WorldWideScience

Sample records for body irradiation tbi

  1. Pilot production of the wedge filter for the TBI (total body irradiation)

    International Nuclear Information System (INIS)

    Ikezaki, Hiromi; Ikeda, Ikuo; Maruyama, Yasushi; Nako, Yasunobu; Tonari, Ayako; Kusuda, Junko; Takayama, Makoto

    2007-01-01

    Total body irradiation (TBI) is performed by various methods, such as a long SSD method and a translational couch method. For patient safety in carrying out TBI, the patient should be placed on the supine position and prone position near the floor. TBI is performed from 2 opposite ports (AP/PA) with a linear accelerator (10 MV X-ray). We experimented with a wedge filter for TBI created by us, which makes dose distribution to a floor uniform. The wedge filter, made of iron alloy, was attached to the linear accelerator. In designing the wedge filter, thickness of the lead-made wedge filter can be calculated numerically from the ratio of linear attenuation coefficient of iron alloy and lead. In measuring the dose profile for a phantom of 20 cm thick, dose homogeneity less than 10% was proved by the wedge filter for TBI. (author)

  2. Similar Survival for Patients Undergoing Reduced-Intensity Total Body Irradiation (TBI) Versus Myeloablative TBI as Conditioning for Allogeneic Transplant in Acute Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, John L., E-mail: jmikell@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Waller, Edmund K. [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Switchenko, Jeffrey M. [Department of Biostatistics and Bioinformatics, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Rangaraju, Sravanti; Ali, Zahir; Graiser, Michael [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Hall, William A. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Langston, Amelia A. [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Khoury, H. Jean [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Khan, Mohammad K. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2014-06-01

    Purpose: Hematopoietic stem cell transplantation (HSCT) is the mainstay of treatment for adults with acute leukemia. Total body irradiation (TBI) remains an important part of the conditioning regimen for HCST. For those patients unable to tolerate myeloablative TBI (mTBI), reduced intensity TBI (riTBI) is commonly used. In this study we compared outcomes of patients undergoing mTBI with those of patients undergoing riTBI in our institution. Methods and Materials: We performed a retrospective review of all patients with acute leukemia who underwent TBI-based conditioning, using a prospectively acquired database of HSCT patients treated at our institution. Patient data including details of the transplantation procedure, disease status, Karnofsky performance status (KPS), response rates, toxicity, survival time, and time to progression were extracted. Patient outcomes for various radiation therapy regimens were examined. Descriptive statistical analysis was performed. Results: Between June 1985 and July 2012, 226 patients with acute leukemia underwent TBI as conditioning for HSCT. Of those patients, 180 had full radiation therapy data available; 83 had acute lymphoblastic leukemia and 94 had acute myelogenous leukemia; 45 patients received riTBI, and 135 received mTBI. Median overall survival (OS) was 13.7 months. Median relapse-free survival (RFS) for all patients was 10.2 months. Controlling for age, sex, KPS, disease status, and diagnosis, there were no significant differences in OS or RFS between patients who underwent riTBI and those who underwent mTBI (P=.402, P=.499, respectively). Median length of hospital stay was shorter for patients who received riTBI than for those who received mTBI (16 days vs 23 days, respectively; P<.001), and intensive care unit admissions were less frequent following riTBI than mTBI (2.22% vs 12.69%, respectively, P=.043). Nonrelapse survival rates were also similar (P=.186). Conclusions: No differences in OS or RFS were seen between

  3. Retrospective, monocentric analysis of late effects after total body irradiation (TBI) in adults

    Energy Technology Data Exchange (ETDEWEB)

    Boelling, Tobias [Universitaetsklinikum Muenster (Germany). Dept. of Radiotherapy; Paracelsus Clinic Osnabrueck (Germany). Dept. of Radiotherapy; Kreuziger, David Christoph; Ernst, Iris; Elsayed, Hassan; Willich, Normann [Universitaetsklinikum Muenster (Germany). Dept. of Radiotherapy

    2011-05-15

    Purpose: Total body irradiation (TBI) is a standard treatment modality within the multidisciplinary approach for allogeneous stem cell or bone marrow transplantation. However, surviving patients are at risk for developing a variety of late sequelae. This analysis aimed to retrospectively characterize late effects after TBI in adults treated in a single center. Patients and Methods: Patients {>=} 18 years treated with fractionated TBI (4-12 Gy) between 1996 and 2008 were included in this study. Treatment data were collected retrospectively from the treating departments. Late effects were evaluated using the clinic charts and/or were obtained from the general practitioners using a standardized questionnaire. Analyses were performed by calculation of the cumulative incidences using the Kaplan-Meier method and the log rank test. Results: A total of 308 patients {>=} 18 years were treated including a TBI of whom 78 patients were excluded from further analysis due to death within less than 1 year after TBI. Patients suffered from leukemia in most cases. Late toxicity follow-up was available in 120 patients (mean age 46.1 years; range, 18-70 years) after a mean follow-up of 23 months (range, 12-96 months). The cumulative incidences (CI) at 3 years were 28% for pulmonary event, 8% for pulmonary toxicity, 25% for kidney toxicity, 8% for cataract, 17% for bone toxicity, and 10% for secondary malignancy. The CI of bone toxicity was higher in female than in male patients (p = 0.019). Conclusion: Late effects after TBI in the context of allogeneous stem cell or bone marrow transplantation can frequently be observed. Regular follow-up examinations are advised for the early registration and treatment of adverse effects. (orig.)

  4. Prospective evaluation of delayed central nervous system (CNS) toxicity of hyperfractionated total body irradiation (TBI)

    International Nuclear Information System (INIS)

    Wenz, Frederik; Steinvorth, Sarah; Lohr, Frank; Fruehauf, Stefan; Wildermuth, Susanne; Kampen, Michael van; Wannenmacher, Michael

    2000-01-01

    Purpose: Prospective evaluation of chronic radiation effects on the healthy adult brain using neuropsychological testing of intelligence, attention, and memory. Methods and Materials: 58 patients (43 ± 10 yr) undergoing hyperfractionated total body irradiation (TBI) (TBI, 14.4 Gy, 12 x 1.2 Gy in 4 days) before bone marrow or peripheral blood stem cell transplantation were prospectively included. Twenty-one recurrence-free long-term survivors were re-examined 6-36 months (median 27 months) after completion of TBI. Neuropsychological testing included assessment of general intelligence, attention, and memory using normative, standardized psychometric tests. Mood status was controlled, as well. Test results are given as IQ scores (population mean 100) or percentiles for attention and memory (population mean 50). Results: The 21 patients showed normal baseline test results of IQ (101 ± 13) and attention (53 ± 28), with memory test scores below average (35 ± 21). Test results of IQ (98 ± 17), attention (58 ± 27), and memory (43 ± 28) showed no signs of clinically measurable radiation damage to higher CNS (central nervous system) functions during the follow-up. The mood status was improved. Conclusion: The investigation of CNS toxicity after hyperfractionated TBI showed no deterioration of test results in adult recurrence-free patients with tumor-free CNS. The median follow-up of 27 months will be extended.

  5. Long-term renal toxicity in children following fractionated total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT)

    International Nuclear Information System (INIS)

    Gerstein, Johanna; Meyer, Andreas; Fruehauf, Joerg; Karstens, Johann H.; Bremer, Michael; Sykora, Karl-Walter

    2009-01-01

    Purpose: to retrospectively assess the incidence and time course of renal dysfunction in children (≤ 16 years) following total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT). Patients and methods: between 1986 and 2003, 92 children (median age, 11 years; range, 3-16 years) underwent TBI before allogeneic SCT. 43 of them had a minimum follow-up of 12 months (median, 51 months; range, 12-186 months) and were included into this analysis. Conditioning regimen included chemotherapy and fractionated TBI with 12 Gy (n = 26) or 11.1 Gy (n = 17). In one patient, renal dose was limited to 10 Gy by customized renal shielding due to known nephropathy prior to SCt. Renal dysfunction was defined as an increase of serum creatinine > 1.25 times the upper limit of age-dependent normal. Results: twelve children (28%) experienced an episode of renal dysfunction after a median of 2 months (range, 1-10 months) following SCT. In all but one patient renal dysfunction was transient and resolved after a median of 8 months (range, 3-16 months). One single patient developed persistent renal dysfunction with onset at 10 months after SCT. None of these patients required dialysis. The actuarial 3-year freedom from persistent renal toxicity for children surviving > 12 months after SCt was 97.3%. Conclusion: the incidence of persistent renal dysfunction after fractionated TBI with total doses ≤ 12 Gy was very low in this analysis. (orig.)

  6. Long-term renal toxicity in children following fractionated total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Johanna; Meyer, Andreas; Fruehauf, Joerg; Karstens, Johann H.; Bremer, Michael [Dept. of Radiation Oncology, Medical School Hannover (Germany); Sykora, Karl-Walter [Dept. of Pediatric Hematology and Oncology, Medical School Hannover (Germany)

    2009-11-15

    Purpose: to retrospectively assess the incidence and time course of renal dysfunction in children ({<=} 16 years) following total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT). Patients and methods: between 1986 and 2003, 92 children (median age, 11 years; range, 3-16 years) underwent TBI before allogeneic SCT. 43 of them had a minimum follow-up of 12 months (median, 51 months; range, 12-186 months) and were included into this analysis. Conditioning regimen included chemotherapy and fractionated TBI with 12 Gy (n = 26) or 11.1 Gy (n = 17). In one patient, renal dose was limited to 10 Gy by customized renal shielding due to known nephropathy prior to SCt. Renal dysfunction was defined as an increase of serum creatinine > 1.25 times the upper limit of age-dependent normal. Results: twelve children (28%) experienced an episode of renal dysfunction after a median of 2 months (range, 1-10 months) following SCT. In all but one patient renal dysfunction was transient and resolved after a median of 8 months (range, 3-16 months). One single patient developed persistent renal dysfunction with onset at 10 months after SCT. None of these patients required dialysis. The actuarial 3-year freedom from persistent renal toxicity for children surviving > 12 months after SCt was 97.3%. Conclusion: the incidence of persistent renal dysfunction after fractionated TBI with total doses {<=} 12 Gy was very low in this analysis. (orig.)

  7. Total body irradiation for allogeneic bone marrow transplantation in acute leukemia: A cooperative study from the TBI Subcommittee in Japan

    International Nuclear Information System (INIS)

    Inoue, T.; Masaoka, T.; Shibata, H.

    1986-01-01

    By means of national survey, records of 78 acute leukemia patients who underwent allogeneic bone marrow transplantation (BMT) from September 1975 through September 1983 were collected from 14 participating institutions in Total Body Irradiation (TBI) Subcommittee in Japan. Patients were classified into 37 of acute lymphocytic leukemia (ALL), and 41 of acute non-lymphocytic leukemia (ANLL). One-year survivals were 51% and 33% in ALL and ANLL patients, respectively. Uninfected patients in remission had significantly better survival than infected ones and/or in relapse. Overall incidence of interstitial pneumonia was 43%. Rejection and relapse were encountered in 26% of patients. Concerning cause of death, interstitial pneumonia was the most frequent cause (44%). Uni- and multivariate analyses strongly suggested that favorable prognostic factors were remission, uninfection, preparation of low-dose-rate fractionated TBI and cyclophosphamide, and mild graft-versus-host disease (GVHD) for acute leukemia patient treated with allogeneic BMT. (orig.) [de

  8. Acute central nervous system (CNS) toxicity of total body irradiation (TBI) measured using neuropsychological testing of attention functions

    International Nuclear Information System (INIS)

    Wenz, Frederik; Steinvorth, Sarah; Lohr, Frank; Hacke, Werner; Wannenmacher, Michael

    1999-01-01

    Purpose: The purpose of this study was to investigate acute normal tissue damage of low irradiation doses to the healthy, adult central nervous system (CNS) using neuropsychological testing of attention functions. Methods and Materials: Neuropsychological testing (IQ, attention [modified Trail-Making Test A, Digit Symbol Test, D2 Test, Wiener Determination Machine]) was used to examine 40 patients (43 ± 10 years) before and immediately after the first fraction (1.2 Gy) of hyperfractionated total body irradiation (TBI) at the University of Heidelberg. The patients received antiemetic premedication. Test results are given as mean percentiles ± standard deviation, with 50 ± 34 being normal. Thirty-eight control patients (53 ± 15 years) were studied to quantify the influence of hospitalization, stress, and repeated testing. Results: The patients showed normal baseline test results (IQ = 101 ± 14, attention = 54 ± 28) and no decrease in test results after 1.2 Gy TBI. Attention functions improved (66 ± 25) corresponding to a practice effect of repeated testing that was seen in the control group, although alternate versions of the tests were used (IQ = 104 ± 10, attention before = 42 ± 29, attention after = 52 ± 31). Conclusion: Our data show no deterioration of neuropsychologic test results acutely after 1.2 Gy whole body exposure in adult patients without CNS disease receiving antiemetic medication

  9. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation

    International Nuclear Information System (INIS)

    Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin; Bourquin, Jean-Pierre; Oertel, Susanne; Heidelberg Univ.

    2010-01-01

    To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG ≥3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated

  10. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology

    2010-11-15

    To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated

  11. The role of total body irradiation (TBI) as a conditioning regime for paediatric acute lymphoblastic leukaemia: A discussion of the evidence

    International Nuclear Information System (INIS)

    Hill, G.; Meikle, D.

    2016-01-01

    Aim: The long term effects of TBI with children can be adverse and has resulted in a debate as to whether chemotherapy only based condition regimes could be used as an alternatives. The aim of this article is to critically evaluate the literature relating to the role of TBI as a conditioning regime in ALL in children, and if there are any alternatives to current practices or future developments. Method: Key databases were searched for terms: conditioning regimes, transplantation, TBI, whole body radiation, systemic irradiation, stem cell transplantation, hematopoietic stem cell, and transplant conditioning. Results: Thirteen research articles from a variety of publications and two guidance documents from several sources were uncovered for critical discussion. Discussion/conclusion: There is little evidence for chemotherapy only regimes in paediatric ALL, but the practice continues. Modulating doses to improve homogeneity and use of IGRT could hold a future solution to reducing long-term toxicity and maintain the efficacy of irradiation. - Highlights: • TBI regimes have adverse long term effects on development, particularly on growth. • Chemotherapy only regimes have long term effects that impact on development. • TBI is a superior to chemotherapy only conditioning regimes for paediatric ALL. • Research is being undertaken to refine TBI techniques to reduce overall toxicity.

  12. In vitro radiation studies on Ewing's sarcoma cell lines and human bone marrow: application to the clinical use of total body irradiation (TBI)

    International Nuclear Information System (INIS)

    Kinsella, T.J.; Mitchell, J.B.; McPherson, S.; Miser, J.; Triche, T.; Glatstein, E.

    1984-01-01

    Patients with Ewing's sarcoma who present with a central axis or proximal extremity primary and/or with metastatic disease have a poor prognosis despite aggressive combination chemotherapy and local irradiation. In this high risk group of patients, total body irradiation (TBI) has been proposed as a systemic adjuvant. To aid in the design of a clinical TBI protocol, the authors have studied in the in vitro radiation response of two established cell lines of Ewing's sarcoma and human bone marrow CFUc. The Ewing's lines showed a larger D 0 and anti-n compared to the bone marrow CFU. No repair of potentially lethal radiation damage (PLDR) was found after 4.5 Gy in plateau phase Ewing's sarcoma cells. A theoretical split dose survival curve for both the Ewing's sarcoma lines and human bone marrow CFUc using this TBI schedule shows a significantly lower surviving fraction (10 -4 -10 -5 ) for the bone marrow CFUc. Based on these in vitro results, two 4.0 Gy fractions separated by 24 hours is proposed as the TBI regimen. Because of the potentially irreversible damage to bone marrow, autologous bone marrow transplantation following the TBI is felt to be necessary. The details of this clinical protocol in high risk Ewing's sarcoma patients are outlined

  13. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Suh, T [Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Jenkins, C [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Department of Mechanical Engineering, Stanford University, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.

  14. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    International Nuclear Information System (INIS)

    Lee, M; Suh, T; Han, B; Xing, L; Jenkins, C

    2015-01-01

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery

  15. Single center experience with total body irradiation and melphalan (TBI-MEL) myeloablative conditioning regimen for allogeneic stem cell transplantation (SCT) in patients with refractory hematologic malignancies.

    Science.gov (United States)

    Bhatnagar, Bhavana; Rapoport, Aaron P; Fang, Hong-Bin; Ilyas, Can; Marangoz, Deniz; Akbulut, Vinil; Ruehle, Kathleen; Badros, Ashraf; Yanovich, Saul; Akpek, Görgün

    2014-04-01

    We retrospectively evaluated the tolerability and efficacy of fractionated total body irradiation (TBI) (1,200 cGy) and melphalan (MEL) (100-110 mg/m(2)) myeloablative conditioning in 48 patients with nonremission AML (n = 14), ALL (n = 10), NHL (n = 18), and other refractory hematologic malignancies (n = 6) who received allogeneic stem cell transplantation (SCT) between 2002 and 2011. Median age was 48 years (22 to 68); 14 out of 26 leukemia patients (54 %) had circulating blasts at transplant, 20 (50 %) evaluable patients had poor-risk cytogenetics, 12 (25 %) had prior SCT, and 10 (21 %) received stem cells from a mismatch donor. All patients received tacrolimus with or without methotrexate for GVHD prophylaxis. At the time of analysis, 13 patients (27 %) were alive and disease free. Engraftment was complete in all patients. The median time to ANC recovery (>500) was 12 days (range, 6-28). The most common grade III and IV toxicities were mucositis and infections. Eighteen patients (43 %) developed grade II-IV acute GVHD, and eight (26 %) had extensive chronic GVHD. Of 44 evaluable patients for response, 28 (64 %) achieved a complete remission (CR), and seven (15 %) had a partial remission after the transplant. With a median follow-up of 30 months (4 to 124 months) for surviving patients, the cumulative incidence of relapse was 45 % at 1 year, and the probability of overall survival (OS) at 5 years was 22.5 %. Multivariate analysis showed that platelet count (500 IU/L) at SCT were associated with relapse. Age less than 53 years and CR after SCT were associated with better OS. Our data suggest that TBI-MEL can result in CR in two thirds, durable remission in one third, and 5-year survival in about one quarter of patients with nonremission hematologic malignancies. Further studies with TBI-MEL in standard risk transplant patients are warranted.

  16. Lung dose depending on exact patient positioning during total body irradiation (TBI) - isoeffective considerations to assess the risk of interstitial pneumonitis after TBI; Lungendosis in Abhaengigkeit von der Lagerungsgenauigkeit bei Ganzkoerperbestrahlungen (TBI). Isoeffektivitaetsueberlegungen zur Einschaetzung des Risikos einer interstitiellen Pneumonitis nach Ganzkoerperbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Piroth, M.D.; Zierhut, D.; Sroka-Perez, G.; Wannenmacher, M. [Radiologische Klinik der Univ. Heidelberg (Germany). Abt. fuer Klinische Radiologie; Kampen, M. van [Krankenhaus Nord-West, Frankfurt am Main (Germany). Radioonkologische Klinik

    2002-01-01

    Purpose: In this case report, we studied the effect of patient's movements on total lung dose during total body irradiation (TBI). The dose-effect relationship regarding the development of interstitial pneumonitis and the problem of defining a threshold value are discussed. Based on considerations about the isoeffects we calculated the pneumonitis risk in dependence of increasing lung dose. Patient and Method: We calculated dose-volume histograms of the lung for defined lateral deviations (0-3 cm) from the isocenter. Total dose was 12 Gy, given in six fractions over 3 days. Lung shields were used after a total dose of 9 Gy. Lung shields were transferred into the Helax-TMS trademark planning system to quantify the influence of lateral deviation to lung dose. Results: The child's lateral deviation amounted up to 3 cm. Median dose of the whole lung amounted up to 11.64 Gy depending on lateral deviation. Discussion: In TBI, the lung limits the total dose. To estimate the risk of radiation pneumonitis, we calculated the isoeffective lung dose of our TBI regime for a fractionation scheme of 2 Gy daily using a formalism of van Dyk. The increase of median lung dose from 9.76 to 11.64 Gy would isoeffectively correspond to the increase from 19 Gy (no deviation) to 20.9 Gy (3 cm lateral deviation) with conventional fractionation. According to Burman, a pneumonitis risk of approximately 20% could be expected. Conclusion: With an estimated pneumonitis risk of approximately 20%, an indication for irradiation in general anesthesia seems to be reasonable. This is practicable in cooperation with radiation oncologists, anesthesists and pediatricians and should be included into therapeutic concepts. (orig.) [German] Hintergrund: An einem Fallbeispiel werden die Auswirkungen von Lagerungsungenauigkeiten auf die Gesamtlungendosis bei Ganzkoerperbestrahlung eines Kindes erlaeutert. Die Dosis-Wirkungs-Beziehung bezueglich der Entstehung einer interstitiellen Pneumonitis nach

  17. Radiological protection in a patient during a total body irradiation procedure; Proteccion radiologica en un paciente durante un procedimiento de TBI (irradiacion de cuerpo entero)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez O, J. O.; Hinojosa G, J.; Gomez M, E.; Balam de la Vega, J. A. [The American British Cowdray Medical Center, I. A. P., Sur 128 No. 143, Col. Americas, 01120 Mexico D. F. (Mexico); Deheza V, J. C., E-mail: johernandezo@abchospital.co [IPN, Escuela Superior de Fisica y Matematicas, Av. Luis Enrique Erro s/n, Edificio No. 9, Unidad Profesional Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2010-09-15

    A technique used in the Service of Radiotherapy of the Cancer Center of the American British Cowdray Medical Center (ABC) for the bone marrow transplantation, is the total body irradiation. It is known that the dose calculation, for this irradiation type, is old, since the dosimetric calculation is carried out by hand and they exist infinity of techniques for the patients irradiation and different forms of protecting organs of risk, as well as a great uncertainty in the given dose. In the Cancer Center of the ABC Medical Center, was carried out an irradiation procedure to total body with the following methodology: Computerized tomography of the patient total body (two vacuum mattresses in the following positions: dorsal and lateral decubitus), where is combined the two treatment techniques anterior-posterior and bilateral, skin delineate and reference volumes, dose calculation with the planning system Xi O of CMS, dose determination using an ionization chamber and a lung phantom IMRT Thorax Phantom of the mark CIRS and dosimetry in vivo. In this work is presented the used treatment technique, the results, statistics and the actualization of the patient clinical state. (Author)

  18. Total body irradiation in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Advani, S.H.; Dinshaw, K.A.; Nair, C.N.; Ramakrishnan, G.

    1983-01-01

    Total body irradiation (TBI), given as 10 rad daily for five days a week for a total dose of 150 rad has been used in an attempt to control the chronic phase of chronic myeloid leukemia (CML). Thirteen patients with CML received fractionated TBI leading to rapid and good control of WBC count without any adverse reaction. The chronic phase of CML could also be controlled with TBI, even in three patients who were resistant to busulfan. Following TBI, WBC count remained under control for a period of 32 weeks as compared to 40 weeks following vusulfan alone. Repeat TBI was also well tolerated with good response. It appears that TBI is an effective and safe therapy for controlling the chronic phase of CML

  19. Dose distribution homogeneity in two TBI techniques—Analysis of 208 irradiated patients conducted in Stanislaw Leszczynski Memorial Hospital, Katowice

    Science.gov (United States)

    Kawa-Iwanicka, Aneta; Łobodziec, Włodzimierz; Dybek, Marcin; Nenko, Dorota; Iwanicki, Tomasz

    2012-01-01

    Background To analyze and compare dose distribution homogeneity in selected points (especially in the chest wall region) for patients irradiated with two different TBI techniques to achieve a uniform total dose (excluding lungs area) specified in the range of 11.4–14.0 Gy. Material and methods From August 2000 to December 2009, a group of 158 patients was treated by the use of 15 MV photon irradiation consisting of six fractions: four opposed lateral and two anterior–posterior/posterior–anterior (AP/PA). Patients were irradiated with the fraction dose of 2 Gy twice a day for 3 consecutive days. The prescribed dose to PC point (specified at intersection of the beam axis with the mid-plane of the patient irradiated laterally) was 12 Gy. Since January 2010 until closing the study, another group of 50 patients was treated according to a modified protocol. The treatment was carried out in six lateral fractions only, twice a day, for three following days and a lateral lung shield was used for a part of total irradiation time. The measurements of doses in 20 selected points of patient's body were carried out by means of MOSFET detectors. Results The modified TBI technique allows to achieve an expected homogenous dose in the points of interest similar to that obtained by using the initial protocol. The calculated and measured in vivo doses met the specified range of 11.4–14 Gy for both applied TBI protocols. Conclusions Our results indicate that for all patients the homogenous dose distribution in the specified range was achieved. PMID:24377040

  20. Dose distribution homogeneity in two TBI techniques-Analysis of 208 irradiated patients conducted in Stanislaw Leszczynski Memorial Hospital, Katowice.

    Science.gov (United States)

    Kawa-Iwanicka, Aneta; Lobodziec, Włodzimierz; Dybek, Marcin; Nenko, Dorota; Iwanicki, Tomasz

    2012-01-01

    To analyze and compare dose distribution homogeneity in selected points (especially in the chest wall region) for patients irradiated with two different TBI techniques to achieve a uniform total dose (excluding lungs area) specified in the range of 11.4-14.0 Gy. From August 2000 to December 2009, a group of 158 patients was treated by the use of 15 MV photon irradiation consisting of six fractions: four opposed lateral and two anterior-posterior/posterior-anterior (AP/PA). Patients were irradiated with the fraction dose of 2 Gy twice a day for 3 consecutive days. The prescribed dose to PC point (specified at intersection of the beam axis with the mid-plane of the patient irradiated laterally) was 12 Gy. Since January 2010 until closing the study, another group of 50 patients was treated according to a modified protocol. The treatment was carried out in six lateral fractions only, twice a day, for three following days and a lateral lung shield was used for a part of total irradiation time. The measurements of doses in 20 selected points of patient's body were carried out by means of MOSFET detectors. The modified TBI technique allows to achieve an expected homogenous dose in the points of interest similar to that obtained by using the initial protocol. The calculated and measured in vivo doses met the specified range of 11.4-14 Gy for both applied TBI protocols. Our results indicate that for all patients the homogenous dose distribution in the specified range was achieved.

  1. Total body irradiation: technical and clinical aspects

    International Nuclear Information System (INIS)

    Belkacemi, Y.; Touboul, E.; Rio, B.

    1999-01-01

    Total-body irradiation (TBI) has an established role in many preparative regimens used before marrow transplantation (BMT) in the treatment of hematological malignancies in children and adults. Better choice in TBI techniques and dosimetry have permitted better homogeneity of dose, and therefore a significant sparing of critical tissues. Advances in treatments over the past 20 years have greatly improved survival; therefore, the evaluation of early and late complications with a sufficient follow-up, according to different conditioning regimens is important. In this article, we review and compare different TBI techniques and dosimetry, and their influence on the distribution and homogeneity of dose, and the possible relationship to the risk of complications. We also describe the acute and late effects of TBI in children and adults appearing in the first month post-BMT as veno-occlusive disease, interstitial pneumonitis, or after 3 months, i.e., endocrinal late effects and growth in children, cataracts, neurological and bone or other complications, secondary tumors and alteration in the quality of life. The responsibility of TBI in the increased rate of certain complications is difficult to assess from chemotherapy or allograft side effects (chronic graft vs. host disease) or from other associated medical treatments, such as long term steroid therapy. (authors)

  2. Fundamental and clinical studies on cancer control with total or upper half body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kiyohiko; Hosoi, Yoshio; Ogawa, Yoshihiro; Nemoto, Kenji; Takai, Yoshihiro; Kakuto, Yoshihisa; Yamada, Shogo [Tohoku Univ., Sendai (Japan). School of Medicine; Myojin, Miyako; Watabe, Nobuyuki

    1997-09-01

    The tumor control effects of total body irradiation (TBI) for tumor bearing mice and human tumor were investigated fundamentally and clinically. TBI is usually used in tissue transplantation experiment in order to prevent rejective response for transplanted tissues by immunological reaction. This kind of suppressive effect of immunological response by TBI is considered as to be caused even if very small dose of TBI. However, there are only a few data concerning the effect of low dose of TBI, and TBI of low dose level is concluded to bring about the same effect as in high dose level by back extrapolation from the data of high dose level. In present paper, firstly the effects of TBI for tumor control in murine squamous carcinoma are reported, and secondly the results of clinical trial in malignant lymphoma are demonstrated. In fundamental studies, TBI of low doses (10-15 cGy) suggests potentiating effect in cell killing in combination of TBI of 10 cGy and local irradiation given at 12 hours after TBI though TBI of 10 cGy is not able to detect any cell killing effect. TBI of 10 cGy or 15 cGy also stands for suppressive effect of distant metastasis (lung metastasis). In clinical studies, malignant lymphoma (non-Hodgikin`s lymphoma) is selected as the first disease of clinical trial, and the results are seemed to be prospective method to overcome cancers with radiotherapy, though the trial is not phase III clinical trial. (author)

  3. Computer-based anthropometrical system for total body irradiation.

    Science.gov (United States)

    Sánchez-Nieto, B; Sánchez-Doblado, F; Terrón, J A; Arráns, R; Errazquin, L

    1997-05-01

    For total body irradiation (TBI) dose calculation requirements, anatomical information about the whole body is needed. Despite the fact that video image grabbing techniques are used by some treatment planning systems for standard radiotherapy, there are no such systems designed to generate anatomical parameters for TBI planning. The paper describes an anthropometrical computerised system based on video image grabbing which was purpose-built to provide anatomical data for a PC-based TBI planning system. Using software, the system controls the acquisition and digitalisation of the images (external images of the patient in treatment position) and the measurement procedure itself (on the external images or the digital CT information). An ASCII file, readable by the TBI planning system, is generated to store the required parameters of the dose calculation points, i.e. depth, backscatter tissue thickness, thickness of inhomogeneity, off-axis distance (OAD) and source to skin distance (SSD).

  4. Half body irradiation

    International Nuclear Information System (INIS)

    Bartelink, H.; Battermann, J.; Hart, G.

    1980-01-01

    Twenty-one patients with complaints of severe pain from disseminated breast cancer were treated with half body irradiation with a single dose of 600 to 800 rad. All of them had a relief of pain for periods ranging from 14 to 280 days, with a median duration of 101 days. The objective effects of a single radiation dose was studied in 15 patients with lung metastases. The growth delay observed in these patients was of the same order as the period of pain relief observed in breast cancer patients after half body irradiation. In general a longer lasting palliation was obtained in patients with slowly growing tumors

  5. Gastrointestinal decontamination of dogs treated with total body irradiation and bone marrow transplantation

    NARCIS (Netherlands)

    Vriesendorp, H.M.; Heidt, P.J.; Zurcher, C.

    1981-01-01

    Procedures for total and selective gastrointestinal decontamination of dogs are described. The selective procedure removed only Gram negative aerobic bacteria, yeast and fungi. Dogs receiving total decontamination were less susceptible to the GI syndrome following total body irradiation (TBI) than

  6. Cataract after total body irradiation and bone marrow transplantation: degree of visual impairment

    NARCIS (Netherlands)

    van Kempen-Harteveld, M. Loes; Struikmans, Henk; Kal, Henk B.; van der Tweel, Ingeborg; Mourits, Maarten P.; Verdonck, Leo F.; Schipper, Jan; Battermann, Jan J.

    2002-01-01

    PURPOSE: To assess the degree of visual impairment as a result of cataract formation after total body irradiation (TBI) for bone marrow transplantation. METHODS AND MATERIALS: The data from 93 patients who received TBI in 1 or 2 fractions as a part of their conditioning regimen for bone marrow

  7. Revisiting Biomarkers of Total-Body and Partial-Body Exposure in a Baboon Model of Irradiation.

    Directory of Open Access Journals (Sweden)

    Marco Valente

    Full Text Available In case of a mass casualty radiation event, there is a need to distinguish total-body irradiation (TBI and partial-body irradiation (PBI to concentrate overwhelmed medical resources to the individuals that would develop an acute radiation syndrome (ARS and need hematologic support (i.e., mostly TBI victims. To improve the identification and medical care of TBI versus PBI individuals, reliable biomarkers of exposure could be very useful. To investigate this issue, pairs of baboons (n = 18 were exposed to different situations of TBI and PBI corresponding to an equivalent of either 5 Gy 60Co gamma irradiation (5 Gy TBI; 7.5 Gy left hemibody/2.5 right hemibody TBI; 5.55 Gy 90% PBI; 6.25 Gy 80% PBI; 10 Gy 50% PBI, 15 Gy 30% PBI or 2.5 Gy (2.5 Gy TBI; 5 Gy 50% PBI. More than fifty parameters were evaluated before and after irradiation at several time points up to 200 days. A partial least square discriminant analysis showed a good distinction of TBI from PBI situations that were equivalent to 5 Gy. Furthermore, all the animals were pooled in two groups, TBI (n = 6 and PBI (n = 12, for comparison using a logistic regression and a non parametric statistical test. Nine plasmatic biochemical markers and most of hematological parameters turned out to discriminate between TBI and PBI animals during the prodromal phase and the manifest illness phase. The most significant biomarkers were aspartate aminotransferase, creatine kinase, lactico dehydrogenase, urea, Flt3-ligand, iron, C-reactive protein, absolute neutrophil count and neutrophil-to-lymphocyte ratio for the early period, and Flt3-ligand, iron, platelet count, hemoglobin, monocyte count, absolute neutrophil count and neutrophil-to-lymphocyte ratio for the ARS phase. These results suggest that heterogeneity could be distinguished within a range of 2.5 to 5 Gy TBI.

  8. TBI technique with long SAD

    International Nuclear Information System (INIS)

    Kumagai, Kozo

    1991-01-01

    We studied the physical and technical situation of total body irradiation (TBI) for long SAD and a 6 MV X-rays. In principle this paper consists of the following points: physical characteristics of 6 MV X-rays; basic TBI dosimetry; dose distribution in the phantom; compensating method for inhomogeneity; practical TBI technique; in vivo dosimetry of the oesophagus. For TBI, it is very important to have uniformity of the three-dimensional dose distribution in the whole body. TBI technique is performed by AP/PA opposing fields, bilateral opposing fields and four fields (combined AP/PA and bilateral opposing fields). As a result of measured dose distribution in the phantom, four fields with compensators is the best TBI technique, indicating unaccuracy dose of ±10%. It is impossible to deliver a dose uniformity of ±10% for bilateral fields. For TBI dosimetry, it needs to measure for the phantom size needs to be measured to achieve the full scattering conditions, but the phantom size for dosimetry is practically suitable for use of a minimum dimension of 30 x 30 x 30 cm 3 . Compensating methods are used to give homogeneous dose to different thick bodys and inhomogeneities. We use tissue-equivalent bolus and compensator such as lead or copper. For in vivo measurement, expected dose ratio in the oesophagus is 0.947±0.044 for four fields, 0.994±0.025 for AP/PA fields, and 0.987±0.077 for the bilateral fields. The unaccuracy of irradiation doses are less than 5% for various TBI. In the future, TBI technique should be established the best irradiated method that the uncertainty dose is delivered within ±5%. (author)

  9. Total body irradiation with a reconditioned cobalt teletherapy unit.

    Science.gov (United States)

    Evans, Michael D C; Larouche, Renée-Xavière; Olivares, Marina; Léger, Pierre; Larkin, Joe; Freeman, Carolyn R; Podgorsak, Ervin B

    2006-01-01

    While the current trend in radiotherapy is to replace cobalt teletherapy units with more versatile and technologically advanced linear accelerators, there remain some useful applications for older cobalt units. The expansion of our radiotherapy department involved the decommissioning of an isocentric cobalt teletherapy unit and the replacement of a column-mounted 4-MV LINAC that has been used for total body irradiation (TBI). To continue offering TBI treatments, we converted the decommissioned cobalt unit into a dedicated fixed-field total body irradiator and installed it in an existing medium-energy LINAC bunker. This article describes the logistical and dosimetric aspects of bringing a reconditioned cobalt teletherapy unit into clinical service as a total body irradiator.

  10. Optimization of total body irradiation: the match between (maximal) leukemic cell kill and (minimal) late effects

    NARCIS (Netherlands)

    Harteveld, M.L. van

    2007-01-01

    Optimization of total body irradiation: the match between (maximal) leukemic cell kill and (minimal) late effects: In this thesis, cataract formation and renal dysfunction as late effects of high-dose total body irradiation (TBI) as part of the conditioning before hematological stem cell

  11. Total body irradiation for myasthenia gravis with thymoma: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki Mun; Choi, Ihl Bohng; Kim, In Ah [College of Medicine, Catholic Univ., Seoul (Korea, Republic of)

    1999-06-01

    Myasthenia Gravis (MG) is relatively rare occuring as one of important autoimmune disease to affect neuromuscular junction. This study was clinically to evaluate total body irradiation (TBI) against two patients including 33-year and 39-year females for chronic MG with thymoma who hospitalized in the St. Mary's Hospital, Catholic University since 1994 as well as who showed no response by thymectomy, immunotherapy and hormonal therapy. TBI designed by the dose of 150-180 cGy consisting of 10 cGy per fraction, three times a week, for 5-6 weeks using linear accelerator of 6 MV. During the treatment of TBI, they did complain acute side effect such as vomiting and also appear improved physical condition from 4-6 weeks after TBI. Through the follow-up period of 18 or 42 months after TBI, they did not have any symptomatic recurrence. Consequently, the results suggest that TBI can be used as an alternative tool for the patients concurrently for MG with thymoma who had been refractory to various conventional therapies like thymectomy, immunotherapy and hormonal therapy.

  12. Total body irradiation for myasthenia gravis with thymoma: case report

    International Nuclear Information System (INIS)

    Kang, Ki Mun; Choi, Ihl Bohng; Kim, In Ah

    1999-01-01

    Myasthenia Gravis (MG) is relatively rare occuring as one of important autoimmune disease to affect neuromuscular junction. This study was clinically to evaluate total body irradiation (TBI) against two patients including 33-year and 39-year females for chronic MG with thymoma who hospitalized in the St. Mary's Hospital, Catholic University since 1994 as well as who showed no response by thymectomy, immunotherapy and hormonal therapy. TBI designed by the dose of 150-180 cGy consisting of 10 cGy per fraction, three times a week, for 5-6 weeks using linear accelerator of 6 MV. During the treatment of TBI, they did complain acute side effect such as vomiting and also appear improved physical condition from 4-6 weeks after TBI. Through the follow-up period of 18 or 42 months after TBI, they did not have any symptomatic recurrence. Consequently, the results suggest that TBI can be used as an alternative tool for the patients concurrently for MG with thymoma who had been refractory to various conventional therapies like thymectomy, immunotherapy and hormonal therapy

  13. Booster irradiation to the spleen following total body irradiation. A new immunosuppressive approach for allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Lapidot, T.; Singer, T.S.; Salomon, O.; Terenzi, A.; Schwartz, E.; Reisner, Y.

    1988-01-01

    Graft rejection presents a major obstacle for transplantation of T cell-depleted bone marrow in HLA-mismatched patients. In a primate model, after conditioning exactly as for leukemia patients, it was shown that over 99% of the residual host clonable T cells are concentrated in the spleen on day 5 after completion of cytoreduction. We have now corroborated these findings in a mouse model. After 9-Gy total body irradiation (TBI), the total number of Thy-1.2+ cells in the spleen reaches a peak between days 3 and 4 after TBI. The T cell population is composed of both L3T4 (helper) and Lyt-2 (suppressor) T cells, the former being the major subpopulation. Specific booster irradiation to the spleen (5 Gy twice) on days 2 and 4 after TBI greatly enhances production of donor-type chimera after transplantation of T cell-depleted allogeneic bone marrow. Similar enhancement can be achieved by splenectomy on day 3 or 4 after TBI but not if splenectomy is performed 1 day before TBI or 1 day after TBI, strengthening the hypothesis that, after lethal TBI in mice, the remaining host T cells migrate from the periphery to the spleen. These results suggest that a delayed booster irradiation to the spleen may be beneficial as an additional immunosuppressive agent in the conditioning of leukemia patients, in order to reduce the incidence of bone marrow allograft rejection

  14. Total body irradiation: current indications

    International Nuclear Information System (INIS)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M.

    1998-01-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  15. Aspects of radioprotection in whole body irradiation treatments (TBI)

    International Nuclear Information System (INIS)

    Pinella, Yuliana M. Ayala; Chavez, Cesar Picon

    2013-01-01

    Radiation protection occupationally exposed personnel and the public is considered in this study. It was done the experimental determination of the exposure rates at critical points in the area of radiotherapy and it was evaluated the staff dosimetry

  16. Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer.

    Science.gov (United States)

    Park, So-Yeon; Kim, Jung-In; Joo, Yoon Ha; Lee, Jung Chan; Park, Jong Min

    2017-05-07

    We propose bilateral total body irradiation (TBI) utilizing a 3D printer and a 3D optical scanner. We acquired surface information of an anthropomorphic phantom with the 3D scanner and fabricated the 3D compensator with the 3D printer, which could continuously compensate for the lateral missing tissue of an entire body from the beam's eye view. To test the system's performance, we measured doses with optically stimulated luminescent dosimeters (OSLDs) as well as EBT3 films with the anthropomorphic phantom during TBI without a compensator, conventional bilateral TBI, and TBI with the 3D compensator (3D TBI). The 3D TBI showed the most uniform dose delivery to the phantom. From the OSLD measurements of the 3D TBI, the deviations between the measured doses and the prescription dose ranged from  -6.7% to 2.4% inside the phantom and from  -2.3% to 0.6% on the phantom's surface. From the EBT3 film measurements, the prescription dose could be delivered to the entire body of the phantom within  ±10% accuracy, except for the chest region, where tissue heterogeneity is extreme. The 3D TBI doses were much more uniform than those of the other irradiation techniques, especially in the anterior-to-posterior direction. The 3D TBI was advantageous, owing to its uniform dose delivery as well as its efficient treatment procedure.

  17. Total body irradiation for pediatric patients of hematological malignancies. Fraction and oral-pharyngeal mucosal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki; Kashiwado, Kozo; Ueno, Toshihiro; Nakashige, Aya; Toda, Hiroyuki; Mori, Masaki; Hamamoto, Kazuko [Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital (Japan)

    2001-03-01

    Twenty one pediatric patients of hematological malignancies received bone marrow transplantation (BMT) using total body irradiation (TBI). We discussed its acute toxicity. Especially in children, reduction of acute toxicity is important to keep the quality of treatment. Our routine TBI schedule was 12 Gy/4 frac.. But in one patient who recently treated by 13.6 Gy/8 frac., oral-pharyngeal mucosal reaction was apparently mild. So we changed the routine treatment schedule of TBI from 12 Gy/4 frac. to 12.6 Gy/6 frac.. (author)

  18. An Acute Transverse Myelitis Attack after Total Body Irradiation: A Rare Case

    Directory of Open Access Journals (Sweden)

    Muzaffer Keklik

    2013-01-01

    Full Text Available Total body irradiation (TBI combined with chemotherapy is widely used as a pretreatment regimen of bone marrow transplantation (BMT in hematologic disorders. Late complications related to TBI as part of the conditioning regimen for hematopoietic stem cell transplantation have been revealed. Acute transverse myelitis (ATM is a neurological syndrome characterized by disorder of motor, sensorial, and autonomic nerves, and tracts at medulla spinalis, which is resulted from involvement of spinal cord. In this paper, we presented an ATM attack developed after TBI in a patient with acute lymphoblastic leukemia (ALL as it is a rarely seen case.

  19. Endocrine dysfunction after total body irradiation and bone marrow transplantation

    International Nuclear Information System (INIS)

    Feyer, P.; Titlbach, O.; Hoffmann, F.A.; Kubel, M.; Helbig, W.; Leipzig Univ.

    1989-01-01

    Data regarding changes of endocrine parameters after total body irradiation (TBI) and bone marrow transplantation (BMT) are described. Endocrine glands are usually resistant to irradiation under morphological aspects. But new methods of determination and sensitive tests were developed in the last few years. Now it is possible to detect already small functional changes. Endocrine studies in the course of the disease were followed serially in 16 patients with TBI and BMT. Pretransplant conditioning consisted of single-dose irradiation combined with a high-dose, short-term chemotherapy. Reactions of the endocrine system showed a defined temporary order. Changes of ACTH and cortisol were in the beginning. The pituitary-adrenal cortex system responds in a different way. The pituitary-thyroid system develops a short-term 'low-T 3 -syndrome' reflecting the extreme stress of the organism. At the same time we obtained an increase of thyroxine. Testosterone and luteotropic hormone, the sexual steroids showed levels representing a primary gonadal insufficiency. The studies in the posttransplant period yielded a return to the normal range at most of the hormonal levels with the exception of the sexual steroids. Sterility is one of the late effects of TBI. A tendency towards hypothyroidism could be noticed in some cases being only subclinical forms. Reasons and possible therapy are discussed. (author)

  20. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  1. Pulmonary complications of bone marrow transplantation: a comparison of total body irradiation and cyclophosphamide to busulfan and cyclophosphamide

    International Nuclear Information System (INIS)

    Hartsell, William F.; Czyzewski, E. Ann; Ghalie, Richard; Kaizer, Herbert

    1995-01-01

    Purpose: To retrospectively compare the acute and long-term pulmonary toxicities of total body irradiation and busulfan in bone marrow transplantation. Methods and Materials: From March 1984 through February 1991, 144 patients received high-dose therapy with cyclophosphamide plus either total body irradiation (TBI-CY) or busulfan (BU-CY) followed by bone marrow rescue. Treatment protocols were based on disease type. Cyclophosphamide dose was 120-200 mg/kg, given in 2-4 days. Total body irradiation was given as 12 Gy in four fractions over 4 days, or 14.4 Gy in eight fractions over 4 days. Busulfan dose was 16 mg/kg given over 4 days. Results: Seventy-nine patients were treated with TBI-CY and 65 patients with BU-CY. More patients in the TBI group had allogeneic transplants (40 vs. 18). Pulmonary events occurred in 48 patients, 19 in BU-CY and 29 in TBI-CY. Of the 58 patients with allogeneic transplants, 21 (36%) developed chronic graft-vs.-host disease (GVHD), and 10 of those patients developed pulmonary complications (including 2 with obliterative bronchitis and 1 with asthma). Interstitial pneumonitis (IP) occurred in 14 patients, 12 in the TBI-CY group and 2 in the BU-CY group. Cytomegalovirus and pneumocystis infections were associated with IP in 11 of those patients. Fatal idiopathic IP occurred in one patient in each of the TBI-CY and BU-CY groups. Multivariate analysis showed that only chronic GVHD and prior bleomycin use were significant predictors of interstitial pneumonitis; no difference was seen between TBI-CY and BU-CY. Conclusions: Pulmonary complications were most commonly associated with GVHD and prior bleomycin use. The incidence of cytomegalovirus or pneumocystis carinii pneumonitis was greater in the patients receiving the TBI regimen; fatal pulmonary complications were not significantly different between TBI and nonTBI regimens

  2. SU-E-T-522: Investigation of Underdosage of Total Body Irradiation with Bilateral Irradiation Scheme

    International Nuclear Information System (INIS)

    Lin, T; Eldib, A; Hossain, M; Price, R; Ma, C

    2015-01-01

    Purpose: Patient in-vivo measurements report lower readings than those predicted from TMR-based treatment planning on TBI patient knees and ankles where rice was placed to fill the gap between patient’s legs. This study is to understand and correct the under dosage of Total Body Irradiation(TBI) with rice tissue equivalent bolus placement at TBI treatment patient setup. Methods: Bilateral TBI scheme was investigated with rice bags bolus placing between patient’s two legs acting as missing tissue. In-house TMR based treatment planning system was commissioned with measurements under TBI condition at 10MV, i.e. source-to-reference distance 383.4cm with 40×40cm field size with 1cm thickness Lucite. Predictions of patient specific dose points are reported at different sites with 200cGy prescription at patient umbilicus point. Solid water and rice bag phantoms are used at TBI conditions for the attenuation factor verification and CT scanned to verify the CT number and electron density. Results: We found that the rice bag bolus overall density is 11% lower than the water; however, the attenuation factor of rice bags could become 15% lower than that of water at TBI condition. This overestimate of rice bag electron density could cause the lack of lateral scatter and the lack of backscatter. This could Result in an overestimate of dose at in-vivo dosimeter measurement points with TMR-based treatment planning systems. Observations of patient specific optically stimulated luminescent dosimeters(OSLDs) were used to confirm this overestimation. Measurements of setups with increasing the rice bag filled patient leg separation were performed to demonstrate eliminating the overdose issue. Conclusion: Rice bolus has a lower electron density than water does(11%) but results in 15% lower in attenuation factor at TBI condition. This effect was observed in patient delivery with OSLD measurements and can be corrected by increasing the filling rice bolus thickness with 15% longer of

  3. TNF, IL-1 and IL-6 in circulating blood after total-body and localized irradiation in rats

    NARCIS (Netherlands)

    Haveman, J.; Geerdink, A. G.; Rodermond, H. M.

    1998-01-01

    The levels of TNF, IL-1 and IL-6 in circulating blood of female WAG/Rij rats were assessed both after total-body irradiation (TBI) and localized irradiation of the right hind leg. The results show that enhanced levels of IL-1 in the circulation reflect a stress situation presumably resulting from

  4. Total-body irradiation - role and indications. Results from the German Registry for Stem Cell Transplantation (DRST)

    Energy Technology Data Exchange (ETDEWEB)

    Heinzelmann, F.; Bamberg, M.; Belka, C. [Dept. of Radiation Oncology, Univ. of Tuebingen (Germany); Ottinger, H. [German Registry for Stem Cell Transplantation (DRST) Secretary, Univ. of Essen (Germany); Mueller, C.H.; Allgaier, S. [DRST Datacenter, DRK Bloodbank Center Ulm (Germany); Faul, C. [Dept. of Internal Medicine II, Univ. of Tuebingen (Germany)

    2006-04-15

    Background and purpose: total-body irradiation (TBI) is a key part of the conditioning regimen before hematopoietic stem cell transplantation (HSCT). The exact role of TBI as part of the conditioning regimen is largely unclear. In order to determine the relevance of TBI, the status of TBI utilization was analyzed on the basis of a nationwide registry. Material and methods: 14,371 patients (1998-2002) documented in the German Stem Cell Transplantation Registry (DRST) were analyzed regarding TBI utilization prior to autologous or allogeneic transplantation, underlying disorder, type of donor, stem cell source, and size of the treatment center. Results: for autologous HSCT {proportional_to}10% of the patients (873/8,167) received TBI, with chronic lymphocytic leukemia (CLL, {proportional_to}80%, 171/214) and low-grade non-Hodgkin's lymphoma (l-NHL, {proportional_to}35%, 330/929) being the most important disorders. In the allogeneic setting 50% of the patients (2,399/4,904) received TBI, with acute lymphocytic leukemia (ALL, 85%, 794/930), acute myeloid leukemia (AML, 45%, 662/1,487) and chronic myeloid leukemia (CML, 49%, 561/1,156) being the key indications. The type of donor, stem cell source and center size did not strongly influence the use of TBI. Conclusion: TBI has only a limited role for the conditioning prior to autologous HCST. For allogeneic HSCT TBI is widely accepted with no major changes over the observation time. The use of TBI is generally accepted for ALL, whereas approximately half of the patients with CML or AML received TBI. Although a considerably large database was analyzed, no clear determinants for the use of TBI could be distinguished. (orig.)

  5. Total-body irradiation - role and indications. Results from the German Registry for Stem Cell Transplantation (DRST)

    International Nuclear Information System (INIS)

    Heinzelmann, F.; Bamberg, M.; Belka, C.; Ottinger, H.; Mueller, C.H.; Allgaier, S.; Faul, C.

    2006-01-01

    Background and purpose: total-body irradiation (TBI) is a key part of the conditioning regimen before hematopoietic stem cell transplantation (HSCT). The exact role of TBI as part of the conditioning regimen is largely unclear. In order to determine the relevance of TBI, the status of TBI utilization was analyzed on the basis of a nationwide registry. Material and methods: 14,371 patients (1998-2002) documented in the German Stem Cell Transplantation Registry (DRST) were analyzed regarding TBI utilization prior to autologous or allogeneic transplantation, underlying disorder, type of donor, stem cell source, and size of the treatment center. Results: for autologous HSCT ∝10% of the patients (873/8,167) received TBI, with chronic lymphocytic leukemia (CLL, ∝80%, 171/214) and low-grade non-Hodgkin's lymphoma (l-NHL, ∝35%, 330/929) being the most important disorders. In the allogeneic setting 50% of the patients (2,399/4,904) received TBI, with acute lymphocytic leukemia (ALL, 85%, 794/930), acute myeloid leukemia (AML, 45%, 662/1,487) and chronic myeloid leukemia (CML, 49%, 561/1,156) being the key indications. The type of donor, stem cell source and center size did not strongly influence the use of TBI. Conclusion: TBI has only a limited role for the conditioning prior to autologous HCST. For allogeneic HSCT TBI is widely accepted with no major changes over the observation time. The use of TBI is generally accepted for ALL, whereas approximately half of the patients with CML or AML received TBI. Although a considerably large database was analyzed, no clear determinants for the use of TBI could be distinguished. (orig.)

  6. Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice

    International Nuclear Information System (INIS)

    Miyamoto, Miyako; Sakamoto, Kiyohiko

    1987-01-01

    The effect of low dose (0.05 - 1.0 Gy) of total body irradiation (TBI) on non-tumor bearing and tumor bearing mice were investigated. Mice received TBI of 0.1 Gy during 6 - 12 hours before tumor cell inoculation demonstrated to need larger number of tumor cells (approximately 2.5 times) for 50 per cent tumor incidence, compared to recipient mice not to receive TBI. On the other hand, in tumor bearing mice given 0.1 Gy of TBI only tumor cell killing effect was not detected, however enhancement of tumor cell killing effect and prolonged growth delay were observed when tumor bearing mice were treated with 0.1 Gy of TBI in combined with local irradiation on tumors, especially cell killing effect was remarkable in dose range over 6 Gy of local exposure. The mechanism of the effect of 0.1 Gy TBI is considered to be host mediated reactions from the other our experimental results. (author)

  7. Prospective neurodevelopmental studies of two children treated with total body irradiation and bone marrow transplantation for acute leukemia in infancy

    International Nuclear Information System (INIS)

    Kaleita, T.; Tesler, A.; Feig, S.A.

    1987-01-01

    Five-year neurodevelopmental studies of two infants with acute leukemia are presented. Both patients underwent bone marrow transplantation (BMT) after conditioning with cyclophosphamide and total body irradiation (TBI). Neither patient was treated with intrathecal chemotherapy. Their outcome is remarkable for normal development of intelligence, language, perception, and motor coordination. These results suggest that TBI and BMT should be considered in future therapeutic studies of infants with acute leukemia, who are at great risk for failure of conventional therapy

  8. Therapeutic effect of bone marrow transplantation plue previous blood transfusion on rats with total body irradiation

    International Nuclear Information System (INIS)

    Yan Yongtang; Ran Xinze; Wei Shuqing

    1988-01-01

    Therapeutic effect of bone marrow transplantation (BMT) and blood transfusion on different groups of rats subjected to various doses of total body irradiation (TBI) was studied. In the control group, 80 rats that received TBI of 8,9,10,11 and 12 Gy died between 3∼14 days. In the second group, 67 rats that received the same doses of irradiation were treated with BMT. Except that 8 rats died from lung hemorrhages at 4∼6 days after TBI. 85% of these animals (500/59) showed hemopoietic engraftment. The survival rates of 8, 9, 10, 11 and 12 Gy subgroups at 90 days after BMT were 90%, 56%, 56%, 25% and 0% respectively. In the third group, 82 rats receive TBI and blood transfusion prior to BMT. Except that 8 rats subjected to 11∼12 Gy irradiation died from lung hemorrhage at 4∼6 days after BMT, 97% of these animals (72/74) showed hemopoietic engraftment. The 90-day survival rates of 8, 9, 10, 11 and 12 Gy subgroups were 93%, 80%, 80%, 60% and 6% respectively. The 90-day survival rate of 50 rats subjected to 9∼11 Gy TBI and treated with blood transfusion and BMT, was 72%, while that 47 rats treated simply with BMT was only 42%. These results showed clearly that previous blood transfusion could increase the rate of hemopoietic engraftment, reduce the incidence if rejection, and raise the survival rate

  9. Biochemical and hematological indicators in model of total body irradiation

    International Nuclear Information System (INIS)

    Dubner, D; Gisone, P.; Perez, M.R.; Barboza, M.; Luchetta, P.; Longoni, H.; Sorrentino, M.; Robison, A.

    1998-01-01

    With the purpose of evaluating the applicability of several biological indicators in accidental overexposures a study was carried out in 20 patients undergoing therapeutical total body irradiation (TBI). The following parameters were evaluated: a) Oxidative stress indicators: erythrocyte superoxide dismutase (SOD) and catalase activity (CAT), lipo peroxyde levels (TBARS) and total plasma antioxidant activity (TAA). b) Haematological indicators: reticulocyte maturity index (RMI) and charges in lymphocyte subpopulations. Non significant changes in SOD and CAT activity were observed. Significant higher TBARS levels were found in patients with unfavorable post-BTM course without any significant correlation with TAA. RMI decreased early and dropped to zero in most of the patients and rose several days prior to reticulocyte, neutrophils and platelets counts. A significant decrease in absolute counts of all lymphocyte subpopulations was observed during TBI, particularly for B lymphocytes. A subpopulation of natural killer (NK) cells (CD16+/ CD 56 +) showed a relative higher radioresistance. Cytotoxic activity was significantly decreased after TBI. These data suggest that TBARS could provide an useful evolutive indicator in accidental over exposure d patients and RMI is an early indicator of bone marrow recovery after radioinduced aplasia. The implications of the different radiosensitivities within the NK subsets remains unanswered. (author) [es

  10. Success Stories in Radiotherapy Development Projects: Optimizing Total Body Irradiation for Bone Marrow Transplants in Bulgaria. Chapter 28.3

    International Nuclear Information System (INIS)

    Rosenblatt, E.; Gocheva-Petkova, L.

    2017-01-01

    Each year, hundreds of cancer patients in Bulgaria receive bone marrow transplants as treatment for haematological malignancies such as leukaemia, lymphoma and multiple myeloma, or for solid tumours such as neuroblastoma, one of the more common cancers in infancy. To undergo a bone marrow transplant, patients must first go through a preparatory process that conditions the body for the transplant. This involves a special radiotherapy technique called total body irradiation (TBI). TBI helps to make space for the transplanted marrow, destroys any malignant cells that may be left in the bone marrow after chemotherapy and suppresses the immune system to help prevent rejection of the transplant. To avoid complications, patients must also receive irradiated cellular blood components during the preparatory process. The IAEA assisted medical professionals in Bulgaria in optimizing bone marrow transplants by providing the equipment and building the capabilities necessary to carry out TBI. The IAEA also offered very specialized radiotherapy training to the medical staff, including blood irradiation.

  11. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice.

    Science.gov (United States)

    Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-12-01

    Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.

  12. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  13. Total body irradiation: what schedule(s)

    International Nuclear Information System (INIS)

    Cosset, J.M.

    1993-01-01

    In this article, the author explains why a whole-body irradiation is still an essential step before a bone marrow graft. He presents irradiation protocols for acute myeloid leukemia and chronic myeloid leukemia. 14 refs

  14. Dosimetry and verification of 60Co total body irradiation with human phantom and semiconductor diodes

    Directory of Open Access Journals (Sweden)

    Allahverdi Mahmoud

    2007-01-01

    Full Text Available Total Body Irradiation (TBI is a form of radiotherapy used for patients prior to bone marrow or stem cell transplant to destroy any undetectable cancer cells. The dosimetry characteristics of a 60 Co unit for TBI were studied and a simple method for the calculation of the prescribed dose for TBI is presented. Dose homogeneity was verified in a human phantom. Dose measurements were made in water phantom (30 x 30 x 30 cm 3 , using farmer ionization chamber (0.6 cc, TM30010, PTW and a parallel plate ionization chamber (TM23343, PTW. Point dose measurements for AP/PA irradiation were measured in a human phantom using silicon diodes (T60010L, PTW. The lung dose was measured with an ionization chamber (0.3 cc, TM31013. The validity of the proposed algorithm was checked at TBI distance using the human phantom. The accuracy of the proposed algorithm was within 3.5%. The dose delivered to the mid-lobe of the lung was 14.14 Gy and it has been reduced to 8.16 Gy by applying the proper shield. Dose homogeneity was within ±7% for all measured points. The results indicate that a good agreement between the total prescribed and calculated midplane doses can be achieved using this method. Therefore, it could be possible to use calculated data for TBI treatments.

  15. Practical implications of backscatter from outside the patient on the dose distribution during total body irradiation

    International Nuclear Information System (INIS)

    Van Dam, J.; Rijnders, A.; Vanuytsel, L.; Zhang, H.-Z.

    1988-01-01

    Total body irradiation (TBI) sometimes requires the set-up of the patient very close to the wall of the treatment room in order to obtain sufficiently large irradiation fields. Under these conditions, backscattered electrons can become clinically important. In the present study, an attempt was made to quantify the dose contribution to the patient from these electrons. Measurements were performed both in experimental conditions and on patients during their TBI treatment. It is concluded that, with the patient close to the wall, backscattered electrons constitute a significant (up to 20% of the dose obtained under electronic equilibrium at the exit port of the beam) radiation dose which can (under certain conditions) influence measurements of exit dose leading to an overestimation of the midline dose and contribute a suuperficial irradiation of the patient without therapeutic benefit. This problem can be solved by interposing a 2 cm thick low-Z absorber between wall and patient. 9 refs.; 5 figs.; 1 table

  16. Patterns of Relapse in High-Risk Neuroblastoma Patients Treated With and Without Total Body Irradiation

    International Nuclear Information System (INIS)

    Li, Richard; Polishchuk, Alexei; DuBois, Steven; Hawkins, Randall; Lee, Stephanie W.; Bagatell, Rochelle; Shusterman, Suzanne; Hill-Kayser, Christine; Al-Sayegh, Hasan; Diller, Lisa; Haas-Kogan, Daphne A.; Matthay, Katherine K.; London, Wendy B.

    2017-01-01

    Purpose: External beam radiation therapy to initial sites of disease may influence relapse patterns in high-risk neuroblastoma. However, the effect of systemic irradiation by use of total body irradiation (TBI) on anatomic patterns of relapse has not previously been investigated. Methods and Materials: We retrospectively analyzed patients receiving definitive treatment of high-risk neuroblastoma with subsequent relapse in bony metastatic sites, with a date of relapse between January 1, 1997, and December 31, 2012. Anatomic sites of disease, defined by metaiodobenzylguanidine (MIBG) avidity, were compared at diagnosis and at first relapse. The Fisher exact test was performed to compare relapse in initially involved sites between patients treated with and without TBI. Results: Seventy-four patients with a median age at diagnosis of 3.5 years (range, 0.3-15.3 years) had relapse in 227 sites of MIBG-avid metastatic disease, with a median time to relapse of 1.8 years. Of the 227 sites of first relapse, 154 sites (68%) were involved at diagnosis. When we compared relapse patterns in patients treated with and without TBI, 12 of 23 patients (52%) treated with TBI had relapse in ≥1 previously MIBG-avid site of disease whereas 40 of 51 patients (78%) treated without TBI had relapse in ≥1 previously MIBG-avid site of disease (P=.03). Conclusions: Patients treated with systemic irradiation in the form of TBI were significantly less likely to have relapse in prior sites of disease. These findings support further investigation into the role of radiopharmaceutical therapies in curative multimodality therapy.

  17. Patterns of Relapse in High-Risk Neuroblastoma Patients Treated With and Without Total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Richard [Harvard Medical School, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Boston, Massachusetts (United States); Polishchuk, Alexei [School of Medicine, University of California San Francisco, San Francisco, California (United States); DuBois, Steven [Harvard Medical School, Boston, Massachusetts (United States); Dana-Farber/Boston Children' s Cancer and Blood Disorders Center, Boston, Massachusetts (United States); Hawkins, Randall [School of Medicine, University of California San Francisco, San Francisco, California (United States); Lee, Stephanie W. [Brigham and Women' s Hospital, Boston, Massachusetts (United States); Bagatell, Rochelle [Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Shusterman, Suzanne [Harvard Medical School, Boston, Massachusetts (United States); Dana-Farber/Boston Children' s Cancer and Blood Disorders Center, Boston, Massachusetts (United States); Hill-Kayser, Christine [Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Al-Sayegh, Hasan [Brigham and Women' s Hospital, Boston, Massachusetts (United States); Dana-Farber/Boston Children' s Cancer and Blood Disorders Center, Boston, Massachusetts (United States); Diller, Lisa [Harvard Medical School, Boston, Massachusetts (United States); Dana-Farber/Boston Children' s Cancer and Blood Disorders Center, Boston, Massachusetts (United States); Haas-Kogan, Daphne A. [Harvard Medical School, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Boston, Massachusetts (United States); Dana-Farber/Boston Children' s Cancer and Blood Disorders Center, Boston, Massachusetts (United States); Matthay, Katherine K. [School of Medicine, University of California San Francisco, San Francisco, California (United States); London, Wendy B. [Harvard Medical School, Boston, Massachusetts (United States); Dana-Farber/Boston Children' s Cancer and Blood Disorders Center, Boston, Massachusetts (United States); and others

    2017-02-01

    Purpose: External beam radiation therapy to initial sites of disease may influence relapse patterns in high-risk neuroblastoma. However, the effect of systemic irradiation by use of total body irradiation (TBI) on anatomic patterns of relapse has not previously been investigated. Methods and Materials: We retrospectively analyzed patients receiving definitive treatment of high-risk neuroblastoma with subsequent relapse in bony metastatic sites, with a date of relapse between January 1, 1997, and December 31, 2012. Anatomic sites of disease, defined by metaiodobenzylguanidine (MIBG) avidity, were compared at diagnosis and at first relapse. The Fisher exact test was performed to compare relapse in initially involved sites between patients treated with and without TBI. Results: Seventy-four patients with a median age at diagnosis of 3.5 years (range, 0.3-15.3 years) had relapse in 227 sites of MIBG-avid metastatic disease, with a median time to relapse of 1.8 years. Of the 227 sites of first relapse, 154 sites (68%) were involved at diagnosis. When we compared relapse patterns in patients treated with and without TBI, 12 of 23 patients (52%) treated with TBI had relapse in ≥1 previously MIBG-avid site of disease whereas 40 of 51 patients (78%) treated without TBI had relapse in ≥1 previously MIBG-avid site of disease (P=.03). Conclusions: Patients treated with systemic irradiation in the form of TBI were significantly less likely to have relapse in prior sites of disease. These findings support further investigation into the role of radiopharmaceutical therapies in curative multimodality therapy.

  18. Growth hormone (GH) secretion and response to GH therapy after total body irradiation and haematopoietic stem cell transplantation during childhood

    NARCIS (Netherlands)

    Bakker, B.; Oostdijk, W.; Geskus, R. B.; Stokvis-Brantsma, W. H.; Vossen, J. M.; Wit, J. M.

    2007-01-01

    In January 1997 we introduced a protocol for the treatment with GH of children with impaired growth after unfractionated total body irradiation (TBI). This study is an evaluation of that protocol. Between January 1997 and July 2005, 66 patients (48 male) treated for haematological malignancies had

  19. Paraphyseal changes on bone-age studies predict risk of delayed radiation-associated skeletal complications following total body irradiation

    International Nuclear Information System (INIS)

    Kitazono Hammell, Mary T.; Edgar, J.C.; Jaramillo, Diego; Bunin, Nancy

    2013-01-01

    Children undergoing total body irradiation (TBI) often develop delayed skeletal complications. Bone-age studies in these children often reveal subtle paraphyseal changes including physeal widening, metaphyseal irregularity and paraphyseal exostoses. To investigate whether paraphyseal changes on a bone-age study following TBI indicate a predisposition toward developing other radiation-associated skeletal complications. We retrospectively reviewed medical records and bone-age studies of 77 children receiving TBI at our institution between 1995 and 2008 who had at least 2 years of clinical follow-up and one bone-age study after TBI. We graded bone-age studies according to the severity of paraphyseal changes. All documented skeletal complications following TBI were tabulated. Kendall's tau-b was used to examine associations between degree of paraphyseal change and development of a skeletal complication. Kendall's tau analyses showed that physeal widening and metaphyseal irregularity/sclerosis (tau = 0.87, P < 0.001) and paraphyseal exostoses (tau = 0.68, P < 0.001) seen on bone-age studies were significantly positively associated with the development of delayed skeletal complications following TBI. Thirty percent of children with no or mild paraphyseal changes developed a delayed skeletal complication, compared with 58% of children with moderate paraphyseal changes and 90% of children with severe paraphyseal changes. Paraphyseal changes identified on a bone-age study correlate positively with the development of delayed skeletal complications elsewhere in the skeleton following TBI. (orig.)

  20. Neurobehavioral toxicity of total body irradiation: a follow-up in long-term survivors

    International Nuclear Information System (INIS)

    Peper, Martin; Steinvorth, Sarah; Schraube, Peter; Fruehauf, Stefan; Haas, Rainer; Kimmig, Bernhard N.; Lohr, Frank; Wenz, Frederik; Wannenmacher, Michael

    2000-01-01

    Purpose: Total body irradiation (TBI) in preparation for bone marrow transplantation (BMT) is a routine treatment of hematological malignancy. A retrospective and a prospective group study of long-term cerebral side effects was performed, with a special emphasis on neurobehavioral toxicity effects. Methods and Materials: Twenty disease-free patients treated with hyperfractionated TBI (14.4 Gy, 12 x 1.2 Gy, 4 days), 50 mg/kg cyclophosphamide, and autologous BMT (mean age 38 years, range 17-52 years; age at TBI 35 years, 16-50 years; follow-up time 32 months, 9-65 months) participated in a neuropsychological, neuroradiological, and neurological examination. Data were compared to 14 patients who were investigated prior to TBI. Eleven patients with renal insufficiencies matched for sex and age (38 years, 20-52 years) served as controls. In a longitudinal approach, neuropsychological follow-up data were assessed in 12 long-term survivors (45 years, 23-59 years; follow-up time 8.8 years, 7-10.8 years; time since diagnosis 10.1 years, 7.5-14.2 years). Results: No evidence of neurological deficits was found in post-TBI patients except one case of peripheral movement disorder of unknown origin. Some patients showed moderate brain atrophy. Neuropsychological assessment showed a subtle reduction of memory performance of about one standard deviation. Cognitive decline in individual patients appeared to be associated with pretreatment (brain irradiation, intrathecal methotrexate). Ten-years post disease onset, survivors without pretreatment showed behavioral improvement up to the premorbid level. Conclusion: The incidence of long-term neurobehavioral toxicity was very low for the present TBI/BMT regimen

  1. Total body irradiation prior to bone marrow transplantation; some aspects of fifty year experience.

    Science.gov (United States)

    Gocheva, L

    2004-01-01

    There has been a remarkable growth in the use of bone marrow transplantation (BMT) in the past 30 years. The rapid expansion of BMT reflects its increasingly important role in the treatment of several life-threatening diseases of the hemopoietic system. The first BMT in human patients was performed after conditioning with total body irradiation (TBI). As an important part of BMT protocols, TBI has an established role in many preparative regimens used before BMT in the treatment of hematological diseases. Historically, TBI schedules varied during the last 30-year period with regard to different radiation source used, treatment technique, beam modifiers, actually delivered total dose, dose rate, and fractionation schedule. The aim of this review article is to discuss the 50- year experience in the field of TBI, as well as radiobiological, technical and dosimetric requirements and especially effects of total dose, dose rate and fractionation schedules on the prognosis of transplanted patients. The radiobiological and radio-oncological requirements demand special TBI treatment techniques quite different from usual radiotherapy. The technique needed depends extremely on the prescribed values of treatment parameters and on the local technical possibilities. TBI dosimetry has to account for the physical situation of treatment with very large field sizes at extended distances and should be performed under TBI conditions close to the real treatment situation. The effects of total dose, dose rate, fractionation schedule on the leukemia cell killing, immunosuppression, and sparing of normal tissues are considered in detail. Their effects on overall survival, leukemia recurrence, acute and chronic graft versus host disease (GvHD), late radiation-induced injuries to normal tissues or organs as well as incidence of interstitial pneumonitis, renal dysfunction and cataract development are analyzed. The definition of currently used TBI procedures is so different in different

  2. Timing of Captopril Administration Determines Radiation Protection or Radiation Sensitization in a Murine Model of Total Body Irradiation

    Science.gov (United States)

    2010-04-01

    Hematology and Stem Cells. High-dose total body irradiation (TBI) as the result of a nuclear accident , terrorist event, or as a clinical therapy for cancer...critical to understand the effects of these drugs on radiation-induced hematopoietic injury because radiotherapy is a common therapeutic modality for...Herodin F, Drouet M. Cytokine-based treatment of accidentally irradi- ated victims and new approaches. Exp Hematol. 2005;33:1071–1080. 10. Stroth U

  3. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2016-05-01

    Full Text Available Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  4. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    International Nuclear Information System (INIS)

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-01-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors

  5. The carcinogenic risk of high dose total body irradiation in non-human primates

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bartstra, R.W.; Bekkum, D.W. van; Hage, M.H. van der; Zurcher, C.; Zwieten, M.J. van; Hollander, C.F.

    2000-01-01

    High dose total body irradiation (TBI) in combination with chemotherapy, followed by rescue with bone marrow transplantation (BMT), is increasingly used for the treatment of haematological malignancies. With the increasing success of this treatment and its current introduction for treating refractory autoimmune diseases the risk of radiation carcinogenesis is of growing concern. Studies on turnout induction in non-human primates are of relevance in this context since the response of this species to radiation does not differ much from that in man. Since the early sixties, studies have been performed on acute effects in Rhesus monkeys and the protective action of bone marrow transplantation after irradiation with X-rays (average total body dose 6.8 Gy) and fission neutrons (average dose 3.4 Gy). Of those monkeys, which were irradiated and reconstituted with autologous bone marrow, 20 animals in the X-irradiated group and nine animals in the neutron group survived more than 3 years. A group of 21 non-irradiated Rhesus monkeys of a comparable age distribution served as controls. All animals were regularly screened for the occurrence of neoplasms. Complete necropsies were performed after natural death or euthanasia. At post-irradiation intervals of 4-21 years an appreciable number of tumours was observed. In the neutron irradiated group eight out of nine animals died with one or more malignant tumours. In the X-irradiated group this fraction was 10 out of 20. The tumours in the control group, in seven out of the 21 animals, appeared at much older a-e compared with those in the irradiated cohorts. The histogenesis of the tumours was diverse with a preponderance of renal carcinoma, sarcomas among which osteosarcormas, and malignant glomus tumours in the irradiated groups. When corrected for competing risks, the carcinogenic risk of TBI in the Rhesus monkeys is similar to that derived from the studies of the Japanese atomic bomb survivors. The increase of the risk by a

  6. Renal toxicity in children undergoing total body irradiation for bone marrow transplant

    International Nuclear Information System (INIS)

    Esiashvili, Natia; Chiang, K.-Y.; Hasselle, Michael D.; Bryant, Cynthia; Riffenburgh, Robert H.; Paulino, Arnold C.

    2009-01-01

    Purpose: Contribution of total body irradiation (TBI) to renal toxicity in children undergoing the bone marrow transplant (BMT) remains controversial. We report our institutional retrospective study that evaluates the frequency of acute and chronic renal dysfunction in children after using total body irradiation (TBI) conditioning regimens. Materials and methods: Between 1995 and 2003, 60 children with hematological malignancies underwent TBI as part of a conditioning regimen before allogeneic BMT. Patients received 4-14 Gy at 1.75-2 Gy/fraction in six-eight fractions. Lung shielding was used in all patients to limit lung dose to less than 10 Gy; renal shielding was not utilized. All patients had baseline renal function assessment and renal dysfunction post-BM was mainly evaluated on the basis of persistent serum creatinine elevation at acute (0-90 days) and chronic (>90 days) intervals after completion of BMT. Results: Acute renal dysfunction (ARD) was documented in 27 patients (45%); the majority had concurrent diagnosis of veno-occlusive disease (VOD) or graft-versus-host disease (GVHD) and other potential causes (sepsis, antibiotic). The risk for delayed renal dysfunction (DRD) at 1 year approached 25% for surviving patients. The ARD was strongly linked with the risk of the DRD. There was no statistically significant relationship between ARD, DRD and underlying diagnosis, GVHD, VOD or TBI doses with both univariate and multivariate analyses. The younger age (<5 years) had significantly increased risk for the development of ARD (p = 0.011). Conclusion: Our analysis validates high incidence of renal dysfunction in the pediatric BMT population. In contrast to other reports we did not find total body irradiation dose to be a risk factor for renal dysfunction. Future prospective studies are needed to assess risk factors and interventions for this serious toxicity in children following allogeneic BM

  7. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  8. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation

    International Nuclear Information System (INIS)

    Thomas, E.D.; Buckner, C.D.; Banaji, M.

    1977-01-01

    One hundred patients, 54 with acute myelogenous leukemia (AML) and 46 with acute lymphoblastic leukemia (ALL), considered to be in the end stages of their disease, after combination chemotherapy were treated by marrow transplantation. All patients were given a marrow graft from an HLA-identical sibling after receiving 1000-rad total body irradiation (TBI). One group of 43 patients was given cyclophosphamide (CY), 60 mg/kg on each of 2 days, 5 and 4 days before TBI. In a second group of 31 patients, additional chemotherapy was given before CY and TBI. In a third group of 19 patients, BCNU was given before CY and TBI. A fourth group of 7 patients received other chemotherapy regimens before TBI. Six patients died 3 to 17 days after marrow infusion without evidence of engraftment. Ninety-four patients were engrafted rejected and only one patient rejected the graft. Thirteen patients are alive with a marrow graft, on no maintenance antileukemic therapy, and without recurrent leukemia 1--4 1 / 2 yr after transplantation. Three have chronic graft-versus-host disease (GVHD). The relapse rate appeared to be relatively constant over the first 2 yr and was extremely low after that time. Neither survival nor leukemic relapse appeared to be influenced by the type of leukemia nor by the preparative chemotherapy regimen given before TBI. Patients in fair clinical condition at the time of transplantation showed significantly longer survival times than patients in poor condition (p = 0.001). This observation, coupled with the observation that some patients may be cured of their disease, indicates that marrow transplantation should now be undertaken earlier in the management of patients with acute leukemia who have an HLA-matched sibling marrow donor

  9. Pathways analysis of differential gene expression induced by engrafting doses of total body irradiation for allogeneic bone marrow transplantation in mice.

    Science.gov (United States)

    Chen, Xinjian; Wang, Yuanyuan; Li, Qiuxia; Tsai, Schickwann; Thomas, Alun; Shizuru, Judith A; Cao, Thai M

    2013-08-01

    A major challenge in allogeneic bone marrow (BM) transplantation is overcoming engraftment resistance to avoid the clinical problem of graft rejection. Identifying gene pathways that regulate BM engraftment may reveal molecular targets for overcoming engraftment barriers. Previously, we developed a mouse model of BM transplantation that utilizes recipient conditioning with non-myeloablative total body irradiation (TBI). We defined TBI doses that lead to graft rejection, that conversely are permissive for engraftment, and mouse strain variation with regards to the permissive TBI dose. We now report gene expression analysis, using Agilent Mouse 8x60K microarrays, in spleens of mice conditioned with varied TBI doses for correlation to the expected engraftment phenotype. The spleens of mice given engrafting doses of TBI, compared with non-engrafting TBI doses, demonstrated substantially broader gene expression changes, significant at the multiple testing-corrected P change ≥2. Functional analysis revealed significant enrichment for a down-regulated canonical pathway involving B-cell development. Genes enriched in this pathway suggest that suppressing donor antigen processing and presentation may be pivotal effects conferred by TBI to enable engraftment. Regardless of TBI dose and recipient mouse strain, pervasive genomic changes related to inflammation was observed and reflected by significant enrichment for canonical pathways and association with upstream regulators. These gene expression changes suggest that macrophage and complement pathways may be targeted to overcome engraftment barriers. These exploratory results highlight gene pathways that may be important in mediating BM engraftment resistance.

  10. Immunoglobulin levels in dogs after total-body irradiation and bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Vriesendorp, H.M.; Halliwell, R.E.; Johnson, P.M.; Fey, T.A.; McDonough, C.M.

    1985-06-01

    The influence of total-body irradiation (TBI) and autologous or allogeneic bone marrow transplantation on serum immunoglobulin subclasses was determined in a dog model. Only IgG1 levels decreased after low-dose (+/- 4.5 Gy) TBI, but levels of all immunoglobulin classes fell after high-dose TBI (8.5 GyX1 or 2X6.0 Gy). After autologous bone marrow transplantation IgM levels were the first and IgE levels were the last to return to normal. After successful allogeneic bone marrow transplantation prolonged low IgM and IgE levels were found but IgA levels increased rapidly to over 150% of pretreatment values. A comparison of dogs with or without clinical signs or graft-versus-host disease (GVHD), revealed no differences in IgM levels. Dogs with GVHD had higher IgA but lower IgE levels. Dogs that rejected their allogeneic bone marrow cells showed significant early rises in IgE and IgA levels in comparison with dogs with GVHD. These results differ from the observations made on Ig levels in human bone marrow transplant patients. No significant differences in phytohemagglutinin stimulation tests were found between dogs with or without GVHD or dogs receiving an autologous transplant for the first four months after TBI and transplantation. An early primary or secondary involvement of humoral immunity in GVHD and graft rejection in dogs is postulated.

  11. Severe Pulmonary Toxicity After Myeloablative Conditioning Using Total Body Irradiation: An Assessment of Risk Factors

    International Nuclear Information System (INIS)

    Kelsey, Chris R.; Horwitz, Mitchell E.; Chino, Junzo P.; Craciunescu, Oana; Steffey, Beverly; Folz, Rodney J.; Chao, Nelson J.; Rizzieri, David A.; Marks, Lawrence B.

    2011-01-01

    Purpose: To assess factors associated with severe pulmonary toxicity after myeloablative conditioning using total body irradiation (TBI) followed by allogeneic stem cell transplantation. Methods and Materials: A total of 101 adult patients who underwent TBI-based myeloablative conditioning for hematologic malignancies at Duke University between 1998 and 2008 were reviewed. TBI was combined with high-dose cyclophosphamide, melphalan, fludarabine, or etoposide, depending on the underlying disease. Acute pulmonary toxicity, occurring within 90 days of transplantation, was scored using Common Terminology Criteria for Adverse Events version 3.0. Actuarial overall survival and the cumulative incidence of acute pulmonary toxicity were calculated via the Kaplan-Meier method and compared using a log-rank test. A binary logistic regression analysis was performed to assess factors independently associated with acute severe pulmonary toxicity. Results: The 90-day actuarial risk of developing severe (Grade 3-5) pulmonary toxicity was 33%. Actuarial survival at 90 days was 49% in patients with severe pulmonary toxicity vs. 94% in patients without (p < 0.001). On multivariate analysis, the number of prior chemotherapy regimens was the only factor independently associated with development of severe pulmonary toxicity (odds ratio, 2.7 per regimen). Conclusions: Severe acute pulmonary toxicity is prevalent after TBI-based myeloablative conditioning regimens, occurring in approximately 33% of patients. The number of prior chemotherapy regimens appears to be an important risk factor.

  12. Immunoglobulin levels in dogs after total-body irradiation and bone marrow transplantation

    International Nuclear Information System (INIS)

    Vriesendorp, H.M.; Halliwell, R.E.; Johnson, P.M.; Fey, T.A.; McDonough, C.M.

    1985-01-01

    The influence of total-body irradiation (TBI) and autologous or allogeneic bone marrow transplantation on serum immunoglobulin subclasses was determined in a dog model. Only IgG1 levels decreased after low-dose (+/- 4.5 Gy) TBI, but levels of all immunoglobulin classes fell after high-dose TBI (8.5 GyX1 or 2X6.0 Gy). After autologous bone marrow transplantation IgM levels were the first and IgE levels were the last to return to normal. After successful allogeneic bone marrow transplantation prolonged low IgM and IgE levels were found but IgA levels increased rapidly to over 150% of pretreatment values. A comparison of dogs with or without clinical signs or graft-versus-host disease (GVHD), revealed no differences in IgM levels. Dogs with GVHD had higher IgA but lower IgE levels. Dogs that rejected their allogeneic bone marrow cells showed significant early rises in IgE and IgA levels in comparison with dogs with GVHD. These results differ from the observations made on Ig levels in human bone marrow transplant patients. No significant differences in phytohemagglutinin stimulation tests were found between dogs with or without GVHD or dogs receiving an autologous transplant for the first four months after TBI and transplantation. An early primary or secondary involvement of humoral immunity in GVHD and graft rejection in dogs is postulated

  13. Factors associated with pulmonary toxicity after myeloablative conditioning using fractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hwa Kyung; Yoon, Hong In; Cho, Jae Ho [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2017-09-15

    Pulmonary toxicities, including infectious pneumonia (IP) and idiopathic pneumonia syndrome (IPS), are serious side effects of total body irradiation (TBI) used for myeloablative conditioning. This study aimed to evaluate clinical factors associated with IP and IPS following TBI. Fifty-eight patients with hematologic malignancies who underwent TBI before allogeneic hematopoietic stem cell transplantation between 2005 and 2014 were reviewed. Most patients (91%) received 12 Gy in 1.5 Gy fractions twice a day. Pulmonary toxicities were diagnosed based on either radiographic evidence or reduced pulmonary function, and were subdivided into IP and IPS based on the presence or absence of concurrent infection. Pulmonary toxicities developed in 36 patients (62%); 16 (28%) had IP and 20 (34%) had IPS. IP was significantly associated with increased treatment-related mortality (p = 0.028) and decreased survival (p = 0.039). Multivariate analysis revealed that the risk of developing IPS was significantly higher in patients who received stem cells from a matched unrelated donor than from a matched sibling donor (p = 0.021; hazard ratio [HR] = 12.67; 95% confidence interval [CI], 1.46–110.30). Combining other conditioning agents with cyclophosphamide produced a higher tendency to develop IP (p = 0.064; HR = 6.19; 95% CI, 0.90–42.56). IP and IPS involve different risk factors and distinct pathogeneses that should be considered when planning treatments before and after TBI.

  14. Factors associated with pulmonary toxicity after myeloablative conditioning using fractionated total body irradiation

    International Nuclear Information System (INIS)

    Byun, Hwa Kyung; Yoon, Hong In; Cho, Jae Ho

    2017-01-01

    Pulmonary toxicities, including infectious pneumonia (IP) and idiopathic pneumonia syndrome (IPS), are serious side effects of total body irradiation (TBI) used for myeloablative conditioning. This study aimed to evaluate clinical factors associated with IP and IPS following TBI. Fifty-eight patients with hematologic malignancies who underwent TBI before allogeneic hematopoietic stem cell transplantation between 2005 and 2014 were reviewed. Most patients (91%) received 12 Gy in 1.5 Gy fractions twice a day. Pulmonary toxicities were diagnosed based on either radiographic evidence or reduced pulmonary function, and were subdivided into IP and IPS based on the presence or absence of concurrent infection. Pulmonary toxicities developed in 36 patients (62%); 16 (28%) had IP and 20 (34%) had IPS. IP was significantly associated with increased treatment-related mortality (p = 0.028) and decreased survival (p = 0.039). Multivariate analysis revealed that the risk of developing IPS was significantly higher in patients who received stem cells from a matched unrelated donor than from a matched sibling donor (p = 0.021; hazard ratio [HR] = 12.67; 95% confidence interval [CI], 1.46–110.30). Combining other conditioning agents with cyclophosphamide produced a higher tendency to develop IP (p = 0.064; HR = 6.19; 95% CI, 0.90–42.56). IP and IPS involve different risk factors and distinct pathogeneses that should be considered when planning treatments before and after TBI

  15. p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2016-06-01

    Full Text Available Senescent hematopoietic stem cells (HSCs accumulate with age and exposure to stress, such as total-body irradiation (TBI, which may cause long-term myelosuppression in the clinic. However, the methods available for long-term myelosuppression remain limited. Previous studies have demonstrated that sustained p38 mitogen-activated protein kinases (p38 MAPK activation in HSCs following exposure to TBI in mice and the administration of its inhibitor twenty-four hours after TBI may partially prevent long-term myelosuppression. However, long-term myelosuppression is latent and identified long after the administration of radiation. In this study, we investigated the effects of SB203580 (a small molecule inhibitor of p38 MAPK on long-term myelosuppression induced by TBI. Mice with hematopoietic injury were injected intraperitoneally with SB203580 every other day five times beginning 70 days after 6 Gy of 137Cs γ ray TBI. Our results at 80 days demonstrated that SB203580 did not significantly improve the TBI-induced long-term reduction of peripheral blood cell and bone marrow nucleated cell (BMNC counts, or defects in hematopoietic progenitor cells (HPCs and HSC clonogenic function. SB203580 reduced reactive oxygen species (ROS production and p-p38 expression; however, SB203580 had no effect on p16 expression in the HSCs of mice. In conclusion, these findings suggest that treatment with SB203580 70 days after TBI in mice inhibits the ROS-p38 oxidative stress pathway; however, it has no therapeutic effect on long-term myelosuppression induced by TBI.

  16. Cobalt-60 total body irradiation dosimetry at 220 cm source-axis distance

    International Nuclear Information System (INIS)

    Glasgow, G.P.; Mill, W.B.

    1980-01-01

    Adults with acute leukemia are treated with cyclophosphamide and total body irradiation (TBI) followed by autologous marrow transplants. For TBI, patients seated in a stand angled 45 0 above the floor are treated for about 2 hours at 220 cm source-axis distance (SAD) with sequential right and left lateral 87 cm x 87 cm fields to a 900 rad mid-pelvic dose at about 8 rad/min using a 5000 Ci cobalt unit. Maximum (lateral) to minimum (mid-plane) dose ratios are: hips--1.15, shoulders--1.30, and head--1.05, which is shielded by a compensator filter. Organ doses are small intestine, liver and kidneys--1100 rad, lung--1100 to 1200 rad, and heart--1300 rad. Verification dosimetry reveals the prescribed dose is delivered to within +-5%. Details of the dosimetry of this treatment are presented

  17. Outcome of medium-dose VP-16/CY/TBI superior to CY/TBI as a conditioning regimen for allogeneic stem cell transplantation in adult patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Shigematsu, Akio; Tanaka, Junji; Suzuki, Ritsuro; Atsuta, Yoshiko; Kawase, Takakazu; Ito, Yoichi M; Yamashita, Takuya; Fukuda, Takahiro; Kumano, Keiki; Iwato, Koji; Yoshiba, Fumiaki; Kanamori, Heiwa; Kobayashi, Naoki; Fukuhara, Takashi; Morishima, Yasuo; Imamura, Masahiro

    2011-11-01

    The choice of conditioning regimen before allogeneic stem cell transplantation (SCT) in patients with acute lymphoblastic leukemia (ALL) is important. We retrospectively compared outcomes of medium-dose VP-16/cyclophosphamide/total body irradiation (VP/CY/TBI) regimen and CY/TBI. Five hundred and twenty-nine patients (VP/CY/TBI: n = 35, CY/TBI: n = 494) who met all of the following criteria were compared: first time for SCT, aged 15-59 years; first or second complete remission at SCT; bone marrow or peripheral blood as stem cell source; and HLA phenotypically matched donor. Median age of the patients was 34 years, and patients who received VP/CY/TBI were younger (28 vs. 34 years, P = 0.02). Cumulative incidences of relapse and non-relapse mortality (NRM) were higher for patients who received CY/TBI (P = 0.01 for relapse, P VP/CY/TBI group and 55.2% in the CY/TBI group. OS, and disease-free survival (DFS) in the VP/CY/TBI group were shown to be significantly better by multivariate analysis [hazard ratio: 0.21 (95% confidence interval: 0.06-0.49) for DFS, hazard ratio: 0.25 (95% confidence interval: 0.08-0.59) for OS]. VP/CY/TBI was associated with a lower relapse rate and no increase in NRM, resulting in better survival than that in CY/TBI for adult ALL patients.

  18. Whole-body irradiation technique: physical aspects

    International Nuclear Information System (INIS)

    Venencia, D.; Bustos, S.; Zunino, S.

    1998-01-01

    The objective of this work has been to implement a Total body irradiation technique that fulfill the following conditions: simplicity, repeatability, fast and comfortable positioning for the patient, homogeneity of the dose between 10-15 %, short times of treatments and In vivo dosimetric verifications. (Author)

  19. In vivo dosimetry with semiconducting diodes for dose verification in total-body irradiation. A 10-year experience

    Energy Technology Data Exchange (ETDEWEB)

    Ramm, U.; Licher, J.; Moog, J.; Scherf, C.; Kara, E.; Boettcher, H.D.; Roedel, C. [Dept. of Radiotherapy and Oncology, Center of Radiology, Univ. Hospital Johann Wolfgang Goethe Univ., Frankfurt/Main (Germany); Mose, S. [Dept. of Radiotherapy and Oncology, Center of Radiology, Univ. Hospital Johann Wolfgang Goethe Univ., Frankfurt/Main (Germany); Dept. of Radiotherapy and Radiooncology, Schwarzwald-Baar Hospital, Villingen-Schwenningen (Germany)

    2008-07-15

    Background and purpose: for total-body irradiation (TBI) using the translation method, dose distribution cannot be computed with computer-assisted three-dimensional planning systems. Therefore, dose distribution has to be primarily estimated based on CT scans (beam-zone method) which is followed by in vivo measurements to ascertain a homogeneous dose delivery. The aim of this study was to clinically establish semiconductor probes as a simple and fast method to obtain an online verification of the dose at relevant points. Patients and methods: in 110 consecutively irradiated TBI patients (12.6 Gy, 2 x 1.8 Gy/day), six semiconductor probes were attached to the body surface at dose-relevant points (eye/head, neck, lung, navel). The mid-body point of the abdomen was defined as dose reference point. The speed of translation was optimized to definitively reach the prescribed dose in this point. Based on the entrance and exit doses, the mid-body doses at the other points were computed. The dose homogeneity in the entire target volume was determined comparing all measured data with the dose at the reference point. Results: after calibration of the semiconductor probes under treatment conditions the dose in selected points and the dose homogeneity in the target volume could be quantitatively specified. In the TBI patients, conformity of calculated and measured doses in the given points was achieved with small deviations of adequate accuracy. The data of 80% of the patients are within an uncertainty of {+-} 5%. Conclusion: during TBI using the translation method, dose distribution and dose homogeneity can be easily controlled in selected points by means of semiconductor probes. Semiconductor probes are recommended for further use in the physical evaluation of TBI. (orig.)

  20. In vivo dosimetry with semiconducting diodes for dose verification in total-body irradiation. A 10-year experience.

    Science.gov (United States)

    Ramm, Ulla; Licher, Jörg; Moog, Jussi; Scherf, Christian; Kara, Eugen; Böttcher, Heinz-Dietrich; Rödel, Claus; Mose, Stephan

    2008-07-01

    For total-body irradiation (TBI) using the translation method, dose distribution cannot be computed with computer-assisted three-dimensional planning systems. Therefore, dose distribution has to be primarily estimated based on CT scans (beam-zone method) which is followed by in vivo measurements to ascertain a homogeneous dose delivery. The aim of this study was to clinically establish semiconductor probes as a simple and fast method to obtain an online verification of the dose at relevant points. In 110 consecutively irradiated TBI patients (12.6 Gy, 2 x 1.8 Gy/day), six semiconductor probes were attached to the body surface at dose-relevant points (eye/head, neck, lung, navel). The mid-body point of the abdomen was defined as dose reference point. The speed of translation was optimized to definitively reach the prescribed dose in this point. Based on the entrance and exit doses, the mid-body doses at the other points were computed. The dose homogeneity in the entire target volume was determined comparing all measured data with the dose at the reference point. After calibration of the semiconductor probes under treatment conditions the dose in selected points and the dose homogeneity in the target volume could be quantitatively specified. In the TBI patients, conformity of calculated and measured doses in the given points was achieved with small deviations of adequate accuracy. The data of 80% of the patients are within an uncertainty of +/- 5%. During TBI using the translation method, dose distribution and dose homogeneity can be easily controlled in selected points by means of semiconductor probes. Semiconductor probes are recommended for further use in the physical evaluation of TBI.

  1. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    Science.gov (United States)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  2. Utility of cranial boost in addition to total body irradiation in the treatment of high risk acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Alexander, Brian M.; Wechsler, Daniel; Braun, Thomas M.; Levine, John; Herman, Joseph; Yanik, Gregory; Hutchinson, Raymond; Pierce, Lori J.

    2005-01-01

    Purpose: Total body irradiation (TBI) as part of a conditioning regimen before hematopoietic stem cell transplant (HSCT) is an important component in the management of acute lymphoblastic leukemia (ALL) that has relapsed or has other certain high-risk features. Controversy exists, however, as to whether a cranial boost in addition to TBI is necessary to prevent central nervous system (CNS) recurrences in these high-risk cases. Previous national trials have included a cranial boost in the absence of data to justify its use. Therefore, the aim of this study was to assess risk of CNS recurrence in ALL patients treated with TBI, to identify subsets of these high-risk patients at an increased or decreased risk of CNS recurrence after TBI, and to investigate whether regimens with higher doses of cranial irradiation further reduce the risk of CNS recurrence. Methods and Materials: Charts of 67 consecutively treated patients with ALL who received TBI before HSCT were reviewed. Data including patient demographics, clinical features at presentation, conditioning regimen, donor source, use of a cranial boost, remission stage at transplant, histologic subtype, cytogenetics, and extramedullary site of presentation were retrospectively collected and correlated with the risk of subsequent CNS recurrence. Results: At the time of analysis, 30 (45%) patients were alive with no evidence of disease, 8 (12%) were alive with recurrence of leukemia, 7 (10.5%) had recurrent ALL but with successful salvage, 7 (11%) died subsequent to recurrence, 14 (21%) died from complications related to HCST, and 1 patient was lost to follow-up (1.5%). Of the patients who recurred after HSCT, the relapses were hematologic in 13 (57%), CNS with or without simultaneous marrow involvement in 3 (13%), and other sites in 7 (30%). Forty-one (61%) patients did not receive an extracranial boost of irradiation with TBI. Two of these patients (4.9%) suffered CNS failures compared with 1 of 26 (3.8%) who received a

  3. Evaluating a Novel Sleep-Focused Mind-Body Rehabilitative Program for Veterans with mTBI and Other Polytrauma Symptoms: An RCT Study

    Science.gov (United States)

    2015-09-01

    Award Number: W81XWH-12-1-0385 TITLE: Evaluating a Novel Sleep-Focused Mind -Body Rehabilitative Program for Veterans with mTBI and Other...3. DATES COVERED 31Aug 2014 - 30 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0385 Evaluating a Novel Sleep-Focused Mind -Body...study is still ongoing. There is no finding to report from the study as of 30/09/2015. 15. SUBJECT TERMS mind -body intervention, awareness training

  4. Transition pattern and mechanism of B-lymphocyte precursors in regenerated mouse bone marrow after subtotal body irradiation.

    Directory of Open Access Journals (Sweden)

    Deping Han

    Full Text Available Little is known about the effects of ionizing radiation on the transition and the related signal transduction of progenitor B cells in the bone marrow. Thus, using an NIH Swiss mouse model, we explored the impact of ionizing radiation on the early stage of B-cell development via an examination of the transition of CLP to pro-B to pre-B cells within bone marrow as a function of radiation doses and times. Our results showed that while the total number of bone marrow lymphoid cells at different stages were greatly reduced by subtotal body irradiation (sub-TBI, the surviving cells continued to transition from common lymphoid progenitors to pro-B and then to pre-B in a reproducible temporal pattern. The rearrangement of the immunoglobulin heavy chain increased significantly 1-2 weeks after irradiation, but no change occurred after 3-4 weeks. The rearrangement of the immunoglobulin light chain decreased significantly 1-2 weeks after sub-TBI but increased dramatically after 3-4 weeks. In addition, several key transcription factors and signaling pathways were involved in B-precursor transitions after sub-TBI. The data indicate that week 2 after irradiation is a critical time for the transition from pro-B cells to pre-B cells, reflecting that the functional processes for different B-cell stages are well preserved even after high-dose irradiation.

  5. Total body irradiation in the bone marrow transplantation in leukemia:an experience

    International Nuclear Information System (INIS)

    Zapatero, A.; Martin de Vidales, C.; Pinar, B.; Marin, A.; Cerezo, L.; Dominguez, P.; Perez, A.

    1996-01-01

    The purpose of this report was to evaluate long-term survival and morbidity of fractioned total body irradiation (TBI) prior to allogeneicbone marrow transplantation (BMT) for leukemia. From June 1985 to May 1992, 94 patients with acute leukemia and chronic myelogenous leukemia (CML), were treated with high dose cyclophosphamide(CY) and fractionated TBI to a total dose of 12 Gy in six fractions prior to allogeneic BMT. The Kaplan-Meier 5-year overall survival and disease-free survival were 53% +-6 and 48%+- respectively for patients with standard risk disease (first remission of acute leukemia and first chronic phase of CML), and 24%+-7 and 21%+-6 for patients with more advanced disease (p=3D0.01). The incidence of interstitial pneumonitis (IP), venoocclusive disease of the liver (VOD) and grade=3D>II acute graft-versus-host disease (GVHD) were respectively 15%, 29% and 51%. Fractionated TBI combined with high dose CY before allogeneic BMT for leukemia is an effective treatment in prolonging relapse-free survival witha low incidence of lung toxicity. (Author) 13 refs

  6. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  7. Myelopoiesis in whole-body-irradiated beagles

    International Nuclear Information System (INIS)

    Stevenson, A.F.G.

    1985-01-01

    The influence of dose-rate (DR) (either 5.2 or 52 cGy/min.) on the regeneration of bone marrow (BM) myelopoietic progenitor cells was studied in beagles after exposure to whole-body-irradiation (235, 375 and 1500 cGy + autologous BM-transplantation). Myelopoietic progenitor cells were assayed as colony-forming units in agar cultures (GM-CFU), in correlation with the colony-stimulation activity (CSA) in serum. At 235 cGy, the influence of DR on the recovery of GM-CFU was insignificant. However, at 375 cGy, the recovery was critically dependent on the DR. Depletion of GM-CFU numbers elevated CSA levels above pre-irradiation values. The DR determines the regenerative ability when the dose itself is critical to survival of the least number of hematopoietic stem cells (HSC) necessary for restitution. (author)

  8. Cataract after total body irradiation and bone marrow transplantation degree of visual impairment

    International Nuclear Information System (INIS)

    Kempen-Harteveld, M. Loes van; Struikmans, Henk; Kal, Henk B.; Tweel, Ingeborg van der; Mourits, Maarten P.; Verdonck, Leo F.; Schipper, Jan; Battermann, Jan J.

    2002-01-01

    Purpose: To assess the degree of visual impairment as a result of cataract formation after total body irradiation (TBI) for bone marrow transplantation. Methods and Materials: The data from 93 patients who received TBI in 1 or 2 fractions as a part of their conditioning regimen for bone marrow transplantation were analyzed with respect to the degree of visual impairment as a result of cataract formation. The probability to develop severe visual impairment (SVI) was determined for all patients, and the degree of visual impairment was assessed for 56 patients with stabilized cataract, using three categories: no, mild, or severe. Results: For all 93 patients, the probability of developing a cataract causing SVI was 0.44. For allogeneic patients, it was 0.33 without and 0.71 with steroid treatment (p<0.001). All SVI-free probability curves reached a plateau distinct from the cataract-free curves. Apparently, cataracts developing late in the follow-up period rarely cause SVI. Of the patients with stabilized cataract, 32% had no visual impairment, 16% had mild, and 52% severe impairment. No or mild visual impairment was present in 61% of all patients with stable cataract and no steroid treatment compared with only 13% of the patients treated with steroids (p=0.035). Conclusion: SVI occurs in only some of the patients (52%) with stable cataract after TBI for bone marrow transplantation in 1 or 2 fractions. Steroid treatment markedly increases the probability of developing visual problems as result of a cataract after TBI

  9. The modifying effect of ibuprofen on total body irradiation-induced elevation of oxidative reactions in male hamsters

    International Nuclear Information System (INIS)

    Dokmeci, D.; Akpolat, M.; Aydogdu, N.; Uzal, C.; Turan, N.F.

    2004-01-01

    Radiation therapy plays an important role in curative and palliative treatments of malignant diseases. Because of the lipid component in the membrane, lipid peroxidation has been reported to be particularly susceptible to radiation damage. However, lipid peroxidation is reversed by cellular defense mechanisms, and the use of various antioxidants involved in these mechanisms have recently been suggested to be beneficial. It is known that ibuprofen has antioxidative and/or free radical scavenging activities. Our purpose is to examine the antioxidant capacity of ibuprofen in hamsters undergoing total body irradiation (TBI). Ibuprofen was given by gavage at dose of 10 mg/kg for 15 consecutive days. After this period, animals were exposed to TBI 60 Co gamma irradiation with a single dose of 8 Gy. After 24 h radiation exposure, the hamsters were killed and samples were taken from blood. Plasma thiobarbituric acid reactive substances (TBARS) increased significantly after radiation exposure, and ibuprofen diminished the amounts of TBARS. Significant protection of the radiation-induced changes in the activities of superoxide dismutase (SOD) and catalase was also recorded in the blood of ibuprofen-treated and -irradiated hamsters. These results suggest that ibuprofen with its antioxidant capacity could play a modulatory role against cellular damage effected by free radicals induced by TBI. (author)

  10. Total Body Irradiation for Allogeneic Bone Marrow Transplantation in Chronic Myelogenous Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Ki Mun; Kim, In Ah; Shinn, Kyung Sub; Kim, Choon Choo; Kim, Dong Jip [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1994-06-15

    Between July 1987 and December 1992, we treated 22 patients with chromic myelogenous leukemia; 14 in the chronic phase and 8 with more advanced disease. All were received with allogeneic bone marrow transplantation from HLA-identical sibling donors after a total body irradiation (TBI) cyclophosphamide conditioning regimen. Patients were non-randomly assigned to either 1200 cGy/6 fractions/3 days (6 patients) or 1320 cGy/8 fractions/4 days (16 patients) by dose of TBI. Of the 22 patients, 8 were prepared with cyclophosphamide alone, 14 were conditioned with additional adriamycin or daunorubicin. To prevent graft versus host disease, cyclosporine was given either alone or in conjunction with methotrexate. The actuarial survival and leukemic-free survival at four years were 58.5% and 41.2%, respectively, and the relapse rate was 36% among 22 patients. There was a statistically significant difference in survival between the patients in chronic phase and more advanced phase (76% vs 33%, p=0.05). The relapse rate of patients receiving splenectomy was higher than that of patients receiving splenic irradiation (50% vs 0%, p=0.04). We conclude that the probability of cure is highest if transplantation is performed while the patient remains in the chronic phase.

  11. The Basel experience with total body irradiation for conditioning patients with acute leukemia for allogenic bone marrow transplantation

    International Nuclear Information System (INIS)

    Speck, B.; Cornu, P.; Nissen, C.; Gratwohl, A.; Sartorius, J.

    1979-01-01

    We are reporting our experience with 13 patients suffering from end stage acute leukemia that were prepared for allogeneic bone marrow transplantation by combined chemotherapy followed by high dose cyclophosphamide (Cy) and total body irradiation (TBI). Only one patient became a long term survivor. Of the evaluable 12 patients, 6 died of interstitial pneumonia, 4 of GvH and 1 of recurrent leukemia. We conclude that adding combined chemotherapy to the standard conditioning program with Cy and TBI probably increases the risk of developing fatal interstitial pneumonia without eliminating the risk of recurrent leukemia. We suggest that allogenic marrow grafts should be performed earlier in the course of refractory acute leukemias, because in patients with end stage disease its chances of being curative are small

  12. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model.

    Directory of Open Access Journals (Sweden)

    Amory Koch

    Full Text Available Acute radiation sickness (ARS following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS developed at the Veterinary Sciences Department (VSD of the Armed Forces Radiobiology Research Institute (AFRRI to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male TBI model (6-14 Gy, 60Co γ-rays at 0.6 Gy min-1, which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated, 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors. In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2-4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies.

  13. Translating bed total body irradiation lung shielding and dose optimization using asymmetric MLC apertures

    Science.gov (United States)

    Ahmed, Shahbaz; Brown, Derek; Ahmed, Saad B. S.; Kakakhel, Muhammad B.; Muhammad, Wazir

    2016-01-01

    A revised translating bed total body irradiation (TBI) technique is developed for shielding organs at risk (lungs) to tolerance dose limits, and optimizing dose distribution in three dimensions (3D) using an asymmetrically‐adjusted, dynamic multileaf collimator. We present a dosimetric comparison of this technique with a previously developed symmetric MLC‐based TBI technique. An anthropomorphic RANDO phantom is CT scanned with 3 mm slice thickness. Radiological depths (RD) are calculated on individual CT slices along the divergent ray lines. Asymmetric MLC apertures are defined every 9 mm over the phantom length in the craniocaudal direction. Individual asymmetric MLC leaf positions are optimized based on RD values of all slices for uniform dose distributions. Dose calculations are performed in the Eclipse treatment planning system over these optimized MLC apertures. Dose uniformity along midline of the RANDO phantom is within the confidence limit (CL) of 2.1% (with a confidence probability p=0.065). The issue of over‐ and underdose at the interfaces that is observed when symmetric MLC apertures are used is reduced from more than ±4% to less than ±1.5% with asymmetric MLC apertures. Lungs are shielded by 20%, 30%, and 40% of the prescribed dose by adjusting the MLC apertures. Dose‐volume histogram analysis confirms that the revised technique provides effective lung shielding, as well as a homogeneous dose coverage to the whole body. The asymmetric technique also reduces hot and cold spots at lung‐tissue interfaces compared to previous symmetric MLC‐based TBI technique. MLC‐based shielding of OARs eliminates the need to fabricate and setup cumbersome patient‐specific physical blocks. PACS number(s): 87.55.‐x, 87.55.de, 87.55.D‐ PMID:27074477

  14. A comparison of busulphan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Ringden, O. [Huddinge Hospital, Stockholm (Sweden). Dept. of Clinical Immunology; Labopin, M.; Gorin, N.C. [Hopital Saint-Antoine, Paris (France). Centre International Greffes de Moelle; Tura, S. [Orsola University Hospital, Bologna (Italy); Arcese, W. [University `La Sapienza`, Rome (Italy). Haematology; Iriondo, A. [Hospital National, Santander (Spain); Zittoun, R. [Hotel-Dieu, Paris (France). Service d`Hematologie; Sierra, J. [Hospital Clinic, Barcelona (Spain)

    1996-06-01

    We retrospectively compared the outcome in patients in the EBMT database transplanted for acute leukaemia from January 1987 to January 1994 who received busulphan and cyclophosphamide (BU/CY) as a pretransplant regimen versus those who received cyclophosphamide and total-body irradiation (CY-TBI). The patients were matched for type of transplant (autologous bone marrow transplantation (ABMT) versus allogenic (BMT)), diagnosis (acute lymphoblast leukaemia (ALL) ora cute myeloid leukaemia (AML)), status (early first complete remission, CR-1) versus intermediate (second or later remission, first relapse), age, FAB classification for AML, prevention of graft-versus-host disease and year of transplantation. BU/CY and CY/TBI as pretransplant regimens gave similar results in all situations, except ABMT for ALL intermediate stages with more than 2 years from diagnosis to transplantation, where a lower RI and a higher LFS were associated with CY/TBI. (author).

  15. Extreme heterogeneity of myeloablative total body irradiation techniques in clinical practice: a survey of the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation.

    Science.gov (United States)

    Giebel, Sebastian; Miszczyk, Leszek; Slosarek, Krzysztof; Moukhtari, Leila; Ciceri, Fabio; Esteve, Jordi; Gorin, Norbert-Claude; Labopin, Myriam; Nagler, Arnon; Schmid, Christoph; Mohty, Mohamad

    2014-09-01

    Total body irradiation (TBI) is widely used for conditioning before hematopoietic cell transplantation. Its efficacy and toxicity may depend on many methodological aspects. The goal of the current study was to explore current clinical practice in this field. A questionnaire was sent to all centers collaborating in the European Group for Blood and Marrow Transplantation and included 19 questions regarding various aspects of TBI. A total of 56 centers from 23 countries responded. All centers differed with regard to at least 1 answer. The total maximum dose of TBI used for myeloablative transplantation ranged from 8 grays (Gy) to 14.4 Gy, whereas the dose per fraction was 1.65 Gy to 8 Gy. A total of 16 dose/fractionation modalities were identified. The dose rate ranged from 2.25 centigrays to 37.5 centigrays per minute. The treatment unit was linear accelerator (LINAC) (91%) or cobalt unit (9%). Beams (photons) used for LINAC were reported to range from 6 to 25 megavolts. The most frequent technique used for irradiation was "patient in 1 field," in which 2 fields and 2 patient positions per fraction are used (64%). In 41% of centers, patients were immobilized during TBI. Approximately 93% of centers used in vivo dosimetry with accepted discrepancies between the planned and measured doses of 1.5% to 10%. In 84% of centers, the lungs were shielded during irradiation. The maximum accepted dose for the lungs was 6 Gy to 14.4 Gy. TBI is an extremely heterogeneous treatment modality. The findings of the current study should warrant caution in the interpretation of clinical studies involving TBI. Further investigation is needed to evaluate how methodological differences influence outcome. Efforts to standardize the method should be considered. © 2014 American Cancer Society.

  16. Morphological study of the effect of cyclophosphamide, dimethylmyleran and whole-body irradiation for the conditioning of dogs to bone marrow transplantation

    International Nuclear Information System (INIS)

    Bayer, L.

    1980-01-01

    Dogs were treated with either cyclophosphamide (CY) or dimethylmyleran (DMM), both cytostatics or with total body irradiation (TBI) in order to find out which agents are most suitable for conditioning for bone marrow (BM) transplantation. The histomorphological changes in various organs (lung, bone marrow, lymphatic tissues, digestive tract, liver, kidney, bladder, heart and gonads) after treatment with different doses are described. (orig./MG) [de

  17. Natural β-carotene and whole body irradiation in rats

    International Nuclear Information System (INIS)

    Ben-Amotz, A.; Rachmilevich, B.; Greenberg, S.; Sela, M.; Weshler, Z.

    1996-01-01

    β-Carotene and other carotenoids are reported to be potent free radical quenchers, singlet oxygen scavengers, and lipid antioxidants. Whole-body irradiation is known to cause an immunosuppression effect in mammals through the possible initiation and production of reactive oxygen species. We decided to test the possible antioxidative effect against whole-body irradiation of a natural β-carotene, composed of equal amounts of the all-trans and 9-cis isomers, obtained from the unicellular alga Dunaliella bardawil. Rats were fed on ground commercial food enriched with natural β-carotene (50 mg/kg diet). On completion of 1 week with β-carotene, the rats were exposed to a single dose of 4 Gy whole-body irradiation, after which their livers and blood were removed for β-carotene and retinol analysis in comparison with control livers of animals irradiated or not, or supplemented with β-carotene after irradiation. A normal increase in body weight with no ill effects was noted in the groups of rats whose diet was supplemented by β-carotene before and after irradiation, compared with the reduction in the specific growth rate in the group of rats irradiated without β-carotene. Liver β-carotene and retinol decreased significantly after irradiation compared with the rats which were not irradiated. This decrease was not shown in rats fed β-carotene prior to irradiation, and the effect of irradiation was partially cured by supplementation with β-carotene after irradiation. High-pressure liquid chromatography (HPLC) analysis of the irradiated animals showed a selective decline in 9-cis β-carotene and in retinol over all-trans β-carotene and retinyl esters. These results suggest that 9-cis β-carotene and retinol protect in vivo against the cellular damage by free radicals induced after whole-body irradiation. (orig.). With 1 fig., 2 tabs

  18. Cytogenetic studies on recipients of allogeneic bone marrow transplants after fractionated total body irradiation

    International Nuclear Information System (INIS)

    Schmitz, N.; Goedde-Salz, E.; Loeffler, H.

    1985-01-01

    Cytogenetic findings from the bone marrow (BM) and the peripheral blood (PB) of nine consecutive patients after allogeneic bone marrow transplantation (BMT) for acute or chronic myelogenous leukaemia are reported. After a conditioning regimen consisting of cyclophosphamide and fractionated total body irradiation (TBI) given in five or six fractions of 2 Gy, persistence of host cells was detected in four out of seven cases with permanent engraftment. While one of these patients relapsed 4 months after host cells had been found in BM and PB, the other patients stayed relapse-free 124, 257 and 347 d after grafting. Before transplantation, the leukaemic cells in all three cases carried unique cytogenetic abnormalities giving the opportunity to distinguish the leukaemic population from chromosomally non-aberrant cells thought to represent residual normal host cells. As the persisting host cells after BMT lacked any cytogenetic abnormalities, it is suggested that they were members of residual normal clones not involved in the leukaemic process. (author)

  19. Marrow transplantation for leukemia following fractionated total body irradiation. A comparative trial of methotrexate and cyclosporine

    International Nuclear Information System (INIS)

    Irle, C.; Deeg, H.J.; Buckner, C.D.; Swedish Hospital Medical Center, Seattle, WA; Veterans Administration Hospital, Seattle, WA; Washington Univ., Seattle

    1985-01-01

    Fifty-six patients, 30-47 yr of age, with leukemia in relapse received allogeneic marrow transplants from HLA-identical siblings. All patients were treated with cyclophosphamide (120 mg/kg) and 7 daily fractions of 2.25 Gy of total body irradiation (TBI) for seven consecutive days. Nine patients (16%) are currently alive, free of disease, 324-845 days from transplantation. Actuarial relapse and survival rates at 2 yr were 56% and 9.5% respectively. These data were not remarkably different from those in previous studies using 10 Gy of TBI administered as a single dose. Thirty patients were randomized to receive methotrexate (MTX) and 26 to receive cyclosporine (CSP) as postgrafting prophylaxis for acute graft-versus-host disease (GVHD). Probability of developing significant acute GVHD by day 100 post-transplant was 71% for patients in the MTX group and 45% for patients in the CSP group (p<0.05). Probability of relapse was 37% for patients in the MTX group and 70% for patients in the CSP group (p<0.05). Transplant-related deaths were more frequent in the MTX group and leukemic deaths more frequent in the CSP group although this may have been related to an uneven distribution of high-risk patients. Long term disease-free survival was comparable. (author)

  20. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    International Nuclear Information System (INIS)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta; Aversa, Franco; Martelli, M.F.; Raymondi, Carlo

    1991-01-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab

  1. Effects of total body irradiation-based conditioning allogenic sem cell transplantation for pediatric acute leukemia: A single-institution study

    International Nuclear Information System (INIS)

    Park, Jong Moo; Choi, Eun Kyung; Kim, Jong Hoon

    2014-01-01

    To evaluate the effects of total body irradiation (TBI), as a conditioning regimen prior to allogeneic stem cell transplantation (allo-SCT), in pediatric acute leukemia patients. From January 2001 to December 2011, 28 patients, aged less than 18 years, were treated with TBI-based conditioning for allo-SCT in our institution. Of the 28 patients, 21 patients were diagnosed with acute lymphoblastic leukemia (ALL, 75%) and 7 were diagnosed with acute myeloid leukemia (AML, 25%). TBI was completed 4 days or 1 day before stem cell infusion. Patients underwent radiation therapy with bilateral parallel opposing fields and 6-MV X-rays. The Kaplan-Meier method was used to calculate survival outcomes. The 2-year event-free survival and overall survival rates were 66% and 56%, respectively (71.4% and 60.0% in AML patients vs. 64.3% and 52.4% in ALL patients, respectively). Treatment related mortality rate were 25%. Acute and chronic graft-versus-host disease was a major complication; other complications included endocrine dysfunction and pulmonary complications. Common complications from TBI were nausea (89%) and cataracts (7.1%). The efficacy and toxicity data in this study of TBI-based conditioning to pediatric acute leukemia patients were comparable with previous studies. However, clinicians need to focus on the acute and chronic complications related to allo-SCT.

  2. Effects of total body irradiation-based conditioning allogenic sem cell transplantation for pediatric acute leukemia: A single-institution study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Moo; Choi, Eun Kyung; Kim, Jong Hoon [Dept.of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); and others

    2014-09-15

    To evaluate the effects of total body irradiation (TBI), as a conditioning regimen prior to allogeneic stem cell transplantation (allo-SCT), in pediatric acute leukemia patients. From January 2001 to December 2011, 28 patients, aged less than 18 years, were treated with TBI-based conditioning for allo-SCT in our institution. Of the 28 patients, 21 patients were diagnosed with acute lymphoblastic leukemia (ALL, 75%) and 7 were diagnosed with acute myeloid leukemia (AML, 25%). TBI was completed 4 days or 1 day before stem cell infusion. Patients underwent radiation therapy with bilateral parallel opposing fields and 6-MV X-rays. The Kaplan-Meier method was used to calculate survival outcomes. The 2-year event-free survival and overall survival rates were 66% and 56%, respectively (71.4% and 60.0% in AML patients vs. 64.3% and 52.4% in ALL patients, respectively). Treatment related mortality rate were 25%. Acute and chronic graft-versus-host disease was a major complication; other complications included endocrine dysfunction and pulmonary complications. Common complications from TBI were nausea (89%) and cataracts (7.1%). The efficacy and toxicity data in this study of TBI-based conditioning to pediatric acute leukemia patients were comparable with previous studies. However, clinicians need to focus on the acute and chronic complications related to allo-SCT.

  3. Impact of TBI on late effects in children treated by megatherapy for Stage IV neuroblastoma. A study of the French Society of Pediatric oncology

    International Nuclear Information System (INIS)

    Flandin, Isabelle; Hartmann, Olivier; Michon, Jean; Pinkerton, Ross; Coze, Carole; Stephan, Jean Louis; Fourquet, Bernard; Valteau-Couanet, Dominique; Bergeron, Christophe; Philip, Thierry; Carrie, Christian

    2006-01-01

    Purpose: To determine the contribution of total body irradiation (TBI) to late sequelae in children treated with high-dose chemotherapy and autologous bone marrow transplantation for Stage IV neuroblastoma. Patients and Methods: We compared two populations that were similar with regard to age, stage, pre-autologous bone marrow transplantation chemotherapy (CT) regimen, period of treatment, and follow-up (12 years). The TBI group (n = 32) received TBI as part of the megatherapy procedure (1982-1993), whereas the CT group (n 30) received conditioning without TBI (1985-1992). Analysis 12 years later focused on growth, weight and corpulence (body mass index) delay; hormonal deficiencies; liver, kidney, heart, ear, eye, and dental sequelae; school performance; and the incidence of secondary tumors. Results: Impact of TBI was most marked in relation to growth and weight delay, although the mean delay was not severe, probably because of treatment with growth hormones. Other consequences of TBI were thyroid insufficiency, cataracts, and a high incidence of secondary tumors. Hearing loss and dental agenesis were more prominent in the group treated with CT alone. No differences were observed in school performance. Conclusion: The most frequent side effects of TBI were cataracts, thyroid insufficiency, and growth delay, but more worrying is the risk of secondary tumors. Because of the young mean age of patients and the toxicity of TBI regimens without any survival advantage, regimens without TBI are preferable in the management of Stage IV neuroblastoma

  4. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    International Nuclear Information System (INIS)

    Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T

    2015-01-01

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as 187 W, 56 Mn, 24 Na and 28 Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws

  5. Total body irradiation: current indications; L`irradiation corporelle totale: les indications actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1998-05-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  6. Survival and Neurocognitive Outcomes After Cranial or Craniospinal Irradiation Plus Total-Body Irradiation Before Stem Cell Transplantation in Pediatric Leukemia Patients With Central Nervous System Involvement

    International Nuclear Information System (INIS)

    Hiniker, Susan M.; Agarwal, Rajni; Modlin, Leslie A.; Gray, Christine C.; Harris, Jeremy P.; Million, Lynn; Kiamanesh, Eileen F.; Donaldson, Sarah S.

    2014-01-01

    Purpose: To evaluate survival and neurocognitive outcomes in pediatric acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement treated according to an institutional protocol with stem cell transplantation (SCT) and a component of craniospinal irradiation (CSI) in addition to total-body irradiation (TBI) as preparative regimen. Methods and Materials: Forty-one pediatric ALL patients underwent SCT with TBI and received additional cranial irradiation or CSI because of CNS leukemic involvement. Prospective neurocognitive testing was performed before and after SCT in a subset of patients. Cox regression models were used to determine associations of patient and disease characteristics and treatment methods with outcomes. Results: All patients received a cranial radiation boost; median total cranial dose was 24 Gy. Eighteen patients (44%) received a spinal boost; median total spinal dose for these patients was 18 Gy. Five-year disease-free survival (DFS) for all patients was 67%. Those receiving CSI had a trend toward superior DFS compared with those receiving a cranial boost alone (hazard ratio 3.23, P=.14). Patients with isolated CNS disease before SCT had a trend toward superior DFS (hazard ratio 3.64, P=.11, 5-year DFS 74%) compared with those with combined CNS and bone marrow disease (5-year DFS 59%). Neurocognitive testing revealed a mean post-SCT overall intelligence quotient of 103.7 at 4.4 years. Relative deficiencies in processing speed and/or working memory were noted in 6 of 16 tested patients (38%). Pre- and post-SCT neurocognitive testing revealed no significant change in intelligence quotient (mean increase +4.7 points). At a mean of 12.5 years after transplant, 11 of 13 long-term survivors (85%) had completed at least some coursework at a 2- or 4-year college. Conclusion: The addition of CSI to TBI before SCT in pediatric ALL with CNS involvement is effective and well-tolerated. Craniospinal irradiation plus TBI is worthy

  7. Survival and Neurocognitive Outcomes After Cranial or Craniospinal Irradiation Plus Total-Body Irradiation Before Stem Cell Transplantation in Pediatric Leukemia Patients With Central Nervous System Involvement

    Energy Technology Data Exchange (ETDEWEB)

    Hiniker, Susan M. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Agarwal, Rajni [Section of Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, California (United States); Modlin, Leslie A. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Gray, Christine C. [Division of Child and Adolescent Psychiatry, Department of Psychiatry, Stanford University, Stanford, California (United States); Harris, Jeremy P.; Million, Lynn [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Kiamanesh, Eileen F. [Cancer Clinical Trials Office, Stanford Cancer Institute, Stanford University, Stanford, California (United States); Donaldson, Sarah S., E-mail: sarah2@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California (United States)

    2014-05-01

    Purpose: To evaluate survival and neurocognitive outcomes in pediatric acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement treated according to an institutional protocol with stem cell transplantation (SCT) and a component of craniospinal irradiation (CSI) in addition to total-body irradiation (TBI) as preparative regimen. Methods and Materials: Forty-one pediatric ALL patients underwent SCT with TBI and received additional cranial irradiation or CSI because of CNS leukemic involvement. Prospective neurocognitive testing was performed before and after SCT in a subset of patients. Cox regression models were used to determine associations of patient and disease characteristics and treatment methods with outcomes. Results: All patients received a cranial radiation boost; median total cranial dose was 24 Gy. Eighteen patients (44%) received a spinal boost; median total spinal dose for these patients was 18 Gy. Five-year disease-free survival (DFS) for all patients was 67%. Those receiving CSI had a trend toward superior DFS compared with those receiving a cranial boost alone (hazard ratio 3.23, P=.14). Patients with isolated CNS disease before SCT had a trend toward superior DFS (hazard ratio 3.64, P=.11, 5-year DFS 74%) compared with those with combined CNS and bone marrow disease (5-year DFS 59%). Neurocognitive testing revealed a mean post-SCT overall intelligence quotient of 103.7 at 4.4 years. Relative deficiencies in processing speed and/or working memory were noted in 6 of 16 tested patients (38%). Pre- and post-SCT neurocognitive testing revealed no significant change in intelligence quotient (mean increase +4.7 points). At a mean of 12.5 years after transplant, 11 of 13 long-term survivors (85%) had completed at least some coursework at a 2- or 4-year college. Conclusion: The addition of CSI to TBI before SCT in pediatric ALL with CNS involvement is effective and well-tolerated. Craniospinal irradiation plus TBI is worthy

  8. Proton irradiation of malignant melanoma of the ciliary body

    International Nuclear Information System (INIS)

    Gragoudas, E.S.; Goitein, M.; Koehler, A.; Wagner, M.S.; Verhey, L.; Tepper, J.; Suit, H.D.; Schneider, R.J.; Johnson, K.N.

    1979-01-01

    This is the first case of malignant melanoma of the ciliary body treated by the authors with proton beam irradiation, a technique that they developed for irradiating choroidal melanomas. After 21 months of follow-up no growth of the tumour has been observed, and shrinkage of the tumour was noted on the follow-up photographs and by ultrasonography. The 32 Pu uptake test, which was positive before treatment, turned negative 14 months after irradiation. The described technique of proton beam irradiation might offer an alternative for the treatment of ciliary body melanomas when the present technique of iridocyclectomy cannot be applied because of the size of the lesion. (author)

  9. Mitigating the Effects of Xuebijing Injection on Hematopoietic Cell Injury Induced by Total Body Irradiation with γ rays by Decreasing Reactive Oxygen Species Levels

    Directory of Open Access Journals (Sweden)

    Deguan Li

    2014-06-01

    Full Text Available Hematopoietic injury is the most common side effect of radiotherapy. However, the methods available for the mitigating of radiation injury remain limited. Xuebijing injection (XBJ is a traditional Chinese medicine used to treat sepsis in the clinic. In this study, we investigated the effects of XBJ on the survival rate in mice with hematopoietic injury induced by γ ray ionizing radiation (IR. Mice were intraperitoneally injected with XBJ daily for seven days after total body irradiation (TBI. Our results showed that XBJ (0.4 mL/kg significantly increased 30-day survival rates in mice exposed to 7.5 Gy TBI. This effect may be attributable to improved preservation of white blood cells (WBCs and hematopoietic cells, given that bone marrow (BM cells from XBJ-treated mice produced more granulocyte-macrophage colony forming units (CFU-GM than that in the 2 Gy/TBI group. XBJ also decreased the levels of reactive oxygen species (ROS by increasing glutathione (GSH and superoxide dismutase (SOD levels in serum and attenuated the increased BM cell apoptosis caused by 2 Gy/TBI. In conclusion, these findings suggest that XBJ enhances the survival rate of irradiated mice and attenuates the effects of radiation on hematopoietic injury by decreasing ROS production in BM cells, indicating that XBJ may be a promising therapeutic candidate for reducing hematopoietic radiation injury.

  10. Development and clinical application of a length-adjustable water phantom for total body irradiation

    International Nuclear Information System (INIS)

    Chen, Z. W.; Yao, S. Y.; Zhang, T. N.; Zhu, Z. H.; Hu, Z. K.; Lu, X.

    2008-01-01

    A new type of water phantom which would be specialised for the absorbed dose measurement in total body irradiation (TBI) treatment is developed. Ten millimetres of thick Plexiglas plates were arranged to form a square cube with 300 mm of edge length. An appropriate sleeve-type piston was installed on the side wall, and a tabular Plexiglas piston was positioned inside the sleeve. By pushing and pulling the piston, the length of the self-made water phantom could be varied to meet the required patients' physical sizes. To compare the international standard water phantom with the length-adjustable and the Plexiglas phantoms, absorbed dose for 6-MV X ray was measured by an ionisation chamber at different depths in three kinds of phantoms. In 70 cases with TBI, midplane doses were metered using the length-adjustable and the Plexiglas phantoms for simulating human dimensions, and dose validation was synchronously carried out. There were no significant statistical differences, p > 0.05, through statistical processing of data from the international standard water phantom and the self-designed one. There were significant statistical differences, p < 0.05, between the two sets of data from the standard and the Plexiglas one. In addition, the absolute difference had a positive correlation with the varied depth of the detector in the Plexiglas phantom. Comparing the data of clinical treatment, the differences were all <1 % among the prescription doses and the validation data collected from the self-design water phantom. However, the differences collected from the Plexiglas phantom were increasing gradually from +0.77 to +2.30 % along with increasing body width. Obviously, the difference had a positive correlation with the body width. The results proved that the new length-adjustable water phantom is more accurate for simulating human dimensions than Plexiglas phantom. (authors)

  11. Backscatter Correction Algorithm for TBI Treatment Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Nieto, B.; Sanchez-Doblado, F.; Arrans, R.; Terron, J.A. [Dpto. Fisiología Médica y Biofísica, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4. E-41009, Sevilla (Spain); Errazquin, L. [Servicio Oncología Radioterápica, Hospital Univ.V. Macarena. Dr. Fedriani, s/n. E-41009, Sevilla (Spain)

    2015-01-15

    The accuracy requirements in target dose delivery is, according to ICRU, ±5%. This is so not only in standard radiotherapy but also in total body irradiation (TBI). Physical dosimetry plays an important role in achieving this recommended level. The semi-infinite phantoms, customarily used for dosimetry purposes, give scatter conditions different to those of the finite thickness of the patient. So dose calculated in patient’s points close to beam exit surface may be overestimated. It is then necessary to quantify the backscatter factor in order to decrease the uncertainty in this dose calculation. The backward scatter has been well studied at standard distances. The present work intends to evaluate the backscatter phenomenon under our particular TBI treatment conditions. As a consequence of this study, a semi-empirical expression has been derived to calculate (within 0.3% uncertainty) the backscatter factor. This factor depends lineally on the depth and exponentially on the underlying tissue. Differences found in the qualitative behavior with respect to standard distances are due to scatter in the bunker wall close to the measurement point.

  12. Incidence of interstitial pneumonia after hyperfractionated total body irradiation before autologous bone marrow/stem cell transplantation

    International Nuclear Information System (INIS)

    Lohr, F.; Schraube, P.; Wenz, F.; Flentje, M.; Kalle, K. von; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1995-01-01

    Purpose/Objectives Interstitial pneumonia (IP) is a severe complication after allogenic bone marrow transplantation (BMT) with incidence rates between 10 % and 40 % in different series. It is a polyetiologic disease that occurs depending on age, graft vs. host disease (GvHD), CMV-status, total body irradiation (TBI) and immunosuppressive therapy after BMT. The effects of fractionation and dose rate are not entirely clear. This study evaluates the incidence of lethal IP after hyperfractionated TBI for autologous BMT or stem cell transplantation. Materials and Methods Between 1982 and 1992, 182 patients (60 % male, 40 % female) were treated with hyperfractionated total body irradiation (TBI) before autologous bone marrow transplantation. Main indications were leukemias and lymphomas (53 % AML, 21 % ALL, 22 % NHL, 4 % others) Median age was 30 ys (15 - 55 ys). A total dose of 14.4 Gy was applied using lung blocks (12 fractions of 1.2 Gy in 4 days, dose rate 7-18 cGy/min, lung dose 9 - 9.5 Gy). TBI was followed by cyclophosphamide (200 mg/kg). 72 % were treated with bone marrow transplantation, 28 % were treated with stem cell transplantation. Interstitial pneumonia was diagnosed clinically, radiologically and by autopsy. Results 4 patients died most likely of interstitial pneumonia. For another 12 patients interstitial pneumonia was not the most likely cause of death but could not be excluded. Thus, the incidence of lethal IP was at least 2.2 % but certainly below 8.8 %. Conclusion Lethal interstitial pneumonia is a rare complication after total body irradiation before autologous bone marrow transplantation in this large, homogeously treated series. In the autologous setting, total doses of 14.4 Gy can be applied with a low risk for developing interstitial pneumonia if hyperfractionation and lung blocks are used. This falls in line with data from series with identical twins or t-cell depleted marrow and smaller, less homogeneous autologous transplant studies. Thus

  13. Immunosuppression prior to marrow transplantation for sensitized aplastic anemia patients: comparison of TLI with TBI

    International Nuclear Information System (INIS)

    Shank, B.; Brochstein, J.A.; Castro-Malaspina, H.; Yahalom, J.; Bonfiglio, P.; O'Reilly, R.J.

    1988-01-01

    From May 1980 through July 1986, 26 patients with severe aplastic anemia, sensitized with multiple transfusions of blood products, were treated on either of two immunosuppressive regimens in preparation for bone marrow transplantation from a matched donor. There were 10 patients treated with total body irradiation (TBI), 200 cGy/fraction X 4 daily fractions (800 cGy total dose), followed by cyclophosphamide, 60 mg/kg/d X 2 d. An additional 16 patients were treated with total lymphoid irradiation (TLI) [or, if they were infants, a modified TLI or thoracoabdominal irradiation (TAI)], 100 cGy/fraction, 3 fractions/d X 2 d (600 cGy total dose), followed by cyclophosphamide, 40 mg/kg/d X 4 d. The extent of immunosuppression was similar in both groups as measured by peripheral blood lymphocyte depression at the completion of the course of irradiation (5% of initial concentration for TBI and 24% for TLI), neutrophil engraftment (10/10 for TBI and 15/16 for TLI), and time to neutrophil engraftment (median of 22 d for TBI and 17 d for TLI). Marrow and peripheral blood cytogenetic analysis for assessment of percent donor cells was also compared in those patients in whom it was available. 2/2 patients studied with TBI had 100% donor cells, whereas 6/11 with TLI had 100% donor cells. Of the five who did not, three were stable mixed chimeras with greater than or equal to 70% donor cells, one became a mixed chimera with about 50% donor cells, but became aplastic again after Cyclosporine A cessation 5 mo post-transplant, and the fifth reverted to all host cells by d. 18 post-transplant. Overall actuarial survival at 2 years was 56% in the TLI group compared with 30% in the TBI group although this was not statistically significant. No survival decrement has been seen after 2 years in either group

  14. Effect of whole body irradiation on different tissues

    International Nuclear Information System (INIS)

    Casati, V.; Nardino, A.; Tomassi, I.; Becciolini, A.; Rizzi, M.; Martelli, T.

    1979-01-01

    The uptake and elimination of 14 C leucine were analysed in controls and in rats irradiated 2 h before injection with 8 Gy whole-body irradiation. Plasma, small intestine, kidney and skin were assayed after homogenization for TCA soluble and insoluble activity curves. In highly differentiated tissues with poor proliferative activity and low protein turnover, the uptake and elimination of the tracer did not appear to be affected by irradiation. In the small intestine differences between control and irradiated animals seemed significant. (Auth.)

  15. The Total Body Irradiation Schedule Affects Acute Leukemia Relapse After Matched T Cell–Depleted Hematopoietic Stem Cell Transplantation

    International Nuclear Information System (INIS)

    Aristei, Cynthia; Carotti, Alessandra; Palazzari, Elisa; Amico, Lucia; Ruggeri, Loredana; Perrucci, Elisabetta; Falcinelli, Lorenzo; Lancellotta, Valentina; Palumbo, Isabella; Falzetti, Franca; Aversa, Franco; Merluzzi, Mara; Velardi, Andrea; Martelli, Massimo Fabrizio

    2016-01-01

    Purpose: We sought to determine whether the total body irradiation (TBI) schedule affected outcome in patients with acute leukemia in complete remission who received T cell–depleted allogeneic hematopoietic stem cell transplantation from HLA identical siblings. Methods and Materials: The study recruited 55 patients (median age, 48 years; age range, 20-66 years; 30 men and 25 women; 34 with acute myeloid leukemia and 21 with acute lymphoid leukemia). Hyperfractionated TBI (HTBI) (1.2 Gy thrice daily for 4 days [for a total dose of 14.4 Gy] from day −12 to day −9) was administered to 29 patients. Single-dose TBI (STBI) (8 Gy, at a median dose rate of 10.7 cGy/min on day −9) was given to 26 patients. Results: All patients achieved primary, sustained engraftment with full donor-type chimerism. At 10 years, the overall cumulative incidence of transplant-related mortality was 11% (SE, ±0.1%). It was 7% (SE, ±0.2%) after HTBI and 15% (SE, ±0.5%) after STBI (P=.3). The overall cumulative incidence of relapse was 33% (SE, ±0.5). It was 13% (SE, ±0.5%) after HTBI and 46% (SE, ±1%) after STBI (P=.02). The overall probability of disease-free survival (DFS) was 59% (SE, ±7%). It was 67% (SE, ±0.84%) after HTBI and 37% (SE, ±1.4%) after STBI (P=.01). Multivariate analyses showed the TBI schedule was the only risk factor that significantly affected relapse and DFS (P=.01 and P=.03, respectively). Conclusions: In patients with acute leukemia, HTBI is more efficacious than STBI in eradicating minimal residual disease after HLA-matched T cell–depleted hematopoietic stem cell transplantation, thus affecting DFS.

  16. The Total Body Irradiation Schedule Affects Acute Leukemia Relapse After Matched T Cell–Depleted Hematopoietic Stem Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Aristei, Cynthia, E-mail: cynthia.aristei@unipg.it [Radiation Oncology Section, Department of Surgery and Biomedical Sciences, University of Perugia and Perugia General Hospital, Perugia (Italy); Carotti, Alessandra [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy); Palazzari, Elisa [Radiation Oncology Section, University of Perugia, Perugia (Italy); Amico, Lucia; Ruggeri, Loredana [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy); Perrucci, Elisabetta; Falcinelli, Lorenzo [Radiation Oncology Division, Perugia General Hospital, Perugia (Italy); Lancellotta, Valentina [Radiation Oncology Section, University of Perugia, Perugia (Italy); Palumbo, Isabella [Radiation Oncology Section, Department of Surgery and Biomedical Sciences, University of Perugia and Perugia General Hospital, Perugia (Italy); Falzetti, Franca [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy); Aversa, Franco [Hematology and Bone Marrow Transplant Unit, Department of Clinical and Experimental Medicine, Parma General Hospital and University, Parma (Italy); Merluzzi, Mara; Velardi, Andrea; Martelli, Massimo Fabrizio [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy)

    2016-11-15

    Purpose: We sought to determine whether the total body irradiation (TBI) schedule affected outcome in patients with acute leukemia in complete remission who received T cell–depleted allogeneic hematopoietic stem cell transplantation from HLA identical siblings. Methods and Materials: The study recruited 55 patients (median age, 48 years; age range, 20-66 years; 30 men and 25 women; 34 with acute myeloid leukemia and 21 with acute lymphoid leukemia). Hyperfractionated TBI (HTBI) (1.2 Gy thrice daily for 4 days [for a total dose of 14.4 Gy] from day −12 to day −9) was administered to 29 patients. Single-dose TBI (STBI) (8 Gy, at a median dose rate of 10.7 cGy/min on day −9) was given to 26 patients. Results: All patients achieved primary, sustained engraftment with full donor-type chimerism. At 10 years, the overall cumulative incidence of transplant-related mortality was 11% (SE, ±0.1%). It was 7% (SE, ±0.2%) after HTBI and 15% (SE, ±0.5%) after STBI (P=.3). The overall cumulative incidence of relapse was 33% (SE, ±0.5). It was 13% (SE, ±0.5%) after HTBI and 46% (SE, ±1%) after STBI (P=.02). The overall probability of disease-free survival (DFS) was 59% (SE, ±7%). It was 67% (SE, ±0.84%) after HTBI and 37% (SE, ±1.4%) after STBI (P=.01). Multivariate analyses showed the TBI schedule was the only risk factor that significantly affected relapse and DFS (P=.01 and P=.03, respectively). Conclusions: In patients with acute leukemia, HTBI is more efficacious than STBI in eradicating minimal residual disease after HLA-matched T cell–depleted hematopoietic stem cell transplantation, thus affecting DFS.

  17. Cataract-free interval and severity of cataract after total body irradiation and bone marrow transplantation: influence of treatment parameters

    International Nuclear Information System (INIS)

    Kempen-Harteveld, M. Loes van; Struikmans, Henk; Kal, Henk B.; Tweel, Ingeborg van der; Mourits, Maarten; Verdonck, Leo F.; Schipper, Jan; Battermann, Jan J.

    2000-01-01

    Purpose: To determine prospectively the cataract-free interval (latency time) after total body irradiation (TBI) and bone marrow transplantation (BMT) and to assess accurately the final severity of the cataract. Methods and Materials: Ninety-three of the patients who received TBI as a part of their conditioning regimen for BMT between 1982 and 1995 were followed with respect to cataract formation. Included were only patients who had a follow-up period of at least 23 months. TBI was applied in one fraction of 8 Gy or two fractions of 5 or 6 Gy. Cataract-free period was assessed and in 56 patients, who could be followed until stabilization of the cataract had occurred, final severity of the cataract was determined using a classification system. With respect to final severity, two groups were analyzed: subclinical low-grade cataract and high-grade cataract. Cataract-free period and final severity were determined with respect to type of transplantation, TBI dose, and posttransplant variables such as graft versus host disease (GVHD) and steroid treatment. Results: Cataract incidence of the analyzed patients was 89%. Median time to develop a cataract was 58 months for autologous transplanted patients. For allogeneic transplanted patients treated or not treated with steroids, median times were 33 and 46 months, respectively. Final severity was not significantly different for autologous or allogeneic patients. In allogeneic patients, however, final severity was significantly different for patients who had or had not been treated with steroids for GVHD: 93% versus 35% high-grade cataract, respectively. Final severity was also different for patients receiving 1 x 8 or 2 x 5 Gy TBI, from patients receiving 2 x 6 Gy as conditioning therapy: 33% versus 79% high-grade cataract, respectively. The group of patients receiving 2 x 6 Gy comprised, however, more patients with steroid treatment for GVHD. So the high percentage of high-grade cataract in the 2 x 6 Gy group might also

  18. Aspects of radioprotection in whole body irradiation treatments (TBI); Aspectos de proteccion radiologica en tratamientos de irradiacion de cuerpo total (TBI)

    Energy Technology Data Exchange (ETDEWEB)

    Pinella, Yuliana M. Ayala, E-mail: yayala@crlima.com [Centro de Radioterapia de Lima S.A., Lima (Peru); Chavez, Cesar Picon, E-mail: cesarpicon@yahoo.com [Universidad Nacional de Ingenieria (UNI), Lima (Peru)

    2013-11-01

    Radiation protection occupationally exposed personnel and the public is considered in this study. It was done the experimental determination of the exposure rates at critical points in the area of radiotherapy and it was evaluated the staff dosimetry.

  19. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Zong Zhaowen; Ren Yongchuan; Shen Yue; Chen Yonghua; Ran Xinze; Shi Chunmeng; Cheng Tianmin

    2011-01-01

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 10 5 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×10 5 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  20. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  1. Modeling, planning and XiO R CMS validation of TBI treatment (extended SSD 400 cm); Modelacion, planificacion y validacion del XiO CMS para tratamientos TBI (SSD extendida de 400 cm)

    Energy Technology Data Exchange (ETDEWEB)

    Teijeiro, A.; Pereira, L.; Moral, F. del; Vazquez, J.; Lopez Medina, A.; Meal, A.; Andrade Alvarez, B.; Salgado Fernandez, M.; Munoz, V.

    2011-07-01

    The whole body irradiation (TBI) is a radiotherapy technique previously used a bone marrow transplant and for certain blood diseases, in which a patient is irradiated to extended distance (SSD from 350 to 400). The aim of the TBI is to kill tumor cells in the receiver and prevent rejection of transplanted bone marrow. The dose is prescribed at the midpoint of the abdomen around the navel wing. The most planners not permit the treatment of patients with a much higher SSD to 100 cm, also using the table TBI with spoiler to increase skin dose should be taken into account This requires measurements and checks ad hoc if you use a planner, because modeling is not optimized a priori for an SSD of 400 cm.

  2. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  3. Toxicities of total-body irradiation for pediatric bone marrow transplantation

    International Nuclear Information System (INIS)

    Chou, Rachel H.; Wong, Garrett B.; Kramer, Joel H.; Wara, Diane W.; Matthay, Katherine K.; Crittenden, Mary R.; Swift, Patrick S.; Cowan, Morton J.; Wara, William M.

    1996-01-01

    Purpose: To determine the acute and late effects, including cognitive function, of total body irradiation (TBI) and chemotherapy for bone marrow transplant (BMT) in children with immunodeficiency or hematologic disorders. Methods and Materials: At UCSF, 15 children with immunodeficiency disorders and 58 children with leukemia received chemoradiotherapy between July 1982 and November 1993 and were evaluated for toxicity. Patients with severe combined immunodeficiency disorder (SCID) received 7 Gy TBI while leukemia patients received 12 Gy TBI. Results: Eight immunodeficient patients (53%) are alive at 4 months to 11 years posttransplant. Acute toxicity was limited and treatment well tolerated. Most patients developed mild nausea and vomiting, skin rash, or erythema. Transient fever/chills, oral mucositis, and alopecia were noted in approximately 50% of patients. Seventy-three percent of patients demonstrated acute liver dysfunction, but only four (27%) developed veno-occlusive disease. All children had decreased growth velocity but normal growth hormone levels. Other endocrinologic evaluations including adrenocorticotropic hormone (ACTH), cortisol, and thyroid hormones were normal. Only one evaluable girl had delayed puberty with late onset of secondary sexual characteristics. Neuropsychological testing demonstrated an intelligence quotient (IQ) reduction between the baseline and 1 year post-BMT, with some recovery at 3 years. Only one patient developed a clinically significant cataract. Thirteen percent of patients had chronic interstitial lung disease. Four children developed exostosis. Only 1 of the 15 children developed a second malignancy (acute myelogenous leukemia) at age 5, 51 months posttransplant for SCID. For patients with leukemia, similar toxicities were observed. Twenty-nine percent disease-free survival was noted with a mean follow-up of 4.7 years. Twenty-two percent had chronic interstitial lung disease and two patients were diagnosed with cataracts

  4. Total Body Irradiation Mitigates Inflammation and Extends the Therapeutic Time Window for Anti-Ricin Antibody Treatment against Pulmonary Ricinosis in Mice

    Directory of Open Access Journals (Sweden)

    Yoav Gal

    2017-09-01

    Full Text Available Ricin, a highly toxic plant-derived toxin, is considered a potential weapon in biowarfare and bioterrorism due to its pronounced toxicity, high availability, and ease of preparation. Pulmonary exposure to ricin results in the generation of an acute edematous inflammation followed by respiratory insufficiency and death. Massive neutrophil recruitment to the lungs may contribute significantly to ricin-mediated morbidity. In this study, total body irradiation (TBI served as a non-pharmacological tool to decrease the potential neutrophil-induced lung injury. TBI significantly postponed the time to death of intranasally ricin-intoxicated mice, given that leukopenia remained stable following intoxication. This increase in time to death coincided with a significant reduction in pro-inflammatory marker levels, and led to marked extension of the therapeutic time window for anti-ricin antibody treatment.

  5. Serum immunoglobulin levels in humans exposed to therapeutic total-body gamma irradiation

    International Nuclear Information System (INIS)

    Chaskes, S.; Kingdon, G.C.; Balish, E.

    1975-01-01

    Reduced serum immunoglobulin (IgA, IgG, IgM) levels developed in the majority of 27 patients with hematologic disorders after treatment with 100 to 350 R total-body gamma-ray exposures at a dose rate of either 1.5 R/min to 1.5 R/hr. A reduction in IgA of 20 percent or more was found in 66 percent of the cases, while 56 percent showed an IgM decrease, and 49 percent an IgG decrease of 20 percent. The severity of immunoglobulin depression was influenced by the total radiation dose and the patient's primary disease. The occurrence of IgG and IgM depression was greater when the radiation was given at 1.5 R/hr than when the dose rate was 1.5 R/min. Substantial but incomplete recovery toward preirradiation immunoglobulin levels was found for most patients by 7 wk after total-body irradiation (TBI). (U.S.)

  6. Total body irradiation prior to bone marrow transplantation: efficacy and safety of granisetron in the prophylaxis and control of radiation-induced emesis

    International Nuclear Information System (INIS)

    Belkacemi, Yazid; Ozsahin, Mahmut; Pene, Francoise; Rio, Bernard; Sutton, Laurent; Laporte, Jean-Philippe; Touboul, Emmanuel; Gorin, Norbert-Claude; Laugier, Alain

    1996-01-01

    Purpose: Radiation-induced emisis is one of the most disturbing side effects of total body irradiation (TBI). To evaluate the efficacy and to determine the best schedule of granisetron (a selective 5-hydroxytryptamine 3 serotonin receptor antagonist) administration in the prevention of radiation-induced nausea and vomiting, we conducted a trial involving patients receiving single-dose TBI before bone marrow transplantation (BMT). Methods and Materials: Thirty-six patients with non-Hodgkin's lymphoma (n 12), multiple myeloma (n = 8), acute lymphoblastic leukemia (n = 7), acute nonlymphoblastic leukemia (n = 6), and chronic myeloid leukemia (n = 3) referred to our department between March 1992 and February 1994 were enrolled in this study to assess the efficacy of granisetron during single-dose TBI before autologous BMT (n = 26), allogeneic BMT (n = 8), or syngeneic BMT (n 2). The male-to-female ratio was 22:14 (1.57), and the mean age was 41 ± 11 years (range 16-58). Before TBI, conditioning chemotherapy consisted of cyclophosphamide (CY) alone (60 mg/kg per day on 2 successive days) in 24 patients, CY combined with other drugs in 6, and combinations without CY in 6. All patients received single-dose TBI (10 Gy administered to the midplane at L4, and 8 Gy to the lungs). The mean instantaneous and average dose rates were 0.039 ± 0.012 Gy/min (range 0.031-0.058), and 0.025-0.006 Gy/min (range 2.08-3.96), respectively. Granisetron was administered 30-45 min before TBI according to two different modalities: a total dose of 3 mg as a 5-min intravenous (i.v.) infusion (Treatment A, n = 15; 42%) or the same treatment plus 3 mg of granisetron as a 24-h continuous i.v. infusion (total dose: 6 mg, Treatment B, n = 21; 58%). Depending on the BMT teams, hyper diuresis was continued (n = 19, 53%) or suspended (n = 17, 47%) during TBI. Nausea and vomiting were assessed during the TBI session and the following 12 h, and were scored as follows: S1 = no nausea or vomiting; S2

  7. Autologous stem cell transplantation following high-dose whole-body irradiation of dogs - influence of cell number and fractionation regimes

    International Nuclear Information System (INIS)

    Bodenberger, U.

    1981-01-01

    The acute radiation syndrome after a single dose of 1600 R (approx. 12-14 Gy in body midline) and after fractionated irradiation with 2400 R (approx. 18-20 Gy) was studied with regard to fractionation time and to the number of bone marrow cells infused. The acute radiation syndrome consisted of damage to the alimentary tract and of damage to the hemopoietic system. Damage of hemopoiesis was reversible in dogs which had been given a sufficient amount of hemopoietic cells. Furthermore changes in skin and in the mucous membranes occurred. Hemopoietic recovery following infusion of various amounts of bone marrow was investigated in dogs which were irradiated with 2400 R within 7 days. Repopulation of bone marrow as well as rise of leukocyte and platelet counts in the peripheral blood was taken as evidence of complete hemopoietic reconstitution. The results indicate that the acute radiation syndrom following 2400 R TBI and autologous BMT can be controlled by fractionation of this dose within 5 or 7 days. The acute gastrointestinal syndrome is aggravated by infusion of a lesser amount of hemopoietic cells. However, TBI with 2400 R does not require greater numbers of hemopoietic cells for restoration of hemopoiesis. Thus, the hemopoiesis supporting tissue can not be damage by this radiation dose to an essential degree. Longterm observations have not revealed serious late defects which could represent a contraindication to the treatment of malignent diseases with 2400 R of TBI. (orig./MG) [de

  8. Late effects of total body irradiation

    International Nuclear Information System (INIS)

    Barrett, A.; Gibson, B.

    1987-01-01

    Late effects of chemo-radiotherapy conditioning before bone marrow transplantation (BMT) are being increasingly recognised in long-term survivors, particularly children. They can be divided into two categories: those affecting hormonal status and those affecting specific organ function. All women treated develop ovarian failure with low levels of β-oestradiol and raised values of follicle-stimulating hormone (FSH) and leutinizing hormone (LH). In males, raised FSH and LH values are found with normal testosterone levels but most patients have azoospermia. In children, puberty is usually but not invariably delayed by treatment but can be induced by appropriate hormone replacement. Compensated hypothyroidism was found in 6/30 children. Growth hormone secretion may be impaired especially if previous cranial irradiation has been given. In children, a reduction in sitting height has been observed. Cataract has occurred in 20% of children between 3 and 6 years after treatment. Two second tumours have been observed. No other major organ toxicities have been encountered. (Auth.)

  9. TBI Endpoints Development

    Science.gov (United States)

    2015-10-01

    Boulevard, MSC 5450, Bethesda, MD 20892-5450 Cognitive Decline in Chronic Renal Insufficiency Goals: The goal of this project (a competitive renewal...following injury will be examined to include acute , subacute, and chronic phases. Preliminary data shows that 48 hours after injury, TBI-treated mice...approved by the U.S. Food and Drug Administration (FDA) to treat acute TBI, and decades of well-designed clinical trials have failed. The TED

  10. Half body irradiation of malignant diseases in childhood

    International Nuclear Information System (INIS)

    Gocheva, L.

    2000-01-01

    The possibilities of modern medicine make the prognosis of children with malignant diseases more optimistic, compared to adult patients. At the present stage the favourable outcome of pediatric oncological diseases varies within the limits of 50 - 80 %. Despite the good treatment results after optimal complex treatment, the rest of the ill children represent a serious therapeutical problem. The achieved good local tumor control after performed radiotherapy represents a potential for its application as a systemic therapy in patients with advanced or resistant to chemotherapy tumours. The radiobiological bases of the half body irradiation as a systemic therapy in pediatric oncology and as one of the main forms of large field irradiation are considered. The important clinical investigations have been discussed. Half body irradiation can be considered as a valuable alternative of chemotherapy and as a complementary systemic treatment in the case of advanced malignant diseases in children's age. (author)

  11. Influence of radiation dose rate and lung dose on interstitial pneumonitis after fractionated total body irradiation: acute parotitis may predict interstitial pneumonitis.

    Science.gov (United States)

    Oya, Natsuo; Sasai, Keisuke; Tachiiri, Seiji; Sakamoto, Takashi; Nagata, Yasushi; Okada, Takashi; Yano, Shinsuke; Ishikawa, Takayuki; Uchiyama, Takashi; Hiraoka, Masahiro

    2006-01-01

    This study evaluated patients for the influence of the dose rate and lung dose of fractionated total body irradiation (TBI) in preparation for allogeneic bone marrow transplantation (BMT) on the subsequent development of interstitial pneumonitis (IP). Sixty-six patients at our institute were treated with TBI followed by BMT. All of the patients received a total TBI dose of 12 Gy given in 6 fractions over 3 days and were divided into 3 groups according to the radiation dose rate and lung dose: group A, lung dose of 8 Gy (n = 18); group B, lung dose of 12 Gy at 8 cGy/min (n = 25); and group C, lung dose of 12 Gy at 19 cGy/min (n = 23). The overall survival rate, the cumulative incidence of relapse, and the cumulative incidence of IP were evaluated in relation to various potential indicators of future IP. There were no significant differences in survival and relapse rates between patient group A and combined groups B and C. Clinically significant IP occurred in 13 patients. The cumulative incidence of IP was significantly higher in patients who developed acute parotitis as indicated by either an elevation in the serum amylase level or parotid pain of grade 1 to 2. There was no difference in IP incidence among groups A, B, and C. There was no significant difference in IP incidence between lung dose values of 8 Gy (with lung shielding) and 12 Gy (without lung shielding) and between dose rate values of 8 cGy/min and 19 cGy/ min, at least when TBI was given in 6 fractions. The presence of acute parotitis during or just after TBI may be a predictor of IP.

  12. Statistical analysis of dose heterogeneity in circulating blood: Implications for sequential methods of total body irradiation

    International Nuclear Information System (INIS)

    Molloy, Janelle A.

    2010-01-01

    Purpose: Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these ''sequential'' techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Methods: Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. Results: The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than ±10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times

  13. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation.

    Science.gov (United States)

    Molloy, Janelle A

    2010-11-01

    Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these "sequential" techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than +/- 10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times. However, the EUD was

  14. Late complications following total-body irradiation and bone marrow rescue in mice: predominance of glomerular nephropathy and hemolytic anemia

    International Nuclear Information System (INIS)

    Down, J.D.; Berman, A.J.; Mauch, P.; Warhol, M.

    1990-01-01

    Late mortality and pathology were assessed in various mouse strains following total-body irradiation (TBI) and bone marrow transplantation. Long-term survival data revealed both radiation dose- and strain-dependent onset of mortality between 1 and 2 years post-treatment. Renal damage appeared to have contributed to the late mortality in most treatment groups as shown by glomerular lesions, elevated blood urea nitrogen and an accompanying fall in hematocrit. Hemolysis was deduced to be the major cause of anemia, as concluded from results of 51 Cr-labeled erythrocyte survival. No decrease in erythropoiesis was evident as seen from spleen and bone marrow 59 Fe uptake. These findings are together consistent with the manifestation of a hemolytic uremic syndrome (HUS) with kidney glomeruli representing the principal sites of injury responsible for both renal dysfunction and microangiopathic hemolysis. (author)

  15. Late complications following total-body irradiation and bone marrow rescue in mice: predominance of glomerular nephropathy and hemolytic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Down, J.D.; Berman, A.J.; Mauch, P. (Harvard Medical School, Boston, MA (USA)); Warhol, M. (Pennsylvania Hospital, Philadelphia, PA (USA). Dept. of Pathology); Yeap, B. (Dana Farber Cancer Inst., Boston, MA (USA))

    1990-03-01

    Late mortality and pathology were assessed in various mouse strains following total-body irradiation (TBI) and bone marrow transplantation. Long-term survival data revealed both radiation dose- and strain-dependent onset of mortality between 1 and 2 years post-treatment. Renal damage appeared to have contributed to the late mortality in most treatment groups as shown by glomerular lesions, elevated blood urea nitrogen and an accompanying fall in hematocrit. Hemolysis was deduced to be the major cause of anemia, as concluded from results of {sup 51}Cr-labeled erythrocyte survival. No decrease in erythropoiesis was evident as seen from spleen and bone marrow {sup 59}Fe uptake. These findings are together consistent with the manifestation of a hemolytic uremic syndrome (HUS) with kidney glomeruli representing the principal sites of injury responsible for both renal dysfunction and microangiopathic hemolysis. (author).

  16. Modeling, planning and XiO R CMS validation of TBI treatment (extended SSD 400 cm)

    International Nuclear Information System (INIS)

    Teijeiro, A.; Pereira, L.; Moral, F. del; Vazquez, J.; Lopez Medina, A.; Meal, A.; Andrade Alvarez, B.; Salgado Fernandez, M.; Munoz, V.

    2011-01-01

    The whole body irradiation (TBI) is a radiotherapy technique previously used a bone marrow transplant and for certain blood diseases, in which a patient is irradiated to extended distance (SSD from 350 to 400). The aim of the TBI is to kill tumor cells in the receiver and prevent rejection of transplanted bone marrow. The dose is prescribed at the midpoint of the abdomen around the navel wing. The most planners not permit the treatment of patients with a much higher SSD to 100 cm, also using the table LUT with spoiler to increase skin dose should be taken into account This requires measurements and checks ad hoc if you use a planner, because modeling is not optimized a priori for an SSD of 400 cm.

  17. Haploidentical hematopoietic stem cell transplantation without total body irradiation for pediatric acute leukemia: a single-center experience

    Directory of Open Access Journals (Sweden)

    Mu YS

    2016-05-01

    Full Text Available Yanshun Mu,* Maoquan Qin,* Bin Wang, Sidan Li, Guanghua Zhu, Xuan Zhou, Jun Yang, Kai Wang, Wei Lin, Huyong Zheng Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Hematopoietic stem cell transplantation (HSCT is a promising method for therapy of pediatric patients with acute leukemia. However, less availability of matched donors limited its wide application. Recently, haploidentical HSCT has become a great resource. Here, we have retrospectively reported our experience of 20 pediatric patients with acute leukemia who underwent haploidentical HSCT without total body irradiation (TBI myeloablative regimen in our center from November 2007 to June 2014. All the patients attained successful HSCT engraftment in terms of myeloid and platelet recovery. Thirteen patients developed grade I–IV acute graft-versus-host disease (a-GVHD. The incidence of grade I–II a-GVHD, grade III–IV a-GVHD, and chronic GVHD (c-GVHD was 45%, 20%, and 25%, respectively. The mean myeloid and platelet recovery time was 13.20±2.41 and 19.10±8.37 days. The median follow-up time was 43.95±29.26 months. During the follow-up, three patients died. The overall survival (OS rate was 85%. The present study indicated that haploidentical HSCT without TBI myeloablative regimen significantly improved the OS rate of pediatric patients with acute leukemia. Keywords: haploidentical, hematopoietic stem cell transplantation, myeloablative regimen, total body irradiation, acute leukemia, pediatric

  18. Low-dose total body irradiation and G-CSF without hematopoietic stem cell support in the treatment of relapsed or refractory acute myelogenous leukemia (AML), or AML in second or subsequent remission

    International Nuclear Information System (INIS)

    Shulman, Lawrence N.; Tarbell, Nancy J.; Storen, Elizabeth; Marcus, Karen; Mauch, Peter M.

    1998-01-01

    Purpose: Patients with relapsed acute myelogenous leukemia (AML), who are not eligible for bone marrow transplantation, have a poor prognosis when treated with chemotherapy alone. Total body irradiation (TBI) is an effective modality against AML when used in doses of 1000-1400 cGy with hematopoietic stem cell support. We undertook a phase I study of TBI with granulocyte-colony-stimulating factor (G-CSF) support, without stem cell support in patients with AML either in relapse or second or subsequent remission. Methods and Materials: Patients with relapsed AML, or AML in second or subsequent remission were treated in a phase I study of TBI followed by G-CSF. The first dose level was 200 cGy. After the initial cohort of patients it was clear that patients with overt leukemia did not benefit from this treatment, and subsequent patients were required to be in remission at the time of TBI. Results: Eleven patients were treated, 4 in overt relapse, and 7 in remission. 200 cGy was used in all, and dose escalation was not possible due to prolonged thrombocytopenia in all patients but one. Neutrophil recovery was adequate in those patients who remained in remission after TBI. Patients with overt leukemia had transient reduction in blast counts, but rapid recurrence of their leukemia. Patients treated in remission had short remissions, with the exception of one patient who is in remission 32 months after treatment. Conclusion: There is some antileukemic effect of TBI even at 200 cGy, though this dose appears to be too low to help a significant number of patients. If TBI is to be escalated without stem cell support, then a thrombopoietic agent will need to be used

  19. An experimental model of acute encephalopathy after total body irradiation in the rat: effect of Ginkgo biloba extract (EGb 761); Effet de l'extrait de Ginkgo biloba (EGb 761) chez le rat sur un modele experimental d'encephalopathie aigue apres irradiation corporelle totale

    Energy Technology Data Exchange (ETDEWEB)

    Lamproglou, I.; Bok, B. [Hopital Bichat, 75 - Paris (France); Boisserie, G.; Mazeron, J.J.; Baillet, F. [Hopital Pitie-Salpetriere, 75 - Paris (France); Drieu, K. [IHB-IPSEN, 75 - Paris (France)

    2000-06-01

    To define the therapeutic effect of Ginkgo biloba extract (EGb 761) in an experimental model of acute encephalopathy following total body irradiation in rats. Ninety four-month-old rats received 4.5 Gy total body irradiation (TBI) at day 1 while 15 rats received sham irradiation. A behavioural study based on a conditioning test of negative reinforcement, the one-way avoidance test, was performed test, was performed after irradiation. Orally treatment was started one day (study A) or twenty two days (study B) after irradiation and repeated daily for twelve days. In the irradiated group, three subgroups were defined according to the treatment received: EGb 761 (50 mg/kg), EGb 761 (100 mg/kg), water. This work comprised two consecutive studies. In study A (45 rats) the one-way avoidance test was administered daily from day 7 to day 14. In study B (45 rats) the behavioural test was performed from day 28 to day 35. Study A (three groups of 15 rats): following TBI, irradiated rats treated with water demonstrated a significant delay in a learning the one-way avoidance test in comparison with sham-irradiated rats (P < 0.0002) or irradiated rats treated with EGb 761 (50 mg/kg; P < 0.007) or EGb 761 (100 mg/kg; P < 0.0002). The irradiated rats, treated with EGb 761 (50 or 100 mg/kg) did not differ from the sham-irradiated controls. Study B (three groups of 15 rats): the irradiated rats, treated with water of EGb 761 (50 or 100 mg/kg) did not differ from the sham-irradiated controls. (authors)

  20. Hematological changes after single large dose half-body irradiation

    International Nuclear Information System (INIS)

    Herrmann, T.; Friedrich, S.; Jochem, I.; Eberhardt, H.J.; Koch, R.; Knorr, A.

    1981-01-01

    The determination of different peripheral blood parameters aimed at the study of side effects on the hematological cellular system following a 5 - 8 Gy single large dose half-body irradiation in 20 patients. Compared to the initial values the leukocytes between the 6. and 14., the thrombocytes between the 14. and 21. postirradiation day as well as the lymphocytes between 3 hours and 4 weeks postirradiation were significantly decreased without exhibiting complications such as hemorrhages or infections. The hemoglobin, hematocrit and reticulocyte values revealed but a slight decrease normalized within a 28 days postirradiation period. Transfusions were necessary when a tumor-caused anemia was present prior to irradiation. Changes in serum activity of aminotransferases and lactate dehydrogenase occured during the first hours after irradiation and were due to enzyme release from destroyed tumor cells

  1. Calibration of semiconductors diodes for in vivo dosimetry in total body irradiation treatments; Calibracao de diodos semicondutores para dosimetria in vivo em tratamentos de irradiacao de corpo inteiro

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernanda F.; Costa, Alessandro M.; Ghilardi Netto, Thomaz, E-mail: ferretti.oliveira@gmail.com [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias e Letras. Departamento de Fisica; Amaral, Leonardo L. [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2012-08-15

    This paper presents the results of in vivo dosimetry with p-type semiconductors diodes, EDP-15 (Scanditronix Wellhoefer) of two patients who underwent total body irradiation treatments, at Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto University of Sao Paulo (HCFMRP-USP). The diodes were well calibrated and the calibration factors were determined with the aid of a reference ionization chamber (FC065, IBA dosimetry, sensitive volume of 0.65 cm{sup 3}).The calibration was performed in a Total Body Irradiation (TBI) setup, using solid water phantoms. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings (half of the lateral thickness). The response difference between diode readings and the prescribed dose for both treatments was below 4%. This difference is in agreement as recommended by International Commission on Radiation Units (ICRU), which is {+-}5%. (author)

  2. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  3. Long-term results of total body irradiation in adults with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Marnitz, Simone; Zich, Alexander; Budach, Volker; Jahn, Ulrich; Neumann, Oliver; Martus, Peter; Arnold, Renate

    2014-01-01

    The aim of this chart review of adult patients treated for acute lymphoblastic leukemia (ALL) with total body irradiation (TBI) was to evaluate early and late toxicity and long-term outcome. A total of 110 adult patients (34 ± 12 years) with ALL underwent TBI (6 fractions of 2 Gy for a total of 12 Gy) as a part of the treatment regimen before transplantation. Treatment-related toxicity, mortality, and hematologic outcome are reported. Mean follow-up was 70 months. The 2- and 5-year leukemia-free survival rates were 78 and 72 %, respectively. In all, 29 % (32/110) patients suffered from medullary recurrence after a median time of 7 months. Gender was the only statistically significant prognostic factor in terms of overall survival in favor of female patients. Treatment-related mortality and overall survival after 2 and 5 years were 16 and 22 %, and 60 and 52.7 %, respectively. The most frequent late reaction wascGVHD of the skin (n = 33, 30 %). In addition, 15.5 % (17/110 patients) suffered pulmonary symptoms, and 6 patients developed lung fibrosis. Eyes were frequently affected by the radiation (31/110 = 28 %); 12 of 110 patients (11 %) presented with symptoms from osteoporosis, 5 of 110 patients (4.5 %) developed hypothyreosis and 2 patients diabetes mellitus. Of the male patients, 11 % reported erectile dysfunction or loss of libido, while 2 of 36 women reported menopausal syndrome at the mean time of 28 months after treatment with requirement for substitution. No women became pregnant after treatment. No acute or late cardiac toxicities were documented in our patients. No secondary malignancies were documented. Although hematologic outcome was in the upper range of that reported in the literature, treatment-related mortality (TRM) and medullary recurrences remain a challenge. Sophisticated radiation techniques allow for decreasing toxicity to certain organs and/or dose escalation to the bone marrow in highly selected patients in order to improve therapeutic

  4. Advanced Sensors for TBI

    Science.gov (United States)

    2016-12-01

    has been fraught with technical problems causing unfortunate delays. 15. SUBJECT TERMS TBI, pressure, temperature, sensors, ICP 16. SECURITY...sensor with the existing fluid percussion pressure transducer provided close tracking of pressure events . • Initial testing revealed that...the chips, a series of tests were done to compare breaking strengths of plasma-defined and saw-defined chips. A private vendor (Corwil Technology

  5. Factors Influencing Pulmonary Toxicity in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation in the Setting of Total Body Irradiation-Based Myeloablative Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abugideiri, Mustafa, E-mail: Mabugid@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Nanda, Ronica H. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Butker, Charlotte [Emory University, Atlanta, Georgia (United States); Zhang, Chao [Department of Biostatistics, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Kim, Sungjin [Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California (United States); Chiang, Kuang-Yueh [Aflac Cancer Center and Blood Disorders Center, Children' s Healthcare of Atlanta, and Pediatric Hematology, Oncology, Bone Marrow Transplant, Emory University, Atlanta, Georgia (United States); Butker, Elizabeth; Khan, Mohammad K. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Haight, Ann E. [Aflac Cancer Center and Blood Disorders Center, Children' s Healthcare of Atlanta, and Pediatric Hematology, Oncology, Bone Marrow Transplant, Emory University, Atlanta, Georgia (United States); Chen, Zhengjia [Department of Biostatistics, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2016-02-01

    Purpose: This study evaluated factors associated with increased risk of pulmonary toxicity (PT) from any cause in pediatric patients after myeloablative conditioning, using total body irradiation (TBI), followed by allogeneic hematopoietic stem cell transplantation (HSCT). Methods and Materials: The records of 129 consecutive pediatric patients (range: 1-21 years of age) who underwent TBI-based myeloablative conditioning for hematologic malignancies at our institution between January 2003 and May 2014 were reviewed. Although total TBI doses ranged from 10.5 to 14 Gy, lung doses were limited to 10 Gy with partial transmission blocks. TBI dose rates ranged from 5.6 cGy/min to 20.9 cGy/min. PT was classified using clinical symptoms, radiographic evidence, and ventilatory defects on pulmonary function tests. Noninfectious (idiopathic) pneumonia syndrome (IPS) was characterized by patients exhibiting PT while demonstrating no signs of infection throughout the follow-up period. Results: PT from any cause developed in 70.5% of patients and was significantly associated with increased transplantation-related mortality (TRM) (P=.03) and decreased overall survival (OS) (P=.02). IPS developed in 23.3% of patients but was not associated with increased TRM (P=.6) or decreased OS (P=.5). Acute graft-versus-host disease (GVHD) significantly affected PT (P=.001) but did not significantly influence the development of IPS (P=.4). Infection was a leading cause of PT (75.8%). TBI dose rate significantly affected development of overall PT (P=.02) and was the sole factor to significantly influence the incidence of IPS (P=.002). TBI total dose, dose per fraction, disease type, transplantation chemotherapy, age of patient, sex, and donor type did not significantly impact overall PT or IPS. Conclusions: A high incidence of PT was noted in this large series of homogeneously treated pediatric patients undergoing TBI for allogeneic HSCT. TBI dose rates affected overall PT and strongly

  6. The effect of donor T lymphocytes and total-body irradiation on hemopoietic engraftment and pulmonary toxicity following experimental allogeneic bone marrow transplantation.

    Science.gov (United States)

    Down, J D; Mauch, P; Warhol, M; Neben, S; Ferrara, J L

    1992-11-01

    To study the effects of donor T lymphocytes on engraftment and graft-versus-host disease in relation to recipient total-body irradiation, we have returned small numbers of T cells to T-cell-depleted bone marrow transplanted across a minor histocompatibility barrier in mice (B10.BR-->CBA). T-cell-depleted B10.BR marrow (10(7) cells) was transplanted into CBA recipients prepared with TBI doses ranging from 4 to 14 Gy. Selected animals also received 10(4) (0.1%) and 10(5) (1.0%) measured B10.BR T lymphocytes. The extent of donor marrow engraftment was determined from hemoglobin and carbonic anhydrase phenotyping of peripheral blood at 3 months posttransplant. Toxicity was assessed from breathing-rate measurements, histopathology, and animal survival. Addition of T cells had a profound effect on survival related to radiation dose. The TBI doses resulting in an LD50 at 12 weeks were 6.9 Gy, 9.3 Gy, and 13.0 Gy for animals receiving 10(5), 10(4), and no T cells, respectively. Mortality was associated with pulmonary dysfunction as measured by an elevation of breathing rates. Autopsy and histological analysis revealed extensive damage to the lung parenchyma. In contrast to the toxicity data, addition of T cells to the donor marrow had no effect on the TBI dose required for equivalent erythroid engraftment. These results demonstrate that in combination with TBI small numbers of T cells in the transplanted marrow do not aid engraftment but do significantly increase the risk of pulmonary toxicity.

  7. Etoposide in combination with cyclophosphamide and total body irradiation or busulfan as conditioning for marrow transplantation in adults and children

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, T.R.; Ortlieb, M.; Tefft, M.C.; Torrisi, J.; Cahill, R.; Deeg, H.J. (Georgetown Univ. Hospital, Washington, DC (United States)); Peters, C.; Gadner, H. (St. Anna' s Kinderspital, Wien (Austria)); Urban, C. (Univ. Children' s Hospital, Graz (Austria))

    1994-04-30

    In an attempt to intensify conditioning therapy for bone marrow transplantation of hematologic malignancies, a retrospective three center evaluation of escalating doses of etoposide added to cyclophosphamide and either total body irradiation or busulfan was undertaken. Seventy-six patients who received etoposide (25-65 mg/kg) added to cyclophosphamide (60-120 mg/kg) and either total body irradiation (12.0-13.2 Gy) or busulfan (12-16 mg/kg) were evaluable for toxicity. Fifty-one of the evaluable patients received allogeneic transplants, while twenty-six received autologous transplants. A comparative analysis of toxicities according to conditioning regimen, donor source and etoposide dose was made. Similar toxicities were observed among the treatment groups with the exception of more frequent skin (p = 0.03) and life threatening hepatic toxicities (p = 0.01) in the busulfan treated patients. Life threatening or fatal toxicities were not influenced by donor source, either when analyzed by treatment group or etoposide dose. Etoposide at a dose of 60-65 mg/kg in combination with TBI and cyclophosphamide was associated with a significantly increased incidence of life threatening or fatal toxicities compared with a combination using a dose of 25-50 mg/kg (15 of 24 vs. 5 of 20; p = 0.013). The maximally tolerated dose of etoposide in combination with busulfan and cyclophosphamide cannot be definitively established in this analysis in part due to the heterogeneity of the patient population and treatment schemes. Although toxicities with bone marrow transplant preparative regimens containing etoposide in combination with cyclophosphamide and total body irradiation or busulfan were frequently severe, treatment related mortality risk was believed to be acceptably low. 27 refs., 3 tabs.

  8. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  9. Myeloproliferative disorders in patients with rheumatoid arthritis treated with total body irradiation

    International Nuclear Information System (INIS)

    Urowitz, M.B.; Rider, W.D.

    1985-01-01

    Four patients with refractory rheumatoid arthritis were treated with total body irradiation administered in two sittings, 300 to 400 rads to each half of the body. All four patients had taken antimetabolites prior to receiving total body irradiation, and two continued to use them after total body irradiation. Two patients had taken alkylating agents before, and one had used them after total body irradiation. All patients showed clinical improvement. However, in two patients myeloproliferative disorders developed: a myelodysplastic preleukemia at 40 months after total body irradiation in one and acute myelogenous leukemia at 25 months in the other. Total body irradiation differs from total nodal irradiation in the total dose of irradiation (300 to 400 rads versus 2,000 to 3,000), and in the duration of the therapy (two sittings versus treatment over several weeks to months). Furthermore, the patients in the total body irradiation study frequently used cytotoxic drugs before and/or after irradiation, whereas in one total nodal irradiation study, azathioprine (2 mg/kg per day or less) was permitted, but no other cytotoxic agents were allowed. Rheumatologists may therefore face a binding decision when deciding to treat a patient with rheumatoid arthritis with either a cytotoxic drug or irradiation

  10. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice

    International Nuclear Information System (INIS)

    Wang, Bing; Tanaka, Kaoru; Ji, Bin

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with 11 C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice. (author)

  11. Long-term results of total body irradiation in adults with acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, Simone; Zich, Alexander; Budach, Volker; Jahn, Ulrich; Neumann, Oliver [Charite University Medicine, Department of Radiation Oncology, Berlin (Germany); Martus, Peter [University Tuebingen, Institute of Clinical Epidemiology and Applied Biostatistics, Tuebingen (Germany); Arnold, Renate [Charite University Medicine, Campus CVK, Department of Hematology and Oncology, Bone Marrow Transplant Unit, Berlin (Germany)

    2014-05-15

    The aim of this chart review of adult patients treated for acute lymphoblastic leukemia (ALL) with total body irradiation (TBI) was to evaluate early and late toxicity and long-term outcome. A total of 110 adult patients (34 ± 12 years) with ALL underwent TBI (6 fractions of 2 Gy for a total of 12 Gy) as a part of the treatment regimen before transplantation. Treatment-related toxicity, mortality, and hematologic outcome are reported. Mean follow-up was 70 months. The 2- and 5-year leukemia-free survival rates were 78 and 72 %, respectively. In all, 29 % (32/110) patients suffered from medullary recurrence after a median time of 7 months. Gender was the only statistically significant prognostic factor in terms of overall survival in favor of female patients. Treatment-related mortality and overall survival after 2 and 5 years were 16 and 22 %, and 60 and 52.7 %, respectively. The most frequent late reaction wascGVHD of the skin (n = 33, 30 %). In addition, 15.5 % (17/110 patients) suffered pulmonary symptoms, and 6 patients developed lung fibrosis. Eyes were frequently affected by the radiation (31/110 = 28 %); 12 of 110 patients (11 %) presented with symptoms from osteoporosis, 5 of 110 patients (4.5 %) developed hypothyreosis and 2 patients diabetes mellitus. Of the male patients, 11 % reported erectile dysfunction or loss of libido, while 2 of 36 women reported menopausal syndrome at the mean time of 28 months after treatment with requirement for substitution. No women became pregnant after treatment. No acute or late cardiac toxicities were documented in our patients. No secondary malignancies were documented. Although hematologic outcome was in the upper range of that reported in the literature, treatment-related mortality (TRM) and medullary recurrences remain a challenge. Sophisticated radiation techniques allow for decreasing toxicity to certain organs and/or dose escalation to the bone marrow in highly selected patients in order to improve therapeutic

  12. {sup 18}F-FDG uptake by spleen helps rapidly predict the dose level after total body irradiation in a Tibetan minipig model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu Jue; Gu, Wei Wang [Southern Medical University, Department of Laboratory Animal Center, Guangzhou, Guangdong (China); Wu, Shao Jie; Guo, Kun Yuan; Chen, Chi [Southern Medical University, Department of Hematology, Zhujiang Hospital, Guangzhou, Guangdong (China); Xie, Qiang; Cai, Liang [Chinese People' s Armed Police Forces, Department of Oncology and PET/CT, Guangdong Provincial Corp Hospital, Guangzhou, Guangdong (China); Zou, Fei [Southern Medical University, School of Public Health and Tropical Medicine, Guangzhou, Guangdong (China)

    2012-09-15

    To investigate whether {sup 18}F- FDG uptake can be applied in dosimetry to facilitate the rapid and accurate evaluation of individual radiation doses after a nuclear accident. Forty-eight Tibetan minipigs were randomised into a control group (n = 3) and treatment groups (n = 45). {sup 18}F-FDG combined positron-emission tomography and computed tomography (PET/CT) were carried out before total body irradiation (TBI) and at 6, 24 and 72 h after receiving TBI doses ranging from 1 to 11 Gy. Spleen tissues and blood samples were also collected for histological examination, apoptosis and blood analysis. Mean standardised uptake values (SUVs) of the spleen showed significant differences between the experimental and the control groups. Spleen SUV at 6 h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.97 (P < 0.01). Histological observations showed that damage to the splenic lymphocyte became more severe with an increase in the radiation dose. Moreover, apoptosis was one of the major routes of splenic lymphocyte death, which was also confirmed by flow cytometry analysis. In the Tibetan minipig model, radiation doses have a close relationship with the {sup 18}F-FDG uptake of the spleen. This finding suggests that {sup 18}F-FDG PET/CT may be useful for the rapid detection of individual radiation doses. (orig.)

  13. Opioid Abuse after TBI

    Science.gov (United States)

    2015-09-01

    Award Number: W81XWH-11-1-0373 TITLE: “Opioid Abuse after TBI” PRINCIPAL INVESTIGATOR: Candace L. Floyd, Ph.D., and Katherine L. Nicholson...30Jun2015 4. TITLE AND SUBTITLE “Opioid Abuse after TBI” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0373 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...secondly tested the hypothesis that moderate TBI increases the susceptibility for opioid abuse as measured by an alteration in the rewarding properties of

  14. Morphological studies on the healing process of tooth extraction wounds in whole body irradiated rats

    International Nuclear Information System (INIS)

    Hosokawa, Yoichiro

    1991-01-01

    The present studies were performed to investigate the healing process of the tooth extraction wound in whole body irradiated rats and to clarify the effect of irradiation on bone metabolism. One hundred and seven Wistar rats of about 100 g body weight were used and divided into 3 groups. Whole body irradiated rats were given single exposure with a dose of 8 Gy. The region of the left upper molars of local irradiated rats as controls, was exposed to 8 Gy. On the 7th day after irradiation, the left upper first molar of each rat was extracted. The rats were sacrificed at intervals of 1 to 14 days after extraction. Non-irradiated rats were sacrificed at the same intervals after extraction. The maxillary bone including the extraction wound was evaluated, histologically, histometrically and ultrastructurally. From the histological and histometrical findings, the difference of the healing process between non-irradiated rats and locally irradiated rats is not significant. In whole body irradiated rats, the healing process especially in the socket was disturbed. The osteoblastic new bone formation following production of granulation tissue was interfered with. Ultrastructurally, the cytoplasmic organellae were poorly developed in the osteoblast and osteoid formation was reduced in the socket. But periosteal new bone formation was the same as that of the locally irradiated rats. In whole body irradiated rats, the osteoclasts in the interradicular alveolar bone were decreased and have smaller nuclei, compared with non-irradiated and locally irradiated rats. Histometrically, the amount of bone loss was decreased in whole body irradiated rats. Ultrastructurally, the cyoplasmic organellae and ruffled border were poorly developed in the osteoclasts of whole body irradiated rats. The findings suggested that irradiation induced cytological changes not only in osteoblasts but in osteoclasts and these changes resulted in the delayed healing of extraction wound. (author) 106 refs

  15. Morphological studies on the healing process of tooth extraction wounds in whole body irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoichiro (Hokkaido Univ., Sapporo (Japan). School of Dentistry)

    1991-06-01

    The present studies were performed to investigate the healing process of the tooth extraction wound in whole body irradiated rats and to clarify the effect of irradiation on bone metabolism. One hundred and seven Wistar rats of about 100 g body weight were used and divided into 3 groups. Whole body irradiated rats were given single exposure with a dose of 8 Gy. The region of the left upper molars of local irradiated rats as controls, was exposed to 8 Gy. On the 7th day after irradiation, the left upper first molar of each rat was extracted. The rats were sacrificed at intervals of 1 to 14 days after extraction. Non-irradiated rats were sacrificed at the same intervals after extraction. The maxillary bone including the extraction wound was evaluated, histologically, histometrically and ultrastructurally. From the histological and histometrical findings, the difference of the healing process between non-irradiated rats and locally irradiated rats is not significant. In whole body irradiated rats, the healing process especially in the socket was disturbed. The osteoblastic new bone formation following production of granulation tissue was interfered with. Ultrastructurally, the cytoplasmic organellae were poorly developed in the osteoblast and osteoid formation was reduced in the socket. But periosteal new bone formation was the same as that of the locally irradiated rats. In whole body irradiated rats, the osteoclasts in the interradicular alveolar bone were decreased and have smaller nuclei, compared with non-irradiated and locally irradiated rats. Histometrically, the amount of bone loss was decreased in whole body irradiated rats. Ultrastructurally, the cyoplasmic organellae and ruffled border were poorly developed in the osteoclasts of whole body irradiated rats. The findings suggested that irradiation induced cytological changes not only in osteoblasts but in osteoclasts and these changes resulted in the delayed healing of extraction wound. (author) 106 refs.

  16. The effects of single dose TBI on hepatic and renal function in non-human primates and patients

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bakker, B.; Davelaar, J.; Leer, J.W.H.; Niemer-Tucker, M.M.B.; Noordijk, E.M.

    1996-01-01

    Total body irradiation (TBI) and bone marrow transplantation (BMT) are common procedures in the treatment of severe combined immune deficiency syndromes, leukemia, non-Hodgkin lymphoma and other hematological disorders. Improved results following TBI and BMT have increased the number of patients in long term follow up. Late detrimental effects of TBI have been investigated in non-human primates and patients with emphasis on vital organs like liver and kidney. The response of monkeys to radiation is not significantly different from that in man. Long term effects of TBI could be studied by keeping 84 monkeys of different ages under continuous observation for a period up to 25 years. Effects on hepatic and renal function were demonstrated using serological and histological parameters. The values of the liver function parameters such as alkaline phosphatase and gamma glutamyl transferase in the irradiated group are significantly increased after TBI. Also the parameters of kidney dysfunction, e.g., Ht and urea show a significant change in the irradiated old aged cohort with respect to the controls. Between 1967 and 1993, 336 bone marrow transplantations were performed at the University Hospital Leiden. The present Study was restricted to those patients who survived at least 18 months after transplantation. This retrospective analysis consequently amounts to 120 patients. The monkey data indicated subclinical organ damage for postirradiation intervals exceeding 15 years. However, up to the present time, the human data do not support these findings since the follow up time is still restricted to a median survival of 4,5 years. Detrimental effects in liver and kidney function at a later stage can not be excluded yet, and careful examinations of the patients remain indicated

  17. A new Bayesian model applied to cytogenetic partial body irradiation estimation

    International Nuclear Information System (INIS)

    Higueras, Manuel; Puig, Pedro; Ainsbury, Elizabeth A.; Vinnikov, Volodymyr A.; Rothkamm, Kai

    2016-01-01

    A new zero-inflated Poisson model is introduced for the estimation of partial body irradiation dose and fraction of body irradiated. The Bayes factors are introduced as tools to help determine whether a data set of chromosomal aberrations obtained from a blood sample reflects partial or whole body irradiation. Two examples of simulated cytogenetic radiation exposure data are presented to demonstrate the usefulness of this methodology in cytogenetic biological dosimetry. (authors)

  18. A new Bayesian model applied to cytogenetic partial body irradiation estimation.

    Science.gov (United States)

    Higueras, Manuel; Puig, Pedro; Ainsbury, Elizabeth A; Vinnikov, Volodymyr A; Rothkamm, Kai

    2016-03-01

    A new zero-inflated Poisson model is introduced for the estimation of partial body irradiation dose and fraction of body irradiated. The Bayes factors are introduced as tools to help determine whether a data set of chromosomal aberrations obtained from a blood sample reflects partial or whole body irradiation. Two examples of simulated cytogenetic radiation exposure data are presented to demonstrate the usefulness of this methodology in cytogenetic biological dosimetry. © Crown copyright 2015.

  19. High-dose vincristine, fractionated total-body irradiation and cyclophosphamide as conditioning regimen in allogeneic and autologous bone marrow transplantation for childhood acute lymphoblastic leukaemia in second remission: a 7-year Italian multicentre study

    Energy Technology Data Exchange (ETDEWEB)

    Uderzo, C. [Milan Univ. (Italy); Rondelli, R.; Dini, G. [Bologna Univ. (Italy)] [and others

    1995-04-01

    We investigated the feasibility and efficacy of high-dose vincristine (4 mg/m{sup 2} over 4 d) combined with fractionated total body irradiation (F-TBI) (200 cGy x 2 over 3 d) and cyclophosphamide (60 mg/kg for 2 d) as a preparative regimen in allogeneic (AlloBMT) and autologous (ABMT) bone marrow transplantation for 75 consecutive children (median age at transplant 8.5 years) with acute lymphoblastic leukaemia in second complete remission (CR). Median duration of first CR was 26 and 25 months in the AlloBMT and ABMT group, respectively. We conclude that the conditioning regimen with high-dose vincrostine combined with cyclophosphamide and F-TBI is feasible and promising although its therapeutic advantage should be tested in larger series of patients enrolled in randomized studies. (author).

  20. Biophysical study of mice blood after whole body irradiation

    Science.gov (United States)

    Saad El Din, Alsha A.; Desouky, Omar S.; El Behay, Amin Z.; El Sayed, Anwar A.

    1996-05-01

    The immediate of whole body fractionated doses of 137Cs gamma rays totalling 13 Gy on mice as well as the late effects of accumulative dose of 10 Gy (8 days after exposure) were studied. Changes due to gamma irradiation in hemoglobin conductivity and buffer capacity indicate the appearance of hydrophobic groups and changes in hydrophilic/hydrophobic ratio. These changes demonstrate different degrees of unfolding and refolding of the hemoglobin molecule. The viscosity coefficient of hemoglobin is found to increase at fractionated doses of 7 and 13 Gy. Such effect seems to be due to aggregation of the protein part of hemoglobin. The fractionated dose of 13 Gy causes changes in the electronic state of oxyhemoglobin indicated by an increase in methemoglobin which reduces biological activity.

  1. Relative effect of radiation dose rate on hemopoietic and nonhemopoietic lethality of total-body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.; McNeill, J.; Karolis, C.; Thames, H.D. Jr.; Travis, E.L.

    1986-01-01

    Experiments were undertaken to determine the influence of dose rate on the toxicity of total-body irrdiation (TBI) with and without syngeneic bone-marrow rescue in mice. The results showed a much greater dose-rate dependence for death from nonhemopoietic toxicity than from bone-marrow ablation, with the ratio of LD 50 's increasing from 1.73 at 25 cGy/min to 2.80 at 1 cGy/min. At the higher dose rates, dose-limiting nonhemopoietic toxicity resulted from late organ injury, affecting the lungs, kidneys, and liver. At 1 cGy/min the major dose-limiting nonhemopoietic toxicity was acute gastrointestinal injury. The implications of these results in the context of TBI in preparation for bone-marrow transplantation are discussed. 15 refs., 4 figs

  2. Blood coagulation and fibrinolysis of the whole-body irradiated rabbits

    International Nuclear Information System (INIS)

    Hishikawa-Itoh, Youko; Ayakawa, Yoshio; Miyata, Nobuki

    1984-01-01

    To study the effects of irradiation on blood coagulation and fibrinolysis, rabbits were irradiated with 60 Co γ-rays (whole-body: 0, 100, 400, 800, 1200 rads). Clotting time, activity of plasmin and plasminogen, and fibrinogen contents of irradiated rabbit plasma were measured at 4 days before, immediately after, and at 1, 3, 7, 10, and 14 days after irradiation. Both clotting times obtained by addition of (kaolin+phospholipid) which expressed effects on the total intrinsic coagulation system, and by addition of (Ca 2+ ) which expressed effects on the total extrinsic coagulation system, were prolonged with small dose irradiation (100 rads) immediately and 3 days after irradiation. However, with high dose irradiation (400-1200 rads), these clotting times were prolonged 1 day after irradiation. The times of manifestation of irradiation effects on clotting time were different in small and high dose irradiation. Plasmin activity was decreased immediately, 1 day after and recovered 3 days after irradiation. Plasminogen activity was markedly increased in 800 and 1200 rads irradiated groups from 3 days after irradiation. Conversion of plasminogen into plasmin was impaired by irradiation. Fibrinogen contents increased rapidly in all irradiated rabbits except for 100 rads from 1 day after irradiation. These results revealed decreased coagulation and fibrinolysis activities in rabbit blood, irradiation injury of both coagulation and fibrinolysis activation systems, and accumulation of the precursors of fibrin and plasmin (i.e., fibrinogen and plasminogen). (author)

  3. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  4. Dose rate-dependent marrow toxicity of TBI in dogs and marrow sparing effect at high dose rate by dose fractionation.

    Science.gov (United States)

    Storb, R; Raff, R F; Graham, T; Appelbaum, F R; Deeg, H J; Schuening, F G; Sale, G; Seidel, K

    1999-01-01

    We evaluated the marrow toxicity of 200 and 300 cGy total-body irradiation (TBI) delivered at 10 and 60 cGy/min, respectively, in dogs not rescued by marrow transplant. Additionally, we compared toxicities after 300 cGy fractionated TBI (100 cGy fractions) to that after single-dose TBI at 10 and 60 cGy/min. Marrow toxicities were assessed on the basis of peripheral blood cell count changes and mortality from radiation-induced pancytopenia. TBI doses studied were just below the dose at which all dogs die despite optimal support. Specifically, 18 dogs were given single doses of 200 cGy TBI, delivered at either 10 (n=13) or 60 (n=5) cGy/min. Thirty-one dogs received 300 cGy TBI at 10 cGy/min, delivered as either single doses (n=21) or three fractions of 100 cGy each (n=10). Seventeen dogs were given 300 cGy TBI at 60 cGy/min, administered either as single doses (n=5) or three fractions of 100 cGy each (n=10). Within the limitations of the experimental design, three conclusions were drawn: 1) with 200 and 300 cGy single-dose TBI, an increase of dose rate from 10 to 60 cGy/min, respectively, caused significant increases in marrow toxicity; 2) at 60 cGy/min, dose fractionation resulted in a significant decrease in marrow toxicities, whereas such a protective effect was not seen at 10 cGy/min; and 3) with fractionated TBI, no significant differences in marrow toxicity were seen between dogs irradiated at 60 and 10 cGy/min. The reduced effectiveness of TBI when a dose of 300 cGy was divided into three fractions of 100 cGy or when dose rate was reduced from 60 cGy/min to 10 cGy/min was consistent with models of radiation toxicity that allow for repair of sublethal injury in DNA.

  5. Neonatal irradiation nephropathy in the growing dog. I. Renal morphological and functional adaptations following neonatal, sublethal, whole-body irradiation

    International Nuclear Information System (INIS)

    Wilke, W.L.; Phemister, R.D.; Jaenke, R.S.

    1979-01-01

    Sixty beagles were used to study the effects of exposure to 330 R 60 Co γ radiation (bilateral, whole-body) at 2 days of age on renal functional and morphological development in the growing dog. A significant deficit in grams kidney per kilogram body weight was found in irradiated dogs at 50 days of age (P < 0.05), but not at 125 or 200 days of age. Glomerular filtration rate (GFR) per kilogram body weight and GFR per gram kidney were not significantly different between irradiated and nonirradiated dogs at 50, 125, or 200 days of age, but blood urea nitrogen (BUN) was significantly elevated in irradiated dogs throughout this period (P < 0.05). The fractional distribution of intracortical renal blood flow, as determined by radiolabeled microspheres, to the outermost cortex was found to be reduced in irradiated animals at all ages evaluated (P < 0.05). The fractional blood flow to the outermost renal cortex was negatively correlated with BUN in both irradiated (P < 0.05) and nonirradiated (P < 0.05) animals. Based on prior demonstrations of reductions in nephron numbers following similar irradiation, these data indicate increases in mean single nephron GFR and nephronal hypertrophy in the kidneys of the neonatally irradiated dog. The renal functional and morphological adaptations are sufficient to maintain adequate renal function in growing, neonatally irradiated dogs. The BUN elevations in irradiated dogs are believed to be related to changes in intracortical renal blood flow, rather than indicating renal insufficiency. The possible importance of the functional and morphological adaptations to the subsequent development of chronic renal failure in neonatally irradiated animals is discussed

  6. Short- and long-term follow-up of thyroid dysfunction after allogeneic bone marrow transplantation without the use of preparative total body irradiation.

    Science.gov (United States)

    Toubert, M E; Socié, G; Gluckman, E; Aractingi, S; Espérou, H; Devergie, A; Ribaud, P; Parquet, N; Schlageter, M H; Beressi, J P; Rain, J D; Vexiau, P

    1997-08-01

    We studied the incidence and potential prognostic value of thyroid abnormalities after allogeneic bone marrow transplantation (BMT) without total body irradiation (TBI) conditioning. 77 consecutive patients who received a chemotherapy-alone-based conditioning regimen pretransplant were included. Free serum thyroxine (FT4), free serum triiodothyronine (FT3) and serum thyrotropin (TSH) levels were assayed before and 3 and 14 months after BMT. Patients were classified in three categories: normal thyroid profile if FT3 and FT4 were within the normal range and TSH was normal or low, peripheral thyroid insufficiency (PTI) if TSH was >4 mIU/l, or an 'euthyroid sick syndrome' (ETS) if FT3 and/or FT4 were low and TSH was normal or low. The incidence of thyroid dysfunction at 3 months was 57%, and 29% at 14 months. This was mostly due to the occurrence of ETS which was more frequent at 3 months (48%, 29/61) than at 14 months (19%, 9/48). Furthermore, at 3 months, survival was significantly lower in the ETS group (34.5%) than in the euthyroid group (96.2%), or in the PTI group (83.3%) (P < 0.0001). PTI was observed even in the absence of TBI in 11 patients (14%) and was equally distributed at 3 months (n = 6) and 14 months (n = 5). In conclusion, thyroid dysfunction is not a rare complication even without pretransplant TBI conditioning regimen. Hypothyroidism prevalence was 10%, and ETS, which was more frequently observed, displayed a dismal predictive value at 3 months.

  7. 20 years of experience in static intensity-modulated total-body irradiation and lung toxicity. Results in 257 consecutive patients

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.A.; Schultze, J.; Jensen, J.M.; Hebbinghaus, D.; Galalae, R.; Kimmig, B.N. [University Hospital of Schleswig-Holstein (UHK), Kiel (Germany). Dept. of Radiotherapy

    2007-10-15

    Purpose: To analyze lung complications after allogeneic or autologous transplantation following total-body irradiation (TBI) with compensators, so-called sIMRT (static intensity-modulated radiotherapy). Patients and Methods: Between 1983 and 1998, 257 patients with different hematologic malignancies underwent TBI in six fractions to a total dose of 12 Gy within 3 consecutive days (212 with 11 Gy lung dose) prior to allogeneic (n = 174) or autologous (n = 83) transplantation. 40 patients were < 16 years of age. Minimum follow-up time was 5 years. Median follow-up period was 110 months (13-231 months). Results: 5-year survival rate was 47.9%, 5-year tumor-related mortality 23%, 5-year treatment-related mortality 29.2% (12 Gy lung dose: 53.3% {+-} 14.6%, 11 Gy: 24.1% {+-} 5.7%). Interstitial pneumonitis (IP) developed in 28 of 257 patients (10.9% {+-} 3.8%). IP incidences in the allogeneic and autologous groups were 14.4% ({+-} 5.6%) and 3.6% (0-7.6%), respectively. IP incidences with 12/11 Gy lung dose were 22% ({+-} 12%)/8.5% ({+-} 3.7%). IP mortality was 9.3% ({+-} 3.6%). 13 of 28 patients with IP had a cytomegalovirus infection, five an acute graft-versus-host disease grade IV of the lungs. IP incidences with 12/11 Gy lung dose were 25% (9-50%)/4.2% (0.2-19.1%) in patients < 16 years, and 20.7% (9.4-37.4%) and 13.3% ({+-} 6.5%) in older patients after allogeneic transplantation. Conclusion: Compensator-generated static intensity-modulated TBI with a total dose of 12 Gy and a lung dose of 11 Gy is a modern and comfortable treatment with moderate lung toxicity, small dose inhomogeneities and little setup failure before transplantation. Especially patients < 16 years of age benefit from lung dose reduction.

  8. Subclinical pulmonary function defects following autologous and allogeneic bone marrow transplantation: relationship to total body irradiation and graft-versus-host disease

    Energy Technology Data Exchange (ETDEWEB)

    Tait, R.C.; Burnett, A.K.; Robertson, A.G.; McNee, S.; Riyami, B.M.; Carter, R.; Stevenson, R.D. (Department of Haematology, Royal Infirmary, Glasgow (Scotland))

    1991-06-01

    Pulmonary function results pre- and post-transplant, to a maximum of 4 years, were analyzed in 98 patients with haematological disorders undergoing allogeneic (N = 53) or autologous bone marrow transplantation (N = 45) between 1982 and 1988. All received similar total body irradiation based regimens ranging from 9.5 Gy as a single fraction to 14.4 Gy fractionated. FEV1/FVC as a measure of airway obstruction showed little deterioration except in patients experiencing graft-versus-host disease in whom statistically significant obstructive ventilatory defects were evident by 6 months post-transplant (p less than 0.01). These defects appeared to be permanent. Restrictive ventilatory defects, as measured by reduction in TLC, and defects in diffusing capacity (DLCO and KCO) were also maximal at 6 months post-transplant (p less than 0.01). Both were related, at least in part, to the presence of GVHD (p less than 0.01) or use of single fraction TBI with absorbed lung dose of 8.0 Gy (p less than 0.05). Fractionated TBI resulted in less marked restricted ventilation and impaired gas exchange, which reverted to normal by 2 years, even when the lung dose was increased from 11.0 Gy to between 12.0 and 13.5 Gy. After exclusion of patients with GVHD (30% allografts) there was no significant difference in pulmonary function abnormalities between autograft and allograft recipients.

  9. DOSE AND GAMMA-RAY SPECTRA FROM NEUTRON-INDUCED RADIOACTIVITY IN MEDICAL LINEAR ACCELERATORS FOLLOWING HIGH-ENERGY TOTAL BODY IRRADIATION.

    Science.gov (United States)

    Keehan, S; Taylor, M L; Smith, R L; Dunn, L; Kron, T; Franich, R D

    2016-12-01

    Production of radioisotopes in medical linear accelerators (linacs) is of concern when the beam energy exceeds the threshold for the photonuclear interaction. Staff and patients may receive a radiation dose as a result of the induced radioactivity in the linac. Gamma-ray spectroscopy was used to identify the isotopes produced following the delivery of 18 MV photon beams from a Varian 21EX and an Elekta Synergy. The prominent radioisotopes produced include 187 W, 63 Zn, 56 Mn, 24 Na and 28 Al in both linac models. The dose rate was measured at the beam exit window (12.6 µSv in the first 10 min) following 18 MV total body irradiation (TBI) beams. For a throughput of 24 TBI patients per year, staff members are estimated to receive an annual dose of up to 750 μSv at the patient location. This can be further reduced to 65 μSv by closing the jaws before re-entering the treatment bunker. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Captopril and Losartan for Mitigation of Renal Injury Caused by Single-Dose Total-Body Irradiation

    Science.gov (United States)

    Moulder, John E.; Cohen, Eric P.; Fish, Brian L.

    2011-01-01

    It is known that angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) can be used to mitigate radiation-induced renal injury. However, for a variety of reasons, these previous results are not directly applicable to the development of agents for the mitigation of injuries caused by terrorism-related radiation exposure. As part of an effort to develop an animal model that would fit the requirements of the U.S. Food and Drug Administration (FDA) “Animal Efficacy Rule”, we designed new studies which used an FDA-approved ACEI (captopril) or an FDA-approved ARB (losartan, Cozaar®) started 10 days after a single total-body irradiation (TBI) at drug doses that are equivalent (on a g/m2/day basis) to the doses prescribed to humans. Captopril and losartan were equally effective as mitigators, with DMFs of 1.23 and 1.21, respectively, for delaying renal failure. These studies show that radiation nephropathy in a realistic rodent model can be mitigated with relevant doses of FDA-approved agents. This lays the necessary groundwork for pivotal rodent studies under the FDA Animal Efficacy Rule and provides an outline of how the FDA-required large-animal studies could be designed. PMID:21175344

  11. Assessment of simulated high-dose partial-body irradiation by PCC-R assay.

    Science.gov (United States)

    Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe

    2013-09-01

    The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.

  12. Radiation therapy in leukemia (total body irradiation excluded)

    International Nuclear Information System (INIS)

    Peiffert, D.; Hoffstetter, S.

    1999-01-01

    Radiation techniques and indications in leukemias have been described in detail, yet prophylactic cranial irradiation in acute leukemia still has few indications. Cerebrospinal and testicular irradiation are reserved for relapsing disease. Radiation usually results in rapid functional improvement when used in neurologic emergencies and symptomatic neurologic or gross tumors relapses. Nevertheless, the improvements recently obtained by systemic chemotherapy have resulted in the reduction in the use of irradiation, especially in children, where it was considered deleterious with neuropsychological sequelae. Splenic irradiation remains useful for symptomatic myelo-proliferative syndrome. (authors)

  13. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  14. Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: Implications for biomarker selection.

    Directory of Open Access Journals (Sweden)

    Stephanie D Byrum

    Full Text Available Acute radiation syndrome (ARS is a complex multi-organ disease resulting from total body exposure to high doses of radiation. Individuals can be exposed to total body irradiation (TBI in a number of ways, including terrorist radiological weapons or nuclear accidents. In order to determine whether an individual has been exposed to high doses of radiation and needs countermeasure treatment, robust biomarkers are needed to estimate radiation exposure from biospecimens such as blood or urine. In order to identity such candidate biomarkers of radiation exposure, high-resolution proteomics was used to analyze plasma from non-human primates following whole body irradiation (Co-60 at 6.7 Gy and 7.4 Gy with a twelve day observation period. A total of 663 proteins were evaluated from the plasma proteome analysis. A panel of plasma proteins with characteristic time- and dose-dependent changes was identified. In addition to the plasma proteomics study reported here, we recently identified candidate biomarkers using urine from these same non-human primates. From the proteomic analysis of both plasma and urine, we identified ten overlapping proteins that significantly differentiate both time and dose variables. These shared plasma and urine proteins represent optimal candidate biomarkers of radiation exposure.

  15. Leveraging Game Consoles for the Delivery of TBI Rehabilitation

    Science.gov (United States)

    Super, Taryn; Mastaglio, Thomas; Shen, Yuzhong; Walker, Robert

    2011-01-01

    Military personnel are at a greater risk for traumatic brain injury (TBI) than the civilian population. In addition, the increase in exposure to explosives, i.e. , improvised explosive devices, in the Afghanistan and Iraq wars, along with more effective body armor, has resulted in far more surviving casualties suffering from TBI than in previous wars. This effort presents the results of a feasibility study and early prototype of a brain injury rehabilitation delivery system (BIRDS). BIRDS is designed to provide medical personnel treating TBI with a capability to prescribe game activities for patients to execute using a commercially available game console, either in a clinical setting or in their homes. These therapeutic activities will contribute to recovery or remediation of the patients' cognitive dysfunctions. Solutions such as this that provide new applications for existing platforms have significant potential to address the growing incidence of TBI today.

  16. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  17. Effects of local and whole body irradiation on appearance of osteoclasts during wound healing of tooth extraction sockets in rats

    International Nuclear Information System (INIS)

    Hosokawa, Yoichiro; Sakakura, Yasunori; Tanaka, Likinobu; Okumura, Kazuhiko; Yajima, Toshihiko; Kaneko, Masayuki

    2007-01-01

    We examined effects of local and whole body irradiation before tooth extraction on appearance and differentiation of osteoclasts in the alveolar bone of rat maxillary first molars. Wistar rats weighting 100 g were divided into three groups: non-irradiation group, local irradiation group, and whole body irradiation group. In the local irradiation group, a field made with lead blocks was placed over the maxillary left first molar tooth. In the whole body irradiation group, the animals were irradiated in cages. Both groups were irradiated at 8 Gy. The number of osteoclasts around the interradicular alveolar bone showed chronological changes common to non-irradiated and irradiated animals. Several osteoclasts appeared one day after tooth extraction, and the maximal peak was observed 3 days after extraction. Local irradiation had no difference from non-irradiated controls. In animals receiving whole body irradiation, tooth extraction one day after irradiation caused smaller number of osteoclasts than that 7 day after irradiation during the experimental period. Whole body-irradiated rats had small osteoclasts with only a few nuclei and narrow resorption lacunae, indicating deficiency of radioresistant osteoclast precursor cells. Injection of intact bone marrow cells to whole body-irradiated animals immediately after tooth extraction recovered to some content the number of osteoclasts. These findings suggest that bone resorption in the wound healing of alveolar socket requires radioresistant, postmitotic osteoclast precursor cells from hematopoietic organs, but not from local sources around the alveolar socket, at the initial phase of wound healing. (author)

  18. Effects of local and whole body irradiation on appearance of osteoclasts during wound healing of tooth extraction sockets in rats.

    Science.gov (United States)

    Hosokawa, Yoichiro; Sakakura, Yasunori; Tanaka, Likinobu; Okumura, Kazuhiko; Yajima, Toshihiko; Kaneko, Masayuki

    2007-07-01

    We examined effects of local and whole body irradiation before tooth extraction on appearance and differentiation of osteoclasts in the alveolar bone of rat maxillary first molars. Wistar rats weighting 100 g were divided into three groups: non-irradiation group, local irradiation group, and whole body irradiation group. In the local irradiation group, a field made with lead blocks was placed over the maxillary left first molar tooth. In the whole body irradiation group, the animals were irradiated in cages. Both groups were irradiated at 8 Gy. The number of osteoclasts around the interradicular alveolar bone showed chronological changes common to non-irradiated and irradiated animals. Several osteoclasts appeared one day after tooth extraction, and the maximal peak was observed 3 days after extraction. Local irradiation had no difference from non-irradiated controls. In animals receiving whole body irradiation, tooth extraction one day after irradiation caused smaller number of osteoclasts than that 7 day after irradiation during the experimental period. Whole body-irradiated rats had small osteoclasts with only a few nuclei and narrow resorption lacunae, indicating deficiency of radioresistant osteoclast precursor cells. Injection of intact bone marrow cells to whole body-irradiated animals immediately after tooth extraction recovered to some content the number of osteoclasts. These findings suggest that bone resorption in the wound healing of alveolar socket requires radioresistant, postmitotic osteoclast precursor cells from hematopoietic organs, but not from local sources around the alveolar socket, at the initial phase of wound healing.

  19. High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: results of two consecutive regimens assessing the role of total-body irradiation.

    Science.gov (United States)

    Burdach, S; Meyer-Bahlburg, A; Laws, H J; Haase, R; van Kaik, B; Metzner, B; Wawer, A; Finke, R; Göbel, U; Haerting, J; Pape, H; Gadner, H; Dunst, J; Juergens, H

    2003-08-15

    Risk stratification of metastatic and relapsed Ewing's tumors (ETs) has been a matter of debate during the last decade. Patients with bone or bone marrow metastases or early or multiple relapses constitute the worst risk group in ET and have a poorer prognosis than patients with primary lung metastases or late relapses. In this article, the results of the present Meta European Intergroup Cooperative Ewing Sarcoma Study (MetaEICESS) (tandem melphalan/etoposide [TandemME]) were compared with the result of the previous study (hyper melphalan/etoposide [HyperME]), both at 5 years, in a patient population within the same high-risk stratum to determine toxicity. Among 54 eligible patients, 26 were treated according to the HyperME protocol, and 28 were treated according to TandemME protocol. Patients received six cycles of the Cooperative Ewing Sarcoma Study treatment in HyperME and six cycles of the EICESS treatment in TandemME as induction chemotherapy. Patients also received involved-compartment irradiation for local intensification and myeloablative systemic intensification consolidation with hyperfractionated total-body irradiation (TBI) combined with melphalan/etoposide in HyperME or two times the melphalan/etoposide in TandemME followed by autologous stem-cell transplantation. The event-free survival (EFS) rate +/- SD in HyperME and TandemME was 22% +/- 8% and 29% +/- 9%, respectively. The dead of complication rate was 23% in HyperME and 4% in TandemME. TandemME offers a decent, albeit still not satisfactory, rate of long-term remissions in most advanced ETs (AETs), with short-term treatment and acceptable toxicity. TBI was not required to maintain EFS level in this setting but was associated with a high rate of toxic death. Future prospective studies in unselected patients are warranted to evaluate high-dose therapy in an unselected group of patients with AET.

  20. Change in the mineralization of the healing bone callus after whole-body irradiation in mice

    International Nuclear Information System (INIS)

    Drouet, J.; Pleinard, J.F.; Nguyen, T.L.; Goyffon, M.

    The delayed consolidation of diaphysial long-bone fractures in mice subjected to whole-body X-irradiation is expressed biochemically by a faulty mineralization of the repair callus. This deficiency is proportional to the irradiation intensity and is not corrected by previous administration of cycteamine [fr

  1. Sorption of carbohydrates following the whole-body irradiation and irradiation of the abdominal cavity (Experimental investigation)

    International Nuclear Information System (INIS)

    Neumeister, K.; Koch, F.; Mehlgorn, G.; Panndorf, H.; Iohannsen, U.

    1974-01-01

    Experiments were conducted to determine the effect of fractionated irradiation of the abdominal cavity and the whole body on carbohydrate absorption. It was found that enhanced D-xylose absorption is a function of dose. The relationship between impairment of absorption and the severity of clinical, pathomorphological and roentgenological changes was noted. (V.A.P.)

  2. Total body irradiation as a form of preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Inoue, Toshihiko

    1987-01-01

    The history of total body irradiation and bone marrow transplantation is surprisingly old. Following the success of Thomas et al. in the 1970s, bone marrow transplantation appeared to be the sole curative treatment modality for high-risk leukemia. A supralethal dose of total body irradiation was widely accepted as a form of preparation for bone marrow transplantation. In this paper, I described the present status of bone marrow transplantation for leukemia patients in Japan based on the IVth national survey. Since interstitial pneumonitis was one of the most life threatening complications after bone marrow transplantation, I mentioned the dose, dose-rate and fraction of total body irradiation in more detail. In addition, I dealt with some problems of the total body irradiation, such as dose prescription, compensating contour as well as inhomogeneity, and shielding for the highrisk organs. (author) 82 refs

  3. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  4. The effect of whole body irradiation on the action of strong analgesics of mice

    International Nuclear Information System (INIS)

    Cvetkovicj, M.; Milovanovicj, A.; Tanasijevicj, D.

    1987-01-01

    The effect of whole body irradiation of male mice with single doses of 3 and 7 Gy ( 60 Co source) on analgesic action of three morphine-like drugs was studied. Over the first 6 days after irradiation, the analgesic effect of alfentanil and fentanyl was significantly less pronounced in irradiated animals than in control ones. During the subsequent period of 24 days till the end of experiment, the analgesic effect in irradiated animals gradually increased reaching and exceeding the control values. On the contrary, the analgesic effect of butorphanole was less pronounced in irradiated animals than in control ones, although the difference was not significantly. The difference between butorphanole and other two drugs are probably due to chemical structure and the metabolic fate in the body. (author) 8 refs.; 2 figs

  5. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  6. A study on dose attenuation in bone density when TBI using diode detector and TLD

    International Nuclear Information System (INIS)

    Im, Hyun Sil; Lee, Jung Jin; Jang, Ahn Ki; KIm, Wan Sun

    2003-01-01

    Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10 MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were 92.78±3.3, 104.34±2.3, 98.03±1.4, 99.9±2.53, 98.17±0.56 respectably. Measured mid-depth dose of pelvis, knees and ankles were 86±1.82, 93.24±2.53, 91.50±2.84 respectably. There were 6.67%-11.65% dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were 95.23±1.18, 98.33±0.6, 93.5±1.5, 87.3±1.5, 86.90±1.16 respectably. There were 4.53%-12.6% dose attenuation at mid-depth in pelvis, knees and ankles. We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  7. Effect of Black Grape Juice against Heart Damage from Acute Gamma TBI in Rats

    Directory of Open Access Journals (Sweden)

    Edson Ramos de Andrade

    2013-09-01

    Full Text Available The aim of this study was to evaluate the potential positive effect of black grape juice (BGJ on lipid peroxidation considering Total Body Irradiation (TBI in Wistar rats. As a potential feasible means of evaluation in situ, blood serum lactate dehydrogenase (LDH levels were evaluated as a marker for heart damage from acute radiation syndrome (ARS. Twenty rats were divided into four groups, two of them being irradiated by gamma-rays from a Co-60 source. Animals were treated by gavage with 2 mL per day of BGJ or placebo for one week before and 4 days after 6 Gy whole body gamma-irradiation, when they were euthanasiated. LDH on serum and lipid peroxidation on heart tissue were evaluated. High concentration of metabolites from lipid peroxidation in heart, and high LDH level on serum were found only in gamma-irradiated group given placebo, mainly at the first 24 h after radiation. Phytochemical analysis of BGJ was performed by determining total phenolics, flavonoids, and tannins followed by a high-performance liquid chromatography (HPLC/DAD analysis, which showed resveratrol as the major constituent. Results suggest that BGJ is a good protective candidate compound against heart damage from ARS and its effects suggest its use as a radiomodifier.

  8. Decreased tumor uptake of gallium-67 in animals after whole-body irradiation. [Gamma radiation, rats

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.P.; Alderson, P.O.; Eckelman, W.C.; Hamilton, R.G.; Weiss, J.F.

    1978-02-01

    The mechanism of decreased Ga-67 citrate retention and serum binding after whole-body irradiation is unknown. To investigate this mechanism and to determine the effects of prior irradiation on tumor uptake of Ga-67, Sprague-Dawley rats bearing a subcutaneous Walker-256 carcinosarcoma were exposed to whole-body Co-60 irradiations of 250-1000 rads. Each animal received 10 ..mu..Ci of Ga-67 citrate intravenously 24 hr after exposure. Control animals received Ga-67 but were not irradiated. Animals were killed at 48 hr and the uptakes (percentage ID/g) in the tumor and other tissues were determined. A blood sample was also obtained to determine the serum iron, unsaturated iron-binding capacity (UIBC) and transferrin level. Tumor uptake and serum UIBC were decreased in irradiated animals, whereas serum iron levels and Ga-67 urinary excretion were increased. There was a significant correlation between the UIBC and the Ga-67 tumor uptake (r = 0.78, p < 0.001, n = 49). Transferrin levels in the irradiated group were not different from control values. The results indicate that the decreased Ga-67 retention and tumor uptake seen after whole-body irradiation are related--at least in part--to the saturation of transferrin by increased levels of circulating iron.

  9. Changes in Serum Zinc, Copper and Ceruloplasmin Levels of Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Abdou, M.I.; Shaban, H.A.; El Gohary, M.I.

    2011-01-01

    Rats are whole body irradiated with different Gamma radiation doses. Zinc and Copper, two important trace elements in the biological processes and Ceruloplasmin, a protein which carries more than 95% of serum Cu and has important roles in many vital processes are followed up in the irradiated rat sera. This work aimed to determine the changes in the serum levels of the three parameters (Zinc, Copper and Ceruloplasmin) through eight weeks follow up period (1st, 2nd, 3rd, 4th, 6th, and 8th week) post whole body gamma irradiation with three sub-lethal doses (2, 3.5 and 5 Gy) of rats. All the experimental animals did not receive any medical treatment. Zinc and Copper were measured using discrete nebulization flame atomic absorption spectrometry. Ceruloplasmin was measured using a colorimetric method. The statistical analyses of the results show that the Zinc levels of the irradiated groups decreased significantly post irradiation and then were recovered at the 6th week post irradiation. The Copper levels of the irradiated groups increased significantly and then were recovered at 6th week post irradiation. The levels of Ceruloplasmin in the same groups increased significantly throughout the whole follow up period. The conclusion is that, Zinc, Copper and Ceruloplasmin levels changed significantly in the irradiated groups compared to the control group with a maximum effect noted in the groups irradiated with the higher doses and that the lower dose irradiated groups recover earlier than the higher ones. Also the correlation between Copper and Zinc is reversible at different doses and that between Copper and Ceruloplasmin is direct

  10. Total body irradiation in a patient with fragile X syndrome for acute lymphoblastic leukemia in preparation for stem cell transplantation: A case report and literature review.

    Science.gov (United States)

    Collins, D T; Mannina, E M; Mendonca, M

    2015-10-01

    Fragile X syndrome (FXS) is a congenital disorder caused by expansion of CGG trinucleotide repeat at the 5' end of the fragile X mental retardation gene 1 (FMR1) on the X chromosome that leads to chromosomal instability and diminished serum levels of fragile X mental retardation protein (FMRP). Afflicted individuals often have elongated features, marfanoid habitus, macroorchidism and intellectual impairment. Evolving literature suggests the condition may actually protect from malignancy while chromosomal instability would presumably elevate the risk. Increased sensitivity to ionizing radiation should also be predicted by unstable sites within the DNA. Interestingly, in this report, we detail a patient with FXS diagnosed with acute lymphoblastic leukemia treated with induction followed by subsequent cycles of hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, dexamethasone) with a complete response who then was recommended to undergo peripheral stem cell transplantation. The patient underwent total body irradiation (TBI) as a component of his conditioning regimen and despite the concern of his clinicians, developed minimal acute toxicity and successful engraftment. The pertinent literature regarding irradiation of patients with FXS is also reviewed. © 2015 Wiley Periodicals, Inc.

  11. Effects of ancestral x irradiation followed by random mating on body weight of rats

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450R per generation of ancestral spermatogonial x irradiation of inbred rats on body weight were examined. After six generations of random mating (avoiding inbreeding) following the termination of irradiation, descendants of irradiated males (R) were significantly lighter than their controls (C) at 3 and 6 weeks, but not at 10 weeks of age. However, differences in growth between R and C populations were small. Among-litter and within-litter variance estimates were generally larger in the R lines than in the C lines, suggesting that selection responses would be greater in R than in C lines. In conjunction with previous evidence--obtained during the irradiation phase of the experiment--this suggested that more rapid response to selection for 6-week body weight, in particular, might accrue in the R lines

  12. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  13. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies

    International Nuclear Information System (INIS)

    Girinsky, T.; Benhamou, E.; Bourhis, J.H.; Dhermain, F.; Guillot-Valls, D.; Ganansia, V.; Luboinski, M.; Perez, A.; Cosset, J.M.; Socie, G.; Baume, D.; Bouaouina, N.; Briot, E.; Baudre, A.; Bridier, A.; Pico, J.L.

    2001-01-01

    The efficiency of the two irradiation modes are similar, but the hyperfractionated irradiation seems superior in term of global and specific survival. The incidence rates of pneumopathies are not different between the two groups but the incidence rate of the liver vein-occlusive illness is superior in the group treated by non fractionated whole body irradiation. The cost of the hyperfractionated whole body irradiation is superior to this one of the non fractionated whole body irradiation around a thousand dollars. (N.C.)

  14. Busulfan, cyclophosphamide and fractionated total body irradiation as a conditioning regimen for allogeneic bone marrow transplantation in patients with non-lymphocytic hematopoietic malignancies

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi

    1996-01-01

    Allogeneic bone marrow transplantation (BMT) with the conditioning regimen of 8 mg/kg of busulfan (BUS), 120 mg/kg of cyclophosphamide (CPM) and 10 Gy of total body irradiation (TBI) was evaluated in the patients with non-lymphocytic hematopoietic malignancies. The disease distribution of the 22 patients was as follows; 14 in the standard risk group (SRG), 8 in the high risk group (HRG). SRG included the patients with acute myeloid leukemia (AML) in the first complete remission, chronic myelogenous leukemia (CML) in chronic phase and myelodysplastic syndrome with refractory anemia, while HRG included the patients with refractory AML and CML in blastic phase. The median age of patients was 33 years old (y.o.), and the median observation period was 34.5 months No relapse occurred, but 8 patients (36%) died of various complications. Ail the patients who died of interstitial pneumonitis (4 cases) were 40 y.o. and more. Acute graft-versus-host disease (GvHD) and chronic GvHD were clinically controllable. The probability of disease-free survival rate at 5 years (5y-DFS) was 50.0% in overall patients. The 5y-DFS was 57.1% in HRG (7 cases), while 54.3% in SRG (13 cases) donated from the HLA identical siblings (20 cases). In these 13 patients in SRG, the 5y-DFS was 100% in patients under 40 y.o. (6 cases), while the probability of disease-free survival rate at 3 years was 68.6% and the 5y-DFS was 0% in patients over 40 y.o. (7 cases). Our data indicate that the conditioning regimen combining BUS, CPM and TBI for allogeneic BMT is promising for the treatment of the patients of HRG and the patients under 40 y.o. in SRG. (author)

  15. Effect of cytarabine, melphalan, and total body irradiation as conditioning for autologous stem cell transplantation for patients with AML in first remission

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki Mun; Chai, Gyu Young [College of Medicine, Gyeongsang National Univ., Jinju (Korea, Republic of); Choi, Byung Ock; Kang, Young Nam; Jang, Hong Sek; Choi, Ihl Bohng [College of Medicine, The Catholic Univ., Seoul (Korea, Republic of); Kim, Hee Jae; Min, Wo Sung; Kim, Chun Choo [The Catholic Hematopoietic Stem Cell Transplantation Center, Seoul, (Korea, Republic of)

    2003-09-01

    Current results of autologous stem cell transplantation (SCT) suggest that this procedure may prolong disease free survival in patients with acute myelojd leukemia (AML). Autologous SCT is increasingly used as treatment for AML in first remission. The aim of this study was to evaluate the outcome of autologous SCT for patients with AML in first remission treated by autologous SCT using cytarabine, melphalan and total body irradiation (TBI) as the conditioning regimen. Between January 1995 and December 1999, 29 patients with AML in first remission underwent autologous SCT. The median age of patients was 33 years (range, 16 to 47). The conditioning regimen consisted of cytarabine (3.0 gm/m{sup 2} for 3 days), melphalan (100 mg/m{sup 2} for 1 day) and TBI (total 1000 cGy in five fractions over 3 days). The median follow up was 40 months with a range of 3 to 58 months. The 4-year cumulative probability of disease free survival was 69.0%, and median survival was 41.5 months. The 4-year relapse rate was 27.6%. The factor influencing disease free survival and relapse rate was the French-American-British (FAB) classification (M{sub 3} group vs. other groups; p=0.048, p=O.043). One patient died from treatment-related toxicity. Although the small number of patients does not allow us to draw any firm conclusion, our results were encouraging and suggest that the association of cytarabine, melphalan and TBJ as a conditioning regimen for autologous SCT for AML in first remission appears to be safe and effective.

  16. Allogeneic bone marrow transplantation with conditioning regimen of total body irradiation/busulfan/melphalan for 16 patients in children with high-risk leukemia and lymphoma

    International Nuclear Information System (INIS)

    Yoshihara, Takao; Fujii, Noriko; Naya, Mayumi

    1999-01-01

    We report the therapeutic results of allogeneic bone marrow transplantations (BMT) for 16 children with high-risk leukemia and lymphoma. The conditioning regimen consisted of total body irradiation (TBI) (12 Gy), busulfan (Bu) (4 mg/kg x 2 days), and melphalan (L-PAM) (70 mg/m 2 x 2 or 3 days). Graft-versus-host disease (GVHD) prophylaxis was performed with cyclosporin (CsA) + methotrexate (MTX) (4 cases) and CsA + MTX-methyl-prednisolone (11 cases). Seven patients had acute lymphocytic leukemia, 6 acute nonlymphocytic leukemia, 2 B-cell type non-Hodgkin's lymphoma, and 1 peripheral T-cell lymphoma. Nine patients were in complete remission (CR) and 7 in non CR at BMT. Nine patients received transplants from HLA-matched related (MR) donors, 4 from HLA-mismatched related (MisR) donors, and 3 from unrelated (UR) donors. Seven of the cases, all of which were transplanted from MR, have continued complete remission for 15-47 (median 27) months. Nine patients, of which seven were transplanted from MisR/UR, died from complications from fungal pneumonia (3), cytomegalovirus pneumonitis (1), GVHD (1), rhabdomyolysis (1), lymphoproliferative disorder (1), rejection (1), and relapse (1). These results suggest that the combination of TBI, Bu, and L-PAM as a BMT regimen has a significant anti-neoplastic benefit and is considered to be useful; however, considering the high rate of fatal transplant-related complications, more refinement is required, especially for transplants from MisR and UR donors. (author)

  17. Allogeneic bone marrow transplantation with conditioning regimen of total body irradiation/busulfan/melphalan for 16 patients in children with high-risk leukemia and lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Takao; Fujii, Noriko [Matsushita Memorial Hospital, Moriguchi, Osaka (Japan); Naya, Mayumi [and others

    1999-02-01

    We report the therapeutic results of allogeneic bone marrow transplantations (BMT) for 16 children with high-risk leukemia and lymphoma. The conditioning regimen consisted of total body irradiation (TBI) (12 Gy), busulfan (Bu) (4 mg/kg x 2 days), and melphalan (L-PAM) (70 mg/m{sup 2} x 2 or 3 days). Graft-versus-host disease (GVHD) prophylaxis was performed with cyclosporin (CsA) + methotrexate (MTX) (4 cases) and CsA + MTX-methyl-prednisolone (11 cases). Seven patients had acute lymphocytic leukemia, 6 acute nonlymphocytic leukemia, 2 B-cell type non-Hodgkin`s lymphoma, and 1 peripheral T-cell lymphoma. Nine patients were in complete remission (CR) and 7 in non CR at BMT. Nine patients received transplants from HLA-matched related (MR) donors, 4 from HLA-mismatched related (MisR) donors, and 3 from unrelated (UR) donors. Seven of the cases, all of which were transplanted from MR, have continued complete remission for 15-47 (median 27) months. Nine patients, of which seven were transplanted from MisR/UR, died from complications from fungal pneumonia (3), cytomegalovirus pneumonitis (1), GVHD (1), rhabdomyolysis (1), lymphoproliferative disorder (1), rejection (1), and relapse (1). These results suggest that the combination of TBI, Bu, and L-PAM as a BMT regimen has a significant anti-neoplastic benefit and is considered to be useful; however, considering the high rate of fatal transplant-related complications, more refinement is required, especially for transplants from MisR and UR donors. (author)

  18. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moroni, Maria, E-mail: maria.moroni@usuhs.edu [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Ngudiankama, Barbara F. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland (United States); Christensen, Christine [Division of Comparative Pathology, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Olsen, Cara H. [Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Owens, Rossitsa [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Lombardini, Eric D. [Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok (Thailand); Holt, Rebecca K. [Veterinary Science Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Whitnall, Mark H. [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States)

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  19. Body composition changes following the supplementation of different food additives to irradiated animals

    International Nuclear Information System (INIS)

    Fahmy, M.O.

    1980-01-01

    This study was conducted to examine the hypothesis that deposition of fat and / or protein in animal's body before irradiation or using radio - protector material such as soyabean oil may reduce the hazard effects of radiation on life span, body weight and body compartments. Therefore, 286 mice ( 144 males and 142 females) after chemical maturity were used in this study. The animals were divided to 4 major groups. The first group was fed on chow diet, the second group was fed on radioprotector diet ( basel diet), the third group was fed on high energy diet and the forth group fed on high protein diet, for 7 weeks before the exposure to gamma-rays. At the exposure day each nutritional group was divided to 3 exposure treatments ( non-irradiated, 800 and 1200 rads). The previous hypothesis was studied for 42 days after irradiation

  20. Production of anti-SRBC antibodies after DDC administration in whole-body irradiated mice

    International Nuclear Information System (INIS)

    Kautska, J.; Hosek, B.; Misustova, J.

    1990-01-01

    Production of antibody-forming cells (PFC) was studied in mice subjected to a single whole-body radiation dose of 3.8 Gy following an injection of sodium diethyl dithiocarbamate (DDC, 800 mg/kg) 30 min before irradiation. The animals were immunized (1% SRBC) 4 hours and 5 and 10 days after irradiation, and the number of PFC was determined by a modified Jerne plaque technique on days 4, 7 and 10 after immunization. After irradiation alone, the PFC levels were markedly reduced at all time intervals in comparison with unirradiated controls. Upon immunization of animals on day 10 after irradiation the peak PFC levels were observed on day 7 after immunization in the irradiated only group and in the group irradiated after DDC administration (in controls on day 4 after immunization). The administration of DDC entirely eliminated the unfavourable effect of radiation if immunization was performed 4 h after irradiation, in terms of the number and the peak level of PFC. Upon immunization of animals on day 5 and day 10 after irradiation the PFC levels were not markedly influenced by DDC injection. (author). 3 figs., 25 refs

  1. Augmenting Total Body Irradiation with a Cranial Boost before Stem Cell Transplantation Protects Against Post-Transplant Central Nervous System Relapse in Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Gao, Robert W; Dusenbery, Kathryn E; Cao, Qing; Smith, Angela R; Yuan, Jianling

    2018-03-01

    The purpose of this study was to determine the effect of a pretransplant cranial boost (CB) on post-transplant central nervous system (CNS) relapse and survival in acute lymphoblastic leukemia (ALL) patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) using a total body irradiation (TBI)-containing preparation regimen. Two hundred thirteen ALL patients were treated consecutively at our institution with allogeneic HSCT. Conditioning included TBI (1320 cGy in 8 fractions given twice daily) and cyclophosphamide (120 mg/kg) with or without fludarabine (75 mg/m 2 ). Patients were divided into 4 groups based on history of CNS disease and whether a CB was given. Of the 160 patients with no history of CNS disease, none received a CB (CNS-/CB-). Of the 53 patients with prior CNS disease, 41 had not received prior cranial irradiation. Thirty of these 41 received a CB of 900 to 1000 cGy in 5 daily fractions (CNS+/CB+), whereas the other 11 did not receive a CB because of physician preference (CNS+/CB-). The remaining 12 patients with prior CNS involvement had previously received cranial irradiation and thus were not candidates for a CB (CNS + PriorRT). Two-year CNS relapse risk, overall survival (OS), and disease-free survival (DFS) were calculated using Kaplan-Meier analysis. Seven patients experienced post-transplant CNS relapse: 4 in the CNS-/CB- group, 2 in the CNS+/CB- group, and 1 in the CNS + PriorRT group. None of the 30 patients who received a CB relapsed in the CNS. Two-year CNS relapse risk was 0% in the CNS+/CB+ group compared with 21% (95% CI, 0% to 45%) in the CNS+/CB- group (P = .03). Two-year OS and DFS did not differ between the groups. In conclusion, among ALL patients with prior CNS leukemia, there was a trend toward a reduced risk of post-transplant CNS relapse in patients who received a CB. However, the addition of a CB did not appear to have an impact on OS or DFS. Copyright © 2017 The American Society for

  2. Four cases of protracted whole body irradiation (Algerian accident 1978)

    International Nuclear Information System (INIS)

    Jammet, H.; Gongora, R.; Pouillart, P.; Le Go, R.; Parmentier, N.

    1979-01-01

    A 25 Ci iridium-192 source accidentally lost was introduced in a room where among others four young female patients (14 - 20 years old) one of them pregnant were irradiated during 4/5 weeks, 6/8 hours daily, cumulating skin doses in the range of 2500r and mean medullary doses in the range of 1250r. They developed a very protracted infections and haemorragic syndrome during which they were treated successfully by haematologic compensatory therapy with enormous quantities of packed isolated blood cells (R.B.C., W.B.C., platelets) and massive antibiotic, antimycotic and hydro-electrolytic therapy. The dosimetric (physical and biological) problems are discussed and the clinical and biological data are given in detail

  3. Role of lower half body irradiation (LHBI) in palliative treatment of disseminated skeletal metastases

    International Nuclear Information System (INIS)

    Vyas, R.K.; Baboo, H.A.; Suresh, P.

    1993-01-01

    Half body irradiation (HBI) is a new and simple approach for palliative radiotherapy of disseminated skeletal metastasis. It has very good palliative effect with manageable side effects when given as low dose rate treatment. 15 patients with wide spread bony secondaries were treated with Lower Half body Irradiation (LHBI) at a dose rate of 80-90 c Gy/min at our institute. Pain relief was observed in all patients. Of these 50% cases had significant relief of pain. Performance status improved and dependence on analgesic drugs had also reduced. (author). 6 refs., 3 tabs

  4. Radiation nephritis following total-body irradiation and cyclophosphamide in preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Bergstein, J.; Andreoli, S.P.; Provisor, A.J.; Yum, M.

    1986-01-01

    Two children prepared for bone marrow transplantation with total-body irradiation and cyclophosphamide developed hypertension, microscopic hematuria, proteinuria, diminished renal function, and anemia six months after transplantation. Light microscopy of the kidneys revealed mesangial expansion, glomerular capillary wall thickening, and lumenal thrombosis. Electron microscopy demonstrated widening of the subendothelial space due to the deposition of amorphous fluffy material. In one patient, immunofluorescence microscopy revealed glomerular capillary wall deposition of fibrin and immunoglobulins. The clinical and histologic findings support the diagnosis of radiation nephritis. Patients prepared for bone marrow transplantation with total-body irradiation and cyclophosphamide should be followed closely after transplantation for the development of hypertension, proteinuria, and renal insufficiency

  5. Unfractionated heparin after TBI reduces in vivo cerebrovascular inflammation, brain edema and accelerates cognitive recovery.

    Science.gov (United States)

    Nagata, Katsuhiro; Kumasaka, Kenichiro; Browne, Kevin D; Li, Shengjie; St-Pierre, Jesse; Cognetti, John; Marks, Joshua; Johnson, Victoria E; Smith, Douglas H; Pascual, Jose L

    2016-12-01

    Severe traumatic brain injury (TBI) may increase the risk of venous thromboembolic complications; however, early prevention with heparinoids is often withheld for its anticoagulant effect. New evidence suggests low molecular weight heparin reduces cerebral edema and improves neurological recovery after stroke and TBI, through blunting of cerebral leukocyte (LEU) recruitment. It remains unknown if unfractionated heparin (UFH) similarly affects brain inflammation and neurological recovery post-TBI. We hypothesized that UFH after TBI reduces cerebral edema by reducing LEU-mediated inflammation and improves neurological recovery. CD1 male mice underwent either TBI by controlled cortical impact (CCI) or sham craniotomy. UFH (75 U/kg or 225 U/kg) or vehicle (VEH, 0.9% saline) was administered 2, 11, 20, 27, and 34 hours after TBI. At 48 hours, pial intravital microscopy through a craniotomy was used to visualize live brain LEUs interacting with endothelium and microvascular fluorescein isothiocyanate-albumin leakage. Neurologic function (Garcia Neurological Test, GNT) and body weight loss ratios were evaluated 24 and 48 hours after TBI. Cerebral and lung wet-to-dry ratios were evaluated post mortem. ANOVA with Bonferroni correction was used to determine significance (p < 0.05). Compared to positive controls (CCI), both UFH doses reduced post-TBI in vivo LEU rolling on endothelium, concurrent cerebrovascular albumin leakage, and ipsilateral cerebral water content after TBI. Additionally, only low dose UFH (75 U/kg) improved GNT at both 24 and 48 hours after TBI. High dose UFH (225 U/kg) significantly increased body weight loss above sham at 48 hours. Differences in lung water content and blood pressure between groups were not significant. UFH after TBI reduces LEU recruitment, microvascular permeability, and brain edema to injured brain. Lower UFH doses concurrently improve neurological recovery whereas higher UFH may worsen functional recovery. Further study is needed to

  6. Fluid and sodium loss in whole-body-irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1987-09-01

    Whole-body and organ fluid compartment sizes and plasma sodium concentrations were measured in conventional, GI decontaminated, bile duct ligated, and choledochostomized rats at different times after various doses of gamma radiation. In addition, sodium excretion was measured in rats receiving lethal intestinal radiation injury. After doses which were sublethal for 3-5 day intestinal death, transient decreases occurred in all the fluid compartments measured (i.e., total body water, extracellular fluid space, plasma volume). No recovery of these fluid compartments was observed in rats destined to die from intestinal radiation injury. The magnitude of the decreases in fluid compartment sizes was dose dependent and correlated temporally with the breakdown and recovery of the intestinal mucosa but was independent of the presence or absence of enteric bacteria or bile acids. Associated with the loss of fluid was an excess excretion of 0.83 meq of sodium between 48 and 84 h postirradiation. This represents approximately 60% of the sodium lost from the extracellular fluid space in these animals during this time. The remaining extracellular sodium loss was due to redistribution of sodium to other spaces. It is concluded that radiation-induced breakdown of the intestinal mucosa results in lethal losses of fluid and sodium as evidenced by significant decreases in total body water, extracellular fluid space, plasma volume, and plasma sodium concentration, with hemoconcentration. These changes are sufficient to reduce tissue perfusion leading to irreversible hypovolemic shock and death.

  7. Melatonin, a potential effective protector in whole body γ-irradiated rats

    International Nuclear Information System (INIS)

    Tawfik, S.S; El-Nashar, D.E; Ahmed, M.M; Hanafy, Z.E

    2010-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), the chief hormone of pineal gland, is widely distributed in animal kingdom. It is claimed for its antioxidant and free radical properties. The present study aimed to examine the radio protective potentiality and efficacy of melatonin against damages induced in whole body γ-irradiated rats. Animals received melatonin (10 mg/ kg body wt/ day) for 10 successive days pre-exposure to 3 Gy of γ-radiation (acute dose). Rats sacrificed at 10 and 20 days post the irradiation time. The results revealed that the prolonged administration of melatonin has ameliorated the radiation- induced depletion in brain, testis and serum glutathione (GSH) level and a decrease in serum glutathione peroxidase (GPX) activity when compared with their matched values in irradiated rats. In addition, remarkable decreases in the concentration of lipid peroxidation (LPO) product; malondialdhyde (MDA) was observed in brain, testis and serum of rats received melatonin pre-radiation exposure. As well as, significant decreases in disulphide glutathione (GSSG) were observed in serum.Histopathological examination of brain and testis showed that administration of melatonin pre-irradiation according to the present regimen has attenuated radiation induced tissue damages and improved tissue architecture. Cytogenetically, the chromosomal aberration (CA) assay in bone marrow pointed out a significant difference between rats received melatonin pre-irradiation and γ-irradiated rats in most CA types. Accordingly, it could be postulated the tissue diversity and cytogenetic impact of the administrated melatonin against acute ion syndrome in rat model.

  8. Acute effects of whole body gamma irradiation on exocrine pancreatic secretion in the pig

    International Nuclear Information System (INIS)

    Monti, P.; Scanff, P.; Joubert, C.; Vergnet, M.; Grison, S.; Griffiths, N.

    2004-01-01

    Reports on radiation damage to the pancreas deal essentially with long-term morphological changes with few data on pancreatic exocrine function. The aim of this work was to study the acute effects of whole body irradiation on volume and enzyme activities in the pancreatic juice. A whole body gamma irradiation (6 Gy) was investigated in pigs with continuous sampling of pancreatic juice before and after exposure via an indwelling catheter in the pancreatic duct. For each sample collected, total protein concentration and enzyme activities of trypsin, chymotrypsin, elastase, lipase and amylase were determined. Pancreatic juice volume was monitored during all periods of collection. The volume of pancreatic juice secreted daily decreased one day after irradiation and remained lower than the control values over the experimental period. Total proteins secreted in the pancreatic juice and total activities of pancreatic enzymes were reduced similarly. On the other hand, only specific activities of elastase and lipase were affected by irradiation. Whole body gamma irradiation resulted in a rapid and marked decrease of exocrine pancreatic secretion, in terms of volume as well as secreted enzymes. This may contribute in part to the intestinal manifestations of the acute and/or late radiation syndrome. (author)

  9. The effect of total-body γ-irradiation on pigeons

    International Nuclear Information System (INIS)

    Gadhia, P.K.; Shah, V.C.; Desai, R.

    1979-01-01

    A study of the effects of total-body 60 Coγ radiation (200 to 2000 rad) on the common pigeon (Columba livia) has indicated a LD 50/30 of 950 +- 50 rad. There were no deaths before 6 days and the peak frequency in average deaths occurred 9 days after irradiation. Most of the birds showed small changes in activity or behaviour in the first five days. A histopathological study was made of femoral bone marrow from irradiated (1000 rad) pigeons sacrificed 1 to 18 days post-irradiation. Slight aplasia was observed on the first day after irradiation, moderately marked on the third day and extensive on the fourth and fifth days. At the end of the second week regeneration was observed as the primitive lymphocyte-like cells were differentiating into granulocytes and erythrocytes. (UK)

  10. Clinical aspects of accidents resulting in acute total body irradiation

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1988-01-01

    That the management of whole body radiation injury involves: (1) watchful waiting, (2) observation of the hematologic parameters, (3) use of antibiotics, platelet red cell and possibly granulocyte transfusions, (4) administration of hemopoietic molecular regulators of granulopoiesis, and (5) bone marrow transplantation as the last line of defense. The clinical indication for the preceding will not be discussed, since this will be a subject of later speakers in this conference. Certainly, if a radiation casualty is fortunate enough to have an identical twin, a marrow transplant may be lifesaving and certainly can do no harm to the patient, and there is little risk to the donor

  11. Clinical aspects of accidents resulting in acute total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E.P.

    1988-01-01

    That the management of whole body radiation injury involves: (1) watchful waiting, (2) observation of the hematologic parameters, (3) use of antibiotics, platelet red cell and possibly granulocyte transfusions, (4) administration of hemopoietic molecular regulators of granulopoiesis, and (5) bone marrow transplantation as the last line of defense. The clinical indication for the preceding will not be discussed, since this will be a subject of later speakers in this conference. Certainly, if a radiation casualty is fortunate enough to have an identical twin, a marrow transplant may be lifesaving and certainly can do no harm to the patient, and there is little risk to the donor.

  12. Effect of Hippophae leaves on neurotransmitters and hematological parameters in whole body irradiated rats

    International Nuclear Information System (INIS)

    Gupta, Vanita; Prasad, Jagdish; Madhu Bala

    2012-01-01

    Till date no approved radio-protective agent is available world over. WR-2721 had severe side effects and was behaviourally toxic even at sub-lethal doses of ionizing radiation. Seabuckthorn (Hippophae rhamnoides L.) is known for its nutraceutical and therapeutic values. Our studies demonstrated that treatment with leaves of H. rhamnoides rendered > 90% whole body radioprotection in 60 Co-g-irradiated (10 Gy) mice population in comparison to 100% death in non-Hippophae treated irradiated (10 Gy) mice population. Our studies also demonstrated that treatment with leaves of H. rhamnoides prevented conditioned taste aversion (CTA) in irradiated (2 Gy) Sprague-Dawley rats. The present study was planned to evaluate the effects of aqueous extract of Hippophae leaves on changes in levels of neurotransmitters ((acetylcholine esterase (AChE) and dopamine (DA)) in plasma and brain, haematological parameters in blood/plasma; and brain histology in Sprague-Dawley rats showing CTA after 60 Co-g-irradiation (2 Gy). The results showed that whole body 60 Co-g-irradiation (2 Gy) (i) increased the levels of Ach, Eepinephrine (E) and norepinephrine (NE); oxidative stress (MDA and NO), and (ii) decreased the levels of DA; WBC counts and RBC counts and antioxidants (GSH), in comparison to untreated control. Treatment with 12 mg/kg b.w. drug concentration, prior to irradiation significantly (p<0.05) (i) decreased the levels of AChE, E and NE, and MDA and NO levels in plasma and brain, and (ii) increased the WBC counts; RBC counts and levels of antioxidants (GSH), in comparison to radiation control group. Histological changes in brain were also recorded. The results demonstrated that Hippophae leaves extract had neuro-protective and reduced oxidative stress in brain of whole body irradiated mice and could be, thereby contributing to behavioural protection. (author)

  13. Effects of whole body UV-irradiation on oxygen delivery from the erythrocyte

    International Nuclear Information System (INIS)

    Humpeler, E.; Mairbaeurl, H.; Hoenigsmann, H.

    1982-01-01

    In 16 healthy caucasian volunteers (mean age: 22.2 years) the influence of whole body UV-irradiation on the oxygen transport properties of erythrocytes was investigated. Four hours after irradiation with UV (using the minimal erythema dose, MED) no variation of haemoglobin concentration, hematocrit, mean corpuscular haemoglobin concentration, pH or standard bicarbonate could be found, whereas inorganic plasma phosphate (Psub(i)), calcium, the intraerythrocytic 2,3-diphosphoglycerate (2,3-DPG), the activity of erythrocytic phosphofructokinase (PFK) and pyruvatekinase (PK) increased significantly. The half saturation tension of oxygen (P 50 -value) tended to increase. The increase of Psub(i) causes - via a stimulation of the glycolytic pathway - an increase in 2,3-DPG concentration and thus results in a shift of the oxygen dissociation curve. It is therefore possible to enhance tissue oxygenation by whole body UV-irradiation. (orig.)

  14. Blood changes in humans following total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cantril, S.T.; Jacobson, L.O.; Schwartz, S.; Nickson, J.J.

    1947-06-02

    A major problem encountered in the Manhattan Project was the protection of workers against damage resulting from acute or chronic exposure to external radiation. The problem of how to detect evidence of damage following exposure to total body radiation led to this study. These studies were conducted between January, 1942 and November, 1945. Three groups of persons were employed in this study. The first group of eight individuals harboring incurable neoplasms which was not extensive enough to influence general health, these patients were treated with 400 KV x-radiation while sitting in a wooden chair, doses were 27, 60, and 120r. Three persons having generalized illnesses chronic in nature were given total body radiation using 200 KV X-rays in multiple exposures totaling 100, 300, and 500r. A third group of normal volunteers from personnel of the Metallurgical Laboratory were treated with 200 KV x-rays in three divided doses totaling 21 r. Changes in peripheral blood in the fourteen individuals is reported. In group 1 the most persistent abnormality noted was a diminution in the number of lymphocytes after completion of the treatment. In group 2 a depression in the lymphocytes was also the most marked single change. In group 3 no alterations in peripheral blood was observed.

  15. Dosimetry for total body irradiation of rhesus monkeys with 300 kV X- rays

    NARCIS (Netherlands)

    Zoetelief, J.; Wagemaker, G.; Broerse, J.J.

    1998-01-01

    Purpose: To obtain more accurate information on the dose distribution in rhesus monkeys for total body irradiation with orthovoltage X-rays. Materials and methods: Dose measurements were performed with an ionization chamber inside homogeneous cylindrical and rectangular phantoms of various

  16. Modelling and validation for total body irradiation using a 3D planning system

    International Nuclear Information System (INIS)

    Bhat, Madhav; Bezak, Eva; Nicolls, Ralph; Byas, Kurt; Nixon, Rogr

    2001-01-01

    Pinnacle treatment planning system has been successfully commissioned for total body irradiation and will be used for patient treatments in near future. The actual dose delivered to patients will be monitored with TLDs and diode array and the agreement with the prescribed dose will be further investigated

  17. Development of fibrosis in dogs as a late consequence of whole-body X-irradiation

    International Nuclear Information System (INIS)

    Calvo, W.; Fliedner, T.M.; Steinbach, I.; Alcober, V.; Nothdurft, W.; Fache, I.

    1978-01-01

    Dogs wre whole-body irradiated with a single mid-line dose of 1200 R at 300 kV. This high dose will kill non-treated animals within a few days. To save these animals, leukocytes were previously collected during a four-hour leukapheresis using a continuous-flow centrifuge and were stored under liquid nitrogen. Shortly after the whole-body irradiation each dog received its own cryopreserved cells thawed immediately beforehand. The dogs received between 0.32x10 9 and 1.63x10 9 mononuclear blood cells per kilogram of body weight. The number of colony-forming cells contained in the transfusate ranged between 0.19x10 5 and 1.38x10 5 per kilogram of body weight. This blood stem transfusion, together with general supportive therapy, enabled the dogs to overcome the acute radiation syndrome and to recover. The dogs were subsequently sacrificed in two groups after observation for about 260 days or 700-898 days respectively. Pathological findings are described. A particular situation existed in the marrow, whre non-irradiated stem cells had colonized bone cavities containing irradiated stroma. Progressive fibrosis developed in the endosteal areas of the bone cavities in most of the animals. (author)

  18. Mitochondrial monoaminoxidase activity and serotonin content in rat brain after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Savitskij, I.V.; Tsybul'skij, V.V.; Grivtsev, B.A.

    1985-01-01

    It is shown that γ-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. These is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter

  19. Whole-body irradiation technique: physical aspects; Tecnica de irradiacion corporal total: aspectos fisicos

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Bustos, S.; Zunino, S. [Instituto Privado de Radioterapia. Obispo Oro 425. Cordoba 5000 (Argentina)

    1998-12-31

    The objective of this work has been to implement a Total body irradiation technique that fulfill the following conditions: simplicity, repeatability, fast and comfortable positioning for the patient, homogeneity of the dose between 10-15 %, short times of treatments and In vivo dosimetric verifications. (Author)

  20. Optimizing Outcome Assessment in Multicenter TBI Trials: Perspectives From TRACK-TBI and the TBI Endpoints Development Initiative.

    Science.gov (United States)

    Bodien, Yelena G; McCrea, Michael; Dikmen, Sureyya; Temkin, Nancy; Boase, Kim; Machamer, Joan; Taylor, Sabrina R; Sherer, Mark; Levin, Harvey; Kramer, Joel H; Corrigan, John D; McAllister, Thomas W; Whyte, John; Manley, Geoffrey T; Giacino, Joseph T

    2018-01-30

    Traumatic brain injury (TBI) is a global public health problem that affects the long-term cognitive, physical, and psychological health of patients, while also having a major impact on family and caregivers. In stark contrast to the effective trials that have been conducted in other neurological diseases, nearly 30 studies of interventions employed during acute hospital care for TBI have failed to identify treatments that improve outcome. Many factors may confound the ability to detect true and meaningful treatment effects. One promising area for improving the precision of intervention studies is to optimize the validity of the outcome assessment battery by using well-designed tools and data collection strategies to reduce variability in the outcome data. The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, conducted at 18 sites across the United States, implemented a multidimensional outcome assessment battery with 22 measures aimed at characterizing TBI outcome up to 1 year postinjury. In parallel, through the TBI Endpoints Development (TED) Initiative, federal agencies and investigators have partnered to identify the most valid, reliable, and sensitive outcome assessments for TBI. Here, we present lessons learned from the TRACK-TBI and TED initiatives aimed at optimizing the validity of outcome assessment in TBI.

  1. Reflective inserts to reduce heat strain in body armor: tests with and without irradiance.

    Science.gov (United States)

    Cadarette, Bruce S; Santee, William R; Robinson, Scott B; Sawka, Michael N

    2007-08-01

    This study evaluated adding reflective thermal inserts (RTI) to reduce the physiological strain during exercise-heat stress with a radiant load. RTI were used with a U.S. Army desert battle dress uniform, body armor, and helmet. Four male volunteers attempted four trials (10 min rest followed by 100 min walking at 1.56 m x s(-1)). All trials were at 40.0 degrees C dry bulb (Tdb), 12.4 degrees C dew point (Tdp), 20% RH, and 1.0 m x s(-1) wind speed. On 2 d, there was supplementary irradiance (+1) with globe temperature (Tbg) = 56.5 degrees C and on 2 d there was no supplementary irradiance (-I) with Tbg approximately Tdb. Trial conditions were: 1) RTI and armor with supplementary irradiance (RA+I); 2) plain armor with supplementary irradiance (PA+I); 3) RTI and armor with no supplementary irradiance (RA-I); and 4) plain armor with no supplementary irradiance (PA-I). Endurance times were not significantly different among trials. With one exception, armor and helmet interior and exterior surface temperatures were not significantly different between either RA+I and PA+I or RA-I and PA-I. Temperature on the inside of the helmet in RA+I (47.1 +/- 1.4 degrees C) was significantly lower than in PA+I (49.5 +/- 2.6 degrees C). There were no differences for any physiological measure (core temperature, heart rate, mean weighted skin temperature, forehead skin temperature, sweating rate, evaporative cooling, rate of heat storage) between either RA+I and PA+L or RA-I and PA-I. Results showed no evidence that wearing RTI with body armor and helmet reduces physiological strain during exercise-heat stress with either high or low irradiance.

  2. Study of food intake dynamics in rats following acute whole-body irradiation with X rays

    International Nuclear Information System (INIS)

    Smajda, B.; Ahlers, I.; Datelinka, I.

    1987-01-01

    The effects were studied of whole-body X-irradiation with sublethal (2.39 Gy) and medium lethal (5.74 Gy) doses on food intake by rats. The lower dose caused a temporary decrease in food intake, with a minimum of 63.3% of the control level on the 2nd day after irradiation. The decrease was statistically significant up to the 4th day after irradiation. No substantial changes were observed in the parameters of the circadian rhythm in food intake with the maximum on the 3rd day after irradiation, with only 8% of the initial value. The food intake was reduced until the 9th day after irradiation. The daily thythm of food intake was strongly disturbed during the first three days after irradiation, then restoring gradually and on the 9th day showing the original phasing and shape. The results obtained were in agreement with the assumed neural regulation mechanism of food intake and its circadian rhythm in the rat. (author). 5 figs., 12 refs

  3. Excellent outcome of allogeneic hematopoietic stem cell transplantation using a conditioning regimen with medium-dose VP-16, cyclophosphamide and total-body irradiation for adult patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Shigematsu, Akio; Kondo, Takeshi; Yamamoto, Satoshi; Sugita, Junichi; Onozawa, Masahiro; Kahata, Kaoru; Endo, Tomoyuki; Shiratori, Soichi; Ota, Shuichi; Obara, Masato; Wakasa, Kentaro; Takahata, Mutsumi; Takeda, Yukari; Tanaka, Junji; Hashino, Satoshi; Nishio, Mitsufumi; Koike, Takao; Asaka, Masahiro; Imamura, Masahiro

    2008-05-01

    We retrospectively evaluated the outcomes of 37 adult patients with acute lymphoblastic leukemia (ALL) undergoing allogeneic hematopoietic stem cell transplantation (allo-SCT) conditioned with medium-dose VP-16 (VP, 30 mg/kg), cyclophosphamide (CY, 120 mg/kg), and fractionated total-body irradiation (TBI, 12 Gy) (medium-dose VP/CY/TBI). The median age of the patients was 26 years. Thirteen patients underwent transplantation from HLA-matched related donors (MRD), 18 patients underwent transplantation from HLA-matched unrelated donors (MUD), and 6 patients underwent transplantation from HLA-mismatched donors (MMD). Thirty-two patients received bone marrow and 4 patients received peripheral blood stem cells. Ten patients were Philadelphia chromosome-positive (Ph(+)) and 35 patients were in complete remission (CR) at transplantation. All of the patients achieved engraftment, and grade 3 organ toxicity before engraftment occurred in 27 patients. Grade II-III acute graft-versus-host disease (GVHD) and chronic GVHD (cGVHD) occurred in 15 and 18 patients, respectively. No patient developed grade IV acute GVHD (aGVHD) or died of GVHD. At median follow-up of 35.1 months, 32 patients were alive and all Ph(+) patients were alive. Three patients died of relapse and 2 died of transplant-related mortality (TRM). The actuarial 3-year overall survival (OS) rate, relapse rate, and TRM rate were 89.2%, 8.1%, and 5.4%, respectively. Non-CR at transplantation, MRD, and no aGVHD were significant adverse prognostic factors for survival. Medium-dose VP/CY/TBI for adult ALL patients was associated with lower relapse rate and no increase in toxicity, resulting in better survival.

  4. Effects of whole-body irradiation on neonatally thymectomized mice. Incidence of benign and malignant tumors

    International Nuclear Information System (INIS)

    Anderson, R.E.; Howarth, J.L.; Troup, G.M.

    1978-01-01

    The individual and combined effects of neonatal thymectomy and whole-body irradiation on the prevalence of benign and malignant tumors in germ-free female mice of the Charles Rivers line were studied to determine if a portion of the tumorigenic effects of irradiation can be attributed to injury of the thymic-dependent component of the immune response. Neonatal thymectomy increased (a) the incidence of benign and malignant tumors and (b) the prevalence of multiple primary neoplasms in an individual mouse. Whole-body exposure to 700 rad at 6 weeks of age further increased the incidence of tumors, but the relative magnitude of this increase was less pronounced than in sham-operated controls. Thus, the cumulative effects of thymectomy plus irradiation are less pronounced than the sum of the individual effects. One of several possible explanations for this observation is that a portion of the carcinogenic effects of whole-body irradiation is mediated by suppression of the thymic-dependent component of the immune response

  5. Low Dietary Protein Status Potentiating Risk of Health Hazard in Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    El-Gawish, M.A.M.; Yousri, R.M.; Roushdy, H.M.; Abdel-Reheem, K.A.; Al-Mossallamy, N.A.

    1998-01-01

    Investigations were planned to assess the changes in certain biochemical parameters as affected by the synergistic effect of exposure to fractionated doses of rays and / or feeding on different protein levels. The date showed that animals kept on normal or low protein diet exhibited a significant decrease in serum total protein and glucose. Also , a significant increase was recorded in insulin level in rats exposed at the radiation dose level of 20 Gy. Exposure to cumulative doses of irradiation has aggrevated the hyperglycemic effect of high protein diet with a significant and marked increase of insulin at all the applied doses. Animals fed normal high or low protein diet were found to exert significant decreases in T3, T4 while a significant increase in TSH of high protein group occurred as a result of exposure to cumulative doses of gamma-irradiation. Rats kept on low protein diet exhibited losses in body weight, hypercholesterolemia, low levels of phospholipids and triglycerides as compared with the normal protein diet group. In contrast high protein diet group showed no serious effects. Irradiation has potentiated body weight losses, hypotriglyceridemia and hypercholesterolemia in animal group fed low protein diet with a significant increase in serum phospholipids due to the higher radiation dose of 20 Gy. Protein deficiency acted synergistically with gamma irradiation and increased the susceptibility of body organs to radiation damage. Such findings contributed to the knowledge which stimulated the decrease of the internationally recognized occupational dose limits from 50 down to 20 m Sv (ICRP 1991)

  6. Radiological protection in a patient during a total body irradiation procedure

    International Nuclear Information System (INIS)

    Hernandez O, J. O.; Hinojosa G, J.; Gomez M, E.; Balam de la Vega, J. A.; Deheza V, J. C.

    2010-09-01

    A technique used in the Service of Radiotherapy of the Cancer Center of the American British Cowdray Medical Center (ABC) for the bone marrow transplantation, is the total body irradiation. It is known that the dose calculation, for this irradiation type, is old, since the dosimetric calculation is carried out by hand and they exist infinity of techniques for the patients irradiation and different forms of protecting organs of risk, as well as a great uncertainty in the given dose. In the Cancer Center of the ABC Medical Center, was carried out an irradiation procedure to total body with the following methodology: Computerized tomography of the patient total body (two vacuum mattresses in the following positions: dorsal and lateral decubitus), where is combined the two treatment techniques anterior-posterior and bilateral, skin delineate and reference volumes, dose calculation with the planning system Xi O of CMS, dose determination using an ionization chamber and a lung phantom IMRT Thorax Phantom of the mark CIRS and dosimetry in vivo. In this work is presented the used treatment technique, the results, statistics and the actualization of the patient clinical state. (Author)

  7. Thymic nurse cells and thymic repopulation after whole body sublethal irradiation in mice

    International Nuclear Information System (INIS)

    Houben-Defresne, M.P.; Varlet, A.; Boniver, J.

    1984-01-01

    Thymic Nurse Cells (TNCs) are lymphoepithelial complexes which are thought to play a role in the early stages of the intrathymic differentiation pathway. Their repopulation kinetics were analyzed in mice after sublethal whole-body irradiation. Changes of the number of TNCs per thymus were parallel with the evolution of the whole thymocyte population. Particularly, a first wave of TNCs restoration was followed by a secondary depletion and a final recovery. This suggests that TNCs restoration is related to the proliferating progeny of intrathymic radioresistant thymocytes. When normal bone marrow cells were grafted intravenously after irradiation, no secondary depletion was found. This pattern of restoration was obviously related to thymic repopulation by cells which were derived from the inoculated bone marrow. Homing studies with FITC labelled bone marrow cells showed that inoculated bone marrow cells did not penetrate TNCs early after irradiation. Later on, when immigrant cells started to proliferate, they were found preferentially within TNCs before spreading in the whole thymus. (Auth.)

  8. Effects of gamma irradiation on protocorm-like bodies of cattleya alliances

    International Nuclear Information System (INIS)

    Thammasiri, K.

    1996-01-01

    Induced mutations by gamma irradiation can be one of the promising methods for orchid breeding. Protocorm - like bodies (PLBs) of Brassolaeliocattleya (Blc.) Alma kee and Blc. Greenwich were established from in vitro apical and axillary buds of young shoots in Vacin and Went (1949) liquid medium supplemented with 150 ml/l coconut water. PLBs were irradiated with gamma rays at 0, 20, 60, 80, 110 and 130 Gray (Gy). Doses between 80 and 110 Gy were suitable to apply for induced mutations in both cultivars. Another experiment with more samples was conducted. Gamma rays were applied at 0, 70, 100 and 130 Gy. The results showed that irradiated PLBs of both cultivars had slow growth rate and some PLBs turned brown and died. A dose of 70 Gy was suitable for induced mutation. More severe effects were observed when higher doses had been applied

  9. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    International Nuclear Information System (INIS)

    Ashry, H.A.; Selim, N.S.; El-Behay, A.Z.

    1994-01-01

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 γ-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the α- and β-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results. (Author)

  10. Sesamol attenuates cytogenetic damages in bone marrow cells of whole body gamma irradiated mice

    International Nuclear Information System (INIS)

    Kumar, Arun; Tamizh Selvan, G.; Adhikari, Jawahar S.; Chaudhury, N.K.

    2014-01-01

    Whole body radiation exposure cause damages to all vital organs and bone marrow is the most sensitive. Pre-treatment with antioxidant as single prophylactic dose is expected to lower induction of damages in bone marrow. In the present study we have focused on sesamol, a dietary antioxidant mediated radioprotection in bone marrow cells of gamma irradiated mice and compared with melatonin. Male C57BL/6 mice were intraperitoneally administered with sesamol (10 and 20 mg/kg body) and after 30 minutes exposed to whole body gamma radiation using 60 Co Teletherapy unit. Mice were injected with 0.2 ml of a metaphase arresting agent (0.05% colchicine) intra-peritoneally 3 hours prior to sacrifice (24 hrs. post-irradiation). Bone marrow cells were flushed out from femurs of each animal and processed for chromosomal aberration assay. Another set of experiment without colchicine injection was performed to access the DNA damage in bone marrow using alkaline comet assay. At least 100 metaphases per animal were scored under light microscope to record various aberrations and total chromosomal aberrations (TCA) was calculated. Similar measurements were performed with melatonin for comparing the efficacy of sesamol. Gamma irradiation has increased the chromatid type aberrations (break formation, fragment) and chromosomal type aberrations (ring formation, acentric) in bone marrow cells. The results have shown significant (p< 0.001) increase in TCA of irradiated mice than control. While pre-treatment of sesamol and melatonin 10 mg/kg significantly (p<0.05) reduced the TCA. The extend of protection has increased at 20 mg/kg significantly (p<0.001) as evident from the reduced TCA compared to irradiated group. Interestingly, sesamol and melatonin have shown similar extent of reduction of TCA. Thus sesamol has demonstrated strong ability to protect bone marrow at low dosage. These investigations on sesamol mediated protection in bone marrow are likely to benefit development of

  11. Antibiotic radioprotection of mice exposed to supralethal whole-body irradiation independent of antibacterial activity

    International Nuclear Information System (INIS)

    Mastromarino, A.; Wilson, R.

    1976-01-01

    Oral administration of streptomycin, kanamycin, neomycin, or gentamicin to specific pathogen-free C57 x Af mice in their drinking water (4 mg/ml) for 2 weeks before supralethal whole-body irradiation very significantly prolonged their mean survival times (8.2 to 8.9 days vs 6.9 for controls) to values which exceed those reported for germ-free mice (7.3 days). The total fecal concentrations of aerobes and anaerobes were reduced by kanamycin, neomycin, and gentamicin. Streptomycin reduced the anaerobes significantly, but not the aerobes. Unlike germ-free mice, these antibiotic-treated mice did excrete free bile acids, products of bacterial action. Oral antibiotic treatment was ineffective in altering the transit time of the intestinal mucosal cells. Previously reported studies had indicated a correlation between decreased transit time and increased survival after irradiation. No significant correlation between mean survival time after irradiation and mucosal transit time was observed. The data demonstrate that certain antibiotics alter the character of the intestinal bacterial flora and increase protection against supralethal doses of whole-body irradiation. It is concluded that the mechanisms of radioresistance in antibiotic-treated mice and germ-free mice are different and that in both groups radioresistance is the result of more than elimination of postirradiation infection

  12. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    International Nuclear Information System (INIS)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-01-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood

  13. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  14. Expression of IL-1{beta} mRNA in mice after whole body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kumie; Ishihara, Hiroshi; Tanaka, Izumi; Suzuki, Gen; Tsuneoka, Kazuko; Yoshida, Kazuko; Ohtsu, Hiroshi [National Inst. of Radiological Sciences, Chiba (Japan)

    1995-06-01

    IL-1{beta} is a stimulator of hematopoietic and inflammatory systems, and also acts as a radioprotector. After whole-body exposure to sublethal doses of ionizing radiation, the IL-1{beta} mRNA level in spleen cells increases for a short time prior to regeneration of the spleen. We analyzed spleen cells of C3H/He mice after whole-body irradiation with 3 Gy x-rays to determine the cause of this short-term increase in the transcription level. An increase in the level of the message in spleen cells, found by Northern blot hybridization, reached its peak 5 to 7 days after irradiation. There was a low correlation between the curves of the mRNA level and the ratio of monocyte/macrophage lineage cells; a typical source of the message. Spleen macrophages that produce a large amount of the message were found 7 days after irradiation in an in situ hybridization experiment in which heterogeneous spleen cell populations were used. In contrast, spleen cells had no detectable levels of macrophages rich in IL-1{beta} mRNA before and 17 days after irradiation. Additionally, the population of message-rich cells was 9.4% of the total number of monocytes/macrophages in the spleen. These results suggest that the short-term increase in IL-1{beta} mRNA is a result of the heterogeneous differentiation of a subpopulation of spleen macrophages before regeneration of the spleen. (author).

  15. Modulator Effect of Turmeric on Oxidative Damage in Whole Body Gamma Irradiated rats

    International Nuclear Information System (INIS)

    Amin, H.H.; Abdou, M.I.

    2012-01-01

    Because of its penetrating power and its ability to travel great distances, gamma rays are considered the primary hazard to the population during most radiological emergencies. So, there is a need to develop medical countermeasures to protect the first responders and remediation workers from biomedical effect of ionizing radiation. Turmeric has been reported to have many beneficial health effects, including a strong anti-oxidant effect, anti-inflammatory and anti-microbial properties. In the present study, turmeric was investigated as a therapeutic agent against hazards induced by ionizing radiation on kidney, liver, urinary and serum calcium levels and blood counts. A daily dose of 0.5 g/kg body weight was used in whole body gamma irradiated female rats with 3 Gy. Radiation effects were followed up for four weeks post irradiation. The results revealed that the administration of turmeric post-irradiation resulted in a significant inhibition in the frequency of radiation induced oxidative damage. It could be concluded that definite turmeric dose exerts a vital modulator role against gamma irradiation hazard

  16. Hyperfractionated total body irradiation for bone marrow transplantation: early results in leukemia patients

    International Nuclear Information System (INIS)

    Shank, B.; Hopfan, S.; Kim, J.H.

    1981-01-01

    Bone marrow transplantation following cytoreduction with total body irradiation and cyclophosphamide has previously been shown to be of value in treating refractory leukemias. Major problems, however, have been fatal interstitial pneumonitis and leukemic relapse. In an attempt to minimize these problems, we initiated a new hyperfractionated regimen for total body irradiation, with partial lung sparing. From May 1979 through July 1980, we treated 48 leukemia patients according to this regimen, varying in age from 1.5 to 42 years old (mean age: 18 y). Analysis in September 1980, with follow-up from 2 to 16 months, showed that we have a significantly reduced incidence of interstitial pneumonitis compared with single dose (1000 rad) irradiation (33 vs 70%), as well as decreased deaths attributable to interstitial pneumonitis (23 vs 50%). This is reflected in the survival curves, with loss of the early drop in survival previously observed with single dose irradiation. One year actuarial survival was 65% for acute lymphocytic leukemia (n = 16) and 72% for actue non-lymphocytic leukemia (n = 29). This compares with only 17% for acute non-lymphocytic leukemia patients (n = 12) on our previous single dose regimen. Age was also found to be an important parameter for both survival and interstitial pneumonitis

  17. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Li, Zhiguo [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Department of Immunology, Duke University Medical Center, Durham, North Carolina (United States); Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Chen, Benny J., E-mail: chen0032@mc.duke.edu [Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States)

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  18. DNA damage focus analysis in blood samples of minipigs reveals acute partial body irradiation.

    Directory of Open Access Journals (Sweden)

    Andreas Lamkowski

    Full Text Available Radiation accidents frequently involve acute high dose partial body irradiation leading to victims with radiation sickness and cutaneous radiation syndrome that implements radiation-induced cell death. Cells that are not lethally hit seek to repair ionizing radiation (IR induced damage, albeit at the expense of an increased risk of mutation and tumor formation due to misrepair of IR-induced DNA double strand breaks (DSBs. The response to DNA damage includes phosphorylation of histone H2AX in the vicinity of DSBs, creating foci in the nucleus whose enumeration can serve as a radiation biodosimeter. Here, we investigated γH2AX and DNA repair foci in peripheral blood lymphocytes of Göttingen minipigs that experienced acute partial body irradiation (PBI with 49 Gy (± 6% Co-60 γ-rays of the upper lumbar region. Blood samples taken 4, 24 and 168 hours post PBI were subjected to γ-H2AX, 53BP1 and MRE11 focus enumeration. Peripheral blood lymphocytes (PBL of 49 Gy partial body irradiated minipigs were found to display 1-8 DNA damage foci/cell. These PBL values significantly deceed the high foci numbers observed in keratinocyte nuclei of the directly γ-irradiated minipig skin regions, indicating a limited resident time of PBL in the exposed tissue volume. Nonetheless, PBL samples obtained 4 h post IR in average contained 2.2% of cells displaying a pan-γH2AX signal, suggesting that these received a higher IR dose. Moreover, dispersion analysis indicated partial body irradiation for all 13 minipigs at 4 h post IR. While dose reconstruction using γH2AX DNA repair foci in lymphocytes after in vivo PBI represents a challenge, the DNA damage focus assay may serve as a rapid, first line indicator of radiation exposure. The occurrence of PBLs with pan-γH2AX staining and of cells with relatively high foci numbers that skew a Poisson distribution may be taken as indicator of acute high dose partial body irradiation, particularly when samples are available

  19. Protective value of piroxicam on the enhanced inflammatory response after whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    el-Ghazaly, M.; Saleh, S.; Kenawy, S.; Roushdy, H.M.; Khayyal, M.T.

    1986-06-01

    The anti-inflammatory activity of piroxicam was assessed after whole body irradiation in rats. Two models of inflammation, the carrageenan-induced edema and the adjuvant-induced arthritis in rats have been utilised. Piroxicam at doses of 1, 5 and 10 mg kg-1 i.p. was effective in inhibiting the paw edema produced in both models of inflammation. The inflammatory response in irradiated was significantly higher than that produced in normal animals and was dependent on the radiation dose level used (0.5-2 Gy). The effect of piroxicam on the late inflammatory response produced by exposure to 2 Gy was studied by measuring the carrageenan-induced edema 4 h after irradiation and on the third and seventh day thereafter. The increase in paw volume was significantly suppressed in animals receiving the drug. Administration of piroxicam (5 mg kg-1) one hour before irradiation of animals at 0.5 Gy, produced inhibition to the exaggerated inflammatory response in irradiated animals. This suggests that piroxicam possibly owes its protective value to prevention of the increase in cellular permeability induced by radiation. Alternatively, the drug may exert this effect by inhibiting PG synthesis, thereby reducing their potentiating influence on the other mediators of inflammation. Furthermore, the inhibition of lysosomal enzyme release possibly induced by the drug may contribute to the probable reduction in the release of inflammatory mediators.

  20. A simple technique for an accurate shielding of the lungs during total body irradiation

    Directory of Open Access Journals (Sweden)

    Hana Mekdash

    2017-09-01

    Conclusion: This new technique succeeded in reducing the length of the overall treatment session of the conventional TBI procedure and hence reduced patient discomfort while ensuring accurate shielding of the lungs.

  1. Blood and bone marrow response following total body irradiation in patients with lymphosarcomas

    International Nuclear Information System (INIS)

    Qasim, M.M.

    1977-01-01

    Marrow depression and associated peripheral blood changes following fractionated T.B.I. are considerable and appear alarming. However, provided the marrow reserve is good and is not compromised by previous chemotherapy and radiation therapy, recovery occurred in all cases and appeared to be complete. Bone marrow of 3 patients with previous T.B.I. did not show recovery after the second course of T.B.I. Extreme caution is indicated when such a therapy is repeated, as this may lead to progressive marrow hypoplasia. Fractionated low dose T.B.I. could be utilized as a useful therapeutic modality in the management of disseminated lymphosarcoma provided the marrow reserve is good. (author)

  2. Mechanisms of taurine hyperexcretion after whole-body irradiation of rats

    International Nuclear Information System (INIS)

    Beskrovnaya, L.A.; Lapteva, T.A.; Dokshina, G.A.; Baranova, M.I.

    1976-01-01

    Mechanisms of postirradiation hyperexcretion of taurine with urine have been investigated. In the course of three days after a whole-body exposure of rats (700 rads), the excretion of taurine increases. The experiments in vitro have demonstrated that taurine synthesis decreases in the thymus and liver of irradiated animals. The experiments conducted have shown that the postirradiation hyperexcretion of taurine is partly due to its release from the lymohoid tissue (thymus)

  3. Half body irradiation of patients with multiple bone metastases: a phase II trial

    DEFF Research Database (Denmark)

    Berg, Randi S; Yilmaz, Mette K; Høyer, Morten

    2009-01-01

    AIM OF STUDY: The primary aim of this study was to evaluate the effect of half-body irradiation (HBI) on pain and quality of life in cancer patients with multiple bone metastases. The secondary aim was to evaluate side effects of the treatment. PATIENTS AND METHODS: A total of 44 patients receive...... on the patients' global quality of life. CONCLUSION: Single fraction HBI is safe and effective providing long lasting pain reduction in 76% of patients with multiple bone metastases....

  4. Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.E.; Buckner, C.D.; Leonard, J.M.; Sullivan, K.M.; Witherspoon, R.P.; Deeg, H.J.; Storb, R.; Thomas, E.D.

    1983-09-01

    One hundred thirty-seven patients had gonadal function evaluated 1-11 years after marrow transplantation. All 15 women less than age 26 and three of nine older than age 26 who were treated with 200 mg/kg cyclophosphamide recovered normal gonadotropin levels and menstruation. Five have had five pregnancies resulting in three live births, one spontaneous abortion, and one elective abortion. Three of 38 women who were prepared with 120 mg/kg cyclophosphamide and 920-1200 rad total-body irradiation had normal gonadotropin levels and menstruation. Two had pregnancies resulting in one spontaneous and one elective abortion. Of 31 men prepared with 200 mg/kg cyclophosphamide, 30 had normal luteinizing hormone levels, 20 had normal follicle-stimulating hormone levels, and 10 of 15 had spermatogenesis. Four have fathered five normal children. Thirty-six of 41 men prepared with 120 mg/kg cyclophosphamide and 920-1750 rad total-body irradiation had normal luteinizing hormone levels, ten had normal follicle-stimulating hormone levels, and 2 of 32 studied had spermatogenesis. One has fathered two normal children. It was concluded that cyclophosphamide does not prevent return of normal gonadal function in younger women and in most men. Total-body irradiation prevents return of normal gonadal function in the majority of patients.

  5. Chromosome aberrations of the peripheral lymphocytes in rabbits exposed to single and fractionated whole-body x-irradiations

    International Nuclear Information System (INIS)

    Tamura, Hiroaki; Sakurai, Masaharu; Sugahara, Tsutomu.

    1978-01-01

    The changes in the frequency of peripheral lymphocytes with chromosome aberrations were observed during or after irradiation of rabbits exposed to fractionated or single whole-body irradiations. In rabbits given daily fractionated whole-body irradiations the incidence of the aberrations showed a linear increase in the first week; however, the incidence decreased thereafter though exposures were repeated. The lymphocyte count tended to decrease as the number of irradiations increased. In rabbits exposed to a single dose of 250 R or 500 R the incidence of aberrations rapidly decreased over a period of 10 days following irradiation, and then showed a little change thereafter. The lymphocyte count in the peripheral blood reached a nadir 2 - 5 days after irradiation, and then started to increase gradually. It was speculated that there are two types of lymphocytes, long-lived and short-lived, in the peripheral blood of rabbits, both of which are PHA-committed. (auth.)

  6. Effect of scattered radiation in the total body irradiation technique: evaluation of the spoiler and wall dose component in the depthdose distribution

    International Nuclear Information System (INIS)

    Piotrowski, T.; Malicki, J.; Adamska, K.

    2007-01-01

    To determine the additional dose in layers of the body close to the skin during total body irradiation (TBI), due to radiation scattered off the treatment room walls and behind plexiglass spoilers applied to improve dose uniformity within the irradiated body. Large-field 6, 15 and 25 MV photon beams were generated by a Saturn 43 medical accelerator. A solid 30 x 30 x 30 cm 3 PMMA (polymethylmethacrylate) phantom was used to represent radiation scattered from the body of the patient. Dose distributions were measured by a Farmer ionization chamber. The dose component arising from the spoiler was measured 5 mm below the phantom surface, over distances of 5-100 cm between the spoiler and the phantom surface. To measure the contribution of backscattered radiation from the walls, a small lead block was placed between the source and detector. Measurements were carried out in air with the PMMA phantom removed, to eliminate radiation backscattered from the phantom. As measured behind the spoiler, attenuation of the primary photon beam by the spoiler itself was by 8, 5 and 3% for 6, 15 and 25 MV beams, respectively. The highest dose contribution from the spoiler arose at 10 cm separation between the phantom surface and the spoiler. Assessed at a depth of 5 mm in the phantom, at spoiler-phantom separation of 10 cm, relative to case without spoiler and with wall backscatter subtracted, the dose enhancement due to the spoiler was by 8, 13 and 20% at beam energies 6, 15 and 25 MV, respectively. In these measurements, the distance between the source and the phantom surface was 300 cm and that between the source and the spoiler - 290 cm. The dose contributions due to radiation backscattered from the walls, relative to the case without any wall backscatter, estimated over the distal side of the phantom at a distance of 20 cm between the wall and that side of the phantom, were 5, 6 and 8% at beam energies 6, 15 and 25 MV, respectively. The use of a spoiler enhanced the dose in

  7. Influence of radioprotectors on total body weight evolution and on oxygen consumption in lethal dose irradiated animals. (Preliminary study)

    International Nuclear Information System (INIS)

    Fatome, M.; Martine, G.; Bargy, E.; Andrieu, L.

    Comparison of total body weight evolution and oxygen consumption in lethal dose irradiated animals, protected by various well known radioprotective substances, isolated or in mixture, with evolution and consumption of non protected animals irradiated at the same dose and with these of check animals [fr

  8. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates

    NARCIS (Netherlands)

    Opländer, C.; Volkmar, C.M.; Paunel-Görgülü, A.; van Faassen, E.E.H.; Heiss, C.

    2009-01-01

    Rationale: Human skin contains photolabile nitric oxide derivates like nitrite and S-nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO. Objective: Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy

  9. Influence of whole-body γ-irradiation upon rat erythrocyte: lipid peroxidation and osmotic fragility

    International Nuclear Information System (INIS)

    Kergonou, J.F.; Thiriot, C.; Braquet, M.; Ducousso, R.; Rocquet, G.

    1986-01-01

    The effects of whole-body γ-irradiation of rats (8Gy) on erythrocyte enzymes and biochemical components involved in lipid peroxidation were studied. Decreased superoxide dismustase and glutathione reductase activities, and lowered concentrations of reduced glutathione, were found to be the main factors responsible for observed increase in lipid peroxidation in the erythrocytes of irradiated rats. This increased lipid peroxidation did not result in the greater tendency to hemolysis in hypotonic media; on the contrary, the mean osmotic fragility was decreased at days D + 1 and D + 3 after irradiation. The behavior of the erythrocyte polulations towards hemolysis in hypotonic media appeared to be most homogeneous at days D + 4 and D + 8 after irradiation, which correspond to maxima of malonic dialdehyde concentrations in erythrocytes. Such a synchrony of variations suggests that crosslinking of primary amino groups of proteins or phospholipids by malonic dialdehyde might produce a rigidification in erythrocyte membranes, possibly leading to a more homogeneous behavior of the erythrocyte populations towards hemolysis in hypotonic media

  10. Ciliary body and choroidal melanomas treated by proton beam irradiation. Histopathologic study of eyes

    International Nuclear Information System (INIS)

    Seddon, J.M.; Gragoudas, E.S.; Albert, D.M.

    1983-01-01

    Proton beam irradiation resulted in clinical and/or histopathological regression of large ciliary body and choroidal melanomas in three eyes. Enucleations were performed 6 1/2 weeks, five months, and 11 months after irradiation for angle-closure glaucoma from total retinal detachment, increase in retinal detachment, and neovascular glaucoma, respectively. A direct relationship was found between the length of the interval from irradiation to enucleation and the degree of histologic changes. Vascular changes in the tumors included endothelial cell swelling and decreased lumen size, basement membrane thickening, collapse of sinusoidal vessels, and thrombosis of vessels. Although apparently unaltered tumor cells remained, degenerative changes occurred in some melanoma cells, including lipid vacuoles in cytoplasm, pyknotic nuclei, and balloon cell formation. Patchy areas of necrosis and proteinaceous exudate were present. Pigment-laden macrophages were found near tumor vessels and all had a substantial chronic inflammatory infiltrate. The effect of proton beam irradiation on tumor vessels probably plays an important role in uveal melanoma regression

  11. Ciliary body and choroidal melanomas treated by proton beam irradiation. Histopathologic study of eyes

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, J.M.; Gragoudas, E.S.; Albert, D.M.

    1983-09-01

    Proton beam irradiation resulted in clinical and/or histopathological regression of large ciliary body and choroidal melanomas in three eyes. Enucleations were performed 6 1/2 weeks, five months, and 11 months after irradiation for angle-closure glaucoma from total retinal detachment, increase in retinal detachment, and neovascular glaucoma, respectively. A direct relationship was found between the length of the interval from irradiation to enucleation and the degree of histologic changes. Vascular changes in the tumors included endothelial cell swelling and decreased lumen size, basement membrane thickening, collapse of sinusoidal vessels, and thrombosis of vessels. Although apparently unaltered tumor cells remained, degenerative changes occurred in some melanoma cells, including lipid vacuoles in cytoplasm, pyknotic nuclei, and balloon cell formation. Patchy areas of necrosis and proteinaceous exudate were present. Pigment-laden macrophages were found near tumor vessels and all had a substantial chronic inflammatory infiltrate. The effect of proton beam irradiation on tumor vessels probably plays an important role in uveal melanoma regression.

  12. Clinical analysis of hematopoiesis reconstruction after total body irradiation in hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Fang Tong; Gao Hong; Sun Baojing; Chen Li

    2008-01-01

    Objective: To analyze the clinical outcome of total body irradiation in hematopoiesis reconstruction after autologous and allogeneic hematopoietic stem cell transplantation. Methods: 35 patients received autologous hematopoietic stem cell transplantation (ASCT group) and 35 patients received allogeneic hematopoietic stem cell transplantation (Allo-HSCT group) were enrolled in this study. And their hematopoiesis reconstruction were observed and analyzed. Results: The recovery time of ANC were 14 and 16 d, respectively, and the recovery time of PLT were 23 and 27 d, respectively, the difference were not significant (P>0.05) in ASCT group and Allo-HSCT group. But for both group, hematopoiesis reconstruction were faster in peripheral blood stem cell transplant than those in bone marrow transplant (P<0.05). The recovery time of PLT with the patients of total body irradiation dose ≥ 10 Gy were longer than those of < 10 Gy. Conclusions: At the same doses, the clinical outcome of hematopoiesis reconstruction of ASCT is similar to that of Allo-HSCT. But the recovery time in peripheral blood stem cell transplantation is faster than that in bone marrow transplant. The recovery time of PLT has relation with the irradiation dose. (authors)

  13. Acute tolerance of hyperfractionated accelerated total body irradiation; Akuttoleranz bei der hyperfraktionierten akzelerierten Ganzkoerperbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Latz, D. [Radiologische Universitaetsklinik Heidelberg (Germany). Abt. Klinische Radiologie; Schraube, P. [Radiologische Universitaetsklinik Heidelberg (Germany). Abt. Klinische Radiologie; Wannenmacher, M. [Radiologische Universitaetsklinik Heidelberg (Germany). Abt. Klinische Radiologie

    1996-12-01

    Background: Acute side effects of total body irradiation lead to intense molestations of the patients. Therefore, it is desirable to take measures to reduce these side effects. In a retrospective study the frequency on acute side effects of a hyperfractionated accelerated total body irradiation was assessed and compared to frequencies of other exposure schedules published in the literature. Additionally the influence of ondansetron on the frequency of nausea and vormiting was investigated. Patients and Method: From 1989 to 1992, 76 patients (47 male, 29 female; median age 38 years) underwent total body irradiation before autologeous bone marrow transplantation. They received 3 daily doses of 1.20 Gy each every 4 h on 4 successive days to a total dose of 14,40 Gy. Thirty-nine patients received 3x8 mg (daily, intravenous or per os) ondansetron during the whole course of irradiation. Results: The most relevant side effects were nausea and vomiting. Patients, who did not receive ondansetron (n=37) showed a nausea and emesis rate of 73%. With ondansetron (n=39) nausea and emesis were reduced to 38%. Also the grade of severity of these side effects was reduced. Conclusions: Ondansetron proved to be an effective medicament for relieving nausea and vormiting during total body irradiation. The results obtained are in concordance with those published in the literature. (orig.) [Deutsch] Hintergrund: Die Akutnebenwirkungen der Ganzkoerperbestrahlung fuehren zu starken Belastungen der Patienten. Massnahmen zur Reduktion dieser Nebenwirkungen sind daher notwendig. In einer retrospektiven Analyse wurde die Haeufigkeit von Akutnebenwirkungen bei einer hyperfraktionierten akzelerierten Granzkoerperbestrahlung untersucht und mit den Auftretenshaeufigkeiten anderer in der Literatur aufgefuehrter Fraktionierungsschemata verglichen. Zusaetzlich wurde der Einfluss des Serotoninantagonisten Ondansetron auf die Haeufigkeit von Uebelkeit und Erbrechen untersucht. Patienten und Methode

  14. Elevation of blood levels of zinc protoporphyrin in mice following whole-body irradiation

    International Nuclear Information System (INIS)

    Walden, T.L. Jr.

    1983-01-01

    Elevation of zinc protoporphyrin (ZPP) levels in the blood has served as an indicator of lead poisoning and iron deficiency anemia for many years. The author has discovered that sublethal doses of whole body irradiation with X-rays also elevates ZPP two- to three-fold over normal levels. The ZPP level does not begin to increase until days 12 to 14 post-irradiation and peaks between days 18 to 20 before returning to normal levels between days 28 to 35. Increasing the radiation dose delays the onset of the rise in ZPP but does not affect the magnitude of the elevation. At lethal doses, ZPP elevation is not observed. Neither of the two previously described mechanisms which cause elevations of ZPP, namely iron deficiency and inhibition of ferrochelatase, are responsible for the radiation induced elevation of ZPP. The elevation of ZPP appears to be correlated with the recovery of the hematopoietic system from radiation injury

  15. Alterations of blood platelet functional tests in whole-body irradiated rabbits

    International Nuclear Information System (INIS)

    Zitko, M.; Pospisil, J.; Klir, P.; Dienstbier, Z.

    1983-01-01

    With a selected spectrum of coagulation tests the functional capacity of thrombocytes was investigated in rabbits exposed to a whole-body irradiation by means of 60 Co radiation with a LD 5/30. A reduced retraction could be proved for postirradiation days 5, 8, 11, 21, 35, and 56. A reduced formation of malondialdehyde could be identified in thrombocytes on the 8th and 21st day after irradiation. No changes could be found in determining adhesiveness, platelet aggregation caused by ADP, and PF 3 A and PF 3 F tests. In the course of additional investigations (coagulation time in unprepared and siliconized glass tubes, thromboelastogram, activated partial thromboplastine time), significant changes of coagulation time could be observed in siliconized glass tubes on the 8th, 11th, 21st, and 56th postirradiation days. (author)

  16. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  17. Estimates of genetic parameters of body weight in descendants of x-irradiated rat spermatogonia

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450 R per generation of ancestral spermatogonial x irradiation of inbred rats on genetic parameters of body weight at 3, 6 and 10 weeks of age and of weight gains between these periods were studied. Covariances among relatives were estimated by mixed model and regression techniques in randomly selected lines with (R) and without (C) radiation history. Analyses of the data were based on five linear genetic models combining additive direct, additive indirect (maternal), dominance and environmental effects. Parameters in these models were estimated by generalized least-squares. A model including direct and indirect genetic effects fit more closely to the data in both R and C lines. Overdominance of induced mutations did not seem to be present. Ancestral irradiation increased maternal additive genetic variances of body weights and gains but not direct genetic variances. Theoretically, due to a negative direct-maternal genetic correlation, within full-sib family selection would be ineffective in increasing body weight at six weeks in both R and C lines. However, progress from mass selection would be expected to be faster in the R lines

  18. Whole Body Microwave Irradiation for Improved Dacarbazine Therapeutical Action in Cutaneous Melanoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Monica Neagu

    2013-01-01

    Full Text Available A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70, IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.

  19. Catecholamine levels in sheep hypothalamus, hypophysis and adrenals following whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Pastorova, B.; Arendarcik, J.; Molnarova, M.

    1985-01-01

    Changes were studied in the levels of catecholamines and L-DOPA in the control system of the reproduction cycle (hypothalamus, hypophysis) and in the adrenal glands of sheep after whole-body irradiation with 60 Co at a total dose of 6.7 Gy for seven days. The output of the radiation source was 0.039 Gy/h. The catecholamines (noradrenaline, dopamine and adrenaline) and L-DOPA were determined after separation from the tissues by the method of spectral fluorometry. After whole-body exposure to gamma radiation, noradrenaline dropped in the hypothalamus in comparison with the control group, most significantly in the rostral (by 74.2%) and caudal (by 40%) parts. A similar drop was also observed in dopamine, the concentrations of which decreased in the rostral hypothalamus by 60%. Adrenaline showed a drop in the hypothalamus, most significant in the caudal region (by 62%). Consequently, the level of the precursor of the synthesis of catecholamines and L-DOPA changed and showed in the studied regions of the hypothalamus significantly lower levels than in the control group. As regards the hypophysis, after irradiation no significant changes in the levels of noradrenaline and adrenaline were recorded, however, dopamine and L-DOPA dropped significantly (P<0.01). The exposure to gamma radiation also causes a decrease in the concentrations of catecholamines and L-DOPA in the adrenal glands of sheep, most significantly in noradrenaline (by 61%). It was thus found that whole-body irradiation of sheep with a dose of 6.7 Gy results in a significant decrease in the level of catecholamines in the hypothalamus, hypophysis and adrenal glands, which is probably in relation to the failure of synthesis and degradation of catecholamines and to the total organism injury

  20. The behaviour of the endocrinological parameters cortisol, testosterone, growth hormone and prolactin after UVA and UVB whole-body irradiation

    International Nuclear Information System (INIS)

    Hicke, M.

    1986-01-01

    With two groups, each with 8 healthy subjects UV whole-body irradiation was carried out with uniformly 30 J/cm 2 UVA or respectively UVB at the level of the individual minimal erythema dose. Every subject received serial irradiations once a day for four days. The determination of the serum hormone level was accomplished by means of radioimmunoassays. The results show a weakly significant decline of cortisol 4 and 24 hours after 2 serial UVB irradiations. 3,5 and 7 days after the end of the irradiation series the cortisol values have increased, but by the seventh day statistically only weakly significant. With UVA irradiation there was also a weakly significant increase in cortisol levels three days after the end of the irradiation series. The serum levels of the other hormones showed no statistically significant changes. (orig./MG) [de

  1. The incidence of interstitial pneumonitis: Comparison of total body irradiation schedules for allogenic bone marrow transplantation

    International Nuclear Information System (INIS)

    Bamberg, M.; Molls, M.; Beelen, D.W.; Mahmoud, H.K.; Schaefer, U.W.

    1986-01-01

    Interstitial pneumonitis (IP) is one of the major causes of death following bone marrow transplantation (BMT). This report deals with a comparison between data compiled from six centers concerning the essential factors responsible for the development of IP. Special concern has been paid to the idiopathic form of disease where TBI is thought to be the most important factor in its pathogenesis. Our own experience using different TBI modalities shows that the instantaneous dose rate seems to be an important factor in the development of IIP. Comparing the data from various centers it is not possible at the present time to recommend one optimal modality. (orig.) [de

  2. Dose-effect relationship for cataract induction after single-dose total body irradiation and bone marrow transplantation for acute leukemia

    International Nuclear Information System (INIS)

    Kempen-Harteveld, M. Loes van; Belkacemi, Yazid; Kal, Henk B.; Labopin, Myriam; Frassoni, Francesco

    2002-01-01

    Purpose: To determine a dose-effect relationship for cataract induction, the tissue-specific parameter, α/β, and the rate of repair of sublethal damage, μ value, in the linear-quadratic formula have to be known. To obtain these parameters for the human eye lens, a large series of patients treated with different doses and dose rates is required. The data of patients with acute leukemia treated with single-dose total body irradiation (STBI) and bone marrow transplantation (BMT) collected by the European Group for Blood and Marrow Transplantation were analyzed. Methods and Materials: The data of 495 patients who underwent BMT for acute leukemia, who had STBI as part of their conditioning regimen, were analyzed using the linear-quadratic concept. The end point was the incidence of cataract formation after BMT. Of the analyzed patients, 175 were registered as having cataracts. Biologic effective doses (BEDs) for different sets of values for α/β and μ were calculated for each patient. With Cox regression analysis, using the overall chi-square test as the parameter evaluating the goodness of fit, α/β and μ values were found. Risk factors for cataract induction were the BED of the applied TBI regimen, allogeneic BMT, steroid therapy for >14 weeks, and heparin administration. To avoid the influence of steroid therapy and heparin on cataract induction, patients who received steroid or heparin treatment were excluded, leaving only the BED as a risk factor. Next, the most likely set of α/β and μ values was obtained. With this set, the cataract-free survival rates were calculated for specific BED intervals, according to the Kaplan-Meier method. From these calculations, cataract incidences were obtained as function of the BED at 120 months after STBI. Results: The use of BED instead of the TBI dose enabled the incidence of cataract formation to be predicted in a reasonably consistent way. With Cox regression analysis for all STBI data, a maximal chi-square value was

  3. Uptake of carbon monoxide by C3H mice following X irradiation of lung only or total-body irradiation with 60Co

    International Nuclear Information System (INIS)

    Rappaport, D.S.; Niewoehner, D.E.; Kim, T.H.; Song, C.W.; Levitt, S.H.

    1983-01-01

    Carbon monoxide uptake (V/sub co/) and ventilation rate (VR) of C3H mice were determined at 14 weeks following either X irradiation of lungs only or total-body irradiation with 60 Co at different dose rates. Following localized X irradiation of lung at 97 /sub c/Gy/min there was a reduction in V/sub co/, which was inversely related to radiation dose, with a small reduction below control levels being detected at 7 Gy, the lowest dose tested. An increase in VR could be detected only at doses of 11 Gy, or more. Another group of animals received 11.5 Gy total-body irradiation at either 26.2 or 4.85 /sub c/Gy/min fllowed by transplantation with syngeneic bone marrow. Following total-body irradiation, V/sub co/ was significantly reduced by about 37% at the higher dose rate and 23% at the lower dose rate. In contrast, a trend toward elevated VR was detected only at the higher dose rate.The results indicate that V/sub co/ is a sensitive indicator of radiation-induced lung injury and that under the experimental conditions used V/sub co/ is a more sensitive indicator of radiation-induced lung injury in C3H mice than VR

  4. Effect of split dose TBI on hematopoietic stem-cell survival in combined radiation-drug exposures

    International Nuclear Information System (INIS)

    Okunewick, J.P.; Buffo, M.J.; Kociban, D.L.

    1984-01-01

    Studies were carried out to determine if a priming dose of total body irradiation (TBI) given before the first drug exposure in chemo-radiation protocols similar to those used in marrow transplantation would reduce the survival of hematopoietic stem cells. The cytotoxic drugs employed were cyclophosphamide (CY) and piperazinedione (PIP), both of which are currently used in the clinic for ablation of the host marrow prior to transplantation therapy for leukemia. The effects were evaluated in a normal and a leukemic mouse model using the enodgenous colony-former technique. Splitting the TBI to give part of the total dose before the first dose of drug was found to enhance stem cell killing some instances, but not in others. When CY and PIP were combined together in the same protocol it was found that a simple inversion of the order of these two drugs could result in a six-fold difference in the extent of stem cell ablation achieved, indicating that with multiple drug protocols the drug sequencing itself could be equally important as the manner in which the radiation is given

  5. Protective Effect Of Avocado Oil Against Biochemical And Histological Changes In Whole Body Gamma Irradiation In Albino Rats

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.A.; Abd El Azime, A.SH.; Sherif, N.H.

    2013-01-01

    Avocado oil, extracted from the pulp of the fruit, is rich in poly-unsaturated fatty acids, linoleic, linolenic, oleic acids and the monounsaturated fatty acid. It also contains B-sitosterol, B-carotene, lecithin, minerals and vitamins A, C, D and E. Avocado oil lowers the blood levels of serum lipids and has antioxidant properties as a free radical scavenger. Male albino rats were divided into 5 groups. 1- Control group: rats not subjected to any treatment, 2- Avocado treated group: rats received avocado oil (0.1 ml/kg/day) via intraperitoneal injection during 21 days, 3- Irradiated group: rats were whole body gamma irradiated with 7 Gy, 4- Avocado + irradiated group: rats received avocado oil for 21 days then exposed to whole body gamma irradiation with 7 Gy and 5- Radiation + avocado group: rats were exposed to 7 Gy whole body gamma irradiation then received avocado oil for 21 days. Avocado oil (0.1 ml/kg/day) was given to rats, receiving a standard diet, for 21 days before exposure to 7 Gy whole body gamma irradiation then the treatment was continued for 10 days after irradiation. Several investigations were carried out such as superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), lipid profile and blood sugar. High significant increase in MDA was observed and treatment with avocado before irradiation caused significant increase in GSH, CAT and SOD and significant decrease in MDA as compared to the irradiated groups. The results also showed that treatment with avocado oil significantly diminished the radiation-induced alterations observed in the levels of lipid profile and glucose. The results demonstrated that whole body gamma irradiated rats showed significant increase in alanine aminotransferase (ALT), aspartate amino-transferase (AST), alkaline phosphatase (ALP) and glucose. By studying the lipid profile, significant increases in cholesterol, triglycerides and LDL-C levels were recorded while significant decrease was

  6. Effect of BCNU combined with total body irradiation or cyclophosphamide on survival of dogs after autologous marrow grafts

    International Nuclear Information System (INIS)

    Paterson, A.H.G.; English, D.

    1979-01-01

    Dogs were treated with either: (1) 750 rad total body irradiation; (2) BCNU 2 or 4 mg/kg IV 48 hours prior to 750 rad total body irradiation; or (3) BCNU 4 mg/kg IV plus cyclophosphamide 30 mg/kg IV. Results showed that of 11 dogs who received 750 rad total body irradiation and did not receive cryopreserved autologous bone marrow cells, none survived, compared to an 88% survival (31 of 35 dogs) after 750 rad total body irradiation if the dogs received stored autologous bone marrow cells. However, when the dogs were treated with BCNU 2 or 4 mg/kg prior to 750 rad total body irradiation the survival rate, despite infusion of autologous bone marrow cells, dropped to 25% (3 of 12 dogs) for BCNU 2 mg/kg, and 17% (2 of 12 dogs) for BCNU 4 mg/kg. This effect did not seem to be due to direct serum inhibition of hemopoietic cell proliferation since serum obtained at various intervals after BCNU administrations failed to inhibit CFU growth in vitro. The dogs died from hemorrhage and infection; at autopsy there was hemorrhagic pneumonitis and intestinal ulcerations with petechial hemorrhages, suggesting that the combination of BCNU and total body irradiation may have synergistic toxicity on the canine gastro-intestinal tract. When BCNU was combined with cyclophosphamide, reversal of marrow toxicity occurred in 54% (6 of 11 dogs) with stored autologous bone marrow cells compared to no survival (0 of 8 dogs) with stored autologous bone marrow cells. Thus while autologous bone marrow grafts are useful for reversal of marrow toxicity due to many therapeutic protocols, such grafts alone may not provide protection against toxicity due to the combination of high dosage BCNU and total body irradiation

  7. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    International Nuclear Information System (INIS)

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki; Botaitis, Sotirios; Torvinen, Sira; Simopoulos, Constantinos; Kortsaris, Alexandros; Sivridis, Efthimios; Koukourakis, Michael I.

    2011-01-01

    Research highlights: → We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. → Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. → The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. → Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body γ-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function. The LC3A and Beclin1 m

  8. Effectiveness of ancestral irradiation on the direct and correlated responses to selection for body weight in rats

    International Nuclear Information System (INIS)

    Gianola, D.

    1975-01-01

    The effects of ancestral irradiation of rat spermatogonia (a cumulative total of 4050 r of x-rays) were studied in a highly inbred line of rats to explore the feasibility of using irradiation to enhance the effectiveness of selection. Six generations after irradiation was terminated, a selection experiment for body weight at six weeks of age was started in both ancestrally irradiated and non-irradiated populations. There were two non-contemporaneous replicates in each of the populations. Within each of the ancestral treatment-replicate combinations one line was selected for high, one for low body weight at six weeks of age, and a third line was maintained by random selection. In each line, avoidance of mating of animals with grandparents in common was attempted. Data on the first ten progeny generations of selection were included in this study. Five types of covariances among relatives were used to estimate causal components of variance for five different genetic models within the ''non-irradiated'' and ''irradiated'' randomly selected models. The parameters in the genetic models were estimated by generalized least-squares. This analysis suggested that a genetic model including direct genetic and maternal genetic effects was adequate to describe the body weights at 3, 6 and 10 weeks of age and the weight gains between these ages. Ancestral irradiation seemed to have enhanced the maternal genetic variance and the covariance between the direct genetic and the maternal genetic effects. On the basis of the above analysis, it was deduced that mass selection should have been more effective in the descendants of irradiated males than in those of the non-irradiated males as a consequence of greater phenotypic variability in their progeny and an enhancement in the regression of the genetic value on the selection criterion

  9. Cryogenic Irradiation of Bacillus Atrophaeus spores to understand microbial survival on Icy Bodies

    Science.gov (United States)

    Yerby, C. J.; Noell, A. C.; Hodyss, R. P.; Johnson, P. V.; Ponce, A.

    2017-12-01

    Bacterial Spores are useful indicator organisms for studying the survival of microbes and degradation of biomolecules on the surface of planetary icy bodies. To predict the limits of life's proliferation in space, specifically on icy bodies, it is essential to understand the ability of microbes to withstand photon and particle irradiation at cryogenic temperatures. Bacillus Atrophaeus spores were transferred onto stainless steel coupons by varied processes and subsequently frozen at Europan temperatures (16oK—273oK) in a vacuum at 8.7x10-8 Torr. An argon lamp bombarded the spore-containing coupons with a solar-like radiation spectra for a variety of times, and spores were removed from the coupons and enumerated in culture. To date, (n=43) coupons have been analyzed for spore kill-rates with regards to ice temperature and radiation exposure time. Results will be presented on the effect of cryogenic temperatures in improving radiation resistance of bacterial spores. This works also details methodology improvements by comparing different spore deposition and recovery methods before and after cryogenic irradiation.

  10. High-dose melphalan total body irradiation with bone marrow transplantation for refractory malignancies

    International Nuclear Information System (INIS)

    Spitzer, G.; Jagannath, S.; Dicke, K.A.; Nebraska Univ., Omaha

    1986-01-01

    Nineteen adult patients with relapsed disease, 15 of them having hematologic malignancies, were treated with high-dose melphalan (100 mg/m 2 -140 mg/m 2 ) divided over 2 consecutive days followed by a rest period of 4 days before receiving total body irradiation, 850 rad administered in five fractionated doses over 3 days. Subsequently 11 patients received autologous, seven allogeneic and one syngeneic, bone marrow transplantation. All patients had severe myelosuppression and the major extramedullary toxicity was mucositis. There were three early deaths, two related to septicemia and one to graft-versus-host disease with associated cytomegalovirus pneumonitis. All patients were heavily pretreated, and 16 were demonstrating progressive disease on alternative salvage therapies at the time of bone marrow transplantation. Two of the 16 evaluable patients (12.5%) achieved complete remissions, and 10 (63%) achieved partial remissions for a total response rate of 75%. One patient is a long-term disease-free survivor (over 1 yr). The combination of melphalan, an alternative alkylating agent to cyclophosphamide and total body irradiation are associated with moderate gastrointestinal toxicity in heavily pretreated adult patients. (author)

  11. The effects of gut commensal bacteria depletion on mice exposed to acute lethal irradiation

    International Nuclear Information System (INIS)

    Hou Bing; Xu Zhiwei; Zhang Chenggang

    2007-01-01

    The prevention and management of bacterial infection are the mainstays of therapies for irradiation victims. However, worries about adverse effects arise from gut commensal flora depletion owing to the broad-spectrum antibiotics treatment. In the present study, we investigated the effects of gut bacteria depletion on the mice receiving total-body irradiation (TBI) at a single dose of 12 Gy. One group of mice was merely exposed to TBI but was free of antibiotic treatment throughout the experiment, while the other two groups of mice were additionally given broad-spectrum antibiotics, either from 2 weeks before or immediately after irradiation. The survival time of each animal in each group was recorded for analysis. Results showed that the mean survival time of mice was longest in the group without antibiotic treatment and shortest in the group treated with broad-spectrum antibiotics from 2 weeks before TBI. In conclusion, our data suggested that depletion of gut commensal bacteria with broad-spectrum antibiotics seemed deleterious for mammals receiving lethal TBI. (author)

  12. Bronchial neuroendocrine elements in late post-radiation stage in humans after total body irradiation

    International Nuclear Information System (INIS)

    Pilmane, M.; Luts, A.; Sundler, F.; Kjoerell, U.; Forsgren, S.

    1998-01-01

    It is not known how long-term total body irradiation affects the neuroendocrine cells (Nc) and peptidergic innervation in the bronchial wall. This study examined, by immunohistochemical and radioimmunoassay (RIA) techniques, the distribution of NC and neuropeptide-containing nerve fibres in the large bronchi of Chernobyl nuclear accident cleanup workers displaying pulmonary fibrosis and metaplastic epithelium. Bronchial mucous and submucous layers from 16 Chernobyl patients and 6 control subjects were examined by conventional light microscopy and immunohistochemical techniques for determination of protein gene product 9.5 (PGP), chromogranin A, chromogranin A and B (CAB), calcitonin gene-related peptide (CGRP), calcitonin, vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP), helospectin I, neuropeptide Y (NPY), pituitary adenylate cyclase activating peptide (PACAP), serotonin (5-hydroxyltryptamine, 5-HT), and substance P (SP). Additionally, bronchial biopsies from 6 Chernobyl cleanup workers and 3 control patients were examined by RIA for VIP and NPY/peptideYY-Ievels. The Chernobyl patients were examined 10 years after exposure during the cleanup works in the Chernobyl Atomic Electric Power Station. PGP immunoreactive nerve fibres appeared to be more frequent in the bronchial wall after long term irradiation as compared with controls. However, no specific alterations in the amounts of NPY-, PACAP-, helospectin-, SP- and CGRP-immunoreactive nerve fibres were seen in bronchi of control and Chernobyl patients. 5-HT -immunoreactive NC appeared to be more numerous in normal bronchial epithelium adjacent to metaplastic epithelium, in which numerous CAB- immunoreactive NC were seen in Chernobyl patients. RIA for VIP and NPY/PYY showed individual variations in the levels of these peptides in the bronchial tissue. In two cases (one Chernobyl patient and one control patient) there was a high concentration of VIP in parallel with a high concentration of NPY

  13. Effect of liposome entrapped Cu/Zn bovine superoxide dismutase in rat after total body (neutron-gamma) irradiation

    International Nuclear Information System (INIS)

    Lamproglou, I.; Martin, S.; Lambert, F.; Fontanille, P.; Fessi, H.; Puisieux, F.; Colas-Linhart, N.; Bok, B.; Fatome, M.; Martin, C.

    1998-01-01

    Our purpose was, to study in rat the effects of (neutron-gamma) exposure and of LIPSOD treatment (liposomal Cu/Zn super-oxide dismutase) on cognitive functions. Our data demonstrate that whole-body irradiation induces in Sprague-Dawley rats some cognitive dysfunction. Treatment using LIPSOD corrects in a significantly way this trend. Moreover, in sham-irradiated rats, this treatment shows an inhibitory effect. (authors)

  14. Clinical responses after total body irradiation by over permissible dose of γ-rays in one time

    International Nuclear Information System (INIS)

    Jiang Benrong; Wang Guilin; Liu Huilan; Tang Xingsheng; Ai Huisheng

    1990-01-01

    The clinical responses of patients after total body over permissilbe dose γ-ray irradiation were observed and analysed. The results showed: when the dose was above 5 cGy, there was some immunological depression, but no significant change in hematopoietic functions. 5 cases showed some transient changes of ECG, perhaps due to vagotonia caused by psychological imbalance, One case vomitted 3-4 times after 28 cGy irradiation, this suggested that a few times of vomitting had no significance in the estimation of the irradiated dose and the whole clinical manifestations must be concretely analysed

  15. Comparison of /sup 32/P therapy and sequential hemibody irradiation (HBI) for bony metastases as methods of whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, H.; Choi, K.; Sohn, C.; Yaes, R.; Rotman, M.

    1986-06-01

    We report a retrospective study of 15 patients with prostate carcinoma and diffuse bone metastases treated with sodium /sup 32/P for palliation of pain at Downstate Medical Center and Kings County Hospital from 1973 to 1978. The response rates, duration of response, and toxicities are compared with those of other series of patients treated with /sup 32/P and with sequential hemibody irradiation. The response rates and duration of response are similar with both modalities ranging from 58 to 95% with a duration of 3.3 to 6 months with /sup 32/P and from 75 to 86% with a median duration of 5.5 months with hemibody irradiation. There are significant differences in the patterns of response and in the toxicities of the two treatment methods. Both methods cause significant bone marrow depression. Acute radiation syndrome, radiation pneumonitis, and alopecia are seen with sequential hemibody irradiation and not with /sup 32/P, but their incidence can be reduced by careful treatment planning. Hemibody irradiation can provide pain relief within 24 to 48 h, while /sup 32/P may produce an initial exacerbation of pain. Lower hemibody irradiation alone is less toxic than either upper hemibody irradiation or /sup 32/P treatment.

  16. Dose-response relationships for chromosome aberrations in peripheral blood lymphocytes after whole- and partial-body irradiations. Pt. 1

    International Nuclear Information System (INIS)

    Liniecki, J.; Bajerska, A.; Wyszynska, K.

    1983-01-01

    Dose-response relationships were established for yield of dicentrics and for a fraction of damaged metaphases in lymphocytes after γ-irradiation of rabbits' whole blood in vitro. These relationships were based on the scoring of cells only in their first post-stimulation division and they served as a reference system for comparison with results of 60 Co γ-irradiation in vivo, either of the whole or of predetermined parts of an animal's body. There was a statistically acceptable agreement between dose-response data established for dicentric yield after whole-body irradiation in vivo and the reference dose-response curve derived from exposure of rabbit's blood in vitro. For partial-body (1/2) irradiations there was a satisfactory agreement between the dose-response curves in vitro for dicentric yield and fraction of metaphases damaged on the one hand and the response in vivo when the latter was related to mean doses to circulating blood. However, there was a drastic disagreement with the dose responses in vitro when measured cytogenetic quantities were plotted versus mean doses to body mass. When the latter were substituted for by comparable doses to circulating blood the in vivo-in vitro agreement was acceptable after irradiation. (orig.)

  17. In vivo induction of apoptosis in human lymphocytes by therapeutic fractionated total body irradiation

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Barbaroux, C.; Chaillet, M.-P.; Dubray, B.; Fourquet, A.; Cosset, J.-M.; Gluckman, E.; Girinsky, T.

    1995-01-01

    Ionizing radiations have been reported as an in vitro apoptosis initiating stimulus in human lymphocytes. As the cytotoxicity of ionizing radiations and chemotherapeutic agents appears to be dependent on the efficacy of cell death induction, the manipulation of apoptosis initiation might be used as a means to suppress some pathological process. In the present study the in vivo induction of γ-ray mediated programmed cell death in humans is reported. The in vivo induction of apoptosis in peripheral blood lymphocytes (PBL) by ionizing radiations was investigated in 33 patients after each of two sessions (2 Gy and 4 Gy) of fractionated total body irradiation (FTBI) as part of their conditioning regimen before bone marrow transplantation. PBL committed to apoptosis were scored before irradiation (S1), 4 h (S2) and 24 h after 2 Gy (S3, 14-17 h after the second 2 Gy fraction). Nuclear morphology and chromatin-DNA were analysed by fluorescence microscopy immediately after blood sample withdrawal (I) and after 24 h in cell culture medium (II). (author)

  18. Radioresistance of intermediate TCR cells and their localization in the body of mice revealed by irradiation

    International Nuclear Information System (INIS)

    Kimura, Motohiko; Watanabe, Hisami; Ohtsuka, Kazuo; Iiai, Tsuneo; Tsuchida, Masanori; Sato, Shotaro; Abo, Toru

    1993-01-01

    Extrathymic generation of T cells in the liver and in the intestine was recently demonstrated. We investigated herein whether such T cells, especially those in the liver, are present in other organs of mice. This investigation is possible employing our recently introduced method with which even a minor proportion of extrathymic, intermediate T-cell receptor (TCR) cells in organs other than the liver can be identified. Intermediate TCR cells expressed higher levels of IL-2Rβ and lymphocyte function-associated antigen-1 (LFA-1) than bright TCR cells (i.e., T cells of thymic origin) as revealed by two-color staining. Although intermediate TCR cells were present at a small proportion in the spleen and thymus, they predominated in these organs after irradiation (9 Gy) and bone marrow reconstitution, or after low dose irradiation (6 Gy). This was due to that intermediate TCR cells were relatively radioresistant, whereas bright TCR cells were radiosensitive. Microscopic observation and immunochemical staining showed that intermediate TCR cells in the spleen localized in the red pulp and those in the thymus localized in the medulla. These intermediate TCR cells displayed a large light scatter, similar to such cells in the liver. The present results suggest that intermediate TCR cells may proliferate at multiple sites in the body. (author)

  19. Fragmentation of chromatin DNA in mouse thymus cells after whole body γ-irradiation

    International Nuclear Information System (INIS)

    Wei Kang; Liu Xueying; Zhu Xuefen

    1984-01-01

    The characteristics of soluble chromatin in mouse thymus nuclei after whole body γ-irradiation were investigated by means of polyacrylamide gel electrophoresis. After deproteinization and electrophoresis eight regular DNA bands were revealed. The molecular weights of these bands were estimated by comparing their migration rates with those of the standard fragments obtained from PBR 322 digested completely by restrictive endonuclease Hae III. The molecular weight of the first band was calculated to be 186 base pairs corresponding approximately to the size of DNA fragment from a single nucleosome, and those of other bands appeared to be its multiples. The results suggested that the disintegration of chromatin DNA after γ-irradiation might have occurred at the linkage regions of chromatin. The autolysis product of normal thymus chromatin under sterile condition were also analyzed and its electrophoretic pattern was found to be just the same as that of the postirradiation product. It seems, therefore, that the endonuclease existing in normal tissues might be responsible for the postirradiation chromatin degradation. The mechanism of this kind of enzymatic digestion remains to be elucidated in further investigation. (author)

  20. Abscopal regression in lymphoma: a mechanism in common with total body irradiation

    International Nuclear Information System (INIS)

    Rees, G.J.G.

    1981-01-01

    The hospital records of 895 patients presenting to this centre with a diagnosis of Hodgkin's or non-Hodgkin's lymphoma have been reviewed. In the records of 26 patients there was evidence for or against the occurrence of abscopal regression with radiotherapy. Attention is drawn to inevitable inaccuracy in a retrospective study of this type. Evidence of abscopal regression was seen in the records of 10 patients, four with Hodgkin's and six with non-Hodgkin's lymphoma. It appears to be associated with a more favourable prognosis in patients with non-Hodgkin's lymphoma. It is suggested that this phenomenon is elicitable in more patients than is commonly recognised, and that together with response to low dose total body irradiation, could be explained by radiation damage to normal lymphocytes. (author)

  1. The elevation of blood levels of zinc protoporphyrin in mice following whole body irradiation

    International Nuclear Information System (INIS)

    Walden, T.L.; Draganac, P.S.; Farkas, W.R.

    1984-01-01

    Elevation of zinc protoporphyrin (ZPP) levels in the blood has served as an indicator of lead poisoning and iron deficiency anemia for many years. We have discovered that sublethal doses of whole body irradiation with x-rays also elevates ZPP 2-3-fold over normal levels. The ZPP level does not begin to increase until days 12-14 postirradiation and peaks between days 18 and 20 before returning to normal levels between days 28 and 35. Increasing the radiation dose delays the onset of the rise in ZPP, but does not affect the magnitude of the elevation. At lethal doses, ZPP elevation is not observed. Neither of the two previously described mechanisms that cause elevations of ZPP, namely iron deficiency and inhibition of ferrochelatase, are responsible for the radiation-induced elevation of ZPP. The elevation of ZPP appears to be correlated with the recovery of the hematopoietic system from radiation injury

  2. Inhibitory mechanism of low-dose, whole-body irradiation with gamma-rays against tumor metastasis

    International Nuclear Information System (INIS)

    Yasuhiro Ohsima; Mitsutoshi Tukimoto; Shuji Kojima

    2007-01-01

    Complete text of publication follows. A lot of beneficial effects of low-dose irradiation are well known. Of them, an inhibitory effect of the radiation on lung metastasis is reported so far. It has been reported that low-dose whole-body irradiation with gamma rays enhanced cytotoxic immune response as one of the mechanisms. In our laboratory, it has been confirmed an enhancement of natural killer activity in mice irradiated with whole-body 0.5Gy gamma-rays. Metastasis is accomplished by multistep process, involving basement membrane destruction, local invasion, intravasation, survival in the bloodstream, extravasation into distant organs, and proliferation at the target site. Besides, a lot of growth factors and proteases are involved in these steps. As to mechanism of inhibition of tumor metastasis induced by low-dose whole-body irradiation, studies from the standpoint of tumor invasion have not been reported. Here, inhibitory effect of 0.5Gy whole-body gamma-ray irradiation on tumor metastasis and its mechanism were examined in pulmonary metastasis model mice injected with B16 melanoma cells. Consequently, 0.5Gy whole-body gamma ray irradiation significantly suppressed colony formation in the lungs. Expression of matrix metalloproteinase- 2 (MMP- 2), a proteinase related to metastasis, in lung tissues was suppressed by the radiation. Alteration of tissue inhibitor of matrix metalloproteinase (TIMP) after the gamma-ray irradiation was examined. Expression of TIMP-1 and TIMP-2 mRNA in the lungs were significantly increased. In order to clarify the inhibitory effect obtained in the in vivo metastatic lung cancer model mice, we studied effects of gamma-rays on cell proliferation, alterations of mRNA and proteins related to tumor metastasis in cultured B16 melanoma cells. Proliferation of B16 melanoma cells was decreased in a dose-dependent manner. MMP-2 mRNA expression was not altered in any doses of gamma-rays. Thought expression of the protein was slightly

  3. γ-ray induced chromosome aberration in rabbit peripheral blood lymphocytes irradiated in partial and whole body and decline of aberration rate with time post-exposure

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng; Wang Haiyan

    1997-01-01

    Te author presents the results of study on 60 Co γ-ray induced chromosome aberration in rabbits peripheral blood lymphocytes irradiated in partial and whole body and the aberration rate decrease with the time of post-exposure. The experiments included 5 groups, it was whole-body exposure group, partial-body exposure (abdomen and pelvic cavity) group, blood irradiation group in vitro and control group respectively. Radiation dose was 3.0 Gy delivered at rate of 0.5 Gy/min. The results show that it was no significant differences between whole body and in blood irradiation group. The chromosome aberration yield in whole body exposure group was higher than that in partial-body group and in the abdomen exposure group was higher than in that in the pelvic cavity irradiation; The chromosome aberration rate decreased with the time of post-exposure in partial and whole body by γ-ray irradiation

  4. Preventing Older Adult Falls and TBI

    Centers for Disease Control (CDC) Podcasts

    2008-03-05

    This podcast provides tips on how older adults can prevent falls and related injuries, such as traumatic brain injuries (TBI).  Created: 3/5/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 3/7/2008.

  5. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    Science.gov (United States)

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  6. Caffeine and Aspirin Protecting Albino Rats A gainst Biochemical and Histological Disorders Induced by Whole Body Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.A.; Sherif, N.H.

    2015-01-01

    Caffeine is an alkaloid (purine derivative) that contains flavonoids, where as aspirin, natural component of mammalian tissue ( acetylsalicylic acid) is one of the most commonly used non steroidal anti - inflammatory , and it is a necessary factor in the utilization of long - chain fatty acids to produce energy. Furthermore, it has been shown to protect cells from per oxidative stress. Th e objective of the present study is to evaluate the efficacy of caffeine (1,3,7 - trimethyl xanthine) 80 mg/kg b.wt. a nd aspirin ( acetylsalicylic acid) in the amelioration of the physiological and histological changes in stomach and intestine of rats exposed to gamma irradiation . Male albino rats were divided into 8 groups. 1 - Control group: rats not subject to any treatment, 2 - Caffeine group: rats received caffeine ( 80 ml/Kg body weight )via intraperitoneal injection for 21 days, 3 - Aspirin group: rats received aspirin (150 mg / kg body) via intraperitoneal injection for 21 days , 4 - Caffeine + Aspirin group: rats received caffeine a nd aspirin treatment, 5 - Radiation groups: rats were whole body gamma irradiated at 8 Gy , 6 - Caffeine + Radiation group: rats received caffeine for 21 days before whole body gamma irradiation at 8 Gy, 7 - Aspirin + Radiation group: rats received aspirin during 21 days before w hole body gamma irradiation , 8 - Caffeine + Aspirin + Radiation group: rats received caffeine parallel to aspirin for 21 days before whole body gamma irradiation. Animals were sacrificed 24 hrs post irradiation. The results demonstrated that rats exposed to whole body gamma irradiation showed a significant increase in alanine amino transferase (AL ) , aspartate amino transferase ( AST), and alkaline phosphatase (ALP) activities, and a significant decrease in total protein indicating liver injury. A significant increase in urea, creatinine, Na + ,and K + were recorded indicating kidney damage. Alteration of liver and kidney functions was accompanied by a significant

  7. Biochemical and histological changes in whole body gamma-irradiated rats feed on wheat, barely and corn bran

    International Nuclear Information System (INIS)

    Soliman, S.M.; Hassan, A.A.; Ragab, E.A.

    2003-01-01

    The present work aims to study the effect of adding 3 different of dietary fibers (wheat, barley or corn bran) to normal balanced diet on liver function, blood, cholesterol, triglycerides and blood glucose level to counteract their elevation in whole body gamma irradiation rats. The experimental diets (balanced diet + fibre additive) were fed for 4 weeks. Samples (blood and tissue) were collected at intervals of times 7, 14 and 28 days post exposure to single dose (7 Gy) gamma irradiation. The control group consumed a fibre diet for 4 weeks, but not irradiated. The minimum aspartate amino-transferase (AST) and alanine aminotransferase (ALT) activities and the lowest blood total cholestrol, triglycerides and blood glucose were observed in rats (irradiated and non-irradiated rats) fed on wheat bran experimental diet (barley or corn bran). It could be concluded that wheat fibers were more effective, as compared with other fibers contained in balanced diet, in improving the investigated parameters observed after whole body gamma irradiation exposure

  8. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine.

    Science.gov (United States)

    Guney, Y; Hicsonmez, A; Uluoglu, C; Guney, H Z; Ozel Turkcu, U; Take, G; Yucel, B; Caglar, G; Bilgihan, A; Erdogan, D; Nalca Andrieu, M; Kurtman, C; Zengil, H

    2007-10-01

    We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset) or evening (activity span - 13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  9. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine

    Directory of Open Access Journals (Sweden)

    Y. Guney

    2007-10-01

    Full Text Available We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB or abdominopelvic (AP irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset or evening (activity span - 13 h after light onset. Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively to the irradiated rats. AP (P < 0.05 and TB (P < 0.05 irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS levels. Melatonin treatment in the morning (P < 0.05 or evening (P < 0.05 decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05. Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  10. Effect of whole body gamma irradiation and the role of cysteamine as a radioprotector on the kidney of albino rat

    International Nuclear Information System (INIS)

    Waer, H.F.

    1998-01-01

    The present work was designed to investigate the morphological effects of gamma irradiation on rat kidney using the electron microscope, five days after exposure. Our investigation was also devoted to study the curative effect of cysteamine as a radioprotective agent injected at a dose rate of 150 mg/kg body weight pre-irradiation. It was found that the ultrastructure of the cells of the renal proximal convoluted tubules of rats, examined 5 days post-irradiation, were severely affected, the cytoplasm was disorganized and the nuclei showed necrotic changes. However, the cells of the proximal convoluted tubules of rats injected with cysteamine pre-irradiation and examined 3 and 5 days after treatment showed curative effect of cysteamine, which seemed to enhance the recovery of the kidney proximal tubules. The cytoplasm was well organized and the nuclei appeared normal

  11. Radiation Effect on Body Weight and Hematological Changes of Hybrid Mice by Conventional Fraction, Large Abdominal Field Irradiation

    International Nuclear Information System (INIS)

    Lee, Sung Heon; Shin, Sei One; Kim, Myung Se

    1985-01-01

    Radiation effect on mammals, especially on hematologic changes, has been studied since discovery of x-ray. Various experimental animals were tried for radiobiological studies. 72 hybrid mice with conventional fraction (5X/week), large abdominal field (2 x 3cm, from symphysis pubic to xyphoid process) were used. Body weight was declined gradually by increasing irradiation doses, nadir was about 29.7% in male ; 30.4% in female at 6000 rad irradiation group. Hemoglobin value was nearly normal throughout entire treatment. Significant dropping of WBC count was noted to 40-50% of pretreatment values by only 1000 rad irradiation. Change of differential count was interesting; lymphocyte proportion showed gradual reduction, instead of gradual increasing of segmented neutrophil. Those proportion were reversed after 6000 rad irradiation. Urinary protein tests showed + - +++, showing no correlation with dosage. Application. of our study in clinical combination therapy (radiation + chemotherapy) was discussed

  12. Radio-modifying effects of amifostine analogues in whole body gamma irradiated mice

    International Nuclear Information System (INIS)

    Soni, Ravi; Arora, Aastha; Singh, Saurabh; Bhuria, Vikas; Sharma, Anjali; Bhatt, A.N.; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Damage to hematopoietic and gastro-intestinal systems contribute mainly to acute effects (mortality) following exposures to moderate doses of ionizing radiation. The aminothiol, amifostine (WR2721, a FDA approved pro-drug) has been well established protector of normal tissues against radiation damage and chemo-therapeutic drugs induced toxicity. A number of amifostine analogues (DRDE-07, DRDE-30 and DRDE-35) have been recently synthesized that afford protection against Sulfur Mustard (SM) when administered orally. Since, the mechanisms underlying toxicity by SM share a great deal with ionizing radiation and certain anti-cancer drugs, we investigated the potential of DRDE analogues in reducing the acute effects of radiation in whole body irradiated mice. Animal survival, body weight, changes in haematological parameters and CFU-S as well as morphology of GI was studied. DRDE analogues significantly enhanced the animal survival and reduced the radiation sickness (loss of weight) in a dose dependent manner when administered 30 min. before irradiation; optimal doses were 125 mg/kg body weight for DRDE-07; 220 mg/kg for DRDE-30 and 200 mg/kg for DRDE-35. All three analogues were orally effective unlike amifostine, albeit to different extents. The order of radio-protective efficacy in C57BL/6 mice when administered orally was DRDE-35 (60%) > DRDE-07 (50%) > DRDE-30 (40%), while it was DRDE-07 (58%) > DRDE-30 (44%) > DRDE-35 (40%) following intra-peritoneal administration. These analogues enhanced the recovery from radiation-induced hematopoietic damage (peripheral blood counts and improvement in endogenous spleen colony forming units) and gastrointestinal injury (improved structural integrity of GI, increase in villi height, regenerating crypts and mitotic figures) that correlated with the increase in survival. There were no survivors in the radiation group after 35 days of exposure and the values for the analyzed parameters were comparable to the control group. These

  13. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  14. The effects of whole-body irradiation on the serum levels and kinetics of thyroid hormones in rats

    International Nuclear Information System (INIS)

    Gray, W.M.

    1980-01-01

    The effects of a single whole-body dose of X-rays on the serum levels and kinetics of thyroid hormones in rats were studied. The influence of radiation-induced anorexia was monitored by using pair fed control groups. A dose of 800 rad caused a reduction in T 4 levels and 750 rad had a similar effect on T 3 ; in each case the control group showed a smaller reduction. The kinetic results indicated that, in the control groups, the early reduction in hormone concentrations was caused by decreased production, whereas, in the irradiated groups, it was caused by a change in the distribution of the hormone; however the continuing reduction in hormone levels in the irradiated rats appeared to result from decreased production. The results suggest that the thyroid system may play an active part in the early metabolic changes which follow whole-body irradiation. (author)

  15. The Effect of A Single Sub-Lethal Dose of Whole Body Irradiation on the Small Intestine of Rats

    International Nuclear Information System (INIS)

    Al-Ramli, M. A.; Kubba, M. A.; Al-Bassam, L. S.; Belhaj, K.; Al-shawish, N. M.

    2007-01-01

    The effect of whole body radiation with a single sub-lethal dose at 4 Gy on rat small intestine was studied histologically and quantitatively. Irradiated animals were euthanized at 24 hours, 3, 7, 14, 21 and 28 days post- irradiation. Crypts of Leiberkuhn and peyer's patches were especially targeted by irradiation. The crypts showed severe cellular fragmentation in the germinal cellular compartments twenty Four hours after irradiation resulting in partial denudation of villi especially at their Tips. At three days, these cells resumed their proliferative activity with the appearance of unusually large numbers of mitotic figures. Cellular regeneration in the crypts and on the villous surface showed improvement with advancing time till day 28 when the villi had complete epithelial covering and the proliferative activity of the germinal cryptic cells returned to normal. The quantitative study included the measurement of about fifty villi at each time after irradiation. A significant decrease in villous length was noticed at twenty four hours post-irradiation compared to the control values. The length of villi plateaued at about this level till day twenty one when it slightly increased to reach a sub normal mean length on day 28. We concluded that whole body irradiation with a single dose at 4 Gy was enough to induce cryptic cellular necrosis with sloughing of epithelial villous columnar covering. This cellular damage was, however, sub- total since quick regenerative cellular activity was noticed three days post-irradiation. The decrease in the villous length paralleled the cryptic cellular damage whereas full recovery was not achieved despite obvious cellular regeneration.

  16. Assessment and Rehabilitation of Central Sensory Impairments for Balance in mTBI

    Science.gov (United States)

    2016-10-01

    The electrical components (circuit cards that support body sway recordings, power supply , electrical connections) have been designed and are in... healthy controls and 2) Interventional randomized pilot study (Aim II: Balance Rehabilitation) using a novel auditory biofeedback rehabilitation...to healthy control subjects without a history of mTBI. We hypothesize that a) objective measures of central sensorimotor integration, static and

  17. Influence of whole-body irradiation on immune reactions after antitetanus vaccination

    International Nuclear Information System (INIS)

    Servant, P.; Topcha, M.; Pasquier, C.

    The effect of gamma irradiation (450, 550 and 650 rads) on the circulating antibodies resulting from the injection of antitetanus vaccine in rabbits, were studied for different time interval between irradiation and antigen injection. An analysis of the results obtained exhibited that the increase in antibodies formation appeared only one weak after the beginning of irradiation and for a dose of 650 rads [fr

  18. Dosimetric analysis for photon and electron beams in Whole body irradiation

    International Nuclear Information System (INIS)

    Hurtado G, M.

    1998-01-01

    To initiate the Whole body irradiation as an alternative for the treatment of the hematological diseases, leukemia and assistant for the osseous marrow transplantation, it may be taken account the application of International Protocols about control and quality assurance. It is established the intercomparison by the different dosimetric methods: cylindrical ionization chambers and parallel plane, radiographic emulsion film, semiconductor diodes (Mosfet transistors) and TLD-100 thermoluminescent crystals, obtained measurements for 140 x 140 cm 2 fields and large distances 340 cm respect conventional fields in Radiotherapy. The in vitro dosimetry was realized at the Universal Anthropomorphic puppet Alderson Rando basically with the cylindrical crystals (1 mm diameter) of TLD-100 lithium fluoride. It was obtained the dose value with a 0.6 cm 3 cylindrical ionization chamber and the Farmer electrometer for Whole body irradiation (ICT) with photons for electrons and were obtained values with the Markus plane parallel camera. Knowing the dose rate value to the source-surface distance DFS= 80 cm, it was calibrated the crystals with the reference radiation beam of 60 Co for obtaining the response curve: Dose vs. Tl lecture. It was characterized the 10 % of the total population for 300 crystals for applying the statistics corresponding. The luminescence curve obtained of Gaussian form was considered satisfactory by its stability during the pre-anneal lecture and anneal process, getting the main peak lecture at 300 Centigrade according to assigned parameters at lecture equipment TLD Harshaw model 4500. The results indicate the functional dependence with the distance DFS= 340 cm for the following depth PPD, the relations TMR and TPR, the TAR is not calculated by the increment of the dispersion in air. The penumbra increment indicates an increase of the radiation field respect of luminous field. The dispersion angle q 1 respect at the field central axis was determined and was

  19. Effects of a whole body gamma irradiation on GABA repartition in infant rats cerebellum and hippocampal formation

    International Nuclear Information System (INIS)

    Menetrier, F.; Vernois, Y.; Court, L.

    1992-01-01

    'Full-Text:' Thirteen-day-old rats were exposed to a single dose of 4 or 0,5 Gy of gamma at a dose rate of 0,25 Gy/min and were killed about 5h after. Fixation was achieved in situ using glutaraldehyde. For GABA immunocytochemistry transversal sections were incubated with antiserum against GABA, then with PAP and revealed with diaminobenzidine. Proliferative layers are still observed in the infant rat cerebellum (external granular layer) and hippocampal formation (subgranular layer of the dentate gyrus). When irradiation occurs a high percent of these two layers cells are pycnotic. In the normal cerebellum, no immunostaining is observed in external granular layer cell bodies. The only labelled structures are few cytoplasmic expansions coming from subjacent layers. When irradiated, a strong GABA staining appears around pycnotic cells as a network with labelled meshes. GABA staining and pycnotic cells were more especially important when the irradiation increases. Further studies are needed to specify the nature of labelled meshes. In the normal hippocampal formation, subgranular cells are not GABA stained. Staining occurs in cells which are not granule cells. They are scattered throughout cell layers of the dentate gyrus with predominance in the hilus. After irradiation, GABA repartition is not modified. After a 4 Gy whole body gamma irradiation, the inhibitory GABA system is not injured. Other amino-acid neurotransmitters such as Glutamate could be modified. (author)

  20. Evaluation of circulating endothelial cells in the rat after acute and fractionated whole-body gamma irradiation

    Directory of Open Access Journals (Sweden)

    Al-Massarani Ghassan

    2014-12-01

    Full Text Available Purpose: Damage to vascular endothelial cells is a well recognised complication of the irradiation. Our objective was to determine the gamma-irradiation effect on the rat circulating endothelial cells (CEC. Material and methods: Eight-week old rats were divided into four groups: group 1 - rats were exposed to acute whole- -body gamma irradiation with a wide range of single doses (0.5, 1, 2, 4 and 8 Gy, group 2 - rats were exposed to fractionated low doses of irradiation (0.1, 0.5 and 1 Gy every three days for two months, group 3 as group 2, but followed by two months of rest, group 4 were control animals. CEC (CD146 positive cells in group 1 were counted following CD146-based immuno-magnetic separation after one day and one week, as well as at the end of experiment in the other groups. Results: Quantified CEC showed that there was a dose-dependent reduction in CEC count in group 1 (one week after irradiation and group 2. A partial re-population of CEC was observed at the end of experiment in both group 1 and group 2 compared to control group. Group 3 showed a significant increase in CEC levels as compared with group 2 without reaching the control level. Conclusion: The number of CEC (CD146 positive cells in rats exposed to whole-body gamma irradiation was reduced in a dose-dependent manner and it partly recovered during the two-month interval after irradiation. We suggest that CEC count may be an indicator of the radiation-induced vascular damage.

  1. Repopulated antigen presenting cells induced an imbalanced differentiation of the helper T cells in whole body gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Paik, Sang Kee [Chungnam National University, Taejon (Korea, Republic of)

    2004-07-01

    Therapeutic irradiation of cancer patients, although it may be protected by several antioxidant agents against free radicals, often induces chronic sequelae such as inflammation (allergic inflammation). This is a limiting factor for radiotherapy. Following radiotherapy, the inflammation or injury can occur in any organ with a high radiosensitivity such as the lung, bladder, kidney, liver, stomach and intestine. The mechanism by which ionizing radiation initiates inflammation is, however, poorly understood. In recent studies, it was suggested that a factor for irradiation-induced inflammation might be the over production of IL-4 that enhances fibroblast proliferation and collagen synthesis. During the early stages after irradiation, type 2 of the helper T cells might be the major source of IL-4, and later on there seems to be an activation of the other IL-4 producing cell types, e.q. macrophages or mast cells. This is interesting because inflammation is classically seen to be dominated by Th1 cells secreting IFN-{gamma}. In the previous study, we were interested in the enhancement of the IL-4 and the IgE production during the development of immune cells after {gamma}-irradiation. We were able to deduce that IL-4 production was increased because of the shifted differentiation of the naive Th cells by the repopulated antigen presenting cells after irradiation. The aim of the present study was to precisely define whether antigen-presenting cells (APCs) of whole body irradiation-treated mice could influence the shifted differentiation of the Th cells. This view can be demonstrated by confirming that the shifted functional status of the Th cells is induced by the altered function of the repopulated macrophages after whole body irradiation (WBI)

  2. Effect of whole body X-irradiation on the NP-SH level of blood in rabbits

    International Nuclear Information System (INIS)

    Suh, Soo Jhi; Woo, Won Hyung

    1972-01-01

    In hope to elucidate possible changes in blood NP-SH levels when X-irradiation is made in single or fractionate dose, a whole body X-irradiation was done to rabbits either in single dose of 900 r or in fractionated dose of 300 r per day for three days. The NP-SH was measured at 1, 3, 5, 24 and 48 post-irradiation hours, and the results were compared with the normal value of the blood NP-SH. The results obtained are as follows: 1. The normal value of blood NP-SH in the rabbit was 2.11 ± 0.40 μmol/ml. 2. In the single X-irradiation group, the blood NP-SH decreased most prominently at five hours after-irradiation, and a tendency of recovery to the normal level was observed thereafter. 3. In the fractionated group, the blood NP-SH levels were higher, than in the single irradiation group throughout the experiment, and the levels were also higher than the normal in general

  3. Hippophae leaf extract (SBL-1) countered radiation induced dysbiosis in jejunum of total body 60Cobalt gamma - irradiated mice

    International Nuclear Information System (INIS)

    Beniwal, C.S.; Madhu Bala

    2014-01-01

    Single dose of SBL-1 administered at the rate 30 mg/kg body weight (b.w.) 30 min prior to whole body 60 Co-gamma-irradiation at lethal dose (10 Gy), rendered >90% survival in comparison to zero survival in the non-SBL-1 treated 60 Co-gamma-irradiated (10 Gy) mice population (J Herbs Spices Med Plants, 2009; 15(2): 203-215). Present study investigated the effect of SBL-1 on jejunal microbiota in lethally irradiated mice. Study was performed with inbred Swiss albino Strain 'A' male mice (age 9 weeks) weighing 28±2 g. The animals were maintained under controlled environment at 26±2℃; 12 h light/dark cycle and offered standard animal food (Golden feed, Delhi) as well as tap water ad libitum. Metagenomic DNA was extracted, purified and quantified from jejunum of the mice. Universal primers (27f and 1492r) were used to amplify the 16S rRNA DNA from the metagenomic DNA. Amplicons were sequenced, vector contamination and chimeras were removed. The sequences (GenBank Accession No: KF681283 to KF681351) were taxonomically classified by using Sequence Match program, Ribosomal Database Project as well as by nucleotide-BLAST (E-value: 10, database: 16S rRNA gene sequences, Bacteria and Archea). Phylogenetic Tree was prepared using MEGA 5.2 package, using maximum likelihood algorithm after sequence alignment by MUSCLE. Thermus aquaticus was used as out-group to construct rooted tree. Branch stability was assessed by bootstrap analysis. Untreated animals and the animals treated with SBL-1 had 100% Lactobacillus; 60 Co gamma-irradiated animals had 55% Cohaesibacter (Alphaproteobacteria); 27% Mycoplasma (Tenericutes) and only 18% Lactobacillus; animals treated with SBL-1 prior to irradiation had 89% Lactobacillus and 11% Clostridium. This study demonstrated that treatment with SBL-1 at radioprotective doses before total body irradiation with lethal dose (10 Gy) countered the jejunal dysbiosis. (author)

  4. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    2010-07-01

    Full Text Available In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI. However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100% compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%, suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.

  5. Rapid decrease in brain enkephalin content after low-dose whole-body X-irradiation of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, Yukihisa (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.); Ogawa, Norio; Mori, Akitane

    1992-03-01

    Methionine-eckephalin (ME) contents in the hypothalamus and other rat brain structures were measured immediately after 10 or 20 cGy whole-body X-irradiation. The ME contents of homogenates of the striatum, hypothalamus, midbrain + thalamus, hindbrain and pituitary were assayed radioimmunologically with {sup 125}I. The contents of all the structure, except the pituitary, decreased significantly after 20 cGy irradiation. The reduction in the hypothalamus was transient, ME content gradually recovering with time. These results suggest that the central nervous system of mammals is one of the most radiosensitive organs as judged by changes in stress-induced mediators such as ME. (author).

  6. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  7. Fractionated half body irradiation for palliation of multiple symptomatic bone metastases from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Kenji; Hayashi, Shinya; Sunagawa, Yoshimitsu; Sougawa, Mitsuharu; Nakazawa, Masanori; Yamashita, Takashi (Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital)

    1992-06-01

    This was a phase I-II nonrandomized study that explored the toxicity and response of fractionated half-body irradiation (F-HBI) in patients with multiple symptomatic osseous metastases. The patients had no premedication and received 10 Gy in 5 fractions with a dose rate of 15 cGy/min. At the Cancer Institute Hospital, 9 patients were treated by this technique (1 upper and lower F-HBI, 6 upper F-HBI, 2 lower F-HBI). All patients were female and had adenocarcinomas (8 breast and 1 lung). Adverse effects were myelosuppression, vomiting and partial alopecia. But hematologic toxicity was treated with blood transfusion or G-CSF. All toxicity was transient, and no pneumonitis nor radiation-related deaths occurred. When given as palliation, F-HBI was found to relieve pain in 80% of the patients. In 10% of the patients the pain relief was complete. The mean time to achieve pain relief in responders after F-HBI was 9 days. The pain relief was long-lasting and continued without need of reirradiation for 40% of the remaining patient's life. This treatment modality appears to be well tolerated and effective in patients with multiple symptomatic osseous metastases. The optimal indications, dose and fractionation for F-HBI should be further explored in randomized trials. (author).

  8. Reduced-intensity conditioning regimen using low-dose total body irradiation before allogeneic transplant for hematologic malignancies: Experience from the European Group for Blood and Marrow Transplantation

    International Nuclear Information System (INIS)

    Belkacemi, Yazid; Labopin, Myriam; Hennequin, Christophe; Hoffstetter, Sylvette; Mungai, Raffaello; Wygoda, Marc; Lundell, Marie; Finke, Jurgen; Aktinson, Chris; Lorchel, Frederic; Durdux, Catherine; Basara, Nadezda

    2007-01-01

    Purpose: The high rate of toxicity is the limitation of myelobalative regimens before allogeneic transplantation. A reduced intensity regimen can allow engraftment of stem cells and subsequent transfer of immune cells for the induction of a graft-vs.-tumor reaction. Methods and Materials: The data from 130 patients (80 males and 50 females) treated between 1998 and 2003 for various hematologic malignancies were analyzed. The median patient age was 50 years (range, 3-72 years). Allogeneic transplantation using peripheral blood or bone marrow, or both, was performed in 104 (82%), 22 (17%), and 4 (3%) patients, respectively, from HLA identical sibling donors (n = 93, 72%), matched unrelated donors (n = 23, 18%), mismatched related donors (4%), or mismatched unrelated donors (6%). Total body irradiation (TBI) at a dose of 2 Gy delivered in one fraction was given to 101 patients (78%), and a total dose of 4-6 Gy was given in 29 (22%) patients. The median dose rate was 14.3 cGy/min (range, 6-16.4). Results: After a median follow-up period of 20 months (range, 1-62 months), engraftment was obtained in 122 patients (94%). Acute graft-vs.-host disease of Grade 2 or worse was observed in 37% of patients. Multivariate analysis showed three favorable independent factors for event-free survival: HLA identical sibling donor (p < 0.0001; relative risk [RR], 0.15), complete remission (p < 0.0001; RR, 3.08), and female donor to male patient (p = 0.006; RR 2.43). For relapse, the two favorable prognostic factors were complete remission (p < 0.0001, RR 0.11) and HLA identical sibling donor (p = 0.0007; RR 3.59). Conclusions: In this multicenter study, we confirmed high rates of engraftment and chimerism after the reduced intensity regimen. Our results are comparable to those previously reported. Radiation parameters seem to have no impact on outcome. However, the lack of a statistically significant difference in terms of dose rate may have been due, in part, to the small population

  9. Liver dysfunction following whole-body Co-60 irradiation in gerbil (Meriones hurrianae Jerdon) and house rat (Rattus rattus rufescens)

    International Nuclear Information System (INIS)

    Dixit, V.P.; Agrawal, M.; Gupta, C.

    1976-01-01

    Liver dysfunction following whole-body Co-60 irradiation has been studied in domestic and desert rat species. A significant elevation in the serum transaminases activity was noticed both in gerbil and house rat. Alkaline phosphatase and plasma cholesterol levels were also increased indicating an early radiation impairment of the liver tissue, which was later confirmed by histological studies. A steady fall in liver glycogen in irradiated gerbils was strikingly in contrast to an increase in irradiated house rat. Drastic depletion in liver glycogen, changes in the serum enzyme levels and the severity of the hepatic necrosis in gerbils point out that desert mammalian species are much more sensitive to radiation hazard as compared with domestic ones. (orig.) [de

  10. Alkaline phosphatase role in bone marrow and spleen hemopoietic cells recovery after mouse whole-body irradiation

    International Nuclear Information System (INIS)

    Al Mouhamad, K.; Al Sheikh, F.

    2013-04-01

    Hematopoietic tissue is consisted of two distinctly different tissues, the first part is the hematopoietic stem cells and the second tissue is a mixture of many supportive cells which the most important one of them is alkaline phosphatase (ALP)-secreted-fibroblastic cells (FBCs). It was thought that FBCs play an important role in the hematopoiesis through ALP secretion. Our previous studies indicated that the ALP secretion in bone marrow (BM) increased after a whole mouse body irradiation when the BM cellular component is completely destroyed and, then it was decreased when the BM regain its cellular component. We performed some experiences to verify if there is any role to the ALP in the hematopoiesis. We irradiated three groups of mice to non-lethal dose, the first one was injected by Tetramizole (anti-ALP) 24 hours before irradiation, and the second was injected by Lisinopril (anti-hematopoiesis) 24 hours before irradiation and the third left without any injection. The fourth left as control. Many histological sections were taken from BM and spleen on 1, 3, 7 and 30 days after irradiation to perform ALP-histological detection. These experiences were repeated to count BM cells. ALP secretion level in the BM was reached the maximum 3 days after irradiation without any injection when the cell number was in minimum then, the level of ALP start to decrease and the cell number start to increase. ALP secretion delayed when the mice were injected by Tetramizole and BM cell population also delayed to return to its normal position. But, the ALP secretion increased directly after irradiation when the mice were injected by Lisinopril which, the ALP secretion, normally reached the maximum by the third day. These results may indicate a role to the ALP in BM and spleen hematopoietic cell recovery (author).

  11. Earlier low-dose TBI or DST overcomes CD8+ T-cell-mediated alloresistance to allogeneic marrow in recipients of anti-CD40L.

    Science.gov (United States)

    Takeuchi, Yasuo; Ito, Hiroshi; Kurtz, Josef; Wekerle, Thomas; Ho, Leon; Sykes, Megan

    2004-01-01

    Treatment with a single injection of anti-CD40L (CD154) monoclonal antibody (mAb) and fully mismatched allogeneic bone marrow transplant (BMT) allows rapid tolerization of CD4+ T cells to the donor. The addition of in vivo CD8 T-cell depletion leads to permanent mixed hematopoietic chimerism and tolerance. We now describe two approaches that obviate the requirement for CD8 T-cell depletion by rapidly tolerizing recipient CD8 T cells in addition to CD4 cells. Administration of donor-specific transfusion (DST) to mice receiving 3 Gy total body irradiation (TBI), BMT and anti-CD40L mAb on day 0 uniformly led to permanent mixed chimerism and tolerance, compared with only 40% of mice receiving similar treatment without DST. In the absence of DST, moving the timing of 3 Gy TBI to day -1 or day -2 instead of day 0 led to rapid (by 2 weeks) induction of CD8+ cell tolerance, and also permitted uniform achievement of permanent mixed chimerism and donor-specific tolerance in recipients of anti-CD40L and BMT on day 0. These nontoxic regimens overcome CD8+ and CD4+ T-cell-mediated alloresistance without requiring host T-cell depletion, permitting the induction of permanent mixed chimerism and tolerance.

  12. Stereotactic body radiation therapy in the re-irradiation situation – a review

    International Nuclear Information System (INIS)

    Mantel, Frederick; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Although locoregional relapse is frequent after definitive radiotherapy (RT) or multimodal treatments, re-irradiation is only performed in few patients even in palliative settings like e.g. vertebral metastasis. This is most due to concern about potentially severe complications, especially when large volumes are exposed to re-irradiation. With technological advancements in treatment planning the interest in re-irradiation as a local treatment approach has been reinforced. Recently, several studies reported re-irradiation for spinal metastases using SBRT with promising local and symptom control rates and simultaneously low rates of toxicity. These early data consistently indicate that SBRT is a safe and effective treatment modality in this clinical situation, where other treatment alternatives are rare. Similarly, good results have been shown for SBRT in the re-irradiation of head and neck tumors. Despite severe late adverse effects were reported in several studies, especially after single fraction doses >10 Gy, they appear less frequently compared to conventional radiotherapy. Few studies with small patient numbers have been published on SBRT re-irradiation for non-small cell lung cancer (NSCLC). Overall survival (OS) is limited by systemic progression and seems to depend particularly on patient selection. SBRT re-irradiation after primary SBRT should not be practiced in centrally located tumors due to high risk of severe toxicity. Only limited data is available for SBRT re-irradiation of pelvic tumors: feasibility and acceptable toxicity has been described, suggesting SBRT as a complementary treatment modality for local symptom control

  13. [Protective activity of different concentration of tea polyphenols and its major compound EGCG against whole body irradiation-induced injury in mice].

    Science.gov (United States)

    Guo, Shaolai; Hu, Yuan; Liu, Ping; Wang, Yuyu; Guo, Daihong; Wang, Dongxiao; Liao, Hongho

    2010-05-01

    To evaluate the different concentrate of tea polyphenols (TP) and its compound for irradiation-protection and investigate its mechanism. To evaluate the radioprotective activity, mice were exposed to whole body gamma irradiation. TP 80 and TP 50 (50, 10 mg x kg(-1)) and its major constituent epigallocatechin gallate (EGCG) (50, 10 mg x kg(-1)) were administered after irradiation to examine its inhibition against irradiation-induced injury. This study indicate that in comparison with non-irradiated controls, irradiation resulted in a significant reduction the spleen index (spleen weight/body weight 100), haematological parameters (RBC, WBC and PLT), activity of superoxide dismutase (SOD), and increase of malondialdehde (MDA) level in 28 days. Oral administration of TP (50 mg x kg(-1)) shown the best effect on reducing the irradiation-induced injury on mice studied, and showed a protective effect against irradiation-induced haematological parameters (RBC, WBC and PLT), the spleen index and MDA level significant reduction, and antioxidase activity (SOD) decrease. The results suggest that TP 50 mg x kg(-1) and EGCG have in vivo antioxidant potential and radioprotective activity against whole body gamma irradiation in mice. It may be concluded that TP (50% EGCG) possess good irradiation-protective and antioxidant effect.

  14. Neoplasia in beagles that received whole-body irradiation during prenatal or postnatal development

    International Nuclear Information System (INIS)

    Benjamin, S.A.; Angleton, G.M.; Lee, A.C.; Saunders, W.J.; Miller, G.K.; Jaenke, R.S.; Brewster, R.D.; Long, R.I.

    1986-01-01

    Sensitivity to radiation carcinogenesis is being studied in 1680 beagle dogs that received whole-body 60 Co gamma radiation exposures during development. Eight treatment groups of 120 dogs each received 0.16 or 0.83 Gy at one of three prenatal (8, 28, or 55 days postcoitus) ages or at one postnatal (2 days postpartum) age. One treatment group of 120 dogs received 0.83 Gy as juveniles at 70 days postpartum, and one treatment group of 240 young adult dogs received 0.83 Gy at 365 days postpartum. Three-hundred-sixty control dogs were sham irradiated. Of the 1680 dogs, 1058 are dead. Approximately 25% of these deaths were related to malignant neoplasia. The age-related incidence of neoplasia is being evaluated. While the incidence of all neoplasms is being studied, particular emphasis is being placed on types of cancer with known susceptibility to induction by radiation such as those of breast, thyroid, and hematopoietic tissues. Neoplasms are classed as (1) incidental, i.e., those found at necropsy in dogs that died of an unrelated cause; (2) mortality independent, i.e., those seen in live dogs and removed surgically, or (3) fatal, i.e., those directly or indirectly responsible for death. Analyses of incidental tumors are done by a prevalence method, whereas analyses of mortality-independent and fatal tumors use an onset-rate or death-rate method. The results of these methods are then combined to give a composite age-related incidence of specific neoplasms. Analyses also are done on disease subgroups to attempt to delineate the effect of intercurrent disease on tumor incidence. The results of such analyses support the concept that age at exposure is an important factor in radiation carcinogenesis. 28 refs., 7 tabs

  15. Impact of Whole Body Irradiation on the Intestinal Microbiome- Considerations for Space Flight

    Science.gov (United States)

    Karouia, Fathi; Santos, Orlando; Valdivia-Silva, Julio E.; Jones, Jeffrey; Greenberger, Joel S.; Epperly, Michael W.

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems to just name a few. However, to date, radiation exposure is one of the main limiting factors for long duration space exploration missions and especially a mission to Mars. Over the past few years through advances in technology, the characterization of the microbiome has revealed a large and complex community of microorganisms living in symbiosis with the human host. However, heterogeneity of the intestinal microbial spectrum in humans has been associated with a variety of diseases and susceptibility to infectious and toxic agents. Limited information is known about the influence of space environment in general and radiation in particular on the microbiome. Furthermore, multiple spaceflight and simulated microgravity experiments have shown changes in phenotypic microbial characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotic and stress susceptibility, and an increase in virulence factors. We now report a study of the bacterial composition of the intestine in C57BL/6NTAC mice and the types of microbes entering the body at two time points after the LD 50/30 dose of total body irradiation using microarray-based assay, G3 PhyloChip 16S rRNA, and bioinformatics methods. Bacteria and archaea taxon richness was determined at the genus level and ranged from 2 to 107 and 0 to 3 respectively. As expected, pre-exposure blood samples exhibited less bacterial and archaeal genus richness compared to all other samples. However, the study shows a significant shift in the mouse gut microbial speciation in several bacterial families, with increases in the Turicibacteraceae and Enterobacteriaceae and decreases in the Lachnospiraceae and Ruminococcaceae families. The findings most relevant to occupational

  16. Effects of local and whole body irradiation on the appearance of osteoblasts during wound healing in tooth extraction sockets in rats

    International Nuclear Information System (INIS)

    Hosokawa, Yoichiro; Kudo, Kohsei; Kashiwakura, Ikuo; Sakakura, Yasunori; Irie, Kazuharu

    2010-01-01

    Irradiation before tooth extraction delays wound healing in the alveolar socket. This study examined the influences of local and whole body irradiation before tooth extraction on appearance of osteoblasts in the alveolar bone of rat maxillary first molars because bone formation is observed at the initial phase of wound healing. Several osteoblasts were generated 3 days after tooth extraction, and the number of cells increased day by day. Morphological studies showed there were little differences between local irradiation and non-irradiated controls. In contrast, the extraction wound in the whole body irradiation group showed delayed healing, and there was poor granulation tissue and very few osteoblasts at the bottom of the socket. An ultrastructural study showed that the osteoblasts in the extraction socket of whole body irradiation rats were smaller, and had poorly developed organelles. Injection of bone marrow cells to whole body-irradiated animals immediately after tooth extraction partially restored the number of osteoblasts. New periosteal bone formations outside of sockets showed little delay in the whole body irradiation group. These findings suggest that bone formation in the wound healing of extraction socket requires bone marrow cells from hematopoietic organs such as the bone marrow as well as local sources around the alveolar socket, during the initial phase of wound healing. (author)

  17. Effects of local and whole body irradiation on the appearance of osteoblasts during wound healing in tooth extraction sockets in rats.

    Science.gov (United States)

    Hosokawa, Yoichiro; Sakakura, Yasunori; Irie, Kazuharu; Kudo, Kohsei; Kashiwakura, Ikuo

    2010-01-01

    Irradiation before tooth extraction delays wound healing in the alveolar socket. This study examined the influences of local and whole body irradiation before tooth extraction on appearance of osteoblasts in the alveolar bone of rat maxillary first molars because bone formation is observed at the initial phase of wound healing. Several osteoblasts were generated 3 days after tooth extraction, and the number of cells increased day by day. Morphological studies showed there were little differences between local irradiation and non-irradiated controls. In contrast, the extraction wound in the whole body irradiation group showed delayed healing, and there was poor granulation tissue and very few osteoblasts at the bottom of the socket. An ultrastructural study showed that the osteoblasts in the extraction socket of whole body irradiation rats were smaller, and had poorly developed organelles. Injection of bone marrow cells to whole body-irradiated animals immediately after tooth extraction partially restored the number of osteoblasts. New periosteal bone formations outside of sockets showed little delay in the whole body irradiation group. These findings suggest that bone formation in the wound healing of extraction socket requires bone marrow cells from hematopoietic organs such as the bone marrow as well as local sources around the alveolar socket, during the initial phase of wound healing.

  18. A COMPARISON OF THE EFFECTS ON THE SHWARTZMAN PHENOMENON OF LEUKOPENIA PRODUCED BY NITROGEN MUSTARD AND BY WHOLE BODY IRRADIATION

    Science.gov (United States)

    Johnstone, Douglas E.; Howland, Joe W.

    1958-01-01

    The effect of leukopenia on the susceptibility of rabbits to the localized Shwartzman reaction was studied in those receiving whole body irradiation and nitrogen mustard respectively. Of animals receiving nitrogen mustard in which the total polymorphonuclear leukocyte count was less than 100 cells/c.mm. only 17 per cent developed positive local Shwartzman reactions whereas 75 per cent of irradiated animals with total polymorphonuclear leukocyte counts less than 100 cells/c.mm. had positive reactions. A local Shwartzman reaction occurred in 60 of 71 control rabbits (85 per cent). Animals of both the treated groups showed positive Shwartzman reactions at a time when their total polymorphonuclear leukocyte counts were less than 500 cells/c.mm. From the findings, it is concluded (a) that the presence of normal numbers of circulating polymorphonuclear leukocytes is not an obligatory prerequisite condition to the localized hemorrhagic necrosis of the Shwartzman phenomenon, and (b) the mechanisms of action of nitrogen mustard and whole body irradiation on body tissues differ in relation to the Shwartzman reaction. PMID:13575676

  19. Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats.

    Science.gov (United States)

    Adaramoye, Oluwatosin A; Adedara, Isaac A; Farombi, E Olatunde

    2012-05-01

    Ionizing radiation is one of the environmental factors that may contribute to reproductive dysfunction by a mechanism involving oxidative stress. We investigated the possible ameliorative effects of kolaviron (KV) (a biflavonoid from the seeds of Garcinia kola) on sperm characteristics, testicular lipid peroxidation (LPO) and antioxidant status after a whole body γ-irradiation in Wistar rats. Vitamin C (VC) served as standard antioxidant in this study. The study consists of four groups of 6 rats each. Group I received corn oil, whereas group II received a single dose of γ-radiation (5 Gy). The animals in groups III and IV were pretreated with KV (250 mg/kg) and VC (250 mg/kg) by oral gavage five times in a week, respectively, for 6 weeks prior to and 8 weeks after exposure to γ-radiation. Gamma-irradiation resulted in a significant (pin body weight and relative testes weight. Also, γ-irradiation significantly (pin the serum and testes. Irradiated rats showed testicular degeneration with concomitant decrease in sperm motility and viability. Although sperm abnormalities significantly increased, it has no effect on the epididymal sperm count. KV and VC significantly (prats. Furthermore, supplementation of KV and VC ameliorated radiation-induced toxicity by increasing the activities of antioxidant enzymes, decreased LPO and abrogated testicular degeneration. Taken together, γ-irradiation caused reproductive dysfunction by depleting the antioxidant defence system in the rats, while administration of KV or VC ameliorated the radiation-induced testicular toxicity. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Defining the Pathophysiological Role of Tau in Experimental TBI

    Science.gov (United States)

    2017-10-01

    critically evaluate three hypotheses: (i) tau exacerbates the neuronal damage and cognitive dysfunction after single and repetitive mild TBI in the...expression of pathological human tau and either single or repetitive mild TBI. Instead, long-term expression of pathological human tau in a specific mouse...independent of single or repetitive mild TBI. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME

  1. Hemi body irradiation: An economical way of palliation of pain in bone metastasis in advanced cancer

    Directory of Open Access Journals (Sweden)

    Santanu Pal

    2014-01-01

    Full Text Available Background: The primary aim of this prospective non-randomized study was to evaluate the effect of hemi-body irradiation (HBI on pain and quality of life in cancer patients with extensive bone metastases. The secondary aim was to evaluate side-effects and cost-effectiveness of the treatment. Materials and Methods: Between March 2008 and December 2010, a total of 23 (male = 14, female = 9, median age = 60 years diagnosed cases of metastatic cancer patients (prostate = 11, breast = 6, and lung = 6 received HBI, which was delivered as lower (n = 7 (dose = 8 Gy, upper (n = 8 (dose = 6 Gy, or sequential HBI (n = 8 with a Telecobalt unit (Theratron 780C. Among them, one lung cancer patient died at 2 months and one prostate cancer patient defaulted after the second follow-up. Thus, 21 patients (male = 13, female = 8, median age = 65 years (prostatic cancer = 10, breast cancer = 6, and lung cancer = 5 were followed up for a minimum of 6 months. Evaluations were performed before and at 2, 4, 8, 16, and 24 weeks after treatment. Pain evaluation was done by Visual Analogue Scale (VAS, Verbal Rating Scale (VRS, Percentage of Pain Relief (PRR, and Global Pain Score (GPS. Toxicity was assessed by CTC v-3 toxicity scores in the medical record. Assessment of oral morphine consumption was done before and after radiation using paired t-test, and correlation analysis was also done with decrease of morphine consumption and reduction of pain score using statistical analysis. Results: Response (control of pain was partial (PR in 67% and complete (CR in 22% of patients. For most patients, the pain control lasted throughout the follow-up period (6 months. From 66.66% patients requiring 13 or more Morphine (10 mg tablets per day prior to HBI, none of the patients required to consume 13 or more Morphine (10 mg tablets per day following HBI, which was correlated with significant reduction in various pain scores (P < 0.05. One way ANOVA with Dunnett′s Multiple Comparison

  2. Hepatic catalase activity after whole-body irradiation of the mouse

    International Nuclear Information System (INIS)

    Neveux, Y.; Drouet, J.; Guillouzo, A.; Rault, H.; Picard, G.

    Using biochemical techniques, the effect of irradiation on catalase rate of different tissues is studied. With cytochemistry, the decrease of catalase activity is studied in situ, after exposure to great ionizing radiation doses [fr

  3. Affecting mortality of whole-body gamma-irradiated Beagle dogs

    International Nuclear Information System (INIS)

    Dostal, M.; Kuna, P.; Neruda, O.; Petyrek, P.; Simsa, J.; Vavrova, J.; Skopec, F.

    1982-01-01

    The efficacy is compared of radioprotection and the complex treatment of acute radiation syndrome in laboratory dogs. One group of dogs was administered an injection of radioprotectives, the other was a control group. The treated group was administered vitamins and antibiotics in injections after the irradiation. It was found that complex treatment between days 1 and 28 after irradiation is relatively effective. In the treated dogs radioprotection does not significantly influence survival or even reduces survival. (M.D.)

  4. Pathomorphological and pathogenetic studies of the radiation syndrome in calfs and heifers after whole-body irradiation with X-rays

    International Nuclear Information System (INIS)

    Johannsen, U.; Koch, E.; Mehlhorn, G.; Panndorf, H.

    1978-01-01

    27 calfs were exposed to whole-body X-ray doses of 170 R and 150 R, respectively. 14 animals which died between the 17th and 27th day after irradiation were examined. The most important pathomorphological findings were: hematopoietic disorders, hemorrhagic diatheses together with pneumonia, liver degeneration, damage to the intestine (only in animals irradiated with 170 R), and malnutrition

  5. Evaluation of the analgesic activity and safety of ketorolac in whole body fractionated gamma irradiated animals

    Directory of Open Access Journals (Sweden)

    Sara Aly

    2015-06-01

    Full Text Available This study was performed to evaluate the analgesic activity and the toxicity of ketorolac in normal and fractionated (1.5 Gy/day/4 days γ-irradiated animals. Determination of brain serotonin content and serum prostaglandin level were also undertaken. The analgesic activity was tested using formalin test, at three dose levels (15, 30 and 60 mg/kg after 1 and 7 days post radiation exposure. LD50 determinations and assessment of liver and kidney function tests were performed. Our results indicated marked analgesic effects on the early and late phases of nociception. Double treatment with ketorolac and irradiation increased brain serotonin content. The acute LD50 of ketorolac was decreased in irradiated animals as compared to the LD50 of normal animals. Double treatment with ketorolac and irradiation induced an elevation of gastric mucin content, urea and BUN levels on the 1st day post irradiation, whereas, albumin level was lowered and globulin level was elevated after 7 days post irradiation. Depending on this study the dose of ketorolac used for treating cancer patients addressed to radiotherapy should be reduced, however, this requires further clinical confirmation.

  6. Determination of conversion factors between body doses and relevant radiation quantities for external X-ray and gamma irradiation

    International Nuclear Information System (INIS)

    Kramer, R.

    1979-02-01

    With particular consideration of ICRP-26 conversion factors between body doses and relevant radiation quantities for external X- and gamma radiation were assessed. Determination of these conversion factors included all areas of professional, medical, and environmental exposures. There was used a mathematical exposure model being essentially defined by application of a Monte Carlo photon transport calculation in a mathematical human phantom. Body doses were estimated for a reference man in relation to the relevant raditon quantities for different angles of incidence as a function of photon energy. The effective whole body dose defining the risk assessment of stochastic radiation effects was evaluated for the first time. There was also calculated the equivalent dose index which, with respect to radiation protection, is of special importance among the quantities characterizing radiation. The calculations indicated that for different irradiation directions in the energy range between 0.025 and 10 MeV the equivalent dose index gives a conservative estimation for the effective whole body dose. For X-ray diagnostic examinations in the body area the tissue surface dose may be regarded as an upper limit for body doses in the useful beam. The standard energy dose and the equivalent dose index are a conservative measure for important body doses in case of terrestrial radiation and fresh fall-out radiation from the ground. (orig./HP) [de

  7. Beta-glucosidase activity of ER-bodies in Arabidopsis thaliana seedlings under clinorotation and after X-ray irradiation

    Science.gov (United States)

    Romanchuk, Svitlana

    Realization of long-term space flight requires the life support bioregenerative systems, an indispensable component of which are plants as a source of oxygen, water and food. Although it is well known now that plants adopt to spaceflight factors, in particular to microgravity, by changing some their patterns at the cellular, physiological, biochemical and molecular levels, many questions on cause and effect of these changes are still open. In addition, it is necessary to find the plant species which will be the most suited to the conditions in a space craft cabin. Plants of the family Brassicaceae are known to be resistant to a variety of abiotic stresses, including irradiation. Among them there are many cultivated plants with which we encounter every day: cabbage, radish, mustard, rapeseed, etc., and Arabidopsis thaliana - a convenient model object. The family Brassicaceae to be characterized by the presence of ER-bodies in plant cells, which are derivative of granular endoplasmic reticulum. Earlier, an enzyme beta-glucosidase (beta-D-glucoside glucohydrolase; EC 3.2.1.21) with an ER retention signal has been shown to accumulate selectively in such bodies in response to different unfavorable factors. Recently, we reported that formation of ER-bodies in A. thaliana seedling roots is sensitive to the clinorotation and X-ray irradiation, as their quantity and size in creased under the influence of these factors in comparison with control.begin{itemize} Therefore, we determined the beta-glucosidase activity in A. thaliana (line Columbia) seedlings grown in the stationary conditions and under clinorotation (a); and after X-ray irradiation (b): a) 3- and 7-day-old seedlings grown on a slow horizontal clinostat (2rpm); b) 3-day-old seedlings were treated with X-ray radiation dose of 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10 and 12 Gray. For the first time, an increase in beta-glucosidase activity, which is the main component of the ER-bodies in A. thaliana seedlings, were found

  8. Technique and dosimetry for total body irradiation with an 8-MV linear accelerator

    International Nuclear Information System (INIS)

    Svahn-Tapper, G.; Nilsson, P.; Jonsson, C.; Alvegard, T.A.

    1987-01-01

    The aim of the study was to develop a method for calculation of the absorbed dose at an arbitrary point in the patient (adults and children). The method should be accurate but simple to use in clinical routine and it should as far as possible follow the recommendations by ICRU for conventional radiotherapy. An 8-MV linear accelerator is used with a diamond-shaped field and an isocentric technique at a focus-axis distance of 430 cm. The dose rate in an arbitrary point in the patient is calculated from the absorbed dose rate in dose maximum for a phantom size of 30 x 30 x 30 cm 3 in the TBI field, an inverse square law factor, the tissue-maximum ratio, an equivalent field size correction factor determined from the patient contour using the Clarkson method, a factor correcting for lack of backscattering material, an off-axis output correction factor, and a factor that corrects for off-axis variations in effective photon beam energy and for oblique beam penetration of the patient. A personal computer is used for the dose calculations. The formula was tested with TLD measurements in a RT Humanoid (adult) phantom and in a Pedo-RT Humanoid (child) phantom. In vivo dose measurements are also presented

  9. Lethal effect after whole-body irradiation on mouse with various photon radiations

    International Nuclear Information System (INIS)

    Kohda, Shizuo

    1976-01-01

    The dependence of mortality on the quality of radiation was investigated in ICR mice after wholebody irradiation with 200 kV x-ray, 60 Co γ-ray, or 10 MV x-ray. With respect to the 30 day mortality, LD 50 values were estimated as 606 rad for 200 kV x-ray and as 713 rad both for 60 Co γ-ray and for 10 MV x-ray. Hence, the value of relative biological effectiveness (RBE) to that for 200 kV x-ray was 0.850, while the value decreased with increasing the mortality rate. The value extrapolated to 100% mortality was estimated as 0.6. These results were valid for either 7 or 8 week mice, but the life span of 7 week mice after the irradiation was 3 days shorter than that of 8 week mice. These findings resulted in following conclusions: 1) There are no qualitative differences between 10 MV x-ray and 60 Co γ-ray irradiations. 2) The biological effects after 10 MV x-ray and 60 Co γ-ray irradiations are reduced with increased killing rate, compared with that after 200 kV x-ray irradiations. (Evans, J.)

  10. Effect of whole-body irradiation of mice on the number of background plaque-forming cells

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Soeederberg, A.

    1983-01-01

    Mice were exposed in whole-body fashion to several doses of radiation and killed at various times thereafter for a determination of the number of background plaque-forming cells (PFCs) as assayed on either sheep erythrocytes or bromelain-treated autologous mouse erythrocytes. Increased numbers of both types of PFC were found in the irradiated groups. These increases were dependent on radiation dose and time after exposure. They did not appear to be caused by a disruption of normal lymphocyte traffic or a switch in immunoglobulin isotype. An increased number of PFCs on bromelain-treated mouse RBCs but not on sheep RBCs were found in irradiated congenitally athymic nude mice. On the basis of this and related observations, background PFCs on bromelain-treated mouse RBCs and on sheep RBCs appear to fall under different forms of homeostatic control

  11. Space Weathering of airless bodies in the Solar System - Combining hypervelocity dust impacts with energetic irradiation experiments

    Science.gov (United States)

    Fiege, K.; Bennett, C.; Guglielmino, M.; Orlando, T. M.; Trieloff, M.; Srama, R.

    2015-12-01

    The chemical and mineralogical characterization of meteorites and their parent asteroids provides us with information about the processes and conditions during the formation of the inner Solar System. However, linking meteorites to their parent bodies is problematic. Astronomical observations aim to reconstruct the surface properties of these bodies primarily by visible and infrared spectra, but space weathering severely modifies the optical, compositional and physical properties of thin surface layers and thus precludes proper identification of chemistry and mineralogy. The effects of space weathering have been experimentally studied mainly with respect to ion bombardment and sputtering. Other studies aimed to simulate the influence of micrometeoroid bombardment by using laser ablation techniques. However, there is sufficient evidence that laser ablation does not realistically lead to the same effects as produced during real micrometeorite impacts. We performed micrometeorite bombardment using a 2MV dust accelerator at the Institute for Space Systems at University of Stuttgart, Germany, capable of generating impact speeds up to 100 km s-1. These results are combined with energetic irradiation experiments at the Electron and Photon Induced Chemistry on Surfaces (EPICS) laboratory at Georgia Institute of Technology, USA. By simulating highly realistic irradiation conditions, we are able to investigate the processes of particle and solar wind irradiation on solid planetary surfaces and study the formation of e.g., nanophase iron in minerals, the effects on hydrous minerals regarding their volatile budgets, or possible OH-formation in nominally anhydrous minerals and relate these to their optical properties. Using a variety of minerals, this work aims to contribute to a better understanding of the general alteration mechanisms in space environments in dependence of weathering agent and available material. We here present the results of initial comparison analysis and

  12. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    Science.gov (United States)

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  13. Thyroid neoplasia in beagles receiving whole-body irradiation during development

    International Nuclear Information System (INIS)

    Stephens, L.C.; Norrdin, R.W.; Hargis, A.M.; Benjamin, S.A.

    1979-01-01

    Twenty malignant and 17 benign thyroid neoplasms have been diagnosed in 37 Segment III beagles. Nine males and 8 females had follicular adenomas, and 7 males and 13 females had thyroid carcinomas. The dogs ranged in age from 5.16 to 10.66 years. Twenty-nine of the 37 dogs (78.4 percent) were hypothyroid. Twenty-six (70.3 percent) dogs were irradiated. Of the 26 irradiated dogs 15 had malignant tumors. Fourteen (37.8 percent) of the 37 dogs had the same sire

  14. Development of Posiphen, an Inhibitor of Phosphorylated Tau Expression, as a Treatment of TBI

    Science.gov (United States)

    2015-09-01

    notion that TBI may affect dopaminergic cell bodies as well as their terminals, as shown by low tyrosine hydroxylase levels in this subpopulation of...10 mg/kg i.p.) was well tolerated in rats and all doses reversed the loss of tyrosine hydroxylase induced by mild LFP in the striatum of injured...rat, APP, tau, alpha-synuclein, drug trial, nigro-striatal dopaminergic neurons, tyrosine hydroxylase , rats, striatum, hippocampus, cerebral cortex

  15. Reflective Inserts to Reduce Heat Strain in Body Armor: Tests With and Without Irradiance

    National Research Council Canada - National Science Library

    Cadarette, Bruce S; Santee, William R; Robinson, Scott B; Sawka, Michael N

    2007-01-01

    ... (10 min rest followed by 100 min walking at 1.56 m s 1). All trials were at 40.0 C dry bulb (Tdb), 12.4 C dew point (Tdp), 20% RH, and 1.0 m s 1 wind speed. On 2 d, there was supplementary irradiance...

  16. Effect of acute whole-body neutron gamma irradiation on the dopamine neuronal uptake-sites

    International Nuclear Information System (INIS)

    Martin, C.; Mahfoudi, H.; Lambert, F.; Burckhart, M.F.; Fatome, M.

    1997-01-01

    The effects of (neutron-gamma) irradiation on the dopamine uptake sites distribution were investigated, using quantitative autoradiography. Brain ares examined are striatum, lateral septum, substantia nigra, gyrus dentatus, ventral tegmental area, interfascicular nu and antero-ventral thalamic nu. Three hours after exposure at the dose of 4 Gy, a decrease (- 33 %) of dopamine uptake sites was observed in the gyrus dentatus. (authors)

  17. C-fos protein expression in central nervous system. Effects of acute whole-body irradiation

    International Nuclear Information System (INIS)

    Martin, C.; Chollat, S.; Mahfoudi, H.; Lambert, F.; Baille Le Crom, V.; Fatome, M.

    1995-01-01

    Study of c-Fos protein expression in the rat striatum after gamma or (neutron-gamma) irradiation was carried on. c-Fos protein is expressed one hour after gamma exposure at the dose of 15 Gy but specificity of the response must be verified. (author)

  18. SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation

    International Nuclear Information System (INIS)

    Rivers, C; Singh, A; AlDahlawi, I; Wang, I; Podgorsak, M

    2016-01-01

    Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layers of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.

  19. SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, C; Singh, A [Roswell Park Cancer Institute, Buffalo, NY (United States); AlDahlawi, I; Wang, I; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States); State University of New York at Buffalo, Buffalo, NY (United States)

    2016-06-15

    Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layers of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.

  20. Immuno-enhancement in tumor-bearing mice induced by whole body X-irradiation with 75 mGy

    International Nuclear Information System (INIS)

    Zhang Ying; Li Xiuyi; Gong Shouliang; Liu Shuzheng

    2000-01-01

    Objective: In present study the authors observed the effect of whole body irradiation (WBI) with 75 mGy X-rays on the immune function of tumor-bearing mice. Methods: Lewis lung carcinoma cells were implanted into the right thigh muscle of C57BL/6J mice. Ten days after tumor implantation, the tumor-bearing mice were administrated with 75 mGy X-rays WBI, then the mice were sacrificed 18 h after irradiation to detect the immune parameters including the spontaneous proliferation of thymocytes, the proliferative response of splenocytes to ConA and LPS, the cytotoxic activities of specific cytotoxic lymphocytes (CTL) and natural killer cells (NK), as well as lymphokine activated killer cells (LAK) in spleen. The methods the authors used were 3 H-TdR incorporation or release assay. Results: the immune parameters of exposed tumor-bearing mice were much higher than those of sham-irradiated tumor-bearing mice (P<0.01). Conclusion: These results suggested that low dose radiation (LDR) could enhance the immune function of tumor-bearing mice, which might be of practical significance in the prevention and therapy of cancer

  1. Effects of whole body x-irradiation and cyclophosphamide treatment on induction of macrophage tumoricidal function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.; Pavlidis, N.A.; Chirigos, M.A.; Weiss, J.F.

    1978-07-01

    The influence of whole-body x irradiation (200 to 800 R) and subcutaneous cyclophosphamide (CY) treatment (150 to 500 mg/kg) was studied on the ability of adjuvants to induce cytotoxic macrophages in vivo. Surprisingly, radiation or CY therapy alone produced growth inhibitory macrophages whose function peaked within 2 days after treatment. When adjuvants such as Bacillus Calmette Guerin (BCG), pyran copolymer, or glucan were administered ip within 2 hr after sublethal (600 R) x irradiation, adjuvant-induced cytotoxic function was depressed but not ablated. In addition, when noninduced peritoneal macrophages were obtained 6 days after lethal (800 R) x irradiation, their ability to be activated in vitro by lymphokine or fibroblast-derived interferon preparations was only slightly depressed at all concentrations of inducer tested. When BCG, pyran, or glucan was administered ip concurrently with sc CY treatment, only the ability of BCG to activate macrophages was markedly reduced, indicating separate mechanisms for the induction of tumoricidal macrophages. A better understanding of the interaction of chemotherapeutic and/or radiation regimens with adjuvants which affect macrophage function may be instrumental to rationalized immunotherapy protocols.

  2. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-11-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body ..gamma.. irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice.

  3. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body γ irradiation

    International Nuclear Information System (INIS)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-01-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body γ irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice

  4. Radio-induced neuropathology: from early effects to late sequelae. Rat behavioural and metabolic studies after sublethal total body irradiation

    International Nuclear Information System (INIS)

    Martigne, A.P.

    2010-05-01

    The radioresistance dogma of Central Nervous System (CNS) is now obsolete. Recent progress in neuroscience allow us to reconsider the radiation-induced cognitive dysfunctions observed after radiation therapy or after a nuclear accident, and to devise appropriate diagnostic and therapeutic means. We have developed a Rat model to study the effects of total body irradiation at a sublethal dose (4.5 Gy). This leads to impaired learning and memory of a task being acquired during the first month - which is prevented by administration of a radioprotector (amifostine) - while it does not appear to affect retrograde memory. Early, an apoptotic wave occurs in the sub-ventricular zone, 5 to 9 hours after exposure, while neuro-genesis is suppressed. Two days after irradiation, the metabolic study conducted by NMR HRMAS (High Resolution Magic Angle Spinning) suggests the presence of cerebral oedema and the study of brain lipids in liquid NMR confirms the membrane damages (elevated cholesterol and phospholipids). The lipid profile is then normalized while a gliosis appears. Finally, 1 month post-irradiation, the elevation of GABA, an inhibitory neurotransmitter, in 2 separate brain structures, occurs simultaneously with a taurine decrease in the hippocampus that lasts 6 months. Our integrated model allows validating bio-markers measurable in vivo NMR spectroscopy - the next experimental stage - and testing new radiation-protective agents. (author)

  5. Effects of whole body x-irradiation and cyclophosphamide treatment on induction of macrophage tumoricidal function in mice

    International Nuclear Information System (INIS)

    Schultz, R.M.; Pavlidis, N.A.; Chirigos, M.A.; Weiss, J.F.

    1978-01-01

    The influence of whole-body x irradiation (200 to 800 R) and subcutaneous cyclophosphamide (CY) treatment (150 to 500 mg/kg) was studied on the ability of adjuvants to induce cytotoxic macrophages in vivo. Surprisingly, radiation or CY therapy alone produced growth inhibitory macrophages whose function peaked within 2 days after treatment. When adjuvants such as Bacillus Calmette Guerin (BCG), pyran copolymer, or glucan were administered ip within 2 hr after sublethal (600 R) x irradiation, adjuvant-induced cytotoxic function was depressed but not ablated. In addition, when noninduced peritoneal macrophages were obtained 6 days after lethal (800 R) x irradiation, their ability to be activated in vitro by lymphokine or fibroblast-derived interferon preparations was only slightly depressed at all concentrations of inducer tested. When BCG, pyran, or glucan was administered ip concurrently with sc CY treatment, only the ability of BCG to activate macrophages was markedly reduced, indicating separate mechanisms for the induction of tumoricidal macrophages. A better understanding of the interaction of chemotherapeutic and/or radiation regimens with adjuvants which affect macrophage function may be instrumental to rationalized immunotherapy protocols

  6. The effect of total body irradiation and bone marrow transplantation during childhood and adolescence on growth and endocrine function

    International Nuclear Information System (INIS)

    Leiper, A.D.; Stanhope, R.; Lau, T.; Grant, D.B.; Blacklock, H.; Chessells, J.M.; Plowman, P.N.

    1987-01-01

    Seventeen children with acute leukaemia and myeloproliferative disorders were investigated for growth and endocrine dysfunction. All had undergone bone marrow transplantation prepared with cyclophosphamide and single fraction total body irradiation (900-1000 cGy) between 1.5 and 3.8 (mean 2.2) years previously. The majority exhibited growth failure, of multiple aetiology. Ten patients, of whom eight had had previous prophylactic cranial irradiation, had evidence of growth hormone deficiency based on reduced growth hormone reponse to insulin induced hypoglycaemia. Three had evidence of hypothalamic damage. Gonadal failure was common. All four girls of adolescent age (10.6-14.1 years) had ovarian failure requiring sex steroid replacement. Of eight boys of adolescent age (12.3-18.3 years), two had testicular failure requiring sex steroid supplements. Both had had previous testicular irradiation. Five others had compensated gonadal failure; one had normal Leydig cell function. Abnormalities of the TSH response to TRH occurred in 10 patients but only three had overt hypothyroidism. Unlike growth hormone deficiency, gonadal and thyroid dysfunction showed no correlation with previous cranial radiotherapy. (author)

  7. Effect of antihistamines, disodium cromoglycate (DSCG) or methysergide on post-irradiation cerebral blood flow and mean systemic arterial blood pressure in primates after 25 Gy, whole-body, gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Forcino, C.D. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)

    1995-06-01

    Exposure to ionizing radiation causes hypotension, cerebral ischemia and release of histamine (HA) and serotonin (5-HT). To investigate the relationship among these responses, rhesus monkeys (Macaca mulatta) received physiological saline (i.v.), disodium cromoglycate (DSCG), antihistamines (AH, mepyramine and cimetidine), or methysergide (METH), then were given 25 Gy whole-body irradiation. Monkeys receiving DSCG, AH or METH had higher post-irradiation mean arterial blood pressure (MBP) than saline-treated controls. Compared to levels in controls, post-irradiation hippocampal blood flow (rCBF) levels were higher in monkeys receiving DSCG, AH or METH. Treatment with the 5-HT{sub 2} receptor antagonist methysergide was the most effective in maintaining both rCBF and MBP after irradiation. Results support the hypothesis that the irradiation-induced cerebral ischemia and, to some extent, the hypotension is mediated by serotonin through 5-HT{sub 2} receptor sites. (author) 72 refs.

  8. Growth in children following irradiation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Bushhouse, S.; Ramsay, N.K.; Pescovitz, O.H.; Kim, T.; Robison, L.L.

    1989-01-01

    Longitudinal height data from 46 pediatric bone marrow transplant (BMT) patients, including 18 with aplastic anemia (AA), 19 with acute nonlymphoblastic leukemia (ANLL), and 9 with acute lymphoblastic leukemia (ALL), were analyzed to assess growth posttransplantation. Patients were prepared for BMT with high-dose cyclophosphamide followed by 7.5 Gy single-dose irradiation; AA patients received total lymphoid irradiation (TLI), and leukemia patients received total body irradiation (TBI). AA patients demonstrated reduced height posttransplant as reflected in a negative mean standard deviation score. The observed reduction was statistically significant only at 3 years following transplant. In contrast, leukemia patients showed a significant loss in relative height that was first visible at 1 year post-BMT and continued until at least 4 years post-BMT. Mean growth velocities in the leukemia patients were significantly below median for the 3 years following transplant. With a median follow-up of 4 years, antithymocyte globulin plus steroids in combination with methotrexate as graft vs. host prophylaxis was associated with less severe growth suppression than methotrexate alone, while there were no significant associations between growth during the first 2 years following transplant and prepubertal status at transplant (as defined by age), graft vs. host disease, thyroid or gonadal function, or previous therapies received by the leukemia patients. Children undergoing marrow transplantation, particularly those receiving TBI, are at significant risk of subsequent growth suppression

  9. Appearance of thymic nurse cells after gamma irradiation

    International Nuclear Information System (INIS)

    Mulder, A.H.; Bekkum, D.W. van

    1983-01-01

    Since prothymocytes home from the bone marrow to the thymus, it was tested in the mouse whether prothymocytes could be recaptured from thymic nurse cells (TNC). Bone marrow cells were labelled with the red fluorescing anthracycline daunomycin and varying numbers (up to 25 x 10 6 nucleated bone marrow cells) were injected into lethally irradiated recipients. At several time intervals after transplantation (up to 24 hours), thymuses were removed and the TNCs were isolated. No specific red fluorescence was found within the TNCs. These experiments were repeated with supravital compounds at concentrations which have been shown not to affect viability, homing pattern and function. Again, no specific fluoresence was found in the TNC after transplantation of labelled bone marrow into irradiated mice. The relationship between the dose of total body gamma irradiation and the time after irradiation was investigated. Maximal numbers of TNCs were found at 6 hours after irradiation with 4 Gy. Eight to 12 hours after irradiation, the number of TNCs isolated decreased and had returned to preirradiation levels at 24 hours. The relation between TBI dose and the number of TNCs per thymus is shown. The number determined at 3 hours increased with the dose to reach a maximum at 4 Gy. The authors later studied the morphology of the TNCs isolated at 4 to 6 hours after irradiation. On electron microscopic examination, signs of degeneration and death of the enclosed thymocytes was detected. (Auth.)

  10. Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaodan [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan (China); Guo, Yuqi [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Wang, Lei [Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan (China); Zhang, Honghai [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Wang, Shaobo [Shandong University, Jinan (China); Wang, Li [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); An, Lei [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan (China); Zhou, Xianbin; Li, Xia [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Yao, Chengfang, E-mail: yaocf9941@163.com [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China)

    2015-12-01

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3{sup +}, CD8{sup +}, and CD4{sup +} T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4{sup +} T cells was delayed more than that of CD8{sup +} T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the

  11. Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon

    International Nuclear Information System (INIS)

    Zheng, Xiaodan; Guo, Yuqi; Wang, Lei; Zhang, Honghai; Wang, Shaobo; Wang, Li; An, Lei; Zhou, Xianbin; Li, Xia; Yao, Chengfang

    2015-01-01

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3 + , CD8 + , and CD4 + T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4 + T cells was delayed more than that of CD8 + T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the proliferation of Th1 and

  12. Animal experiments with rats as a contribution to the question of whole body irradiation

    International Nuclear Information System (INIS)

    Schraub, A.; Doell, G.; Jonas, H.; Kindt, A.; Sattler, E.L.

    1975-01-01

    Recovery after sublethal radiation damage was studied in the white blood count which shows a fast reaction to attacks caused by radiation. The so-called 'fractionated-dose method' was used. This method detrmines to what extent the total dose must be raised for two partial doses given at different times to produce the same amount of damage as a single irradiation. The second dose was applied after 7. days. A dose reduction by protraction of the first dose over 2 days was only found after doses of 300 to 400 rad. Regarding the anorexia connected with the radiation syndrome, no differences were found at low doses between protracted and one-time irradiation. This suggests that there is no repair. (MG) [de

  13. Hemorrhagic tendency following whole-body irradiation of conventional and decontaminated rats

    International Nuclear Information System (INIS)

    Hiemeyer, V.; Hohage, R.

    1974-01-01

    Female SIV 50 rats were irradiated with 700 r, and the blood platelets were counted in blood obtained by aortal puncture. A significant decrease could be observed already after a few days. The ADP-induced platelet aggregation showed only a little increase of the aggregation amplitude and a prolongation of the desaggregation time in irradiated animals. The increase of the collagen-induced platelet aggregation might be due to a reduced release of endogenic ADP rather than to reduced sensitivity to ADP. In order to examine the question whether the haemorrhagic tendency of decontaminated animals is reduced after irradiation, female rats were orally given Bacitracin, Neomycin, and Streptomycin over a period of 10 days. Increasing anaemia could be observed from the 7th day p.t. on. In decontaminated animals, anaemia occurrence was not as high as in conventional ones. The erythrocyte count of the lymph in the conventional animals was remarkably higher than in decontaminated animals, which as also the case in the haemoglobin content in the lymph notes. This proves definitely that rats kept conventionally have a stronger tendency to bleeding than decontaminated rats. (MG) [de

  14. Monte Carlo efficiency calibration of a neutron generator-based total-body irradiator

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2009-01-01

    Many body composition measurement systems are calibrated against a single-sized reference phantom. Prompt-gamma neutron activation (PGNA) provides the only direct measure of total body nitrogen (TBN), an index of the body's lean tissue mass. In PGNA systems, body size influences neutron flux attenuation, induced gamma signal distribution, and counting efficiency. Thus, calibration based on a single-sized phantom could result in inaccurate TBN values. We used Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) in order to map a system's response to the range of body weights (65-160 kg) and body fat distributions (25-60%) in obese humans. Calibration curves were constructed to derive body-size correction factors relative to a standard reference phantom, providing customized adjustments to account for differences in body habitus of obese adults. The use of MCNP-generated calibration curves should allow for a better estimate of the true changes in lean tissue mass that many occur during intervention programs focused only on weight loss. (author)

  15. Monte carlo efficiency calibration of a neutron generator-based total-body irradiator

    Science.gov (United States)

    The increasing prevalence of obesity world-wide has focused attention on the need for accurate body composition assessments, especially of large subjects. However, many body composition measurement systems are calibrated against a single-sized phantom, often based on the standard Reference Man mode...

  16. Image-Guided Total-Marrow Irradiation Using Helical Tomotherapy in Patients With Multiple Myeloma and Acute Leukemia Undergoing Hematopoietic Cell Transplantation

    International Nuclear Information System (INIS)

    Wong, Jeffrey Y.C.; Rosenthal, Joseph; Liu An; Schultheiss, Timothy; Forman, Stephen; Somlo, George

    2009-01-01

    Purpose: Total-body irradiation (TBI) has an important role in patients undergoing hematopoietic cell transplantation (HCT), but is associated with significant toxicities. Targeted TBI using helical tomotherapy results in reduced doses to normal organs, which predicts for reduced toxicities compared with standard TBI. Methods and Materials: Thirteen patients with multiple myeloma were treated in an autologous tandem transplantation Phase I trial with high-dose melphalan, followed 6 weeks later by total-marrow irradiation (TMI) to skeletal bone. Dose levels were 10, 12, 14, and 16 Gy at 2 Gy daily/twice daily. In a separate allogeneic HCT trial, 8 patients (5 with acute myelogenous leukemia, 1 with acute lymphoblastic leukemia, 1 with non-Hodgkin's lymphoma, and 1 with multiple myeloma) were treated with TMI plus total lymphoid irradiation plus splenic radiotherapy to 12 Gy (1.5 Gy twice daily) combined with fludarabine/melphalan. Results: For the 13 patients in the tandem autologous HCT trial, median age was 54 years (range, 42-66 years). Median organ doses were 15-65% that of the gross target volume dose. Primarily Grades 1-2 acute toxicities were observed. Six patients reported no vomiting; 9 patients, no mucositis; 6 patients, no fatigue; and 8 patients, no diarrhea. For the 8 patients in the allogeneic HCT trial, median age was 52 years (range, 24-61 years). Grades 2-3 nausea, vomiting, mucositis, and diarrhea were observed. In both trials, no Grade 4 nonhematologic toxicity was observed, and all patients underwent successful engraftment. Conclusions: This study shows that TMI using helical tomotherapy is clinically feasible. The reduced acute toxicities observed compare favorably with those seen with standard TBI. Initial results are encouraging and warrant further evaluation as a method to dose escalate with acceptable toxicity or to offer TBI-containing regimens to patients unable to tolerate standard approaches

  17. Mixed Reality for PTSD/TBI Assessment.

    Science.gov (United States)

    Fidopiastis, Cali; Hughes, Charles E; Smith, Eileen

    2009-01-01

    Mixed Reality (MR) refers to the blending of virtual content into the real world. Using MR, we create contextually meaningful scenarios in which users carry out tasks encountered in the presence of visual and aural distracters. Visual distracters can include subtle ones - people walking; and more abrupt ones - cartons falling. Aural distracters can include gentle ones - fans whirring; and more aggressive ones - automobiles backfiring. The intensity of these distracters can be dynamically controlled by a therapist or software that takes into account the patient's perceived level of stress. Intensity can also be controlled between experiences. For example, one may increase the stress level in a subsequent session, attempting to improve a person's tolerance. Assessment of progress includes psychophysical metrics (stress indicators) and the performance of tasks (accuracy and adherence to time constraints). By accurately capturing a patient's interaction with the environment in the context of simulation events, we can use MR as a tool for assessment and rehabilitation planning for individuals with stress-related injuries. This paper reports on the MR environment we have developed and its efficacy (realized and potential) for the assessment of post-traumatic stress disorder (PTSD) with or without traumatic brain injury (TBI).

  18. Impact of irradiation and immunosuppressive agents on immune system homeostasis in rhesus macaques.

    Science.gov (United States)

    Meyer, C; Walker, J; Dewane, J; Engelmann, F; Laub, W; Pillai, S; Thomas, Charles R; Messaoudi, I

    2015-09-01

    In this study we examined the effects of non-myeloablative total body irradiation (TBI) in combination with immunosuppressive chemotherapy on immune homeostasis in rhesus macaques. Our results show that the administration of cyclosporin A or tacrolimus without radiotherapy did not result in lymphopenia. The addition of TBI to the regimen resulted in lymphopenia as well as alterations in the memory/naive ratio following reconstitution of lymphocyte populations. Dendritic cell (DC) numbers in whole blood were largely unaffected, while the monocyte population was altered by immunosuppressive treatment. Irradiation also resulted in increased levels of circulating cytokines and chemokines that correlated with T cell proliferative bursts and with the shift towards memory T cells. We also report that anti-thymocyte globulin (ATG) treatment and CD3 immunotoxin administration resulted in a selective and rapid depletion of naive CD4 and CD8 T cells and increased frequency of memory T cells. We also examined the impact of these treatments on reactivation of latent simian varicella virus (SVV) infection as a model of varicella zoster virus (VZV) infection of humans. None of the treatments resulted in overt SVV reactivation; however, select animals had transient increases in SVV-specific T cell responses following immunosuppression, suggestive of subclinical reactivation. Overall, we provide detailed observations into immune modulation by TBI and chemotherapeutic agents in rhesus macaques, an important research model of human disease. © 2015 British Society for Immunology.

  19. Effects of 60Co γ-rays irradiation on cell growth and alkaloid accumulation of protocorm-like bodies in suspension cultures from Dendrobium huoshanense

    International Nuclear Information System (INIS)

    Hong Sali; Jin Qing; Huang Bei; Cai Yongping; Lin Yi

    2009-01-01

    Protocorm-like bodies (PLBs) in suspension cultures from Dendrobium huoshanense were irradiated by 60 Co γ-rays at doses of 5, 10, 20 and 30Gy, and alkaloid accumulation of PLBs was studied. The results showed that 60 Co γ-rays irradiation could improve the alkaloid content of PLBs, and the suitable dose was 10Gy. The fresh weight of 10Gy irradiated PLBs was 26.54g/flask, and the alkaloid content was 0.035% on the 36th day. The medium pH and electric conductivity of 10Gy irradiated PLBs changed slightly during the suspension culture period. The results suggested such cultural environment was suitable for PLBs growth continuely. Results also showed that 60 Co γ-rays irradiation could increase the activities of POD, SOD, CAT, PAL and decrease the activity of PPO, these were responsible for the improvement of cell growth and alkaloid accumulation in PLBs. (authors)

  20. Effect of ionizing whole-body irradiation on the primary and secondary antibody reaction of cows to injection of human gamma globulin

    International Nuclear Information System (INIS)

    Koch, F.; Buchholz, I.; Mehlhorn, G.

    1989-01-01

    In 3 experiments 29 cows were exposed to whole-body irradiation, using 9 MeV X-rays of a linear accelerator, with doses of 1.50 and 2.00 Gy or 60 Co gamma rays with a dose of 2.75 Gy, as a midline dose. 2 weeks prior to irradiation the first immunization was applied using human gamma globulin. 4 or 5 weeks after irradiation a second immunization was carried out. The antibody titres were investigated. The irradiation failed to affect the antibody titres after the first immunization. After the second immunization the antibody titres of the irradiated animals remained diminished significantly (α = 0.05). This has been attributed to a damage of the memory cell pool. (author)

  1. The LDsub(50/30) and the survival time in whole-body gamma-irradiated conventional and germfree Minnesota miniature piglets

    International Nuclear Information System (INIS)

    Mandel, L.; Travnicek, J.; Talafantova, M.; Zahradnickova, M.

    1980-01-01

    The median lethal exposure causing the death in 30 days after single whole-body gamma-irradiation (the LD 50/30) was found to be 2731 MBq (73.8 mC/kg) for conventional piglets, but 3226 MBq (87.2 mC/kg) for germ-free piglets both irradiated 14 days after birth. After lethal exposures, the survival time in germ-free piglets was prolonged for 7 days in comparison with conventional piglets. (author)

  2. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...

  3. Phosphorylation of histone H2AX as an indicator of received dose of gamma radiation after whole-body irradiation of rats

    Directory of Open Access Journals (Sweden)

    Radim Havelek

    2011-01-01

    Full Text Available The aim of our study was to determine whether phosphorylation of histone H2AX can be used as an indicator of received dose of gamma radiation after whole-body irradiation of rats. Wistar rats were irradiated by 1-10 Gy of gamma radiation by 60Co source. Value LD50/60 was 7.37 (4.68-8.05 Gy. Histone H2AX is phosphorylated by ATM kinase on serine 139 (γH2AX quickly after the irradiation. It forms microscopically visible foci in the site of double strand breaks of DNA. Flow-cytometric method was used for quantitative detection. This study is the first one that evaluated dose-dependency of H2AX phosphorylation in peripheral lymphocytes of rats irradiated by whole-body dose 1-10 Gy. Our data show a dose-dependent increase in γH2AX in rat peripheral blood lymphocytes 1 h after whole-body irradiation by the dose of 1-10 Gy. We proved that phosphorylation of histone H2AX is a prompt and reliable indicator of the received radiation dose suitable for rapid measurement before the number of lymphocytes in peripheral blood starts to decrease. It can be used already 1 h after the irradiation for an estimation of the received dose of radiation. Blood samples can be stored in 4 °C for 23 h without significantly affecting the result.

  4. How Do Health Care Providers Diagnose Traumatic Brain Injury (TBI)?

    Science.gov (United States)

    ... and receive adequate nutrition. Cognition and Neuropsychological Tests Cognition describes the processes of thinking, reasoning, problem solving, information processing, and memory. 1 Most patients with severe TBI suffer from ...

  5. Total-body irradiation and host reconstitution with stored autologous marrow: an experimental model for the induction of allogeneic unresponsiveness in large mammals. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Rapaport, F.T.; Bachvaroff, R.J.; Dicke, K.; Santos, G.

    1979-03-01

    These results point to the capacity of suprelethal total-body irradiation and autologous bone marrow replacement to produce in the host a time-dependent privileged phase of immunologic reactivity during which exposure to alloantigens is more likely to produce unresponsiveness, rather than sensitization. The mechanisms implicated in the mediation of this phenomenon are not clear. Regardless of hypothetical interpretations, however, the current growing interest in total-body irradiation and autologous bone marrow replacement in clinical medicine, and the ease with which this approach appears to produce allogenic unresponsiveness in large mammals, raise the possibility that this method may constitute a highly promising approach to the facilitation of survival of vital transplanted organs in man. This possibility is further supported by the long-term record of the world's longest surviving renal allograft recipient, whose preoperative preparation consisted of total-body irradiation 24 hr before a kidney transplant.

  6. Targeting Epigenetic Mechanisms in Pain due to Trauma and TBI

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0579 TITLE: Targeting Epigenetic Mechanisms in Pain due to Trauma and TBI PRINCIPAL INVESTIGATOR: David J. Clark, MD... Epigenetic Mechanisms in Pain due to Trauma and TBI 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David J. Clark, MD Email... epigenetic changes occurring in the dorsal horn of the spinal cord after either brain or peripheral trauma may support chronic pain. Our work to-date

  7. Statistical Issues in TBI Clinical Studies

    Directory of Open Access Journals (Sweden)

    Paul eRapp

    2013-11-01

    Full Text Available The identification and longitudinal assessment of traumatic brain injury presents several challenges. Because these injuries can have subtle effects, efforts to find quantitative physiological measures that can be used to characterize traumatic brain injury are receiving increased attention. The results of this research must be considered with care. Six reasons for cautious assessment are outlined in this paper. None of the issues raised here are new. They are standard elements in the technical literature that describes the mathematical analysis of clinical data. The purpose of this paper is to draw attention to these issues because they need to be considered when clinicians evaluate the usefulness of this research. In some instances these points are demonstrated by simulation studies of diagnostic processes. We take as an additional objective the explicit presentation of the mathematical methods used to reach these conclusions. This material is in the appendices. The following points are made:1. A statistically significant separation of a clinical population from a control population does not ensure a successful diagnostic procedure.2. Adding more variables to a diagnostic discrimination can, in some instances, actually reduce classification accuracy.3. A high sensitivity and specificity in a TBI versus control population classification does not ensure diagnostic successes when the method is applied in a more general neuropsychiatric population. 4. Evaluation of treatment effectiveness must recognize that high variability is a pronounced characteristic of an injured central nervous system and that results can be confounded by either disease progression or spontaneous recovery. A large pre-treatment versus post-treatment effect size does not, of itself, establish a successful treatment.5. A procedure for discriminating between treatment responders and nonresponders requires, minimally, a two phase investigation. This procedure must include a

  8. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  9. Effects of vertebral-body-sparing proton craniospinal irradiation on the spine of young pediatric patients with medulloblastoma.

    Science.gov (United States)

    MacEwan, Iain; Chou, Brian; Moretz, Jeremy; Loredo, Lilia; Bush, David; Slater, Jerry D

    2017-01-01

    To investigate the long-term effects of vertebral-body-sparing proton craniospinal irradiation (CSI) on the spine of young patients with medulloblastoma. Six children between the ages of 3 and 5 years with medulloblastoma were treated with vertebral-body-sparing proton CSI after maximal safe resection. Radiation therapy was delivered in the supine position with posterior beams targeting the craniospinal axis, and the proton beam was stopped anterior to the thecal sac. Patients were treated with a dose of either 23.4 Gy or 36 Gy to the craniospinal axis followed by a boost to the posterior fossa and any metastatic lesions. Chemotherapy varied by protocol. Radiographic effects on the spine were evaluated with serial imaging, either with magnetic resonance imaging scans or plain film using Cobb angle calculations, the presence of thoracic lordosis, lumbar vertebral body-to-disc height ratios, and anterior-posterior height ratios. Clinical outcomes were evaluated by patient/family interview and medical chart review. Overall survival and disease free survival were 83% (5/6) at follow-up. Median clinical and radiographic follow-up were 13.6 years and 12.3 years, respectively. Two patients were clinically diagnosed with scoliosis and treated conservatively. At the time of follow-up, no patients had experienced chronic back pain or required spine surgery. No patients were identified to have thoracic lordosis. Diminished growth of the posterior portions of vertebral bodies was identified in all patients, with an average posterior to anterior ratio of 0.88, which was accompanied by compensatory hypertrophy of the posterior intervertebral discs. Vertebral-body-sparing CSI with proton beam did not appear to cause increased severe spinal abnormalities in patients treated at our institution. This approach could be considered in future clinical trials in an effort to reduce toxicity and the risk of secondary malignancy and to improve adult height.

  10. Facilitation of nodal metastasis from a non-immunogenic murine carcinoma by previous whole-body irradiation of tumour recipients

    International Nuclear Information System (INIS)

    Hewitt, H.B.; Blake, E.R.

    1977-01-01

    Of 193 CBA mice kept under prolonged observation after excision of small intradermal transplants of a non-immunogenic tumour (CBA Carcinoma NT), 27 (14%) presented with local recurrence, 19 (10%) with regional lymphnodal metastasis (RNM) and 72 (37%), with pulmonary metastasis +- other systemic metastases. When mice were exposed to sublethal whole-body irradiation (WBI) before tumour transplantation, the incidence of RNM rose to approximately 80% and the latent period was reduced from approximately 60 days to approximately 40 days after tumour transplantation. This enhancement of RNM by WBI was undiminished when the interval between WBI and tumour transplantation was increased from 1 to 90 days. An explanation for this effect in terms of immunosuppression by the WBI is unlikely for the following reasons: the tumour was non-immunogenic by standard quantitative tests; the effect persisted long after the expected time for recovery of immune reactivity; and i.v. injection of normal marrow and lymphoid cells after WBI failed to reduce the effect. That the effect was systemic was proved by failure of local pre-irradiation of the tumour bed or regional node to enhance RNM. The effect was not observed when WBI was given 4 days after excision of tumours. These and other experiments failed to indicate the mechanism of the effect of WBI, but its long persistence suggests that it may relate to stored lethal radiation damage in migrating cells of slow turnover tissues. (author)

  11. The influence of whole-body γ-irradiation with low doses on enzyme activity of rat adrenal medulla

    International Nuclear Information System (INIS)

    Amvros'ev, A.P.; Shostak, Yu.A.

    1991-01-01

    A study was made of the pattern of changes in histological indices of key enzymes of the tricarbonic acid cycle (succinate dehydrogenase) and glycolysis (lactate dehydrogenase) as well as of catecholamines (monoamine oxidase) in cells of the adrenal medulla of young and adult albino rats subjected to external whole-body γ-irradiation with doses of 0.5 and 1.0 Gy (dose-rate of 2.7·10 -4 Gy/s). Radiosensitivity of the enzyme systems under study in the adrenal gland cells of young animals was higher than in that of adult. Changes of their levels in different periods of observation were mainly of phase nature and indicated the development of adaptation syndrome in the animal organism

  12. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    International Nuclear Information System (INIS)

    Hori, I.

    1979-01-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes in extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed

  13. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hori, I.

    1979-03-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes in extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed.

  14. Low-dose fractionated whole-body irradiation in the treatment of advanced non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Choi, N.C.; Timothy, A.R.; Kaufman, S.D.; Carey, R.W.; Aisenberg, A.C.

    1979-01-01

    Thirty-nine patients with advanced non-Hodgkin's lymphoma (38 patients with lymphocytic lymphoma and 1 patient with mixed lymphocytic and histiocytic lymphoma) were treated by fractionated low dose whole body irradiation (WBI) with a minimum follow-up of 8 months. Twenty-eight patients had no previous treatment and the other 11 patients were in relapse after previous chemotherapy or regional radiotherapy. There were 20 and 19 patients in stages III and IV groups, respectively. The majority of patients (31) had nodular histology; diffuse lymphocytic lymphoma was present in 8 patients (Rappaport criteria) (9). Constitutional symptoms were present in 10 patients. Thirty-three (85%) attained complete remission (CR) with median duration of remission 24 months. Actuarial survival was 78% and 74% at 3 and 4 years. However, relapse free survival was 26% at 3 and 4 years. A prospective randomized trial to compare 10 vs. 15 rad per fraction of fractionated WBI schedules (the same total dose 150 rad) demonstrated no difference in response rate, response duration, and median nadir platelet or WBC counts between the two schedules. Supplement radiotherapy to bulky tumor site prevented local recurrence, but did not influence survival or duration or remission. Major toxicity was thrombocytopenia with median nadir platelet counts 77,000/mm 3 (11,000 to 170,000/mm 3 ). Five of 6 patients with diffuse lymphocytic poorly differentiated lymphoma attained CR. However, their median survival was 30 months which is much shorter than that of nodular lymphoma. Constitutional symptoms and advanced stage (stage IV) were associated with shorter duration of remission. Response of patients in relapse after WBI to subsequent chemotherapy +- local radiotherapy was CR in 50% and PR in 40%. Fractionated whole body irradiation is an excellent systemic induction agent for advanced lymphocytic and mixed lymphoma

  15. Autoradiographic studies on the cell kinetics after the whole body X-irradiation. 2. Regularities of the post-irradiation death of differentiating and proliferating cells of the rat brain subependimal zone

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, N.D. (Tsentral' nyj Nauchno-Issledovatel' skij Rentgeno-Radiologicheskij Inst., Leningrad (USSR))

    1982-01-01

    A wave-like character of death of proliferating and differentiating (D) cells is shown autoradiographically using /sup 3/H-thymidine introduced 60-80 min before the whole body X-ray irradiation in doses of 50, 150 or 300 R on subependymal cells of rat brain. Lethally damaged cells irradiated in G/sub 2/ and S-phases, resulted in 4 peaks of death in mitosis by following the first postradiational mitotic cycle (MC). Lethally damaged cells irradiated in G/sub 1/-phase lost ability for DNA synthesis as cells irradiated in a dose of 300 R did not include additionally introduced (3 hrs before death) /sup 14/C-thymidine from 12 to 17 hrs after /sup 3/H-thymidine injection. However, in the first 4 hrs after irradiation there were no cells irradiated in G/sub 1/-phase among dead ones, as indirectly shown in the calculations of data obtained while studying Pliss lymphosarcoma. A supposition is made that the death of cells irradiated in G/sub 1/-phase is attributed to mitotic phase of the first MC after irradiation. Waves of death of lethally damaged D-cells repeated the peaks of death and corresponded to the mitotic peaks of proliferating cells, which permitted to presuppose the presence of ''short cycle'' (SC) in D-cells, which have the rhythm similar to MC and their death has been attributed to the final SC phase, which corresponds to MC mitotic phase in time. According to the peaks of cell death position of one hour block independent of dose in six MC(SC) points is determined. The cells have experienced the block in the point of MC(SC) in subphase of which they were caught by irradiation. Dose effect is manifested in the number of dead cells.

  16. Scale and pattern of atrophy in the chronic stages of moderate-severe TBI

    Directory of Open Access Journals (Sweden)

    Robin E.A. Green

    2014-03-01

    Full Text Available Background. Moderate-severe traumatic brain injury (TBI is increasingly being understood as a progressive disorder, with growing evidence of reduced brain volume and white matter integrity as well as lesion expansion in the chronic phases of injury. The scale of these losses has yet to be investigated, and pattern of change across structures has received limited attention. Objectives. To measure (1 proportion of moderate-severe TBI patients with atrophy from 5 to 20 mos post-injury, and (2 relative vulnerability to and consistency of volume loss in structures with vulnerability to acute TBI. Methods. 56 patients (mean GCS = 6.1 underwent MRI 5 and 20 mos post-injury; 12 healthy controls underwent MRI twice. Mean monthly percent change was computed for whole brain (ventricle-to-brain ratio; VBR, corpus callosum (CC, and right and left hippocampi (HPC. Results. (1 Using a threshold of 2 z-scores below controls, 96% of patients declined on at least one region; 75% declined in at least 3/4. (2 There were no significant differences in proportion of patients showing decline across structures. For those showing decline in VBR, there was a significant association with both the CC and the right HPC (P < .05 for both comparisons. There were significant associations between those showing decline in (i right and left HPC (P < .05; (ii genu, body and splenium of the CC, and (iii head and tail of the right HPC (P< .05 all sub-structure comparisons. Conclusions. Atrophy in chronic moderate-severe TBI is robust, and the CC, right HPC and left HPC appear equally vulnerable. Significant associations between the right and left HPC, and within substructures of the CC and right HPC raise the possibility of common mechanisms affecting associated regions, or spread of degeneration across structures (e.g., transneuronal degeneration. As atrophy has been associated with poorer functional outcomes, offsetting atrophy should be a target of rehabilitation interventions.

  17. A Comparison of Molecular and Histopathological Changes in Mouse Intestinal Tissue Following Whole-Body Proton- or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Mangala, Lingegowda; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    2010-01-01

    There are many consequences following exposure to the space radiation environment which can adversely affect the health of a crew member. Acute radiation syndrome (ARS) involving nausea and vomiting, damage to radio-sensitive tissue such as the blood forming organs and gastrointestinal tract, and cancer are some of these negative effects. The space radiation environment is ample with protons and contains gamma rays as well. Little knowledge exists to this point, however, regarding the effects of protons on mammalian systems; conversely several studies have been performed observing the effects of gamma rays on different animal models. For the research presented here, we wish to compare our previous work looking at whole-body exposure to protons using a mouse model to our studies of mice experiencing whole-body exposure to gamma rays as part of the radio-adaptive response. Radio-adaptation is a well-documented phenomenon in which cells exposed to a priming low dose of radiation prior to a higher dose display a reduction in endpoints like chromosomal aberrations, cell death, micronucleus formation, and more when compared to their counterparts receiving high dose-irradiation only. Our group has recently completed a radio-adaptive experiment with C57BL/6 mice. For both this study and the preceding proton research, the gastrointestinal tract of each animal was dissected four hours post-irradiation and the isolated small intestinal tissue was fixed in formalin for histopathological examination or snap-frozen in liquid nitrogen for RNA isolation. Histopathologic observation of the tissue using standard H&E staining methods to screen for morphologic changes showed an increase in apoptotic lesions for even the lowest doses of 0.1 Gy of protons and 0.05 Gy of gamma rays, and the percentage of apoptotic cells increased with increasing dose. A smaller percentage of crypts showed 3 or more apoptotic lesions in animals that received 6 Gy of gamma-irradiation compared to mice

  18. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease in bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation

  19. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  20. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid

    International Nuclear Information System (INIS)

    Ambrus, C.M.; Ambrus, J.L.

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole-body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colony-forming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls

  1. Variational Method of the Theory of Plasticity for Inhomogeneous and Composite Bodies at Irradiation

    Science.gov (United States)

    Amenzadeh, R. Yu.; Sevdimaliyev, Yu. M.

    2016-03-01

    For a three-dimensional theory, a variational method of mixed type is developed to determine the stress-strain state of inhomogeneous anisotropic elastoplastic bodies under the action of neutron fluxes in the case of small strains. It is assumed that the physicomechanical characteristics of the medium depend on the radiation dose. The principle proposed is based on independent variation of the velocity fields of displacements and stresses. A modification of the variational theorem to the case of a composite material in a heterogeneous environment where different phases (inclusions) are clearly expressed is given.

  2. Late effects of protracted whole-body irradiation of beagles by cobalt-60 gamma rays

    International Nuclear Information System (INIS)

    Fritz, T.E.; Seed, T.M.; Tolle, D.V.; Lombard, L.S.

    1986-01-01

    So that a stronger basis for extrapolation of low-level radiation effects to man can be provided, existing data from small laboratory animals are being supplemented by studies in a longer lived animal, the dog. Beagle dogs are exposed to continuous cobalt-60 irradiation either throughout life or until predetermined total doses are accumulated. The radiation-specific excess-mortality rate and associated causes of death will be related to both dose rate and total dose. The ongoing studies also emphasize the pathogenesis of myelogenous leukemia. At dose rates of 3.75 to 26.25 rads/day, given continuously, responses were consistent, highly dose-rate dependent, and limited primarily to the hematopoietic system. At rates as low as 0.3 rad/day, the hematopoietic system is still the limiting factor for survival, but below 3.75 rads/day present evidence suggests that the responses are independent of dose rate. Longitudinal studies of peripheral blood and bone marrow detected four preclinical phases of myelogenous leukemia. These phases were characterized by standard hematologic end points, ultrastructural features, in vitro cloning assays, and the acute radiation sensitivity of stem cells. Results suggest that an induced error-prone repair mechanism is the basis for the onset of radiation-induced myelogenous leukemia. Interim data from dogs given terminated exposures suggest that the types of tumors and times to death are different from controls but the numbers of tumors are not yet greater than in controls. 26 refs., 12 figs., 5 tabs

  3. Radioprotective Effect and Follow-up of Melatonin as Antifertility Drug in Male Adult Mice submitted to Whole-Body γ Irradiation

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H.H.; El-Shamy, E.; Sallam, M.H.

    2006-01-01

    Melatonin is universal antioxidant for both man and animals and a substance normally produced in the human body. Radioprotective and follow up of melatonin as anti-fertility drug in whole body γ-irradiated male adult mice were studied. The alterations occurred in reproductive system and biochemical aspects in mice were evaluated. Control group, melatonin treated (received 10 mg/kg body wt for 20 successive days), following up for melatonin treated (2 recovery periods; 60 and 120 days), irradiated (2 Gy-γ-rays), pre-treated (received melatonin before irradiation) and following up for pre-treated (2 recovery periods) groups were designed. Body and testes wt, micronucleus test (MN), chromosomal aberration (CA), seminal plasma melatonin, sperm quality (count, motility and abnormal forms) and hormonal assay in serum (melatonin, testosterone, FSH and prolactin) were recorded for fertility assessment. Oxidative parameters in testis tissue (malonaldehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH) and nitric oxide (NO)) and biochemical assay (protein and lipid fractions in serum) were investigated for judgment melatonin radioprotective efficacy. Irradiation intensifies the processes of lipo peroxidation and oxidative modification of lipids and proteins with synchronized inhibition of the anti oxidative protection system. Melatonin administration against a background of radiation caused a distinctly expressed antioxidant effect

  4. The recovery of bone marrow derived GM-CFU in baboons unilaterally exposed to a total body LD50/30d mixed neutron-gamma irradiation

    International Nuclear Information System (INIS)

    Herodin, F.; Orfeuvre, H.; Janodet, D.; Mestries, J.C.; Fatome, M.

    1990-01-01

    The unilateral exposure of baboons to a total body LD 50/30d mixed neutron/gamma irradiation was characterized to be non uniform in dose distribution. The pattern of recovery of granulocyte-macrophage progenitors in bone marrow samples collected from entrance and exit sides respectively is consistent with this observed heterogeneity [fr

  5. THE EFFECT OF DONOR LYMPHOCYTES-T AND TOTAL-BODY IRRADIATION ON HEMATOPOIETIC ENGRAFTMENT AND PULMONARY TOXICITY FOLLOWING EXPERIMENTAL ALLOGENEIC BONE-MARROW TRANSPLANTATION

    NARCIS (Netherlands)

    DOWN, JD; MAUCH, P; WARHOL, M; NEBEN, S; FERRARA, JLM

    1992-01-01

    To study the effects of donor T lymphocytes on engraftment and graft-versus-host disease in relation to recipient total-body irradiation, we have returned small numbers of T cells to T-cell-depleted bone marrow transplanted across a minor histocompatibility barrier in mice (B10.BR --> CBA).

  6. Sleep Disturbances, TBI and PTSD: Implications for Treatment and Recovery

    Science.gov (United States)

    Gilbert, Karina Stavitsky; Kark, Sarah M.; Gehrman, Philip; Bogdanova, Yelena

    2015-01-01

    Post-Traumatic Stress Disorder (PTSD), traumatic brain injury (TBI), and sleep problems significantly affect recovery and functional status in military personnel and Veterans returning from combat. Despite recent attention, sleep is understudied in the Veteran population. Few treatments and rehabilitation protocols target sleep, although poor sleep remains at clinical levels and continues to adversely impact functioning even after the resolution of PTSD or mild TBI symptoms. Recent developments in non-pharmacologic sleep treatments have proven efficacious as stand-alone interventions and have potential to improve treatment outcomes by augmenting traditional behavioral and cognitive therapies. This review discusses the extensive scope of work in the area of sleep as it relates to TBI and PTSD, including pathophysiology and neurobiology of sleep; existing and emerging treatment options; as well as methodological issues in sleep measurements for TBI and PTSD. Understanding sleep problems and their role in the development and maintenance of PTSD and TBI symptoms may lead to improvement in overall treatment outcomes while offering a non-stigmatizing entry in mental health services and make current treatments more comprehensive by helping to address a broader spectrum of difficulties. PMID:26164549

  7. Depression in Men and Women One Year Following Traumatic Brain Injury (TBI: A TBI Model Systems Study

    Directory of Open Access Journals (Sweden)

    Sarah Lavoie

    2017-05-01

    Full Text Available In the general population, females experience depression at significantly higher rates than males. Individuals with traumatic brain injury (TBI are at substantially greater risk for depression compared to the overall population. Treatment of, and recovery from, TBI can be hindered by depression; comorbid TBI and depression can lead to adverse outcomes and negatively affect multiple aspects of individuals’ lives. Gender differences in depression following TBI are not well understood, and relevant empirical findings have been mixed. Utilizing the Patient Health Questionnaire-9 (PHQ-9 1 year after TBI, we examined whether women would experience more severe depressive symptoms, and would endorse higher levels of depression within each category of depression severity, than would men. Interestingly, and contrary to our hypothesis, men and women reported mild depression at equal rates; PHQ-9 total scores were slightly lower in women than in men. Men and women did not differ significantly in any PHQ-9 depression severity category. Item analyses, yielded significant gender differences on the following items: greater concentration difficulties (cognitive problems in men and more sleep disturbances (psychosomatic issues in women per uncorrected two-sample Z-test for proportions analyses; however, these results were not significant after the family-wise Bonferroni correction. Our results indicate that, in contrast to the general population, mild depression in persons with moderate to severe TBI may not be gender-specific. These findings underscore the need for early identification, active screening, and depression treatment equally for men and women to improve emotional well-being, promote recovery, and enhance quality of life following TBI.

  8. Acute hematological tolerance to multiple fraction, whole body, low dose irradiation in an experimental murine system

    International Nuclear Information System (INIS)

    Melamed, J.S.; Chen, M.G.; Brown, J.W.; Katagiri, C.A.

    1980-01-01

    Using a dose fractionation scheme patterned after the current regimen for treatment of disseminated non-Hodgkin lymphoma, the authors studied the effects of irradation on progenitor and effector cells for hematopoiesis in five-month-old BC3F 1 mice. Fractions of 20 or 50 rad (0.2 or 0.5 Gy) total body irradation were given twice weekly to a final total dose of 200 or 500 rad (2 or 5 Gy), respectively. Weekly assays revealed a marked, sustained depression of stem cell activity, measured as numbers of spleen colony-forming units (CFU-S) and in vitro colony-forming cells (CFU-C), without corresponding depression of effector cells (red and white cells, and platelets). The lack of correlation between numbers of stem cells and peripheral elements is relevant to clinical assessment of marrow reserve

  9. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    International Nuclear Information System (INIS)

    Lakeman, T; Wang, I; Podgorsak, M

    2015-01-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator

  10. Differential effects of whole-body {gamma}-irradiation on antinociception induced by morphine and {beta}-endorphin administered intracerebroventricularly in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Chung, K.M.; Park, T.W.

    2000-05-01

    Two separate lines of evidence suggested the present study. First, intracerebroventricularly (i.c.v.) administered morphine (a {mu}-opioid receptor agonist) and {beta}-endorphin (an {epsilon}-opioid receptor agonist) produce antinociception by activating different descending pain inhibitory systems. Second, {gamma}-irradiation attenuates the acute antinociceptive action of i.c.v. injected morphine, but not DPLPE (a {delta}-opioid receptor agonist), in mice. These findings prompted us to investigate the effect of {gamma}-irradiation on the antinociception produced by i.c.v. injected morphine and {beta}-endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a {sup 60}Co {gamma}-source and the antinociceptive effects were tested 5, 30, 60,90 and 180 min after irradiation using the 1% acetic acid-induced writhing test (10 ml/kg). The antinociceptive effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for antinociception produced by i.c.v. administration of morphine (50 and 100 ng/mouse) or {beta}-endorphin (31 ng/mouse). Irradiation significantly potentiated the antinociception produced by {beta}-endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results demonstrate a differential sensitivity of {mu}- and {epsilon}-opioid receptors to {gamma}-irradiation, in addition, support the hypothesis that morphine and {beta}-endorphin administered supraspinally produce antinociception by different neuronal mechanisms. (author)

  11. Differential effects of whole-body γ-irradiation on antinociception induced by morphine and β-endorphin administered intracerebroventricularly in the mouse

    International Nuclear Information System (INIS)

    Kim, J.K.; Chung, K.M.; Park, T.W.

    2000-01-01

    Two separate lines of evidence suggested the present study. First, intracerebroventricularly (i.c.v.) administered morphine (a μ-opioid receptor agonist) and β-endorphin (an ε-opioid receptor agonist) produce antinociception by activating different descending pain inhibitory systems. Second, γ-irradiation attenuates the acute antinociceptive action of i.c.v. injected morphine, but not DPLPE (a δ-opioid receptor agonist), in mice. These findings prompted us to investigate the effect of γ-irradiation on the antinociception produced by i.c.v. injected morphine and β-endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a 60 Co γ-source and the antinociceptive effects were tested 5, 30, 60,90 and 180 min after irradiation using the 1% acetic acid-induced writhing test (10 ml/kg). The antinociceptive effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for antinociception produced by i.c.v. administration of morphine (50 and 100 ng/mouse) or β-endorphin (31 ng/mouse). Irradiation significantly potentiated the antinociception produced by β-endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results demonstrate a differential sensitivity of μ- and ε-opioid receptors to γ-irradiation, in addition, support the hypothesis that morphine and β-endorphin administered supraspinally produce antinociception by different neuronal mechanisms. (author)

  12. Stereotactic Body Radiation Therapy for Re-irradiation of Persistent or Recurrent Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trovo, Marco, E-mail: marcotrovo33@hotmail.com [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy); Minatel, Emilio; Durofil, Elena [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy); Polesel, Jerry [Department of Epidemiology and Biostatistics, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy); Avanzo, Michele [Department of Medical Physics, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy); Baresic, Tania [Department of Nuclear Medicine, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy); Bearz, Alessandra [Department of Medical Oncology, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy); Del Conte, Alessandro [Department of Medical Oncology, Pordenone General Hospital, Aviano, Pordenone (Italy); Franchin, Giovanni; Gobitti, Carlo; Rumeileh, Imad Abu; Trovo, Mauro G. [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Pordenone (Italy)

    2014-04-01

    Purpose: To retrospectively assess toxicity and outcome of re-irradiation with stereotactic body radiation therapy (SBRT) in patients with recurrent or persistent non-small cell lung cancer (NSCLC), who were previously treated with radical radiation therapy (50-60 Gy). The secondary endpoint was to investigate whether there are dosimetric parameter predictors of severe radiation toxicity. Methods and Materials: The analysis was conducted in 17 patients with “in-field” recurrent/persistent centrally located NSCLC, who underwent re-irradiation with SBRT. SBRT consisted of 30 Gy in 5 to 6 fractions; these prescriptions would be equivalent for the tumor to 37.5 to 40 Gy, bringing the total 2-Gy-per-fraction cumulative dose to 87 to 100 Gy, considering the primary radiation therapy treatment. Actuarial analyses and survival were calculated by the Kaplan-Meier method, and P values were estimated by the log-rank test, starting from the date of completion of SBRT. Dosimetric parameters from the subgroups with and without grade ≥3 pulmonary toxicity were compared using a 2-tailed Student t test. Results: The median follow-up was 18 months (range, 4-57 months). Only 2 patients had local failure, corresponding to a local control rate of 86% at 1 year. The Kaplan-Meier estimates of overall survival (OS) rates at 1 and 2 years were 59% and 29%, respectively; the median OS was 19 months. Four patients (23%) experienced grade 3 radiation pneumonitis, and 1 patient developed fatal pneumonitis. One patient died of fatal hemoptysis 2 months after the completion of SBRT. Unexpectedly, heart maximum dose, D5 (minimum dose to at least 5% of the heart volume), and D10 were correlated with risk of radiation pneumonitis (P<.05). Conclusions: Re-irradiation with SBRT for recurrent/persistent centrally located NSCLC achieves excellent results in terms of local control. However, the high rate of severe toxicity reported in our study is of concern.

  13. Hemibody irradiation

    International Nuclear Information System (INIS)

    Schen, B.C.; Mella, O.; Dahl, O.

    1992-01-01

    In a large number of cancer patients, extensive skeletal metastases or myelomatosis induce vast suffering, such as intolerable pain and local complications of neoplastic bone destruction. Analgetic drugs frequently do not yield sufficient palliation. Irradiation of local fields often has to be repeated, because of tumour growth outside previously irradiated volumes. Wide field irradiation of the lower or upper half of the body causes significant relief of pain in most patients. Adequate pretreatment handling of patients, method of irradiation, and follow-up are of importance to reduce side effects, and are described as they are carried out at the Department of Oncology, Haukeland Hospital, Norway. 16 refs., 2 figs

  14. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  15. Total Body Irradiation without Chemotherapy as Conditioning for an Allogeneic Hematopoietic Cell Transplantation for Adult Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sultan Altouri

    2016-01-01

    Full Text Available Current therapies for acute myeloid leukemia (AML, failing induction, are rarely effective. We report our experience in 4 patients with AML who received 16 Gy TBI prior to allogeneic hematopoietic cell transplantation (alloHCT, between June 2010 and May 2011. Patients were 20 to 55 years of age, 2 with relapsed disease and 2 with AML failing induction. An HLA-matched graft from related or unrelated donor was infused on day 0. All but one, who received a CD34+-selected graft, received methotrexate and tacrolimus +/− antithymocyte globulin, as GVHD prophylaxis. The other patient received tacrolimus alone. Neutrophil and platelet engraftment occurred at a median of 18 and 14 days, respectively. Patients were discharged at a median of 28 days. There were no unexpected toxicities in the first 30 days. One patient had cytomegalovirus (CMV viremia and anorexia, at two months. One patient had grade 2 acute GVHD of the skin. One patient developed chronic GVHD of the eyes, mouth, skin, joints, and lung at 4 months. Two patients died from relapse of their leukemia at days 65 and 125. Two patients remain in remission beyond day 1500. 16 Gy TBI followed by an alloHCT for AML, failing induction, is feasible and tolerable.

  16. Thrombopoietin Receptor Agonist Mitigates Hematopoietic Radiation Syndrome and Improves Survival after Whole-Body Ionizing Irradiation Followed by Wound Trauma

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2017-01-01

    Full Text Available Ionizing radiation combined with trauma tissue injury (combined injury, CI results in greater mortality and H-ARS than radiation alone (radiation injury, RI, which includes thrombocytopenia. The aim of this study was to determine whether increases in numbers of thrombocytes would improve survival and mitigate H-ARS after CI. We observed in mice that WBC and platelets remained very low in surviving RI animals that were given 9.5 Gy 60Co-γ-photon radiation, whereas only lymphocytes and basophils remained low in surviving CI mice that were irradiated and then given skin wounds. Numbers of RBC and platelets, hemoglobin concentrations, and hematocrit values remained low in surviving RI and CI mice. CI induced 30-day mortality higher than RI. Radiation delayed wound healing by approximately 14 days. Treatment with a thrombopoietin receptor agonist, Alxn4100TPO, after CI improved survival, mitigated body-weight loss, and reduced water consumption. Though this therapy delayed wound-healing rate more than in vehicle groups, it greatly increased numbers of platelets in sham, wounded, RI, and CI mice; it significantly mitigated decreases in WBC, spleen weights, and splenocytes in CI mice and decreases in RBC, hemoglobin, hematocrit values, and splenocytes and splenomegaly in RI mice. The results suggest that Alxn4100TPO is effective in mitigating CI.

  17. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Science.gov (United States)

    2014-03-05

    Ionizing Irradiation but Not after Irradiation Combined with Burn Juliann G. Kiang,1,2,3 Min Zhai,1 Pei-Jyun Liao,1 David L. Bolduc,1 Thomas B. Elliott,1...Contribution Juliann G. Kiang conceived and designed the experiments in the paper. Juliann G. Kiang, Min Zhai, Pei-Jyun Liao, David L. Bolduc, Thomas B...319–332, 2010. [8] M. E. Berger, D. M. Christensen, P. C. Lowry , O. W. Jones, and A. L.Wiley, “Medical management of radiation injuries: current

  18. Radioprotection by caffeine pre-treatment and post-treatment in the bone marrow chromosomes of mice given whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Farooqi, Z.; Kesavan, P.C.

    1992-01-01

    The effect of caffeine given as pre- and post-treatment in mice exposed to whole-body γ-irradiation (1.5 Gy 60 Co γ-rays) was studied. The pre-treatment was either acute or chronic. The acute dose (5 mg/kg and 15 mg/kg body weight) was in the form of an injection given intraperitoneally, 30 min before irradiation. The chronic administration was in the form of caffeine solution (4.208x10 -3 M and 7.72x10 -4 M) contained in drinking water for 5 weeks prior to radiation exposure. The acute pre-treatment with caffeine reduced the radiation-induced frequency of chromosomal aberrations discernibly, whereas chronic pre-treatment afforded a much more significant degree of radioprotection. The caffeine post-treatment (5 mg/kg and 15 mg/kg body weight) was given in the form of an intraperitoneal injection to the mice immediately following whole-body γ-irradiation. It is noted that both post-treatment concentrations of caffeine also significantly reduced the frequency of chromosomal aberrations induced by γ-rays. These data are briefly discussed in terms of possible mechanistic considerations. (author). 33 refs.; 3 tabs

  19. Harnessing Neuroplasticity to Promote Rehabilitation: CI Therapy for TBI

    Science.gov (United States)

    2016-10-01

    Institutes of Health Grants Officer: Mary E. Michel BT 6100 Rm. 8A17C 6100 Executive Blvd Rockville, MD 20852 Award# R01HD068488 Performance...Intervention for Veterans with Co-Occurring Mild TBI and PTSD (Brenner PI) Rehabilitation Research and Development Service Stuart Hoffman

  20. Novel Treatment for Patients with Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2016-06-01

    therapies are all commonly associated with adverse effects that offset the benefits. Per current labeling [indication� and usage statements...equieffectiv e dose of PE? 19 Does AVP improve outcome after TBI and severe hemorrhagic Test System In anesthetized, mechanically ventilated ...inflammation evaluated either with a different suffusate, different antigen, or hemorrhage only (no antigen). Anesthetized and mechanically ventilated

  1. Historical Review of the Fluid Percussion TBI Model

    Directory of Open Access Journals (Sweden)

    Bruce G Lyeth

    2016-12-01

    Full Text Available Abstract:Traumatic brain injury (TBI is a major health concern worldwide. Laboratory studies utilizing animal models of TBI are essential for addressing pathological mechanisms of brain injury and development of innovative treatments. Over the past 75 years, pioneering head injury researchers have devised and tested a number of fluid percussive methods to reproduce in animals the concussive clinical syndrome. The fluid percussion brain injury technique has evolved from early investigations that applied a generalized loading of the brain to more recent computer controlled systems. Of the many pre-clinical TBI models, the fluid percussion technique is one of the most extensively characterized and widely used models. Some of the most important advances involved the development of the Stalhammer device to produce concussion in cats and the later characterization of this device for application in rodents. The goal of this historical review is to provide readers with an appreciation for the time and effort expended by the pioneering researchers that have led to today’s state of the art fluid percussion animal models of TBI.

  2. The enhancing effect of fractionated whole-body x-irradiation on replication of endogenous leukemia viruses in BALB/c mice

    International Nuclear Information System (INIS)

    Takamori, Yasuhiko; Okumoto, Masaaki; Iwai, Mineko; Iwai, Yoshiaki

    1976-01-01

    The incidence of leukemia, changes in the tissue weight of spleen and thymus, and the expression of endogenous viruses were examined with BALB/c mice following 4 weekly fractionated whole-body x-irradiation of 170 R each, starting at 4 weeks of age. The leukemia incidence was quite low for the unirradiated controls, while 60% of the irradiated male mice developed thymic lymphoma. The virus-positive cells appeared earlier in the spleen than in the thymus and bone marrow, and increased with aging. The time of appearance of virus-positive cells in these tissues was remarkably promoted by the fractionated x-irradiation, and its frequency was also enhanced. (auth.)

  3. Autoradiographic studies of cell kinetics after whole body x-ray irradiation. Part 1. Mode of death of lethally injured proliferating subependymal cells in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, N.D.

    1982-03-01

    Autoradiographic tests were performed on proliferating subependymal cells derived from the brain of Wistar rats treated with /sup 3/H-thymidine, 60 to 80 min prior to whole-body x-ray irradiation with 50, 150, or 300 R. Evaluation of the time-dependent increase in the fraction of radio-labeled cells and the two-fold lower concentration of the label in pycnotic nuclei indicated that the lethally-injured cells which were irradiated in the early G/sub 2/ and S phases were subjected to mitotic, rather than interphase, death in the first post-radiation cell cycle. Such cells underwent mitosis ca. 2 h after irradiation, showing a 1 h lag phase vis-a-vis control cells, irrespective of the radiation dose. 25 references, 5 figures.

  4. Pumpkin Seed Oil Attenuates Functional and Structural Disorders in Urogenital System of Male Albino Rats Induced by Whole Body Gamma Irradiation

    International Nuclear Information System (INIS)

    Rezk, R.G.; Darwish, M.R

    2012-01-01

    Pumpkin seeds have long been used for health benefits and the seed oil has been shown to contain active beneficial components that may protect from oxidative stress. The aim of the present study is to evaluate the modulator role of pumpkin seed oil (PSO) supplementation on gamma radiation induced changes in certain biochemical and histological abnormalities in both kidney and testes tissues. Male rats received 5Gy whole body gamma-irradiation delivered as 1 Gy day after day to result in a cumulative dose of 5 Gy. PSO was orally administered to rats (20mg/Kg body weight) for 20 consecutive days before irradiation and during the period of irradiation. On days seven and twenty one after the last irradiation dose, rats were sacrificed. Biochemical analysis in the serum revealed that PSO supplementation diminished the radiation-induced increase in the level of urea, creatinine , follicle stimulating hormone (FSH) and luteinizing hormone (LH). Significant amelioration of the radiation-induced decreases in calcium (Ca +2 ), potassium (K + ) and testosterone levels were also recorded. PSO administration has attenuated the toxic effects of radiation by decreasing the level of lipid peroxides measured as thiobarbituric acid reactive substances (TBARS) and increasing the activity of endogenous antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) and the content of glutathione (GSH). Histological observations of photomicrographs of kidney sections of irradiated rats showed amorphoid glomeruli, renal sclerosis and high content of inflammatory cells and fibroblasts, hemorrhage in glomeruli, ruptured proximal and distal convoluted tubules. Examination of testis tissues showed disappearance of seminiferous tubules, ruptured tunica albuginea, and degeneration of interstitial cells. PSO supplementation has obviously improved the radiation-induced histopathological changes in both tissues. It could be concluded that PSO can be used as a useful adjunct for maintaining

  5. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  6. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr [Department of Radiotherapy–Oncology, Radiopathology and Radiobiology Unit, Medical School, Democritus University of Thrace, Alexandroupolis 68100 (Greece); Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr [Medical Physics Department, University General Hospital of Alexandroupolis, Alexandroupolis 68100 (Greece)

    2016-05-15

    Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.

  7. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system.

    Science.gov (United States)

    Karagounis, Ilias V; Abatzoglou, Ioannis M; Koukourakis, Michael I

    2016-05-01

    In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.

  8. Rates of TBI-related Deaths by Age Group - United States, 2001 - 2010

    Data.gov (United States)

    U.S. Department of Health & Human Services — Changes in the rates of TBI-related deaths vary depending on age. For persons 44 years of age and younger, TBI-related deaths decreased between the periods of...

  9. Recovery of the proliferative and functional integrity of mouse bone marrow in long-term cultures established after whole-body irradiation at different doses and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Bierkens, J.G.; Hendry, J.H.; Testa, N.G. (Paterson Institute for Cancer Research, Manchester (England))

    1991-02-01

    Injury inflicted upon the bone marrow stroma following whole-body irradiation and its repair over a 1-year period has been assessed in murine long-term bone marrow cultures established at increasing time intervals after irradiation. Different doses at different dose rates (10 Gy at 0.05 cGy/min, 4.5 Gy and 10 Gy at 1.6 cGy/min, and 4 x 4.5 Gy (3 weeks between doses) at 60 cGy/min) were chosen so as to maximize differences in effect in the stroma. The cellularity of the adherent layer in long-term cultures established 1 month after irradiation was reduced by 40%-90% depending on the dose and dose rate. Simultaneous with the poor ability of the marrow to form adherent layers, the cumulative spleen colony-forming unit (CFU-S) and granulocyte-macrophage colony-forming cell (GM-CFC) production over a 7-week period was reduced to 0% and 30% of control cultures, respectively. The slow recovery of the adherent layer was paralleled by an increase in the numbers of CFU-S and GM-CFC in the supernatant. Cultures established from repeatedly irradiated mice performed poorly over the entire 1-year period. Whereas the regeneration of the stroma was near complete 1 year after irradiation, the CFU-S and GM-CFC levels reached only between 50% and 80% of control cultures, respectively. Also, the concentration of CFU-S and GM-CFC in the supernatant remained persistently lower in cultures established from irradiated mice as compared to control cultures. The levels of sulfated glycosaminoglycans, which have been implicated in the establishment of the functional integrity of the microenvironment, were not reduced in the adherent layers at any time after irradiation. These results indicate that the regeneration of the stroma is accompanied by an incomplete recovery of active hemopoiesis in vitro.

  10. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  11. Pathomorphological studies of the radiation syndrome in sheep after whole-body irradiation with X-rays

    International Nuclear Information System (INIS)

    Johannsen, U.; Mehlhorn, G.; Koch, F.; Panndorf, H.

    1978-01-01

    Eight one-year-old Merino mutton sheep were irradiated with X-ray doses of 380 R. Five of the animals died between the 16th and 25th day after irradiation and were examined. In organs and tissues a great diversity of pathological changes was observed as for instance hematopoietic disorders, septic processes, hemorrhagic diatheses, and partial epilation

  12. The early irradiation syndrome. A study of the functional changes in the rabbit following whole-body γ exposure at sublethale doses

    International Nuclear Information System (INIS)

    Dufour, R.; Collignon, Y.; Vincent, F.

    1975-01-01

    A method of simultaneous observation of several physiological functions was developed in the unanaesthetized rabbit. Arterial blood pressure, local brain circulation, internal body temperature and arterial blodd acido-basic balance were thus followed before, during and after γ-irradiation. There appeared two periods in the development of this early syndrome: they were related to two processes, a central one, mainly of sympathetic origin was hardly sensitive to the dose, the other is dose-dependent [fr

  13. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2007-01-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W. Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  14. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2006-05-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W; Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  15. Histopathological studies show protective efficacy of Hippophae leaf extract against damage to jejunum in whole body 60Co-a-irradiated mice

    International Nuclear Information System (INIS)

    Gupta, Manish; Prasad, Jagdish; Madhu Bala

    2012-01-01

    Background: Ionizing radiation affect living tissue by causing majority of in vivo damage by free radical production. Earlier we reported that our preparation from Hippophae leaf offered survival benefit to >90% mice population which was whole body irradiated ( 60 Co-a-rays, 10 Gy). Objective: This study was planned to examine the protective effects of our drug (from Hippophae leaf) on ( 60 Co-a-ray induced oxidative damage and histopathological changes in jejunum. Methods: Around 2 months old adult male Strain 'A' mice were irradiated (10 Gy). Drug was administered intraperitoneally (-30 mm.). Histological parameters were studied after staining the sections with hematoxylin and eosin. Malondialdehyde formation (index of lipid peroxidation), alkaline phosphatase activity, and total thiol content were determined by biochemical techniques. The data was obtained at different time interval upto 30 days. Results: Biochemical studies showed that in comparison to the untreated controls, in the irradiated (10 Gy) mice, there was significant increase in the alkaline phosphatase activity and level of malondialdehyde whereas decrease in total thiol content within 2 days. Histological studies showed that whole body irradiation (10 Gy), damaged the jejunam crypt cells and decreased the villi height within 2 days. Intra-peritoneal administration of drug, 30 mm prior to irradiation, protected the crypt cells and villi height, countered the radiation induced increase in alkaline phosphatase activity and lipid peroxidation and values were comparable to the level of control in 30 days. Conclusions: These biochemical and histopathological studies suggested that our drug can offer effective radioprotection against the oxidative damage to jejunum in vivo. (author)

  16. Gene therapy strategy to reduced bone marrow aplasia: evaluation in cynomolgus macaque exposed to a gamma total body irradiation

    International Nuclear Information System (INIS)

    Becard, N.

    2003-01-01

    The aim of this work was to assess whether direct intra-marrow injection of an adeno-viral vector expressing human IL-1α gene stimulates hematopoiesis in healthy non-irradiated and gamma irradiated cynomolgus macaques. In the first hand, we have evaluated the feasibility of this gene therapy strategy in two healthy non-irradiated macaques. In this work, we have observed an increase of neutrophil, monocyte and platelets in the two animals treated with the therapeutic construct. This effect was associated with no abnormal clinical side effect. On the other hand, we have evaluated this strategy in non-human primate exposed to a sublethal gamma irradiation. Two of three animals treated by the therapeutic construct reduced significantly the neutropenia, thrombocytopenia and anemia radio-induced. In conclusion, this gene therapy strategy gave a similar clinical benefit comparatively to systemic administration of huIL-1α but without severe side effect. (author) [fr

  17. Defining the Pathophysiological Role of Tau in Experimental TBI

    Science.gov (United States)

    2016-10-01

    brain damage and dysfunction, owing to their dependence on non-invasive or post - mortem histopathological methods. Furthermore, there are currently...current literature on the role of tau pathology in human TBI? They are consistent. The histopathological study of post - mortem human brains obtained from...0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

  18. Enhanced Cognitive Rehabilitation to Treat Comorbid TBI and PTSD

    Science.gov (United States)

    2017-12-01

    points during the study. The investigation sought to improve treatment outcomes for combat-related psychological health and develop an evidence-based...on Psychological , Neuropsychological, and Speech Symptoms in Comorbid PTSD and TBI. Cognitive and Behavioral Practice, 23, 178-83. doi:10.1016...Society, Washington, D.C. 11 Jak, A.J. (2017). Integrating the ’Neuro’ and ’ Psychology ’ in the Clinical Presentation of Persistent Post

  19. Enhanced Cognitive Rehabilitation to Treat Comorbid TBI and PTSD

    Science.gov (United States)

    2017-12-01

    Society, Washington, D.C. 11 Jak, A.J. (2017). Integrating the ’Neuro’ and ’ Psychology ’ in the Clinical Presentation of Persistent Post...with co-occurring head injury and mental health symptoms: Clinical trial outcomes for individuals with TBI and psychological distress’ at the annual...points during the study. The investigation sought to improve treatment outcomes for combat-related psychological health and develop an evidence-based

  20. Defining the Pathophysiological Role of Tau in Experimental TBI

    Science.gov (United States)

    2015-10-01

    200X (right), 100X (left) mag. (G,H) eGFP expression in the perforant pathway synaptic zone in both blades of the dentate gyrus (G) and in the...neocortex together determine the initial severity of TBI. As shown in Figure 2, the magnitude and scope of histological changes in the hippocampus...gyrus. The latter is manifested by the decreased distance between the two blades of granule neurons, and shrinkage of the molecular layer. All of

  1. Effects of whole-body irradiation on the degradation of 125I insulin and Na131I insulin in rabbits

    International Nuclear Information System (INIS)

    Hofmann, M.

    1980-01-01

    The degradation of simultaneously (i.v.) injected Na 131 I- and 125 I-bovine insuline by rabbit blood and the urinary excretion of Na 131 I- and 125 I-containing insulin degradation products have been investigated before and 24 h after 700 R X-ray irradiation. Also, the distribution of the two substances in the livers, kidneys, spleens, and KI-blocked thyroids was observed after irradiation. Radiation effects on the distribution of Na 131 I- and 125 I-insulin on the livers, kidneys, and spleens of rabbits were not observed. On irradiation, there was a significant reduction of diuresis and also of the urinary excretion of 131 I and 125 I radioactivity. Irradiation had no influence on the distribution of Na 131 I-and 125 I-insulin between plasma and extravascular space. The renal excretion function for water, iodide, and insulin degradation products was clearly impaired after irradiation. The same applies to the insulincatabolism by the degrading organs. The leukocyte count was reduced to about 17% during the first 4 days after irradiation. (orig./MG) [de

  2. Activation of immune functions via induction of glutathione of lymphocytes by low-dose, whole-body irradiation with gamma-rays

    International Nuclear Information System (INIS)

    Shuji Kojima; Hisatake Hayase; Mareyuki Takahashi

    2007-01-01

    Complete text of publication follows. We have recently found that low doses of radiation, unlike higher doses, do not always cause a decrease of cellular glutathione, but they can increase it, leading to an elevation of Con A-induced proliferation of splenocytes. In this study, we first examined whether the increase of glutathione level induced by low-dose gamma-ray irradiation is involved in the appearance of enhanced natural killer (NK) activity and antibody-dependent cellular cytotoxicity (ADCC), leading to delayed tumor growth in Ehrlich solid tumor (EST)-bearing mice. NK activity in ICR mouse splenocytes was significantly increased from 4 h to 6 h after a single whole-body gamma-ray irradiation at 0.5 Gy, and thereafter decreased almost to the zero-time level by 24 h post-irradiation. ADCC was also increased significantly in a similar way. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced both NK activity and ADCC in a dose-dependent manner. The inhibitory effect of the radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after the inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance (Th1/Th2) was examined in order to elucidate the mechanism underlying the anti-tumor immunity. Recent studies indicate that Th1/Th2 balance plays an important role in the immune responses involved in anti-tumor immunity. The activity of NK is hallmarks of cell-mediated immunity, and play key roles in anti-tumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after the radiation, concomitantly with an increase in that of helper T cell population, favoring Th1 polarization. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after the radiation, though the level of

  3. Studies on immunity to Schistosoma mansoni in vivo: whole-body irradiation has no effect on vaccine-induced resistance in mice

    International Nuclear Information System (INIS)

    Vignali, D.A.A.; Bickle, Q.D.; Taylor, M.G.

    1988-01-01

    Actively immunized mice, whole-body irradiated with 650 or 525 rad., manifested comparable levels of resistance to Schistosoma mansoni compared with unirradiated, immunized mice in spite of a marked reduction in circulating leucocytes and platelets, and despite an abrogation of delayed-type hypersensitivity (DTH) (Type IV) reponse to schistosomular antigens. However, limited histopathological comparison of lung sections from irradiated and unirradiated mice 7 days post-challenge showed that cellular reactions ('foci') around parasites were similar in size and cellular composition except that in irradiated mice, eosinophils were poorly represented both in the foci and in lung tissue in general. Neither presumed immune complex-mediated (Type III, Arthus reaction) hypersensitivity nor serum anti-schistosomulum extract antibody levels were affected. The pattern of 125 I-labelled schistosomular surface antigens immunoprecipitated with serum from irradiated and unirradiated mice was essentially similar. These results are consistent with antibody playing an important role in vaccine-induced immunity in mice but suggest that radiosensitive T cell function and radiosensitive cells, such as platelets and polymorphonuclear cells, including eosinophils, may not be essential. (author)

  4. Thyroxine clearance in rats within the first month after the single whole-body {gamma} - irradiation at a dose of 10Gy

    Energy Technology Data Exchange (ETDEWEB)

    Pryadko, Kirill A. [Institute of Radiobiology, National Academy of Sciences, Minsk (Belarus)

    2002-07-01

    The effects of acute whole-body {gamma} -irradiation at a dose of 10 Gy on thyroxine (T{sub 4}) plasma clearance rate (PCR) and thyroidal and blood T4 concentration ([T{sub 4}]) were examined within one month after exposure. The PCR values were measured using the bolus injection, single-compartmental approach. To eliminate the influence of radiation-induced anorexia animals were fasting for two days before the pharmacokinetic experiments. Hormone concentrations in blood and in thyroid tissue were measured by RIA. Throughout the observation period, PCR was elevated in irradiated rats with maximum at day 4 after exposure (0.56{+-}0.04 vs. 0.36{+-}0.03 ml/h100 gbw, P<0.001). [T{sub 4}] in blood was not significantly different from that in control animals. Thyroidal [T{sub 4}] was significantly decreased in irradiated animals 4 days after exposure (151.8{+-}21.7 vs. 258.8{+-}29.9 pmol/mg protein, P<0.01) and gradually increased after day 9. 10 Gy {gamma} -irradiation causes the intensification of T{sub 4} metabolism without the pronounced changes in concentration. Presumably, at early terms the rising local demand in O{sub 4} can not be compensated with the existing level of production. Alterations in the intensity of T{sub 4} metabolism are evident at least one month after exposure but they may not be detected without taking into account kinetic data.

  5. The Possible Effect Of Tamoxifen Vs Whole Body Irradiation Treatment On Thyroid Hormones in Female Rats Bearing Mammary Tumors Chemically Induced

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.

    2012-01-01

    Breast cancer is the most common malignancy among women in most developed and developing regions of the world. In women, this drug has tissuespecific effects, acting as an estrogen antagonist on the breast, and as an estrogen agonist on bone, lipid metabolism (increasing high-density lipoprotein cholesterol and decreasing low-density lipoprotein cholesterol), and the endometrium. Thyroid hormones act on almost all organs throughout the body and regulate the basal metabolism of the organism. Thyroid hormone can also stimulate the proliferation in vitro of certain tumor cell lines. The aim of the present study is to evaluate the significant value of tamoxifen and/or irradiation treatment on thyroid hormones in breast cancer bearing female rats. Forty two female Sprague-Dawely rats randomly divided into seven groups and the effect of tamoxifen and post-irradiation was studied on breast cancer chemically induced. The results shows a T 4 and estradiol levels not T 3 were altered in different experimental groups. It could be concluded that irradiation-induced changes in the composition of the mammary microenvironment promote the expression of neoplastic potential by affecting both estradiol and thyroid hormones, and tamoxifen may alter the thyroid hormones. Irradiation and tamoxifen administration may have worth effects on T 4 and estradiol levels and it is recommended to further studies towards the bystander effect of radiation and tamoxifen on the tissue culture and molecular biology scale.

  6. Mental Health Implications of Traumatic Brain Injury (TBI) in Children and Youth.

    Science.gov (United States)

    Schachar, Russell James; Park, Laura Seohyun; Dennis, Maureen

    2015-01-01

    Traumatic brain injury (TBI) is the most common cause of death and disability in children and adolescents. Psychopathology is an established risk factor for, and a frequent consequence of, TBI. This paper reviews the literature relating psychopathology and TBI. Selective literature review. The risk of sustaining a TBI is increased by pre-existing psychopathology (particularly ADHD and aggression) and psychosocial adversity. Even among individuals with no psychopathology prior to the injury, TBI is frequently followed by mental illness especially ADHD, personality change, conduct disorder and, less frequently, by post-traumatic stress and anxiety disorders. The outcome of TBI can be partially predicted by pre-injury adjustment and injury severity, but less well by age at injury. Few individuals receive treatment for mental illness following TBI. TBI has substantial relevance to mental health professionals and their clinical practice. Available evidence, while limited, indicates that the risk for TBI in children and adolescents is increased in the presence of several, potentially treatable mental health conditions and that the outcome of TBI involves a range of mental health problems, many of which are treatable. Prevention and management efforts targeting psychiatric risks and outcomes are an urgent priority. Child and adolescent mental health professionals can play a critical role in the prevention and treatment of TBI through advocacy, education, policy development and clinical practice.

  7. Sexual Functioning, Desire, and Satisfaction in Women with TBI and Healthy Controls

    Science.gov (United States)

    Strizzi, Jenna; Olabarrieta Landa, Laiene; Pappadis, Monique; Olivera, Silvia Leonor; Valdivia Tangarife, Edgar Ricardo; Fernandez Agis, Inmaculada; Perrin, Paul B.; Arango-Lasprilla, Juan Carlos

    2015-01-01

    Traumatic brain injury (TBI) can substantially alter many areas of a person's life and there has been little research published regarding sexual functioning in women with TBI. Methods. A total of 58 women (29 with TBI and 29 healthy controls) from Neiva, Colombia, participated. There were no statistically significant differences between groups in sociodemographic characteristics. All 58 women completed the Sexual Quality of Life Questionnaire (SQoL), Female Sexual Functioning Index (FSFI), Sexual Desire Inventory (SDI), and the Sexual Satisfaction Index (ISS). Results. Women with TBI scored statistically significantly lower on the SQoL (p satisfaction (p sexuality measures, while months since the TBI incident were positively associated with these variables. Conclusion. These results disclose that women with TBI do not fare as well as controls in these measures of sexual functioning and were less sexually satisfied. Future research is required to further understand the impact of TBI on sexual function and satisfaction to inform for rehabilitation programs. PMID:26556951

  8. Total half-body systemic irradiation for occult metastases in non-small cell lung cancer: an Eastern Cooperative Oncology group pilot report

    International Nuclear Information System (INIS)

    Salazar, O.M.; Scarantino, C.W.; Rubin, P.; Feldstein, M.L.; Keller, B.E.

    1980-01-01

    There is a high probability for patients with locally advanced, unresectable, nonmetastatic, nonsmall-cell bronchogenic carcinoma (NSCBC) to harbor subclinical distant metastases at diagnosis. Approximately 30% will disseminate in the first three months and an additional 50% will disseminate before a year has elapsed. Twenty advanced nonmetastatic patients wtith NSCBC were treated with localized split-course chest irradiation (LCI) plus total body (upper and lower half-body) irradiation for occult metastases. Thirty equally advanced, nonmetastatic patients, who were treated with only localized split-course chest irradiation, were matched and served as a retrospective control group. Apparently, the median recurrence free survival, metastatic free interval, and median survival were significantly prolonged, and there was a decrease in the incidence of liver metastases in patients receiving HBI for occult metastases over the patients of the control group. Although elective HBI seems to delay the appearance of distant metastases, it did not prevent their occurrence, alter patterns of first relapse, or significantly improve the overall survival. Nevertheless, a therapeutic gain may have been achieved and is discussed. The incidence of radiation pneumonitis with 800 rad of UHBI corrected for lung transmission was 9%. A hypothesis and a rationale for a more effective combined modality therapy in these patients is given

  9. Effects of whole-body γ-irradiation on the biosynthesis of certain serum proteins. Final report, November 29, 1967--June 30, 1976

    International Nuclear Information System (INIS)

    Neuhaus, O.W.

    1976-01-01

    Whole-body exposure of rats to ionizing radiations yielded an increased incorporation of labeled amino acids into serum albumin in in vivo studies suggesting a stimulation of biosynthesis. Actually this may have been caused by an elevated hepatic transport of labeled amino acids (see below). A suppressed biosynthesis of albumin was observed when the experiments were performed in vitro using liver microsomes. Impaired biosynthesis appeared to be caused by a reduced mRNA production. Irradiation stimulated the biosynthesis of acute-phase plasma proteins (stress response) and inhibited the excretion of α/sub 2u/-globulin, the sex-dependent protein of the adult male rat. Exposure of rats to γ-rays stimulated amino acid transport into the liver. This process which is Na + and energy-dependent was studied with α-aminoisobutyric acid, cycloleucine, and L-methionine among others. After irradiation the serum glucagon and insulin, as well as hepatic cAMP levels, were elevated. Amino acid transport may be an important factor in controlling the increased gluconeogenesis and glycogenesis observed in rats following whole-body irradiation

  10. Body

    OpenAIRE

    Riggs, Christina

    2010-01-01

    The human body is both the physical form inhabited by an individual “self” and the medium through which an individual engages with society. Hence the body both shapes and is shaped by an individual’s social roles. In contrast to the cognate fields of archaeology, anthropology, and classics, there has been little explicit discussion or theorization of the body in Egyptology. Some recent works, discussed here, constitute an exception to this trend, but there is much more scope for exploring anc...

  11. Autoradiographic studies on the cell kinetics after the whole body X-irradiation. 3. Post-irradiation changes in the mitotic activity and mitotic cycle of the rat's brain subependymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, N.D. (Tsentral' nyj Nauchno-Issledovatel' skij Rentgeno-Radiologicheskij Inst., Leningrad (USSR))

    1982-04-01

    The study is carried out on subependymal cells of rat brain usig autoradiography with 3H-tymidine introduced 60-80 min before whole body X-ray irradiation i doses 50, 150, or 300 R. In postradiation cell system the dynamics of mitotic index Isub(M) and changes of mitotic cycle aevaluated according to the curve of labelled mitosis (CLM) are studied. A new interpretation of ''classical delay of mitosis'' is given, which points not to excessive delay in phases of mitotic cycle but to dependence on dose time from the irradiation moment before appearance of the first mitoses of survived cells as cells which were dividing at the time of death. At that, all the cells of the system have experienced one hour block independent of the dose. It is showm that the curve Isub(M) can serve as a measure of dead proliferative cells. The changes of CLM, conditioned by mitotic deathe f cells irradiated in G2-and S-phases and its other peculiarities are discussed.

  12. Effect of gamma irradiation on the total nitrogen and protein content in body during different stages of silkworm development

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.T.

    1996-01-01

    The aim was to determine the effect of gamma irradiation of eggs of silk moth in B 2 stage in doses of 1.00, 2.00 and 3.00 Gy on the changes of total nitrogen and protein content during different stages of Bombyx mori L. development. Highest levels of total nitrogen and protein were found in silk gland 14.032-14.355 mg%, followed by pupae - 7.448-8.092 and 46.550-48.906 mg%, moths after egg laying - 6.650-7.825 and 41.563-48.906 mg% and silkworm hemolymph - 6.920-6.980 and 43.250-43.625 mg%, respectively. The irradiation of eggs with 2.00 and 3,00 Gy gamma rays stimulated the increase of total nitrogen and protein content in silk gland by 6.66-7.3% compared to non-irradiated eggs of the same breed. 14 refs., 3 tabs. (author)

  13. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  14. Extramedullary Relapse Following Total Marrow and Lymphoid Irradiation in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyun [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Stein, Anthony [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Tsai, Nicole [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Schultheiss, Timothy E. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Palmer, Joycelynne [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Liu, An [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Rosenthal, Joseph [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Department of Pediatrics, City of Hope National Medical Center, Duarte, California (United States); Forman, Stephen J. [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Wong, Jeffrey Y.C., E-mail: jwong@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States)

    2014-05-01

    Purpose: Approximately 5% to 20% of patients who undergo total body irradiation (TBI) in preparation for hematopoietic cell transplantation (HCT) can develop extramedullary (EM) relapse. Whereas total marrow and lymphoid irradiation (TMLI) provides a more conformally targeted radiation therapy for patients, organ sparing has the potential to place the patient at a higher risk for EM relapse than TBI. This study evaluated EM relapse in patients treated with TMLI at our institution. Methods and Materials: Patients eligible for analysis had been enrolled in 1 of 3 prospective TMLI trials between 2006 and 2012. The TMLI targeted bones, major lymph node chains, liver, spleen, testes, and brain, using image-guided tomotherapy with total dose ranging from 12 to 15 Gy. Results: A total of 101 patients with a median age of 47 years were studied. The median follow-up was 12.8 months. Incidence of EM relapse and bone marrow (BM) relapse were 12.9% and 25.7%, respectively. Of the 13 patients who had EM relapse, 4 also had BM relapse, and 7 had EM disease prior to HCT. There were a total of 19 EM relapse sites as the site of initial recurrence: 11 soft tissue, 6 lymph node, 2 skin. Nine of these sites were within the target region and received ≥12 Gy. Ten initial EM relapse sites were outside of the target region: 5 sites received 10.1 to 11.4 Gy while 5 sites received <10 Gy. Pretransplantation EM was the only significant predictor of subsequent EM relapse. The cumulative incidence of EM relapse was 4% at 1 year and 11.4% at 2 years. Conclusions: EM relapse incidence was as frequent in regions receiving ≥10 Gy as those receiving <10 Gy. EM relapse rates following TMLI that included HCT regimens were comparable to published results with regimens including TBI and suggest that TMLI is not associated with an increased EM relapse risk.

  15. Effect of Fluosol-DA 20% and oxygen on response of C57BL/6 mice to whole-body irradiation

    International Nuclear Information System (INIS)

    Waldow, S.M.; Lustig, R.A.; Brass-Marlow, E.L.; Nunno, M.P.; Holst, R.J.; Wallner, P.E.

    1990-01-01

    Normal tissue effects in mice due to combinations of a perfluorochemical emulsion, Fluosol-DA 20%, 100% oxygen, and whole-body irradiation were investigated. Eight-to-10-week-old C57BL/6 male mice were injected via the tail vein with 10 ml/kg of Fluosol-DA with and without subsequent exposure to oxygen for 60 minutes. Animals then received graded doses of whole-body radiation (4 MV photons) at a dose rate of 2.85 +/- .015 Gy/minute. Using linear regression analysis, the lethal doses of radiation to 50% and 10% of the animals within 30 days in the absence of Fluosol-DA and oxygen were 8.35 Gy (95% c.l.:7.77-8.93 Gy) and 6.73 Gy (95% cl.:6.21-7.25 Gy), respectively, and were unaffected by Fluosol-DA and/or oxygen pre-treatment. However, Fluosol-DA given alone or in combination with oxygen produced increased balding and decreased graying incidence in mice within 60 days, and resulted in depressed weight gain 15 to 60 days post-treatment. Normal tissue effects due to administration of Fluosol-DA and oxygen in combination with whole-body irradiation have been demonstrated but appear minimal compared to other anti-tumor modalities currently under investigation

  16. Adaptive hormetic response of pre-exposure of mouse brain with low-dose 12C 6+ ion or 60Co γ-ray on growth hormone (GH) and body weight induced by subsequent high-dose irradiation

    Science.gov (United States)

    Zhang, Hong; Xie, Yi; Zhou, Qingming; Liu, Bing; Li, Wenjian; Li, Xiaoda; Duan, Xin; Yuan, Zhigang; Zhou, Guangming; Min, Fengling

    2006-01-01

    The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of 12C 6+ ion or 60Co γ-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C 6+ ion or 60Co γ-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of 12C 6+ ion or 60Co γ-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of 12C 6+ ion calculated with respect to 60Co γ-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of 12C 6+ ion or 60Co γ-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

  17. Succesive irradiation of the lower and upper body in non-Hodgkin lymphoma after failure of chemotherapy. Report of eight cases

    International Nuclear Information System (INIS)

    Touboul, E.; Leonard, P.; Guerin, R.A.; Merle Beral, H.; Goris, C.; Leblond-Missenard, V.; Jablonski, O.; Buscaill, A.

    1985-01-01

    Eight patients, with stages CS IV non-Hodgkin lymphoma involving the bone marrow and secondarily resistant to chemotherapy were studied. The eight patients were managed, by external irradiation of the lower half of the body (LHBI), followed six weeks later by irradiation of the upper half of the body (UHBI). A single dose of 8.00 Grays in 6 cases and 6.00 Grays in two cases was delivered. After LHBI, 4 of 8 patients experienced nausea and emesis within the first thirty minutes. Two patients had diarrhea 24 to 48 hours after treatment. Side effects recorded after LHBI were as follows: marked tiredness in 3 cases, alopecia in 6, stomatitis in 1, oral and digestive candidiasis in 2, nausea and emesis 4, fever in 1, oral herpes simplex in 1, diarrhea in 1 and abdominal pain in 1. The dose delivered to the lungs was brought down to 6.00 Grays by interposition of attenuating lead sheets, and no postirradiation lung disease was observed. After the first radiation session, 2 of 8 patients had hemoglobin levels less than 8 g/100 ml and platelet counts less than 50 000/mm 3 on the sixth and eleventh day respectively. After irradiation of the second half of the body, 3 patients developed severe medullary aplasia. Each of these patients had received 8.00 Grays. In each case, duration of the aplasia exceeded two months. Outcome was fatal in two patients, at four months and 3.5. Overall apparent clinical remission rate was 4/8 [fr

  18. Succesive irradiation of the lower and upper body in non-Hodgkin lymphoma after failure of chemotherapy. Report of eight cases

    Energy Technology Data Exchange (ETDEWEB)

    Touboul, E.; Leonard, P.; Guerin, R.A.; Merle Beral, H.; Goris, C.; Leblond-Missenard, V.; Jablonski, O.; Buscaill, A. (Centre Hospitalier Universitaire, Pitie Salpetriere, 75 - Paris (France))

    1985-04-18

    Eight patients, with stages CS IV non-Hodgkin lymphoma involving the bone marrow and secondarily resistant to chemotherapy were studied. The eight patients were managed, by external irradiation of the lower half of the body (LHBI), followed six weeks later by irradiation of the upper half of the body (UHBI). A single dose of 8.00 Grays in 6 cases and 6.00 Grays in two cases was delivered. After LHBI, 4 of 8 patients experienced nausea and emesis within the first thirty minutes. Two patients had diarrhea 24 to 48 hours after treatment. Side effects recorded after LHBI were as follows: marked tiredness in 3 cases, alopecia in 6, stomatitis in 1, oral and digestive candidiasis in 2, nausea and emesis 4, fever in 1, oral herpes simplex in 1, diarrhea in 1 and abdominal pain in 1. The dose delivered to the lungs was brought down to 6.00 Grays by interposition of attenuating lead sheets, and no postirradiation lung disease was observed. After the first radiation session, 2 of 8 patients had hemoglobin levels less than 8 g/100 ml and platelet counts less than 50 000/mm/sup 3/ on the sixth and eleventh day respectively. After irradiation of the second half of the body, 3 patients developed severe medullary aplasia. Each of these patients had received 8.00 Grays. In each case, duration of the aplasia exceeded two months. Outcome was fatal in two patients, at four months and 3.5. Overall apparent clinical remission rate was 4/8.

  19. Study of human mesenchymal stem cells plasticity into radiation injured tissues in a N.O.D./S.C.I.D. mouse model: therapeutic approach of the multiple organ dysfunction; Etude de la capacite plastique des Cellules Souches Mesenchymateuses humaines (CSM) apres irradiation du tissu receveur: approche therapeutique de l'atteinte multiorgane radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Francois, S

    2006-01-15

    The therapeutic potential of bone marrow-derived human mesenchymal stem cells (h.M.S.C.) has recently been brought into the spotlight of many fields of research. One possible application of the approach is the repair of injured tissues arising from side effects of radiation treatments and accidents. The first challenge in cell therapy is to assess the quality of the cell and the ability to retain their differentiation potential during the expansion process. Efficient delivery to the sites of intended action is also necessary. We addressed both questions using h.M.S.C. cultured and then infused to Non Obese Diabetes/Severe Combined Immunodeficiency (N.O.D./S.C.I.D.) mice submitted to total body irradiation. Further, we tested the impact of additional local irradiation superimposed to total body irradiation (T.B.I.), as a model of accidental irradiation. Our results showed that the h.M.S.C. used for transplant have been expanded without significant loss in their differentiation capacities. After transplantation into adult unconditioned mice, h.M.S.C. not only migrate in bone marrow but also into other tissues. Total body irradiation increased h.M.S.C. implantation in bone marrow and muscle and further led to engraftment in brain, heart, and liver. Local irradiation, in addition to T.B.I., increased both specific homing of injected cells to the injured tissues and to other tissues outside the local irradiation field. M.S.C. may participate to restoration of intestinal homeostasis 3 days post abdominal irradiation. This study suggests that using the potential of h.M.S.C. to home to various organs in response to tissue injuries could be a promising strategy to repair the radiation induced damages. (author)

  20. Long-Term Cognitive Functioning in Single-Dose Total-Body Gamma-Irradiated Rhesus Monkeys (Macaca mulatta)

    Science.gov (United States)

    Hanbury, David B.; Peiffer, Ann M.; Dugan, Greg; Andrews, Rachel N.; Cline, J. Mark

    2016-01-01

    In this study, the effects of a potentially lethal radiation exposure on the brain for long-term cognitive sequelae were investigated using Rhesus macaques (Macaca mulatta) adopted from other facilities after analysis of acute radiation response via the Centers for Medical Countermeasures against Radiation (CMCR) network. Fifty-nine animals were given the opportunity to participate in cognitive cage-side testing. The animals that received single-dose gamma irradiation were significantly less likely to engage in cognitive testing than the controls, suggesting that irradiated animals may have differences in cognitive ability. Five irradiated (6.75–8.05 Gy) and three naïve control animals self-selected, were extensively trained and administered a simple visual discrimination with reversal (SVD+R) task 2–3 times per week for 11–18 months. Each session consisted of 30 trials in which the animals were required to choose the correct visual stimulus for a food reward. After the initial presentation, the stimulus that signaled the presence of food was twice reversed once the animal reached criterion (90% accuracy across four consecutive sessions). While the limited sample size precluded definitive statistical analysis, irradiated animals took longer to reach the criterion subsequent to reversal than did control animals, suggesting a relative deficiency in cognitive flexibility. These results provide preliminary data supporting the potential use of a nonhuman primate model to study radiation-induced, late-delayed cognitive deficits. PMID:27740889

  1. Protection of mouse hematopoietic stem cells by a preparation of herb mixture (hemoHIM) against whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W. H.; Park, H. R.; Oh, H.; Jung, I. Y.; Cho, S. K. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    A preparation of herb mixture (HemoHIM) was designed from three medicinal herbs including Angelica gigantis Radix to protect gastrointestine, hematopoietic organs and immune system against radiation damage. In the present study, we investigated the radioprotective effects of HemoHIM on hematopoietic stem cells in {gamma}-irradiated mice and the underlying mechanisms. The administration of HemoHIM significantly increased the formation of endogenous spleen colony and reduced apoptosis of bone marrow cells in {gamma}-irradiated mice. These results showed that HemoHIM protected hematopoietic stem cells from irradiation. To investigate the mechanism of the protection, the effects of HemoHIM on expression of radioprotective cytokines was examined. HemoHIM increased the mRNA levels of IL-1{beta}, TNF-{alpha}, SCF and IL-6 in bone marrow cells and peritoneal macrophages in vitro. In vivo administration of HemoHIM increased the mRNA levels of IL-1{beta}, TNF-{alpha} in spleen. The examination of radical scavenging activity of HemoHIM as another mechanism revealed that HemoHIM was effective at scavenging DPPH radicals and hydroxyl radicals. From these results, it is suggested that HemoHIM exerts these radioprotective effects through the induction of radioprotective cytokines and/or through directly scavenging radicals produced by {gamma}-irradiation.

  2. Pupillometry and Saccades as Objective mTBI Biomark

    Science.gov (United States)

    2017-06-01

    color (p = 0.01). The mTBI group contained fewer individuals with blue eyes than were present in the control group. Neither of these was...0.001* Junior Enlisted (E1-E3) 25 (58.1) 18 (41.9) NCO (E4-E8) 50 (40.3) 74 (59.7) Officer (O1-O5) 25 (75.8) 8 (24.2) Eye Color 0.01...Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for

  3. Contribution to the study of non-lethal whole-body gamma irradiation effects on the unitary activities of the dorsal hippocampus in rabbits

    International Nuclear Information System (INIS)

    Bassant, M.-H.

    1976-01-01

    The effects of non-lethal whole-body gamma irradiation on the spontaneous activity of the dorsal hippocampus pyramidal cells were studied in rabbits. First of all the unitary activity of the CA 1 and CA 4 pyramidal cells was recorded extracellularly in the reference animal. The results were analyzed by a statistical method. By classifying the various cell functioning modes observed, and measuring the frequency with which they appear as a function of the state of vigilance, an attempt was made to characterize precisely the spontaneous activity of the hippocampal neurons. Recording were then made under identical experimental conditions on animals totally irradiated to mean absorbed doses of 250 and 450 rads (delivered at a constant rate of 14 rads/mn). The electroencephalographic activity of the hippocampus shows many anomalies (slow waves, wave-points, theta rythm deformation) as a function of which several pathological states were distinguished and used to classify the data, then processed by the methods already used for the reference data. The results obtained prove that the statistical characteristics of the unitary activity are changed by irradiation [fr

  4. Hepatocytes, rather than leukocytes reverse DNA damage in vivo induced by whole body y-irradiation of mice, as shown by the alkaline comet assay

    Directory of Open Access Journals (Sweden)

    JUANA PINCHEIRA

    2008-01-01

    Full Text Available DNA damage repair was assessed in quiescent (G0 leukocytes and in hepatocytes of mice, after 1 and 2 hours recovery from a single whole body y-irradiation with 0.5, 1 or 2 Gy. Evaluation of single-strand breaks (SSB and alkali-labile sites together were carried out by a single-cell electrophoresis at pH>13.0 (alkaline comet assay. In non-irradiated (control mice, the constitutive, endogenous DNA damage (basal was around 1.5 times higher in leukocytes than in hepatocytes. Irradiation immediately increased SSB frequency in both cell types, in a dose-dependent manner. Two sequential phases took place during the in vivo repair of the radio-induced DNA lesions. The earliest one, present in both hepatocytes and leukocytes, further increased the SSB frequency, making evident the processing of some primary lesions in DNA bases into the SSB repair intermediates. In a second phase, SSB frequency decreased because of their removal. In hepatocytes, such a frequency regressed to the constitutive basal level after 2 hours recovery from either 0.5 orí Gy. On the other hand, the SSB repair phase was specifically abrogated in leukocytes, at the doses and recovery times analyzed. Thus, the efficiency of in vivo repair of radio-induced DNA damage in dormant cells (lymphocytes is quite different from that in hepatocytes whose low proliferation activity accounts only for cell renewal.

  5. Hepatotoxicity after liver irradiation in children and adolescents. Results from the RiSK

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, Pascal; Christiansen, Hans [Medical School Hannover, Department of Radiotherapy and Special Oncology, Hannover (Germany); Kortmann, Rolf-Dieter [University of Leipzig, Department of Radiotherapy, Leipzig (Germany); Martini, Carmen [University Hospital of Freiburg, Department of Radiotherapy, Freiburg im Breisgau (Germany); Matuschek, Christiane [Heinrich-Heine University of Duesseldorf, Department of Radiotherapy, Medical Faculty, Duesseldorf (Germany); Meyer, Frank [Hospital Augsburg, Department of Radiotherapy, Augsburg (Germany); Ruebe, Christian [University Hospital of Homburg/Saar, Department of Radiotherapy, Homburg/Saar (Germany); Langer, Thorsten [University Hospital of Schleswig-Holstein, Department of Pediatrics, Pediatric Oncology, Campus Luebeck (Germany); Koch, Raphael [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Eich, Hans Theodor; Willich, Normann [University Hospital of Muenster, Department of Radiotherapy, Muenster (Germany); Steinmann, Diana [Medical School Hannover, Department of Radiotherapy and Special Oncology, Hannover (Germany); University Hospital of Muenster, Department of Radiotherapy, Muenster (Germany)

    2015-05-01

    The aim of this study was to evaluate acute and late radiotherapy-associated hepatotoxicity in consideration of dose-volume effects and liver function in childhood and adolescence. Since 2001, irradiated children and adolescents in Germany have been prospectively documented in the ''Register of Treatment-Associated Late Effects After Radiotherapy of Malignant Diseases in Childhood and Adolescence (RiSK)'' using standardized forms. Toxicity was graded according to the Radiation Therapy Oncology Group (RTOG) criteria. Until April 2012, 1,392 children and adolescents from 62 radiotherapy centers were recruited. In all, 216 patients underwent irradiation of the liver (median age 9 years, range 1-18 years, 70 patients with total-body irradiation, TBI). For 75 % of patients without TBI, information on acute toxicity of the liver was available: 24 patients had acute toxicity of grade 1-4 (grade 1, 2, and 4, in 20, 3, and 1 patient, respectively), including five patients receiving simultaneous hepatotoxic chemotherapy. Information on late toxicity was documented in 465 forms from 216 patients, with a median follow-up of 2 years. A maximum grade of toxicity of ≥ 0 occurred in 18 patients over time (with grade 1, 2, and 3 toxicity occurring in 15, 2, and 1 patient, respectively), including three patients (17 %) with TBI. One of them received simultaneous hepatotoxic chemotherapy. In multivariable analysis, volume-dose correlations showed no statistically noticeable effect on acute or chronic toxicity. Only low hepatotoxicity developed in children after irradiation of various abdominal and thoracic tumors. Due to the low radiation doses to the liver (median liver dose = 5 Gy) and the low toxicities that were consecutively observed, dose-volume curves for liver toxicity could not be established. These findings reflect the cautious attitude of radiation oncologists in terms of attributable liver doses in the treatment of the investigated tumor entities. It

  6. Increased health care utilization by survivors of childhood lymphoblastic leukemia is confined to those treated with cranial or total body irradiation: a case cohort study

    International Nuclear Information System (INIS)

    Holmqvist, Anna Sällfors; Moëll, Christian; Hjorth, Lars; Lindgren, Anna; Garwicz, Stanislaw; Wiebe, Thomas; Øra, Ingrid

    2014-01-01

    Previous studies have indicated that survivors of childhood acute lymphoblastic leukemia (ALL) have an increased morbidity measured in terms of health care utilization. However, earlier studies have several potentially important limitations. To overcome some of these, we investigated hospital contact rates, and predictors thereof, among 5-year survivors of ALL in a population-based setting, and compared them to a control cohort regarding outcome measures from a comprehensive nation-wide health register. All individuals diagnosed with ALL before the age of 18 in Southern Sweden during 1970–1999 and alive January 2007 (n = 213; male = 107) were identified through the Swedish Cancer Register. Each subject was matched to fifty controls, identified in the Swedish Population Register. All study subjects were linked to the National Hospital Register and detailed information was obtained on all hospital contacts (hospital admissions and outpatients visits) starting five years after cancer diagnosis, and the corresponding date for the controls, until 2009. The median follow-up among the 5-year survivors of ALL was 16 years (range 5–33), accruing a total of 3,527 person-years. Of the 213 5-year survivors, 105 (49.3%) had at least one hospital contact compared to 3,634 (34.1%) of the controls (p < 0.001). Survivors had more hospital contacts (3 [1–6] vs. 2 [1–4] contacts, p < 0.001) and more total days in hospital (6 [2–18] vs. 3 [1–7] days, p < 0.001) than the controls during the study period. Logistic regression analysis showed that survivors treated with cranial irradiation and/or total body irradiation (45% and 7%, respectively) had an increased risk of at least one hospital contact (OR 2.3, 95%CI; 1.5–3.6 and OR 11.0, 95%CI; 3.2–50.7, respectively), while there was no significant difference between the non-irradiated survivors and controls. We show that irradiated survivors of childhood ALL have an increased morbidity measured in terms of hospital

  7. Rescue by peripheral blood mononuclear cells in dogs from bone marrow failure after total-body irradiation

    International Nuclear Information System (INIS)

    Zander, A.R.; Gray, K.N.; Hester, J.P.

    1984-01-01

    In order to determine the minimum dose of buffy coat cells necessary to achieve hematopoietic rescue following supralethal irradiation, mongrel dogs under general anesthesia were subjected to leukacytapheresis using three different techniques of cell separation. The buffy coats were frozen with dimethylsulfoxide and stored at -196 degrees C until transfused. Sixteen dogs were irradiated with 800 rads and were supported with antibiotics and transfusions of irradiated homologous blood. They were transfused with the frozen and thawed buffy coat cells, and, if they survived, they were followed for 100 days, sacrificed, and their tissues studied. The mean yield of mononuclear cells during leukocytapheresis ranged from 4.1 +/- 2.0 X 10(9) (mean +/- SD) to 6.0 +/- 4.0 X 10(9) for the three leukacytapheresis methods; one technique was not as satisfactory as the other two. Six of the 16 dogs fully recovered with evidence of marrow rescue; however, only one had a dose of mononuclear cells less than 11.1 X 10(9). These data indicate that seven to 17 leukacytapheresis procedures would be required to reconstitute a 70 kilogram patient. These preliminary findings suggest that, because the yields of transplantable cells with current technology are not adequate, the transplantation potential of buffy coat cells exposed to mobilizing agents should be evaluated

  8. Study of erythrocyte recovery by means of cellular spectra and reticulocytes remodeling after whole-body irradiation

    International Nuclear Information System (INIS)

    Le Go, A.; Le Go, R.; Malarbet, J.-L.; Prudhomme, J.; Genest, L.

    1977-01-01