-01
Seismic wave parameter plays very important role to characterize reservoir properties whereas pore parameter is one of the most important parameter of reservoir. Therefore, wave propagation phenomena in pore media is important to be studied. By referring this study, in-direct pore measurement method based on seismic wave propagation can be developed. Porosity play important role in reservoir, because the porosity can be as compartment of fluid. Many type of porosity like primary as well as secondary porosity. Carbonate rock consist many type of porosity, i.e.: inter granular porosity, moldic porosity and also fracture porosity. The complexity of pore type in carbonate rocks make the wave propagation in these rocks is more complex than sand reservoir. We have studied numerically wave propagation in carbonate rock by finite difference modeling in time-space domain. The medium of wave propagation was modeled by base on the result of pattern recognition using artificial neural network. The image of thin slice of carbonate rock is then translated into the velocity matrix. Each mineral contents including pore of thin slice image are translated to velocity since mineral has unique velocity. After matrix velocity model has been developed, the seismic wave is propagated numerically in this model. The phenomena diffraction is clearly shown while wave propagates in this complex carbonate medium. The seismic wave is modeled in various frequencies. The result shows dispersive phenomena where high frequency wave tends to propagate in matrix instead pores. In the other hand, the low frequency waves tend to propagate through pore space even though the velocity of pore is very low. Therefore, this dispersive phenomena of seismic wave propagation can be the future indirect measurement technology for predicting the existence or intensity of pore space in reservoir rock. It will be very useful for the future reservoir characterization.
Viscoelastic characteristics of low-frequency seismic wave attenuation in porous media
Institute of Scientific and Technical Information of China (English)
Ling Yun; Han Li-Guo; Zhang Yi-Ming
2014-01-01
Mesoscopic fluid flow is the major cause of wave attenuation and velocity dispersion at seismic frequencies in porous rocks. The Johnson model provides solutions for the frequency-dependent quality factor and phase velocity in partially saturated porous media with pore patches of arbitrary shapes. We use the Johnson model to derive approximations for the quality factor Q at the high and low frequency limit, and obtain the approximate equation for Qmin based on geophysical and geometric parameters. A more accurate equation for Qmin is obtained after correcting for the linear errors between the exact and approximate Q values. The complexity of the pore patch shape affects the maximum attenuation of Qmin and the transition frequency ftr;furthermore, the effect on ftr is stronger than that on Qmin. Numerical solutions to Biot’s equation are computationally intensive; thus, we build an equivalent viscoelastic model on the basis of the Zener model, which well approximates the wave attenuation and dispersion in porous rocks in the seismic band.
Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation
Yang, Jia-Jia; Luan, Xi-Wu; Fang, Gang; Liu, Xin-Xin; Pan, Jun; Wang, Xiao-Jie
2016-09-01
Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.
Institute of Scientific and Technical Information of China (English)
Zou Guangui; Peng Suping; Yin Caiyun; Deng Xiaojuan; Chen Fengying; Xu Yanyong
2011-01-01
A staggered-grid finite difference method is used to model seismic wave records in a coal bearing,porous medium.The variables analyzed include the order of the difference calculations,the use of a perfect match layer to provide absorbing boundary conditions,the source location,the stability conditions,and dispersion in the medium.The results show that the location of the first derivative of the dynamic variable with respect to space is coincident with the location of the first derivative of the kinematic variable with respect to time.Outgoing waves are effectively absorbed and reflection at the boundary is very weak when more than 20 perfect match layer cells are used.Biot theory considers the liquid phase to be homogeneous so the ratio of liquid to solid exposure of the seismic source depends upon the medium porosity.Numerical dispersion and generation of false frequencies is reduced by increasing the accuracy of the difference calculations and by reducing the grid size and time step.Temporal second order accuracy,a tenth order spatial accuracy,and a wavelength over more than ten grid points gave acceptable numerical results.Larger grid step sizes in the lateral direction and smaller grid sizes in the vertical direction allow control of dispersion when the medium is a low speed body.This provides a useful way to simulate seismic waves in a porous coal bearing medium.
Seismic wave propagating in Kelvin-Voigt homogeneous visco-elastic media
Institute of Scientific and Technical Information of China (English)
YUAN; Chunfang; PENG; Suping; ZHANG; Zhongjie; LIU; Zhenkuan
2006-01-01
This paper studies, under a small disturbance, the responses of seismic transient wave in the visco-elastic media and the analytic solution of the corresponding third-order partial differential equation. A plane wave solution of Kelvin-Voigt homogeneous visco-elastic third-order partial differential equation with a pulse source is obtained. By the principle of pulse stacking of particle vibration, the result is extended to the solution of Kelvin-Voigt homogeneous visco-elastic third-order partial differential equation with any source. The velocities of seismic wave propagating and the attenuation of seismic wave in Kelvin-Voigt homogeneous visco-elastic media are discussed. The velocities of seismic wave propagating and the coefficient of attenuation of seismic wave in Kelvin-Voigt homogeneous visco-elastic media are derived, expressed as functions of density of the media, elastic modulus and visco-elastic coefficient. These results can be applied in inversing lithology parameters in geophysical prospecting.
Modeling of the Propagation of Seismic Waves in Non-Classical Media: Reduced Cosserat Continuum
Grekova, E.; Kulesh, M.; Herman, G.; Shardakov, I.
2006-12-01
In rock mechanics, elastic wave propagation is usually modeled in terms of classical elasticity. There are situations, however, when rock behaviour is still elastic but cannot be described by the classical model. In particular, current effective medium theories, based on classical elasticity, do not properly describe strong dispersive or attenuative behaviour of wave propagation observed sometimes. The approach we have taken to address this problem is to introduce supplementary and independent degrees of freedom of material particles, in our case rotational ones. Various models of this kind are widely used in continuum mechanics: Cosserat theory, micropolar model of Eringen, Cosserat pseudocontinuum, reduced Cosserat continuum etc. We have considered the reduced Cosserat medium where the couple stress is zero, while the rotation vector is independent of the translational displacement. In this model, the stress depends on the rotation of a particle relatively to the background continuum of mass centers, but it does not depend on the relative rotation of two neighboring particles. This model seems to be adequate for the description of granular media, consolidated soils, and rocks with inhomogeneous microstructure. A real inhomogeneous medium is considered as effective homogeneous enriched continuum, where proper rotational dynamics of inhomogeneities are taken into account by means of rotation of a particle of the enriched continuum. We have obtained and analyzed theoretical solutions for this model describing the propagation of body waves and surface waves. We have shown both the dispersive character of these waves in elastic space and half space, and the existence of forbidden frequency zones. These results can be used for the preparation, execution, and interpretation of seismic experiments, which would allow one to determine whether (and in which situations) polar theories are important in rock mechanics, and to help with the identification of material parameters
Seismic Wave Velocities in Deep Sediments in Poland: Borehole and Refraction Data Compilation
Directory of Open Access Journals (Sweden)
Polkowski Marcin
2015-06-01
Full Text Available Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units - the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.
Detection of coalbed fractures with P-wave azimuthal AVO in 3-D seismic exploration
Institute of Scientific and Technical Information of China (English)
LI Guofa; PENG Suping; HE Bingshou; PENG Xiaobo; YUAN Chunfang; HU Chaoyuan
2005-01-01
The detection of fractures is important for production and safety in coal fields. Subsurface fractures result in azimuthal anisotropy of the seismic wave, and the amplitude of reflection wave varies with offset and azimuth.In case of weak anisotropy, the reflection coefficients of P-wave are concisely denoted as the analytic function of fracture parameters. For the purpose of predicting the coalbed fracture distribution through analyzing variation of the reflection amplitudes with offset and azimuth, 3-D seismic data with full-azimuth were acquired in a coal field in Huainan, Anhui Province. The careful analysis and process of seismic data showed that the reflection amplitude of the primary coaibed varied with azimuth in much consistent with the theoretical model. The conclusion was drawn that the coal-bed fracture in this coal field could be predicted through the method of the P-wave azimuthal AVO.
Modeling seismic wave propagation in heterogeneous medium using overlap domain pseudospectral method
Institute of Scientific and Technical Information of China (English)
YAN Jiu-peng; WANG Yan-bin
2008-01-01
Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propagation in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.
DETERMINATION OF COORDINATES OF SEISMIC WAVE SOURCE BY AMPLITUDE METHOD OF PASSIVE LOCATION
Directory of Open Access Journals (Sweden)
Vasily D. Syten’ky
2015-10-01
Full Text Available The paper presents results of the mathematical synthesis of the method of passive location of a seismic wave source. The method employs measurements of regular attenuation of seismic oscillation amplitudes. If it is impossible to determine the location of a seismic event by means of direct measurements, indirect measurements are needed. A priori information for the mathematical synthesis was obtained from functional equations showing inverse proportions of measured amplitudes, arbitrary effective attenuation coefficients and corresponding coordinates. An original method was applied to process the data. The method providing for passive location of seismic waves sources has been developed; it is called the radial basic method. In the one-dimensional case, a distance is determined on the basis of seismic oscillation amplitudes measured by two seismographs that are located at a known base distance coinciding with the direction to the source of seismic waves. The distance is calculated from the receiver that is nearest to the source. If the base distance and the direct line between the seismograph and the seismic wave source do not coincide, a projection of the distance between the receivers to the given straight line is taken into account.Three seismographs were placed at mutually perpendicular base distances in a plane (i.e. the two-dimensional space. This allowed us to obtain an analytical equation for determining the direction to the seismic wave source using measured amplitudes. The value of the angle is taken into account when calculating the distance.For the seismic wave source located in the three-dimensional space, transition equations for combined coordinate systems (i.e. the Descartes (Cartesian, at the axes of which the seismographs were placed, and the spherical coordinate systems were applied, and analytical equations were obtained for determination of coordinates, such as distance/polar radius, elevation
Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves
Chen, W.; Ni, S.; Wang, Z.
2011-12-01
In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.
Boué, Pierre; Denolle, Marine; Hirata, Naoshi; Nakagawa, Shigeki; Beroza, Gregory C.
2016-08-01
Seismic wave resonance in sedimentary basins is a well-recognized seismic hazard; however, concentrated areas of earthquake damage have been observed near basin edges, where wave propagation is particularly complex and difficult to understand with sparse observations. The Tokyo metropolitan area is densely populated, subject to strong shaking from a diversity of earthquake sources, and sits atop the deep Kanto sedimentary basin. It is also instrumented with two seismic arrays: the dense MEtropolitan Seismic Observation network (MeSO-net) within the basin, and the High sensitivity seismograph network (Hi-net) surrounding it. In this study, we explore the 3-D seismic wavefield within and throughout the Kanto basin, including near and across basin boundaries, using cross-correlations of all components of ambient seismic field between the stations of these two arrays. Dense observations allow us to observe clearly the propagation of three modes of both Rayleigh and Love waves. They also show how the wavefield behaves in the vicinity of sharp basin edges with reflected/converted waves and excitation of higher modes.
Taber, J.; Bahavar, M.; Bravo, T. K.; Butler, R. F.; Kilb, D. L.; Trabant, C.; Woodward, R.; Ammon, C. J.
2011-12-01
Data from dense seismic arrays can be used to visualize the propagation of seismic waves, resulting in animations effective for teaching both general and advanced audiences. One of the first visualizations of this type was developed using Objective C code and EarthScope/USArray data, which was then modified and ported to the Matlab platform and has now been standardized and automated as an IRIS Data Management System (IRIS-DMS) data product. These iterative code developments and improvements were completed by C. Ammon, R. Woodward and M. Bahavar, respectively. Currently, an automated script creates Ground Motion Visualizations (GMVs) for all global earthquakes over magnitude 6 recorded by EarthScope's USArray Transportable Array (USArray TA) network. The USArray TA network is a rolling array of 400 broadband stations deployed on a uniform 70-km grid. These near real-time GMV visualizations are typically available for download within 4 hours or less of their occurrence (see: www.iris.edu/dms/products/usarraygmv/). The IRIS-DMS group has recently added a feature that allows users to highlight key elements within the GMVs, by providing an online tool for creating customized GMVs. This new interface allows users to select the stations, channels, and time window of interest, adjust the mapped areal extent of the view, and specify high and low pass filters. An online tutorial available from the IRIS Education and Public Outreach (IRIS-EPO) website, listed below, steps through a teaching sequence that can be used to explain the basic features of the GMVs. For example, they can be used to demonstrate simple concepts such as relative P, S and surface wave velocities and corresponding wavelengths for middle-school students, or more advanced concepts such as the influence of focal mechanism on waveforms, or how seismic waves converge at an earthquake's antipode. For those who desire a greater level of customization, including the ability to use the GMV framework with data
Matichard, F; Mittleman, R; Mason, K; Kissel, J; McIver, J; Abbott, B; Abbott, R; Abbott, S; Allwine, E; Barnum, S; Birch, J; Biscans, S; Celerier, C; Clark, D; Coyne, D; DeBra, D; DeRosa, R; Evans, M; Foley, S; Fritschel, P; Giaime, J A; Gray, C; Grabeel, G; Hanson, J; Hardham, C; Hillard, M; Hua, W; Kucharczyk, C; Landry, M; Roux, A Le; Lhuillier, V; Macleod, D; Macinnis, M; Mitchell, R; Reilly, B O; Ottaway, D; Paris, H; Pele, A; Puma, M; Radkins, H; Ramet, C; Robinson, M; Ruet, L; Sarin, P; Shoemaker, D; Stein, A; Thomas, J; Vargas, M; Venkateswara, K; Warner, J; Wen, S
2015-01-01
Isolating ground-based interferometric gravitational wave observatories from environmental disturbances is one of the great challenges of the advanced detector era. In order to directly observe gravitational waves, the detector components and test masses must be highly inertially decoupled from the ground motion not only to sense the faint strain of space-time induced by gravitational waves, but also to maintain the resonance of the very sensitive 4 km interferometers. This article presents the seismic isolation instrumentation and strategy developed for Advanced LIGO interferometers. It reviews over a decade of research on active isolation in the context of gravitational wave detection, and presents the performance recently achieved with the Advanced LIGO observatory. Lastly, it discusses prospects for future developments in active seismic isolation and the anticipated benefits to astrophysical gravitational wave searches. Beyond gravitational wave research, the goal of this article is to provide detailed is...
ABOUT THE WAVE MECHANISM OF ACTIVATION OF FAULTS IN SEISMIC ZONES OF THE LITHOSPHERE IN MONGOLIA
Directory of Open Access Journals (Sweden)
M. G. Mel’nikov
2015-09-01
Full Text Available The study is focused on earthquake migrations along active faults in seismic zones of Mongolia. The earthquake migrations are interpreted as a result of the influence of deformational waves. Vector velocities and other parameters of the deformational waves are studied. Based on data from largescale maps, local faults are compared, and differences and similarities of parameters of waves related to faults of different ranks are described.
Development of S-wave portable vibrator; S ha potable vibrator shingen no kaihatsu
Energy Technology Data Exchange (ETDEWEB)
Kaida, Y.; Matsubara, Y. [OYO Corp., Tokyo (Japan); Nijhof, V.; Brouwer, J.
1996-05-01
An S-wave portable vibrator to serve as a seismic source has been developed for the purpose of applying the shallow-layer reflection method to the study of the soil ground. The author, et al., who previously developed a P-wave portable vibrator has now developed an S-wave version, considering the advantage of the S-wave over the P-wave in that, for example, the S-wave velocity may be directly compared with the N-value representing ground strength and that the S-wave travels more slowly than the P-wave through sticky soil promising a higher-resolution exploration. The experimentally constructed S-wave vibrator consists of a conventional P-wave vibrator and an L-type wooden base plate combined therewith. Serving as the monitor for vibration is a conventional accelerometer without any modification. The applicability test was carried out at a location where a plank hammering test was once conducted for reflection aided exploration, and the result was compared with that of the plank hammering test. As the result, it was found that after some preliminary treatment the results of the two tests were roughly the same but that both reflected waves were a little sharper in the S-wave vibrator test than in the plank hammering test. 4 refs., 9 figs., 1 tab.
Studies of High-Frequency Seismic Wave Propagation.
1991-03-29
00).00 39 1~ 117 8" USSR stations Kararalinsk (KKL) 49’ 75O23’ Bayan"a (BAY) 50’ 75033’ Karas (K.SU) 49’ 81905’ U S stations Derep...1985; Peacock et al., 1988; Sax age et al., 1989; Savage et al., 1990; Aster et al., 1990; Gledhill, 1990). Malin et al. (1988) examined shear-wave...other networks (e.g., Savage et al., 1989, 1990; Gledhill, 1990). The Sfast direction at KNW-AZ and KNW-BH is approximately consistent with the
Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.
2013-04-01
Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection
Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra
Directory of Open Access Journals (Sweden)
U. Polom
2008-01-01
Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami
Numerical simulation of seismic wave propagation in complex media by convolutional differentiator
Institute of Scientific and Technical Information of China (English)
LI Xin-fu; LI Xiao-fan
2008-01-01
We apply the forward modeling algorithm constituted by the convolutional Forsyte polynomial differentiator pro- posed by former worker to seismic wave simulation of complex heterogeneous media and compare the efficiency and accuracy between this method and other seismic simulation methods such as finite difference and pseudospec- tral method. Numerical experiments demonstrate that the algorithm constituted by convolutional Forsyte polyno- mial differentiator has high efficiency and accuracy and needs less computational resources, so it is a numerical modeling method with much potential.
van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen
2014-05-01
We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.
Polom, U.; Arsyad, I.; Wiyono, S.; Krawczyk, C. M.
2007-12-01
Touched in the SW by the Great Sumatra Fault, the densely populated delta of the Krueng Aceh River consists mainly of young alluvial sediments of clay, sand and gravel with partially high organic content. The depth of this sediment body and its internal structure are widely unknown. Whereas traditional timber constructed buildings are mostly unaffected by strong earthquakes, the change to concrete building techniques added a significant new and locally unknown seismic risk in this region. The classification of earthquake site effects in the city of Banda Aceh and the surrounding region of Aceh Besar was the aim of a high-resolution shear-wave reflection seismic survey in the Indonesian province Nanggroe Aceh Darussalam. In cooperation with the Government of Indonesia and local counterparts, this was part of the Project "Management of Georisk" of the Federal Institute for Geosciences and Natural Resources. Using shear-wave reflection seismics in combination with a land streamer has proven to be an enormously useful method in the sedimentary regions of the Aceh province with an easy and fast recording operation. In addition, the specialized seismic system accounts for compacted soil surfaces which allows a wide range of applications within cities, industrial sites, paved roads and also on small dirt roads. Using a vibrator seismic source, this technique was applied successfully also in areas of high building density in the city of Banda Aceh or in the surrounding mostly agricultural environment. Combined with standard geoengineering investigations like cone penetrometer tests, it was possible to evaluate the soil stiffness in populated urban areas down to 100 m depth in terms of the IBC2003. This is important for the exploration of new areas for save building foundation and groundwater aquifer detection in the tsunami-flooded region.
Directory of Open Access Journals (Sweden)
Bor-Shouh Huang
2013-01-01
Full Text Available We present a detailed study of T-waves originating from earthquakes in the South China Sea region, near the Indochina Peninsula and Luzon islands which were recorded by a broadband seismic station at Nansha Island. Most of these T-waves appear to have been the source originating from earthquakes with epicentral distances greater than 600 km from this station. The T-waves in this region were identified via their apparent stable measured velocities of about 1.45 km s-1, and represent the first reported T-waves and the first T-waves observed from an island station in the South China Sea. However, during the period of analysis (November 2004 to December 2005 additional earthquakes also occurred beyond the South China Sea region, but in these instances, any associated T-waves were not picked up by the station at Nansha Island. An analysis of T-wave travel times reveals the possible locations of the P-wave to T-wave transitions at the ocean to crust interface were presumably situated near the earthquake source side. Our results indicate that the Sound Fixing and Ranging (SOFAR channel is well developed in the South China Sea region. Ultimately, developing a solid understanding of the effective transmission of T-waves through the ocean may provide new opportunities for detecting and locating small earthquakes which would be useful for both seismic monitoring and in helping to predict and reduce the damaging effects of earthquakes and tsunamis in the SouthChina Sea region.
Directory of Open Access Journals (Sweden)
Bor-Shouh Huang
2013-01-01
Full Text Available We present a detailed study of T-waves originating from earthquakes in the South China Sea region, near the Indochina Peninsula and Luzon islands which were recorded by a broadband seismic station at Nansha Island. Most of these T-waves appear to have been the source originating from earthquakes with epicentral distances greater than 600 km from this station. The T-waves in this region were identified via their apparent stable measured velocities of about 1.45 km s-1, and represent the first reported T-waves and the first T-waves observed from an island station in the South China Sea. However, during the period of analysis (November 2004 to December 2005 additional earthquakes also occurred beyond the South China Sea region, but in these instances, any associated T-waves were not picked up by the station at Nansha Island. An analysis of T-wave travel times reveals the possible locations of the P-wave to T-wave transitions at the ocean to crust interface were presumably situated near the earthquake source side. Our results indicate that the Sound Fixing and Ranging (SOFAR channel is well developed in the South China Sea region. Ultimately, developing a solid understanding of the effective transmission of T-waves through the ocean may provide new opportunities for detecting and locating small earthquakes which would be useful for both seismic monitoring and in helping to predict and reduce the damaging effects of earthquakes and tsunamis in the South China Sea region.
Directory of Open Access Journals (Sweden)
J. M. Carcione
2014-06-01
Full Text Available The Earth crust presents two dissimilar rheological behaviours depending on the in-situ stress-temperature conditions. The upper, cooler, part is brittle while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behaviour is based on the Burgers mechanical model to describe the effects of seismic attenuation and steady-state creep flow. The shear Lamé constant of the brittle and ductile media depends on the in-situ stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the P-S and SH equations of motion recast in the velocity-stress formulation, including memory variables to avoid the computation of time convolutions. The equations correspond to isotropic anelastic and inhomogeneous media and are solved by a direct grid method based on the Runge–Kutta time stepping technique and the Fourier pseudospectral method. The algorithm is tested with success against known analytical solutions for different shear viscosities. A realistic example illustrates the computation of surface and reverse-VSP synthetic seismograms in the presence of an abrupt brittle-ductile transition.
Modelling study of challenges in sinkhole detection with shear wave reflection seismics
Burschil, Thomas; Krawczyk, CharLotte M.
2016-04-01
The detection of cavities with reflection seismics is a difficult task even if high impedance contrasts are assumed. Especially the shear wave reflection method with a higher resolution potential trough lower velocities and short wavelength has come into focus of investigation. But shear wave propagation fails if material exists that partially has no shear strength. The shear wave does not propagate into or through those voids. Here, we evaluate the influence of a possible fracture zone above a cavity. We simulate shear wave propagation with finite difference modelling for two reference models, with and without cavity, and various sets of input models with a fracture zone above the cavity. Reflections and multiples of the reference models image the subsidence structure and the cavity. For the fracture input models, we implemented a fracture network, derived from numerical crack propagation modelling (Schneider-Löbens et al., 2015). The cracks possess the minimum possible aperture of one grid point (i.e. 0.1 m) and no shear stiffness. The seismic modelling exhibits that the shear wave does not pass through the fracture zone and shadows the subjacent cavity. Sequences of randomly discontinuous cracks, cf. displacement discontinuity model with zero crack stiffness, approximate partially seismic connected rock on both sides of the crack. The amount of these seismic pathways determines whether a reflection of the cavity can be detected at the surface or not. Cracks with higher aperture, e.g. two or three grid points, need a higher amount of intact rock/defective cracks, since more connected grid points are necessary to create seismic pathways. Furthermore, it turns out that the crack filling is important for shear wave transmission. While a mineralized fracture zone, implemented with high velocity, facilitate shear wave propagation, water or air-filled cracks avoid shear wave transmission. Crack orientation affects the shear wave propagation through the geometry. A
Energy Technology Data Exchange (ETDEWEB)
Tkalcic, H; Flanagan, M P; Cormier, V F
2005-07-15
The deepest and most inaccessible parts of Earth's interior--the core and core-mantle boundary regions can be studied from compressional waves that turn in the core and are routinely observed following large earthquakes at epicentral distances between 145{sup o} and 180{sup o} (also called P', PKIKP or PKP waves). P'P' (PKPPKP) are P' waves that travel from a hypocenter through the Earth's core, reflect from the free surface and travel back through the core to a recording station on the surface. P'P' waves are sometimes accompanied by precursors, which were reported first in the 1960s as small-amplitude arrivals on seismograms at epicentral distances of about 50{sup o}-70{sup o}. Most prominent of these observed precursors were explained by P'P' waves generated by earthquakes or explosions that did not reach the Earth's surface but were reflected from the underside of first order velocity discontinuities at 410 and 660 km in the upper mantle mantle. Here we report the discovery of hitherto unobserved near-podal P'P' waves (at epicentral distance less than 10{sup o}) and very prominent precursors preceding the main energy by as much as 55 seconds. We interpret these precursors as a back scattered energy from undocumented structure in the upper mantle, in a zone between 150 and 220 km depth beneath Earth's surface. From these observations, we identify a frequency dependence of Q (attenuation quality factor) in the lithosphere that can be modeled by a flat relaxation spectrum below about 0.05-0.1 Hz and increasing with as the first power of frequency above this value, confirming pioneering work by B. Gutenberg.
Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators
Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.
2015-12-01
Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Guo, B.; Thurber, C. H.; Roecker, S. W.; Townend, J.; Rawles, C.; Chamberlain, C. J.; Boese, C. M.; Bannister, S.; Feenstra, J.; Eccles, J. D.
2017-02-01
The Deep Fault Drilling Project (DFDP) on the central Alpine Fault, South Island, New Zealand, has motivated a broad range of geophysical and geological studies intended to characterize the fault system in the locality of the drill site at various scales. In order to better understand the structural features of the central Alpine Fault, we have developed three-dimensional P- and S-wave velocity (VP and VS) models of the region by double-difference tomography using datasets from multiple seismic networks. In previous work, the quality of the S-wave model has been poor due to the small number of available S-wave picks. We have utilized a new high-accuracy automatic S-wave picker to increase the number of usable S-wave arrivals by more than a factor of two, thereby substantially improving the VS model. Compared to previous studies, our new higher-resolution VP model based on more observations shows a clear VP contrast (higher VP on the southeast hanging wall side) at depths of 5 - 10 km near the DFDP drill sites. With our better resolved VS model, in the same region, we detect a sharply defined high VS body (VS > 3.7 km/s) within the hanging wall. Our earthquake relocations reveal the presence of clusters within and around low-velocity zones in the hanging wall southeast of the Alpine Fault. Together with the improved earthquake locations, the P- and S-wave tomography results reveal the Alpine Fault to be marked by a velocity contrast throughout most of the study region. The fault dips southeastward at about 50^circ from 5 to 15 km depth, as inferred from the velocity structure, seismicity, and observations of fault zone guided waves.
Universal three-body recombination via resonant d-wave interactions
Wang, Jia; Wang, Yujun; Greene, Chris H
2012-01-01
For a system of three identical bosons interacting via short-range forces, when two of the atoms are about to form a two-body s-wave dimer, there exists an infinite number of three-body bound states. This effect is the well-known Efimov effect. These three-body states (Efimov states) are found to be universal for ultracold atomic gases and the lowest Efimov state crosses the three-body break-up threshold when the s-wave two-body scattering length is $a \\approx -9.73 r_{\\rm vdW}$, $r_{\\rm vdW}$ being the van der Waals length. This article focuses on a generalized version of this Efimov scenario, where two of the atoms are about to form a two-body d-wave dimer, which leads to strong d-wave interactions. In a recent paper [B. Gao, Phys. Rev. A. {\\bf 62}, 050702(R) (2000)], Bo Gao has predicted that for broad resonances the d-wave dimer is always formed near $a \\approx 0.956 r_{\\rm vdW}$. Here we find that a single universal three-body state associated with the d-wave dimer is also formed near the three-body brea...
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
A study of seismic wave propagation in heterogeneous crust
Akerberg, Peeter Michael
Three different aspects of estimating properties from seismic data are treated in this thesis: (1) Deterministic processing of a high resolution shallow seismic data set with good geologic control, (2) traveltime estimation from complicated models described statistically, and (3) estimation of a the vertical autocorrelation length of such models. The first part of this thesis is the processing and interpretation of a shallow seismic dataset collected in an open pit copper mine near Tyrone, New Mexico. The seismic image is compared with the outcrop in the open pit mine wall along which the seismic line was collected, and with drill data obtained from the mine operators. Specific features imaged by the experiment include the base of the overlaying sediment, the base of the leached capping, and fractures and shear zones that control local ground water flow. The features in the migrated section compare well with outcrop and drill data. The second part of the thesis studies the systematic bias of velocities estimated from first arrival travel times measured from a class of very complicated velocity models. Traveltimes were computed for statistically described velocity models with anisotropic von Karman correlation functions. The results of a finite difference eikonal solver, corresponding to very small wavelength experiments, are compared to results from picking first arrivals of full wavefield finite difference simulations. The eikonal solver results show the largest systematic bias, corresponding to the ray theoretical limit, and the results from the full wavefield experiments are smaller, but with very similar dependence on aspect ratio of the anisotropic correlation function. The third part defines two methods to obtain the vertical correlation length from seismic data approximated by the primary reflectivity series, which conventionally is used as the ideal result of seismic imaging. The first method is based on fitting a theoretical power spectrum based on the
Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases
Marquering, H.A.
1996-01-01
This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An efficie
Seismic wave propagation in non-homogeneous elastic media by boundary elements
Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank
2017-01-01
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...
Tataru, Dragos; Grecu, Bogdan; Zaharia, Bogdan
2014-05-01
Variations in crustal thickness in Romania where determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group velocity dispersion. We present new models of shear wave velocity structure of the crust beneath Romanian broad band stations. The data set consist in more than 500 teleseismic earthquake with epicentral distance between 30° and 95°, magnitude greater than 6 and a signal-to-noise ratio greater than 3 for the P-wave pulse. Most epicenters are situated along the northern Pacific Rim and arrive with backazimuths (BAZs) between 0° and 135° at the Romanian seismic network. We combine receiver functions with fundamental-mode of the Rayleigh wave group velocities to further constrain the shear-wave velocity structure.To extract the group velocities we applied the Multiple Filter Technique analysis to the vertical components of the earthquakes recordings. This technique allowed us to identify the Rayleigh wave fundamental mode and to compute the dispersion curves of the group velocities at periods between 10 and 150 s allowing us to resolve shear wave velocities to a depth of 100 km. The time-domain iterative deconvolution procedure of Ligorrıa and Ammon (1999) was employed to deconvolve the vertical component of the teleseismic P waveforms from the corresponding horizontal components and obtain radial and transverse receiver functions at each broadband station. The data are inverted using a joint, linearized inversion scheme (Hermann, 2002) which accounts for the relative influence of each set of observations, and allows a trade-off between fitting the observations, constructing a smooth model, and matching a priori constraints. The results show a thin crust for stations located inside the Pannonian basin (28-30 km) and a thicker crust for those in the East European Platform (36-40 km). The stations within the Southern and Central Carpathian Orogen are characterized by crustal depths of ~35 km. For stations located in the Northern
New imaging method for seismic reflection wave and its theoretical basis
Institute of Scientific and Technical Information of China (English)
HUANG; Guangyuan
2001-01-01
［1］Huang Guangyuan, Principle of "3-Basic Colors" for imaging from reflected seismic wave, Acta Geophysica Sinica (in Chinese), 2000, 43(1): 138.［2］Huang Guangyuan, Revisions of convolution model of reflected seismic wave, Chinese Physics Letters, 1998, 15(11): 851.［3］Charles, K. C., An Introduction to Wavelets, San Diego: Academic Press, Inc., 1992.［4］Huang Guangyuan, Liu Weiqian, Revision wave expression and wave equation, Abstracts of Chinese Sci. & Tech. (Letters) (in Chinese), 1999, 5(3): 335.［5］Silvia, M. T., Deconvolution of geophysical time series in the exploration for oil and natural gas, Amsterdam-Oxford-New York: Elsevier Scientific Publishing Company, 1973.［6］Huang Guangyuan, Liu Xiaojun, Inverse Problems in Mathematical Physics (in Chinese), Jinan: Shandong Sci. & Tech. Press, 1993.［7］Huang Guangyuan, Liu Xiaojun, Discussion of several mathematical inverse models in seismic prospecting, CT Theory and Application (in Chinese), 1992, 1(2): 8.［8］Huang Guangyuan, The second discussion on acoustic velocity inversion from wave equation, CT Theory and Application (in Chinese), 1993, 2(3): 14［9］Huang Guangyuan, Dynamic revision of classical laws in physics from the viewpoint of system science, Systems Science and Systems Engineering, 1993, 2(1): 15［10］Brekhovskikh, L. M., Wave in Layered Media, San Diego: Academic Press, 1980.
Estimating the Location of Scatterers by Seismic Interferometry of Scattered Surface Waves
Harmankaya, U.; Kaslilar, A.; Thorbecke, J.W.; Wapenaar, C.P.A.; Draganov, D.S.
2012-01-01
In this study, non-physical (ghost) scattered surface waves are used to obtain the location of a near surface scatterer. The ghost is obtained from application of seismic interferometry to only one source at the surface. Different locations for virtual sources are chosen and ghost scattered surface
Lev, E.; Long, M.; Hilst, R.D. van der
2006-01-01
Knowledge about seismic anisotropy can provide important insight into the deformation of the crust and upper mantle beneath tectonically active regions. Here we focus on the southeastern part of the Tibetan plateau, in Sichuan and Yunnan provinces, SW China. We measured shear wave splitting of core-
Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction
Colquitt, D J; Craster, R V; Roux, P; Guenneau, S R L
2016-01-01
We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials, and metasurfaces, in the bulk and at the surface respectively. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve that transitions from Rayleigh...
On gravitational waves from classical three body problem
Fiziev, Plamen P
2016-01-01
Using an effective one body approach we describe in detail gravitational waves from classical three body problem on a non-rotating straight line and derive their basic physical characteristics. Special attention is paid to the irregular motions of such systems and to the significance of double and triple collisions. The conclusive role of the collinear solutions is also discussed in short.
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Directory of Open Access Journals (Sweden)
H. Veladi
2014-01-01
Full Text Available A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.
Boundary conditions on internal three-body wave functions
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Energy Technology Data Exchange (ETDEWEB)
Volarovich, M.P.; Lyubimova, Ye.A.; Volynets, L.N.
1981-01-01
Processing of data from deep seismic probing by the ''method tau (P)'' results in the obtaining of an area of all possible velocity sections in which one should search for specific solutions of the inverse seismic task. The conducted analysis of velocity gradients makes it possible to make a more purposeful search for individual velocity models according to the lithological-petrological model of the layers of the earth's crust and upper mantle. Thus, joint use of results of experimental study of the velocities of longitudinal waves in rock samples and high pressures and temperatures and thermal data makes it possible to reduce the ambiguity of the seismic task and to reduce the number of possible lithological-petrological models in constructing a velocity model of the earth's crust and upper mantle using seismic observations.
Numerical investigation of wake-collapse internal waves generated by a submerged moving body
Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia
2016-09-01
The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.
Seismic tomography of Yunnan region using short-period surface wave phase velocity
Institute of Scientific and Technical Information of China (English)
何正勤; 苏伟; 叶太兰
2004-01-01
The data of short-period (1～18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method.Adopting tomography method, the distribution maps of phase velocities at various periods in Yunnan region are inverted. The maps of phase velocities on profiles along 24°N, 25°N, 26°N, 27°N and 100.5°E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.
Obrebski, M.; Allen, R.M.; Pollitz, F.; Hung, S.-H.
2011-01-01
The relation between the complex geological history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geological features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two data sets to image and study the link between the geology of the western United States, the shallow structure of the Earth and the convective processes in mantle. Our multiphase DNA10-S model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low-density rocks isostatically sustain part of the high topography of the western United States. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the 'slab graveyard', a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the
Pollitz, Fred; Mooney, Walter D.
2016-01-01
Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.
Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves
Energy Technology Data Exchange (ETDEWEB)
Jose A. Rial; Jonathan Lees
2009-03-31
As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.
Seismic gravity-gradient noise in interferometric gravitational-wave detectors
Hughes, S A; Hughes, Scott A.; Thorne, Kip S.
1998-01-01
When ambient seismic waves pass near an interferometric gravitational-wave detector, they induce density perturbations in the earth which produce fluctuating gravitational forces on the interferometer's test masses. These forces mimic a stochastic background of gravitational waves and thus constitute noise. We compute this noise using the theory of multimode Rayleigh and Love waves propagating in a layered medium that approximates the geological strata at the LIGO sites. We characterize the noise by a transfer function $T(f) motion $\\tilde W(f)$ to the spectrum of test mass motion $\\tilde x(f) = L\\tilde h(f)$ (where $L$ is the length of the interferometer's arms, and $\\tilde h(f)$ is the spectrum of gravitational-wave noise). This paper's primary foci are (i) a study of how $T(f)$ depends on the various seismic modes; (ii) an attempt to estimate which modes are excited at the LIGO sites at quiet and noisy times; and (iii) a corresponding estimate of the seismic gravity-gradient noise level. At quiet times the...
Long codas of coupled wave systems in seismic basins
Seligman, Thomas H.
2002-11-01
Quite some time ago it was pointed out that the damage patterns and Fourier spectra of the 1985 earthquake in Mexico City are only compatible with a resonant effect of horizontal waves with the approximate speed of sound waves in water [see Flores et al., Nature 326, 783 (1987)]. In a more recent paper it was pointed out that this indeed will occur with a very specific frequency selection for a coupled system of Raleigh waves at the interface of the bottom of the ancient lakebed with the more solid deposits, and an evanescent sound wave in the mud above [see J. Flores et al., Bull. Seismol. Soc. Am. 89, 14-21 (1999)]. In the present talk we shall go over these arguments again and show that strong reflection at the edges of the lake must occur to account for the strong magnification entailing necessarily a long coda, and that the mecanism can be understood in the same terms.
Reconstruction of a 2D seismic wavefield by seismic gradiometry
Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige
2016-12-01
We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.
Vackář, Jiří; Zahradník, Jiří
2013-04-01
A recent shallow earthquake in the Corinth Gulf, Greece (Mw 5.3, January 18, 2010; Sokos et al., Tectonophysics 2012) generated unusual long-period waves (periods > 5 seconds), well recorded at several near-regional stations between the P - and S-wave arrival. The 5-second period, being significantly longer than the source duration, indicates a structural effect. The wave is similar to PL-wave or Pnl-wave, but with shorter periods and observed in much closer distances (ranging from 30 to 200 km). For theoretical description of the observed wave, structural model is required. No existing regional crustal model generates that wave, so we need to find another model, better in terms of the PL-wave existence and strength. We find such models by full waveform inversion using the subset of stations with strong PL-wave. The Discrete Wavenumber method (Bouchon, 1981; Coutant 1989) is used for forward problem and the Neighborhood Algorithm (Sambridge, 1999) for stochastic search (more details in poster by V. Plicka and J. Zahradník). We obtain a suite of models well fitting synthetic seismograms and use some of these models to evaluate dependence of the studied waves on receiver distance and azimuth as well as dependence on source depth. We compare real and synthetic dispersion curves (derived from synthetic seismograms) as an independent validation of found model and discuss limitations of using dispersion curves for these cases. We also relocated the event in the new model. Then we calculate the wavefield by two other methods: modal summation and ray theory to better understand the nature of the PL-wave. Finally, we discuss agreement of found models with published crustal models in the region. The full waveform inversion for structural parameters seems to be powerful tool for improving seismic source modeling in cases we do not have accurate structure model of studied area. We also show that the PL-wave strength has a potential to precise the earthquake depth
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
A Wave Scattering Theory of Solar Seismic Power Haloes
Hanasoge, Shravan M
2009-01-01
Spatial maps of the high-pass frequency filtered time-averaged root-mean-squared (RMS) Doppler velocities tend to show substantial decrements within regions of strong field and curiously, randomly distributed patches of enhancement in the vicinity. We propose that these haloes or enhancements are a consequence of magnetic-field-induced mode mixing (scattering), resulting in the preferential powering of waves that possess strong surface velocity signatures (i.e. scattering from low to high wavenumbers). Evidently, this process can occur in the reverse, and therefore in order to determine if the haloes are indeed caused by mode mixing, we must answer the question: {\\it how are acoustic waves scattered by magnetic fields?} Through simulations of the interactions between waves and sunspots and models of plage, we demonstrate that the high to low modal order scattering channels are favoured. With increasing frequency and consequently, decreasing wavelength, a growing number of modes are scattered by the sunspot, t...
Attenuation of S wave in the crust of Ordos massif
Institute of Scientific and Technical Information of China (English)
LIU Hong-gui; CHUO Yong-qing; CHEN Shu-qing; JIN Chun-hua
2005-01-01
We presented attenuation characteristics of S waves in the crust of Ordos massif. Using 487 pieces of digital oscillograms of 19 seismic events recorded by 32 seismologic stations located on Ordos massif and its surroundings, we have calculated the parameter of three-segment geometric attenuation and give the relation of inelastic attenuation Q value with frequency in the crust of Ordos massif, site responses of 32 stations, and source parameters of 19 events by the genetic algorithm. The results indicate that Q value (at 1 Hz) of S-wave in the crust of Ordos massif is much larger than that in the geologically active tectonic region. The site responses of the 32 stations in the high-frequency section do not show clear amplification effect except one or two stations, while in the low-frequency section, there is difference among the stations. The logarithmic value of seismic moment and the magnitude ML of 19 seismic events has a very good linear relationship.
Directory of Open Access Journals (Sweden)
Glangeaud F.
2006-11-01
of upgoing waves and sensitivity to first arrival time estimates. La plupart des algorithmes utilisés pour la séparation des ondes montantes et descendantes en PSV font l'hypothèse que le signal est stationnaire en fonction de la profondeur sur toutes les traces utilisées dans le filtre de séparation. Cependant, le signal ne peut plus être supposé stationnaire lorsque les filtres sont appliqués sur une fenêtre en profondeur trop grande (100-200 m. Par contre, la stationnarité du signal peut être considérée comme une hypothèse physiquement raisonnable pour deux positions voisines de la sonde (5-20 m. Cet article présente trois algorithmes pour la séparation des ondes montantes et descendantes, qui ne nécessitent que deux traces adjacentes et les temps de première arrivée sur chacune des traces. Dans la mesure où il n'existe pas de discontinuités géologiques entre ces traces, les algorithmes sont indépendants de la distance en profondeur entre traces. Le premier algorithme (solution pseudo-théorique travaille dans le domaine fréquentiel. La séparation des ondes est obtenue par résolution d'un système de deux équations à deux inconnues pour chaque fréquence. Cette opération est effectuée dans la bande passante correspondant à la meilleure cohérence. Le second algorithme (solution simple réalise une addition et soustraction, basées sur la semblance des signaux, des traces décalées en temps. Le troisième algorithme (solution de Wiener utilise un filtre de Wiener pour prédire le champ d'ondes le plus énergique, qui correspond généralement aux ondes descendantes. Les ondes montantes sont ensuite obtenues par soustraction des ondes montantes estimées, au champ d'ondes total. Le filtre de Wiener peut être ensuite de nouveau appliqué aux ondes montantes de façon à les renforcer. La solution pseudo-théorique et la solution simple réalisent des filtres en vitesse apparente de bande passante étroite, et sont applicables aux PSV
Lontsi, A. M.; Ohrnberger, M.; Krüger, F.
2016-07-01
We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Löbnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Löbnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (~ 0.6-35 Hz at Horstwalde and ~ 1.5-25 Hz at Löbnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the
New Software for Long-Term Storage and Analysis of Seismic Wave Data
Cervelli, D. P.; Cervelli, P. F.; Murray, T. L.
2004-12-01
Large seismic networks generate a substantial quantity of data that must be first archived, and then disseminated, visualized, and analyzed, in real-time, in the office or from afar. To achieve these goals for the Alaska Volcano Observatory we developed two software packages: Winston, a database for storing seismic wave data, and Swarm, an application for analyzing and browsing the data. We also modified an existing package, Valve, an internet web-browser based interface to various data sets developed at the Hawaiian Volcano Observatory, to communicate with Winston. These programs provide users with the tools necessary to monitor many commonly used geophysical parameters. Winston, Wave Information Storage Network, uses a vendor-neutral SQL database to store seismic wave data. Winston's primary design goal was simple: develop a more robust, scalable, long-term replacement for the Earthworm waveserver. Access to data within the Winston database is through a scalable internet based server application, an Earthworm waveserver emulator, or directly via SQL queries. Some benefits of using an SQL database are easy backups and exports, speed, and reliability. Swarm, Seismic Wave Analysis and Real-time Monitor, is a stand-alone application that was designed to replace the traditional drum helicorder and computer wave viewer with an intuitive and interactive interface for rapidly assessing volcanic hazard, browsing through past data, and analyzing waveforms. Users can easily view waves in traditional analytic ways, such as frequency spectra or spectrograms, and employ standard analytic tools like filtering. Swarm allows efficient dissemination of data and breaks cross-disciplinary barriers by creating an accessible interface to seismic data for non-seismologists. Swarm currently operates with many seismic data sources including Earthworm waveservers and SEED files. Lastly, Swarm can be a valuable education and outreach tool by using its Kiosk Mode: a full-screen mode that
Seismic observations at the Sodankylä Geophysical Observatory: history, present, and the future
Kozlovskaya, Elena; Narkilahti, Janne; Nevalainen, Jouni; Hurskainen, Riitta; Silvennoinen, Hanna
2016-08-01
Instrumental seismic observations in northern Finland started in the 1950s. They were originally initiated by the Institute of Seismology of the University of Helsinki (ISUH), but the staff of Sodankylä Geophysical Observatory (SGO) and later geophysicists of the University of Oulu (UO) were involved in the development of seismological observations and research in northern Finland from the very beginning. This close cooperation between seismologists and the technical staff of ISUH, UO, and SGO continued in many significant international projects and enabled a high level of seismological research in Finland. In our paper, we present history and current status of seismic observations and seismological research in northern Finland at the UO and SGO. These include both seismic observations at permanent seismic stations and temporary seismic experiments with portable seismic equipment. We describe the present seismic instrumentation and major research topics of the seismic group at SGO and discuss plans for future development of permanent seismological observations and portable seismic instrumentation at SGO as part of the European Plate Observing System (EPOS) research infrastructure. We also present the research topics of the recently organized Laboratory of Applied Seismology, and show examples of seismic observations performed by new seismic equipment located at this laboratory and selected results of time-lapse seismic body wave travel-time tomography using the data of microseismic monitoring in the Pyhäsalmi Mine (northern Finland).
Seismic heterogeneity in the mantle—strong shear wave signature of slabs from joint tomography
Kennett, B. L. N.; Gorbatov, A.
2004-08-01
The primary source of information on heterogeneity within the Earth comes from seismic tomography. A powerful tool for examining the character of heterogeneity comes from the comparison of images of bulk-sound and shear wavespeed extracted in a single inversion, since this isolates the dependencies on the elastic moduli. However, particularly in such multi-parameter inversions there are many hidden facets which can have a strong influence on the results, such as the weightings between parameters and in the misfit functions. Joint inversion with restricted data sets giving comparable cover for P and S waves provides useful checks on more inclusive studies, and can provide relatively high resolution in some areas. The relative behaviour of bulk-sound and shear wavespeed can provide a useful guide to the definition of heterogeneity regimes. For subduction zones a large part of the tomographic signal comes from S wavespeed variations. In the upper mantle and transition there can be significant bulk-sound speed contributions for younger slabs, and in stagnant slabs associated with slab roll-back. For subducted oceanic lithosphere older than about 90 Ma shear wavespeed variations nearly always are dominant and so the P wave images are controlled by shear modulus variations. The narrow segments of fast wavespeeds in the depth range 900-1500 km in the lower mantle are dominated by S variations, with very little bulk-sound contribution. Deep in the mantle there are many fast features without obvious association with subduction in the last 100 Ma, which suggests long-lived preservation of components of the geodynamic cycle.
Seismic wave propagation in fractured media: A discontinuous Galerkin approach
De Basabe, Jonás D.
2011-01-01
We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.
Micromechanics of seismic wave propagation in granular materials
O’Donovan, J.; Ibraim, E.; O’Sullivan, C.; Hamlin, S.; Muir Wood, D.; Marketos, G.
2016-01-01
In this study experimental data on a model soil in a cubical cell are compared with both discrete element (DEM) simulations and continuum analyses. The experiments and simulations used point source transmitters and receivers to evaluate the shear and compression wave velocities of the samples, from
Energy Technology Data Exchange (ETDEWEB)
Pineda Porras, Omar Andrey [Los Alamos National Laboratory
2009-01-01
Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.
A novel method for analyzing seismic energy loss associated with wave-induced fluid flow
Solazzi, Santiago G.; Germán Rubino, J.; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus
2014-05-01
Whenever a seismic wave propagates through a fluid saturated porous rock that contains heterogeneities in the mesoscopic scale, that is, heterogeneities larger than the typical pore size but smaller than the predominant wavelengths, local gradients in the pore-fluid pressure arise. These pressure gradients, which are due to the uneven response of the heterogeneities to the stress applied by the passing seismic wavefield, induce viscous fluid flow and energy dissipation. Consequently, seismic waves tend to be strongly attenuated and dispersed in this kind of media. This attenuation mechanism scales with the compressibility contrast between heterogeneities and the background. Correspondingly, environments characterized by patchy saturation as well as fractured media represent two prominent scenarios where seismic attenuation due to wave-induced fluid flow is expected to be the predominant energy dissipation mechanism. Numerical oscillatory compressibility and shear tests based on the quasistatic poroelasticity equations provide an effective means to compute equivalent viscoelastic moduli for representative rock samples of the heterogeneous media under study. Approaches of this type rely on the existence of a dynamic-equivalent medium, that is, the heterogeneous porous rock is represented by an equivalent homogeneous viscoelastic solid that exhibits an overall response similar to that of the original heterogeneous porous sample. This methodology allows for extracting the equivalent seismic attenuation and phase velocity of the sample, but fails to provide any information with regard to the underlying physical processes. In this work, we present a novel approach based on the quantification of the energy loss taking place in the interior of the considered heterogeneous rock sample. To this end, we first determine the spatial distribution of the energy dissipation in response to the applied oscillatory stresses. Next, we quantify the total dissipated energy as well as
Seismic Surface-Wave Tomography of Waste Sites - Final Report
Energy Technology Data Exchange (ETDEWEB)
Long, Timothy L.
2000-09-14
The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.
Model of horizontal stress in the Aigion10 well (Corinth) calculated from acoustic body waves
Rousseau, A
2006-01-01
In this paper we try to deduce the in situ stresses from the monopole acoustic waves of the well AIG10 between 689 and 1004 meters in depth (Corinth Golf). This borehole crosses competent sedimentary formations (mainly limestone), and the active Aigion fault between 769 and 780 meters in depth. This study is the application of two methods previously described by the author who shows the relationships between in situ horizontal stresses, and (i) the presence or absence of double body waves, (ii) the amplitude ratios between S and P waves (Rousseau, 2005a,b). The full waveforms of this well exhibit two distinct domains separated by the Aigion fault. Within the upper area the three typical waves (P, S and Stoneley) may appear, but the S waves are not numerous, and there is no double body wave, whereas within the lower area there are sometimes double P waves, but no S waves. From those observations, we conclude that the stress domain is isotropic above the Aigion fault, and anisotropic below, which is consistent ...
Seismic wave attenuation and velocity dispersion in UAE carbonates
Ogunsami, Abdulwaheed Remi
Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact
Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas
2016-04-01
In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of
Faraday Waves in Cold-Atom Systems with Two- and Three-Body Interactions
Tomio, Lauro; Gammal, A.; Abdullaev, F. K.
2017-03-01
We report an investigation on Bose-Einstein condensates with two-body (cubic) and three-body (quintic) interactions in the corresponding nonlinear Schrödinger equation, considering s-wave two-body scattering length a_s periodically varying in time. For the quintic interacting term, the dependence on a_s was considered within two models, being quadratic or quartic. It was shown that parametric instabilities can lead to th e generation of Faraday wave resonances in this system, with wavelengths depending on the background scattering length, as well as on the corresponding modulation parameters. A few sample results are shown here for repulsive a_s, in case of quadratic and quartic three-body interactions. The effect of dissipation is also verified on the amplitude of the resonances. Analytical predictions for the resonance positions are confirmed by our numerical simulations.
Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di; Haney, Matthew M.
2015-01-01
Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here, we implement Dynamic Time Warping (DTW) to estimate the warping function – a vector of local time shifts that globally minimizes the misfit between two seismic traces. We illustrate the differences of all three methods compared to one another using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has better time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements. DTW is a new tool that may find new applications in seismology and other geophysical methods (e.g., as a waveform inversion misfit function).
Directory of Open Access Journals (Sweden)
A. A. Stepashko
2015-09-01
mantle lense (Fig 6, A; it is one of four main tectonical units that compose the basement of the Siberian craton [Mironyuk, Zagruzina, 1983]. As evidenced by the zonal composition of the mantle lense, the centre of the lense is highly dense, and this explains the location of a seismic anomaly there (Fig. 6, B which is determined to a depth of about 50–60 km [Pavlenkova G.A., Pavlenkova N.I., 2006]. The high-velocity root located in this segment of the craton is traced by seismic tomography [Koulakov, Bushenkova, 2010] to a depth of about 600 km (Fig. 7. The southward-stretching edge of the sub-cratonic mantle has played a major role in the evolution of the Central Asian orogenic belt. In the Paleozoic, the position and the configuration of the accretional margin of the Siberian paleocontinent were determined by the hidden boundary of the craton (Fig. 8, A. Along the craton’s boundary, rifting zones of various ages are located, and intrusions are concentrated, which genesis was related to extension settings (Fig. 8, B. The Cenozoic sedimentary basins are located above the hidden edge of the Siberian craton, which gives evidence of involvement of the deep lithospheric structure in the formation of the recent destruction zone. The basin of Lake Baikal is located along the mantle edge of the Siberian craton, and the basin’s crescent shape accentuates the strike of the mantle edge.In the region under study, the wave nature of seismicity is most evidently manifested by the cyclicity of the strongest earthquakes in the Baikal zone (Table 2. Three seismic cycles are distinguished as follows: (1 at the turn of the 20th century (earthquakes in the period from 1885 to 1931, M=6.6–8.2, (2 the middle of the 20th century (earthquakes from 1950 to 1967, M=6.8–8.1, and (3 at the turn of the 21st century (earthquakes from 1991 to 2012, M=6.3–7.3. While moving in the mantle, the deformation front collapses with the craton’s basement, partially releases its energy to the
Effect of a thick inverted sedimentary package on seismic wave propagation in the lower crust
Roy-Chowdhury, K.; Dobreflection Working Group
2003-04-01
High quality seismic deep reflection data was acquired across the Donbas inverted basin in The Ukraine during the summer of 2000. The 80-fold (nominal) vibrator operation supported by lower-fold explosive acquisition resulted in a good data quality. Detailed analysis of the shallower (basin) part of the wave-field - not reported here - has produced a good 2-D velocity model for the thick sedimentary cover overlying the middle and the lower crust in this area. The sedimentary structures show the effects of large-scale tectonic disturbances involving folding and both normal- and thrust- faulting. Seismic waves propagating on their way to- and from- the lower crustal region interact with this shallower medium and undergo complex interaction involving scattering, focussing and defocussing. This effect will be studied by analysing the lower-crustal signals for coherent arrivals with/without the effect of the overburden. An attempt will be made to quantify the effect using an empirical technique.
Arbitrary Difference Precise Integration Method for Solving the Seismic Wave Equation
Institute of Scientific and Technical Information of China (English)
Jia Xiaofeng; Wang Runqiu; Hu Tianyue
2004-01-01
Wave equation migration is often applied to solve seismic imaging problems. Usually, the finite difference method is used to obtain the numerical solution of the wave equation. In this paper,the arbitrary difference precise integration (ADPI) method is discussed and applied in seismic migration. The ADPI method has its own distinctive idea. When dispersing coordinates in the space domain, it employs a relatively unrestrained form instead of the one used by the conventional finite difference method. Moreover, in the time domain it adopts the sub-domain precise integration method. As a result, it not only takes the merits of high precision and narrow bandwidth, but also can process various boundary conditions and describe the feature of an inhomogeneous medium better. Numerical results show the benefit of the presented algorithm using the ADPI method.
Characteristics of S-wave Envelope Broadening in the Changbaishan Tianchi Volcano
Institute of Scientific and Technical Information of China (English)
Fan Xiaoping; Li Qinghe; He Haibing; Yang Congjie; Jin Shumei
2010-01-01
High-frequency S-wave seismogram envelopes of microearthquakes broaden with increasing travel distance,a phenomenon known as S-wave envelope broadening.Multiple forward scattering and diffraction for the random inhomogeneities along the seismic ray path are the main causes of S-wave envelope broadening,so the phenomenon of S-wave envelope broadening is used to study the inhomogeneity of the medium.The peak delay time of an S-wave,which is defined as the time lag from the direct S-wave onset to the maximum amplitude arrival of its envelope.is accepted to quantify S-wave envelope broadening.204 small earthquake records in Changbaishan Tianchi volcano were analyzed by the S-wave envelope broadening algorithm.The results show that S-wave envelope broadening in the Changbaishan Tianchi volcano is obvious,and that the peak delay time of S-wave has a positive correlation with the hypocenter distance and frequency of the Swave.The relationships between the S-wave peak delay time and the hypocenter distance for different frequency bands were obtained using the statistics method.The results are beneficial to the understanding of the S-wave envelope broadening phenomena and the quantitative research on the inhomogeneities of the crust medium in the Changbaishan Tianchi volcano region.
Lev, E.; Long, M.; Hilst, R.D. van der
2006-01-01
Knowledge about seismic anisotropy can provide important insight into the deformation of the crust and upper mantle beneath tectonically active regions. Here we focus on the southeastern part of the Tibetan plateau, in Sichuan and Yunnan provinces, SW China. We measured shear wave splitting of core-refracted phases (SKS and SKKS) at a temporary array of 25 IRIS-PASSCAL stations. We calculated splitting parameters using a multi-channel and a single-record cross-correlation method. Multiple lay...
Numerical simulation of floating bodies in extreme free surface waves
Directory of Open Access Journals (Sweden)
Z. Z. Hu
2011-02-01
Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Numerical simulation of floating bodies in extreme free surface waves
Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.
2011-02-01
In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Seismic Interface Waves in Coastal Waters: A Review
1980-11-15
water. In 1976 McLeroy and his co-workers [1861 again performed a very extensive real-world experiment in the Gulf of Mexico . Using a receiving array of...York, Academic Press, 1967. 4. SOMMERFELD, A. Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen der Physik, 28, 1909. 665-736. 5...Rayleigh waves on the confines of two solid elastic media. Doklady Akademii Nauk, SSSR, 33, 1947: 15-17. 30. KOPPE, H. Uber Rayleigh-Wellen an der
Rescaled range (R/S) analysis on seismic activity parameters
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The rescaled range (R/S) analysis, proposed by Hurst, is a newstatistical method. Being different from traditional statistical method, R/S analysis can provide the information of maximum fluctuation (range) of statistical parame-ters. At present paper, several modern instrumental earthquake catalogues in different spatial scale, temporal scale, and with different seismic activity background are studied, and R/S method is used to analyze the variation of range of seismic parameters such as earthquake frequency, and earthquake time interval. For different seismic parameters, the ratio of range to standard deviation - R/S is a power law function of the length of time, and the exponent H of power law is always greater than 0.5. As we know, H=0.5 is the characteristics of all ideal random processes. Our results indicate that earthquake series is not an ideal Poisson process, on the contrary, the earth-quake as a phenomenon bears dual characteristics of randomicity and regularity, and the greater H departs from 0.5, the more regularity the time series will show, and vice versa. With time scale changing, one can give the conserva-tive estimate of the fluctuation, which might occur in a relatively long time scale, only by using the limited and known time records.
Numerical Simulation of Shock（Blast）Wave Interaction with Bodies
Institute of Scientific and Technical Information of China (English)
JialingLE
1999-01-01
Some typical results of computation on the shock(blast)wave interaction (2-D and 3-D) with bodies and its experimental validation in shock tube are summarized,suggestions for improving the numerical method(Difference scheme and grid systems).developing 3-D optical quantitative visualization technology and further studying the unsteady turbulent flow are put forward.
On the Accuracy and Efficiency of Transient Spectral Element Models for Seismic Wave Problems
Directory of Open Access Journals (Sweden)
Sanna Mönkölä
2016-01-01
Full Text Available This study concentrates on transient multiphysical wave problems for simulating seismic waves. The presented models cover the coupling between elastic wave equations in solid structures and acoustic wave equations in fluids. We focus especially on the accuracy and efficiency of the numerical solution based on higher-order discretizations. The spatial discretization is performed by the spectral element method. For time discretization we compare three different schemes. The efficiency of the higher-order time discretization schemes depends on several factors which we discuss by presenting numerical experiments with the fourth-order Runge-Kutta and the fourth-order Adams-Bashforth time-stepping. We generate a synthetic seismogram and demonstrate its function by a numerical simulation.
New imaging method for seismic reflection wave and its theoretical basis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Some new imaging formulas for seismic reflection wave and theirtheoretical basis are given. Phenomena of wave propagation should be characterized by instantaneous spectrum and expressed by complex function of three variables (time, space and frequency) in mathematics. Various physical parameters of medium are also complex functions of two variables (space and frequency). The relationship between reflection coefficient of medium and spectrum of reflected wave is given. Multi-reflection and filter of formations are considered in inversion formulas. Prob-lems in classical convolution model and wave equation are illustrated. All these inversion formulas can be used to image underground medium by wavelet transform and method of "3-basic colors". Different colors mean different media.
Volodin, Ilya A; Zaytseva, Alexandra S; Ilchenko, Olga G; Volodina, Elena V; Chebotareva, Anastasia L
2012-08-15
Self-produced seismic vibrations have been found for some subterranean rodents but have not been reported for any Insectivora species, although seismic sensitivity has been confirmed for blind sand-dwelling chrysochlorid golden moles. Studying the vocal behaviour of captive piebald shrews, Diplomesodon pulchellum, we documented vibrations, apparently generated by the whole-body wall muscles, from 11 (5 male, 6 female) of 19 animals, placed singly on a drum membrane. The airborne waves of the vibratory drumming were digitally recorded and then analysed spectrographically. The mean frequency of vibration was 160.5 Hz. This frequency matched the periodicity of the deep sinusoidal frequency modulation (159.4 Hz) found in loud screech calls of the same subjects. The body vibration was not related to thermoregulation, hunger-related depletion of energy resources or fear, as it was produced by well-fed, calm animals, at warm ambient temperatures. We hypothesize that in the solitary, nocturnal, digging desert piebald shrew, body vibrations may be used for seismic exploration of substrate density, to avoid energy-costly digging of packed sand for burrowing and foraging. At the same time, the piercing quality of screech calls due to the deep sinusoidal frequency modulation, matching the periodicity of body vibration, may be important for agonistic communication in this species.
Wave Function Structure in Two-Body Random Matrix Ensembles
Kaplan, L; Kaplan, Lev; Papenbrock, Thomas
2000-01-01
We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.
Institute of Scientific and Technical Information of China (English)
张美玲; 李钰; 张士奇; 曾科
2012-01-01
卫星油田PⅠ层组为该油田的主力油层组,层组内单砂层厚度较薄、空间连续性差.将PⅠ层组纵向上划分为上、中、下3个组合单元,利用地震波形能够给以较好的反映.测井曲线具备好的沉积微相识别能力,将每个单元里存在河道或河坝砂体定义为砂体发育,不存在的定义为互层发育,考察卫星油田三维地震工区近100口井资料识别的沉积微相与地震波形的对应关系,建立8种地震波砂体反射模式,依据模式可有效推测出卫星油田PⅠ层组勘探空白区的砂体发育状况,为该油田部署有利井位提供技术支撑.%Bed set P I is the main reservoir group in the Weixing Oilfield,characterized by thin thickness of single sand layer and poor spatial continuity. Bed set P I can be divided into 3 composite units,which can be well reflected by the seismic wave shape. Well logs have perfect identification capacity for sedimentary micro-facies. The unit with channel or river dam sand body is defined as sand body development,and that without channel or river dam sand body is assigned to interbed development. The authors investigated the corresponding relationship between sedimentary micro-facies identified by well log data of 100 wells in 3D survey of the Weixing Oilfield and the seismic wave shape and,on such a basis,established S types of sand body reflection mode of seismic wave. According to the mode,sand body development can be derived for the exploration blank area of Bed set PI of the Weixing Olilfield. The results provide technological support for the deployment of favorable well locations.
Indian Academy of Sciences (India)
S Kumar; J P Narayan
2008-11-01
This paper presents the three most important aspects of seismic microzonation namely prediction of fundamental frequency (F0) of soil deposit, aggravation factor (aggravation factor is simply the extra spectral amplification due to complex 2D site effects over the 1D response of the soil column) and the spatial variability of the ground motion caused by the basin-edge induced Love waves. The predicted F0 of single, double and three-soil-layered models revealed that the available empirical relations to predict the F0 of layered soil deposits are inadequate. We recommend the use of analytical or numerical methods to predict such an important parameter based on wave propagation effects. An increase of amplitude of Love wave, strain level and average aggravation factor (AAF) with increase of impedance contrast was obtained. Based on the trend of rate of decrease of AAF and maximum strain with offset from the basin-edge, we can qualitatively infer that the effects of induced Love wave may reduce to a negligible value after a traveled distance of 6.5–10.0 (where is the wavelength corresponding to the 0 of soil layer). The obtained increase of strain level with the decrease of distance between two receiver points used for the computation of strain reflects that structures having spatial extent smaller than the may suffer damage due to the basin-edge induced surface waves. The fast rate of decrease of strain with the offset from the strong lateral discontinuity (SLD)/basin-edge may be attributed to the dispersive nature of Love wave. We can incorporate the increased spectral amplification due to the induced surface waves in the form of aggravation factor but till date we have no effective way to incorporate the effects of developed strain by induced surface waves in seismic microzonation or in building codes.
地震正演模拟复杂构造中的地震波传播%Modeling seismic wave propagation within complex structures
Institute of Scientific and Technical Information of China (English)
杨金华; 刘韬; 唐跟阳; 胡天跃
2009-01-01
Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological .structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs, Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
DEFF Research Database (Denmark)
Kammann, Janina; Hübscher, Christian; Nielsen, Lars
. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian......The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area...
Improved variational many-body wave function in light nuclei
Usmani, Q. N.; Singh, A.; Anwar, K.; Rawitscher, G.
2009-09-01
We propose and implement a simple method for improving the variational wave function of a many-body system. We have obtained a significant improvement in the binding energies, wave functions, and variance for the light nuclei H3, He4, and Li6, using the fully realistic Argonne (AV18) two-body and Urbana-IX (UIX) three-body interactions. The energy of He4 was improved by about 0.2 MeV and the Li6 binding energy was increased by ≈1.7 MeV compared to earlier variational Monte Carlo results. The latter result demonstrates the significant progress achieved by our method, and detailed analyses of the improved results are given. With central interactions the results are found to be in agreement with the “exact” calculations. Our study shows that the relative error in the many-body wave functions, compared to two-body pair correlations, increases rapidly at least proportionally to the number of pairs in the system. However, this error does not increase indefinitely since the pair interactions saturate owing to convergence of cluster expansion.
Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun
2016-04-01
Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.
A study of body-to-surface wave conversion associated with deep earthquakes
Shen, Z.; Ni, S.
2015-12-01
Understanding converted surface waves is helpful because they could improve the accuracy of earthquake location if the exacted scattered point is known as well as serve to image shallow structures with dispersion features. Previous studies have reported a few observations of body-to-surface-wave conversion associated with deep earthquakes. For example, Wagner and Langston used coda intensity analysis and f-k analysis to confirm a P-to-Rg wave and performed forward modeling with T-matrix method demonstrating that a 1km relief was responsible for the observed body-to-surface wave scattering. Moreover, Furumura et al. observed unusual Rayleigh waves converted from S wave observed at Australia with deep earthquakes occurred along Kermadec-Tonga trench and a 2D Pseudospetral method is adopted to illustrate that the Rayleigh waves could be explained by ridge structures. Both T-matrix and pseudospetral algorithms are based on numerical methods. However, we lack a theory to study the mechanism of those surface waves quantitatively. For instance, the relationship between the topography with the dominate frequency of converted surface waves could be resolved thoroughly with a theoretical approach. From this perspective, we carried out a theoretical method to calculate the converted Rayleigh wave with surface topography. During the calculation, a homogeneous half space medium is assumed and the path of the converted phase is divided into two segments. Firstly, we will introduce our theoretical method in detail and a comparison of our results and SEM results will be presented to verify our methods. Secondly, the topography effect and the transfer efficiency of P and S wave will be examined quantitatively with different source mechanisms. Then, we will report an observation of unusual large amplitude surface waves transferred from body waves at local stations. Our preliminary result shows that those anomalous waves are identified as Rayleigh wave and are probably generated by
Wave-free floating body forms for a shallow sea area; Senkaiiki no naminashi futai keijo ni tsuite
Energy Technology Data Exchange (ETDEWEB)
Kyozuka, Y.; Nariai, Y. [Kyushu University, Fukuoka (Japan)
1997-10-01
In column footing or semi-submergible type marine structures, a vertical wave force vanishes at a specific period of waves. This phenomenon is called wave-free characteristics. This wave-free characteristics make it possible to design marine structures superior in oscillation performance in waves. Since Bessho`s wave-free theory is useful only for an infinite water depth, this paper studied the wave-free theory for a shallow sea area. On a wave-free singularity and required floating body form, 2-D and 3-D axisymmetric floating body forms were determined, and vertical wave force characteristics of the obtained body forms were calculated and verified experimentally. Since the source term of the wave-free singularity was weaker in a shallow sea area than an infinite deep water area, resulting in the narrow width of the obtained wave-free body forms in a shallow sea area. The wave-free theory for a shallow sea area was verified by both numerical calculation based on a singularity distribution method and model experiment for these floating body forms. 3 refs., 10 figs.
2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis
Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek
2016-04-01
Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.
Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.
2016-02-01
In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Lattice preferred orientations (LPO) of plagioclase and augite are measured on layered gabbro from the Panxi region, Sichuan Province. The LPO concentration [010] of plagioclase and [100] of augite are perpendicular to the foliation, which indicates a kind of growth fabric associated with crystallizing habits of minerals when the magma is solidifying under the compaction. Calculated seismic velocities based on LPO data of minerals give rise to rather strong anisotropy 5.81% and 5.54% for compressional seismic wave (Vp) and shear seismic wave (Vs), respectively. The experiments at high temperature and high pressure show that the P-wave velocity of layered gabbro is 6.44-6.97 km/s with the maximum Vp anisotropy 5.22% and the Poisson's ratio is between 0.28-0.31. According to the comparison of fabrics with seismic velocities of layered gabbro, it is uggested that the large-scale layered intrusive body or the similar layered geological body may exist in the lower crust of this area. Such a layered intrusive body which has strong seismic anisotropy may be the seismic reflector in the lower crust.
Directory of Open Access Journals (Sweden)
Fontara I.-K.
2015-03-01
Full Text Available This work addresses the evaluation of the seismic wave field in a graded half-plane with free-surface and/or sub-surface relief subjected to shear horizontally (SH-polarized wave, radiating from an embedded seismic source. The considered boundary value problem is transformed into a system of boundary integral equations (BIEs along the boundaries of the free-surface and of any sub-surface relief, using an analytically derived frequency-dependent Green’s function for a quadratically inhomogeneous in depth half-plane. The numerical solution yields synthetic seismic signals at any point of the half-plane in both frequency and time domain following application of Fast Fourier Transform (FFT. Finally, in the companion paper, the verification and numerical simulation studies demonstrate the accuracy and efficiency of the present computational approach. The proposed BIE tool possesses the potential to reveal the sensitivity of the seismic signal to the type and properties of the seismic source, to the existence and type of the material gradient and to the lateral inhomogeneity, due to the free-surface and/or sub-surface relief peculiarities.
Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation
Energy Technology Data Exchange (ETDEWEB)
Pyrak-Nolte, Laura J. [Purdue University
2013-04-27
Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in
Modeling Regional Seismic Waves from Underground Nuclear Explosion
1989-05-15
applications to modeling NTS seismograms, Pure AppL Geophys. (in press). Thatcher, W. and R. M. Hamilton (1973). Aftershocks and source...seismograms. J. Pure and Appl . Geophys., 128, 101-193. Stevens, J. L. and S. M. Day (1985). The physical basis of m6 , Ms and variable frequency magnitude...the far-field rise time for P and S are given by 7V- Ral and 72m-RD/P rspectively. The time historia of cpluio s are nsully =prumed in tarus of
Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.
2013-01-01
Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.
Institute of Scientific and Technical Information of China (English)
Chenggang Zhao; Jun Dong; Fuping Gao; D.-S.Jeng
2006-01-01
An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic halfspace is obtained by using Fourier-Bessel series expansion technique.The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media.The following conclusions based on numerical results can be drawn:(1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model;(2)the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles,the dimensionless frequency of the incident SV waves and the porosity of sediments;(3)with the increase of the incident angle,the displacement distributions become more complicated,and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
Propagation of seismic waves through a spatio-temporally fluctuating medium: Homogenization
Hanasoge, Shravan; Bal, Guillaume
2013-01-01
Measurements of seismic wave travel times at the photosphere of the Sun have enabled inferences of its interior structure and dynamics. In interpreting these measurements, the simplifying assumption that waves propagate through a temporally stationary medium is almost universally invoked. However, the Sun is in a constant state of evolution, on a broad range of spatio-temporal scales. At the zero wavelength limit, i.e., when the wavelength is much shorter than the scale over which the medium varies, the WKBJ (ray) approximation may be applied. Here, we address the other asymptotic end of the spectrum, the infinite wavelength limit, using the technique of homogenization. We apply homogenization to scenarios where waves are propagating through rapidly varying media (spatially and temporally), and derive effective models for the media. One consequence is that a scalar sound speed becomes a tensorial wavespeed in the effective model and anisotropies can be induced depending on the nature of the perturbation. The ...
Seismic Data Analysis to the Converted Wave Acquisition: A Case Study in Offshore Malaysia
Latiff, A. H. Abdul; Osman, S. A. A.; Jamaludin, S. N. F.
2016-07-01
Many fields in offshore Malaysia suffer from the presence of shallow gas cloud which is one of the major issues in the basin. Seismic images underneath the gas cloud often show poor resolution which makes the geophysical and geological interpretation difficult. This effect can be noticed from the amplitude dimming, loss of high-frequency energy, and phase distortion. In this work, the subsurface will be analyzed through the geophysical interpretation of the converted P-S data. This P-S converted dataset was obtained through ocean bottom cable (OBC) procedure which was conducted at a shallow gas affected field located in Malaysian Basin. The geophysical interpretation process begin by picking the clear faults system and horizons, followed by thorough post-stack seismic data processing procedure. Finally, the attributes analyses were implemented to the seismic section in order to image the unseen faults system. The interpreted seismic sections show significant improvement in the seismic images, particularly through median filter process. Moreover, the combination of structural smoothing and variance procedure had contributed to the correct faults location interpretation.
Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor
Hannemann, Katrin; Krüger, Frank; Dahm, Torsten; Lange, Dietrich
2016-12-01
Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s-1. The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s-1. We find a slight increase of the total crustal thickness from
1989-05-01
techniques developed by Archimedes in 210 B.C. ( Tipler , 1982). To obtain dry weight, one must first extract all moisture from plug samples using a... 1c , C) U) C14 M 4J 0 a ,l CD Ed Ne . a -se C) CL CD m Cd) M~- ~ - 00 N 0. EN E o S M wn LC m ’--4 ( N -1n 1 s (1 4 0 4 - >O CL- 0 w > -0 >N co...moduli of porous rocks; Low-frequency limit: Geohv, 50(12), 2797-2807. Tipler , PI., 1982, Solids and Fluids: in Physics, second ed., Worth Publishers
Q value of anelastic S-wave attenuation in Yunnan region
Institute of Scientific and Technical Information of China (English)
SU You-jin; LIU Jie; ZHENG Si-hua; LIU Li-fang; FU Hong; XU Yan
2006-01-01
@@ The study of seismic attenuation property is a major subject in seismology. Seismic waves recorded by seismic stations (seismographs) contain source effect, seismic wave propagation effect, site response of seismic stations and instrumental response. The path effect of seismic wave propagation, site response of seismic stations and instrumental response must be taken out in the study of source property with seismic data. The path effect of seismic wave propagation (seismic attenuation) involves an important influential factor, the anelastic attenuation of medium, which is measured with quality factor Q, apart from geometric attenuation with the distance. As a basic physical parameter of the Earth medium, Q value is essential for quantitative study of earthquakes and source property (e.g. determination of source parameters), which is widely used in earthquake source physics and engineering seismology.
Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.
2015-12-01
Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could
Origins of high-frequency scattered waves near PKKP from large aperture seismic array data
Earle, P.S.
2002-01-01
This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.
The Body Wave Velocity Structure in the Upper Crust of Fujian Estimated by Noise Records
Institute of Scientific and Technical Information of China (English)
Li Jun; Jin Xing; Bao Ting; Lin Shu; Wei Yongxiang; Zhang Hongcai
2012-01-01
In this paper, the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore, the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part, but in the deep part, inversion accuracy for the wave velocity structure is low, which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part, but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion, we finally present a new velocity model, and the theoretical travel time calculated with the new model matches the explosion travel time very well.
Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments
Bonner, J.; Herrmann, R.; Benz, H.
2010-01-01
We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2 scatter of the Mw[Ms(VMAX)] with respect to Mw[Waveform Modeling] was approximately ??0.2 magnitude units (m.u). The residuals between Mw [Ms(VMAX)] and Mw [Waveform Modeling] show a significant focal mechanism effect, especially when strike-slip events are compared with other mechanisms. Validation testing of this method suggests that Ms(VMAX)-predicted Mw's can be estimated within minutes after the origin of an event and are typically within ??0.2 m.u. of the final Mw[Waveform Modeling]. While Mw estimated from Ms(VMAX) has a slightly higher variance than waveform modeling results, it can be measured on the first short-period surface-wave observed at a local or near-regional distance seismic station after a preliminary epicentral location has been formed. Therefore, it may be used to make rapid measurements of Mw, which are needed by government agencies for early warning systems.
A new way to generate seismic waves for continental crustal exploration
Institute of Scientific and Technical Information of China (English)
CHEN Yong; ZHANG XianKang; QIU XueLin; GE HongKui; LIU BaoJin; WANG BaoShan
2007-01-01
An airgun experiment was conducted in a reservoir, with the total volume of the airgun array being 6000 cubic inch.The energy released by one excitation was estimated to be 6.68×106 J, which corresponded to a 3.4 kg TNT explosion.A 180 km long profile composed of 100 portable short period seismometers was deployed as a receiver system of the airgun signals.Two remarkable results can be drawn from the experiment: (1) the airgun explosion is harmless to the dam and the fish, and this kind of airguns can be regarded as a green and environmental protection seismic source on land; (2) seismic wave generated by this airgun source can be recorded by permanent stations with offset larger than 200 km.And the wave amplitudes recorded by nearby and remote stations are equivalent to the wave generated by 800 kg dynamite explosion.The airguns can be used as a light to illuminate the continental crustal structure of an area of about 100000 km2.
Institute of Scientific and Technical Information of China (English)
WEI Gang
2004-01-01
This dissertation deals with the internal waves generated by a submerged moving body in stratified fluids by combining theoretical and experimental methods. Our purpose is to provide some scientific evidences for non-acoustic detection of underwater moving bodies based on the principles of dynamics of the internal waves. An approach to velocity potentials obtained by superposing Green's functions of sources and sinks was proposed for Kelvin waves at the free surface or interface in a two-layer fluid. The effects of interacting surface- and internal-wave modes induced by a dipole on the surface divergence field were investigated. A new theoretical model formulating the interaction of a two-dimensional submerged moving body with the conjugate flow in a three-layer fluid was established. An exact solution satisfying the two-dimensional Benjamin-Ono equation was obtained and the vertically propagating properties of the weakly nonlinear long waves were studied by means of the ray theory and WKB method. The above theoretical results are qualitatively consistent with those obtained in the experiments conducted by the author.
Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model
Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua
2015-01-01
We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.
Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars
2016-07-01
The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.
Seismic Receiver Functions and the Lithosphere-Asthenosphere Boundary
Kind, R.; Yuan, X.; Kumar, P.
2012-12-01
The lower boundary of the lithospheric plates has remained as an enigmatic boundary for seismologists, since it is relatively poorly observed by seismic means. There is traditionally a broad consensus that the asthenosphere is observable as a low velocity zone by seismic surface waves. Seismic techniques which use shorter period P-to-S or S-to-P converted body waves are now far enough developed to be successful in observing such a low velocity zone with a higher resolution. The principle of this technique (the so-called receiver function technique) is that a strong teleseismic mother phase (e.g. P, S, PP or SKS) incident from below on any seismic discontinuity beneath a station produces a converted phase (Ps or Sp) which indicates its depth and properties. We discuss details of this technique. A sufficient number of such observations exist already to indicate that the top of the low velocity zone is a globally observable discontinuity and it is sharper than previously thought. An intriguing observation is that in some cratons the new seismic data indicate that the low velocity zone exists already at shallower depths than obtained from surface waves. This confirms earlier results from controlled source observations (Thybo and Perchuc 1997). We discuss possible interpretations of this shallow low velocity zone in cratonic regions.
Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter
2016-10-01
We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity
Carcione, J.M.; Poletto, F.; B. Farina; A. Craglietto
2014-01-01
The Earth crust presents two dissimilar rheological behaviours depending on the in-situ stress-temperature conditions. The upper, cooler, part is brittle while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behaviour i...
Carcione, J.M.; Poletto, F.; B. Farina; A. Craglietto
2014-01-01
The earth's crust presents two dissimilar rheological behaviors depending on the in situ stress-temperature conditions. The upper, cooler part is brittle, while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation, including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behavior is based on the Bur...
Wave Dynamic Analysis of the Seismic Response of a Reinforced Concrete Building
Astroza, Rodrigo; Saragoni, G. Rodolfo
2008-07-01
This paper evaluates the response of the seven-story instrumented building, Holiday Inn Hotel, during the 1994 Northridge earthquake through the wave propagation dynamic analysis. The building has been instrumented during other earthquakes, the most important of these was the 1971 San Fernando earthquake, where the building was located only 22 [km] from the epicenter and didn't showing structural damage. From the accelerograms analysis is detected the propagation of Rayleigh and soil waves in the building, where the first has a polarized particle motion on a vertical plane and the second has a coupled particle motion in the horizontal plane. Both waves impose their frequencies to the building response, whose fundamental frequency (1.4 [Hz] according to ambient vibration test) is less than the frequencies of the identified waves. Due to the impact that these observations have in the seismic design of buildings, as a first attempt, a simple method is proposed to estimate the drift produced by the propagation of a Rayleigh wave in buildings.
Study of crustal structure with S-wave data from Maqen-Jingbian profile
Institute of Scientific and Technical Information of China (English)
刘宝峰; 李松林; 张先康; 张成科; 任青芳; 海燕
2003-01-01
2-D crustal velocity structure and vP/vS are obtained by processing and interpretation of S-wave data from Maqen-Jingbian deep seismic sounding (DSS) profile. The result shows that there exist obvious differences in 2-D S-wave velocity structure and vP/vS ratio structure along the profile. The S-wave velocities are low and vP/vS ratio is high for the western section of the profile and Haiyuan region, while they are normal for the middle and eastern sections. The changes in lithologic characters of two major anomalous zones are discussed according to lateral variation of S-wave velocity structure and vP/vS ratio structure. It is concluded that the development and occurrence of the Haiyuan strong earthquake is not only related to tectonic activities, but also to lithologic characters of the region.
Directory of Open Access Journals (Sweden)
Fontara I.-K.
2015-06-01
Full Text Available The mechanical model and the accompanied computational technique, based on the boundary integral equation method (BIEM and Green’s function for continuously inhomogeneous half-plane were described in the first part of this work. 2D elastodynamic problem for quadratically inhomogeneous and heterogeneous geological area was defined in the first part of our work. The aim of the current second part is to demon-trate the accuracy and the convergence of the proposed computational tool. Furthermore, subsequent extensive parametric study will illustrate, that the seismic wave field is a complex result of mutual play of different key factors as free-surface relief, wave characteristics, as frequency and wavelength, seismic source properties, type and characteristics of the material gradient, existence of different type of heterogeneities and their interactions.
Moretti, L.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Bouchut, F.
2012-12-01
Gravitational instabilities, such as landslides, avalanches or debris flows play a key role in erosion processes and represent one of the major natural hazards in mountainous, coastal or volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flow is still an open issue, in particular due to the lack of observations relevant to the flow dynamics. In this context, the seismic signal generated by landslides is a unique tool to get information on their dynamics. Indeed, when the landslide accelerates and decelerates on the complex topography, the spatio-temporal stress field that it applies on the ground generates seismic waves. These waves carry the memory of the flow history. As shown recently by Favreau et al., (2010), simulation of the seismic signal generated by landslides makes it possible to discriminate different flow scenarios and estimate the rheological parameters during the flow. Because global and regional seismic networks continuously record gravitational instabilities, this new method will help gathering new data on landslide behavior. The purpose here is to identify scaling laws making it possible to extract landslide characteristics such as its volume, mass, geometry and location, from seismic observations (amplitude, duration, energy…). To address this issue, we performed a series of simulations of the landslide and generated seismic waves by varying the characteristics of the landslide such as the volume, topography, friction angle, or initial shape of the released mass and of the earth model such as seismic waves velocity, number of layers, etc. For 2D and 3D simple configurations and for real landslides, we systematically investigate how these parameters affect the generated long period seismic waves and the force at their origin, obtained by inversion of the recorded seismic signal. This study shows that the initial volume
Study on S wave velocity structure beneath part stations in Shanxi Province
Institute of Scientific and Technical Information of China (English)
张学民; 束沛镒; 刁桂苓
2003-01-01
Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.
Kim, Won-Young; Sykes, L. R.; Armitage, J. H.; Xie, J. K.; Jacob, K. H.; Richards, P. G.; West, M.; Waldhauser, F.; Armbruster, J.; Seeber, L.; Du, W. X.; Lerner-Lam, A.
Seismologists sometimes do their work of data acquisition and analysis against a tragic background. Usually, the context is fieldwork far from home, in an area subjected to the natural but sometimes devastating effects of an earthquake. But in the present case, we are in our own New York City area; that is, the Lamont-Doherty Earth Observatory of Columbia University, in Palisades, N.Y; and the context is inhuman actions against people and the fabric of our society.As the appalling events of September 11 unfolded, we found that we had recorded numerous seismic signals from two plane impacts and building collapses of the two World Trade Center (WTC) towers, often at times different than those being reported elsewhere. Collapses of the two WTC towers generated large seismic waves, observed in five states and up to 428 km away The north tower collapse was the largest seismic source and had local magnitude ML 2.3. From this, we infer that ground shaking of the WTC towers was not a major contributor to the collapse or damage to surrounding buildings. But unfortunately, we also conclude that from the distance at which our own detections were made (the nearest station is 34 km away at Palisades) it is not possible to infer (with detail sufficient to meet the demands of civil engineers in an emergency situation) just what the near-in ground motions must have been.
Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes
Hanson, Chris S
2015-01-01
Our previous semi-analytic treatment of f- and p-mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125; 791, 129, 2014) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident f- and p-modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.
Analysis of teleseismic body waves radiated from the Loma Prieta Earthquake
Langston, C. A.; Furlong, K. P.; Vogfjord, K. S.; Clouser, R. H.; Ammon, C. J.
Broad-band data from IRIS and ORFEUS data centers, the ARCESS array and SCP station are analyzed to infer fault plane geometry and the character of rupture during the October 17, 1989, Loma Prieta earthquake. Interference of P and sP seen in the P wave forms is consistent with the 18 km source depth inferred from local observations. A minimum source depth of 14 km is inferred from interpretation of the S wave arrival time, relative to instrument trigger, using horizontal strong motion accelerations observed at Corralitos, California. P, sP, S and sS polarities and relative amplitudes are used in a comprehensive grid search to infer that oblique right-lateral faulting occurred on a steeply dipping (56°-60°) section of the San Andreas fault with an equal amount of thrust component consistent with aftershock locations. A suite of point moment tensor inversions for source depths spanning the observed depth of aftershock hypocenters yields similar mechanisms. The best moment tensor in terms of wave form fit and minimum non-double couple component occurs for a source depth of 8 km, substantially shallower than the locally inferred hypocenter. Seismic moment for this model is 2.3 × 1026 dyn-cm. The slow growth of the P displacement pulse with time and impulsive sP suggests a working model for fault rapture where rupture initiates at 18 km and propagates upwards and outwards along the fault. The P wave forms show the effects of variations in rupture along the plane through observation of a cascade of successively larger subevents.
Electromagnetic wave propagation of wireless capsule endoscopy in human body
Institute of Scientific and Technical Information of China (English)
LIM; Eng-Gee; 王炤; 陈瑾慧; TILLO; Tammam; MAN; Ka-lok
2013-01-01
Wireless capsule endoscopy(WCE) is a promising technique which has overcome some limitations of traditional diagnosing tools, such as the comfortlessness of the cables and the inability of examining small intestine section. However, this technique is still far from mature and asks for the feasible improvements. For example, the relatively low transmission data rate and the absence of the real-time localization information of the capsule are all important issues. The studies of them rely on the understanding of the electromagnetic wave propagation in human body. Investigation of performance of WCE communication system was carried out by studying electromagnetic(EM) wave propagation of the wireless capsule endoscopy transmission channel. Starting with a pair of antennas working in a human body mimic environment, the signal transmissions and attenuations were examined. The relationship between the signal attenuation and the capsule(transmitter) position, and direction was also evaluated. These results provide important information for real-time localization of the capsule. Moreover, the pair of antennas and the human body were treated as a transmission channel, on which the binary amplitude shift keying(BASK) modulation scheme was used. The relationship between the modulation scheme, data rate and bit error rate was also determined in the case of BASK. With the obtained studies, it make possible to provide valuable information for further studies on the selection of the modulation scheme and the real-time localization of the capsules.
Iwase, Ryoichi
2016-07-01
An in situ method of estimating the seismic wave velocity at the seafloor surface by observing the particle motion of a wave transmitted into the sediment is presented; this method uses a sound source whose location is known. Conversely, a sound source localization method using the obtained seismic velocities and involving particle motion observation is also presented. Although this method is applicable only when the sound source exists within the critical incidence angle range, it is expected to contribute to the tracing of vocalizing baleen whales, which are unknown around Japanese waters.
Asymmetric radiation of seismic waves from an atoll: nuclear tests in French Polynesia
Weber, Michael; Wicks, Charles W.; Krüger, Frank; Jahnke, Gunnar; Schlittenhardt, Jörg
1998-01-01
Seismic records of nuclear tests detonated in the Mururoa Atoll in French Polynesia show large unpredicted arrivals 2.2 and 4.5 seconds (X1 and X2) after the P-wave at the Australian Warramunga Array. These arrivals are not observed at the Canadian Yellowknife Array. X1 and X2 are also absent on Warramunga Array recordings of tests carried out at the Fangataufa Atoll situated 40 km SSE of Mururoa. Array analysis shows that X1 and X2 are produced within the source area. The layered crustal structure of the atoll, significant local inhomogeneities, and focusing effects due to the elongated shape and the steep flanks of the Mururoa Atoll are most likely responsible for X1 and X2. The form of Mururoa (28 × 10 km) and its East-West orientation is due to its location on the Austral Fracture Zone (AFZ). The Fangataufa Atoll on the other hand is almost circular (10 km diameter) and is unaffected by the dynamics along the AFZ. Our observations demonstrate that complicated structures in the source area can significantly alter the wave field at teleseismic distances and produce a large magnitude (mb) bias. A better understanding of the exact cause of these unusual seismic observations will only become possible, if the coordinates of the tests and information on the detailed 3-D structure of the atolls are released.
Study on attribute characterization for reservoir dynamic monitoring by seismic
Institute of Scientific and Technical Information of China (English)
2008-01-01
Study on characterizing reservoir parameters dynamic variations by time-lapse seismic attributes is the theoretical basis for effectively distinguishing reservoir parameters variations and conducting time-lapse seismic interpretation,and it is also a key step for time-lapse seismic application in real oil fields. Based on the rock physical model of unconsolidated sandstone,the different effects of oil saturation and effective pressure variations on seismic P-wave and S-wave velocities are calculated and analyzed. Using numerical simulation on decoupled wave equations,the responses of seismic amplitude with different offsets to reservoir oil saturation variations are analyzed,pre-stack time-lapse seismic attributes differences for oil saturation and effective pressure variations of P-P wave and P-S converted wave are calculated,and time-lapse seismic AVO (Amplitude Versus Offset) response rules of P-P wave and P-S converted wave to effective pressure and oil saturation variations are compared. The theoretical modeling study shows that it is feasible to distinguish different reservoir parameters dynamic variations by pre-stack time-lapse seismic information,including pre-stack time-lapse seismic attributes and AVO information,which has great potential in improving time-lapse seismic interpreta-tion precision. It also shows that the time-lapse seismic response mechanism study on objective oil fields is especially important in establishing effective time-lapse seismic data process and interpreta-tion scheme.
P-wave velocity and density structure beneath Mt. Vesuvius: a magma body in the upper edifice?
Directory of Open Access Journals (Sweden)
Paolo Capuano
2013-11-01
Full Text Available A high-resolution image of the compressional wave velocity and density structure in the shallow edifice of Mount Vesuvius has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes and from gravity inversion. The robustness of the tomography solution has been improved by adding to the earthquake data a set of land based shots, used for constraining the travel time residuals. The results give a high resolution image of the P-wave velocity structure with details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km depth below the central crater, distributed into two clusters, and separated by an anomalously high Vp region positioned at around 1 km depth. A zone with high Vp/Vs ratio in the upper layers is interpreted as produced by the presence of intense fluid circulation alternatively to the interpretation in terms of a small magma chamber inferred by petrologic studies. In this shallower zone the seismicity has the minimum energy, whilst most of the high-energy quakes (up to Magnitude 3.6 occur in the cluster located at greater depth. The seismicity appears to be located along almost vertical cracks, delimited by a high velocity body located along past intrusive body, corresponding to remnants of Mt. Somma. In this framework a gravity data inversion has been performed to study the shallower part of the volcano. Gravity data have been inverted using a method suitable for the application to scattered data in presence of relevant topography based on a discretization of the investigated medium performed by establishing an approximation of the topography by a triangular mesh. The tomography results, the retrieved density distribution, and the pattern of relocated seismicity exclude the presence of significant shallow magma reservoirs close to the central conduit. These should be located at depth higher than that of the base of the hypocenter volume, as evidenced by
Rhee, S.; Hong, T.
2009-12-01
Two North Korean nuclear explosion (UNE) tests were conducted in 2006 and 2009. The events are the first UNEs in the 21st century. The UNEs were well recorded by dense regional seismic networks in Korea, Japan and China. The UNEs provide unique regional seismic waveforms with high signal-to-noise ratios. However, the continental crust in the Korean Peninsula changes abruptly into a transitional structure between continental and oceanic crusts across the eastern shore. The complex geological and tectonic structures around the Korean Peninsula cause significant variations in regional waveforms. One outstanding question is whether typical seismic features are still observed in the North Korean UNE records. Another question is whether conventional discrimination techniques can be applicable for the North Korean UNEs. P/S amplitude ratios are widely applied for seismic discrimination. In this study, we describe the features of regional waveforms of the North Korean UNEs. We investigate the composition of regional shear energy by analyzing three-component seismograms for various frequency bands. The shear-energy contents are compared with those of comparable natural earthquakes. We find that Pn/Lg amplitude ratios are 3-4 times larger than those of earthquakes. The UNEs records show that the Pn/Lg amplitude ratios on the vertical components are lower than those on the horizontal components in the frequencies around 1 Hz.
Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.
2009-01-01
The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Feature exploration for biometric recognition using millimetre wave body images
2015-01-01
The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13640-015-0084-3 The use of millimetre wave images has been proposed recently in the biometric field to overcome certain limitations when using images acquired at visible frequencies. Furthermore, the security community has started using millimetre wave screening scanners in order to detect concealed objects. We believe we can exploit the use of these devices by incorporating b...
Parametric Study of Two-Body Floating-Point Wave Absorber
Institute of Scientific and Technical Information of China (English)
Atena Amiri; Roozbeh Panahi; Soheil Radfar
2016-01-01
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.
Seismicity of block-and-ash flows occurring during the 2006 eruption of Augustine Volcano, Alaska
DeRoin, Nicole; McNutt, Stephen R.; Sentman, Davis D.; Reyes, Celso
2012-02-01
In January 2006, Augustine Volcano began erupting following an increase in seismicity that was first noted in late April 2005. Thirteen large explosive eruptions of Augustine occurred from January 11 to 28, 2006, followed by a continuously erupting phase and then by a dome growth phase in which numerous pyroclastic flows and block-and-ash flows occurred. As a new steep-sided and unstable dome grew in spring 2006, rockfalls and related events, likely block-and-ash flows, dominated the seismic record. Relative amplitudes at pairs of seismic stations for 68 block-and-ash flow events were examined to constrain locations of the flow-events. Higher amplitudes were associated with events closer to a given station. These relations were confirmed by images collected on a low-light camera. Captured images show a correlation between flow direction and seismic amplitude ratios from nearby stations AUE and AUW. Seismic amplitudes and energies of the flow signals, measured in several different ways, were found to correlate with the surface areas and run-out distances of the flows. The ML range of rockfalls was 0.1 to 1.1, and seismic efficiencies were estimated to be much less than 1%. Particle motion analyses showed that the seismic waves contained both body waves and surface waves and demonstrate that the flows were acting as moving sources with velocities of 30-93 m/s.
Effects of fracture contact areas on seismic attenuation due to wave-induced fluid flow
Germán Rubino, J.; Müller, Tobias M.; Milani, Marco; Holliger, Klaus
2014-05-01
Wave-induced fluid flow (WIFF) between fractures and the embedding matrix is considered to be a predominant seismic attenuation mechanism in fractured rocks. That is, due to the strong compressibility contrast between fractures and embedding matrix, seismic waves induce strong fluid pressure gradients, followed by local fluid flow between such regions, which in turn produces significant energy dissipation. Natural fractures can be conceptualized as two surfaces in partial contact, containing very soft and highly permeable material in the inner region. It is known that the characteristics of the fracture contact areas control the mechanical properties of the rock sample, since as the contact area increases, the fracture becomes stiffer. Correspondingly, the detailed characteristics of the contact area of fractures are expected to play a major role in WIFF-related attenuation. To study this topic, we consider a simple model consisting of a horizontal fracture located at the center of a porous rock sample and represented by a number of rectangular cracks of constant height separated by contact areas. The cracks are modelled as highly compliant, porous, and permeable heterogeneities, which are hydraulically connected to the background material. We include a number of rectangular regions of background material separating the cracks, which represent the presence of contact areas of the fracture. In order to estimate the WIFF effects, we apply numerical oscillatory relaxation tests based on the quasi-static poro-elastic equations. The equivalent undrained, complex plane-wave modulus, which allows to estimate seismic attenuation and velocity dispersion for the vertical direction of propagation, is expressed in terms of the imposed displacement and the resulting average vertical stress at the top boundary. In order to explore the effects of the presence of fracture contact areas on WIFF effects, we perform an exhaustive sensitivity analysis considering different
Institute of Scientific and Technical Information of China (English)
ZHAO Zhixin; XU Jiren; Ryuji Kubota; Wakizawa Yasuhiko; Kajikawa Syozo
2004-01-01
The distribution characteristics of collapse ratios of buildings in Kobe city due to the 1995 M7.2 Hyogo-ken Nanbu, Japan (Kobe) earthquake and the interferences due to SH or P-SV and the second surface waves propagating in heterogeneous medium are discussed in this paper by using numerical simulation technique of wave equation. The staggered grid real value fast Fourier transform differentiation (SGRFFTD) is used in the pseudospectral method of ground motion simulations because of its speed, high stability and accuracy. The results show that the maximum amplitude of simulated acceleration waveforms on the ground coincides well with the complicated distributions of collapse ratios of buildings. The peak collapse ratio of buildings away from the earthquake fault also coincides well with the peak ground acceleration. The spatial interference process is analyzed by using the snap shots of seismic wave propagation. The peak ground acceleration is probably caused by the interferences due to the second surface wave transmitting from the bedrock to sedimentary basin and the upward body wave. Analyses of the interference process show that seismic velocity structure and geologic structure strongly influence the distribution of the maximum amplitude of acceleration waveforms. Interferences occurring near the basin boundary are probably the cause of the peak collapse ratio of buildings away from the fault. Therefore it is necessary to analyze wave propagations and interference process using numerical simulation strategy for studies on the seismic disasters.
Byrnes, J. S.; Toomey, D. R.; Hooft, E. E. E.
2014-12-01
The plate-scale deployment of ocean bottom seismometers (OBS) as part of the Cascadia Initiative (CI) of NSF provides a unique opportunity to study the structure and dynamics of the lithosphere-asthenosphere system beneath an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continent. Here we present tomographic images of the seismic structure of oceanic upper mantle beneath the Juan de Fuca (JdF) and Gorda plates derived from body wave delay times. The results constrain structural anomalies beneath the JdF and Gorda spreading centers, the Blanco and Mendocino transform faults, near ridge hotspots such as Axial Seamount, and the upper mantle structure beneath the subducting oceanic lithosphere. We measured delay times of teleseismic P and S wave phases for the first two years of the CI. Our tomographic analysis assumes both isotropic and anisotropic starting models and accounts for finite-frequency effects and three-dimensional ray bending. Preliminary results indicate that the upper mantle structure beneath the JdF spreading center is asymmetric, with lower shear wave velocities beneath the Pacific plate (also the direction of ridge migration). On a regional scale, regions of lower seismic velocities beneath the JdF and Gorda spreading centers correlate with shallower ridge depths. Beneath the southern Gorda plate a low velocity anomaly is detected, which is absent to the north; this anomaly is bounded to the south by the Mendocino transform. Ongoing work includes analysis of the third year of CI data, which will improve resolution of structure and allow better definition of anomalies in the vicinity of the Blanco transform. In addition, we will combine ocean and continental data to obtain images of the Cascadia subduction zone.
Assessment of rock burst hazards by means of seismic methods
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, V.M.
1984-10-01
Use of seismic methods for assessment of stress distribution in coal seams and in rock strata adjacent to coal seams is discussed. Analysis of information on stress distribution permits rock burst hazards to be forecast. Schemes of seismic logging used in coal mining are compared. Recommendations developed by the VNIMI Institute for optimization of seismic logging are analyzed: selecting a seismic method considering tectonics, stratification and rock properties, arrangement of seismic sources and seismic detectors, selecting the optimum parameters of seismic waves (wave frequency recommended for rocks ranges from 400 to 1000 Hz; recommended wave frequency for coal ranges from 200 to 600 Hz), measuring instruments (e.g. the ShchTsS-2 system), and calculation methods used for evaluations of seismic logging. A standardized procedure for seismic logging is recommended.
Choreography and Gravitational Waves for 2-BODY and 3-BODY Gravitating Systems
Asada, Hideki
In the framework of general relativity, we discuss choreographic solutions for the three-body problem, where a solution is called choreographic if every massive particles move periodically in a single closed orbit. In general relativity, the periastron shift prohibits a binary system from orbiting in a single closed curve. Remarkably, a "figure-eight" solution is shown to be choreographic even at the PN approximation by carefully examining initial conditions. Next, gravitational waves for two- and three-body gravitating systems are discussed as an inverse problem. It is shown that quadrupole waveforms cannot distinguish these sources at particular configurations, especially through extending the definition of the chirp mass to such a three-body system. Finally, we present a conjecture on N particles for classification of sources with multipolar waveforms.
Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A
Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.
2010-01-01
The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.
Q estimation of seismic data using the generalized S-transform
Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming
2016-12-01
Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.
TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION
WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD
1995-01-01
Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen
IBIEM modelling of the amplification of seismic waves by a three-dimensional layered alluvial basin
Liu, Zhongxian; Liang, Jianwen; Huang, Yihe; Liu, Lei
2016-02-01
We develop an indirect boundary integral equation method (IBIEM) to solve the scattering of seismic waves by a 3-D layered alluvial basin. We adopt the dynamic Green's functions for concentrated loads for a layered half-space derived from the modified stiffness method. This new algorithm of Green's function can solve the near-source response efficiently and accurately, and also facilitates the meshless implementation of the IBIEM. The numerical accuracy and stability of the IBIEM are tested for a homogeneous, hemispherical alluvial basin, and a two-layered model. Based on the IBIEM, the effects of several important parameters, such as the incident frequency, the angle of incidence and the properties of the alluvial layers are investigated for incident plane P and SV waves, respectively. The results show that the local amplification effects of a 3-D layered alluvial basin on the ground motion are strikingly significant, and that the spatial variation of the displacement response is drastic. We also find that the thickness of the near-surface low-velocity alluvial layer has a pronounced influence on the frequency spectrum of ground motion within the basin. As for the thick low-velocity layer, the amplification effect on the displacement amplitude spectrum appears in a wide range of frequencies, with more resonant models in the same frequency range. As for the thin low-velocity layer, in contrast, the amplification effect is close to the homogeneous case but becomes more significant for high-frequency waves. The displacement amplification for a basin with a soft intermediate layer is larger than that of the homogeneous basin for the lower frequencies, but seems to be weakened for high-frequency waves. Additionally, the damping ratio of the alluvial layer can substantially reduce the displacement amplitude in the basin, especially in the range of resonant frequencies. Our results provide a better understanding of the 3-D wave focusing and basin-edge effect within 3-D
Seismic architecture and morphology of Neogenic sediment waves and drifts, offshore West Africa
Baglioni, Luca; Bonamini, Enrico
2013-04-01
The three dimension visualisation softwares of seismic data and the recent development of semi-automatic interpretation tools allow to define the 3D morphology of ancient depositional systems at a resolution never achieved before. This study analyses a Neogenic stratigraphic interval in the deep water of the West African margin. The purpose of the work is the understanding of the sedimentary architectures and the link with the genetic depositional processes. The study is mainly based on the interpretation of seismic geometries and amplitude/isochron maps derived from newly-interpreted seismic horizons. The seismic stratigraphy reveals abrupt changes in depositional styles and sedimentary processes. Transitions between Sediment Drifts (SD), Sediment Waves (SWs) and Mass Transport Complexes (MTCs) are here frequently observed, suggesting that cyclically either bottom-current intensity decreased or gravity-flow input overwhelmed the bottom-current signal. The lower studied interval corresponds to a SD sequence, made up of stacked individual packages and having a maximum thickness of 300 ms. The landward drift morphology is characterized by convex-upward, mounded seismic reflections. Each drift onlaps on a seaward-dipping reflection interpreted as paleo-slope. These contouritic deposits are concentrated near the base of slope, and fade out downdip. The drift appears to be grown from the deeper part of the basin and backstepped up the slope. It is inferred that the deposition of the drifts took place under the influence of a marine current, subparallel to the southern margin of West African coast. The backstepping of the onlapping architecture may have resulted from bottom current acceleration across the ramp. The intermediate studied interval represents a transitional sequence in which SW are alternated with MTDs of minor size (up to 60 ms thick). In this transition interval, onlap relationships and thickness variations suggest that gravity flow deposits preferentially
Lateral wave-field stacking of seismic Fresnel zones for the generalized-offset case
Tian, Nan; Fan, Ting-En; Wang, Zong-Jun; Cai, Wen-Tao
2015-06-01
To unify different seismic geometries, the concept of generalized offset is defined and the expressions for Fresnel zones of different order on a plane are presented. Based on wave theory, the equation of the lateral wave-field stacking for generalized-offset Fresnel zones is derived. For zero and nonzero offsets, the lateral stacking amplitude of diffraction bins of different sizes is analyzed by referring to the shape of the Fresnel zones of different order. The results suggest the following. First, the contribution of diffraction bins to wave-field stacking is related to the offset, surface relief, interface dip, the depth of the shot point to the reflection interface, the observational geometry, and the size of the interference stacking region. Second, the first-order Fresnel zone is the main constructive interference, and its contribution to the reflection amplitude is slightly smaller than half the contribution of all Fresnel zones. Finally, when the size of the diffraction bin is smaller than the first-order Fresnel zone, the larger the size of the diffraction bin, the larger is the amplitude of the receiver, even in the nonzero offset-case.
Berngardt, O I; Podlesnyi, A V; Kurkin, V I; Zherebtsov, G A
2016-01-01
Based on the Irkutsk fast monostatic chirp ionosonde data we made a statistical analysis of ionospheric effects for 28 earthquakes which appeared in 2011-2016 years. These effects are related with surface (Rayleigh) seismic waves far from epicenter. The analysis has shown that nine of these earthquakes were accompanied by vertical midscale ionospheric irregularities (multicusp). To estimate the ionospheric efficiency of the seismic waves we proposed new index $K_{W}$. The index estimates the maximal amplitude of the acoustic shock wave generated by given spatial distribution of seismic vibrations and related with maximal spectral power of seismic oscillations. Based on the analysis of experimental data we have shown that earthquake-related multicusp is observed mostly at daytime [07:00-17:00]LST for $K_{W}\\ge4.7$. The observations of intrinsic gravity waves by GPS technique in the epicenter vicinity do not show such a daytime dependence. Based on 24/05/2013 Okhotsk Sea earthquake example, we demonstrated that...
Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.
2015-01-01
We inverted seismic field data for a continuous, laterally invariant P-wave velocity profile. Instead of the usual approach that involves horizontal layers with piecewise constant densities and velocities, we consider models of one or two layers with a constant gradient of the squared slowness above
Tün, Muammer; Karabulut, Savaş; Özel, Oğuz
2015-04-01
Ground motion estimation for future earthquakes is one of the most challenging problems in seismology and earthquake engineering. The bedrock depth has a considerable seismic risk for the urban area of Eskişehir. In this study, multiple station microtremor measurement methods which are more practical, non-distructive, fast and economical compared to seismic reflection method were implemented. These method using microtremor recordings have become a very useful data for microzonation studies because of their simple acquisition and analysis. Extensive ambient noise measurements were performed in the basin of Eskisehir from June 2010 to spring 2012. We use data recorded by a broadband seismometer and digitizer CMG-6TD, Guralp seismometer. Some of the measurement locations, the CMG-6TD sensor was located into 30 cm-deep holes in the ground to avoid strongly wind-generated, long-period noise. Dominant frequency (f), bed-rock depth (h) and shear-wave velocity (Vs) were determined from Spatial Autocorrelation (SPAC) methods. With the SPAC Method, it is possible to constrain the velocity structure underlying the site using microtremor array measurements. The results obtained were compared to the 96-channel seismic reflection data with explosive energy source. Several seismic reflection surveys with P-Gun seismic source have been performed on the same place with array measurements. We used two types of seismic sources: 36 cartridge Gun. Shot interval was 10 meters, group interval (one geophone per group, 48 geophones in total) was 10 meters, near offset was 10 meters, far offset was 480 meters, CDP interval was 5 meters. We adapted the 'Off-End Spread' technique while using the Gun. Reflection images within the sedimentary section correlate well with the velocity structure obtained from SPAC.
Institute of Scientific and Technical Information of China (English)
QI Xing-jun; LI Xiao-jun; ZHOU Guo-liang
2006-01-01
The analysis approach of semi-active control for long-span rigid-continuous bridge under seismic travelling wave input is established. Magnetorheological dampers are set on the positions of the bridge bearings. The semi-active control calculation and analysis are performed for a five-span rigid-continuous bridge under seismic travelling waves with different apparent surface velocities. The results indicate that travelling wave effect remarkably influences the uncontrolled seismic responses, the semi-active control seismic responses and vibration control effects for the long-span rigid-continuous bridge. It is disadvantageous to the responses of the beams and the piers under the travelling wave input with lower apparent surface velocity, and travelling wave effect can decrease the vibration control effects evidently. Therefore, the travelling wave effect should be considered for the selection of the parameter values of semi-active control system in order to get the designing control effect.
Finite-Difference Simulation of Elastic Wave with Separation in Pure P- and S-Modes
Directory of Open Access Journals (Sweden)
Ke-Yang Chen
2014-01-01
Full Text Available Elastic wave equation simulation offers a way to study the wave propagation when creating seismic data. We implement an equivalent dual elastic wave separation equation to simulate the velocity, pressure, divergence, and curl fields in pure P- and S-modes, and apply it in full elastic wave numerical simulation. We give the complete derivations of explicit high-order staggered-grid finite-difference operators, stability condition, dispersion relation, and perfectly matched layer (PML absorbing boundary condition, and present the resulting discretized formulas for the proposed elastic wave equation. The final numerical results of pure P- and S-modes are completely separated. Storage and computing time requirements are strongly reduced compared to the previous works. Numerical testing is used further to demonstrate the performance of the presented method.
The Influence of Water on Seismic Wave Attenuation in the Upper Mantle
David, E. C.; Jackson, I.; Faul, U.; Berry, A.
2014-12-01
Trace amounts of water, present as protons structurally bound in olivine crystal defects, are inferred to significantly enhance the low-strain solid-state viscoelastic relaxation responsible for attenuation and dispersion of seismic waves in the upper mantle. This inferrence is supported by recent observation of water weakening at moderate compressive strains in synthetic, water-undersaturated aggregates (Faul et al., in preparation). In these fine-grained olivine polycrystals of Fo90 composition, doped with 0.02wt% TiO2, "water" is incorporated in the remarkably stable Ti-clinohumite defect. Such synthetic olivine specimens reproduce the infrared spectra of natural mantle olivines (Berry et al., 2005), and present the advantage of being melt-free and of low dislocation density. The water contents in such synthetic polycrystalline olivine aggregates, which can be quantitatively measured by Fourier Transform Infrared Spectroscopy (FTIR), range up to 90 ppm, and are thus representative of water-undersaturated conditions in the upper mantle. We will report here the outcome of torsional-oscillation tests,in which attenuation and shear modulus were measured at seismic frequencies (mHz-Hz) and various temperatures up to 1300C on Pt-encapsulated, Ti-doped olivine specimens, enclosed within a mild-steel jacket.
Electric Signals on and under the Ground Surface Induced by Seismic Waves
Directory of Open Access Journals (Sweden)
Akihiro Takeuchi
2012-01-01
Full Text Available We constructed three observation sites in northeastern Japan (Honjo, Kyowa, and Sennan with condenser-type large plate electrodes (4 × 4 m2 as sensors supported 4 m above the ground and with pairs of reference electrodes buried vertically at 0.5 m and 2.5 m depth (with a ground velocity sensor at Sennan only. Electrical signals of an earthquake (M6.3 in northeastern Japan were detected simultaneously with seismic waves. Their waveforms were damped oscillations, with greatly differing signal amplitudes among sites. Good positive correlation was found between the amplitudes of signals detected by all electrodes. We propose a signal generation model: seismic acceleration vertically shook pore water in the topsoil, generating the vertical streaming potential between the upper unsaturated water zone and the lower saturated water zone. Maximum electric earth potential difference was observed when one electrode was in the saturated water zone, and the other was within the unsaturated water zone, but not when the electrodes were in the saturated water zone. The streaming potential formed a charge on the ground surface, generating a vertical atmospheric electric field. The large plate electrode detected electric signals related to electric potential differences between the electrode and the ground surface.
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
Institute of Scientific and Technical Information of China (English)
王勃; 刘盛东; 胡泽安
2012-01-01
针对陷落柱与周围煤体之间存在明显波阻抗差异的特点,建立巷道内地震波超前探测陷落柱数值模型.采用波场正演模拟方法,分析巷道前方存在陷落柱时的地震波场特征,总结出基于绕射偏移的陷落柱边界探测方法.在新元矿南二正巷实际超前探测中,该方法准确圈定了巷道前方陷落柱的范围.探测结果和实际揭露情况对比表明:地震波超前探测技术可以对巷道前方120m范围内的陷落柱构造进行有效预测.%In allusion to the obvious wave impedance difference existed between subsided column and peripheral coal mass, the numerical model of subsided column roadway seismic wave advanced prospecting has been modeled. The analysis using wave field forward simulation has found roadway front subsidence seismic wave field features existed, and then a subsided column boundary detection method based on diffracted migration summed up. During the advanced prospecting in the S2 main roadway of the Xinyuan coalmine, using of the method has cycled out subsided column extent ahead of roadway with accuracy. The contrast of prospecting and practical revealed results demonstrated that: the seismic wave advanced prospecting technology can effectively predict roadway front subsided column within 120m extent.
Seismic microzoning of Santiago de Cuba An approach by SH waves modelling
Alvarez, L; Femandez, B; García, J; González, B; Panza, G F; Pico, R; Reyes, C; Vaccari, F; Zapata, R J A
2002-01-01
The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic microzoning of the city. Three different main zones are identified, and a small sector characterised by big resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for th...
Energy Technology Data Exchange (ETDEWEB)
Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru [Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Tcheverda, Vladimir [Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk (Russian Federation); Kazakh–British Technical University, Alma-Ata (Kazakhstan); Botter, Charlotte [University of Stavanger (Norway)
2016-04-15
We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.
Attenuation of seismic waves and the universal rheological model of the Earth's mantle
Birger, B. I.
2007-08-01
Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.
S-wave velocity and Poisson's ratio structure of crust in Yunnan and its implication
Institute of Scientific and Technical Information of China (English)
HU; Jiafu; SU; Youjin; ZHU; Xiongguan; CHEN; Yun
2005-01-01
Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of Poisson's ratio in crust of Yunnan are obtained by inversion.The results show that the crustal thickness is gradually thinned from north to south. The crustal thickness in Zhongdian of northwest reaches as many as 62.0 km and the one in Jinghong of further south end is only 30.2 km. What should be especially noted is that there exists a Moho upheaval running in NS in the Chuxiong region and a Moho concave is generally parallel to it in Dongchuan. In addition, there exists an obvious transversal inhomogeneity for the S-wave veIocity structure in upper mantle and crust in the Yunnan region. The low velocity layer exists not only in 10.0-15.0 km in upper crust in some regions, but also in 30.0-40.0 km in lower crust.Generally, the Poisson's ratio is on the high side, however it has a better corresponding relation to the crustal velocity structure. An obvious block distribution feature is still shown on such a high background of Poisson's ratio. It is discovered by synthetically analyzing the velocity structure and Poisson's ratio distribution that there are high Poisson's ratio and complicated crust-mantle velocity structure feature in the Sichuan-Yunnan Diamond Block with Xiaojiang fault to be the east boundary and Yulong Snow Mountain fault to be the west boundary besides the frequent seismicity. This feature differs obviously from that of surrounding areas, which would provide geophysical evidence to deeply study the eastwardly flowage of lithospheric substances in the Qinghai-Tibet Plateau.
Darbyshire, F. A.; Bastow, I. D.; Forte, A. M.; Hobbs, T. E.; Calvel, A.; Gonzalez-Monteza, A.; Schow, B.
2015-12-01
Measurements of seismic anisotropy in continental regions are frequently interpreted with respect to past tectonic processes, preserved in the lithosphere as "fossil" fabrics. Models of the present-day sublithospheric flow (often using absolute plate motion as a proxy) are also used to explain the observations. Discriminating between these different sources of seismic anisotropy is particularly challenging beneath shields, whose thick (≥200 km) lithospheric roots may record a protracted history of deformation and strongly influence underlying mantle flow. Eastern Canada, where the geological record spans ˜3 Ga of Earth history, is an ideal region to address this issue. We use shear wave splitting measurements of core phases such as SKS to define upper mantle anisotropy using the orientation of the fast-polarization direction ϕ and delay time δt between fast and slow shear wave arrivals. Comparison with structural trends in surface geology and aeromagnetic data helps to determine the contribution of fossil lithospheric fabrics to the anisotropy. We also assess the influence of sublithospheric mantle flow via flow directions derived from global geodynamic models. Fast-polarization orientations are generally ENE-WSW to ESE-WNW across the region, but significant lateral variability in splitting parameters on a ≤100 km scale implies a lithospheric contribution to the results. Correlations with structural geologic and magnetic trends are not ubiquitous, however, nor are correlations with geodynamically predicted mantle flow directions. We therefore consider that the splitting parameters likely record a combination of the present-day mantle flow and older lithospheric fabrics. Consideration of both sources of anisotropy is critical in shield regions when interpreting splitting observations.
Energy Technology Data Exchange (ETDEWEB)
Yang, Jing [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin Texas USA; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin Texas USA; Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai China; Jacobsen, Steven D. [Department of Earth and Planetary Sciences, Northwestern University, Evanston Illinois USA; Seymour, Nikki M. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin Texas USA; Tkachev, Sergey N. [Center for Advanced Radiation Sources, University of Chicago, Chicago Illinois USA; Prakapenka, Vitali B. [Center for Advanced Radiation Sources, University of Chicago, Chicago Illinois USA
2016-12-16
Deciphering the origin of seismic heterogeneity has been one of the major challenges in understanding the geochemistry and geodynamics of the deep mantle. Fully anisotropic elastic properties of constituent minerals at relevant pressure-temperature conditions of the lower mantle can be used to calculate seismic heterogeneity parameters in order to better understand chemically and thermally induced seismic heterogeneities. In this study, the single-crystal elastic properties of ferropericlase (Mg0.94Fe0.06)O were measured using Brillouin spectroscopy and X-ray diffraction at conditions up to 50 GPa and 900 K. The velocity-density results were modeled using third-order finite-strain theory and thermoelastic equations along a representative geotherm to investigate high pressure-temperature and compositional effects on the seismic heterogeneity parameters. Our results demonstrate that from 660 to 2000 km, compressional wave anisotropy of ferropericlase increased from 4% to 9.7%, while shear wave anisotropy increased from 9% to as high as 22.5%. The thermally induced lateral heterogeneity ratio (RS/P = ∂lnVS/∂lnVP) of ferropericlase was calculated to be 1.48 at ambient pressure but decreased to 1.43 at 40 GPa along a representative geotherm. The RS/P of a simplified pyrolite model consisting of 80% bridgmanite and 20% ferropericlase was approximately 1.5, consistent with seismic models at depths from 670 to 1500 km, but showed an increased mismatch at lower mantle depths below ~1500 km. This discrepancy below mid-lower mantle could be due to either a contribution from chemically induced heterogeneity or the effects of the Fe spin transition in the deeper parts of the Earth's lower mantle.
Directory of Open Access Journals (Sweden)
Bor-Shouh Huang
2011-01-01
Full Text Available Extant paper records of the early analog seismic network of Taiwan represent a large resource for earthquake studies in several disciplines. In this study, we report on T waves generated from offshore earthquakes, based on analog observations. The T phases were identified from their stable apparent velocity of about 1.5 km s-1 and other observations using data recorded by stations in eastern Taiwan and on two nearby islands. The observed T phases are recorded for the first time from Taiwan, and in particular are observed by the network in the distal range of local earthquakes. Most of the T waves are observed at island stations at epicentral distances greater than 100 km. For earthquakes that occurred a great distance east of Taiwan, the T phases are always the most dominant phases observed at island stations east of Taiwan, and are also seen at some inland stations with smaller amplitudes. No T phases from inland events were observed by stations on Taiwan or on nearby islands. The observations indicate that the amplitude of the T phase is highly attenuated on its land path and that the propagation direction of the T phase is affected by water depth.
Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil
Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de
2016-10-01
This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (< 483 Ω·m) as jaspilite. Our results were compared with geological boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.
Directory of Open Access Journals (Sweden)
Yukio Fujinawa
2011-01-01
Full Text Available Seismic waves are generally observed through the measurement of undulating elastic ground motion. We report the remote detection of the Earth's electric field variations almost simultaneously with the start of fault rupturing at about 100 km from the fault region using a special electric measurement. The rare but repeated detection indicates that the phenomenon is real. The characteristic time of diffusion is almost instantaneous, that is, less than 1 second to travel 100 km, more than ten times faster than ordinary seismic P wave propagation. We suggest that the measured electric field changes are produced by the electrokinetic effect through increased pore water pressure of the seismic pulse. It is also suggested that the long range propagation is due to the surface wave mode confined near the interface of the different conductivity. The length scale of the finite strength of the electric field is 16 km, 160 km for electric conductivity of 0.01, 0.001, Sm−1, respectively. This phenomenon suggests a new seismic sensing method and a new earthquake early warning system providing more seconds of lead time.
Shear Wave Reflection Seismics Image Internal Structure of Quick-Clay Landslides in Sweden
Polom, U.; Krawczyk, C. M.; Malehmir, A.
2014-12-01
Covering many different sizes of scale, landslides are widespread and pose a severe hazard in many areas as soon as humans or infrastructure are affected. In order to provide geophysical tools and techniques to better characterize sites prone to sliding, a geophysical assessment working towards a geotechnical understanding of landslides is necessary. As part of a joint project studying clay-related landslides in Nordic countries by a suite of geophysical methods, we therefore tested the use of shear wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes in southern Sweden. On two crossing profiles, a land streamer consisting of 120 SH-geophones with 1 m spacing was deployed, and an ELVIS micro-vibrator was shaking every 4 m to generate the shear wave signal. SH-wave data of high quality were thereby acquired to resolve the gaps between P-wave data and electrical and surface wave based methods of lower resolution. After quality control, correlation, subtractive stack, and geometry setup, single shot gathers already demonstrate the high data quality gained in the region, especially on a gravel road. The migrated depth sections image the structural inventory down to ca. 50 m depth with vertical resolution of less than 1 m. Horizontally layered sediments are visible in the upper 40 m of soft (marine) sediments, followed by top basement with a rough topography varying between ca. 20-40 m depth. The imaged, bowl-shaped basement morphology centres near the profile crossing, and basement is exposed at three sides of the profiles. Three distinct sediment sequences are separated by high-amplitude unconformities. The quick-clay layer may be located above the marked reflection set that lies on top of the more transparent sequence that levels out the basement. Located between 15-20 m depth, this correlates with the height of the last scarp that occurred in the area. In addition, shear wave velocities are determined
Energy Technology Data Exchange (ETDEWEB)
Kano, N.; Yamaguchi, K.; Yokota, T.; Kiguchi, T. [Geological Survey of Japan, Tsukuba (Japan)
1996-10-01
Anisotropy has been investigated using S-wave as a technique for detecting fractures. In this study, fundamental experiments were carried out with slightly changing the measuring conditions at a place where anisotropy was expected. This paper describes the fundamental data acquisition of anisotropy analysis using S-wave, and a part of the results. The experiments were conducted on the agricultural road in Yamadera district, Matsuyama-machi, Yamagata Prefecture. Two flat unpaved roads meeting at right angles were used as traverse lines. In this place, several reflection surfaces were certainly detected by P-wave, and anisotropy of S-wave was confirmed from the velocity of refracted wave of S-wave. Data were processed for individual traverse lines meeting at right angles. Firstly, signal sweeping, correlation, and vertical superposition were made. Six kinds of data were prepared, i.e., three-component receiving records of data at 0{degree} of generating direction and three-component receiving records of data at 90{degree} of generating direction. Records of T-component at 0{degree} and R-component at 90{degree} were used for processing of the seismic reflection method. These records would be considered to be data of SH-wave and SV-wave, respectively. 4 figs.
Attenuation of short period seismic waves at Etna as compared to other volcanic areas
Del Pezzo, E.; Gresta, S.; Patané, G.; Patané, D.; Scarcella, G.
1987-11-01
Coda Q for Etna volcano is frequency dependent and the Q frequency pattern and the numerical values ranging from about 100 at 1 Hz to about 300 at 18 Hz are similar to the values obtained for other volcanoes: Campi Flegrei, Aeolian Islands and Hawaii. Moreover the frequency pattern and the numerical values of coda quality factor, for most of the seismically active zones of Italy are very different from those of the volcanic zones. Several studies of the location of magma chambers show the presence of magma pockets beneath Lipari and Vulcano Islands of the Aeolian archipelago and an anomalous low velocity body beneath Etna. These evidences suggest that a possible interpretation of the characteristic frequency pattern of Q on volcanic areas is that the presence of magma can modify the scattering environment and consequently the coda Q estimates.
Detailed Study of Seismic Wave Attenuation in Carbonate Rocks: Application on Abu Dhabi Oil Fields
Bouchaala, F.; Ali, M. Y.; Matsushima, J.
2015-12-01
Seismic wave attenuation is a promising attribute for the petroleum exploration, thanks to its high sensitivity to physical properties of subsurface. It can be used to enhance the seismic imaging and improve the geophysical interpretation which is crucial for reservoir characterization. However getting an accurate attenuation profile is not an easy task, this is due to complex mechanism of this parameter, although that many studies were carried out to understand it. The degree of difficulty increases for the media composed of carbonate rocks, known to be highly heterogeneous and with complex lithology. That is why few attenuation studies were done successfully in carbonate rocks. The main objectives of this study are, Getting an accurate and high resolution attenuation profiles from several oil fields. The resolution is very important target for us, because many reservoirs in Abu Dhabi oil fields are tight.Separation between different modes of wave attenuation (scattering and intrinsic attenuations).Correlation between the attenuation profiles and other logs (Porosity, resistivity, oil saturation…), in order to establish a relationship which can be used to detect the reservoir properties from the attenuation profiles.Comparison of attenuation estimated from VSP and sonic waveforms. Provide spatial distribution of attenuation in Abu Dhabi oil fields.To reach these objectives we implemented a robust processing flow and new methodology to estimate the attenuation from the downgoing waves of the compressional VSP data and waveforms acquired from several wells drilled in Abu Dhabi. The subsurface geology of this area is primarily composed of carbonate rocks and it is known to be highly fractured which complicates more the situation, then we separated successfully the intrinsic attenuation from the scattering. The results show that the scattering is significant and cannot be ignored. We found also a very interesting correlation between the attenuation profiles and the
Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng
2016-09-01
In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we firstly propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML (ADEPML). Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: 1) For an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; 2) Unlike the M-PML with high-order damping profile, the M-PML with 2nd-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; 3) In an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with 2nd-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.
Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng
2016-12-01
In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.
Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics
Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte
2016-04-01
Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were
Energy Technology Data Exchange (ETDEWEB)
Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.
2012-01-10
In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, M.; Watanabe, T.; Ashida, Y.; Sassa, K. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1997-05-27
With regard to the elastic wave exploration, discussions have been given on the relationship between frequency and resolution in P-wave velocity tomography using the initial travel time. The discussions were carried out by using a new analysis method which incorporates the concept of Fresnel volume into tomography analysis. The following two arrangements were used in the calculation: a cross hole arrangement, in which seismic source and vibration receiving points were arranged so as to surround the three directions of a region extending 250 m in the horizontal direction and 500 m in the vertical direction, and observation is performed between two wells, and a permeation VSP arrangement in which the seismic source is installed on the ground surface and receiving points installed in wells. Restructuring was performed on the velocity structure by using a total of 819 observation travel times. This method has derived results of the restructuring according to frequencies of the seismic source used for the exploration. The resolution shown in the result of the restructuring has become higher as elastic waves with higher frequency are used, and the size of the structure identified from the restructuring result has decreased. This fact reveals that sufficient considerations must be given on frequencies of elastic waves used according to size of objects to be explored. 4 refs., 4 figs.
Previous laboratory investigations have demonstrated that the seismic methods are sensitive to microbially-induced changes in porous media through the generation of biogenic gases and biomineralization. The seismic signatures associated with microbial growth and biofilm formation...
The VERCE Science Gateway: Enabling User Friendly HPC Seismic Wave Simulations.
Casarotti, E.; Spinuso, A.; Matser, J.; Leong, S. H.; Magnoni, F.; Krause, A.; Garcia, C. R.; Muraleedharan, V.; Krischer, L.; Anthes, C.
2014-12-01
The EU-funded project VERCE (Virtual Earthquake and seismology Research Community in Europe) aims to deploy technologies which satisfy the HPC and data-intensive requirements of modern seismology.As a result of VERCE official collaboration with the EU project SCI-BUS, access to computational resources, like local clusters and international infrastructures (EGI and PRACE), is made homogeneous and integrated within a dedicated science gateway based on the gUSE framework. In this presentation we give a detailed overview on the progress achieved with the developments of the VERCE Science Gateway, according to a use-case driven implementation strategy. More specifically, we show how the computational technologies and data services have been integrated within a tool for Seismic Forward Modelling, whose objective is to offer the possibility to performsimulations of seismic waves as a service to the seismological community.We will introduce the interactive components of the OGC map based web interface and how it supports the user with setting up the simulation. We will go through the selection of input data, which are either fetched from federated seismological web services, adopting community standards, or provided by the users themselves by accessing their own document data store. The HPC scientific codes can be selected from a number of waveform simulators, currently available to the seismological community as batch tools or with limited configuration capabilities in their interactive online versions.The results will be staged out via a secure GridFTP transfer to a VERCE data layer managed by iRODS. The provenance information of the simulation will be automatically cataloged by the data layer via NoSQL techonologies.Finally, we will show the example of how the visualisation output of the gateway could be enhanced by the connection with immersive projection technology at the Virtual Reality and Visualisation Centre of Leibniz Supercomputing Centre (LRZ).
Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.
2014-12-01
Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint
Directory of Open Access Journals (Sweden)
Raj Mittra
2012-07-01
Full Text Available A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs, which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green’s function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data.
Denmark's clean energy future from waves
Energy Technology Data Exchange (ETDEWEB)
Lund, G. [Nova Pro, CADDET Danish National Team, Toelloese (Denmark)
1999-10-01
This article presents a brief overview of Denmark's wave energy programme which aims to develop wave energy plants to supply 15% of Denmark's energy consumption. Details are given of the Wave Dragon deep water floating wave power plant, the Swan DK3 backward bend duct buoy, the point absorber float, and the WavePlane floating device. The step by step development approach for projects accepted by the wave energy programme, and future options are discussed. (UK)
Energy Technology Data Exchange (ETDEWEB)
Macia, R.; Correig, A.M.
1987-01-01
The medium through which seismic waves propagate acts as a filter. This filter is characterized by the medium spectral transfer functions, that deppend only on the model parameters that represents the medium. The behaviour of the ratio of amplitudes between spectral transfer functions, corresponding to vertical and horizontal desplacements of long period P-waves propagating though a stratified media, is analysed. Correlations between the properties of a theoretical model with respect to the curve defined by the ratio of the spectral transfer functions are studied as a function of frequency, as well as the influence of the parameters that define de model of the curves. Finally, the obtained correlations are analysed from the point of view of the utilisations to the study of the Earth's Crust. (Author)
Foodscapes and Children’s Bodies
Directory of Open Access Journals (Sweden)
Helene Brembeck
2010-12-01
Full Text Available This article addresses children, food and body, and introduces a Deleuzian and Childhood Studies-inspired use of the concept of foodscape. The data draws on a transdisciplinary project on children as co-researchers of foodscapes. In this arti-cle we do not discuss the method or the children’s research results, which we have done elsewhere. Instead, our aim is to present a theoretically inspired analysis of our own fieldwork observations during this project in order to discuss the per-formance of children’s bodies, food and eating. Departing from the concept of foodscape, we present an analysis of some food events that illustrate the complex-ity of children’s foodscapes concerning the interaction between spaces, bodies, foodstuffs, values and rules. In encountering food and eating at various places, different child becomings emerge. We distinguish three powerful performances of what Stuart Aitken (2008 calls “I-dos”: First, the seemingly obedient pupil, who pretends to do what he or she is told, but who more or less imperceptibly escapes from adult supervi-sion. Second, the child who makes use of the stereotyped and possibly cute “food monster” designation, and turns it into a threatening subject, who disturbs the or-der and challenges adults’ power. Third, the knowledgeable scientist who, with the help of a research project, adult experts, nutritional calculation programs and ingredients, seizes the definition of the body as a site for growing stronger, health-ier and more capable. The foodscapes we met held many “striated spaces” (Deleuze & Guattari 1987, where the children had few alternatives to adhering to the adults’ designated “I-ams”. But we also entered smooth spots where children had the opportunity to experiment with “I-dos” that would not have occurred to us had we not followed them, and there are certainly many more that appear in the children’s everyday encounters with food.
孔洞性介质地震散射波场正演模拟%Forward modeling of seismic scattered wave field of porous medium
Institute of Scientific and Technical Information of China (English)
雷蕾; 印兴耀; 张厚淼
2011-01-01
With the development of seismic exploration, conventional reflection simulation method shows limitation in processing complex porous geologic structure, thus developed scattered wave simulation aiming at heterogeneous porous media. Seismic scattered wave field of porous medium has been forwardly simulated by using integration method based on Green' s function; the effect of petrophysical parameters on scattered wave field has been analyzed. This study is of important significance to oil and gas exploration and development.%随着地震勘探的发展,在处理复杂的孔洞性地质构造时,常规反射波模拟方法出现了局限性.于是,针对孔洞性非均匀介质的散射波模拟方法发展起来.通过基于Green函数的积分方法来正演模拟孔洞性介质的地震波散射波场,了解其波场特征,分析物性参数对于孔洞性介质散射波场特征的影响,对油气的勘探开发具有十分重要的意义.
Directory of Open Access Journals (Sweden)
A. Diez
2014-08-01
Full Text Available A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution of crystal anisotropy, to understand its contribution to ice dynamics, is mainly provided by crystal orientation fabric (COF data from ice cores. However, the developed anisotropic fabric does not only influence the flow behaviour of ice, but also the propagation of seismic waves. Two effects are important: (i sudden changes in COF lead to englacial reflections and (ii the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, also recorded traveltimes. A framework is presented here to connect COF data with the elasticity tensor to determine seismic velocities and reflection coefficients for cone and girdle fabrics from ice-core data. We connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities and reflection coefficients, englacially as well as for the ice-bed contact. Our work, therefore, provides a contribution to remotely determine the state of bulk ice anisotropy.
A 1.8 trillion degrees-of-freedom, 1.24 petaflops global seismic wave simulation on the K computer
Tsuboi, Seiji
2016-03-01
We present high-performance simulations of global seismic wave propagation with an unprecedented accuracy of 1.2 s seismic period for a realistic three-dimensional Earth model using the spectral element method on the K computer. Our seismic simulations use a total of 665.2 billion grid points and resolve 1.8 trillion degrees of freedom. To realize these large-scale computations, we optimize a widely used community software code to efficiently address all hardware parallelization, especially thread-level parallelization to solve the bottleneck of memory usage for coarse-grained parallelization. The new code exhibits excellent strong scaling for the time stepping loop, that is, parallel efficiency on 82,134 nodes relative to 36,504 nodes is 99.54%. Sustained performance of these computations on the K computer is 1.24 petaflops, which is 11.84% of its peak performance. The obtained seismograms with an accuracy of 1.2 s for the entire globe should help us to better understand rupture mechanisms of devastating earthquakes.
Tsai, V.C.
2011-01-01
It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model
Dolenc, D.; Romanowicz, B.; McGill, P.; Wilcock, W.
2007-12-01
The long-period background noise observed at ocean-bottom seismic stations is mainly due to deformation of the seafloor under the pressure forcing by long-period ocean surface gravity waves (infragravity waves; 0.002 to 0.05 Hz). Understanding the nature and characteristics of the coupling between the infragravity waves and the solid earth is important for the study of the infragravity wave generation and dissipation as well as for the study of the earth's hum and structure using non-seismic sources. Ocean-bottom broadband stations KEBB and KXBB were deployed as part of a three-year multidisciplinary experiment funded by the W. M. Keck foundation to monitor the linkages between seismic deformation and hydrothermal fluxes on the northern Juan de Fuca plate. The seismic component of the project was a collaboration between the University of Washington, the University of Oregon, and the Monterey Bay Aquarium Research Institute. Station KEBB was installed 247 km west of Vancouver Island (VI) at a water depth of 2376 m in August 2003. A year later station KXBB was installed 105 km offshore VI at a water depth of 2370 m. Each station comprised a Guralp CMG-1T three-component broadband seismometer, sensitive over a wide frequency range from 50 Hz to 2.8 mHz (360 sec), connected to a recording and battery package. Both seismometers were completely buried in the ocean floor sediments. The two stations recorded data continuously and stored them locally until retrieval once per year. Infragravity waves can be observed at KEBB and KXBB on stormy as well as quiet days in the period band from 30 to 400 sec. When compared to the energy of short-period ocean waves recorded at local buoys, the low- frequency seismic noise is found to be mainly generated when the short-period ocean waves reach the coast, and not when the storm passes directly above the stations. Two types of modulation of the infragravity signal are observed. First, a longer-period modulation of the infragravity
Upper mantle structure from body-wave coda and amplitudes
Neele, F.P.
1993-01-01
The last decade has seen a large increase in the amount of high-quality data from a growing number of digitally operating seismic stations. Both short- and long-period data are reported on a regular basis to central data centres. As global seismology is hampered by the unequal distribution of statio
Earnest, A.; Sunil, T. C.
2014-12-01
The recent earthquake of Mw 6.9 occurred on September 18, 2011 in Sikkim-Nepal border region. The hypocenter parameters determined by the Indian Meteorological Department shows that the epicentre is at 27.7°N, 88.2°E and focal depth of 58Km, located closed to the north-western terminus of Tista lineament. The reported aftershocks are linearly distributed in between Tista and Golapara lineament. The microscopic and geomorphologic studies infer a dextral strike-slip faulting, possibly along a NW-SE oriented fault. Landslides caused by this earthquake are distributed along Tista lineament . On the basis of the aftershock distribution, Kumar et al. (2012), have suggested possible NW orientation of the causative fault plane. The epicentral region of Sikkim bordered by Nepal, Bhutan and Tibet, comprises a segment of relatively lower level seismicity in the 2500km stretch of the active Himalayan Belt. The north Sikkim earthquake was felt in most parts of Sikkim and eastern Nepal; it killed more than 100 people and caused damage to buildings, roads and communication infrastructure. Through this study we focus on the earthquake source parameters and the kinematic rupture process of this particular event. We used tele-seismic body waveformsto determine the rupture pattern of earthquake. The seismic-rupture pattern are generally complex, and the result could be interpreted in terms of a distribution of asperities and barriers on the particular fault plane (Kikuchi and Kanamori, 1991).The methodology we adopted is based on the teleseismic body wave inversion methodology by Kikuchi and Kanamori (1982, 1986 and 1991). We used tele-seismic P-wave records observed at teleseismic distances between 50° and 90° with a good signal to noise ratio. Teleseismic distances in the range between 50° and 90° were used, in order to avoid upper mantle and core triplications and to limit the path length within the crust. Synthetic waveforms were generated gives a better fit with triangular
Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca
2016-01-01
In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.
Applicability of P/S amplitude ratios for the discrimination of low magnitude seismic events
Institute of Scientific and Technical Information of China (English)
PAN Chang-zhou; JIN Ping; WANG Hong-chun
2007-01-01
Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events. Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.
Alkhalifah, Tariq Ali
2016-12-17
The leading component of the high-frequency asymptotic description of the wavefield, given by the travel time, is governed by the eikonal equation. In anisotropic media, traveltime measurements from seismic experiments conducted along one surface cannot constrain the long-wavelength attribute of the medium along the orthogonal-to-the-surface direction, as anisotropy introduces an independent parameter controlling wave propagation in the orthogonal direction. Since travel times measured on the Earth\\'s surface in transversely isotropic media with a vertical symmetry axis are mainly insensitive to the absolute value of the anisotropic parameter responsible for relating these observations to depth δ, the travel time was perturbed laterally to investigate the traveltime sensitivity to lateral variations in δ. This formulation can be used to develop inversion strategies for lateral variations in δ in acoustic transversely isotropic media, as the surface-recorded data are sensitive to it even if the model is described by the normal moveout velocity and horizontal velocity, or the anellipticity parameter η. Numerical tests demonstrate the enhanced sensitivity of our data when the model is parameterised with a lateral change in δ.
Zhang, Y.; Xu, Y.; Xia, J.
2011-01-01
We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) Geophysical Journal International ?? 2011 RAS.
Seismic Shaking, Tsunami Wave Erosion And Generation of Seismo-Turbidites in the Ionian Sea
Polonia, Alina; Nelson, Hans; Romano, Stefania; Vaiani, Stefano Claudio; Colizza, Ester; Gasparotto, Giorgio; Gasperini, Luca
2016-04-01
We are investigating the effects of earthquakes and tsunamis on the sedimentary record in the Ionian Sea through the analysis of turbidite deposits. A comparison between radiometric dating and historical earthquake catalogs suggests that recent turbidite generation is triggered by great earthquakes in the Calabrian and hellenic Arcs such as the AD 1908 Messina, AD 1693 Catania, AD 1169 Eastern Sicily and AD 365 Crete earthquakes. Textural, micropaleontological, geochemical and mineralogical signatures of the youngest three seismo-turbidites reveal cyclic patterns of sedimentary units. The basal stacked turbidites result from multiple slope failure sources as shown by different sedimentary structures as well as mineralogic, geochemical and micropaleontological compositions. The homogenite units, are graded muds deposited from the waning flows of the multiple turbidity currents that are trapped in the Ionian Sea confined basin. The uppermost unit is divided into two parts. The lower marine sourced laminated part without textural gradation, we interpret to result from seiching of the confined water mass that appears to be generated by earthquake ruptures combined with tsunami waves. The uppermost part we interpret as the tsunamite cap that is deposited by the slow settling suspension cloud created by tsunami wave backwash erosion of the shoreline and continental shelf. This tsunami process interpretation is based on the final textural gradation of the upper unit and a more continental source of the tsunami cap which includes C/N >10, the lack of abyssal foraminifera species wirth the local occurrence of inner shelf foraminifera. Seismic reflection images show that some deeper turbidite beds are very thick and marked by acoustic transparent homogenite mud layers at their top. Based on a high resolution study of the most recent of such megabeds (Homogenite/Augias turbidite, i.e. HAT), we show that it was triggered by the AD 365 Crete earthquake. Radiometric dating
Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D.
2016-03-01
We analyzed seismic ambient noise and teleseismic waveforms of nine broadband ocean bottom seismometers deployed at a 60 Ma seafloor in the southeastward of Tahiti island, the South Pacific, by the Tomographic Investigation by seafloor ARray Experiment for the Society hotspot project. We first obtained one-dimensional shear wave velocity model beneath the array from average phase velocities of Rayleigh waves at a broadband period range of 5-200 s. The obtained model shows a large velocity reduction at depths between 40 and 80 km, where the lithosphere-asthenosphere boundary might exist. We then estimated shear wave azimuthal anisotropy at depths of 20-100 km by measuring azimuthal dependence of phase velocities of Rayleigh waves. The obtained model shows peak-to-peak intensity of the azimuthal anisotropy of 2%-4% with the fastest azimuth of NW-SE direction both in the lithosphere and asthenosphere. This result suggests that the ancient flow frozen in the lithosphere is not perpendicular to the strike of the ancient mid-ocean ridge but is roughly parallel to the ancient plate motion at depths of 20-60 km. The fastest azimuths in the current asthenosphere are subparallel to current plate motion at depths of 60-100 km. Additional shear wave splitting analysis revealed possible perturbations of flow in the mantle by the hot spot activities and implied the presence of azimuthal anisotropy in the asthenosphere down to a depth of 190-210 km.
Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.
Moulder, John E
2012-06-01
Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.
Fault zone exploration in a geothermal context using P- and S-wave measurements
Wawerzinek, Britta; Buness, Hermann; Musmann, Patrick; Tanner, David C.; Krawczyk, Charlotte M.; Thomas, Rüdiger
2015-04-01
In the framework of the collaborative research programme gebo ('Geothermal Energy and High Performance Drilling') we applied seismic P- and S-wave measurements to analyse and characterise fault zones. Fault zones have a high potential for geothermal energy extraction, but their usability depends on complex factors (structure, lithology, tectonics), underlining the need for detailed fault zone exploration and the deeper understanding of the factors' interplay. In this study, we carried out both P- and S-wave reflection seismic surveys parallel and perpendicular to the eastern border of the Leinetal Graben, Lower Saxony, to explore the fault system. The seismic data reveal a high-resolution image of the complex graben structure which comprises both steeply-dipping normal faults and shallowly west-dipping normal faults, which cause a roll-over structure. In addition halokinesis is observed. The structural image of the graben structure indicates independent tectonic development of the uppermost (500 m) depth levels. One of the shallowly west-dipping normal faults is traceable from the surface down to 500 m depth. To further investigate this fault zone which shows different reflection characteristics of P- and S-waves, a petrophysical analysis was conducted, including elastic parameter derivation and seismic modelling. Elastic parameters change strongly in the near-surface area, e.g., vs increases from 300 m/s at the surface to 900 m/s at 100 m depth, leading to a decrease in vp/vs from 6 to approx. 2.5. Changes in elastic parameters correlate with the geological interpretation and are in correspondence to literature values for the given lithologies. However, the fault zone itself shows no significant changes in elastic parameters due to the low resolution of the derived seismic velocities. Seismic modelling is a helpful tool to check elastic parameters which are assigned to the fault zone in the model. A comparison between synthetic and field data shows that the field
Spinuso, Alessandro; Krause, Amy; Ramos Garcia, Clàudia; Casarotti, Emanuele; Magnoni, Federica; Klampanos, Iraklis A.; Frobert, Laurent; Krischer, Lion; Trani, Luca; David, Mario; Leong, Siew Hoon; Muraleedharan, Visakh
2014-05-01
The EU-funded project VERCE (Virtual Earthquake and seismology Research Community in Europe) aims to deploy technologies which satisfy the HPC and data-intensive requirements of modern seismology. As a result of VERCE's official collaboration with the EU project SCI-BUS, access to computational resources, like local clusters and international infrastructures (EGI and PRACE), is made homogeneous and integrated within a dedicated science gateway based on the gUSE framework. In this presentation we give a detailed overview on the progress achieved with the developments of the VERCE Science Gateway, according to a use-case driven implementation strategy. More specifically, we show how the computational technologies and data services have been integrated within a tool for Seismic Forward Modelling, whose objective is to offer the possibility to perform simulations of seismic waves as a service to the seismological community. We will introduce the interactive components of the OGC map based web interface and how it supports the user with setting up the simulation. We will go through the selection of input data, which are either fetched from federated seismological web services, adopting community standards, or provided by the users themselves by accessing their own document data store. The HPC scientific codes can be selected from a number of waveform simulators, currently available to the seismological community as batch tools or with limited configuration capabilities in their interactive online versions. The results will be staged out from the HPC via a secure GridFTP transfer to a VERCE data layer managed by iRODS. The provenance information of the simulation will be automatically cataloged by the data layer via NoSQL techonologies. We will try to demonstrate how data access, validation and visualisation can be supported by a general purpose provenance framework which, besides common provenance concepts imported from the OPM and the W3C-PROV initiatives, also offers
Wykretowicz, Andrzej; Adamska, Karolina; Guzik, Przemyslaw; Krauze, Tomasz; Wysocki, Henryk
2007-10-01
1. Obesity appears to influence vascular stiffness, an important cardiovascular risk factor. An accurate picture of arterial stiffness may be obtained when a combination of various techniques is used. 2. The purpose of the present study was to assess whether the body mass index (BMI) and body fat content obtained by bioimpedance were of equal value in estimating the influence of body fatness on various indices of vascular stiffness and wave reflection. 3. A total of 175 healthy subjects was studied. Anthropometric measurements and total body bio-impedance analysis were performed to assess fat mass as a proportion of total body composition. Arterial stiffness and wave reflection were assessed using digital volume pulse analysis and tonometric measurement of the wave reflection indices and central haemodynamics. 4. Significant differences in the stiffness index (SI(DVP); P < 0.0001), peripheral augmentation index (pAI(x); P < 0.0001), central augmentation index (cAI(x); P < 0.0001), peripheral pulse pressure (pPP; P = 0.026) and central pulse pressure (cPP; P < 0.0001) were found when the population examined was divided accordingly to tertile of body fat content. However, subdividing various indices of arterial stiffness according to the tertile of BMI did not reveal any significant differences between groups, except for pPP and cPP. 5. Body fat content was significantly correlated with SI(DVP), pAI(x), cAI(x), pPP and cPP. The BMI correlated weakly with SI(DVP), pPP and cPP. 6. In conclusion, the BMI is not very useful in predicting changes in arterial stiffness and wave reflection due to obesity. However, stiffness and wave reflection indices derived from digital volume pulse analysis, the characteristics of radial and aortic pressure waveforms and peripheral and aortic pulse pressure are all related to body fat content, as estimated by bioimpedance.
Cascadia tremor located near plate interface constrained by S minus P wave times.
La Rocca, Mario; Creager, Kenneth C; Galluzzo, Danilo; Malone, Steve; Vidale, John E; Sweet, Justin R; Wech, Aaron G
2009-01-30
Nonvolcanic tremor is difficult to locate because it does not produce impulsive phases identifiable across a seismic network. An alternative approach to identifying specific phases is to measure the lag between the S and P waves. We cross-correlate vertical and horizontal seismograms to reveal signals common to both, but with the horizontal delayed with respect to the vertical. This lagged correlation represents the time interval between vertical compressional waves and horizontal shear waves. Measurements of this interval, combined with location techniques, resolve the depth of tremor sources within +/-2 kilometers. For recent Cascadia tremor, the sources locate near or on the subducting slab interface. Strong correlations and steady S-P time differences imply that tremor consists of radiation from repeating sources.
Validation of a Wave-Body Interaction Model by Experimental Tests
DEFF Research Database (Denmark)
Ferri, Francesco; Kramer, Morten; Pecher, Arthur
2013-01-01
Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera......-body interaction theory, applied for a point absorber wave energy converter. The results show that the ratio floater size/wave amplitude is a key parameter for the validity of the applied theory....
Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf
2014-05-01
The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.
Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology
Energy Technology Data Exchange (ETDEWEB)
Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava
2006-07-31
The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.
Energy Technology Data Exchange (ETDEWEB)
Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 40132, Bandung (Indonesia); Yudistira, Tedi; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Zulhan, Zulfakriza [Earth Science Graduate Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Saygin, Erdinc [Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 (Australia)
2015-04-24
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.
Luo, Cong; Friederich, Wolfgang
2016-04-01
Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.
Basin and Crustal Structure of Jakarta and Bandung, Indonesia from Two Seismic Campaigns
Saygin, E.; Cummins, P. R.; Cipta, A.; Irsam, M.; Masturyono, M.; Murjaya, J.; Nugraha, A. D.; Pandhu, R.; Widiyantoro, S.; Zulhan, Z.
2014-12-01
Between October 2013 and February 2014, a dense portable seismic broadband network was operated by The Australian National University (ANU) and Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) in Jakarta, Indonesia. Jakarta is located in Java Island, Indonesia, with a population over 10 million. Overall 96 points were sampled through the successive deployments of 52 seismic broadband sensors at different parts of the city. After recording continuous seismic data for 5 months, the network was shifted to Bandung, another city to the south-east of Jakarta on March 2014. Bandung is situated on a old lake deposit surrounded by volcanic provinces. The configuration of the seismic network at Bandung encompasses the whole city as well as an active volcano-Tangkuban Perahu and Lembang Fault both located just outside of the city.In both of the experiments, oceanic and anthropogenic noise were recorded as well as local and regional earthquakes. We apply regularized deconvolution to the recorded data of the vertical components of available station pairs, and over 4000 Green's functions were retrieved in total. Waveforms from stacked interstation deconvolutions show clear arrivals of Rayleigh and body waves. The traveltimes that were extracted from the group velocity filtering of Rayleigh wave arrivals, are used in a Transdimensional Bayesian seismic tomography method to map the velocity perturbations across cities. The constructed images at Jakarta mark the very low group velocities of Rayleigh waves, as low as 150 m/s at 1 Hz showing influence of a very low velocity basin. Low seismic velocity regions imaged through seismic noise tomography beneath both cities potentially posses a large risk of causing seismic amplification during a large earthquake close to the cities.
d-Wave to s-wave to normal metal transitions in disordered superconductors
Energy Technology Data Exchange (ETDEWEB)
Spivak, B. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)], E-mail: spivak@u.washington.edu; Oreto, P.; Kivelson, S.A. [Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2009-03-01
We study suppression of superconductivity by disorder in d-wave superconductors, and predict the existence of (at least) two sequential low-temperature transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition. This is a universal property of the system which is independent of the sign of the interaction constant in the s-channel.
Bozdag, H.E.
2009-01-01
We have reached a stage in seismic tomography where further refinements with classical techniques become very difficult. Advances in numerical methods and computational facilities are providing new opportunities in seismic tomography to enhance the resolution of tomographic mantle images. 3-D numeri
Bouchaala, Fateh; Ali, Mohammed Y.; Farid, Asam
2014-07-01
The subsurface geology of Abu Dhabi in the United Arab Emirates is primarily composed of carbonate rocks. Such media are known to be highly heterogeneous. Very few studies have attempted to estimate attenuation in carbonate rocks. In Abu Dhabi no attenuation profile has been published. This study provides the first seismic wave attenuation profiles in Abu Dhabi using dense array of VSP data. We estimated three attenuation profiles: the apparent, the scattering, and the intrinsic attenuations. The apparent attenuation profile was computed using amplitude decay and spectral-ratio methods. The scattering attenuation profile was estimated using a generalized reflection-transmission matrix forward model. It is usually estimated from the sonic log, but to be more consistent with the apparent attenuation, we succeeded in this paper to estimate it from the VSP data. We subtracted the scattering attenuation from the apparent attenuation to deduce the intrinsic attenuation. The results of the study indicate that the scattering attenuation is significant compared to the published studies that are mainly based on clastic rocks. The high scattering attenuation can reach up to 0.02. It can be explained by the strong heterogeneity of the carbonate rocks. This study demonstrates that the Simsima and Rus Formations have considerable scattering and intrinsic attenuations. These formations are considered aquifers in Abu Dhabi; we therefore interpreted this high intrinsic attenuation zones to be due to the heterogeneity and to the fluids contained in these formations. The Umm-Er-Radhuma Formation is a more homogenous formation with limited aquifer potential. Hence, scattering and intrinsic attenuations of the Umm-Er-Radhuma Formation are low.
Rietbrock, A.; Haberland, C. A.; Faulkner, D. R.; Nippress, S.; Rutter, E. H.; Kelly, C. M.; Teixido, T.
2014-12-01
We combine geophysical data, field-geological mapping and lab measurements to study the Carboneras fault zone (CFZ) in SE Spain. The CFZ is part of the Trans-Alborán Shear Zone which constitutes part of the diffuse plate boundary between Africa and Iberia. The CFZ is inferred to behave as a stretching transform fault with˜40 km left-lateral offset. It was active principally between 12 - 6 Ma BP, and has been exhumed from ca. 1 - 2 km depth. The relatively recent movement history and the semi-arid terrain lead to excellent exposure.The phyllosilicate-rich fault gougeis excellently preserved. In 2010 we conducted a controlled source seismic experiment at the CFZ in which explosive sources in boreholes (two groups of 3 explosions) were placed in two strands of the fault zone. The signals were observed with dense linear seismic arrays crossing the CFZ at 3.5km and 8.3km distance, respectively. The recordings show clear high-energy P-phases at receivers and from sources located at or near the fault zone. We interpret these phases as P-waves trapped in the low-velocity layer (waveguide) formed by the damage zone of the fault(s). With waveform modeling (using an analytical solution assuming a straight waveguide embedded in two quarter spaces and a line source at depth) we derive basic models well-explaining the observations. Lab-measurements of the different rocks constrain the possible models. Additionally, we employed extensive three-dimensional finite-difference (3D-FD) modeling with more realistic (curved and anastomosing) waveguide geometries. It seems that the studied segments of the CFZ form effective waveguides for seismic waves with connectivity over several kilometers. The derived seismic models together with lab measurements of the seismic velocities indicate that the average fault zone core widths are in the order of 15 to 25m which is in good agreement with surface geological mapping.
Rietbrock, A.; Haberland, C.; Nippress, S.
2006-12-01
The South American subduction zone in Northern Chile is known for its abundant intermediate depth seismicity. Some of these events have magnitudes greater 7 and therefore imposing a significant seismic hazard to regions, which are generally not affected by large mega-thrust earthquakes. The two most prominent intermediate depth earthquakes in Northern Chile are the 9 December 1950 Antofagasta (Ms 8) and the 13 June 2005 Tarapaca (Mw 7.7) earthquake which both occured at ~100km depth. Both events show a predominantly slab-pull down dip extension mechanism and in the case of the Tarapaca earthquake the rupture occurred on a sub-horizontal plane. While its is widely accepted that dehydration processes are responsible for intermediate depth earthquakes the occurrence of such large intermediate depth earthquakes is still not very well explained. Using data from several temporal seismic arrays in the Central Andes between 1994 and 1997 we obtained a detailed imaged of the topographyof the subducting Nazca plate based on hypocenter locations and P-wave velocities, which may shed light into the processes involved for the Tarapaca earthquake. We find evidence for a trench-perpendicular tear in the slab of the subducting Nazca plate at 21° S. Tomographic velocity images show a north-south step of the slab-related high velocity zone. High precision location of local seismicity reveal a thin southward dipping earthquake cluster terminated at 21° S by a 10 km north-south step of the Wadati-Benioff zone at a depth of ~100 km. These observations suggest a sagging or downward-pushed segment of the Nazca plate north of a hinge fault at 21° S. This observation is further supported by a systematic change in fault plane solutions indicating north-south extension in this depth range. We interpret the evidences for a torn, crunched, and maybe partly overthrusted oceanic plate in terms of north-south confinement. The hinge fault in the slab could be accommodated by some zones of
Frankel, A.; Clayton, R. W.
1986-01-01
Synthetic seismographs that were obtained by the finite difference method are presently applied to the study of elastic and acoustic wave scattering in two-dimensional media with random spatial variations in seismic velocity. The seismograms are analyzed to determine the variation in travel times and waveforms across arrays of receivers. The random media with Gaussian and exponential correlation functions considered differ in the spectral falloff of their velocity fluctuations at wavelengths smaller than 2pi times the correlation distance. It is found that alternative models of crustal heterogeneity can be tested by improved measurements of the frequency dependence of the crustal Q at frequencies greater than about 1 Hz, assuming that scattering is responsible for most of the attenuation at such frequencies.
Sekihara, Takayasu
2016-01-01
For a general two-body bound state in quantum mechanics, both in the stable and decaying cases, we establish a way to extract its two-body wave function in momentum space from the scattering amplitude of the constituent two particles. For this purpose, we first show that the two-body wave function of the bound state corresponds to the residue of the off-shell scattering amplitude at the bound state pole. Then, we examine our scheme to extract the two-body wave function from the scattering amplitude in several schematic models. As a result, the two-body wave functions from the Lippmann--Schwinger equation coincides with that from the Schr\\"{o}dinger equation for an energy-independent interaction. Of special interest is that the two-body wave function from the scattering amplitude is automatically scaled; the norm of the two-body wave function, to which we refer as the compositeness, is unity for an energy-independent interaction, while the compositeness deviates from unity for an energy-dependent interaction, ...
U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends
Energy Technology Data Exchange (ETDEWEB)
Chokshi, N.C.; Shao, L.C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research; Apostolakis, G.
1997-03-01
Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, `Seismic and Geologic Siting Criteria for Nuclear Power Plants,` to 10 CFR Part 100, `Reactor Site Criteria.` Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of `expert opinion` in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)
Efficiency of Wave-Driven Rigid Body Rotation Toroidal Confinement
Rax, J -M; Fisch, N J
2016-01-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared to compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
Seismic damage to structures in the M s6.5 Ludian earthquake
Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu
2016-03-01
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.
UNSTEADY FREE-SURFACE WAVES GENERATED BY BODIES IN A VISCOUS FLUID
Institute of Scientific and Technical Information of China (English)
LU Dong-qiang
2004-01-01
The interaction of laminar flows with free sur face waves generated by submerged bodies in an incompressible viscous fluid of infinite depth is investigated analytically.The analysis is based on the linearized Navier-Stokes equations for disturbed flows. The kinematic and dynamic boundary conditions are linearized for the small amplitude free-surface waves, and the initial values of the flow are taken to be those of the steady state cases. The submerged bodies are mathematically represented by fundamental singularities of viscous flows. The asymptotic representations for unsteady free-surface waves produced by the Stokeslets and Oseenlets are derived analytically. It is found that the unsteady waves generated by a body consist of steady-state and transient responses.As time tends to infinity, the transient waves vanish due to the presence of a viscous decay factor. Thus. an ultimate steady state can be attained.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
@@Based on waveform data, several methods to determine focal mechanisms of small earthquakes were developed since 1980. Kisslinger (1980) and Julian, Foulger (1996) proposed an approach to determine solution by using amplitude ratio of P and S wave. Schwartz (1995) devised a method to determine solutions by the use of polarity data and amplitudes of seismogram envelopes. Amplitudes of short period seismic waves propagating in an inhomogene-ous medium are sensitive to the variation in velocity and Q structure. Nakamura, et al (1999) took medium inhomo-geneity into account in determining focal mechanisms of small earthquakes using waveform data. If the locations of small earthquakes are concentrated in a small region, we can assume that the raypaths from the events to a given station are almost the same. So P and S wave attenuations are independent of event locations. In this case it is con-venient to determine focal mechanisms of these events by using short period P and S wave dataj. Focal mechanism solutions of small earthquakes in 5 regions, i.e., Rongchang, Mabian-Muchuan, Ya￠an, Baoxing and Mianzhu, which are covered by the Chengdu Telemetered Network, are obtained by analyzing the P polarity and short body wave amplitude data recorded in the network since 1992. According to the method proposed by Gephart and Forsyth (1984), based on well determined focal mechanism solutions in 15 sub-zones of Sichuan and Yunnan area, three principal stress tensors s1, s2, and s3, instead of averages of P, B, and T axis of the solutions, are determined to represent the regional stress field distribution.
Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige
2016-04-01
The high-sensitive seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km all over the Japanese archipelago. Although it is equipped with short-period seismometers, we also can observe long-period seismic wave up to 100 s in periods for significantly large earthquakes. In this case, we may treat long-period seismic waves as a 2D wavefield with station separations shorter than wavelength rather than individual traces at stations. In this study, we attempt to reconstruct 2D wavefield and obtain its propagation properties from seismic gradiometry (SG) method. The SG estimates the wave amplitude and its spatial derivative coefficients from discrete station record by the Taylor series approximation with an inverse problem. By using spatial derivatives in horizontal directions, we can obtain properties of propagating wave packet such as the arrival direction, slowness, geometrical spreading and radiation pattern. In addition, by using spatial derivatives together with free-surface boundary condition, we may decompose the vector elastic 2D wavefield estimated by the SG into divergence and rotation components. First, we applied the seismic gradiometry to a synthetic long-period (20-50 s) seismogram dataset computed by numerical simulation in realistic 3D medium at the Hi-net station layout as a feasibility test. We confirmed that the wave amplitude and its spatial derivatives are very well reproduced with average correlation coefficients higher than 0.99 in this period range. Applications to a real large earthquakes show that the amplitude and phase of the wavefield are well reconstructed with additional information of arrival direction and its slowness. The reconstructed wavefield contained a clear contrast in slowness between body and surface waves, regional non-great-circle-path wave propagation which may be attributed to scattering. Slowness
Gao, Tian-You; Peng, Shi-Guo; Jiang, Kaijun
2015-04-01
We theoretically study two atoms with p -wave interaction in a one-dimensional waveguide, investigating how the transverse anisotropy of the confinement affects the two-body state, especially the properties of the resonance. For a bound-state solution, we find there are a total of three two-body bound states due to the richness of the orbital magnetic quantum number of the p -wave interaction, while only one bound state is supported by the s -wave interaction. Two of them become nondegenerate due to the breaking of the rotation symmetry under a transversely anisotropic confinement. For a scattering solution, the effective one-dimensional scattering amplitude and scattering length are derived. We find the position of the p -wave confinement-induced resonance shifts apparently versus the transverse anisotropy. In addition, a two-channel mechanism for the confinement-induced resonance in a one-dimensional waveguide is generalized to the p -wave interaction, which was previously proposed only for the s -wave interaction. All our calculations are based on the parametrization of the 40K-atom experiments and can thus be confirmed in future experiments.
Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.
2016-01-01
Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1 s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.
Modeling the propagation of electromagnetic waves over the surface of the human body
Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.
2016-12-01
The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.
Detection of Jovian seismic waves: a new probe of its interior structure
Gaulme, Patrick; Gay, Jean; Guillot, Tristan; Jacob, Cedric
2011-01-01
Knowledge of Jupiter's deep interior would provide unique constraints on the formation of the Solar System. Measurement of its core mass and global composition would shed light on whether the planet formed by accretion or by direct gravitational collapse. At present, the inner structure of Jupiter is poorly constrained and seismology, which consists of identifying acoustic eigenmodes, offers a way to directly measure its deep sound speed profile, and thus its physical properties. Seismology of Jupiter has been considered since the mid 1970s, but hitherto the various attempts to detect global modes led, at best, to ambiguous results. We report the detection of global modes of Jupiter, based on radial velocity measurements performed with the SYMPA Fourier spectro-imager. The global seismic parameters that we measure include the frequency of maximum amplitude 1213+/-50 \\mu Hz, the mean large frequency spacing between radial harmonics 155.3+/-2.2 \\mu Hz and the mode maximum amplitude 49 (-10/+8) cm/s, all values ...
P wave onset time picking with the B-spline biorthogonal wavelet
Institute of Scientific and Technical Information of China (English)
TENG Yun-tian; WANG Xi-zhen; WANG Xiao-mei; MA Jie-mei; XU Jian-hua
2006-01-01
@@ The seismic wave consists of many seismic phases, which contain rich geophysical information from the hypocenter, medium of seismic wave passing through and so on. It is very important to detect and pick these seismic phases for understanding the mechanism of earthquake, the Earth structure and property of seismic waves. In order to reduce or avoid the loss resulted from the earthquake, one of the important goals of seismic event detecting is to obtain its related information before and after it occurs. Because of the particularity of P wave and S wave,the seismic event detecting focuses on distinguishing P and S waves and picking their onset time, it has been becoming one of the research hotspots for many geophysicists to pick the P and S wave arrival accurately and effectively.
Institute of Scientific and Technical Information of China (English)
QIAN Jin; WU Shiguo; CUI Ruofei
2013-01-01
Seismic wave modeling is a cornerstone of geophysical data acquisition,processing,and interpretation,for which finite-difference methods are often applied.In this paper,we extend the velocitypressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method.The scheme is developed using a fourth-order spatial and a second-order temporal operator.Then,we define a stability coefficient (SC) and calculate its maximum value under the stability condition.Based on the dispersion relationship,we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles,stability coefficients,and orders.We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model.Additionally,the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.
You, Jiachun; Liu, Xuewei; Wu, Ru-Shan
2017-03-01
We analyze the mathematical requirements for conventional reverse time migration (RTM) and summarize their rationale. The known information provided by current acquisition system is inadequate for the second-order acoustic wave equations. Therefore, we introduce a dual-sensor seismic acquisition system into the coupled first-order acoustic wave equations. We propose a new dual-sensor reverse time migration called dual-sensor RTM, which includes two input variables, the pressure and vertical particle velocity data. We focus on the performance of dual-sensor RTM in estimating reflection coefficients compared with conventional RTM. Synthetic examples are used for the study of estimating coefficients of reflectors with both dual-sensor RTM and conventional RTM. The results indicate that dual-sensor RTM with two inputs calculates amplitude information more accurately and images structural positions of complex substructures, such as the Marmousi model, more clearly than that of conventional RTM. This shows that the dual-sensor RTM has better accuracy in backpropagation and carries more information in the directivity because of particle velocity injection. Through a simple point-shape model, we demonstrate that dual-sensor RTM decreases the effect of multi-pathing of propagating waves, which is helpful for focusing the energy. In addition, compared to conventional RTM, dual-sensor RTM does not cause extra memory costs. Dual-sensor RTM is, therefore, promising for the computation of multi-component seismic data.
Analysis of S Wave Propagation Through a Nonlinear Joint with the Continuously Yielding Model
Cui, Zhen; Sheng, Qian; Leng, Xianlun
2017-01-01
Seismic wave propagation through joints that are embedded in a rock mass is a critical issue for aseismic issues of underground rock engineering. Few studies have investigated nonlinear joints with a continuously yielding model. In this paper, a time-domain recursive method (TDRM) for an S wave across a nonlinear Mohr-Coulomb (MC) slip model is extended to a continuously yielding (CY) model. Verification of the TDRM-based results is conducted by comparison with the simulated results via a built-in model of 3DEC code. Using parametric studies, the effect of normal stress level, amplitude of incident wave, initial joint shear stiffness, and joint spacing is discussed and interpreted for engineering applications because a proper in situ stress level (overburden depth) and acceptable quality of surrounding rock mass are beneficial for seismic stability issues of underground rock excavation. Comparison between the results from the MC model and the CY model is presented both for an idealized impulse excitation and a real ground motion record. Compared with the MC model, complex joint behaviors, such as tangential stiffness degradation, normal stress dependence, and the hysteresis effect, that occurred in the wave propagation can be described with the CY model. The MC model seems to underestimate the joint shear displacement in a high normal stress state and in a real ground motion excitation case.
Institute of Scientific and Technical Information of China (English)
沈鸿雁; 李庆春; 边建民
2014-01-01
Seismic reflection imaging result is not satisfactory when the underground geological conditions are much complex,and the conventional reflection seismic exploration would be ineffective.In the paper,one 2D seismic scattering wave imaging method is achieved from the time-distance curve equation of 2D scattering wave based on the seismic-earth model of point scattering,and the seismic scattering wave kinematics law is ana-lyzed.With the processing results of fault model and a set of real seismic data,the characteristics of the seismic scattering wave imaging technique is discussed,and the imaging results of traditional reflection imaging tech-nique are compared to prove the effectiveness of this method.%地下地质条件比较复杂时，地震反射波成像效果不理想，致使常规反射地震勘探难以奏效。本文基于点散射地震－地质模型，推导出2D散射波时距曲线方程，分析了地震散射波的运动学规律；在此基础上，提出了2D地震散射波成像的方法与技术；结合断层模型和一套实际地震资料处理，讨论了散射波地震成像的特点，并与传统反射波成像结果进行了比较，证明了该方法的有效性。
Phase Diagram of a Holographic Superconductor Model with s-wave and d-wave
Nishida, Mitsuhiro
2014-01-01
We consider a holographic model with a scalar field, a tensor field and a direct coupling between them as a superconductor with an s-wave and a d-wave. We find a rich phase structure in our model. Depending on the direct coupling, the model exhibits coexistence of the s-wave and the d-wave, and/or order competition, and has a triple point.
Foreign body in children?s airways
Directory of Open Access Journals (Sweden)
Cassol Vitor
2003-01-01
Full Text Available OBJECTIVE: To determine the clinical characteristics and the results of bronchoscopic treatment of children due to foreign body aspiration in a university hospital. METHOD: Time series of children who underwent bronchoscopies for foreign bodies aspirated into the airway between March 1993 and July 2002. Each patient was analyzed for age, sex, initial clinical diagnosis, nature and location of the foreign body, duration of symptoms between aspiration and bronchoscopy, radiological findings, results of bronchoscopic removal, complications of bronchoscopy and presence of foreign bodies in the airways. RESULTS: Thirty-four children, 20 (59% boys, ages ranging from nine months to nine years (median = 23 months. In 32 (94% children the foreign body was removed by rigid bronchoscope, and two resulted in thoracotomy. Foreign bodies were more frequent in children under three years of age (66%. A clinical history of foreign body inhalation was obtained in 27 (80% cases. Most of the foreign bodies removed were organic (65% and more frequently found in the right bronchial tree (59%. Foreign bodies were removed within 24 hours in 18 (53% cases. The most frequent radiographic findings were: unilateral air trapping, atelectasis and radiopac foreign body. Major bronchoscopy complications occurred in seven children (22%, and there were no deaths. CONCLUSIONS: More attention is necessary to the respiratory symptoms of aspirations, mainly in boys at early ages, with clinical history and compatible radiological findings. Most foreign bodies removed were of organic nature. In this case series, therapeutic rigid bronchoscopy was effective with few complications.
RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint
Energy Technology Data Exchange (ETDEWEB)
Yu, Y.; Li, Y.
2011-03-01
A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.
Transient Marangoni waves due to impulsive motion of a submerged body
Shu, Jian-Jun
2014-01-01
The Oseen problem in a viscous fluid is formulated for studying the transient free-surface and Marangoni waves generated by the impulsive motion of a submerged body beneath a surface with surfactants. Wave asymptotics and wavefronts for large Reynolds numbers are obtained by employing Lighthill's two-stage scheme. The results obtained show explicitly the effects of viscosity and surfactants on Kelvin wakes.
Dräbenstedt, A.; Cao, X.; Polom, U.; Pätzold, F.; Zeller, T.; Hecker, P.; Seyfried, V.; Rembe, C.
2016-06-01
Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.
Frequency dependent attenuation of seismic waves for Delhi and surrounding area, India
Directory of Open Access Journals (Sweden)
Babita Sharma
2015-06-01
Full Text Available The attenuation properties of Delhi & surrounding region have been investigated using 62 local earthquakes recorded at nine stations. The frequency dependent quality factors Qa (using P-waves and Qb (using S-waves have been determined using the coda normalization method. Quality factor of coda-waves (Qc has been estimated using the single backscattering model in the frequency range from 1.5 Hz to 9 Hz. Wennerberg formulation has been used to estimate Qi (intrinsic attenuation parameter and Qs (scattering attenuation parameter for the region. The values Qa, Qb, Qc, Qi and Qs estimated are frequency dependent in the range of 1.5Hz-9Hz. Frequency dependent relations are estimated as Qa=52f1.03, Qb=98f1.07 and Qc=158f0.97. Qc estimates lie in between the values of Qi and Qs but closer to Qi at all central frequencies. Comparison between Qi and Qs shows that intrinsic absorption is predominant over scattering for Delhi and surrounding region.
Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc
2015-04-01
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green's function for all possible station pairs. Then we carefully picked the peak of each Green's function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.
BOUSSINESQ MODELLING OF NEARSHORE WAVES UNDER BODY FITTED COORDINATE
Institute of Scientific and Technical Information of China (English)
FANG Ke-zhao; ZOU Zhi-li; LIU Zhong-bo; YIN Ji-wei
2012-01-01
A set of nonlinear Boussinesq equations with fully nonlinearity property is solved numerically in generalized coordinates,to develop a Boussinesq-type wave model in dealing with irregular computation boundaries in complex nearshore regions and to facilitate the grid refinements in simulations.The governing equations expressed in contravariant components of velocity vectors under curv ilinear coordinates are derived and a high order finite difference scheme on a staggered grid is employed for the numerical implementation.The developed model is used to simulate nearshore wave propagations under curvilinear coordinates,the numerical results are compared against analytical or experimental data with a good agreement.
Effects of Mooring Systems on the Performance of a Wave Activated Body Energy Converter
DEFF Research Database (Denmark)
Zanuttigh, Barbara; Angelelli, Elisa; Kofoed, Jens Peter
2013-01-01
Aim of this paper is to analyse the power and hydraulic performance of a floating Wave Energy Converter with the purpose at optimising its design for installation in arrays. The paper presents new experiments carried out in 1:30 scale on a single device of the Wave Activated Body type in the deep......-water wave tank at Aalborg University. Power production and wave transmission were examined by changing the mooring system, the wave attack and the device orientation with respect to the incoming waves.. To assure the best performance the device size may be “tuned” based on the local peak wave length...... and the mooring system should be selected to allow the device for large movements....
Deshpande, A. A.; Mohan, G.
2016-10-01
The northwestern Deccan volcanic province (NWDVP) of India, encompassing the Saurashtra peninsula and the adjoining Gulf of Cambay, is investigated through joint inversion of surface wave dispersion measurements and teleseismic P receiver functions, to estimate the crustal and shallow upper mantle shear wave velocity (Vs) structure. The Mw ∼ 7.7 Bhuj earthquake and the post Bhuj regional events, recorded during the period 2001-2010 at 7 stations along 37 source-receiver paths were used along with 35 teleseismic events. A joint curve fitting inversion technique is applied to obtain a best fit for the fundamental mode Rayleigh wave group velocity dispersion curves for time periods 5-50 s and high quality crustal P wave receiver functions obtained at each station. Significant crustal heterogeneity is observed within the study region with the average crustal Vs ranging from 3.5 km/s to 3.8 km/s with the paths cutting across the Gulf of Cambay exhibiting large reduction in shear wave velocities. Utilizing the average crustal Vs ≈ 3.66 km/s estimated for Saurashtra, together with the average crustal P wave velocity (Vp) ≈ 6.54 km/s derived independently through deep seismic sounding studies, yields a bulk Vp/Vs ratio of 1.786 or an equivalent crustal Poisson's ratio of 0.271. A major contribution to the high Poisson's ratio comes from the 12 to 16 km thick lower crustal layers with shear velocities ranging from 3.8 km/s to 4.19 km/s suggesting widespread magmatic underplating due to emplacement of mafic cumulates in the lower crust. The shallow uppermost mantle shear velocities are in the range 4.2-4.5 km/s averaging 4.36 km/s, which is less than that observed for the Indian shield, indicating the effects of residual thermal anomaly. The variation in the crustal Vs, high Poisson's ratios and low upper mantle shear velocities reflect the thermal and compositional effects of the Deccan volcanism which are manifested in terms of pervasive presence of mafic dykes
Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy
Kharchenko, V. F.
2016-11-01
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.
Loads on a 3D body due to second order waves and a current
DEFF Research Database (Denmark)
Skourup, Jesper; Cheung, K. F.; Bingham, Harry B.;
2000-01-01
Non-linear loads on a fixed body due to waves and a current are investigated. Potential theory is used to describe the flow, and a three-dimensional (3D) boundary element method (BEM), combined with a time-stepping procedure, is used to solve the problem. The exact free-surface boundary conditions......-order oscillatory forces and for the second-order mean force on a fixed vertical circular cylinder in waves and a current. The second-order oscillatory forces on the body in waves and current are new results, while the remaining force components are verified by comparison with established numerical and analytical...
P and S-wave tomographic images for the PASSCAL experiments
Yuan, H.; Dueker, K.
2001-12-01
We present teleseismic P and S-wave tomographic images down to 400 Km for the PASSCAL CD-ROM teleseismic experiment. Our aim is to investigate the structural variations across the Archean-Proterozoic Cheyenne Belt (the North line) and across the Proterozoic-Proterozoic Jemez volcanic lineament (the South line). A full year of teleseismic P and S-wave data was collected from 48 PASSCAL broadband 3-component instruments. S phases were rotated to the direction of maximum linear polarization. A multi-channel cross correlation technique was used to measure the arrival times. We picked 1400 travel-time residuals for the teleseismic S, ScS and SKS phases and 2000 for P. An iterative LSQR matrix solver with Laplacian regulation was applied to invert the data for P and S wave images. Our preliminary results show large peak-to-peak teleseismic residuals, i.e., 2 sec P-time variations and 5 sec S-wave variations. The peak-to-peak S velocity difference reaches 12%. In the CD-ROM North line a fast anomaly appears north of CB, which is consistent with the cold, stable Archean craton. To the south this feature vanishes across the Cheyenne Belt (N 41.25 deg). The south line shows a large low velocity zone extending to 200 km beneath the Jemez volcanic lineament. The P-wave and S-wave images are highly correlated with a dnVp/dlnVs ratio of about 2. Images from two different PASSCAL experiments, the Lodore and Laramie array, share the complexities of the seismic velocity variation beneath the CD-ROM transects. A joint inversion of the P and S and a delta t-star data are proposed to further constrain the thermal state and composition state of the active upper mantle beneath the Wyoming, Colorado and New Mexico regions.
Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.
2006-01-01
A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.
Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain
Energy Technology Data Exchange (ETDEWEB)
Innocent Aluka
2008-08-31
Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence
Rayleigh-wave Tomography and Seismic Anisotropic Structures in the Region of the Philippine Sea
Lee, Hsin-Yu; Legendre, Cédric P.; Chang, Emmy T. Y.
2016-04-01
The Philippine Sea Plate (PSP) is surrounded by convergent boundaries, the Pacific plate is subducting beneath the PSP along the Izu-Bonin and Mariana trenches at the east, whereas the PSP is subducting beneath the Eurasian plate along the Nankai trough, Ryukyu trench and Philippine trench at the west. The PSP can be divided by three oceanic basins: the oldest West Philippine basin developing in 35-45 Ma in the west, and the Shikoku and Parece Vela basins in 15-30 Ma in the east. Previous studies show a large variety of the seismic anisotropy structures in the region of the PSP, which correspond different scenarios of tectonic evolution for this area. In this study, we analyze both isotropic and anisotropic Rayleigh-wave velocity structures of the PSP by means of two-station method. The earthquakes of magnitude (Mw) greater than 5.0 in-between the years 1998-2014 were acquired. Totally, 7914 teleseismic events are adopted to form the measurements of Rayleigh-wave dispersion curves along 467 station-pairs over the PSP. The measured dispersion curves are then inverted into the isotropic and azimuthally anisotropic (2ψ) velocity maps at different periods with the damped, lateral smoothing LSQR inversion. The inversion is framed by the triangular grids which knots are of 200 km spacing. The consequent velocity anomalies are referenced to the average of the phase velocity at the periods between 50 and 100 seconds. The resulting velocity anomalies show a consistent pattern with the locations of the sub-basins in the PSP at the periods of 50 and 60 sec, which can be considered to be the association of lithospheric velocity structure with basin ages. The positive velocity anomalies are seen in the West Philippine basin associating the relatively old lithosphere; whereas the negative anomalies are found in the Shikoku and Parece Vela basins which the lithospheric structures are relatively young. On the other hand, the resultant azimuthal anisotropy reveals an apparent
Competition between the s-wave and p-wave superconductivity phases in a holographic model
Nie, Zhang-Yu; Gao, Xin; Zeng, Hui
2013-01-01
We build a holographic superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. In this model, the s-wave and p-wave condensates can be consistently realized. We find that there are totally four phases in this model, namely, the normal phase without any condensate, s-wave phase, p-wave phase and the s+p coexisting phase. By calculating Gibbs free energy, the s+p coexisting phase turns out to be thermodynamically favored once it can appear. The phase diagram with the dimension of the scalar operator and temperature is drawn. The temperature range for the s+p coexisting phase is very narrow, which shows the competition between the s-wave and p-wave orders in the superconductor model.
Bargi, Khosrow; Dezvareh, Reza; Mousavi, Seyed Amin
2016-09-01
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jackettype offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.
Directory of Open Access Journals (Sweden)
J. ANTONOPOULOS
1980-06-01
Full Text Available The Eastern Mediterranean has a long history of damaging seismic sea
waves (Tsunamis but a great number of them which are locally generated are small. They have caused no serious damage to the coasts because their
energy is confined by many islands of the Greek Archipelagos. However,
some of them have been rather severe and destructive to property and
human life.
This paper is comprised of data from an investigation into the activity
of seismic sea waves in the Eastern Mediterranean from the Birth of
Christ to 500 A.D. It contains a great amount of information concerning
earthquakes, volcanic eruptions and seismic sea waves.
All the available information has been compiled from historical accounts,
archives, press reports, magazines and related works.
Basin amplification of seismic waves in the city of Pahrump, Nevada.
Energy Technology Data Exchange (ETDEWEB)
Abbott, Robert E.
2005-07-01
Sedimentary basins can increase the magnitude and extend the duration of seismic shaking. This potential for seismic amplification is investigated for Pahrump Valley, Nevada-California. The Pahrump Valley is located approximately 50 km northwest of Las Vegas and 75 km south of the Nevada Test Site. Gravity data suggest that the city of Pahrump sits atop a narrow, approximately 5 km deep sub-basin within the valley. The seismic amplification, or ''site effect'', was investigated using a combination of in situ velocity modeling and comparison of the waveforms and spectra of weak ground motion recorded in the city of Pahrump, Nevada, and those recorded in the nearby mountains. Resulting spectral ratios indicate seismic amplification factors of 3-6 over the deepest portion of Pahrump Valley. This amplification predominantly occurs at 2-2.5 Hz. Amplification over the deep sub-basin is lower than amplification at the sub-basin edge, location of the John Blume and Associates PAHA seismic station, which recorded many underground nuclear tests at the Nevada Test Site. A comprehensive analysis of basin amplification for the city of Pahrump should include 3-D basin modeling, due to the extreme basement topography of the Pahrump Valley.
dc Josephson Effect in s-Wave Superconductor/Ferromagnet Insulator/p-Wave Superconductor Junctions
Institute of Scientific and Technical Information of China (English)
LI Xiao-Wei
2007-01-01
The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p)junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface.The phase dependence of the Josephson current I ( φ) between s-wave and px-wave superconductor is predicted to be sin(2φ).The ferromagnet scattering effect,the barrier strength,and the roughness strength at interface suppress the dc currents in s/FI/p junction.
1988-10-18
Mantle Boundary Inferred from Short-Period Scattered PKP Waves Recorded at the Global Digital Seismograph Network KLAUS BATAILLE AND STANILY M. F...Geophys. Res., 78, Osemov, L A., Wave Propagation in a Random Medium, Mc Graw - 6009--6020, 1973. Hill, New York, 1960. Morelli, A., and A. M
U.S. Seismic Design Maps Web Application
Martinez, E.; Fee, J.
2015-12-01
The application computes earthquake ground motion design parameters compatible with the International Building Code and other seismic design provisions. It is the primary method for design engineers to obtain ground motion parameters for multiple building codes across the country. When designing new buildings and other structures, engineers around the country use the application. Users specify the design code of interest, location, and other parameters to obtain necessary ground motion information consisting of a high-level executive summary as well as detailed information including maps, data, and graphs. Results are formatted such that they can be directly included in a final engineering report. In addition to single-site analysis, the application supports a batch mode for simultaneous consideration of multiple locations. Finally, an application programming interface (API) is available which allows other application developers to integrate this application's results into larger applications for additional processing. Development on the application has proceeded in an iterative manner working with engineers through email, meetings, and workshops. Each iteration provided new features, improved performance, and usability enhancements. This development approach positioned the application to be integral to the structural design process and is now used to produce over 1800 reports daily. Recent efforts have enhanced the application to be a data-driven, mobile-first, responsive web application. Development is ongoing, and source code has recently been published into the open-source community on GitHub. Open-sourcing the code facilitates improved incorporation of user feedback to add new features ensuring the application's continued success.
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi
2015-04-01
Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a
Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves
Ellsworth, William L.; Malin, Peter E.
2011-01-01
Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.
THE WAVE-MAKING CHARACTERISTICS OF A MOVING BODY IN A TWO-LAYER FLUID
Institute of Scientific and Technical Information of China (English)
ZHU Wei
2005-01-01
The Wave-making characteristics of a moving body in a two-layer fluid with free surface is investigated numerically and experimentally. The numerical analysis is based on the modified layered boundary integral equation system. The wave characteristics on the free surface and interface generated by a moving sphere and an ellipsoid is numerically simulated in both finite depth and infinite depth of lower layer model. The numerical results of the sphere are compared with the analytical results for a dipole with the same velocity in a two-layer fluid of finite depth. The dependence of the wave systems and structures on the characteristic quantities is discussed. Three kinds of measurement techniques are used in model experiments on the internal waves generated by a sphere advancing in a two-layer fluid. The effects of the varying velocity and stratification on the wavelength, wave amplitudes and the maximum half angles of internal waves are analyzed qualitatively.
Intertidal sea stars (Pisaster ochraceus) alter body shape in response to wave action.
Hayne, Kurtis J R; Palmer, A Richard
2013-05-01
Sea stars are some of the largest mobile animals able to live in the harsh flow environment of wave-exposed, rocky intertidal shores. In addition, some species, such as the northeastern Pacific Pisaster ochraceus, are ecologically significant predators in a broad range of environments, from sheltered lagoons to the most wave-exposed shorelines. How they function and survive under such an extreme range of wave exposures remains a puzzle. Here we examine the ability of P. ochraceus to alter body form in response to variation in flow conditions. We found that sea stars in wave-exposed sites had narrower arms and were lighter per unit arm length than those from sheltered sites. Body form was tightly correlated with maximum velocity of breaking waves across four sites and also varied over time. In addition, field transplant experiments showed that these differences in shape were due primarily to phenotypic plasticity. Sea stars transplanted from a sheltered site to a more wave-exposed site became lighter per unit arm length, and developed narrower arms, after 3 months. The tight correlation between water flow and morphology suggests that wave force must be a significant selective factor acting on body shape. On exposed shores, narrower arms probably reduce both lift and drag in breaking waves. On protected shores, fatter arms may provide more thermal inertia to resist overheating, or more body volume for gametes. Such plastic changes in body shape represent a unique method by which sea stars adapt to spatial, seasonal and possibly short-term variation in flow conditions.
Alvarez, M.; Li, Y.; Vidale, J.; Cochran, E.
2004-12-01
Coordinated by the SAFOD PIs, we used 96 PASSCAL short-period three-component seismometers in linear arrays deployed across and along the San Andreas fault (SAF) near the town of Parkfield and the SAFOD drilling site in 2002 and 2003, respectively. The data recorded for near-surface explosions detonated in the experiments (Li and Vidale), PASO project (Thurber and Roecker) and refraction profiling (Hole), and local earthquakes show fault-zone trapped waves clearly for the source and receivers located close to the fault. The time duration of the dominant trapped energy after S-arrivals increases with the event-to-array distance and focal depth progressively. Using a finite-difference code, we first synthesize fault-zone trapped waves generated by explosions to determine the shallowest 1 or 2 km fault zone structure with the velocity constraints from seismic profiling of the shallow SAF at Parkfield [Catchings et al., 2002]. We then strip shallow effects to resolve deeper structure of the fault zone, and synthesize trapped waves from earthquakes at depths between 2.5 and 11 km to complete a model of the SAF with depth-variable structure in 3-D. We also use the P-first arrivals and polarity as additional information in modeling of velocities and location of the material interface with the structural constraints from seismic tomography at Parkfield [Thurber et al., 2004] to the bed-rock velocities. In grid-search modeling, we tested various values for fault zone depth, width, velocity, Q, and source location. The best-fit model parameters from this study show evidence of a damaged core zone on the main SAF, which likely extends to seismogenic depths. The zone is marked by a low-velocity waveguide ~150 m wide, in which Q is 10-50 and shear velocities are reduced by 30-45% from wall-rock velocities. We also find some seismic energy trapped partitioned in the branching faults that connect to the San Andreas main fault at a shallow depth near Parkfield.
Effect of burial depth on seismic signals. Volume I. Final report 1976-1978
Energy Technology Data Exchange (ETDEWEB)
Perl, N.; Thomas, F.J.; Trulio, J.; Woodie, W.L.
1979-05-01
This report discusses a calculational program aimed at improving the U.S. capability to verify a Threshold Test Ban Treaty (TTBT) by seismic means. The analysis emphasizes shallow bursts, examining both body-wave and surface-wave effects. Two-dimensional inelastic source calculations, using Applied Theory's AFTON program, were made on a representative set of 150 KT explosions. Simple elastic theory is reviewed, indicating the primary body wave from a buried explosion receives positive or negative reinforcement from the free-surface reflection. The more refined calculations, which include inelastic and gravitational effects, indicate a 'reflection' amplitude smaller than that calculated for the elastic case. More important, the reflected wave is relatively delayed in time, so that transitions between positive and negative reinforcement occur at shallower depths of burial. A surface-wave model is developed, based on Green's function. Many problems were encountered in modifying the AFTON source-data program to provide information that was accurate for long-period displacements, and to extrapolate calculations well beyond the reasonable truncation times for the program. Preliminary conclusions are made concerning the need for inelastic source calculations; depth-of-burial effects on signal generation; the resulting yield estimation; possible improved yield estimation procedures; and topographic effects. Volume I presents summaries of the body-wave and surface-wave calculations to date.
Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations
Moran, Seth C.
2004-01-01
The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be
The competition between s-wave order and d-wave order in holographic superconductors
Li, Li-Fang; Li, Li; Wang, Yong-Qiang
2014-01-01
We study the competition between s-wave order and d-wave order through two holographic superconductor models. We find there are four phases in each model, involving in the normal phase without any condensation, the pure s-wave phase, pure d-wave phase and the s+d coexisting phase. Once the coexisting phase appears, it is thermodynamically favored. The phase diagram is constructed for each model in terms of temperature and the ratio of charges between two orders. We further compare the behaviors of some thermodynamic quantities, and discuss the different aspects and identical ones between two models.
Unsteady Free-surface Waves Due to a Submerged Body in Two-dimensional Oseen Flows
Institute of Scientific and Technical Information of China (English)
LUDong-qiang; AllenT.CHWANG
2004-01-01
The two-dimensional unsteady free-surface waves due to a submerged body moving in an incompressible viscous fluid of infinite depth is considered.The disturbed flow is governed by the unsteadyOseen equations with the kinematic and dynamic boundary conditions linearized for the free-surface waves.Accordingly, the body is mathematically simulated by an Oseenlet with a periodically oscillating strength.By means of Fourier transforms,the exact solution for the free-surface waves is expressed by an integral with a complex dispersion function, which explicitly shows that the wave dynamics is characterized by a Reynolds number and a Strouhal number.By applying Lighthill's theorem, asymptotic representations are derived for the far-field waves with a sub-critical and a super-critical Strouhal number. It is found that the generated waves due to the oscillating Oseenlet consist of the steady-state and transient responses. For the viscous flow with a sub-critical Strouhal number, there exist four waves: three propagate downstream while one propagates upstream.However, for the viscous flow with a super-critical Strouhal number, there exist two waves only,which propagate downstream.
Reassessment of the historical seismic activity with major impact on S. Miguel Island (Azores
Directory of Open Access Journals (Sweden)
D. Silveira
2003-01-01
Full Text Available On account of its tectonic setting, both seismic and volcanic events are frequent in the Azores archipelago. During the historical period earthquakes and seismic swarms of tectonic and/or volcanic origin have struck S. Miguel Island causing a significant number of casualties and severe damages. The information present in historical records made possible a new macroseismic analysis of these major events using the European Macroseismic Scale-1998 (EMS-98. Among the strongest earthquakes of tectonic origin that affected S. Miguel Island, six events were selected for this study. The isoseismal maps drawn for these events enabled the identification of areas characterized by anomalous values of seismic intensity, either positive or negative, to constrain epicentre locations and to identify some new seismogenic areas. Regarding seismic activity associated with volcanic phenomena six cases were also selected. For each of the studied cases cumulative intensity values were assessed for each locality. The distribution of local intensity values shows that the effects are not homogeneous within a certain distance from the eruptive centre, the area of major impacts relates with the eruptive style and damages equivalent to high intensities may occur in Furnas and Sete Cidades calderas. Combining all the historical macroseismic data, a maximum intensity map was produced for S. Miguel Island.
The Seismic Reflection Wave of Liaolan Breaks at Puyang Seismostation%濮阳台聊兰断裂带地震反射波分析
Institute of Scientific and Technical Information of China (English)
郭杰; 郭德科; 李桂清; 郑培玲; 吴山峰
2015-01-01
There are many small earthquakes in the Liaolan Fault Zone,and the seismic stations around the area record a special seismic phase. Puyang seismic station record some earthquakes in this area which have the character. With the help of comparative method,graphic method and time distance equation method,we analyzed the seismic phase characteristics in this area according to the characteristics of geological structure and seismic wave kinematics , proposed that the special seismic phase is underground interface reflection wave.%聊兰断裂带小震较多，周围台站记录该地区地震震相特殊。濮阳市地震台搜集了该区域有这一特征的地震，依据本区地质构造特征和地震波运动学特征，运用对比法、作图法和时距方程法，分析了该区域特殊震相特征，认为两个不明震相为地下界面反射波。
Seismic methods for resource exploration in enhanced geothermal systems
Energy Technology Data Exchange (ETDEWEB)
Gritto, Roland; Majer, Ernest L.
2002-06-12
A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.
Surface and body waves in magnetic flux tubes. [in solar convection zone, photosphere, and corona
Abdelatif, T. E.
1988-01-01
The dispersion relation of surface and body waves in a magnetic flux tube is studied in detail. The properties of the fast and slow bodywaves are described in terms of the filtering characteristics of the flux tube. In addition to the axisymmetric and nonaxisymmetric distinction between the modes, an additional distinction is made between the fundamental mode and the rest of the modes. New results concerning the thin and large flux tube approximation are derived. The behavior of surface and body waves in the solar convection zone, photosphere, and corona is discussed.
Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method
Institute of Scientific and Technical Information of China (English)
柏威; 滕斌
2001-01-01
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.
DEFF Research Database (Denmark)
2013-01-01
The paper presents the preliminary results of new physical tests carried out in the directional wave basin of Aalborg University (DK). The devices under exams are two floating 7 Degrees of Freedom Wave Activated Bodies moored with a spread system composed by 4 steel chains. The devices were subject...... to ordinary North Sea wave climate conditions and deployed in 1:60 scale. The main purpose of this paper is to analyse the performance of a Wave Energy Converter considering the interdependencies among energy production, loads on real moorings and device movements. The mooring effects on power production...... and on device movements are specifically investigated by varying the chain pre-tension level. Results suggest that the power production optimization is achieved with a slack mooring system providing a quasi-static response to the ordinary wave attacks...
Schmelzbach, Cedric; Sollberger, David; Van Renterghem, Cédéric; Häusler, Mauro; Robertsson, Johan; Greenhalgh, Stewart
2016-04-01
Traditionally, land-seismic data acquisition is conducted using vertical-component sensors. A more complete representation of the seismic wavefield can be obtained by employing multicomponent sensors recording the full vector wavefield. If groups of multicomponent sensors are deployed, then spatial seismic wavefield gradients and rotational rates can be estimated by differencing the outputs of closely spaced sensors. Such data capture all six degrees of freedom of a rigid body (three components of translation and three components of rotation), and hence allow an even more complete representation of the seismic wavefield compared to single station triaxial data. Seismic gradient and rotation data open up new possibilities to process land-seismic data. Potential benefits and applications of wavefield gradient data include local slowness estimation, improved arrival identification, wavefield separation and noise suppression. Using synthetic and field data, we explored the reliability and sensitivity of various multicomponent sensor layouts to estimate seismic wavefield gradients and rotational rates. Due to the wavelength and incidence-angle dependence of sensor-group reception patterns as a function of the number of sensors, station spacing and layout, one has to counterbalance the impacts of truncation errors, random noise attenuation, and sensitivity to perturbations such as amplitude variations and positioning errors when searching for optimum receiver configurations. Field experiments with special rotational rate sensors were used to verify array-based rotational-rate estimates. Seismic wavefield gradient estimates and inferred wavefield attributes such as instantaneous slowness enable improved arrival identification, e.g. wave type and path. Under favorable conditions, seismic-wavefield gradient attributes can be extracted from conventional vertical-component data and used to, for example, enhance the identification of shear waves. A further promising
Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.
2016-10-01
Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10