WorldWideScience

Sample records for bmal1 protein stability

  1. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells.

    Directory of Open Access Journals (Sweden)

    Rita L Peruquetti

    Full Text Available Spermatogenesis is a complex differentiation process that involves genetic and epigenetic regulation, sophisticated hormonal control, and extensive structural changes in male germ cells. RNA nuclear and cytoplasmic bodies appear to be critical for the progress of spermatogenesis. The chromatoid body (CB is a cytoplasmic organelle playing an important role in RNA post-transcriptional and translation regulation during the late steps of germ cell differentiation. The CB is also important for fertility determination since mutations of genes encoding its components cause infertility by spermatogenesis arrest. Targeted ablation of the Bmal1 and Clock genes, which encode central regulators of the circadian clock also result in fertility defects caused by problems other than spermatogenesis alterations. We show that the circadian proteins CLOCK and BMAL1 are localized in the CB in a stage-specific manner of germ cells. Both BMAL1 and CLOCK proteins physically interact with the ATP-dependent DEAD-box RNA helicase MVH (mouse VASA homolog, a hallmark component of the CB. BMAL1 is differentially expressed during the spermatogenic cycle of seminiferous tubules, and Bmal1 and Clock deficient mice display significant CB morphological alterations due to BMAL1 ablation or low expression. These findings suggest that both BMAL1 and CLOCK contribute to CB assembly and physiology, raising questions on the role of the circadian clock in reproduction and on the molecular function that CLOCK and BMAL1 could potentially have in the CB assembly and physiology.

  2. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock.

    Science.gov (United States)

    Al-Nuaimi, Yusur; Hardman, Jonathan A; Bíró, Tamás; Haslam, Iain S; Philpott, Michael P; Tóth, Balázs I; Farjo, Nilofer; Farjo, Bessam; Baier, Gerold; Watson, Rachel E B; Grimaldi, Benedetto; Kloepper, Jennifer E; Paus, Ralf

    2014-03-01

    The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth.

  3. Glutamate-Dependent BMAL1 Regulation in Cultured Bergmann Glia Cells.

    Science.gov (United States)

    Chi-Castañeda, Donají; Waliszewski, Stefan M; Zepeda, Rossana C; Hernández-Kelly, Luisa C R; Caba, Mario; Ortega, Arturo

    2015-05-01

    Glutamate, the major excitatory amino acid, activates a wide variety of signal transduction cascades. This neurotransmitter is involved in photic entrainment of circadian rhythms, which regulate physiological and behavioral functions. The circadian clock in vertebrates is based on a transcription-translation feedback loop in which Brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like protein 1 (BMAL1) acts as transcriptional activator of others clock genes. This protein is expressed in nearly all suprachiasmatic nucleus neurons, as well as in the granular layer of the cerebellum. In this context, we decided to investigate the role of glutamate in the molecular mechanisms involved in the processes of transcription/translation of BMAL1 protein. To this end, primary cultures of chick cerebellar Bergmann glial cells were stimulated with glutamatergic ligands and we found that BMAL1 levels increased in a dose- and time dependent manner. Additionally, we studied the phosphorylation of serine residues in BMAL1 under glutamate stimulation and we were able to detect an increase in the phosphorylation of this protein. The increased expression of BMAL1 is most probably the result of a stabilization of the protein after it has been phosphorylated by the cyclic AMP-dependent protein kinase and/or the Ca(2+)/diacylglycerol dependent protein kinase. The present results strongly suggest that glutamate participates in regulating BMAL1 in glial cells and that these cells might prove to be important in the control of circadian rhythms in the cerebellum.

  4. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  5. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: an implicative role of BMAL1 in PCOS.

    Science.gov (United States)

    Zhang, Jiaou; Liu, Jiansheng; Zhu, Kai; Hong, Yan; Sun, Yun; Zhao, Xiaoming; Du, Yanzhi; Chen, Zi-Jiang

    2016-08-01

    Brain and muscle ARNT-like protein 1 (BMAL1) is necessary for fertility and has been found to be essential to follicle growth and steroidogenesis. Sirtuin1 (SIRT1) has been reported to interact with BMAL1 and function in a circadian manner. Evidence has shown that SIRT1 regulates aromatase expression in estrogen-producing cells. We aimed to ascertain if there is a relationship between polycystic ovary syndrome (PCOS) and BMAL1, and whether and how BMAL1 takes part in estrogen synthesis in human granulosa cells (hGCs). Twenty-four women diagnosed with PCOS and 24 healthy individuals undergoing assisted reproduction were studied. BMAL1 expression in their granulosa cells (GCs) was observed by quantitative real-time polymerase chain reaction (qRT-PCR). The level of expression in the PCOS group was lower than that of the group without PCOS (p SIRT1 knock-down and, conversely, upregulated after overexpression treatments of these two genes in KGN cells. Both BMAL1 and SIRT1 had a mutually positive regulation, as did the phosphorylation of JNK. Furthermore, JNK overexpression increased estrogen synthesis activity and the expression levels of aromatase, BMAL1, and SIRT1. In KGN and hGCs, estrogen synthesis and aromatase expression were downregulated after treatment with JNK and SIRT1 inhibitors. In addition, BMAL1, SIRT1, and JNK expression levels were all downregulated. Our results demonstrate the effects of BMAL1 on estrogen synthesis in hGCs and suggest a BMAL1-SIRT1-JNK positive feedback cycle in this process, which points out an important role of BMAL1 in the development of PCOS.

  6. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    Directory of Open Access Journals (Sweden)

    Noheon Park

    Full Text Available The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC allele. The homozygous mutant (Bmal1GTΔC/GTΔC mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  7. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    Science.gov (United States)

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1(-/-) mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1(-/-)mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  8. BMAL1 gene and obesity%BMAL1基因与肥胖

    Institute of Scientific and Technical Information of China (English)

    邢晋袆

    2009-01-01

    生物钟BMAL1基因编码一种bHLH/PAS结构域转录因子家族蛋白质,是分子昼夜震荡器的关键元件,对于哺乳动物昼夜节律的产生是必需的.近年来的研究发现,BMAL1基因不仅在调控生物的昼夜节律中发挥一定作用,而且在脂肪细胞的增殖和分化、糖代谢、能量平衡方面起着关键作用.这些研究结果为BMAL1基因与脂肪代谢以及肥胖之间的联系提供了支持.

  9. Role of miR-142-3p in the post-transcriptional regulation of the clock gene Bmal1 in the mouse SCN.

    Science.gov (United States)

    Shende, Vikram R; Neuendorff, Nichole; Earnest, David J

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional modulators by regulating stability or translation of target mRNAs. Recent studies have implicated miRNAs in the regulation of mammalian circadian rhythms. To explore the role of miRNAs in the post-transcriptional modulation of core clock genes in the master circadian pacemaker, we examined miR-142-3p for evidence of circadian expression in the suprachiasmatic nuclei (SCN), regulation of its putative clock gene target Bmal1 via specific binding sites in the 3' UTR and overexpression-induced changes in the circadian rhythm of BMAL1 protein levels in SCN cells. In mice exposed to constant darkness (DD), miR-142-3p levels in the SCN were characterized by circadian rhythmicity with peak expression during early subjective day at CT 3. Mutagenesis studies indicate that two independent miRNA recognition elements located at nucleotides 1-7 and 335-357 contribute equally to miR-142-3p-induced repression of luciferase-reported Bmal1 3' UTR activity. Importantly, overexpression of miR-142-3p in immortalized SCN cells abolished circadian variation in endogenous BMAL1 protein levels in vitro. Collectively, our results suggest that miR-142-3p may play a role in the post-transcriptional modulation of Bmal1 and its oscillatory regulation in molecular feedback loops mediating SCN circadian function.

  10. Role of miR-142-3p in the post-transcriptional regulation of the clock gene Bmal1 in the mouse SCN.

    Directory of Open Access Journals (Sweden)

    Vikram R Shende

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that function as post-transcriptional modulators by regulating stability or translation of target mRNAs. Recent studies have implicated miRNAs in the regulation of mammalian circadian rhythms. To explore the role of miRNAs in the post-transcriptional modulation of core clock genes in the master circadian pacemaker, we examined miR-142-3p for evidence of circadian expression in the suprachiasmatic nuclei (SCN, regulation of its putative clock gene target Bmal1 via specific binding sites in the 3' UTR and overexpression-induced changes in the circadian rhythm of BMAL1 protein levels in SCN cells. In mice exposed to constant darkness (DD, miR-142-3p levels in the SCN were characterized by circadian rhythmicity with peak expression during early subjective day at CT 3. Mutagenesis studies indicate that two independent miRNA recognition elements located at nucleotides 1-7 and 335-357 contribute equally to miR-142-3p-induced repression of luciferase-reported Bmal1 3' UTR activity. Importantly, overexpression of miR-142-3p in immortalized SCN cells abolished circadian variation in endogenous BMAL1 protein levels in vitro. Collectively, our results suggest that miR-142-3p may play a role in the post-transcriptional modulation of Bmal1 and its oscillatory regulation in molecular feedback loops mediating SCN circadian function.

  11. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA

    Institute of Scientific and Technical Information of China (English)

    Zixi Wang; Yaling Wu; Lanfen Li; Xiao-Dong Su

    2013-01-01

    CLOCK (circadian locomotor output cycles kaput) and BMAL1 (brain and muscle ARNT-like 1) are both transcription factors of the circadian core loop in mammals.Recently published mouse CLOCK-BMAL1 bHLH (basic helix-loop-helix)-PAS (period-ARNT-single-minded) complex structure sheds light on the mechanism for heterodimer formation,but the structural details of the protein-DNA recognition mechanisms remain elusive.Here we have elucidated the crystal structure of human CLOCK-BMAL1 bHLH domains bound to a canonical E-box DNA.We demonstrate that CLOCK and BMAL1 bHLH domains can be mutually selected,and that hydrogen-bonding networks mediate their E-box recognition.We identified a hydrophobic contact between BMAL1 Ile80 and a fianking thymine nucleotide,suggesting that CLOCK-BMAL1 actually reads 7-bp DNA and not the previously believed 6-bp DNA.To find potential non-canonical E-boxes that could be recognized by CLOCK-BMAL1,we constructed systematic single-nucleotide mutations on the E-box and measured their relevant affinities.We defined two non-canonical E-box patterns with high affinities,AACGTGA and CATGTGA,in which the flanking A7-T7' base pair is indispensable for recognition.These results will help us to identify functional CLOCK-BMAL1-binding sites in vivo and to search for clock-controlled genes.Furthermore,we assessed the inhibitory role of potential phosphorylation sites in bHLH regions.We found that the phospho-mimicking mutation on BMAL1 Ser78 could efficiently block DNA binding as well as abolish normal circadian oscillation in cells.We propose that BMAL1 Ser78 should be a key residue mediating input signal-regulated transcriptional inhibition for external cues to entrain the circadian clock by kinase cascade.

  12. Robust food anticipatory activity in BMAL1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Julie S Pendergast

    Full Text Available Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Even though nocturnal rodents prefer to forage at night, daytime food anticipatory activity (FAA is observed prior to short meals presented at a scheduled time of day. Under this restricted feeding regimen, rodents exhibit two distinct bouts of activity, a nocturnal activity rhythm that is entrained to the light-dark cycle and controlled by the master clock in the suprachiasmatic nuclei (SCN and a daytime bout of activity that is phase-locked to mealtime. FAA also occurs during food deprivation, suggesting that a food-entrainable oscillator (FEO keeps time in the absence of scheduled feeding. Previous studies have demonstrated that the FEO is anatomically distinct from the SCN and that FAA is observed in mice lacking some circadian genes essential for timekeeping in the SCN. In the current study, we optimized the conditions for examining FAA during restricted feeding and food deprivation in mice lacking functional BMAL1, which is critical for circadian rhythm generation in the SCN. We found that BMAL1-deficient mice displayed FAA during restricted feeding in 12hr light:12hr dark (12L:12D and 18L:6D lighting cycles, but distinct activity during food deprivation was observed only in 18L:6D. While BMAL1-deficient mice also exhibited robust FAA during restricted feeding in constant darkness, mice were hyperactive during food deprivation so it was not clear that FAA consistently occurred at the time of previously scheduled food availability. Taken together, our findings suggest that optimization of experimental conditions such as photoperiod may be necessary to visualize FAA in genetically modified mice. Furthermore, the expression of FAA may be possible without a circadian oscillator that depends on BMAL1.

  13. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    Science.gov (United States)

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN.

  14. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice

    Science.gov (United States)

    Shende, Vikram R.; Goldrick, Marianna M.; Ramani, Suchitra; Earnest, David J.

    2011-01-01

    MicroRNAs (miRNAs) interact with 3′ untranslated region (UTR) elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3′ UTR activity of Bmal1. A number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12∶12 and of these miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 3′ UTR activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators. PMID:21799909

  15. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice.

    Directory of Open Access Journals (Sweden)

    Vikram R Shende

    Full Text Available MicroRNAs (miRNAs interact with 3' untranslated region (UTR elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3' UTR activity of Bmal1. A number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12:12 and of these miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 3' UTR activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators.

  16. Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis

    Science.gov (United States)

    Pan, Xiaoyue; Bradfield, Christopher A.; Hussain, M. Mahmood

    2016-01-01

    Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe−/− and Ldlr−/− mice and its liver-specific ablation in Apoe−/− (L-Bmal1−/−Apoe−/−) mice increases, whereas overexpression of BMAL1 in L-Bmal1−/−Apoe−/− and Apoe−/−mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and diminishes cholesterol excretion to the bile. Further, Bmal1 deficiency reduces expression of Shp and Gata4. Reductions in Shp increase Mtp expression and lipoprotein production, whereas reductions in Gata4 diminish Abcg5/Abcg8 expression and biliary cholesterol excretion. Forced SHP expression normalizes lipoprotein secretion with no effect on biliary cholesterol excretion, while forced GATA4 expression increases cholesterol excretion to the bile and reduces plasma lipids in L-Bmal1−/−Apoe−/− and Apoe−/− mice. Thus, our data indicate that Bmal1 modulates lipoprotein production and biliary cholesterol excretion by regulating the expression of Mtp and Abcg5/Abcg8 via Shp and Gata4. PMID:27721414

  17. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey

    2011-02-01

    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  18. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    R Daniel Rudic

    2004-11-01

    Full Text Available Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3 and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counterregulatory response of corticosterone and glucagon to insulin-induced hypoglycaemia is retained. Furthermore, a high-fat diet modulates carbohydrate metabolism by amplifying circadian variation in glucose tolerance and insulin sensitivity, and mutation of Clock restores the chow-fed phenotype. Bmal1 and Clock, genes that function in the core molecular clock, exert profound control over recovery from insulin-induced hypoglycaemia. Furthermore, asynchronous dietary cues may modify glucose homeostasis via their interactions with peripheral molecular clocks.

  19. Fine-Tuning Circadian Rhythms: The Importance of Bmal1 Expression in the Ventral Forebrain

    Science.gov (United States)

    Mieda, Michihiro; Hasegawa, Emi; Kessaris, Nicoletta; Sakurai, Takeshi

    2017-01-01

    Although, the suprachiasmatic nucleus (SCN) of the hypothalamus acts as the central clock in mammals, the circadian expression of clock genes has been demonstrated not only in the SCN, but also in peripheral tissues and brain regions outside the SCN. However, the physiological roles of extra-SCN circadian clocks in the brain remain largely elusive. In response, we generated Nkx2.1-Bmal1−/− mice in which Bmal1, an essential clock component, was genetically deleted specifically in the ventral forebrain, including the preoptic area, nucleus of the diagonal band, and most of the hypothalamus except the SCN. In these mice, as expected, PER2::LUC oscillation was drastically attenuated in the explants of mediobasal hypothalamus, whereas it was maintained in those of the SCN. Although, Nkx2.1-Bmal1−/− mice were rhythmic and nocturnal, they showed altered patterns of locomotor activity during the night in a 12:12-h light:dark cycle and during subjective night in constant darkness. Control mice were more active during the first half than the second half of the dark phase or subjective night, whereas Nkx2.1-Bmal1−/− mice showed the opposite pattern of locomotor activity. Temporal patterns of sleep-wakefulness and feeding also changed accordingly. Such results suggest that along with mechanisms in the SCN, local Bmal1–dependent clocks in the ventral forebrain are critical for generating precise temporal patterns of circadian behaviors.

  20. Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation

    DEFF Research Database (Denmark)

    Chu, Adrienne; Zhu, Lei; Blum, Ian D

    2013-01-01

    of circadian or external timing cues, Bmal1(-/-) females continued to cycle in constant darkness albeit with increased cycle length and time spent in estrus. Because pituitary gonadotropes are the source of circulating LH and FSH, we assessed hypophyseal circadian clock function and found that female......While there is evidence for a circadian regulation of the preovulatory luteinizing hormone (LH) surge, the contributions of individual tissue clocks to this process remain unclear. We studied female mice deficient in the Bmal1 gene (Bmal1(-/-)), which is essential for circadian clock function...... pituitaries rhythmically express clock components throughout all cycle-stages. To determine the role of the gonadotrope clock in the preovulatory LH and FSH surge process, we generated mice that specifically lack BMAL1 in gonadotropes (GBmal1KO). GBmal1KO females exhibited a modest elevation in both proestrus...

  1. Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine.

    Science.gov (United States)

    Wongchitrat, Prapimpun; Felder-Schmittbuhl, Marie-Paule; Phansuwan-Pujito, Pansiri; Pévet, Paul; Simonneaux, Valérie

    2009-05-01

    Pineal melatonin is synthesized with daily and seasonal rhythms following the hypothalamic clock-driven release of norepinephrine (NE). The pineal gland of rats and mice, like the biological clock, expresses a number of clock genes. However, the role of pineal clock elements in pineal physiology is still unknown. We examined the expression and regulation of several clock genes (Per1, Cry2, Bmal1 and Rev-erb alpha) under different lighting conditions or following adrenergic treatments in the Syrian hamster, a seasonal rodent. We found that Per1 and Cry2 genes were similarly regulated by the nocturnal release of NE: levels of Per1 and Cry2 mRNA displayed a nocturnal increase that was maintained after 2 days in constant darkness (DD) but abolished after 2 days under constant light (LL), a condition that suppresses endogenous NE release, or after an early night administration of the adrenergic antagonist propranolol. In contrast, Bmal1 and Rev-erb alpha exhibited a different pattern of expression and regulation. mRNA levels of both clock genes displayed a marked daily variation, maintained in DD, with higher values at midday for Bmal1 and at day/night transition for Rev-erb alpha. Remarkably, the daily variation of both Bmal1 and Rev-erb alpha mRNA was maintained in LL conditions and was not affected by propranolol. This study confirms the daily regulation of Per1 and Cry2 gene expression by NE in the pineal gland of rodents and shows for the first time that a second set of clock genes, Bmal1 and Rev-erb alpha are expressed with a circadian rhythm independent of the hypothalamic clock-driven noradrenergic signal.

  2. Diurnal rhythmicity of the canonical clock genes Per1, per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy

    DEFF Research Database (Denmark)

    Fahrenkrug, J.; Hannibal, J.; Georg, B.

    2008-01-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus (SCN), and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. Rhythmic...... expression of clock genes in the adrenal glands has previously been reported. Since the central clock in the SCN communicates with the adrenal glands via circadian release of adrenocorticotrophic hormone, we quantified the mRNAs for the canonical clock genes, Per1, Per2 and Bmal1 in the adrenal glands...... by real-time reverse transcription-polymerase chain reaction during a 24-h-cycle in normal and hypophysectomised rats. The mRNAs for all the three clock genes disclosed rhythmic oscillations with a period of 24 h and the phase did not differ between the hypophysectomised and intact rats. The expression...

  3. Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS pathway. The HS response (HSR is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1 is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site-driven luciferase activity, respectively. By an optimal duration HS pulse (43°C for approximately 30 minutes, circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems.

  4. BMAL1基因对骨髓间充质干细胞成骨分化的调控作用%BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    李晓光; 郭小龙; 郭斌

    2016-01-01

    Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells.%牙周炎是以牙周组织破坏为特征的感染性疾病,作为重要的牙周组织再生种子细胞,骨髓间充质干细胞在重构牙周组织结构和功能、促进牙周病好转乃至愈合方面具有重要作用,因此骨髓间充质干细胞的特性尤其是其成骨分化的相关调控机制是目前研究热点之一。BMAL1基因与骨髓间充质干细胞成骨分化等诸多生理行为的调控关系密切,有望成为牙周疾病新的治疗靶点。本文对BMAL1基因的特性以及调控骨髓间充质干细胞成骨分化的机制作一综述。

  5. Effects of Tail-suspension on Rhythmic Expression of clock and bmal1 in Mice Liver%尾吊对小鼠肝脏组织中clock与bmal1基因节律的影响

    Institute of Scientific and Technical Information of China (English)

    温美丽; 吕柯; 曲丽娜; 陈海龙; 王艳利; 毕蕾; 万玉民; 刘鸿宇; 李莹辉

    2012-01-01

    目的 研究尾吊对持续黑暗条件下小鼠肝脏节律基因clock与bmal1节律表达的影响.方法 常规明暗光照条件导引(entrainment) C57BL/6J( C57)小鼠1周后,在持续黑暗条件下采用头低位- 30°尾吊C57小鼠,于尾吊第12天、13天、14天每隔4h连续18个时间点进行肝脏组织取材,提取总RNA,并运用Real-time PCR方法检测肝脏组织clock和bmal1节律基因mRNA的表达变化.结果 尾吊组与对照组肝脏clock与bmal1节律基因mRNA水平均呈现出节律性表达特征.在尾吊条件下,clock基因mRNA 的峰值相位提前约4h,bmal1基因mRNA表达节律的振幅在每天授时因子时间(zeitgeber time,ZT)ZT2 与ZT6显著下降(P<0.05).结论 在持续全黑暗条件下,C57小鼠肝脏组织节律基因clock与bmal1的mRNA水平表现出明显的近日节律性,尾吊对clock基因产生峰值相位提前的效应,对bmal1基因产生振幅减少的效应.%Objective To investigate the effects of tail suspension(TS) clock and bmall mRNA expression in liver tissue of mice under constant darkness ( darkness: darkness, DD) conditions. Methods With 1 week of normal light/dark schedule (light: darkness = 12h: 12h) pretreatment, C57BL/6 mice were exposed to -30° head down tail suspension in constant darkness. Liver tissues were obtained at consecutive time points during the 12th, 13th and 14th testing days with equal interval of 4 h. Total RNA was extracted, the rhythmicity patterns of clock and bmall mRNA expression were determined by using real-time polymerase chain reaction ( RT-PCR). Results Circadian rhythm of clock and bmall mRNA expression was found in each testing day with similar peak phase in both TS and control (Con) mice. Furthermore, compared with Con, the peak phase of clock gene mRNA level in TS mice advanced approximately 4 h, and the amplitude of bmall gene mRNA level significantly reduced at zeitgeber time(ZT) ZT2 and ZT6 (P <0.05). Conclusion In constant darkness conditions, liver

  6. Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels.

    Science.gov (United States)

    Samblas, Mirian; Milagro, Fermin I; Gómez-Abellán, Purificación; Martínez, J Alfredo; Garaulet, Marta

    2016-06-01

    The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels.

  7. Comparison of Circadian Expression of Biological Clock Gene,Clock and Bmal 1 ,in Peripheral Blood Lymphocytes of Chinese Antarctic Wintering Team Members before and after Antarctic Expedition%中国南极越冬队员外周血生物钟基因Clock和Bmal1昼夜性节律表达赴南极前后对比

    Institute of Scientific and Technical Information of China (English)

    余万霰; 陈绍平; 夏艳芝; 王国卿; 王洁; 张永虹

    2012-01-01

    目的 观察中国南极考察队越冬队员外周血淋巴细胞钟基因Clock和Bmal 1表达昼夜节律性变化.方法 在中国第25次南极考察队越冬队员中选择8名队员,平均年龄38岁,均为男性,在1个昼夜周期内设立6个时点(ZT):02:00、06:00、10:00、14:00、18:00和22:00,每一时点采集外周静脉血6 mL,采集赴南极前后2组血样.用实时定量RT-PCR方法,测定不同昼夜时点(ZT)样品中核心钟基因Clock和Bmal 1的mRNA表达量,通过余弦法和Clock Lab软件获取节律参数,进行赴南极前后对比.结果 赴南极前,8个样本Clock和Bmal的mRNA表达均有显著昼夜节律特征(P<0.05),Clock的峰值相位位于-335.85士13.80,Bmal 1的峰值相位位于-307.12±8.17.赴南极后,仅2例Clock和3例Bmal1表达还存在显著昼夜节律变化.Clock的峰值相位移位到-42.28±5.27,Bmal 1的同峰值相位移位到-184.58±29.58.结论 南极特殊周期环境对人体生物钟基因表达的昼夜节律会产生影响.%Objective To investigate the circadian expression of core clock gene, Clock and Bmal 1 ,in the peripheral blood lymphocytes of Chinese scientific expeditioners during the Antarctic winter. Methods Peripheral blood (6 mL) were collected in 8 healthy male volunteers (mean age 38 years) from wintering team of the 25th Chinese Antarctic Research Expedition at 6 time points in the day-night cycle (02: 00,06:00,10; 00,14:00,18:00 and 22:00). In addition, blood samples were collected before and after Antarctic expedition. The expression of Clock and Bmal 1 at different Zeitgeber times (ZT) was detected by RT-PCR. The circadian parameters were obtained and analyzed by the cosine function,Clock Lab software and amplitude F test for comparison before and after Antarctic expedition. Results Before Antarctic expedition,the expression of Clock and Bmal 1 mRNA showed a significant circadian feature(P<0. 05). The Peak phase of Clock at -335. 85±13. 80. The Peak phase of Bmal 1 at -307. 12

  8. Protein stability, flexibility and function

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2011-01-01

    Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests for a de......Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests...... for a delineation of the molecular details of their function. Several of these mutations interfered with the binding of a specific ligand with a concomitant effect on the stability of the protein scaffold. It has been ambiguous and not straightforward to recognize if any relationships exist between the stability...... of a protein and the affinity for its ligand. In this review, we present examples of proteins where changes in stability results in changes in affinity and of proteins where stability and affinity are uncorrelated. We discuss the possibility for a relationship between stability and binding. From the data...

  9. Protein stability: a crystallographer’s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@stanford.edu [Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125 (United States); Kong, Leopold [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814 (United States); Rupp, Bernhard [k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2016-01-26

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.

  10. Monitoring protein stability in vivo

    Directory of Open Access Journals (Sweden)

    Ignatova Zoya

    2005-08-01

    Full Text Available Abstract Reduced protein stability in vivo is a prerequisite to aggregation. While this is merely a nuisance factor in recombinant protein production, it holds a serious impact for man. This review focuses on specific approaches to selectively determine the solubility and/or stability of a target protein within the complex cellular environment using different detection techniques. Noninvasive techniques mapping folding/misfolding events on a fast time scale can be used to unravel the complexity and dynamics of the protein aggregation process and factors altering protein solubility in vivo. The development of approaches to screen for folding and solubility in vivo should facilitate the identification of potential components that improve protein solubility and/or modulate misfolding and aggregation and may provide a therapeutic benefit.

  11. Monitoring protein stability in vivo.

    Science.gov (United States)

    Ignatova, Zoya

    2005-08-24

    Reduced protein stability in vivo is a prerequisite to aggregation. While this is merely a nuisance factor in recombinant protein production, it holds a serious impact for man. This review focuses on specific approaches to selectively determine the solubility and/or stability of a target protein within the complex cellular environment using different detection techniques. Noninvasive techniques mapping folding/misfolding events on a fast time scale can be used to unravel the complexity and dynamics of the protein aggregation process and factors altering protein solubility in vivo. The development of approaches to screen for folding and solubility in vivo should facilitate the identification of potential components that improve protein solubility and/or modulate misfolding and aggregation and may provide a therapeutic benefit.

  12. 小鼠外周血白细胞节律基因bmal1、clock、cry1、per1表达的近日节律性研究%Circadian rhythm expression of bmal1, clock, cry1, per1 in peripheral white blood cells of mouse

    Institute of Scientific and Technical Information of China (English)

    王庆敏; 唐瑛; 沈俊; 刘秋红; 时粉周; 李科华; 戴圣龙

    2014-01-01

    Objective To investigate circadian rhythm of four genes (bmal1,clock,cry1,per1) in mouse peripheral white blood cells under the 12 h-light and 12 h-dark cycle (12L/12D) condition.Methods Forty-eight male mice were kept under the light regime of 12L/12D for four weeks.According to random number table,they were randomly and averagely divided into 6 groups.Then,the blood samples were taken and white blood cells were separated every four hours in a circadian day (9:00,13:00,17:00,21:00,1:00 and 5:00).The total RNA was extracted from the white blood cells and the mRNA level of each gene was quantified by real-time polymerase chain reaction (real-time PCR).The data were fitted by cosine function for getting the rhythm.The difference between apex and trough was analyzed by one-ANOVA.Results Under the light regime of 12L/12D,the four genes in peripheral white blood cells showed a significant circadian oscillation with different apex and trough.The apexes of four genes were higher than the troughs (P<0.01).The equation fitted apex phase of clock gene was at about 5:00,compared to the apex time of the other three genes were at about 13:00-15:00.The apex time of clock mRNA was ahead of brnal1,and the apex and amplitude of it were higher than those of brnal1.However,the mRNAs of cry1 and per1 showed a similar apex time and apex level.Conclusions The findings demonstrate that the expression of the four genes in white blood cells shows an obvious circadian rhythm.It seems that clock plays more important role than bmal1 in the positive regulation,and cry1 and per1 play a similar role in negative regulation.This result will not only be helpful to understand the circadian fluctuation of immune function,but also to provide a target for implementing diagnosis and therapy of immune disorders.Further study is needed to elucidate the control effect of these genes in different immune cells in peripheral blood.%目的 探讨12 h光照、12h黑暗交替(12 h-light and 12 h-dark cycle,12L

  13. Protein-stabilized magnetic fluids

    Science.gov (United States)

    Soenen, S. J. H.; Hodenius, M.; Schmitz-Rode, T.; De Cuyper, M.

    The adsorption of bovine serum albumin (BSA) and egg yolk phosvitin on magnetic fluid particles was investigated. Incubation mixtures were prepared by mixing an alkaline suspension of tetramethylammonium-coated magnetite cores with protein solutions at various protein/Fe 3O 4 ratios, followed by dialysis against a 5 mM TES buffer (pH 7.0), after which separation of bound and non-bound protein by high-gradient magnetophoresis was executed. Both the kinetic profiles as well as the isotherms of adsorption strongly differed for both proteins. In case of the spherical BSA, initially, abundant adsorption occurred, then it decreased and—at high protein concentrations—it slowly raised again. In contrast, with the highly phosphorylated phosvitin, binding slowly started and the extent of protein adsorption remained unchanged both as a function of time and phosvitin concentration. Competition binding studies, using binary protein mixtures composed of equal weight amounts of BSA and phosvitin, showed that binding of the latter protein is 'unrealistically' high. Based on the geometry of the two proteins, putative pictures on their orientation on the particle's surface in the various experimental conditions were deduced.

  14. Functional characterization of protein stabilized emulsions: creaming stability

    Energy Technology Data Exchange (ETDEWEB)

    Tornberg, E.

    1978-01-01

    Protein stabilized emulsions have been prepared in a recirculating emulsification system, where flow velocity, power and energy input have been controlled and measured. Three different types of emulsifying equipment have been used, namely a turbo-mixer, an ultrasonic device and a valve homogenizer. The protein systems studied were a soybean protein isolate, a whey protein concentrate (WPC) and a sodium caseinate, and the emulsions obtained were characterized in terms of creaming stability. It was found that although the power and energy consumption during emulsification were the same, the creaming stabilities differed as a function of the emulsifying apparatus used, increased power and energy input contributed in general to an improved creaming stability up to a certain limit, whereupon it leveled off. The emulsifying efficiency of the turbo-mixer is poorest in terms of creaming stability of the emulsions formed, whereas the ultrasonic device most generally is the best choice of equipment at lower power input. At an increase of power consumption the valve homogenizer is an equally good alternative, or even better.

  15. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.;

    2016-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope...... and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta...... and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability...

  16. Polyhedral (in-)stability of protein crystals

    Science.gov (United States)

    Nanev, Christo N.; Penkova, Anita N.

    2002-04-01

    The polyhedral (in-)stability of monoclinic hen-egg white lysozyme (HEWL) crystals, grown by means of PEG-6000, and that of orthorhombic trypsin crystals has been investigated experimentally. On the basis of a quantitative theoretical analysis, it is compared with the polyhedral (in-)stability of tetragonal HEWL and cubic ferritin crystals. The unambiguous conclusion is that the phenomenon is due to the diffusive supply of matter. This conclusion is also supported by the fact that the phenomenon has common features for both proteins and small molecular crystals.

  17. Circadian clock proteins control adaptation to novel environment and memory formation

    Science.gov (United States)

    A.Kondratova, Anna; V.Dubrovsky, Yuliya; Antoch, Marina P.; Kondratov, Roman V.

    2010-01-01

    Deficiency of the transcription factor BMAL1, a core component of the circadian clock, results in an accelerated aging phenotype in mice. The circadian clock regulates many physiological processes and was recently implicated in control of brain-based activities, such as memory formation and the regulation of emotions. Aging is accompanied by the decline in brain physiology, particularly decline in the response and adaptation to novelty. We investigated the role of the circadian clock in exploratory behavior and habituation to novelty using the open field paradigm. We found that mice with a deficiency of the circadian transcription factor BMAL1 display hyperactivity in novel environments and impaired intra- and intersession habituation, indicative of defects in short- and long-term memory formation. In contrast, mice double-deficient for the circadian proteins CRY1 and CRY2 (repressors of the BMAL1-mediated transcription) demonstrate reduced activity and accelerated habituation when compared to wild type mice. Mice with mutation in theClock gene (encoding the BMAL1 transcription partner) show normal locomotion, but increased rearing activity and impaired intersession habituation. BMAL1 is highly expressed in the neurons of the hippocampus - a brain region associated with spatial memory formation; BMAL1 deficiency disrupts circadian oscillation in gene expression and reactive oxygen species homeostasis in the brain, which may be among the possible mechanisms involved. Thus, we suggest that the BMAL1:CLOCK activity is critical for the proper exploratory and habituation behavior, and that the circadian clock prepares organism for a new round of everyday activities through optimization of behavioral learning. PMID:20519775

  18. Prediction of Factors Determining Changes in Stability in Protein Mutants

    OpenAIRE

    Parthiban, Vijayarangakannan

    2006-01-01

    Analysing the factors behind protein stability is a key research topic in molecular biology and has direct implications on protein structure prediction and protein-protein docking solutions. Protein stability upon point mutations were analysed using a distance dependant pair potential representing mainly through-space interactions and torsion angle potential representing neighbouring effects as a basic statistical mechanical setup for the analysis. The synergetic effect of accessible surface ...

  19. Changes of biological clock protein in neonatal rats with hypoxic-ischemic brain damage%缺氧缺血性脑损伤新生大鼠松果体钟基因表达的变化

    Institute of Scientific and Technical Information of China (English)

    李永富; 金美芳; 孙斌; 冯星

    2013-01-01

    Objective To study the effects of biological clock protein on circadian disorders in hypoxic-ischemic brain damage ( HIBD) by examining levels of CLOCK and BMAL1 proteins in the pineal gland of neonatal rats. Methods Seventy-two 7-day-old Sprague-Dawley (SD) rats were randomly divided into sham-operated and HIBD groups. HIBD model was prepared according to the modified Levine method. Western blot analysis was used to measure the levels of CLOCK and BMAL1 in the pineal gland at 0, 2, 12, 24, 36 and 48 hours after operation. Results Both CLOCK and BMAL levels in the pineal gland increased significantly 48 hours after HIBD compared with the sham-operated group ( P 0. 05 ) . Conclusions Levels of CLOCK and BMAL1 proteins in the pineal gland of rats increase significantly 48 hours after HIBD, suggesting that both CLOCK and BMAL1 may be involved the regulatory mechanism of circadian disorders in rats with HIBD.%目的 观察缺氧缺血性脑损伤(hypoxic-ischemic brain damage,HIBD)新生大鼠松果体中CLOCK、BMAL1蛋白表达的变化,探讨钟基因表达异常在HIBD导致的昼夜节律紊乱中的作用.方法 72只7日龄新生Sprague-Dawley大鼠随机分为假手术组与HIBD模型组,每组36只.采用改良Levine法建立HIBD模型,用Western blot方法测定两组新生大鼠术后0、2、12、24、36、48 h松果体中CLOCK、BMAL1蛋白水平.结果 HIBD模型组松果体的CLOCK及BMAL1蛋白表达水平在HIBD后48 h高于假手术组(P<0.05),在0、2、12、24、36 h CLOCK及BMAL1蛋白表达水平与假手术组相比差异均无统计学意义(P>0.05).结论 HIBD新生大鼠松果体中CLOCK和BMAL1蛋白在损伤48 h后有显著升高,提示两者可能共同参与缺氧缺血时昼夜节律紊乱的发生.

  20. The influence of hepatitis B virus X protein on the clock genes in liver cells and its significance%乙肝病毒X蛋白对肝细胞生物钟基因的影响及其意义

    Institute of Scientific and Technical Information of China (English)

    Shengli Yang; Xiaoli Pan; Zhifan Xiong; Bo Wei; Hongyi Yao

    2011-01-01

    Objective: The aim of this study was to investigate the influence of hepatitis B virus X protein (HBx) on the clock genes in LO2 cells and its significance. Methods: A cell line LO2-HBx, Stably transfected with HBx gene, was established. The levels of mRNA and protein expression of CLOCK and BMAL1 were detected by real-time PCR and western blot. Results: The expression of CLOCK mRNA and protein were increased in cell line LO2-HBx (P < 0.05), while the expression of BMAL1 mRNA and protein were decreased in cell line LO2-HBx (P < 0.05). Conclusion: The expressions of core clock gene CLOCK and BMAL1 have been changed by HBx, which breaks down the previous circadian rhythm of liver cells. This maybe one of the reasons leads to the formation of liver cancer.

  1. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  2. Designing Whey Protein-Polysaccharide Particles for Colloidal Stability.

    Science.gov (United States)

    Wagoner, Ty; Vardhanabhuti, Bongkosh; Foegeding, E Allen

    2016-01-01

    Interactions between whey proteins and polysaccharides, in particular the formation of food-grade soluble complexes, are of interest because of potential functional and health benefits. A specific application that has not received much attention is the use of complexes for enhanced colloidal stability of protein sols, such as protein-containing beverages. In beverages, the primary goal is the formation of complexes that remain dispersed after thermal processing and extended storage. This review highlights recent progress in the area of forming whey protein-polysaccharide soluble complexes that would be appropriate for beverage applications. Research in this area indicates that soluble complexes can be formed and stabilized that are reasonably small in size and possess a large surface charge that would predict colloidal stability. Selection of specific proteins and polysaccharides can be tailored to desired conditions. The principal challenges involve overcoming restrictions on protein concentration and ensuring that protein remains bioavailable.

  3. Mutation analysis of barley malt protein Z4 and protein Z7 on beer foam stability.

    Science.gov (United States)

    Iimure, Takashi; Kimura, Tatsuji; Araki, Shigeki; Kihara, Makoto; Sato, Masahide; Yamada, Shinji; Shigyou, Tatsuro; Sato, Kazuhiro

    2012-02-15

    Beer foam stability is an important characteristic. It has been suggested that isoforms of protein Z, that is, protein Z4 and protein Z7, contribute to beer foam stability. We investigated the relationship between beer foam stability and protein Z4 and protein Z7 using their deficient mutants. As a protein Z4-deficient mutant, cv. Pirkka was used. Protein Z7 deficiency was screened in 1564 barley accessions in the world collection of Okayama University, Japan. The barley samples from normal, protein Z4-deficient, protein Z7-deficient, and double-deficient were genotyped in F(2) populations and then pooled based on the DNA marker genotypes of protein Z4 and protein Z7. For a brewing trial, F(5) pooled subpopulations were used. After malting and brewing, the foam stability was determined, and the results showed that the levels of foam stability in the four samples were comparable. Two-dimensional gel electrophoresis was used to investigate the proteome in these beer samples. The results showed that low molecular weight proteins, including lipid transfer protein (LTP2), in the deficient mutants were higher than those in the normal sample. Our results suggest that the contribution of protein Z4 and protein Z7 to beer foam stability was not greater than that of other beer proteins.

  4. Post-production protein stability: trouble beyond the cell factory

    Directory of Open Access Journals (Sweden)

    Vazquez Esther

    2011-08-01

    Full Text Available Abstract Being protein function a conformation-dependent issue, avoiding aggregation during production is a major challenge in biotechnological processes, what is often successfully addressed by convenient upstream, midstream or downstream approaches. Even when obtained in soluble forms, proteins tend to aggregate, especially if stored and manipulated at high concentrations, as is the case of protein drugs for human therapy. Post-production protein aggregation is then a major concern in the pharmaceutical industry, as protein stability, pharmacokinetics, bioavailability, immunogenicity and side effects are largely dependent on the extent of aggregates formation. Apart from acting at the formulation level, the recombinant nature of protein drugs allows intervening at upstream stages through protein engineering, to produce analogue protein versions with higher stability and enhanced therapeutic values.

  5. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer;

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  6. Regulation of TET Protein Stability by Calpains

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available DNA methylation at the fifth position of cytosine (5mC is an important epigenetic modification that affects chromatin structure and gene expression. Recent studies have established a critical function of the Ten-eleven translocation (Tet family of proteins in regulating DNA methylation dynamics. Three Tet genes have been identified in mammals, and they all encode for proteins capable of oxidizing 5mC as part of the DNA demethylation process. Although regulation of Tet expression at the transcriptional level is well documented, how TET proteins are regulated at posttranslational level is poorly understood. In this study, we report that all three TET proteins are direct substrates of calpains, a family of calcium-dependent proteases. Specifically, calpain1 mediates TET1 and TET2 turnover in mouse ESCs, and calpain2 regulates TET3 level during differentiation. This study provides evidence that TET proteins are subject to calpain-mediated degradation.

  7. Regulation of TET protein stability by calpains.

    Science.gov (United States)

    Wang, Yu; Zhang, Yi

    2014-01-30

    DNA methylation at the fifth position of cytosine (5mC) is an important epigenetic modification that affects chromatin structure and gene expression. Recent studies have established a critical function of the Ten-eleven translocation (Tet) family of proteins in regulating DNA methylation dynamics. Three Tet genes have been identified in mammals, and they all encode for proteins capable of oxidizing 5mC as part of the DNA demethylation process. Although regulation of Tet expression at the transcriptional level is well documented, how TET proteins are regulated at posttranslational level is poorly understood. In this study, we report that all three TET proteins are direct substrates of calpains, a family of calcium-dependent proteases. Specifically, calpain1 mediates TET1 and TET2 turnover in mouse ESCs, and calpain2 regulates TET3 level during differentiation. This study provides evidence that TET proteins are subject to calpain-mediated degradation.

  8. Arginine residues as stabilizing elements in proteins

    NARCIS (Netherlands)

    MRABET, NT; VANDENBROECK, A; VANDENBRANDE, JL; STANSSENS, P; LAROCHE, Y; LAMBEIR, AM; MATTHIJSSENS, G; JENKINS, J; CHIADMI, M; VANTILBEURGH, H; REY, F; JANIN, J; QUAX, WJ; LASTERS, [No Value; DEMAEYER, M; WODAK, SJ

    1992-01-01

    Site-specific substitutions of arginine for lysine in the thermostable D-xylose isomerase (XI) from Actinoplanes missouriensis are shown to impart significant heat stability enhancement in the presence of sugar substrates most probably by interfering with nonenzymatic glycation. The same substitutio

  9. Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins

    NARCIS (Netherlands)

    Ho, Kacie; Schroen, C.G.P.H.; San Martín-González, M.F.; Berton-Carabin, C.C.

    2016-01-01

    Lycopene is a lipophilic bioactive compound that can be challenging to deliver in vivo. To mediate this, delivery strategies, such as protein-stabilized oil-in-water (O/W) emulsions, have been suggested to improve the physicochemical stability and bioavailability of lycopene. In this research, the e

  10. Stabilized helical peptides: a strategy to target protein-protein interactions.

    Science.gov (United States)

    Klein, Mark A

    2014-08-14

    Protein-protein interactions are critical for cell proliferation, differentiation, and function. Peptides hold great promise for clinical applications focused on targeting protein-protein interactions. Advantages of peptides include a large chemical space and potential diversity of sequences and structures. However, peptides do present well-known challenges for drug development. Progress has been made in the development of stabilizing alpha helices for potential therapeutic applications. Advantages and disadvantages of different methods of helical peptide stabilization are discussed.

  11. A method for direct measurement of protein stability in vivo.

    Science.gov (United States)

    Ignatova, Zoya; Gierasch, Lila M

    2009-01-01

    The stability of proteins is tuned by evolution to enable them to perform their cellular functions for the success of an organism. Yet, most of the arsenal of biophysical techniques at our disposal to characterize the thermodynamic stability of proteins is limited to in vitro samples. We describe an approach that we have developed to observe a protein directly in a cell and to monitor a fluorescence signal that reports the unfolding transition of the protein, yielding quantitatively interpretable stability data in vivo. The method is based on incorporation of structurally nonperturbing, specific binding motifs for a bis-arsenical fluorescein derivative in sites that result in dye fluorescence differences between the folded and unfolded states of the protein under study. This fluorescence labeling approach makes possible the determination of thermodynamic stability by direct urea titration in Escherichia coli cells. The specific case study we describe was carried out on the predominantly beta-sheet intracellular lipid-binding protein, cellular retinoic acid-binding protein (CRABP), expressed in E. coli.

  12. Robust enzyme design: bioinformatic tools for improved protein stability.

    Science.gov (United States)

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation.

  13. Role of arginine in the stabilization of proteins against aggregation.

    Science.gov (United States)

    Baynes, Brian M; Wang, Daniel I C; Trout, Bernhardt L

    2005-03-29

    The amino acid arginine is frequently used as a solution additive to stabilize proteins against aggregation, especially in the process of protein refolding. Despite arginine's prevalence, the mechanism by which it stabilizes proteins is not presently understood. We propose that arginine deters aggregation by slowing protein-protein association reactions, with only a small concomitant effect on protein folding. The associated rate effect was observed experimentally in association of globular proteins (insulin and a monoclonal anti-insulin) and in refolding of carbonic anhydrase. We suggest that this effect arises because arginine is preferentially excluded from protein-protein encounter complexes but not from dissociated protein molecules. Such an effect is predicted by our gap effect theory [Baynes and Trout (2004) Biophys. J. 87, 1631] for "neutral crowder" additives such as arginine which are significantly larger than water but have only a small effect on the free energies of isolated protein molecules. The effect of arginine on refolding of carbonic anhydrase was also shown to be consistent with this hypothesis.

  14. Protein stability and enzyme activity at extreme biological temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Georges, E-mail: gfeller@ulg.ac.b [Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry B6a, University of Liege, B-4000 Liege (Belgium)

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 {sup 0}C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  15. Stabilization of G protein-coupled receptors by point mutations

    Directory of Open Access Journals (Sweden)

    Franziska eHeydenreich

    2015-04-01

    Full Text Available G protein-coupled receptors (GPCRs are flexible integral membrane proteins involved in transmembrane signaling. Their involvement in many physiological processes makes them interesting targets for drug development. Determination of the structure of these receptors will help to design more specific drugs, however, their structural characterization has so far been hampered by the low expression and their inherent instability in detergents which made protein engineering indispensable for structural and biophysical characterization.Several approaches to stabilize the receptors in a particular conformation have led to breakthroughs in GPCR structure determination. These include truncations of the flexible regions, stabilization by antibodies and nanobodies, fusion partners, high affinity and covalently bound ligands as well as conformational stabilization by mutagenesis. In this review we focus on stabilization of GPCRs by insertion of point mutations, which lead to increased conformational and thermal stability as well as improved expression levels. We summarize existing mutagenesis strategies with different coverage of GPCR sequence space and depth of information, design and transferability of mutations and the molecular basis for stabilization. We also discuss whether mutations alter the structure and pharmacological properties of GPCRs.

  16. Exploring the stability of dimers through protein structure topology.

    Science.gov (United States)

    Di Paola, Luisa; Mei, Giampiero; Di Venere, Almerinda; Giuliani, Alessandro

    2016-01-01

    Protein homodimers pose some intriguing questions about the relation between structure and stability. We approached the problem by means of a topological methodology based on protein contact networks. We correlated local interface descriptors with structure and energy global properties of the systems under analysis. We demonstrated that the graph energy, formerly applied to the analysis of unconjugated hydrocarbons structures, is the bridge between the topological and energetic description of protein complexes. This is a first step for the generation of a "protein structural formula", analogous to the molecular graphs in organic chemistry.

  17. The genomics of disulfide bonding and protein stabilization in thermophiles.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms.

  18. Protein Stability, Folding and Misfolding in Human PGK1 Deficiency

    Directory of Open Access Journals (Sweden)

    Giovanna Valentini

    2013-12-01

    Full Text Available Conformational diseases are often caused by mutations, altering protein folding and stability in vivo. We review here our recent work on the effects of mutations on the human phosphoglycerate kinase 1 (hPGK1, with a particular focus on thermodynamics and kinetics of protein folding and misfolding. Expression analyses and in vitro biophysical studies indicate that disease-causing mutations enhance protein aggregation propensity. We found a strong correlation among protein aggregation propensity, thermodynamic stability, cooperativity and dynamics. Comparison of folding and unfolding properties with previous reports in PGKs from other species suggests that hPGK1 is very sensitive to mutations leading to enhance protein aggregation through changes in protein folding cooperativity and the structure of the relevant denaturation transition state for aggregation. Overall, we provide a mechanistic framework for protein misfolding of hPGK1, which is insightful to develop new therapeutic strategies aimed to target native state stability and foldability in hPGK1 deficient patients.

  19. Physical and Oxidative Stability of Fish Oil-In-Water Emulsions Stabilized with Fish Protein Hydrolysates

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Guadix, Antonio; Guadix, Emilia M.;

    2016-01-01

    The emulsifying and antioxidant properties of fish protein hydrolysates (FPH) for the physical and oxidative stabilization of 5% (by weight) fish oil-in-water emulsions were investigated. Muscle proteins from sardine (Sardina pilchardus) and small-spotted catshark (Scyliorhinus canicula) were...... hydrolyzed to degrees of hydrolysis (DH) of 3-4-5-6% with subtilisin. Sardine hydrolysates with low DH, 3% and 4%, presented the most effective peptides to physically stabilize emulsions with smaller droplet size. This implied more protein adsorbed at the interface to act as physical barrier against...... prooxidants. This fact might also be responsible for the higher oxidative stability of these emulsions, as shown by their lowest peroxide value and concentration of volatiles such as 1-penten-3-one and 1-penten-3-ol. Among the hydrolysates prepared from small-spotted catshark only the hydrolysate with DH 3...

  20. Positively selected sites in cetacean myoglobins contribute to protein stability.

    Science.gov (United States)

    Dasmeh, Pouria; Serohijos, Adrian W R; Kepp, Kasper P; Shakhnovich, Eugene I

    2013-01-01

    Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10-20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8-1.2 µM(-1)), folding stabilities of cetacean Mbs are ∼2-4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds.

  1. Regulation of the protein stability of POSH and MLK family.

    Science.gov (United States)

    Wang, Chunyan; Tao, Yang; Wang, Yaqing; Xu, Zhiheng

    2010-09-01

    Sequential activation of the JNK pathway components, including Rac1/Cdc42, MLKs (mixed-lineage kinases), MKK4/7 and JNKs, plays a required role in many cell death paradigms. Those components are organized by a scaffold protein, POSH (Plenty of SH3's), to ensure the effective activation of the JNK pathway and cell death upon apoptotic stimuli. We have shown recently that the expression of POSH and MLK family proteins are regulated through protein stability. By generating a variety of mutants, we provide evidence here that the Nterminal half of POSH is accountable for its stability regulation and its over-expression-induced cell death. In addition, POSH's ability to induce apoptosis is correlated with its stability as well as its MLK binding ability. MLK family's stability, like that of POSH, requires activation of JNKs. However, we were surprised to find out that the widely used dominant negative (d/n) form of c-Jun could down-regulate MLK's stability, indicating that peptide from d/n c-Jun can be potentially developed into a therapeutical drug.

  2. Inactivation, stabilization and redox regulation of iron-containing proteins.

    NARCIS (Netherlands)

    Spee, J.H.

    1997-01-01

    SummaryMicroperoxidases: kinetics and stability.Microperoxidases are small enzymes prepared by proteolytic digestion of cytochromes c. The proteolytic removal of most of the protein environment allows these enzymes to use a wide variety of substrates in peroxidase-

  3. Enhanced Stability of a Protein with Increasing Temperature

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Kristensen, Søren M; Led, Jens J

    2010-01-01

    -helix core suggests that these interactions give rise to the decreasing flexibility and increasing stability of the protein. However, numerous hydrophobic interactions in the interior of the four-helix core may also contribute. Above ~40 °C, where the thermal energy overcomes the electrostatic......The unusual stability of a structured but locally flexible protein, human growth hormone (hGH) at pH 2.7, was investigated using the temperature dependence of the nanosecond-picosecond dynamics of the backbone amide groups obtained from (15)N NMR relaxation data. It is found that the flexibility...... of the backbone of the helices decreases with temperature in the range from 24 °C to ~40 °C, corresponding to an increasing stability. A concomitant increase with temperature of the electrostatic interactions between charged residues forming an interhelical network of salt bridges at the center of the four...

  4. Capture-stabilize approach for membrane protein SPR assays.

    Science.gov (United States)

    Chu, Ruiyin; Reczek, David; Brondyk, William

    2014-12-08

    Measuring the binding kinetics of antibodies to intact membrane proteins by surface plasmon resonance has been challenging largely because of the inherent difficulties in capturing membrane proteins on chip surfaces while retaining their native conformation. Here we describe a method in which His-tagged CXCR5, a GPCR, was purified and captured on a Biacore chip surface via the affinity tag. The captured receptor protein was then stabilized on the chip surface by limited cross-linking. The resulting chip surface retained ligand binding activity and was used for monoclonal antibody kinetics assays by a standard Biacore kinetics assay method with a simple low pH regeneration step. We demonstrate the advantages of this whole receptor assay when compared to available peptide-based binding assays. We further extended the application of the capture-stabilize approach to virus-like particles and demonstrated its utility analyzing antibodies against CD52, a GPI-anchored protein, in its native membrane environment. The results are the first demonstration of chemically stabilized chip surfaces for membrane protein SPR assays.

  5. Graph theory and stability analysis of protein complex interaction networks.

    Science.gov (United States)

    Huang, Chien-Hung; Chen, Teng-Hung; Ng, Ka-Lok

    2016-04-01

    Protein complexes play an essential role in many biological processes. Complexes can interact with other complexes to form protein complex interaction network (PCIN) that involves in important cellular processes. There are relatively few studies on examining the interaction topology among protein complexes; and little is known about the stability of PCIN under perturbations. We employed graph theoretical approach to reveal hidden properties and features of four species PCINs. Two main issues are addressed, (i) the global and local network topological properties, and (ii) the stability of the networks under 12 types of perturbations. According to the topological parameter classification, we identified some critical protein complexes and validated that the topological analysis approach could provide meaningful biological interpretations of the protein complex systems. Through the Kolmogorov-Smimov test, we showed that local topological parameters are good indicators to characterise the structure of PCINs. We further demonstrated the effectiveness of the current approach by performing the scalability and data normalization tests. To measure the robustness of PCINs, we proposed to consider eight topological-based perturbations, which are specifically applicable in scenarios of targeted, sustained attacks. We found that the degree-based, betweenness-based and brokering-coefficient-based perturbations have the largest effect on network stability.

  6. Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein

    Science.gov (United States)

    Peterson, Kelby

    2015-03-01

    This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.

  7. Beer consumption and changes in stability of human serum proteins.

    Science.gov (United States)

    Gorinstein, S; Caspi, A; Goshev, I; Moncheva, S; Zemser, M; Weisz, M; Libman, I; Lerner, H T; Trakhtenberg, S; Martín-Belloso, O

    2001-03-01

    The aim of this study was to evaluate the influence of beer consumption (BC) on the functional and structural properties of human serum proteins (HSP). Thirty-eight volunteers (after coronary bypass) were divided into two groups: experimental (EG) and control (CG). Nineteen volunteers of the EG consumed 330 mL per day of beer (about 20 g of alcohol) for 30 consecutive days. The CG volunteers consumed mineral water instead of beer. Blood samples were collected from EG and CG patients before and after the experiment. Albumin (Alb), globulin (Glo), and methanol-precipitable proteins (MPP) from human serum were denatured with 8 M urea. Fluorescence and electrophoresis were employed in order to elucidate urea-induced conformational changes and structural behavior of proteins. The measured fluorescence emission spectra were used to estimate the stability of native and denatured protein fractions before and after BC. It was found that before BC the fractions most stable to urea denaturation were Glo, Alb, and MPP fractions. After BC in most of the beer-consuming patients (EG) some changes in native and denatured protein fractions were detected: a tendency to lower stability and minor structural deviations. These qualitative changes were more profound in MPP than in Alb and Glo. Thus, Glo is more resistible to alcohol influence than Alb, which in turn is more resistible than MPP. No serum protein changes were detected in patients of CG.

  8. Stability of β-carotene in protein-stabilized oil-in-water delivery systems.

    Science.gov (United States)

    Cornacchia, Leonardo; Roos, Yrjo H

    2011-07-13

    Inclusion of liposoluble bioactive compounds in fortified foods represents a complex challenge due to the labile nature of such compounds and the instability of oil-in-water emulsion-based delivery systems. In the present study, dispersions prepared with 10% (w/w) sunflower oil (SO) or hydrogenated palm kernel oil (HPKO) containing 0.05% (w/w) β-carotene were stabilized by various concentrations of whey protein isolate (WPI) or sodium caseinate (NaCas) (0.1 to 2.0% w/w) in 30% (w/w) sucrose aqueous solutions. Physicochemical characterization of emulsions was done considering the particle size, the particle surface protein coverage, and the physical state of continuous and dispersed phases. Physical stability of the systems and their protection properties on β-carotene were compared. The lipid carrier type and interfacial structure were investigated as the two key factors which regulate the stability of labile lipophilic bioactive molecules in food model systems. Our results showed high β-carotene stability when O/W systems were stable (protein concentration ≥0.8% w/w.) A (partially) solid lipid carrier (HPKO) enhanced protection compared to the liquid carrier (SO) as the bioactive molecules were entrapped in isolated domains within the solid lattice and kept apart from reactive species in the surroundings. NaCas provided a better barrier than WPI due to the different amino acid composition and interface structure which significantly reduced β-carotene degradation rate.

  9. USING BIOPOLYMERS TO STABILIZE THE PROTEIN OXYGEN FOAM

    Directory of Open Access Journals (Sweden)

    N. V. Nepovinnyh

    2013-01-01

    Full Text Available The cottage cheese whey as an oxygen cocktail foaming base and natural juices as a flavoring ingredient are analyzed. The lifetime of foam generated by the serum proteins is not long: foam falls off rapidly; because from the foam liquid is released (syneresis. The effects of plant polysaccharides on the stabilization of the protein foam oxygen cocktail is studied. It was shown that the use of plant polysaccharides (guar gum, high methoxyl citrus pectin, locust been gum prolong the life of the foam up to 20 times, compared with conventional blowing agents. It was found that oxygen foam properties depend on the molecular weight of guar gum.

  10. Topology, Geometry, and Stability: Protein Folding and Evolution

    CERN Document Server

    Simmons, Walter

    2015-01-01

    The protein folding problem must ultimately be solved on all length scales from the atomic up through a hierarchy of complicated structures. By analyzing the stability of the folding process using physics and mathematics, this paper shows that features without length scales, i.e. topological features, are potentially of central importance. Topology is a natural mathematical tool for the study of shape and we avail ourselves of that tool to examine the relationship between the amino acid sequence and the shapes of protein molecules. We apply what we learn to conjectures about their biological evolution.

  11. Properties and stability of oil-in-water emulsions stabilized by coconut skim milk proteins.

    Science.gov (United States)

    Onsaard, Ekasit; Vittayanont, Manee; Srigam, Sukoncheun; McClements, D Julian

    2005-07-13

    Protein fractions were isolated from coconut: coconut skim milk protein isolate (CSPI) and coconut skim milk protein concentrate (CSPC). The ability of these proteins to form and stabilize oil-in-water emulsions was compared with that of whey protein isolate (WPI). The solubility of the proteins in CSPI, CSPC, and WPI was determined in aqueous solutions containing 0, 100, and 200 mM NaCl from pH 3 to 8. In the absence of salt, the minimum protein solubility occurred between pH 4 and 5 for CSPI and CSPC and around pH 5 for WPI. In the presence of salt (100 and 200 mM NaCl), all proteins had a higher solubility than in distilled water. Corn oil-in-water emulsions (10 wt %) with relatively small droplet diameters (d32 approximately 0.46, 1.0, and 0.5 mum for CSPI, CSPC, and WPI, respectively) could be produced using 0.2 wt % protein fraction. Emulsions were prepared with different pH values (3-8), salt concentrations (0-500 mM NaCl), and thermal treatments (30-90 degrees C for 30 min), and the mean particle diameter, particle size distribution, zeta-potential, and creaming stability were measured. Considerable droplet flocculation occurred in the emulsions near the isoelectric point of the proteins: CSPI, pH approximately 4.0; CSPC, pH approximately 4.5; WPI, pH approximately 4.8. Emulsions with monomodal particle size distributions, small mean droplet diameters, and good creaming stability could be produced at pH 7 for CSPI and WPI, whereas CSPC produced bimodal distributions. The CSPI and WPI emulsions remained relatively stable to droplet aggregation and creaming at NaCl concentrations of < or =50 and < or =100 mM, respectively. In the absence salt, the CSPI and WPI emulsions were also stable to thermal treatments at < or =80 and < or =90 degrees C for 30 min, respectively. These results suggest that CSPI may be suitable for use as an emulsifier in the food industry.

  12. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  13. Protein stability regulators screening assay (Pro-SRSA):protein degradation meets the CRISPR-Cas9 librar y

    Institute of Scientific and Technical Information of China (English)

    Yuanzhong Wu; Tiebang Kang

    2016-01-01

    The regulation of protein stability is a fundamental issue for biophysical processes, but there has not previously been a convenient and unbiased method of identifying regulators of protein stability. However, as reported in the article entitled“A genome-scale CRISPR–Cas9 screening method for protein stability reveals novel regulators of Cdc25A,”recently published in Cell Discovery, our team developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome clustered regularly interspaced short palindromic repeats Cas9 (CRISPR–Cas9) library with a dual-lfuorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Based on our ifndings, we are conifdent that this effcient and unbiased screening method at the genome scale will be used by researchers worldwide to identify regulators of protein stability.

  14. Protein stability regulators screening assay (Pro-SRSA): protein degradation meets the CRISPR-Cas9 library.

    Science.gov (United States)

    Wu, Yuanzhong; Kang, Tiebang

    2016-06-29

    The regulation of protein stability is a fundamental issue for biophysical processes, but there has not previously been a convenient and unbiased method of identifying regulators of protein stability. However, as reported in the article entitled "A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A," recently published in Cell Discovery, our team developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome clustered regularly interspaced short palindromic repeats Cas9 (CRISPR-Cas9) library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Based on our findings, we are confident that this efficient and unbiased screening method at the genome scale will be used by researchers worldwide to identify regulators of protein stability.

  15. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    Science.gov (United States)

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca Ellis

    2017-02-17

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith EC, et al. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins. 2013. J Biol Chem. 288, 35726). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.

  16. Monoclonal antibody probe for assessing beer foam stabilizing proteins.

    Science.gov (United States)

    Onishi, A; Proudlove, M O; Dickie, K; Mills, E N; Kauffman, J A; Morgan, M R

    1999-08-01

    A monoclonal antibody (Mab; IFRN 1625) has been produced, which is specific for the most hydrophobic polypeptides responsible for foam stabilization. The binding characteristics of the Mab suggest that it is the conformation of certain hydrophobic polypeptides which is important for foam stabilization. An enzyme-linked immunosorbent assay (ELISA) for assessing the foam-positive form of the foam-stabilizing polypeptides in beer was developed using IFRN 1625. A good correlation was obtained between ELISA determination of foam-stabilizing polypeptides and an empirical means of determining foaming, that is, the Rudin head retention values, for a collection of beers of various foam qualities. Application of the ELISA to different stages of the brewing process showed that the amounts of foam-positive polypeptides increased during barley germination. During the brewing process the proportion of foam-positive polypeptides present after fermentation increased slightly, although a large amount was lost along with other beer proteins during subsequent steps, such as filtering. The present study demonstrates that the amounts of beer polypeptide present in a foam-positive form have a direct relationship with the foaming potential of beer, that their levels are altered by processing, and that there is potential for greater quality control.

  17. Effective stabilization of CLA by microencapsulation in pea protein.

    Science.gov (United States)

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications.

  18. Stabilization of collagen through bioconversion: An insight in protein-protein interaction.

    Science.gov (United States)

    Usharani, Nagarajan; Jayakumar, Gladstone Christopher; Kanth, Swarna Vinodh; Rao, Jonnalagadda Raghava

    2014-08-01

    Collagen is a natural protein, which is used as a vital biomaterial in tissue engineering. The major concern about native collagen is lack of its thermal stability and weak resistance to proteolytic degradation. In this scenario, the crosslinking compounds used for stabilization of collagen are mostly of chemical nature and exhibit toxicity. The enzyme mediated crosslinking of collagen provides a novel alternative, nontoxic method for stabilization. In this study, aldehyde forming enzyme (AFE) is used in the bioconversion of hydroxylmethyl groups of collagen to formyl groups that results in the formation of peptidyl aldehyde. The resulted peptidyl aldehyde interacts with bipolar ions of basic amino acid residues of collagen. Further interaction leads to the formation of conjugated double bonds (aldol condensation involving the aldehyde group of peptidyl aldehyde) within the collagen. The enzyme modified collagen matrices have shown an increase in the denaturation temperature, when compared with native collagen. Enzyme modified collagen membranes exhibit resistance toward collagenolytic activity. Moreover, they exhibited a nontoxic nature. The catalytic activity of AFE on collagen as a substrate establishes an efficient modification, which enhances the structural stability of collagen. This finds new avenues in the context of protein-protein stabilization and discovers paramount application in tissue engineering.

  19. Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements.

    Science.gov (United States)

    Geer Wallace, M Ariel; Kwon, Do-Yeon; Weitzel, Douglas H; Lee, Chen-Ting; Stephenson, Tesia N; Chi, Jen-Tsan; Mook, Robert A; Dewhirst, Mark W; Hong, Jiyong; Fitzgerald, Michael C

    2016-08-05

    Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.

  20. Differential stability of the bovine prion protein upon urea unfolding

    Science.gov (United States)

    Julien, Olivier; Chatterjee, Subhrangsu; Thiessen, Angela; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies, are a group of infectious neurological diseases associated with the structural conversion of an endogenous protein (PrP) in the central nervous system. There are two major forms of this protein: the native and noninfectious cellular form, PrPC; and the misfolded, infectious, and proteinase K-resistant form, PrPSc. The C-terminal domain of PrPC is mainly α-helical in structure, whereas PrPSc in known to aggregate into an assembly of β-sheets, forming amyloid fibrils. To identify the regions of PrPC potentially involved in the initial steps of the conversion to the infectious conformation, we have used high-resolution NMR spectroscopy to characterize the stability and structure of bovine recombinant PrPC (residues 121 to 230) during unfolding with the denaturant urea. Analysis of the 800 MHz 1H NMR spectra reveals region-specific information about the structural changes occurring upon unfolding. Our data suggest that the dissociation of the native β-sheet of PrPC is a primary step in the urea-induced unfolding process, while strong hydrophobic interactions between helices α1 and α3, and between α2 and α3, stabilize these regions even at very high concentrations of urea. PMID:19693935

  1. Protein's native state stability in a chemically induced denaturation mechanism.

    Science.gov (United States)

    Olivares-Quiroz, L; Garcia-Colin, L S

    2007-05-21

    In this work, we present a generalization of Zwanzig's protein unfolding analysis [Zwanzig, R., 1997. Two-state models of protein folding kinetics. Proc. Natl Acad. Sci. USA 94, 148-150; Zwanzig, R., 1995. Simple model of protein folding kinetics. Proc. Natl Acad. Sci. USA 92, 9801], in order to calculate the free energy change Delta(N)(D)F between the protein's native state N and its unfolded state D in a chemically induced denaturation. This Extended Zwanzig Model (EZM) is both based on an equilibrium statistical mechanics approach and the inclusion of experimental denaturation curves. It enables us to construct a suitable partition function Z and to derive an analytical formula for Delta(N)(D)F in terms of the number K of residues of the macromolecule, the average number nu of accessible states for each single amino acid and the concentration C(1/2) where the midpoint of the ND transition occurs. The results of the EZM for proteins where chemical denaturation follows a sigmoidal-type profile, as it occurs for the case of the T70N human variant of lysozyme (PDB code: T70N) [Esposito, G., et al., 2003. J. Biol. Chem. 278, 25910-25918], can be splitted into two lines. First, EZM shows that for sigmoidal denaturation profiles, the internal degrees of freedom of the chain play an outstanding role in the stability of the native state. On the other hand, that under certain conditions DeltaF can be written as a quadratic polynomial on concentration C(1/2), i.e., DeltaF approximately aC(1/2)(2)+bC(1/2)+c, where a,b,c are constant coefficients directly linked to protein's size K and the averaged number of non-native conformations nu. Such functional form for DeltaF has been widely known to fit experimental measures in chemically induced protein denaturation [Yagi, M., et al., 2003. J. Biol. Chem. 278, 47009-47015; Asgeirsson, B., Guojonsdottir, K., 2006. Biochim. Biophys. Acta 1764, 190-198; Sharma, S., et al., 2006. Protein Pept. Lett. 13(4), 323-329; Salem, M., et al

  2. Structural stability study of protein monolayers in air

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; Canters, G. W.

    2004-03-01

    The assessment of the folding and of the structural stability of a protein in air, upon immobilization in the solid state, represents a critical point from both a fundamental point of view and for the development of solid state nanobioelectronics. The recent demonstrations by Rinaldi et al. [R. Rinaldi et al., Adv. Mater. 14, 1453 (2002); Appl. Phys. Lett. 82, 472 (2003); Ann. (N.Y.) Acad. Sci. 1006, 187 (2003)] of protein-based solid state devices and transistors working in air have raised an intriguing question about the behavior of a biomolecule under nonphysiological conditions. The operation principle of the realized devices is based on the physiological electron transfer function of the metalloprotein azurin. This means that azurin should retain its shape and functionality also in the solid state when utilized in air and at room temperature. In this Brief Report, we prove this claim by analyzing the conformational state of the azurin monolayers developed for such devices by means of intrinsic fluorescence spectroscopy. We show that the immobilization of azurins in the solid state under nonliquid conditions, by means of a specific chemisorption process, does not necessarily lead to protein denaturation. This result is of great importance because it opens up interesting perspectives for the development of solid state hybrid nanodevices for electronic applications requiring nonliquid environments.

  3. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Directory of Open Access Journals (Sweden)

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  4. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    Science.gov (United States)

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  5. Dual effects of Tween 80 on protein stability.

    Science.gov (United States)

    Wang, Wei; Wang, Y John; Wang, D Q

    2008-01-22

    In this paper, we used IL-2 mutein as a model protein and evaluated the effect of Tween 80, a non-ionic surfactant. In summary, we found that the dual effects of Tween 80 on the stability of IL-2SA, such as that shaking-induced aggregation of IL-2 mutein was significantly inhibited in the presence of Tween 80. However, this surfactant adversely affected the stability of IL-2 mutein in solution during storage in terms of both oxidation and aggregation. These adverse effects are strongly temperature and formulation-dependent. Data particularly showed that IL-2 mutein in solution forms soluble aggregates to a different degree in different formulations during storage at 40 degrees C for 2 months. Aggregation was barely detectable during storage at 5 degrees C for 22 months. Addition of 0.1% Tween 80 significantly increased the rate of IL-2 mutein aggregation during storage. The IL-2 mutein aggregates are linked by both disulfide and non-disulfide bonds and their relative contribution is temperature-dependent. IL-2 mutein can be oxidized also to a different degree in different formulations during storage and the oxidation rate is strongly temperature-dependent with an activation energy between 21 and 25 kcal/mol. Addition of 0.1% Tween 80 not only increased the rate of oxidation in general but also altered the temperature-dependency of IL-2 mutein oxidation.

  6. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A. (UNL)

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  7. Sample Stability and Protein Composition of Saliva : Implications for Its Use as a Diagnostic Fluid

    NARCIS (Netherlands)

    Esser, Diederik; Alvarez-Llamas, Gloria; de Vries, Marcel P; Weening, Desiree; Vonk, Roel J; Roelofsen, Han

    2008-01-01

    Saliva is an easy accessible plasma ultra-filtrate. Therefore, saliva can be an attractive alternative to blood for measurement of diagnostic protein markers. Our aim was to determine stability and protein composition of saliva. Protein stability at room temperature was examined by incubating fresh

  8. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    Science.gov (United States)

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  9. Alpha-haemoglobin stabilizing protein (AHSP) stabilizes apo-α-haemoglobin in a partially folded state

    Science.gov (United States)

    Krishna Kumar, Kaavya; Dickson, Claire F.; Weiss, Mitchell J.; Mackay, Joel P.; Gell, David A.

    2015-01-01

    SYNOPSIS To produce functional haemoglobin, nascent α-globin (αo) and β-globin (βo) chains must each bind a single haem molecule (to form αh and βh) and interact together to form heterodimers. The precise sequence of binding events is unknown, and it has been suggested that additional factors might enhance the efficiency of Hb folding. The α-haemoglobin stabilizing protein (AHSP) has previously been shown to bind αh and regulate redox activity of the haem iron. Here, we use a combination of classical and dynamic light scattering and NMR spectroscopy to demonstrate that AHSP forms a heterodimeric complex with αo that inhibits αo aggregation and promotes αo folding in the absence of haem. These findings indicate that AHSP may function as an αo-specific chaperone, and suggest an important role for αo in guiding Hb assembly by stabilizing βo and inhibiting off-pathway self-association of βh. PMID:20860551

  10. AHSP (α-haemoglobin-stabilizing protein) stabilizes apo-α-haemoglobin in a partially folded state.

    Science.gov (United States)

    Krishna Kumar, Kaavya; Dickson, Claire F; Weiss, Mitchell J; Mackay, Joel P; Gell, David A

    2010-12-01

    To produce functional Hb (haemoglobin), nascent α-globin (αo) and β-globin (βo) chains must each bind a single haem molecule (to form αh and βh) and interact together to form heterodimers. The precise sequence of binding events is unknown, and it has been suggested that additional factors might enhance the efficiency of Hb folding. AHSP (α-haemoglobin-stabilizing protein) has been shown previously to bind αh and regulate redox activity of the haem iron. In the present study, we used a combination of classical and dynamic light scattering and NMR spectroscopy to demonstrate that AHSP forms a heterodimeric complex with αo that inhibits αo aggregation and promotes αo folding in the absence of haem. These findings indicate that AHSP may function as an αo-specific chaperone, and suggest an important role for αo in guiding Hb assembly by stabilizing βo and inhibiting off-pathway self-association of βh.

  11. Effect of cosolvent on protein stability: A theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Chalikian, Tigran V., E-mail: chalikan@phm.utoronto.ca [Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2 (Canada)

    2014-12-14

    We developed a statistical thermodynamic algorithm for analyzing solvent-induced folding/unfolding transitions of proteins. The energetics of protein transitions is governed by the interplay between the cavity formation contribution and the term reflecting direct solute-cosolvent interactions. The latter is viewed as an exchange reaction in which the binding of a cosolvent to a solute is accompanied by release of waters of hydration to the bulk. Our model clearly differentiates between the stoichiometric and non-stoichiometric interactions of solvent or co-solvent molecules with a solute. We analyzed the urea- and glycine betaine (GB)-induced conformational transitions of model proteins of varying size which are geometrically approximated by a sphere in their native state and a spherocylinder in their unfolded state. The free energy of cavity formation and its changes accompanying protein transitions were computed based on the concepts of scaled particle theory. The free energy of direct solute-cosolvent interactions were analyzed using empirical parameters previously determined for urea and GB interactions with low molecular weight model compounds. Our computations correctly capture the mode of action of urea and GB and yield realistic numbers for (∂ΔG°/∂a{sub 3}){sub T,P} which are related to the m-values of protein denaturation. Urea is characterized by negative values of (∂ΔG°/∂a{sub 3}){sub T,P} within the entire range of urea concentrations analyzed. At concentrations below ∼1 M, GB exhibits positive values of (∂ΔG°/∂a{sub 3}){sub T,P} which turn positive at higher GB concentrations. The balance between the thermodynamic contributions of cavity formation and direct solute-cosolvent interactions that, ultimately, defines the mode of cosolvent action is extremely subtle. A 20% increase or decrease in the equilibrium constant for solute-cosolvent binding may change the sign of (∂ΔG°/∂a{sub 3}){sub T,P} thereby altering the mode of

  12. Protein Stability during Hot Melt Extrusion: The Effect of Extrusion Temperature, Hydrophilicity of Polymers and Sugar Glass Pre-stabilization

    NARCIS (Netherlands)

    Teekamp, Naomi; Olinga, Peter; Frijlink, Henderik W.; Hinrichs, Wouter

    2015-01-01

    Purpose Biodegradable polymers have been widely investigated for controlled release formulations for protein delivery. However, the processing stability of proteins remains a major challenge. The aim of this research is to assess the influence of the hot melt extrusion process on the activity of a m

  13. Analysis of protein stability and ligand interactions by thermal shift assay.

    Science.gov (United States)

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye.

  14. Stability and Immunogenicity of Hypoallergenic Peanut Protein-Polyphenol Complexes During In Vitro Pepsin Digestion

    Science.gov (United States)

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...

  15. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy.

    Science.gov (United States)

    Quan, Shu; Koldewey, Philipp; Tapley, Tim; Kirsch, Nadine; Ruane, Karen M; Pfizenmaier, Jennifer; Shi, Rong; Hofmann, Stephan; Foit, Linda; Ren, Guoping; Jakob, Ursula; Xu, Zhaohui; Cygler, Miroslaw; Bardwell, James C A

    2011-03-01

    To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state levels of a set of unstable protein mutants up to 700-fold. In vitro studies demonstrate that the Spy protein is an effective ATP-independent chaperone that suppresses protein aggregation and aids protein refolding. Our strategy opens up new routes for chaperone discovery and the custom tailoring of the in vivo folding environment. Spy forms thin, apparently flexible cradle-shaped dimers. The structure of Spy is unlike that of any previously solved chaperone, making it the prototypical member of a new class of small chaperones that facilitate protein refolding in the absence of energy cofactors.

  16. Unraveling protein stabilization mechanisms : Vitrification and water replacement in a glass transition temperature controlled system

    NARCIS (Netherlands)

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-01-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either v

  17. Stabilization of TRAIL, an all-{beta}-sheet multimeric protein, using computational redesign

    NARCIS (Netherlands)

    van der Sloot, Almer Martinus; Mullally, Margaret; Fernandez-Ballester, G.; Serrano, L.; Quax, Wim

    2004-01-01

    Protein thermal stability is important for therapeutic proteins, both influencing the pharmacokinetic and pharmacodynamic properties and for stability during production and shelf-life of the final product. In this paper we show the redesign of a therapeutically interesting trimeric all-beta-sheet pr

  18. Stabilization of TRAIL, an all-beta-sheet multimeric protein, using computational redesign

    NARCIS (Netherlands)

    van der Sloot, AM; Mullally, MM; Fernandez-Ballester, G; Serrano, L; Quax, WJ

    2004-01-01

    Protein thermal stability is important for therapeutic proteins, both influencing the pharmacokinetic and pharmacodynamic properties and for stability during production and shelf-life of the final product. In this paper we show the redesign of a therapeutically interesting trimeric all-beta-sheet pr

  19. The influence of selection for protein stability on dN/dS estimations

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Serohijos, Adrian W. R.; Kepp, Kasper Planeta;

    2014-01-01

    from the neutral theory as a null model. However, from biophysical considerations, mutations have non-negligible effects on the biophysical properties of proteins such as folding stability. In this work, we investigated how stability affects the rate of protein evolution in phylogenetic trees by using...... simulations that combine explicit protein sequences with associated stability changes. We first simulated myoglobin evolution in phylogenetic trees with a biophysically realistic approach that accounts for 3D structural information and estimates of changes in stability upon mutation. We then compared...... stability where protein evolution is neutral. At low folding stabilities and under mutation-selection balance, we observe deviations from neutrality (per gene dN/dS > 1 and dN/dS positive selection detect statistically...

  20. Using state diagrams for predicting colloidal stability of whey protein beverages.

    Science.gov (United States)

    Wagoner, Ty B; Ward, Loren; Foegeding, E Allen

    2015-05-06

    A method for evaluating aspects of colloidal stability of whey protein beverages after thermal treatment was established. Three state diagrams for beverages (pH 3-7) were developed representing protein solubility, turbidity, and macroscopic state after two ultrahigh-temperature (UHT) treatments. Key transitions of stability in the state diagrams were explored using electrophoresis and chromatography to determine aggregation propensities of β-lactoglobulin, α-lactalbumin, bovine serum albumin, and glycomacropeptide. The state diagrams present an overlapping view of high colloidal stability at pH 3 accompanied by high solubility of individual whey proteins. At pH 5, beverages were characterized by poor solubility, high turbidity, and aggregation/gelation of whey proteins with the exception of glycomacropeptide. Stability increased at pH 6, due to increased solubility of α-lactalbumin. The results indicate that combinations of state diagrams can be used to identify key regions of stability for whey protein containing beverages.

  1. Protein stability in stored decellularized heart valve scaffolds and diffusion kinetics of protective molecules.

    Science.gov (United States)

    Wang, Shangping; Oldenhof, Harriëtte; Dai, Xiaolei; Haverich, Axel; Hilfiker, Andres; Harder, Michael; Wolkers, Willem F

    2014-02-01

    Decellularized tissues can be used as matrix implants. The aims of this study were to investigate protein stability and solvent accessibility in decellularized pulmonary heart valve tissues. Protein denaturation profiles of tissues were studied by differential scanning calorimetry. Protein solvent accessibility of tissue exposed to D2O, and diffusion kinetics of various protective molecules were studied by Fourier transform infrared spectroscopy. Little changes were observed in the protein denaturation temperature during storage, at either 5 or 40°C. Glycerol was found to stabilize proteins; it increased the protein denaturation temperature. The stabilizing effect of glycerol disappeared after washing the sample with saline solution. Hydrogen-to-deuterium exchange rates of protein amide groups were fastest in leaflet tissue, followed by artery and muscle tissue. Diffusion of glycerol was found to be fastest in muscle tissue, followed by artery and leaflet tissue. Diffusion coefficients were derived and used to estimate the time needed to reach saturation. Fixation of tissue with glutaraldehyde had little effects on exchange and diffusion rates. Diffusion rates decreased with increasing molecular size. Proteins in decellularized heart valve tissue are stable during storage. Glycerol increases protein stability in a reversible manner. Solvent accessibility studies of protein amide groups provide an additional tool to study proteins in tissues. Diffusion coefficients can be derived to simulate diffusion kinetics of protective molecules in tissues. This study provides novel tools to evaluate protein stability and solvent accessibility in tissues, which can be used to develop biopreservation strategies.

  2. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins.

    Science.gov (United States)

    Martin, Andreas; Schmid, Franz X

    2003-05-09

    The gene-3-protein (G3P) of filamentous phage is essential for their propagation. It consists of three domains. The CT domain anchors G3P in the phage coat, the N2 domain binds to the F pilus of Escherichia coli and thus initiates infection, and the N1 domain continues by interacting with the TolA receptor. Phage are thus only infective when the three domains of G3P are tightly linked, and this requirement is exploited by Proside, an in vitro selection method for proteins with increased stability. In Proside, a repertoire of variants of the protein to be stabilized is inserted between the N2 and the CT domains of G3P. Stabilized variants can be selected because they resist cleavage by a protease and thus maintain the essential linkage between the domains. The method is limited by the proteolytic stability of G3P itself. We improved the stability of G3P by subjecting the phage without a guest protein to rounds of random in vivo mutagenesis and proteolytic Proside selections. Variants of G3P with one to four mutations were selected, and the temperature at which the corresponding phage became accessible for a protease increased in a stepwise manner from 40 degrees C to almost 60 degrees C. The N1-N2 fragments of wild-type gene-3-protein and of the four selected variants were purified and their stabilities towards thermal and denaturant-induced unfolding were determined. In the biphasic transitions of these proteins domain dissociation and unfolding of N2 occur in a concerted reaction in the first step, followed by the independent unfolding of domain N1 in the second step. N2 is thus less stable than N1, and it unfolds when the interactions with N1 are broken. The strongest stabilizations were caused by mutations in domain N2, in particular in its hinge subdomain, which provides many stabilizing interactions between the N1 and N2 domains. These results reveal how the individual domains and their assembly contribute to the overall stability of two-domain proteins and

  3. Interrelationship of steric stabilization and self-crowding of a glycosylated protein

    DEFF Research Database (Denmark)

    Høiberg-Nielsen, Rasmus; Westh, Peter; Skov, L.K.;

    2009-01-01

    In the eukaryotic cell, protein glycosylation takes place in the crowded environment of the endoplasmatic reticulum. With the purpose of elucidating the impact of high concentration on the interactions of glycoproteins, we have conducted a series of small-angle x-ray scattering experiments...... from the glycans contribute to steric stabilization of the protein, and that glycosylation helps to sustain repulsive electrostatic interactions under crowded conditions. In combination, this aids in stabilizing high concentrations of glycosylated proteins....

  4. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    Directory of Open Access Journals (Sweden)

    Czaplicki Jerzy

    2004-07-01

    Full Text Available Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.

  5. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Winther, J R

    2001-01-01

    Barley LTP1 belongs to a large family of plant proteins termed non-specific lipid transfer proteins. The in vivo function of these proteins is unknown, but it has been suggested that they are involved in responses towards stresses such as pathogens, drought, heat, cold and salt. Also, the proteins...... have been suggested as transporters of monomers for cutin synthesis. We have analysed the stability of LTP1 towards denaturant, heat and proteases and found it to be a highly stable protein, which apparently does not denature at temperatures up to 100 degrees C. This high stability may be important...

  6. Positively selected sites in cetacean myoglobins contribute to protein stability

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Serohijos, Adrian W R; Kepp, Kasper P

    2013-01-01

    of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8-1.2 µM(-1)), folding stabilities of cetacean Mbs are ∼2-4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and Bayesian tests to describe the evolution...... of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation...

  7. A functional protein retention and release multilayer with high stability

    Science.gov (United States)

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-01

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by

  8. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI protein

  9. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain;

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat...

  10. Stability curve prediction of homologous proteins using temperature-dependent statistical potentials.

    Directory of Open Access Journals (Sweden)

    Fabrizio Pucci

    2014-07-01

    Full Text Available The unraveling and control of protein stability at different temperatures is a fundamental problem in biophysics that is substantially far from being quantitatively and accurately solved, as it requires a precise knowledge of the temperature dependence of amino acid interactions. In this paper we attempt to gain insight into the thermal stability of proteins by designing a tool to predict the full stability curve as a function of the temperature for a set of 45 proteins belonging to 11 homologous families, given their sequence and structure, as well as the melting temperature (Tm and the change in heat capacity (ΔCP of proteins belonging to the same family. Stability curves constitute a fundamental instrument to analyze in detail the thermal stability and its relation to the thermodynamic stability, and to estimate the enthalpic and entropic contributions to the folding free energy. In summary, our approach for predicting the protein stability curves relies on temperature-dependent statistical potentials derived from three datasets of protein structures with targeted thermal stability properties. Using these potentials, the folding free energies (ΔG at three different temperatures were computed for each protein. The Gibbs-Helmholtz equation was then used to predict the protein's stability curve as the curve that best fits these three points. The results are quite encouraging: the standard deviations between the experimental and predicted Tm's, ΔCP's and folding free energies at room temperature (ΔG25 are equal to 13° C, 1.3 kcal/(mol° C and 4.1 kcal/mol, respectively, in cross-validation. The main sources of error and some further improvements and perspectives are briefly discussed.

  11. Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms.

    Science.gov (United States)

    Balasco, Nicole; Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi

    2013-07-01

    It has been recently discovered that the connection of secondary structure elements (ββ-unit, βα- and αβ-units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222-227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222-227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β-hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well-known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.

  12. Folding and Stabilization of Native-Sequence-Reversed Proteins.

    Science.gov (United States)

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-04-26

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.

  13. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding...... to a common surface on PCNA; hence these interactions need to be tightly regulated and coordinated to ensure proper chromosome replication and integrity. Control of PCNA-protein interactions is multilayered and involves post-translational modifications, in particular ubiquitylation, accessory factors...... and regulated degradation of PCNA-associated proteins. This regulatory framework allows cells to maintain a fine-tuned balance between replication fidelity and processivity in response to DNA damage....

  14. Nanobody stabilization of G protein coupled receptor conformational states

    OpenAIRE

    Steyaert, Jan; K Kobilka, Brian

    2011-01-01

    Remarkable progress has been made in the field of G protein coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G pro...

  15. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    Science.gov (United States)

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute.

  16. Membrane protein stability analyses by means of protein energy profiles in case of nephrogenic diabetes insipidus.

    Science.gov (United States)

    Heinke, Florian; Labudde, Dirk

    2012-01-01

    Diabetes insipidus (DI) is a rare endocrine, inheritable disorder with low incidences in an estimated one per 25,000-30,000 live births. This disease is characterized by polyuria and compensatory polydypsia. The diverse underlying causes of DI can be central defects, in which no functional arginine vasopressin (AVP) is released from the pituitary or can be a result of defects in the kidney (nephrogenic DI, NDI). NDI is a disorder in which patients are unable to concentrate their urine despite the presence of AVP. This antidiuretic hormone regulates the process of water reabsorption from the prourine that is formed in the kidney. It binds to its type-2 receptor (V2R) in the kidney induces a cAMP-driven cascade, which leads to the insertion of aquaporin-2 water channels into the apical membrane. Mutations in the genes of V2R and aquaporin-2 often lead to NDI. We investigated a structure model of V2R in its bound and unbound state regarding protein stability using a novel protein energy profile approach. Furthermore, these techniques were applied to the wild-type and selected mutations of aquaporin-2. We show that our results correspond well to experimental water ux analysis, which confirms the applicability of our theoretical approach to equivalent problems.

  17. Membrane Protein Stability Analyses by Means of Protein Energy Profiles in Case of Nephrogenic Diabetes Insipidus

    Directory of Open Access Journals (Sweden)

    Florian Heinke

    2012-01-01

    Full Text Available Diabetes insipidus (DI is a rare endocrine, inheritable disorder with low incidences in an estimated one per 25,000–30,000 live births. This disease is characterized by polyuria and compensatory polydypsia. The diverse underlying causes of DI can be central defects, in which no functional arginine vasopressin (AVP is released from the pituitary or can be a result of defects in the kidney (nephrogenic DI, NDI. NDI is a disorder in which patients are unable to concentrate their urine despite the presence of AVP. This antidiuretic hormone regulates the process of water reabsorption from the prourine that is formed in the kidney. It binds to its type-2 receptor (V2R in the kidney induces a cAMP-driven cascade, which leads to the insertion of aquaporin-2 water channels into the apical membrane. Mutations in the genes of V2R and aquaporin-2 often lead to NDI. We investigated a structure model of V2R in its bound and unbound state regarding protein stability using a novel protein energy profile approach. Furthermore, these techniques were applied to the wild-type and selected mutations of aquaporin-2. We show that our results correspond well to experimental water ux analysis, which confirms the applicability of our theoretical approach to equivalent problems.

  18. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    Science.gov (United States)

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  19. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor;

    2015-01-01

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol...... confirmed by circular dichroism spectroscopy. Surprisingly, the simultaneous co-encapsulation and addition of lyoprotectants was detrimental to protein stabilization. The insulin in vitro release studies demonstrated that formulations with co-encapsulated trehalose, glucose, sucrose, fructose and sorbitol...

  20. Stabilization of Proteins by Polymer Conjugation via ATRP

    Science.gov (United States)

    2008-08-31

    organophosphate hydrolase Organophosphorous hydrolase (OPH) that was sheathed in poly(2-ethylhexyl methacrylate-co-MPEG-methacrylate) was soluble in...applied to organophosphorous hydrolase. The enzyme was sheathed in copolymer matrix and dissolved in dichloromethane solution of poly(methyl methacrylate...lysozyme, asparaginase, organophosphorous hydrolase etc., by ATRP and by conventional pegylation. In vitro mouse and human serum stability study was

  1. Folding and Stabilization of Native-Sequence-Reversed Proteins

    CERN Document Server

    Zhang, Yuanzhao; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity ({\\alpha}-helix, \\b{eta}-hairpin, {\\alpha}-helix bundle, and {\\alpha}/\\b{eta}-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly in influenced by protein size and the flexibility of the native hydrophobic core. For \\b{eta}-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the \\b{eta}-turn region. This systematic look at reverse sequence duality sheds new light on t...

  2. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    Science.gov (United States)

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  3. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Directory of Open Access Journals (Sweden)

    Thomas Wallach

    2013-03-01

    Full Text Available Essentially all biological processes depend on protein-protein interactions (PPIs. Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc. contributing to temporal organization of cellular physiology in an unprecedented manner.

  4. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes.

    Science.gov (United States)

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A; Macías-Silva, Marina

    2015-02-13

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration.

  5. On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins.

    Science.gov (United States)

    Trudeau, Devin L; Kaltenbach, Miriam; Tawfik, Dan S

    2016-10-01

    Ancestral reconstruction provides instrumental insights regarding the biochemical and biophysical characteristics of past proteins. A striking observation relates to the remarkably high thermostability of reconstructed ancestors. The latter has been linked to high environmental temperatures in the Precambrian era, the era relating to most reconstructed proteins. We found that inferred ancestors of the serum paraoxonase (PON) enzyme family, including the mammalian ancestor, exhibit dramatically increased thermostabilities compared with the extant, human enzyme (up to 30 °C higher melting temperature). However, the environmental temperature at the time of emergence of mammals is presumed to be similar to the present one. Additionally, the mammalian PON ancestor has superior folding properties (kinetic stability)-unlike the extant mammalian PONs, it expresses in E. coli in a soluble and functional form, and at a high yield. We discuss two potential origins of this unexpectedly high stability. First, ancestral stability may be overestimated by a "consensus effect," whereby replacing amino acids that are rare in contemporary sequences with the amino acid most common in the family increases protein stability. Comparison to other reconstructed ancestors indicates that the consensus effect may bias some but not all reconstructions. Second, we note that high stability may relate to factors other than high environmental temperature such as oxidative stress or high radiation levels. Foremost, intrinsic factors such as high rates of genetic mutations and/or of transcriptional and translational errors, and less efficient protein quality control systems, may underlie the high kinetic and thermodynamic stability of past proteins.

  6. Influence of the mutation on the stability of pyrin protein and development of familial Mediterranean fever

    Directory of Open Access Journals (Sweden)

    Arakelov G G

    2015-04-01

    Full Text Available Present study was carried out for the molecular modeling of the pyrin protein. Tertiary structure of pyrin protein was developed by de novo modeling and treading methods. Subsequent evaluation of the developed model was also carried out and found it stereochemical correct. Furthermore, influence of the mutation on the stability of the pyrin tertiary structure and development of Familial Mediterranean Fever was also studied in the present study. Total 66 mutations were localized at B30.2 domain of pyrin protein and this domain is responsible for manifestation of Familial Mediterranean Fever. It was also reported that among 66 localized mutations 24 mutations affects the stability of pyrin structure while 25 mutations have neutral effect on the stability and rest 17 mutations have stabilizing effect on the tertiary structure of pyrin.

  7. Stay Wet, Stay Stable? How Internal Water Helps the Stability of Thermophilic Proteins.

    Science.gov (United States)

    Chakraborty, Debashree; Taly, Antoine; Sterpone, Fabio

    2015-10-08

    We present a systematic computational investigation of the internal hydration of a set of homologous proteins of different stability content and molecular complexities. The goal of the study is to verify whether structural water can be part of the molecular mechanisms ensuring enhanced stability in thermophilic enzymes. Our free-energy calculations show that internal hydration in the thermophilic variants is generally more favorable, and that the cumulated effect of wetting multiple sites results in a meaningful contribution to stability. Moreover, thanks to a more effective capability to retain internal water, some thermophilic proteins benefit by a systematic gain from internal wetting up to their optimal working temperature. Our work supports the idea that internal wetting can be viewed as an alternative molecular variable to be tuned for increasing protein stability.

  8. Stay Wet, Stay Stable? How Internal Water Helps Stability of Thermophilic Proteins

    Science.gov (United States)

    Chakraborty, Debashree; Taly, Antoine; Sterpone, Fabio

    2017-01-01

    We present a systematic computational investigation of the internal hydration of a set of homologous proteins of different stability content and molecular complexities. The goal of the study is to verify whether structural water can be part of the molecular mechanisms ensuring enhanced stability in thermophilic enzymes. Our free energy calculations show that internal hydration in the thermophilic variants is generally more favourable and that the cumulated effect of wetting multiple sites results in a meaningful contribution to stability. Moreover, thanks to a more effective capability to retain internal water some thermophilic proteins benefit of a systematic gain from internal wetting up to their optimal working temperature. Our work supports the idea that internal wetting can be viewed as an alternative molecular variable to be tuned for increasing protein stability. PMID:26335353

  9. Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings.

    Science.gov (United States)

    Alexander, Crispin G; Wanner, Randy; Johnson, Christopher M; Breitsprecher, Dennis; Winter, Gerhard; Duhr, Stefan; Baaske, Philipp; Ferguson, Neil

    2014-12-01

    Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein-ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide-PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes.

  10. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the stabili

  11. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins

    NARCIS (Netherlands)

    Tonnis, W. F.; Mensink, M. A.; de Jager, A.; Maarschalk, K. van der Voort; Frijlink, H. W.; Hinrichs, W. L. J.

    2015-01-01

    Protein-based biopharmaceuticals are generally produced as aqueous solutions and stored refrigerated to obtain sufficient shelf life. Alternatively, proteins may be freeze-dried in the presence of sugars to allow storage stability at ambient conditions for prolonged periods. However, to act as a sta

  12. Identifying Protein Stabilizing Ligands Using GroEL

    Science.gov (United States)

    Naik, Subhashchandra; Haque, Inamul; Degner, Nick; Kornilayev, Boris; Bomhoff, Gregory; Hodges, Jacob; Khorassani, Ara-Azad; Katayama, Hiroo; Morris, Jill; Kelly, Jeffery; Seed, John; Fisher, Mark T.

    2010-01-01

    Over the past five years, it has become increasingly apparent to researchers that the initial promise and excitement of using gene replacement therapies to ameliorate folding diseases are still far from being broadly or easily applicable. Because a large number of human diseases are protein folding diseases (~30 to 50%), many researchers now realize that more directed approaches to target and reverse the fundamental misfolding reactions preceding disease are highly feasible and offer the potential of developing more targeted drug therapies. This is also true with a large number of so called “orphan protein folding diseases”. The development of a broad-based general screening array method using the chaperonin as a detection platform will enable us to screen large chemical combinatorial libraries for specific ligands against the elusive transient, primary reactions that often lead to protein misfolding. This development will provide a highly desirable tool for the pharmaceutical, academic and medical professions. PMID:19802819

  13. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.

    Science.gov (United States)

    Kajander, Tommi; Cortajarena, Aitziber L; Mochrie, Simon; Regan, Lynne

    2007-07-01

    The structure and stability of repeat proteins has been little studied in comparison to the properties of the more familiar globular proteins. Here, the structure and stability of designed tetratricopeptide-repeat (TPR) proteins is described. The TPR is a 34-amino-acid motif which adopts a helix-turn-helix structure and occurs as tandem repeats. The design of a consensus TPR motif (CTPR) has previously been described. Here, the crystal structures and stabilities of proteins that contain eight or 20 identical tandem repeats of the CTPR motif (CTPR8 and CTPR20) are presented. Both CTPR8 and CTPR20 adopt a superhelical overall structure. The structures of the different-length CTPR proteins are compared with each other and with the structures of natural TPR domains. Also, the unusual and perhaps unique crystal-packing interactions resulting in pseudo-infinite crystalline superhelices observed in the different crystal forms of CTPR8 and CTPR20 are discussed. Finally, it is shown that the thermodynamic behavior of CTPR8 and CTPR20 can be predicted from the behavior of other TPRs in this series using an Ising model-based analysis. The designed protein series CTPR2-CTPR20 covers the natural size repertoire of TPR domains and as such is an excellent model system for natural TPR proteins.

  14. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53.

    Science.gov (United States)

    Piao, Shudong; Pei, Han Zhong; Huang, Bin; Baek, Suk-Hwan

    2017-05-01

    Ubiquitination and deubiquitination pathways play important roles in the regulation of p53 stability and activity. p53 is ubiquitinated and destabilized by E3 ubiquitin ligases and is deubiquitinated and stabilized by deubiquitinases (DUBs). We screened ovarian tumor (OTU) subfamily proteins to identify novel DUBs that stabilized p53. OTU domain-containing protein 1 (OTUD1) is a DUB belonging to the OTU family; however, its substrates and its role in cells are unknown. Here, we used an overexpression and knockdown system to show that OTUD1 is a novel regulator of p53 stability. OTUD1 overexpression increased p53 stability, whereas OTUD1 knockdown decreased p53 stability. Moreover, we observed that OTUD1 directly interacted with p53. Our results showed that OTUD1 deubiquitinated p53 and that functional OTUD1 was required for p53 stabilization. The deubiquitination activity of OTUD1 was necessary for p53 stabilization, as confirmed using an inactive OTUD1 mutant (C320S OTUD1 mutant). We also found that wild-type OTUD1 upregulated p21 and Mdm2 expression but inactive OTUD1 mutant did not. Furthermore, OTUD1 significantly suppressed colony formation. Next, we confirmed that OTUD1 overexpression increased the cleavage of caspase-3 and PARP and subsequently increased apoptosis. Together, these results suggest that OTUD1 is a novel regulator of p53 stability and activity.

  15. HSC90 is required for nascent hepatitis C virus core protein stability in yeast cells.

    Science.gov (United States)

    Kubota, Naoko; Inayoshi, Yasutaka; Satoh, Naoko; Fukuda, Takashi; Iwai, Kenta; Tomoda, Hiroshi; Kohara, Michinori; Kataoka, Kazuhiro; Shimamoto, Akira; Furuichi, Yasuhiro; Nomoto, Akio; Naganuma, Akira; Kuge, Shusuke

    2012-07-30

    Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.

  16. New insights into structural determinants of prion protein folding and stability.

    Science.gov (United States)

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  17. Conventional and alternative principles for stabilization of protein and polyphenol fractions in beer

    OpenAIRE

    Marković Romeo S.; Grujić Olgica S.; Pejin Jelena D.

    2003-01-01

    Beer haze is primarily formed through complexation of protein and polyphenolic beer ingredients. The problem of reducing susceptibility of beer haze formation can be done either by lowering protein and/or polyphenol levels, or by minimizing the molecular size of protein/polyphenols. In experimental part of this work the shelf life of unstabilized beer is being compared with beer stabilized with various standard products, such as PVPP and silica gel. Furthermore, the trials have been made to p...

  18. Molecular insights into the stabilization of protein-protein interactions with small molecule: The FKBP12-rapamycin-FRB case study

    Science.gov (United States)

    Chaurasia, Shilpi; Pieraccini, Stefano; De Gonda, Riccardo; Conti, Simone; Sironi, Maurizio

    2013-11-01

    Targetting protein-protein interactions is a challenging task in drug discovery process. Despite the challenges, several studies provided evidences for the development of small molecules modulating protein-protein interactions. Here we consider a typical case of protein-protein interaction stabilization: the complex between FKBP12 and FRB with rapamycin. We have analyzed the stability of the complex and characterized its interactions at the atomic level by performing free energy calculations and computational alanine scanning. It is shown that rapamycin stabilizes the complex by acting as a bridge between the two proteins; and the complex is stable only in the presence of rapamycin.

  19. Serum Proteins Stabilized Calcium Phosphate Nanoparticles and Its Effect on Bel-7402 Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite has a high affinity to biological macromolecules, especially to proteins. Bovine serum proteins were extracted to be used as stablizer to prepare calcium phosphate nanoparticles. 167.7 am and87.7 nm particles were respectively prepared by using bovine serum protein fractions at the concentration of 0.5mg/mL and 1.0 mg/mL. As the polysaccharide stabilized hydroxyapatite nanoparticles, the protein-stablized nanoparticles also inhibited the proliferation rate of Bel-7402 cells. It suggested that proteins could be applied to prepare calcium phosphate nanoparticles and it also has the anticancer effect.

  20. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    Directory of Open Access Journals (Sweden)

    Ugo Bastolla

    2014-03-01

    Full Text Available The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change.

  1. Identifying Protein Stabilizing Ligands Using GroEL

    OpenAIRE

    Naik, Subhashchandra; Haque, Inamul; Degner, Nick; Kornilayev, Boris; Bomhoff, Gregory; Hodges,Jacob; Khorassani, Ara-Azad; Katayama, Hiroo; Morris, Jill; Kelly, Jeffery; Seed, John; Fisher, Mark T.

    2010-01-01

    Over the past five years, it has become increasingly apparent to researchers that the initial promise and excitement of using gene replacement therapies to ameliorate folding diseases are still far from being broadly or easily applicable. Because a large number of human diseases are protein folding diseases (~30 to 50%), many researchers now realize that more directed approaches to target and reverse the fundamental misfolding reactions preceding disease are highly feasible and offer the pote...

  2. Influence of Miscibility of Protein-Sugar Lyophilizates on Their Storage Stability.

    Science.gov (United States)

    Mensink, Maarten A; Nethercott, Matthew J; Hinrichs, Wouter L J; van der Voort Maarschalk, Kees; Frijlink, Henderik W; Munson, Eric J; Pikal, Michael J

    2016-09-01

    For sugars to act as successful stabilizers of proteins during lyophilization and subsequent storage, they need to have several characteristics. One of them is that they need to be able to form interactions with the protein and for that miscibility is essential. To evaluate the influence of protein-sugar miscibility on protein storage stability, model protein IgG was lyophilized in the presence of various sugars of different molecular weight. By comparing solid-state nuclear magnetic resonance spectroscopy relaxation times of both protein and sugar on two different timescales, i.e., (1)H T1 and (1)H T1ρ, miscibility of the two components was established on a 2-5- and a 20-50-nm length scale, respectively, and related to protein storage stability. Smaller sugars showed better miscibility with IgG, and the tendency of IgG to aggregate during storage was lower for smaller sugars. The largest sugar performed worst and was phase separated on both length scales. Additionally, shorter protein (1)H T1 relaxation times correlated with higher aggregation rates during storage. The enzyme-linked immunosorbent assay (ELISA) assay showed overlapping effects of aggregation and chemical degradation and did not correspond as well with the miscibility. Because of the small scale at which miscibility was determined (2-5 nm) and the size of the protein domains (∼2.5 × 2.5 × 5 nm), the miscibility data give an indirect measure of interaction between protein and sugar. This reduced interaction could be the result of steric hindrance, providing a possible explanation as to why smaller sugars show better miscibility and storage stability with the protein.

  3. Improved insights into protein thermal stability: from the molecular to the structurome scale.

    Science.gov (United States)

    Pucci, Fabrizio; Rooman, Marianne

    2016-11-13

    Despite the intense efforts of the last decades to understand the thermal stability of proteins, the mechanisms responsible for its modulation still remain debated. In this investigation, we tackle this issue by showing how a multiscale perspective can yield new insights. With the help of temperature-dependent statistical potentials, we analysed some amino acid interactions at the molecular level, which are suggested to be relevant for the enhancement of thermal resistance. We then investigated the thermal stability at the protein level by quantifying its modification upon amino acid substitutions. Finally, a large scale analysis of protein stability-at the structurome level-contributed to the clarification of the relation between stability and natural evolution, thereby showing that the mutational profile of proteins differs according to their thermal properties. Some considerations on how the multiscale approach could help in unravelling the protein stability mechanisms are briefly discussed.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  4. Use of whey protein soluble aggregates for thermal stability-a hypothesis paper.

    Science.gov (United States)

    Ryan, Kelsey N; Zhong, Qixin; Foegeding, Edward A

    2013-08-01

    Forming whey proteins into soluble aggregates is a modification shown to improve or expand the applications in foaming, emulsification, gelation, film-formation, and encapsulation. Whey protein soluble aggregates are defined as aggregates that are intermediates between monomer proteins and an insoluble gel network or precipitate. The conditions under which whey proteins denature and aggregate have been extensively studied and can be used as guiding principles of producing soluble aggregates. These conditions are reviewed for pH, ion type and concentration, cosolutes, and protein concentration, along with heating temperature and duration. Combinations of these conditions can be used to design soluble aggregates with desired physicochemical properties including surface charge, surface hydrophobicity, size, and shape. These properties in turn can be used to obtain target macroscopic properties, such as viscosity, clarity, and stability, of the final product. A proposed approach to designing soluble aggregates with improved thermal stability for beverage applications is presented.

  5. Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains.

    Science.gov (United States)

    Rahaman, Obaidur; Kalimeri, Maria; Melchionna, Simone; Hénin, Jérôme; Sterpone, Fabio

    2015-07-23

    In this work, we address the question of whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologous G domains of different stability: the mesophilic G domain of the elongation factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-1α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time scale, we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favorable for both systems, with the hyperthermophilic protein offering a slightly more favorable environment to host water molecules. We estimate that, under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that, at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that under extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue.

  6. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems.

    Science.gov (United States)

    Liu, Xiaoming; Zhou, Peng; Tran, Amy; Labuza, Ted P

    2009-03-25

    The objective of this study was to investigate the influence of polyols on the stability of whey proteins in an intermediate-moisture food model system and to elucidate the effect of polyols on the hardening of whey protein-based bars during storage. Four major polyols, glycerol, propylene glycol, maltitol, and sorbitol, were evaluated in model systems, which contained whey protein isolate, polyols, and water. The results showed that glycerol was the most effective polyol in lowering water activity and provided the soft texture of intermediate-moisture foods, followed by sorbitol and maltitol. These three polyols stabilized the native structure of whey proteins, provided a desired texture, and slowed the hardening of the model systems. Propylene glycol should not be used in whey protein-based high-protein intermediate-moisture foods because it caused changes in protein conformation and stability as observed by differential scanning calorimeter and Fourier transform infrared spectroscopy and resulted in aggregation of whey proteins and hardening of the bar texture during storage, causing loss in product quality.

  7. Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC.

    Science.gov (United States)

    Wen, Jie; Arthur, Kelly; Chemmalil, Letha; Muzammil, Salman; Gabrielson, John; Jiang, Yijia

    2012-03-01

    Differential scanning calorimetry (DSC) has been used to characterize protein thermal stability, overall conformation, and domain folding integrity by the biopharmaceutical industry. Recently, there have been increased requests from regulatory agencies for the qualification of characterization methods including DSC. Understanding the method precision can help determine what differences between samples are significant and also establish the acceptance criteria for comparability and other characterization studies. In this study, we identify the parameters for the qualification of DSC for thermal stability analysis of proteins. We use these parameters to assess the precision and sensitivity of DSC and demonstrate that DSC is suitable for protein thermal stability analysis for these purposes. Several molecules from different structural families were studied. The experiments and data analyses were performed by different analysts using different instruments at different sites. The results show that the (apparent) thermal transition midpoint (T(m)) values obtained for the same protein by same and different instruments and/or analysts are quite reproducible, and the profile similarity values obtained for the same protein from the same instrument are also high. DSC is an appropriate method for assessing protein thermal stability and conformational changes.

  8. Design of phage-displayed cystine-stabilized mini-protein libraries for proteinaceous binder engineering.

    Science.gov (United States)

    Chang, Hung-Ju; Yang, An-Suei

    2014-01-01

    Cystine-stabilized mini-proteins are important scaffolds in the combinatorial search of binders for molecular recognition. The structural determinants of a cystine-stabilized scaffold are the critical residues determining the formation of the native disulfide-bonding configuration, and thus should remain unchanged in the combinatorial libraries so as to allow a large portion of the library sequences to be compatible with the scaffold structure. A high-throughput molecular evolution procedure has been developed to select and screen for the polypeptide sequences folding into a specific cystine-stabilized structure. Patterns of sequence preference that emerge from the resultant sequence profiles provide structural determinant information, which facilitates the designs of combinatorial libraries for combinatorial approaches as in phage display. This methodology enables artificial cystine-stabilized proteins to be engineered with enhanced folding and binding properties.

  9. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm.

    Science.gov (United States)

    Moon, C Preston; Zaccai, Nathan R; Fleming, Patrick J; Gessmann, Dennis; Fleming, Karen G

    2013-03-12

    Thermodynamic stabilities are pivotal for understanding structure-function relationships of proteins, and yet such determinations are rare for membrane proteins. Moreover, the few measurements that are available have been conducted under very different experimental conditions, which compromises a straightforward extraction of physical principles underlying stability differences. Here, we have overcome this obstacle and provided structure-stability comparisons for multiple membrane proteins. This was enabled by measurements of the free energies of folding and the m values for the transmembrane proteins PhoP/PhoQ-activated gene product (PagP) and outer membrane protein W (OmpW) from Escherichia coli. Our data were collected in the same lipid bilayer and buffer system we previously used to determine those parameters for E. coli outer membrane phospholipase A (OmpLA). Biophysically, our results suggest that the stabilities of these proteins are strongly correlated to the water-to-bilayer transfer free energy of the lipid-facing residues in their transmembrane regions. We further discovered that the sensitivities of these membrane proteins to chemical denaturation, as judged by their m values, was consistent with that previously observed for water-soluble proteins having comparable differences in solvent exposure between their folded and unfolded states. From a biological perspective, our findings suggest that the folding free energies for these membrane proteins may be the thermodynamic sink that establishes an energy gradient across the periplasm, thus driving their sorting by chaperones to the outer membranes in living bacteria. Binding free energies of these outer membrane proteins with periplasmic chaperones support this energy sink hypothesis.

  10. Stability of zinc finger nuclease protein is enhanced by the proteasome inhibitor MG132.

    Directory of Open Access Journals (Sweden)

    Suresh Ramakrishna

    Full Text Available BACKGROUND: Zinc finger nucleases (ZFNs are powerful tools for gene therapy and genetic engineering. The characterization of ZFN protein stability and the development of simple methods to improve ZFN function would facilitate the application of this promising technology. However, the factors that affect ZFN protein stability and function are not yet clear. Here, we determined the stability and half-life of two ZFN proteins and examined the effect of MG132 (carbobenzoxyl-leucinyl-leucinyl-leucinal-Hl, a proteasome inhibitor, on ZFN-mediated gene modifications. METHODOLOGY/PRINCIPAL FINDINGS: ZFN proteins were expressed in 293T cells after transfection of ZFN-encoding plasmids. We studied two ZFN pairs: Z-224, which targets the CCR5 gene, and K-230, which targets a region 230 kbp upstream of CCR5. Western blotting after treatment with cycloheximide showed that the half-life of these ZFN proteins was around two hours. An immunoprecipitation assay revealed that the ZFN interacts with ubiquitin molecules and undergoes polyubiquitination in vivo. Western blotting showed that the addition of MG132, a proteasomal inhibitor, increased ZFN protein levels. Finally, a surrogate reporter assay and a T7E1 assay revealed that MG132 treatment enhanced ZFN-directed gene editing. CONCLUSIONS: To our knowledge, this is the first study to investigate ZFN protein stability and to show that a small molecule can increase ZFN activity. Our protein stability study should lay the foundation for further improvement of ZFN technology; as a first step, the use of the small molecule MG132 can enhance the efficiency of ZFN-mediated gene editing.

  11. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    Science.gov (United States)

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  12. Stay Wet, Stay Stable? How Internal Water Helps Stability of Thermophilic Proteins

    OpenAIRE

    Chakraborty, Debashree; Taly, Antoine; Sterpone, Fabio

    2015-01-01

    We present a systematic computational investigation of the internal hydration of a set of homologous proteins of different stability content and molecular complexities. The goal of the study is to verify whether structural water can be part of the molecular mechanisms ensuring enhanced stability in thermophilic enzymes. Our free energy calculations show that internal hydration in the thermophilic variants is generally more favourable and that the cumulated effect of wetting multiple sites res...

  13. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall;

    2013-01-01

    The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used...... it decreased the oxidative stability of emulsions with α-lactalbumin and β-lactoglobulin. For both types of emulsions the partitioning of proteins between the interface and the aqueous phase appeared to be important for the oxidative stability. The effect of pre-heating the aqueous phase with the milk proteins...... prior to homogenization did not have any clear effect on lipid oxidation in either of the two types of emulsions....

  14. Stability and structure of protein-lipoamino acid colloidal particles: toward nasal delivery of pharmaceutically active proteins.

    Science.gov (United States)

    Bijani, Christian; Arnarez, Clément; Brasselet, Sabrina; Degert, Corinne; Broussaud, Olivier; Elezgaray, Juan; Dufourc, Erick J

    2012-04-03

    To circumvent the painful intravenous injection of proteins in the treatment of children with growth deficiency, anemia, and calcium insufficiency, we investigated the stability and structure of protein-lipoamino acid complexes that could be nasally sprayed. Preparations that ensure a colloidal and structural stability of recombinant human growth hormone (rhGH), recombinant human erythropoietin (rhEPO), and salmon calcitonin (sCT) mixed with lauroyl proline (LP) were established. Protein structure was controlled by circular dichroism, and very small sizes of ca. 5 nm were determined by dynamic light scattering. The colloidal preparations could be sprayed with a droplet size of 20-30 μm. The molecular structure of aggregates was investigated by all-atom molecular dynamics. Whereas a lauroyl proline capping of globular proteins rhGH and rhEPO with preservation of their active structure was observed, a mixed micelle of sCT and lipoamino acids was formed. In the latter, aggregated LP constitutes the inner core and the surface is covered with calcitonins that acquire a marked α-helix character. Hydrophobic/philic interaction balance between proteins and LP drives the particles' stability. Passage through nasal cells grown at confluence was markedly increased by the colloidal preparations and could reach a 20 times increase in the case of EPO. Biological implications of such colloidal preparations are discussed in terms of furtiveness.

  15. Stability of Silk and Collagen Protein Materials in Space

    Science.gov (United States)

    Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.

    2013-12-01

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered.

  16. Rational design of protein stability: effect of (2S,4R-4-fluoroproline on the stability and folding pathway of ubiquitin.

    Directory of Open Access Journals (Sweden)

    Maria D Crespo

    Full Text Available BACKGROUND: Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a C(γ-exo or a C(γ-endo ring pucker in dependence of proline chirality (4R/4S in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying C(γ-exo puckering. METHODOLOGY/PRINCIPAL FINDINGS: While (2S,4R-4-fluoroproline ((4R-FPro containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S-4-fluoroproline ((4S-FPro failed. Our results indicate that (4R-FPro is favoring the C(γ-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of -4.71 kJ·mol(-1 in the case of (4R-FPro containing ubiquitin ((4R-FPro-ub compared to wild type ubiquitin (wt-ub. Expectedly, activity assays revealed that (4R-FPro-ub retained the full biological activity compared to wt-ub. CONCLUSIONS/SIGNIFICANCE: The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein.

  17. Study on Processing Technology and a Complex Stabilizer for Peanut Protein Beverage

    Directory of Open Access Journals (Sweden)

    Xihong Zhao

    2015-08-01

    Full Text Available The development of the processing technology and a complex stabilizer for the peanut protein beverage processed was presented in this study. The suitable peeling conditions for peanut were: to made it soak with soft water containing 5% NaHCO3 for 12 h. The best homogenizing temperature, pressure and times were 75C, 30MPa and twice. The sterilization condition of 121C and 15 min was the foundation to achieve the best stability. The composition of the stabilizer was optimized by uniform design combined with regression analysis based on sensory evaluation, which was achieved using fuzzy comprehensive evaluation method. The 100 mL of peanut protein beverage added with 0.4 g of sodium carboxymethyl cellulose (CMC-Na, 0.2 g of sodium alginate and 0.6 g of gelatin displayed good stability. CMC-Na amount had the largest effect on beverage stability and the effect of gelatin amount was the smallest. The peanut protein beverage with added optimized complex stabilizer was medium preference grade.

  18. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies

    Directory of Open Access Journals (Sweden)

    C.A. Royer

    2005-08-01

    Full Text Available A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

  19. The Effect of Protein PEGylation on Physical Stability in Liquid Formulation

    DEFF Research Database (Denmark)

    Holm, Louise Stenstrup; Mcumber, Aaron; Rasmussen, Jakob Ewald

    2014-01-01

    The presence of micron aggregates in protein formulations has recently attracted increased interest from regulatory authorities, industry, and academia because of the potential undesired side effects of their presence. In this study, we characterized the micron aggregate formation of hen egg-white...... approximately half as many particles as Lyz, despite its lower apparent thermodynamic stability and more loose protein fold. Further characterization showed that the PEGylation led to a change from attractive to repulsive protein-protein interactions, which may partly explain the reduced particle formation...

  20. Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability

    Science.gov (United States)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-08-01

    Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.

  1. Effect of glycation on the flocculation behavior of protein-stabilized oil-in-water emulsions.

    Science.gov (United States)

    Delahaije, Roy J B M; Gruppen, Harry; van Nieuwenhuijzen, Neleke H; Giuseppin, Marco L F; Wierenga, Peter A

    2013-12-10

    Glycation of proteins by the Maillard reaction is often considered as a method to prevent flocculation of protein-stabilized oil-in-water emulsions. The effect has been suggested, but not proven, to be the result of steric stabilization, and to depend on the molecular mass of the carbohydrate moiety. To test this, the stabilities of emulsions of patatin glycated to the same extent with different mono- and oligosaccharides (xylose, glucose, maltotriose, and maltopentaose) were compared under different conditions (pH and electrolyte concentration). The emulsions with non-modified patatin flocculate under conditions in which the zeta potential is decreased (around the iso-electric point and at high ionic strength). The attachment of monosaccharides (i.e., glucose) did not affect the flocculation behavior. Attachment of maltotriose and maltopentaose (Mw > 500 Da), on the other hand, provided stability against flocculation at the iso-electric point. Since the zeta potential and the interfacial properties of the emulsion droplets are not affected by the attachment of the carbohydrate moieties, this is attributed to steric stabilization. Experimentally, a critical thickness of the adsorbed layer required for steric stabilization against flocculation was found to be 2.29-3.90 nm. The theoretical determination based on the DLVO interactions with an additional steric interaction coincides with the experimental data. Hence, it can be concluded that the differences in stability against pH-induced flocculation are caused by steric interactions.

  2. Salt Effects on the Conformational Stability of the Visual G-Protein-Coupled Receptor Rhodopsin

    Science.gov (United States)

    Reyes-Alcaraz, Arfaxad; Martínez-Archundia, Marlet; Ramon, Eva; Garriga, Pere

    2011-01-01

    Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable. PMID:22261069

  3. HIF1α protein stability is increased by acetylation at lysine 709.

    Science.gov (United States)

    Geng, Hao; Liu, Qiong; Xue, Changhui; David, Larry L; Beer, Tomasz M; Thomas, George V; Dai, Mu-Shui; Qian, David Z

    2012-10-12

    Lysine acetylation regulates protein stability and function. p300 is a component of the HIF-1 transcriptional complex and positively regulates the transactivation of HIF-1. Here, we show a novel molecular mechanism by which p300 facilitates HIF-1 activity. p300 increases HIF-1α (HIF1α) protein acetylation and stability. The regulation can be opposed by HDAC1, but not by HDAC3, and is abrogated by disrupting HIF1α-p300 interaction. Mechanistically, p300 specifically acetylates HIF1α at Lys-709, which increases the protein stability and decreases polyubiquitination in both normoxia and hypoxia. Compared with the wild-type protein, a HIF1α K709A mutant protein is more stable, less polyubiquitinated, and less dependent on p300. Overexpression of the HIF1α wild-type or K709A mutant in cancer cells lacking the endogenous HIF1α shows that the K709A mutant is transcriptionally more active toward the HIF-1 reporter and some endogenous target genes. Cancer cells containing the K709A mutant are less sensitive to hypoxia-induced growth arrest than the cells containing the HIF1α wild-type. Taken together, these data demonstrate a novel biological consequence upon HIF1α-p300 interaction, in which HIF1α can be stabilized by p300 via Lys-709 acetylation.

  4. Regulation of Greatwall kinase by protein stabilization and nuclear localization

    Science.gov (United States)

    Yamamoto, Tomomi M; Wang, Ling; Fisher, Laura A; Eckerdt, Frank D; Peng, Aimin

    2014-01-01

    Greatwall (Gwl) functions as an essential mitotic kinase by antagonizing protein phosphatase 2A. In this study we identified Hsp90, Cdc37 and members of the importin α and β families as the major binding partners of Gwl. Both Hsp90/Cdc37 chaperone and importin complexes associated with the N-terminal kinase domain of Gwl, whereas an intact glycine-rich loop at the N-terminus of Gwl was essential for binding of Hsp90/Cdc37 but not importins. We found that Hsp90 inhibition led to destabilization of Gwl, a mechanism that may partially contribute to the emerging role of Hsp90 in cell cycle progression and the anti-proliferative potential of Hsp90 inhibition. Moreover, in agreement with its importin association, Gwl exhibited nuclear localization in interphase Xenopus S3 cells, and dynamic nucleocytoplasmic distribution during mitosis. We identified KR456/457 as the locus of importin binding and the functional NLS of Gwl. Mutation of this site resulted in exclusion of Gwl from the nucleus. Finally, we showed that the Gwl nuclear localization is indispensable for the biochemical function of Gwl in promoting mitotic entry. PMID:25483093

  5. Sample Stability and Protein Composition of Saliva: Implications for Its Use as a Diagnostic Fluid

    Directory of Open Access Journals (Sweden)

    Han Roelofsen

    2008-01-01

    Full Text Available Saliva is an easy accessible plasma ultra-filtrate. Therefore, saliva can be an attractive alternative to blood for measurement of diagnostic protein markers. Our aim was to determine stability and protein composition of saliva. Protein stability at room temperature was examined by incubating fresh whole saliva with and without inhibitors of proteases and bacterial metabolism followed by Surface Enhanced Laser Desorption/Ionization (SELDI analyses. Protein composition was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE fractionation of saliva proteins followed by digestion of excised bands and identification by liquid chromatography tandem mass spectrometry (LC-MS/MS. Results show that rapid protein degradation occurs within 30 minutes after sample collection. Degradation starts already during collection. Protease inhibitors partly prevented degradation while inhibition of bacterial metabolism did not affect degradation. Three stable degradation products of 2937 Da, 3370 Da and 4132 Da were discovered which can be used as markers to monitor sample quality. Saliva proteome analyses revealed 218 proteins of which 84 can also be found in blood plasma. Based on a comparison with seven other proteomics studies on whole saliva we identified 83 new saliva proteins. We conclude that saliva is a promising diagnostic fl uid when precautions are taken towards protein breakdown.

  6. Sample Stability and Protein Composition of Saliva: Implications for Its Use as a Diagnostic Fluid.

    Science.gov (United States)

    Esser, Diederik; Alvarez-Llamas, Gloria; de Vries, Marcel P; Weening, Desiree; Vonk, Roel J; Roelofsen, Han

    2008-02-01

    Saliva is an easy accessible plasma ultra-filtrate. Therefore, saliva can be an attractive alternative to blood for measurement of diagnostic protein markers. Our aim was to determine stability and protein composition of saliva. Protein stability at room temperature was examined by incubating fresh whole saliva with and without inhibitors of proteases and bacterial metabolism followed by Surface Enhanced Laser Desorption/Ionization (SELDI) analyses. Protein composition was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) fractionation of saliva proteins followed by digestion of excised bands and identification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Results show that rapid protein degradation occurs within 30 minutes after sample collection. Degradation starts already during collection. Protease inhibitors partly prevented degradation while inhibition of bacterial metabolism did not affect degradation. Three stable degradation products of 2937 Da, 3370 Da and 4132 Da were discovered which can be used as markers to monitor sample quality. Saliva proteome analyses revealed 218 proteins of which 84 can also be found in blood plasma. Based on a comparison with seven other proteomics studies on whole saliva we identified 83 new saliva proteins. We conclude that saliva is a promising diagnostic fluid when precautions are taken towards protein breakdown.

  7. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions.

    Science.gov (United States)

    Liu, Fu; Tang, Chuan-He

    2013-09-18

    In recent years, there have been increasing interests in developing food-grade Pickering stabilizers, due to their potential applications in formulations of novel functional foods. The present work was to investigate the potential of soy proteins to be developed into a kind of Pickering-like stabilizer for oil-in-water emulsions. The nanoparticle aggregates of soy protein isolate (SPI) were formed by sequential treatments of heating at 95 °C for 15 min and then electrostatic screening with NaCl addition. The particle size and microstructure of these aggregates were characterized using dynamic light scattering and atomic force microscopy, indicating that the fabricated nanoparticle aggregates were ∼100 nm in size with more surface hydrophobic nature (relative to unheated SPI). The influence of particle concentration (c; 0.5-6.0%, w/w) and increasing oil fraction (ϕ; in the range 0.2-0.6) on the droplet size and coalescence and/or creaming stability of the emulsions stabilized by these nanoparticle aggregates was investigated. The results showed that, at ϕ = 0.2, increasing the c resulted in a progressive but slight decrease in droplet size, and improved the stability against coalescence and creaming; at a specific c, the creaming stability was progressively increased by increasing the ϕ, with better improvement observed at a higher c (e.g., 6.0% vs 2.0%). The improvement of creaming stability was largely associated with the formation of a gel-like network that could entrap the oil droplets within the network. The observations are generally consistent with those observed for the conventional Pickering emulsions, confirming that soy proteins could be applied as a kind of effective Pickering-like stabilizer. The finding may have important implications for the design and fabrication of protein-based emulsion formulations, and even for the development of soy protein products with some unique functions. To the authors' knowledge, this is the first work to report

  8. High protein and vitamin cereal bars: enzymatic and vitamins C and E stability during storage.

    OpenAIRE

    Daniela G.C. Freitas; Moretti,Roberto H.

    2006-01-01

    Cereal-based products have become an excellent vehicle for delivering tasty functional food ingredients to busy consumers. One emerging trends is food products formulates with soy protein because of its proven health benefits. Because of the potential usefulness of these products, it was considered of interest to determine the stability of cereal bars based on soy protein, wheat germ and oat, enriched with vitamin C (ascorbic acid) and E (acetate of a-tocopherol 50%), during the storage. Thre...

  9. Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions.

    Science.gov (United States)

    Cooper, A; Cameron, D; Jakus, J; Pettigrew, G W

    2007-12-01

    It is widely acknowledged, and usually self-evident, that solvent water plays a crucial role in the overall thermodynamics of protein stabilization and biomolecular interactions. Yet we lack experimental techniques that can probe unambiguously the nature of protein-water or ligand-water interactions and how they might change during protein folding or ligand binding. PPC (pressure perturbation calorimetry) is a relatively new technique based on detection of the heat effects arising from application of relatively small pressure perturbations (+/-5 atm; 1 atm=101.325 kPa) to dilute aqueous solutions of proteins or other biomolecules. We show here how this can be related to changes in solvation/hydration during protein-protein and protein-ligand interactions. Measurements of 'anomalous' heat capacity effects in a wide variety of biomolecular interactions can also be related to solvation effects as part of a quite fundamental principle that is emerging, showing how the apparently unusual thermodynamics of interactions in water can be rationalized as an inevitable consequence of processes involving the co-operative interaction of multiple weak interactions. This leads to a generic picture of the thermodynamics of protein folding stabilization in which hydrogen-bonding plays a much more prominent role than has been hitherto supposed.

  10. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  11. CAN THE STABILITY OF PROTEIN MUTANTS BE PREDICTED BY FREE-ENERGY CALCULATIONS

    NARCIS (Netherlands)

    YUNYU, S; MARK, AE; WANG, CX; HUANG, FH; BERENDSEN, HJC; VANGUNSTEREN, WF

    1993-01-01

    The use of free energy simulation techniques in the study of protein stability is critically evaluated. Results from two simulations of the thermostability mutation Asn218 to Ser218 in Subtilisin are presented. It is shown that components of the free energy change can be highly sensitive to the comp

  12. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    Science.gov (United States)

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced.

  13. Semiautomated Sample Preparation for Protein Stability and Formulation Screening via Buffer Exchange.

    Science.gov (United States)

    Ying, William; Levons, Jaquan K; Carney, Andrea; Gandhi, Rajesh; Vydra, Vicky; Rubin, A Erik

    2016-06-01

    A novel semiautomated buffer exchange process workflow was developed to enable efficient early protein formulation screening. An antibody fragment protein, BMSdab, was used to demonstrate the workflow. The process afforded 60% to 80% cycle time and scientist time savings and significant material efficiencies. These efficiencies ultimately facilitated execution of this stability work earlier in the drug development process, allowing this tool to inform the developability of potential candidates for development from a formulation perspective. To overcome the key technical challenges, the protein solution was buffer-exchanged by centrifuge filtration into formulations for stability screening in a 96-well plate with an ultrafiltration membrane, leveraging automated liquid handling and acoustic volume measurements to allow several cycles of exchanges. The formulations were transferred into a vacuum manifold and sterile filtered into a rack holding 96 glass vials. The vials were sealed with a capmat of individual caps and placed in stability stations. Stability of the samples prepared by this process and by the standard process was demonstrated to be comparable. This process enabled screening a number of formulations of a protein at an early pharmaceutical development stage with a short sample preparation time.

  14. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona.

    Science.gov (United States)

    Piella, Jordi; Bastús, Neus G; Puntes, Víctor

    2017-01-18

    Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.

  15. Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design

    Directory of Open Access Journals (Sweden)

    Bathelt Christine

    2008-03-01

    Full Text Available Abstract Background Protein structure prediction and computational protein design require efficient yet sufficiently accurate descriptions of aqueous solvent. We continue to evaluate the performance of the Coulomb/Accessible Surface Area (CASA implicit solvent model, in combination with the Charmm19 molecular mechanics force field. We test a set of model parameters optimized earlier, and we also carry out a new optimization in this work, using as a target a set of experimental stability changes for single point mutations of various proteins and peptides. The optimization procedure is general, and could be used with other force fields. The computation of stability changes requires a model for the unfolded state of the protein. In our approach, this state is represented by tripeptide structures of the sequence Ala-X-Ala for each amino acid type X. We followed an iterative optimization scheme which, at each cycle, optimizes the solvation parameters and a set of tripeptide structures for the unfolded state. This protocol uses a set of 140 experimental stability mutations and a large set of tripeptide conformations to find the best tripeptide structures and solvation parameters. Results Using the optimized parameters, we obtain a mean unsigned error of 2.28 kcal/mol for the stability mutations. The performance of the CASA model is assessed by two further applications: (i calculation of protein-ligand binding affinities and (ii computational protein design. For these two applications, the previous parameters and the ones optimized here give a similar performance. For ligand binding, we obtain reasonable agreement with a set of 55 experimental mutation data, with a mean unsigned error of 1.76 kcal/mol with the new parameters and 1.47 kcal/mol with the earlier ones. We show that the optimized CASA model is not inferior to the Generalized Born/Surface Area (GB/SA model for the prediction of these binding affinities. Likewise, the new parameters perform

  16. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    Science.gov (United States)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  17. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan, E-mail: stefan.weger@charite.de

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  18. On the Role of Internal Water on Protein Thermal Stability: the Case of Homologous G-domains

    OpenAIRE

    Rahaman, Obaidur; Kalimeri, Maria; Melchionna, Simone; Hénin, Jérôme; Sterpone, Fabio

    2014-01-01

    In this work we address the question whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologues G-domains of different stability: the mesophilic G domain of the Elongation-Factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time-scale we show that both proteins host water molecules in int...

  19. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks.

    Science.gov (United States)

    Parent, Kristin N; Khayat, Reza; Tu, Long H; Suhanovsky, Margaret M; Cortines, Juliana R; Teschke, Carolyn M; Johnson, John E; Baker, Timothy S

    2010-03-10

    Viral capsid assembly and stability in tailed, dsDNA phage and Herpesviridae are achieved by various means including chemical crosslinks (unique to HK97), or auxiliary proteins (lambda, T4, phi29, and herpesviruses). All these viruses have coat proteins (CP) with a conserved, HK97-like core structure. We used a combination of trypsin digestion, gold labeling, cryo-electron microscopy, 3D image reconstruction, and comparative modeling to derive two independent, pseudoatomic models of bacteriophage P22 CP: before and after maturation. P22 capsid stabilization results from intersubunit interactions among N-terminal helices and an extensive "P loop," which obviate the need for crosslinks or auxiliary proteins. P22 CP also has a telokin-like Ig domain that likely stabilizes the monomer fold so that assembly may proceed via individual subunit addition rather than via preformed capsomers as occurs in HK97. Hence, the P22 CP structure may be a paradigm for understanding how monomers assemble in viruses like phi29 and HSV-1.

  20. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    Science.gov (United States)

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-01-01

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  1. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins.

    Directory of Open Access Journals (Sweden)

    David J Leibly

    Full Text Available Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2, proline, xylitol, NDSB 201, CTAB and K(2PO(4 solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40% were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.

  2. Structural fluctuations and thermal stability of proteins in crowded environments: effects of the excluded volume

    Science.gov (United States)

    Starzyk, Anna; Wojciechowski, Michał; Cieplak, Marek

    2016-12-01

    We perform molecular dynamics simulations for a simple coarse-grained model of a protein placed inside of a softly repulsive sphere of radius R. The protein is surrounded either by a number of same molecules or a number of spherical crowding particles that immitate other biomolecules such as the osmolytes. The two descriptions are shown to lead to distinct results when testing thermal stability as assessed by studying the unfolding times as a function of temperature. We consider three examples of proteins and show that crowding increases the thermal stability provided the inter-protein or protein-crowder interactions are repulsive. On the other hand, an introduction of attraction between the proteins is found to destabilize the proteins. Crowding by repulsive crowder particles is seen to enhance the RMSF in certain exposed regions. The effect grows on decreasing the size of the crowding particles. In the absence of crowding the RMSF anticorrelates with the coordination number related to the residue-residue interaction.

  3. Cysteine residue is not essential for CPM protein thermal-stability assay.

    Science.gov (United States)

    Wang, Zhaoshuai; Ye, Cui; Zhang, Xinyi; Wei, Yinan

    2015-05-01

    A popular thermal-stability assay developed especially for the study of membrane proteins uses a thiol-specific probe, 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). The fluorescence emission of CPM surges when it forms a covalent bond with the side chain of a free Cys, which becomes more readily accessible upon protein thermal denaturation. Interestingly, the melting temperatures of membrane proteins determined using the CPM assay in literature are closely clustered in the temperature range 45-55 °C. A thorough understanding of the mechanism behind the observed signal change is critical for the accurate interpretation of the protein unfolding. Here we used two α-helical membrane proteins, AqpZ and AcrB, as model systems to investigate the nature of the fluorescence surge in the CPM assay. We found that the transition temperatures measured using circular-dichroism (CD) spectroscopy and the CPM assay were significantly different. To eliminate potential artifact that might arise from the presence of detergent, we monitored the unfolding of two soluble proteins. We found that, contrary to current understanding, the presence of a sulfhydryl group was not a prerequisite for the CPM thermal-stability assay. The observed fluorescence increase is probably caused by binding of the fluorophore to hydrophobic patches exposed upon protein unfolding.

  4. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes

    Science.gov (United States)

    Chen, Fan; Gerber, Sabina; Korkhov, Volodymyr M.; Mireku, Samantha; Bucher, Monika; Locher, Kaspar P.; Zenobi, Renato

    2015-03-01

    We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC2D2. We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.

  5. Preparation of iron bound succinylated milk protein concentrate and evaluation of its stability.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Sharma, Vivek; Bajaj, Rajesh Kumar; Tomar, S K

    2016-04-01

    Major problems associated with the fortification of soluble iron salts include chemical reactivity and incompatibility with other components. Milk protein concentrate (MPC) are able to bind significant amount of iron due to the presence of both casein and whey protein. MPC in its native state possess very poor solubility, therefore, succinylated derivatives of MPC (succ. MPC) were also used for the preparation of protein-iron complex. Preparation of the complex involved centrifugation (to remove insoluble iron), ultrafiltration (to remove unbound iron) and lyophilisation (to attain in dry form). Iron binding ability of MPC enhanced significantly (Piron from both varieties of complexes was monitored under different conditions encountered during processing. Higher stability (Piron was observed in succ. MPC-iron complex than native protein complex. This method could be adopted for the production of stable iron enriched protein, an organic iron source.

  6. On the physics of thermal-stability changes upon mutations of a protein.

    Science.gov (United States)

    Murakami, Shota; Oshima, Hiraku; Hayashi, Tomohiko; Kinoshita, Masahiro

    2015-09-28

    It is of great interest from both scientific and practical viewpoints to theoretically predict the thermal-stability changes upon mutations of a protein. However, such a prediction is an intricate task. Up to now, significantly many approaches for the prediction have been reported in the literature. They always include parameters which are adjusted so that the prediction results can be best fitted to the experimental data for a sufficiently large set of proteins and mutations. The inclusion is necessitated to achieve satisfactorily high prediction performance. A problem is that the resulting values of the parameters are often physically meaningless, and the physicochemical factors governing the thermal-stability changes upon mutations are rather ambiguous. Here, we develop a new measure of the thermal stability. Protein folding is accompanied by a large gain of water entropy (the entropic excluded-volume (EV) effect), loss of protein conformational entropy, and increase in enthalpy. The enthalpy increase originates primarily from the following: The energy increase due to the break of protein-water hydrogen bonds (HBs) upon folding cannot completely be cancelled out by the energy decrease brought by the formation of protein intramolecular HBs. We develop the measure on the basis of only these three factors and apply it to the prediction of the thermal-stability changes upon mutations. As a consequence, an approach toward the prediction is obtained. It is distinguished from the previously reported approaches in the following respects: The parameters adjusted in the manner mentioned above are not employed at all, and the entropic EV effect, which is ascribed to the translational displacement of water molecules coexisting with the protein in the system, is fully taken into account using a molecular model for water. Our approach is compared with one of the most popular approaches, FOLD-X, in terms of the prediction performance not only for single mutations but also for

  7. Double emulsions stabilized by a charged complex of modified pectin and whey protein isolate.

    Science.gov (United States)

    Lutz, Rachel; Aserin, Abraham; Wicker, Louis; Garti, Nissim

    2009-08-01

    Double emulsions based on naturally occurring stabilizers for food applications were studied. Two charged biopolymers, whey protein isolate (WPI) and enzymatic modified pectins, interacted in aqueous solution to form a charge-charge complex that was utilized as a hydrophilic polymeric steric stabilizer improving the double emulsion stability. The main factors that influence the interaction between protein and pectin were investigated in relation to double emulsion stability: creaming, coalescence, and water transport between aqueous phases. The pH determined the size of the complex formed. Thus at pH 6, where a soluble complex was obtained between some molecular positively charged patches on the protein and negatively charged fractions of the hydrocolloids, the double emulsion was the most stable. With the smallest droplet size (ca. 15 microm), the lowest creaming, highest yield, and minimized water transport were obtained. The best concentration and ratio to form the soluble complex are 4 wt% WPI and 0.5 wt% pectin (for 30 wt% of the W/O inner phase). The influence of the charge distribution (degree of order of the carboxylic groups) of the pectin on the associated complex was also investigated, and it was found that the more "ordered" pectin (U63) formed the most stable double emulsion against water transport.

  8. Relative contributions of charge and surface coverage on pH-induced flocculation of protein-stabilized emulsions

    NARCIS (Netherlands)

    Delahaije, Roy J.B.M.; Hilgers, Roelant J.; Wierenga, Peter A.; Gruppen, Harry

    2016-01-01

    To predict the stability of protein-stabilized emulsions against flocculation under different conditions (pH and concentration), a quantitative description of the effect of the relevant factors is essential. Typically, pH is considered to affect the protein charge (viz. zeta potential) and thereby t

  9. Algorithms for joint optimization of stability and diversity in planning combinatorial libraries of chimeric proteins.

    Science.gov (United States)

    Zheng, Wei; Friedman, Alan M; Bailey-Kellogg, Chris

    2009-08-01

    In engineering protein variants by constructing and screening combinatorial libraries of chimeric proteins, two complementary and competing goals are desired: the new proteins must be similar enough to the evolutionarily-selected wild-type proteins to be stably folded, and they must be different enough to display functional variation. We present here the first method, Staversity, to simultaneously optimize stability and diversity in selecting sets of breakpoint locations for site-directed recombination. Our goal is to uncover all "undominated" breakpoint sets, for which no other breakpoint set is better in both factors. Our first algorithm finds the undominated sets serving as the vertices of the lower envelope of the two-dimensional (stability and diversity) convex hull containing all possible breakpoint sets. Our second algorithm identifies additional breakpoint sets in the concavities that are either undominated or dominated only by undiscovered breakpoint sets within a distance bound computed by the algorithm. Both algorithms are efficient, requiring only time polynomial in the numbers of residues and breakpoints, while characterizing a space defined by an exponential number of possible breakpoint sets. We applied Staversity to identify 2-10 breakpoint plans for different sets of parent proteins taken from the purE family, as well as for parent proteins TEM-1 and PSE-4 from the beta-lactamase family. The average normalized distance between our plans and the lower bound for optimal plans is around 2%. Our plans dominate most (60-90% on average for each parent set) of the plans found by other possible approaches, random sampling or explicit optimization for stability with implicit optimization for diversity. The identified breakpoint sets provide a compact representation of good plans, enabling a protein engineer to understand and account for the trade-offs between two key considerations in combinatorial chimeragenesis.

  10. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization

    Directory of Open Access Journals (Sweden)

    Joana Pinto Fernandes

    2015-03-01

    Full Text Available Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of non-allergenic protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that yeast protein extracts were capable to promote (i brilliance/color improvement, (ii turbidity reduction (76-89% comparing with the untreated wines and (iii production of compact and homogeneous lees (44% smaller volume than obtained with bentonite. Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that yeast protein extracts represent a promising alternative for white wine fining, derived from an entirely non-allergenic and sustainable origin.

  11. Effect of the compatible solute ectoine on the stability of the membrane proteins.

    Science.gov (United States)

    Roychoudhury, Arpita; Haussinger, Dieter; Oesterhelt, Filipp

    2012-08-01

    Mechanical single molecule techniques offer exciting possibilities for investigating protein folding and stability in native environments at sub-nanometer resolutions. Compatible solutes show osmotic activity which even at molar concentrations do not interfere with cell metabolism. They are known to protect proteins against external stress like temperature, high salt concentrations and dehydrating conditions. We studied the impact of the compatible solute ectoine (1M) on membrane proteins by analyzing the mechanical properties of Bacteriorhodopsin (BR) in its presence and absence by single molecule force spectroscopy. The unfolding experiments on BR revealed that ectoine decreases the persistence length of its polypeptide chain thereby increasing its tendency to coil up. In addition, we found higher unfolding forces indicating strengthening of those intra molecular interactions which are crucial for stability. This shows that force spectroscopy is well suited to study the effect of compatible solutes to stabilize membrane proteins against unfolding. In addition, it may lead to a better understanding of their detailed mechanism of action.

  12. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    Science.gov (United States)

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H2O2 in the range of 0-0.144 H2O2 to protein ratios (HTPR) by the addition of the required quantity of H2O2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H2O2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H2O2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H2O2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA.

  13. The carboxyl-terminal tail of Noxa protein regulates the stability of Noxa and Mcl-1.

    Science.gov (United States)

    Pang, Xiaming; Zhang, Jingjing; Lopez, Hernando; Wang, Yushu; Li, Wenyang; O'Neill, Katelyn L; Evans, Jacquelynn J D; George, Nicholas M; Long, Jianhong; Chen, Yi; Luo, Xu

    2014-06-20

    The BH3-only protein Noxa is a critical mediator of apoptosis and functions primarily by sequestering/inactivating the antiapoptotic Bcl-2 family protein Mcl-1. Although Noxa is a highly labile protein, recent studies suggested that it is degraded by the proteasome in a ubiquitylation-independent manner. In the present study, we investigated the mechanism of Noxa degradation and its ability to regulate the stability of Mcl-1. We found that the ubiquitylation-independent degradation of Noxa does not require a physical association with Mcl-1. A short stretch of amino acid residues in the C-terminal tail was found to mediate the proteasome-dependent degradation of Noxa. Ectopic placement of this degron was able to render other proteins unstable. Surprisingly, mutation of this sequence not only attenuated the rapid degradation of Noxa, but also stabilized endogenous Mcl-1 through the BH3-mediated direct interaction. Together, these results suggest that the C-terminal tail of Noxa regulates the stability of both Noxa and Mcl-1.

  14. Differential scanning calorimetry as a tool for protein folding and stability.

    Science.gov (United States)

    Johnson, Christopher M

    2013-03-01

    Differential scanning calorimetry measures the heat capacity of states and the excess heat associated with transitions that can be induced by temperature change. The integral of the excess heat capacity is the enthalpy for this process. Despite this potentially intimidating sounding physical chemistry background, DSC has found almost universal application in studying biological macromolecules. In the case of proteins, DSC can be used to determine equilibrium thermodynamic stability and folding mechanism but can also be used in a more qualitative manner screening for thermal stability as an indicator for, ligand binding, pharmaceutical formulation or conditions conducive to crystal growth. DSC usually forms part of a wider biophysical characterisation of the biological system of interest and so the literature is diverse and difficult to categorise for the technique in isolation. This review therefore describes the potential uses of DSC in studying protein folding and stability, giving brief examples of applications from the recent literature. There have also been some interesting developments in the use of DSC to determine barrier heights for fast folding proteins and in studying complex protein mixtures such as human plasma that are considered in more detail.

  15. Design of stability at extreme alkaline pH in streptococcal protein G.

    Science.gov (United States)

    Palmer, Benjamin; Angus, Katy; Taylor, Linda; Warwicker, Jim; Derrick, Jeremy P

    2008-04-30

    Protein G (PrtG) is widely used as an affinity-based ligand for the purification of IgG. It would be desirable to improve the resistance of affinity chromatography ligands, such as PrtG, to commercial cleaning-in-place procedures using caustic alkali (0.5 M NaOH). It has been shown that Asn residues are the most susceptible at extreme alkaline pH: here, we show that replacement of all three Asn residues within the IgG-binding domain of PrtG only improves stability towards caustic alkali by about 8-fold. Study of the effects of increasing pH on PrtG by fluorescence and CD shows that the protein unfolds progressively between pH 11.5 and 13.0. Calculation of the variation in electrostatic free energy with pH indicated that deprotonation of Tyr, Lys and Arg side-chains at high pH would destabilize PrtG. Introduction of the triple mutation Y3F/T16I/T18I into PrtG stabilized it by an extra 6.8 kcal/mol and the unfolding of the protein occurred at a pH of about 13, or 1.5 pH units higher than wild type. The results show that strategies for the stabilization of proteins at extreme alkaline pH should consider thermodynamic stabilization that will retain the tertiary structure of the protein and modification of surface electrostatics, as well as mutation of alkali-susceptible residues.

  16. Tritiation of protein hormones. Progress report. [Stability of tritium-labelled protein hormones

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A non-catalytic tritium exchange system using a microwave discharge technique was bult and calibrated in order to optomize the labelling of small organic molecules such as benzoic acid. Analytical and preparative chromatographic procedures, including ion exchange and molecular sieve chromatography and polyacrylamide gel electrophoresis, were standardized for use in the publication of tritium and labelled bovine ACTH. Results are reported from extensive studies of the control of chemical and biologic stability of labelled and unlabelled ACTH were carried out.

  17. Linking computation and experiments to study the role of charge–charge interactions in protein folding and stability

    Science.gov (United States)

    Makhatadze, George I.

    2017-02-01

    Over the past two decades there has been an increase in appreciation for the role of surface charge–charge interactions in protein folding and stability. The perception shifted from the belief that charge–charge interactions are not important for protein folding and stability to the near quantitative understanding of how these interactions shape the folding energy landscape. This led to the ability of computational approaches to rationally redesign surface charge–charge interactions to modulate thermodynamic properties of proteins. Here we summarize our progress in understanding the role of charge–charge interactions for protein stability using examples drawn from my own laboratory and touch upon unanswered questions.

  18. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation.

    Science.gov (United States)

    Holm, Jeppe; Dasmeh, Pouria; Kepp, Kasper P

    2016-07-01

    The evolution of cetaceans (whales, dolphins, and porpoises) from land to water is one of the most spectacular events in mammal evolution. It has been suggested that selection for higher myoglobin stability (∆G of folding) allowed whales to conquer the deep-diving niche. The stability of multi-site protein variants, including ancient proteins, is however hard to describe theoretically. From a compilation of experimental ∆∆G vs. ∆G we first find that protein substitutions are subject to large generic protein relaxation effects. Using this discovery, we develop a simple two-parameter model that predicts multi-site ∆∆G as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1kcal/mol) occurred very early, and stability was later relaxed in dolphins and porpoises, but was further increased in the sperm whales. This suggests that single proteins can affect whole organism evolution and indicates a role of Mb stability in the evolution of cetaceans. Transition to the deep-diving niche probably occurred already in the ancestor of contemporary baleen and toothed whales. In summary, we have discovered generic stability relaxation effects in proteins that, when incorporated into a simple model, improves the description of multi-site protein variants.

  19. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  20. Stability of some Cactaceae proteins based on fluorescence, circular dichroism, and differential scanning calorimetry measurements.

    Science.gov (United States)

    Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J

    1999-02-01

    Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.

  1. Cross-regulation of protein stability by p53 and nuclear receptor SHP.

    Directory of Open Access Journals (Sweden)

    Zhihong Yang

    Full Text Available We report here a novel interplay between tumor suppressor p53 and nuclear receptor SHP that controls p53 and SHP stability. Overexpression of p53 causes rapid SHP protein degradation, which does not require the presence of Mdm2 and is mediated by the proteosome pathway. Overexpressing SHP alone does not affect p53 stability. However, SHP destabilizes p53 by augmentation of Mdm2 ubiquitin ligase activity toward p53. The single amino acid substitution in the SHP protein SHPK170R increases SHP binding to p53 relative to SHP wild-type, whereas SHPG171A variant shows a diminished p53 binding. As a result of the cross-regulation, the tumor suppressor function of p53 and SHP in inhibition of colon cancer growth is compromised. Our findings reveal a unique scenario for a cross-inhibition between two tumor suppressors to keep their expression and function in check.

  2. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.

    Science.gov (United States)

    Ahmed, Ahmed Ashour; Mills, Anthony D; Ibrahim, Ashraf E K; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E; Iyer, N Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D; Earl, Helena M; Laskey, Ronald A; Caldas, Carlos; Brenton, James D

    2007-12-01

    The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability.

  3. The role of PEG conformation in mixed layers: from protein corona substrate to steric stabilization avoiding protein adsorption

    Directory of Open Access Journals (Sweden)

    Joan Comenge

    2015-03-01

    Full Text Available Although nanoparticles (NPs have been traditionally modified with a single ligand layer, mixture of ligands might help to combine different functionalities and to further engineer the NP surface. A detailed study of the competition between an alkanethiol (11-mercaptoundecanoic acid and SH-PEG for the surface of AuNPs and the resultant behaviors of this model nanoconjugate is presented here. As a result, the physicochemical properties of these conjugates can be progressively tuned by controlling the composition and especially the conformation of the mixed monolayer. This has implications in the physiological stability. The controlled changes on the SH-PEG conformation rather than its concentration induce a change in the stabilization mechanism from electrostatic repulsion to steric hindrance, which changes the biological fate of NPs. Importantly, the adsorption of proteins on the conjugates can be tailored by tuning the composition and conformation of the mixed layer.

  4. Probing Bio-Nano Interactions between Blood Proteins and Monolayer-Stabilized Graphene Sheets

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Han, Dongxue;

    2015-01-01

    Meeting proteins is regarded as the starting event for nanostructures to enter biological systems. Understanding their interactions is thus essential for a newly emerging field, nanomedicine. Chemically converted graphene (CCG) is a wonderful two-dimesional (2D) material for nanomedecine, but its...... to significant improvement in their resistance to electrolyte salts and long-term stability, but retain their core structural characteristics. Five types of model human blood proteins including human fibrinogen, γ-globulin, bovine serum albumin (BSA), insulin, and histone are tested. The main drving forces...

  5. Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Directory of Open Access Journals (Sweden)

    Qingzhong Kong

    2013-07-01

    Full Text Available Prion diseases, or transmissible spongiform encephalopathies (TSEs, are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases.

  6. Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins.

    Science.gov (United States)

    Krayukhina, Elena; Tsumoto, Kouhei; Uchiyama, Susumu; Fukui, Kiichi

    2015-02-01

    Currently, polymer-based prefillable syringes are being promoted to the pharmaceutical market because they provide an increased break resistance relative to traditionally used glass syringes. Despite this significant advantage, the possibility that barrel material can affect the oligomeric state of the protein drug exists. The present study was designed to compare the effect of different syringe materials and silicone oil lubrication on the protein aggregation. The stability of a recombinant fusion protein, abatacept (Orencia), and a fully human recombinant immunoglobulin G1, adalimumab (Humira), was assessed in silicone oil-free (SOF) and silicone oil-lubricated 1-mL glass syringes and polymer-based syringes in accelerated stress study. Samples were subjected to agitation stress, and soluble aggregate levels were evaluated by size-exclusion chromatography and verified with analytical ultracentrifugation. In accordance with current regulatory expectations, the amounts of subvisible particles resulting from agitation stress were estimated using resonant mass measurement and dynamic flow-imaging analyses. The amount of aggregated protein and particle counts were similar between unlubricated polymer-based and glass syringes. The most significant protein loss was observed for lubricated glass syringes. These results suggest that newly developed SOF polymer-based syringes are capable of providing biopharmaceuticals with enhanced physical stability upon shipping and handling.

  7. Amaranth proteins foaming properties: Film rheology and foam stability - Part 2.

    Science.gov (United States)

    Bolontrade, Agustín J; Scilingo, Adriana A; Añón, María C

    2016-05-01

    In this work the influence of pH and ionic strength on the stability of foams prepared with amaranth protein isolate was analyzed. The behaviour observed was related to the physico-chemical and structural changes undergone by amaranth protein as a result of those treatments. The results obtained show that foams prepared at acidic pH were more stable than the corresponding to alkaline pH. At pH 2.0 the foams presented higher times and more volumes of drainage. This behaviour is consistent with the characteristics of the interfacial film, which showed a higher viscoelasticity and a greater flexibility at acidic pH than alkaline pH value, which in turn increased by increasing the concentration of proteins in the foaming solution. It is also important to note that the presence of insoluble protein is not necessarily detrimental to the properties of the foam. Detected changes in the characteristics of the interfacial film as in the foam stability have been attributed to the increased unfolding, greater flexibility and net charge of amaranth proteins at acidic conditions.

  8. Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics.

    Science.gov (United States)

    Gregurec, Danijela; Velasco-Lozano, Susana; Moya, Sergio E; Vázquez, Luis; López-Gallego, Fernando

    2016-10-26

    Optimal immobilization of enzymes on porous microbeads enables the fabrication of highly active and stable heterogeneous biocatalysts to implement biocatalysis in synthetic and analytical chemistry. However, empirical procedures for enzyme immobilization still prevail over rational ones because there is an unmet need for more comprehensive characterization techniques that aid to understand and trace the immobilization process. Here, we present the use of atomic force spectroscopy (AFS) as an innovative solution to indirectly characterize immobilized proteins on porous materials and monitor the immobilization process in real time. We investigate the mechanical properties of porous agarose microbeads immobilizing proteins by indenting a colloidal probe (silica microparticle) into a single bead. AFS demonstrates that the binding of proteins to the solid matrix of an agarose microbead alters its stiffness. Interestingly, we discovered that irreversible and multivalent immobilizations that make microbeads stiffer also stabilize the immobilized proteins against the temperature. Hence, we propose atomic force spectroscopy as a useful technique to indirectly unravel the stability of the immobilized enzymes investigating the mechanics of the heterogenous biocatalysts as a solid biomaterial beyond the intrinsic mechanics of the proteins.

  9. Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple Nanoemulsion Containing Fish Oil.

    Science.gov (United States)

    Hwang, Jae-Young; Ha, Ho-Kyung; Lee, Mee-Ryung; Kim, Jin Wook; Kim, Hyun-Jin; Lee, Won-Jae

    2017-02-01

    The objectives of this research were to produce whey protein concentrate (WPC) multiple nanoemulsion (MNE) and to study how whey protein concentration level and antioxidant type affected the physicochemical properties and oxidative stability of fish oil in MNE. The morphological and physicochemical characteristics of MNE were investigated by using transmission electron microscopy and particle size analyzer, respectively. The oxidative stability of fish oil in MNEs was assessed by measuring peroxide value (PV), p-anisidine value, and volatile compounds. The spherical forms of emulsions with size ranging from 190 to 210 nm were observed indicating the successful production of MNE. Compared with free fish oil, fish oil in MNE exhibited lower PV, p-anisidine value, and formation of maker of oxidation of fish oil indicating the oxidative stability of fish oil in MNE was enhanced. PV, p-anisidine value, and makers of oxidation of fish oil were decreased with increased WPC concentration level. The combined use of Vitamin C and E in MNE resulted in a reduction in PV and p-anisidine value, and development of maker of oxidation. In conclusion, WPC concentration level and antioxidant type are key factors affecting the droplet size of MNE and oxidative stability of fish oil.

  10. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization.

    Science.gov (United States)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor; Reis, Salette; van de Weert, Marco; Sarmento, Bruno

    2015-12-30

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol at 10% (w/v). Insulin-loaded PLGA nanoparticles with co-encapsulated lyoprotectants achieved a mean particle size of 386-466nm, and a zeta potential ranging between -34 and -38mV, dependent on the lyoprotectant used. Formulations had association efficiencies and loading capacities of 85-91% and 10-12%, respectively. The lyophilization process increased the colloidal stability of nanoparticles, and maintained their spherical shape and smooth surface, particularly in presence of lyoprotectants. XRPD revealed that the lyophilizates of nanoparticles with co-encapsulated lyoprotectants were amorphous, whereas formulations with externally added lyoprotectants, except trehalose, showed crystallinity. FTIR assessment showed that co-encapsulating lyoprotectants better preserved insulin structure upon lyophilization with a spectral area overlap of 82-87%, compared to only 72% in lyoprotectant absence. These results were confirmed by circular dichroism spectroscopy. Surprisingly, the simultaneous co-encapsulation and addition of lyoprotectants was detrimental to protein stabilization. The insulin in vitro release studies demonstrated that formulations with co-encapsulated trehalose, glucose, sucrose, fructose and sorbitol achieved 83%, 69%, 70%, 77% and 74%, respectively after 48h. In contrast, formulations added with those lyoprotectants prior lyophilization showed a lower release rate not higher than 60% after 48h. This work gives rise to a different promising strategy of co-encapsulating lyoprotectants and therapeutic proteins, to better stabilize protein structure upon lyophilization.

  11. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    OpenAIRE

    ACC Alleoni; AJ Antunes

    2004-01-01

    Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and n...

  12. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    Directory of Open Access Journals (Sweden)

    Jacek Dygut

    2016-10-01

    Full Text Available The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1 Shared hydrophobic cores (spanning the whole dimer; (2 Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  13. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described.

  14. Insights into Hemoglobin Assembly through in Vivo Mutagenesis of α-Hemoglobin Stabilizing Protein*

    Science.gov (United States)

    Khandros, Eugene; Mollan, Todd L.; Yu, Xiang; Wang, Xiaomei; Yao, Yu; D'Souza, Janine; Gell, David A.; Olson, John S.; Weiss, Mitchell J.

    2012-01-01

    α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO2 subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO2 autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO2 subunits. PMID:22287545

  15. Insights into hemoglobin assembly through in vivo mutagenesis of α-hemoglobin stabilizing protein.

    Science.gov (United States)

    Khandros, Eugene; Mollan, Todd L; Yu, Xiang; Wang, Xiaomei; Yao, Yu; D'Souza, Janine; Gell, David A; Olson, John S; Weiss, Mitchell J

    2012-03-30

    α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO(2) subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO(2) autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO(2) subunits.

  16. Identification of ICIS-1, a new protein involved in cilia stability.

    Science.gov (United States)

    Ponsard, Cecile; Skowron-Zwarg, Marie; Seltzer, Virginie; Perret, Eric; Gallinger, Julia; Fisch, Cathy; Dupuis-Williams, Pascale; Caruso, Nathalie; Middendorp, Sandrine; Tournier, Frederic

    2007-01-01

    Cilia are specialized organelles that exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Ciliary architecture and function strictly depend on basal body formation, migration and axoneme elongation. Numerous ultrastructural studies have been undertaken in different species to elucidate the process of ciliogenesis. Recent analyses have led to identification of genes specifically expressed in ciliated organisms, but most proteins involved in ciliogenesis remain uncharacterized. Using human nasal epithelial cells capable of ciliary differentiation in vitro, differential display was carried out to identify new proteins associated with ciliogenesis. We isolated a new gene, ICIS-1 (Involved in CIlia Stability-1), upregulated during mucociliary differentiation. This gene is localized within the TGF-beta1 promoter and is ubiquitously expressed in human tissues. Functional analyses of gene expression inhibition by RNA interference in Paramecium tetraurelia indicated that the ICIS-1 homologue interfered with cilia stability or formation. These findings demonstrate that ICIS-1 is a new protein associated with ciliated cells and potentially related to cilia stability.

  17. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.

    Science.gov (United States)

    Freeman, A; Abramov, S; Georgiou, G

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  18. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, A.; Abramov, S. [Tel-Aviv Univ. (Israel); Georgiou, G. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins. Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article the authors describe the adaptation of a simple two-stage chemical crosslinking procedure based on bi-layer encagement for stabilizing Escherichia coli cells expressing an Lpp-OmpA-{beta}-lactamase fusion that displays {beta}-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 C of surface anchored {beta}-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  19. Heat Shock Protein 90 Modulates Lipid Homeostasis by Regulating the Stability and Function of Sterol Regulatory Element-binding Protein (SREBP) and SREBP Cleavage-activating Protein.

    Science.gov (United States)

    Kuan, Yen-Chou; Hashidume, Tsutomu; Shibata, Takahiro; Uchida, Koji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2017-02-17

    Sterol regulatory element-binding proteins (SREBPs) are the key transcription factors that modulate lipid biosynthesis. SREBPs are synthesized as endoplasmic reticulum-bound precursors that require proteolytic activation in the Golgi apparatus. The stability and maturation of precursor SREBPs depend on their binding to SREBP cleavage-activating protein (SCAP), which escorts the SCAP-SREBP complex to the Golgi apparatus. In this study, we identified heat shock protein (HSP) 90 as a novel SREBP regulator that binds to and stabilizes SCAP-SREBP. In HepG2 cells, HSP90 inhibition led to proteasome-dependent degradation of SCAP-SREBP, which resulted in the down-regulation of SREBP target genes and the reduction in intracellular triglyceride and cholesterol levels. We also demonstrated in vivo that HSP90 inhibition decreased SCAP-SREBP protein, down-regulated SREBP target genes, and reduced lipids levels in mouse livers. We propose that HSP90 plays an indispensable role in SREBP regulation by stabilizing the SCAP-SREBP complex, facilitating the activation of SREBP to maintain lipids homeostasis.

  20. Computational study of elements of stability of a four-helix bundle protein biosurfactant

    Science.gov (United States)

    Schaller, Andrea; Connors, Natalie K.; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A.; Hubbuch, Jürgen; Middelberg, Anton P. J.

    2015-01-01

    Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal

  1. Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability

    Science.gov (United States)

    Kwon, Hanna; Young, Paul G.; Squire, Christopher J.; Baker, Edward N.

    2017-01-01

    The overall stability of globular protein structures is marginal, a balance between large numbers of stabilizing non-covalent interactions and a destabilizing entropic term. Higher stability can be engineered by introduction of disulfide bonds, provided the redox environment is controlled. The discovery of stabilizing isopeptide bond crosslinks, formed spontaneously between lysine and asparagine (or aspartic acid) side chains in certain bacterial cell-surface proteins suggests that such bonds could be introduced by protein engineering as an alternative protein stabilization strategy. We report the first example of an isopeptide bond engineered de novo into an immunoglobulin-like protein, the minor pilin FctB from Streptococcus pyogenes. Four mutations were sufficient; lysine, asparagine and glutamic acid residues were introduced for the bond-forming reaction, with a fourth Val/Phe mutation to help steer the lysine side chain into position. The spontaneously-formed isopeptide bond was confirmed by mass spectrometry and X-ray crystallography, and was shown to increase the thermal stability by 10 °C compared with the wild type protein. This novel method for increasing the stability of IgG-like proteins has potential to be adopted by the field of antibody engineering, which share similar β-clasp Ig-type domains. PMID:28202898

  2. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    Science.gov (United States)

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-05

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  3. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    Science.gov (United States)

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  4. Stability and immunogenicity of hypoallergenic peanut protein-polyphenol complexes during in vitro pepsin digestion.

    Science.gov (United States)

    Plundrich, Nathalie J; White, Brittany L; Dean, Lisa L; Davis, Jack P; Foegeding, E Allen; Lila, Mary Ann

    2015-07-01

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated during simulated in vitro gastric digestion. When digested with pepsin, the basic subunit of the peanut allergen Ara h 3 was more rapidly hydrolyzed in peanut protein-cranberry or green tea polyphenol complexes compared to uncomplexed peanut flour. Ara h 2 was also hydrolyzed more quickly in the peanut protein-cranberry polyphenol complex than in uncomplexed peanut flour. Peptides from peanut protein-cranberry polyphenol complexes and peanut protein-green tea polyphenol complexes were substantially less immunoreactive (based on their capacity to bind to peanut-specific IgE from patient plasma) compared to peptides from uncomplexed peanut flour. These results suggest that peanut protein-polyphenol complexes may be less immunoreactive passing through the digestive tract in vivo, contributing to their attenuated allergenicity.

  5. Wheat proteins enhance stability and function of adhesion molecules in cryopreserved hepatocytes.

    Science.gov (United States)

    Grondin, Mélanie; Hamel, Francine; Averill-Bates, Diana A; Sarhan, Fathey

    2009-01-01

    Cryopreserved hepatocytes with good hepatospecific functions upon thawing are important for clinical transplantation and for in vitro drug toxicity testing. However, cryopreservation reduces viability and certain hepatospecific functions, but the most pronounced change is diminished attachment efficiency of hepatocytes. Adhesion of cells to the extracellular matrix and cell-cell contacts are crucial for many aspects of cellular function. These processes are partly mediated and controlled by cellular adhesion molecules. The mechanisms responsible for reduced attachment efficiency of cryopreserved hepatocytes are not well understood. To address this question, we investigated the effect of a new cryopreservation procedure, using wheat proteins (WPs) or mixtures of recombinant forms of wheat freezing tolerance-associated proteins, on the stability of three important adhesion molecules (beta1-integrin, E-cadherin, and beta-catenin). Immunoblot analyses revealed that the levels of beta1-integrin, E-cadherin, and beta-catenin were much lower in cryopreserved rat hepatocytes, when compared to fresh cells. Protein expression of the adhesion molecules was generally lower in cells cryopreserved with DMSO, compared to WPs. Moreover, the stability of the adhesion molecules was not affected by cryopreservation to the same degree, with more pronounced decreases occurring for beta1-integrin (62-74%) > beta-catenin (51-58%) > E-cadherin (21-37%). However, when hepatocytes were cryopreserved with partially purified WPs (SulWPE, AcWPE) or with mixtures of recombinant wheat proteins, there was a clear protective effect against the loss of protein expression of beta1-integrin, E-cadherin, and beta-catenin. Protein expression was only 10-20% lower than that observed in fresh hepatocytes. These findings clearly demonstrate that WPs, and more particularly, partially purified WPs and recombinant wheat proteins, were more efficient for cryopreservation of rat hepatocytes by maintaining good

  6. Salt Potentiates Methylamine Counteraction System to Offset the Deleterious Effects of Urea on Protein Stability and Function

    Science.gov (United States)

    Singh, Laishram R.; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction. PMID:25793733

  7. Salt potentiates methylamine counteraction system to offset the deleterious effects of urea on protein stability and function.

    Directory of Open Access Journals (Sweden)

    Safikur Rahman

    Full Text Available Cellular methylamines are osmolytes (low molecular weight organic compounds believed to offset the urea's harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea's effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.

  8. Conventional and alternative principles for stabilization of protein and polyphenol fractions in beer

    Directory of Open Access Journals (Sweden)

    Marković Romeo S.

    2003-01-01

    Full Text Available Beer haze is primarily formed through complexation of protein and polyphenolic beer ingredients. The problem of reducing susceptibility of beer haze formation can be done either by lowering protein and/or polyphenol levels, or by minimizing the molecular size of protein/polyphenols. In experimental part of this work the shelf life of unstabilized beer is being compared with beer stabilized with various standard products, such as PVPP and silica gel. Furthermore, the trials have been made to prove the functionality of a new product consisting of carrageenan and cross-linked PVPP. The method used to determine shelf life was haze forcing test (0/60°C. Extract, alcohol, bitterness, foam, haze, color and pH were also monitored. The test results showed expectedly that combined treatment of beer ensures the highest level of product stability. Through selective stripping of polyphenols and protein fractions it is possible to improve shelf life of beer to a significant extent.

  9. A translational regulator, PUM2, promotes both protein stability and kinase activity of Aurora-A.

    Directory of Open Access Journals (Sweden)

    Yei-Hsuan Huang

    Full Text Available Aurora-A, a centrosomal serine-threonine kinase, orchestrates several key aspects of cell division. However, the regulatory pathways for the protein stability and kinase activity of Aurora-A are still not completely understood. In this study, PUM2, an RNA-binding protein, is identified as a novel substrate and interacting protein of Aurora-A. Overexpression of the PUM2 mutant which fails to interact with Aurora-A, and depletion of PUM2 result in a decrease in the amount of Aurora-A. PUM2 physically binds to the D-box of Aurora-A, which is recognized by APC/C(Cdh1. Overexpression of PUM2 prevents ubiquitination and enhances the protein stability of Aurora-A, suggesting that PUM2 protects Aurora-A from APC/C(Cdh1-mediated degradation. Moreover, association of PUM2 with Aurora-A not only makes Aurora-A more stable but also enhances the kinase activity of Aurora-A. Our study suggests that PUM2 plays two different but important roles during cell cycle progression. In interphase, PUM2 localizes in cytoplasm and plays as translational repressor through its RNA binding domain. However, in mitosis, PUM2 physically associates with Aurora-A to ensure enough active Aurora-A at centrosomes for mitotic entry. This is the first time to reveal the moonlight role of PUM2 in mitosis.

  10. Engineering Proteins with Enhanced Mechanical Stability by Force Specific Sequence Motifs

    Science.gov (United States)

    Lu, Wenzhe; Negi, Surendra; Oberhauser, Andres F.; Braun, Werner

    2012-01-01

    Use of atomic force microscopy (AFM) has recently led to a better understanding of the molecular mechanisms of the unfolding process by mechanical forces; however, the rational design of novel proteins with specific mechanical strength remains challenging. We have approached this problem from a new perspective that generates linear physical-chemical properties (PCP) motifs from a limited AFM data set. Guided by our linear sequence analysis we designed and analyzed four new mutants of the titin I1 domain with the goal of increasing the domain's mechanical strength. All four mutants could be cloned and expressed as soluble proteins. AFM data indicate that at least two of the mutants have increased molecular mechanical strength. This observation suggests that the PCP method is useful to graft sequences specific for high mechanical stability to weak proteins to increase their mechanical stability, and represents an additional tool in the design of novel proteins besides steered molecular dynamics calculations, coarse grained simulations and phi-value analysis of the transition state. PMID:22274941

  11. Influence of cysteine and methionine availability on protein peroxide scavenging activity and phenolic stability in emulsions.

    Science.gov (United States)

    Zhou, Lisa; Elias, Ryan J

    2014-03-01

    Plant phenolics are secondary metabolites that have been shown to confer beneficial health effects in humans. However, many of these compounds undergo metal-catalysed oxidation reactions, leading to the generation of hydrogen peroxide (H2O2) and other reactive oxygen species that may negatively impact product stability. In proteins, methionine (Met) and cysteine (Cys) are capable of reacting directly with peroxides. Thus, the dairy proteins, casein (CAS) and β-lactoglobulin (BLG), were examined for their ability to scavenge H2O2 (400μM) and influence (-)-epigallocatechin-3-gallate (EGCG) oxidation (400μM) in Tween- or sodium dodecyl sulphate (SDS)-stabilised hexadecane emulsions. To examine the effect that the accessibility of these amino acids have on their peroxide scavenging activities, proteins were pre-treated with tert-butyl hydroperoxide (TBHP), a bulky peroxide, to oxidise only solvent accessible Met residues or H2O2, the smallest peroxide, to oxidise buried Met residues. In CAS treatments, higher Met content yielded greater peroxide scavenging activity and EGCG stability. CAS treatments also showed significantly higher peroxide scavenging activity compared to the corresponding BLG treatment. However, BLG peroxide scavenging activity was greatly enhanced in SDS-stabilised emulsions due to protein denaturation and subsequent exposure of previously buried Cys residues.

  12. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability

    Directory of Open Access Journals (Sweden)

    García-Lara Jorge

    2009-12-01

    Full Text Available Abstract Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  13. Role of alpha-hemoglobin-stabilizing protein in normal erythropoiesis and beta-thalassemia.

    Science.gov (United States)

    Weiss, Mitchell J; Zhou, Suiping; Feng, Liang; Gell, David A; Mackay, Joel P; Shi, Yigong; Gow, Andrew J

    2005-01-01

    Hemoglobin (Hb) synthesis is coordinated by homeostatic mechanisms to limit the accumulation of free alpha or beta subunits, which are cytotoxic. Alpha hemoglobin-stabilizing protein (AHSP) is an abundant erythroid protein that specifically binds free alphaHb, stabilizes its structure, and limits its ability to participate in chemical reactions that generate reactive oxygen species. Gene ablation studies in mice demonstrate that AHSP is required for normal erythropoiesis. AHSP-null erythrocytes are short-lived, contain Hb precipitates, and exhibit signs of oxidative damage. Loss of AHSP exacerbates beta-thalassemia in mice, indicating that altered AHSP expression or function could modify thalassemia phenotypes in humans, a topic that is beginning to be explored in clinical studies. We used biochemical, spectroscopic, and crystallographic methods to examine how AHSP stabilizes alphaHb. AHSP binds the G and H helices of alphaHb on a surface that largely overlaps with the alpha1-beta1 interface of HbA. This result explains previous findings that betaHb can competitively displace AHSP from alphaHb to form HbA tetramer. Remarkably, binding of AHSP to oxygenated alphaHb induces dramatic conformational changes and converts the heme-bound iron to an oxidized hemichrome state in which all six coordinate positions are occupied. This structure limits the reactivity of heme iron, providing a mechanism by which AHSP stabilizes alphaHb. These findings suggest a biochemical pathway through which AHSP might participate in normal Hb synthesis and modulate the severity of thalassemias. Moreover, understanding how AHSP stabilizes alphaHb provides a theoretical basis for new strategies to inhibit the damaging effects of free alphaHb that accumulates in beta-thalassemia.

  14. Factors contributing to decreased protein stability when aspartic acid residues are in {beta}-sheet regions.

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. R.; Cai, X.; Raffen, R.; Gu, M.; Stevens, F. J.; Schiffer, M.

    2002-07-01

    Asp residues are significantly under represented in {beta}-sheet regions of proteins, especially in the middle of {beta}-strands, as found by a number of studies using statistical, modeling, or experimental methods. To further understand the reasons for this under representation of Asp, we prepared and analyzed mutants of a {beta}-domain. Two Gln residues of the immunoglobulin light-chain variable domain (V{sub L}) of protein Len were replaced with Asp, and then the effects of these changes on protein stability and protein structure were studied. The replacement of Q38D, located at the end of a {beta}-strand, and that of Q89D, located in the middle of a {beta}-strand, reduced the stability of the parent immunoglobulin VL domain by 2.0 kcal/mol and 5.3 kcal/mol, respectively. Because the Q89D mutant of the wild-type V{sub L}-Len domain was too unstable to be expressed as a soluble protein, we prepared the Q89D mutant in a triple mutant background, V{sub L}-Len M4L/Y27dD/T94H, which was 4.2 kcal/mol more stable than the wild-type V{sub L}-Len domain. The structures of mutants V{sub L}-Len Q38D and V{sub L}-Len Q89D/M4L/Y27dD/T94H were determined by X-ray diffraction at 1.6 A resolution. We found no major perturbances in the structures of these QD mutant proteins relative to structures of the parent proteins. The observed stability changes have to be accounted for by cumulative effects of the following several factors: (1) by changes in main-chain dihedral angles and in side-chain rotomers, (2) by close contacts between some atoms, and, most significantly, (3) by the unfavorable electrostatic interactions between the Asp side chain and the carbonyls of the main chain. We show that the Asn side chain, which is of similar size but neutral, is less destabilizing. The detrimental effect of Asp within a {beta}-sheet of an immunoglobulin-type domain can have very serious consequences. A somatic mutation of a {beta}-strand residue to Asp could prevent the expression of the

  15. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  16. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  17. The Nicastrin-like protein Nicalin regulates assembly and stability of the Nicalin-nodal modulator (NOMO) membrane protein complex.

    Science.gov (United States)

    Haffner, Christof; Dettmer, Ulf; Weiler, Timotheus; Haass, Christian

    2007-04-06

    The assembly of the gamma-secretase complex, an Alzheimer disease-related protease required for beta-amyloid generation, is tightly regulated and predominantly limited by the stoichiometrical availability of its components. We have identified a novel endoplasmic reticulum-located protein complex that is regulated in a similar fashion. It contains the recently identified Nodal signaling antagonists Nicalin (a distant homolog of the gamma-secretase component Nicastrin) and NOMO (Nodal modulator). Using an RNA interference approach, we found that Nicalin and NOMO became unstable in the absence of the respective binding partner, suggesting that complex formation has a stabilizing effect. Overexpression of Nicalin resulted in an increase in NOMO, whereas endogenous Nicalin was reduced below the detection limit. Both effects were shown to occur at a post-transcriptional level. Thus, NOMO is most likely produced in excess amounts and either stabilized by Nicalin or rapidly degraded. In contrast, Nicalin levels are limited independently of NOMO. We, therefore, propose that Nicalin controls the assembly and stability of the Nicalin-NOMO complex.

  18. Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53

    Science.gov (United States)

    Joerger, Andreas C.; Bauer, Matthias R.; Wilcken, Rainer; Baud, Matthias G.J.; Harbrecht, Hannes; Exner, Thomas E.; Boeckler, Frank M.; Spencer, John; Fersht, Alan R.

    2015-01-01

    Summary The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process. PMID:26636255

  19. Folding and stability of helical bundle proteins from coarse-grained models.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics.

  20. Microcystin-LR stabilizes c-myc protein by inhibiting protein phosphatase 2A in HEK293 cells.

    Science.gov (United States)

    Fan, Huihui; Cai, Yan; Xie, Ping; Xiao, Wuhan; Chen, Jun; Ji, Wei; Zhao, Sujuan

    2014-05-07

    Microcystin-LR is the most toxic and the most frequently encountered toxin produced by the cyanobacteria in the contaminated aquatic environment. Previous studies have demonstrated that Microcystin-LR is a potential carcinogen for animals and humans, and the International Agency for Research on Cancer has classified Microcystin-LR as a possible human carcinogen. However, the precise molecular mechanisms of Microcystin-LR-induced carcinogenesis remain a mystery. C-myc is a proto-oncogene, abnormal expression of which contributes to the tumor development. Although several studies have demonstrated that Microcystin-LR could induce c-myc expression at the transcriptional level, the exact connection between Microcystin-LR toxicity and c-myc response remains unclear. In this study, we showed that the c-myc protein increased in HEK293 cells after exposure to Microcystin-LR. Coexpression of protein phosphatase 2A and two stable c-myc protein point mutants (either c-myc(T58A) or c-myc(S62A)) showed that Microcystin-LR increased c-myc protein level mainly through inhibiting protein phosphatase 2A activity which altered the phosphorylation status of serine 62 on c-myc. In addition, we also showed that Microcystin-LR could increase c-myc promoter activity as revealed by luciferase reporter assay. And the TATA box for P1 promoter of c-myc might be involved. Our results suggested that Microcystin-LR can stimulate c-myc transcription and stabilize c-myc protein, which might contribute to hepatic tumorigenesis in animals and humans.

  1. A molecular clock regulates angiopoietin-like protein 2 expression.

    Science.gov (United States)

    Kadomatsu, Tsuyoshi; Uragami, Shota; Akashi, Makoto; Tsuchiya, Yoshiki; Nakajima, Hiroo; Nakashima, Yukiko; Endo, Motoyoshi; Miyata, Keishi; Terada, Kazutoyo; Todo, Takeshi; Node, Koichi; Oike, Yuichi

    2013-01-01

    Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2) contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.

  2. A molecular clock regulates angiopoietin-like protein 2 expression.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kadomatsu

    Full Text Available Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2 contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.

  3. Prion protein insertional mutations increase aggregation propensity but not fiber stability

    Directory of Open Access Journals (Sweden)

    True Heather L

    2008-03-01

    Full Text Available Abstract Background Mutations in the PRNP gene account for ~15% of all prion disease cases. Little is understood about the mechanism of how some of these mutations in PRNP cause the protein to aggregate into amyloid fibers or cause disease. We have taken advantage of a chimeric protein system to study the oligopeptide repeat domain (ORD expansions of the prion protein, PrP, and their effect on protein aggregation and amyloid fiber formation. We replaced the ORD of the yeast prion protein Sup35p with that from wild type and expanded ORDs of PrP and compared their biochemical properties in vitro. We previously determined that these chimeric proteins maintain the [PSI+] yeast prion phenotype in vivo. Interestingly, we noted that the repeat expanded chimeric prions seemed to be able to maintain a stronger strain of [PSI+] and convert from [psi-] to [PSI+] with a much higher frequency. In this study we have attempted to understand the biochemical properties of these chimeric proteins and to establish a system to study the properties of the ORD of PrP both in vivo and in vitro. Results Investigation of the chimeric proteins in vitro reveals that repeat-expansions increase aggregation propensity and that the kinetics of fiber formation depends on the number of repeats. The fiber formation reactions are promiscuous in that the chimeric protein containing 14 repeats can readily cross-seed fiber formation of proteins that have the wild type number of repeats. Morphologically, the amyloid fibers formed by repeat-expanded proteins associate with each other to form large clumps that were not as prevalent in fibers formed by proteins containing the wild type number of repeats. Despite the increased aggregation propensity and lateral association of the repeat expanded proteins, there was no corresponding increase in the stability of the fibers formed. Therefore, we predict that the differences in fibers formed with different repeat lengths may not be due to

  4. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A.

    Science.gov (United States)

    Wu, Yuanzhong; Zhou, Liwen; Wang, Xin; Lu, Jinping; Zhang, Ruhua; Liang, Xiaoting; Wang, Li; Deng, Wuguo; Zeng, Yi-Xin; Huang, Haojie; Kang, Tiebang

    2016-01-01

    The regulation of stability is particularly crucial for unstable proteins in cells. However, a convenient and unbiased method of identifying regulators of protein stability remains to be developed. Recently, a genome-scale CRISPR-Cas9 library has been established as a genetic tool to mediate loss-of-function screening. Here, we developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome CRISPR-Cas9 library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Using Cdc25A as an example, Cul4B-DDB1(DCAF8) was identified as a new E3 ligase for Cdc25A. Moreover, the acetylation of Cdc25A at lysine 150, which was acetylated by p300/CBP and deacetylated by HDAC3, prevented the ubiquitin-mediated degradation of Cdc25A by the proteasome. This is the first study to report that acetylation, as a novel posttranslational modification, modulates Cdc25A stability, and we suggest that this unbiased CRISPR-Cas9 screening method at the genome scale may be widely used to globally identify regulators of protein stability.

  5. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  6. CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma.

    Science.gov (United States)

    Mohanty, Atish; Sandoval, Natalie; Das, Manasi; Pillai, Raju; Chen, Lu; Chen, Robert W; Amin, Hesham M; Wang, Michael; Marcucci, Guido; Weisenburger, Dennis D; Rosen, Steven T; Pham, Lan V; Ngo, Vu N

    2016-11-08

    Mantle cell lymphoma (MCL) is characterized by the t(11;14) translocation, which leads to deregulated expression of the cell cycle regulatory protein cyclin D1 (CCND1). Genomic studies of MCL have also identified recurrent mutations in the coding region of CCND1. However, the functional consequence of these mutations is not known. Here, we showed that, compared to wild type (WT), single E36K, Y44D or C47S CCND1 mutations increased CCND1 protein levels in MCL cell lines. Mechanistically, these mutations stabilized CCND1 protein through attenuation of threonine-286 phosphorylation, which is important for proteolysis through the ubiquitin-proteasome pathway. In addition, the mutant proteins preferentially localized to the nucleus. Interestingly, forced expression of WT or mutant CCND1 increased resistance of MCL cell lines to ibrutinib, an FDA-approved Bruton tyrosine kinase inhibitor for MCL treatment. The Y44D mutant sustained the resistance to ibrutinib even at supraphysiologic concentrations (5-10 μM). Furthermore, primary MCL tumors with CCND1 mutations also expressed stable CCND1 protein and were resistant to ibrutinib. These findings uncover a new mechanism that is critical for the regulation of CCND1 protein levels, and is directly relevant to primary ibrutinib resistance in MCL.

  7. Efficient quantification of the importance of contacts for the dynamical stability of proteins.

    Science.gov (United States)

    Hamacher, Kay

    2011-04-15

    Understanding the stability of the native state and the dynamics of a protein is of great importance for all areas of biomolecular design. The efficient estimation of the influence of individual contacts between amino acids in a protein structure is a first step in the reengineering of a particular protein for technological or pharmacological purposes. At the same time, the functional annotation of molecular evolution can be facilitated by such insight. Here, we use a recently suggested, information theoretical measure in biomolecular design - the Kullback-Leibler-divergence - to quantify and therefore rank residue-residue contacts within proteins according to their overall contribution to the molecular mechanics. We implement this protocol on the basis of a reduced molecular model, which allows us to use a well-known lemma of linear algebra to speed up the computation. The increase in computational performance is around 10(1)- to 10(4)-fold. We applied the method to two proteins to illustrate the protocol and its results. We found that our method can reliably identify key residues in the molecular mechanics and the protein fold in comparison to well-known properties in the serine protease inhibitor. We found significant correlations to experimental results, e.g., dissociation constants and Φ values.

  8. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate.

    Science.gov (United States)

    Klein, Miri; Aserin, Abraham; Svitov, Inna; Garti, Nissim

    2010-05-01

    Cloudy emulsions are oil-in-water (O/W) emulsions normally prepared as concentrates, further diluted, per request, into the final beverage. The cloudy emulsion provides flavor, color, and cloud (turbidity) to the soft drink. These systems are stabilized by emulsifiers and/or amphiphilic polysaccharides. Cloudy emulsions based on naturally occurring food grade emulsifiers were studied in the present work. Two charged natural biopolymers, whey protein isolate (WPI) and gum Arabic (GA), are interacted in aqueous solution to form charge-charge interactions improving the emulsion stability. The emulsions were high sheared (Microfluidizer) and characterized by particle size distribution analysis (DLS), optical centrifugation (LUMiFuge), optical microscopy observations, and turbidity measurements. Emulsions obtained from 10wt% of 3:1wt. ratio WPI:GA, at pH 7 (10wt% canola oil) show better stability than emulsions stabilized by GA or WPI alone. The droplet sizes were smaller than 1microm and did not grow significantly during 1 month of incubation at 25 degrees C. The D-limonene-based emulsion droplets were larger (> 2microm) than those made with vegetable oils immediately after preparation and underwent significant droplet size increase (coalescence) within 1 month (>8 microm). The emulsion with turbidity suitable as a cloudy emulsion was composed of 3wt% WPI:GA (3:1) and 20wt% canola oil.

  9. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    Science.gov (United States)

    Murakami, Shota; Kinoshita, Masahiro

    2016-03-01

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the

  10. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach.

    Science.gov (United States)

    Tang, Fen; Xie, Yixi; Cao, Hui; Yang, Hua; Chen, Xiaoqing; Xiao, Jianbo

    2017-03-15

    Fetal bovine serum (FBS) is a universal growth supplement of cell and tissue culture media. Herein, the influences of FBS on the stability and antioxidant activity of 21 resveratrol analogues were investigated using a polyphenol-protein interaction approach. The structure-stability relationships of resveratrol analogues in FBS showed a clear decrease in the stability of hydroxylated resveratrol analogues in the order: resorcinol-type>pyrogallol-type>catechol-type. The glycosylation and methoxylation of resveratrol analogues enhanced their stability. A linear relationship between the stability of resveratrol analogues in FBS and the affinity of resveratrol analogues-FBS interaction was found. The oxidation process is not the only factor governing the stability of resveratrol analogues in FBS. These results facilitated the insightful investigation of the role of polyphenol-protein interactions in serum, thereby providing some fundamental clues for future clinical research and pharmacological studies on natural small molecules.

  11. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  12. Impact of glucose polymer chain length on heat and physical stability of milk protein-carbohydrate nutritional beverages.

    Science.gov (United States)

    Chen, Biye; O'Mahony, James A

    2016-11-15

    This study investigated the impact of glucose polymer chain length on heat and physical stability of milk protein isolate (MPI)-carbohydrate nutritional beverages containing 8.5% w/w total protein and 5% w/w carbohydrate. The maltodextrin and corn syrup solids glucose polymers used had dextrose equivalent (DE) values of 17 or 38, respectively. Increasing DE value of the glucose polymers resulted in a greater increase in brown colour development, ionic calcium, protein particle size, apparent viscosity and pseudoplastic rheological behaviour, and greater reduction in pH, hydration and heat stability on sterilisation at 120°C. Incorporation of glucose polymers with MPI retarded sedimentation of protein during accelerated physical stability testing, with maltodextrin DE17 causing a greater reduction in sedimentation velocity and compressibility of sediment formed than corn syrup solids DE38. The results demonstrate that chain length of the glucose polymer used strongly impacts heat and physical stability of MPI-carbohydrate nutritional beverages.

  13. A Recombinant Saccharomyces cerevisiae Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze▿

    Science.gov (United States)

    Gonzalez-Ramos, Daniel; Cebollero, Eduardo; Gonzalez, Ramon

    2008-01-01

    Stabilization against protein haze was one of the first positive properties attributed to yeast mannoproteins in winemaking. In previous work we demonstrated that deletion of KNR4 leads to increased mannoprotein release in laboratory Saccharomyces cerevisiae strains. We have now constructed strains with KNR4 deleted in two different industrial wine yeast backgrounds. This required replacement of two and three alleles of KNR4 for the EC1118 and T73-4 backgrounds, respectively, and the use of three different selection markers for yeast genetic transformation. The actual effect of the genetic modification was dependent on both the genetic background and the culture conditions. The fermentation performance of T73-4 derivatives was clearly impaired, and these derivatives did not contribute to the protein stability of the wine, even though they showed increased mannoprotein release in vitro. In contrast, the EC1118 derivative with both alleles of KNR4 deleted released increased amounts of mannoproteins both in vitro and during wine fermentation assays, and the resulting wines were consistently less susceptible to protein haze. The fermentation performance of this strain was slightly impaired, but only with must with a very high sugar content. These results pave the way for the development of new commercial strains with the potential to improve several mannoprotein-related quality and technological parameters of wine. PMID:18606802

  14. Spectral study, stability and protein labeling of two Carbazole–Benzothiazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lu; Li, Ling; Fei, Xuening, E-mail: xueningfei888@163.com

    2014-05-01

    3-benzothiazole-9-ethyl-carbazole (BEC) and 3,6-di-benzothiazole-9-ethyl-carbazole (DBEC) were synthesized by using carbazole as base and then characterized by {sup 1}H NMR. The optical properties of them were investigated and compared with carbazole and 9-ethyl-carbazole. The photostability and thermostability of the compounds were studied and the results indicated they are both very stable. Effects of solvent properties including polarity, viscosity and refractive index on the spectra properties of the compounds were investigated. Quantum yield of the compounds in organic solvent was also determined and it is found the most complex compound has the highest quantum yield up to 0.68. Finally the synthesized compounds were used to label bovine serum albumin (BSA) protein and simultaneously stability constant (K{sub s}) between them is calculated and compared with other similar dyes. The results showed that the fluorescent intensity of the compound is increased significantly after labeling with BSA protein. - Highlights: • Synthesis and optical properties of two carbazole-benzothiazole derivatives. • Photostability and thermostability of the compounds and compared the results with each other. • Quantum yields of the compounds and the relationship with the structure. • Protein labeling properties of the compounds and stability constant.

  15. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    Science.gov (United States)

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems.

  16. A new function of microtubule-associated protein tau: involvement in chromosome stability.

    Science.gov (United States)

    Rossi, Giacomina; Dalprà, Leda; Crosti, Francesca; Lissoni, Sara; Sciacca, Francesca L; Catania, Marcella; Di Fede, Giuseppe; Mangieri, Michela; Giaccone, Giorgio; Croci, Danilo; Tagliavini, Fabrizio

    2008-06-15

    Tau is a microtubule-associated protein that promotes assembly and stabilization of cytoskeleton microtubules. It is mostly expressed in neuronal and glial cells but it is also present in non-neural cells such as fibroblasts and lymphocytes. An altered tau produces cytoskeleton pathology resulting in neurodegenerative diseases such as Alzheimer's disease and tauopathies. Tau has been suggested to be a multifunctional protein, due to its localization in different cellular compartments. However its further functions are still unclear. We analyzed the distribution of tau in human skin fibroblasts showing its localization in the nucleus and along mitotic chromosomes. Then, we investigated if an altered tau, such as the P301L mutated protein associated with frontotemporal dementia, could produce nuclear pathology. We found that patients carrying the mutation consistently had several chromosome aberrations in their fibroblasts and lymphocytes: chromosome and chromatid breakages or gaps, aneuploidies, translocations, in addition to chromatin bridges and decondensed chromosomes. Our findings argue for a role of tau in chromosome stability by means of its interaction with both microtubules and chromatin.

  17. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis

    Science.gov (United States)

    Goo, Leslie; VanBlargan, Laura A.; Dowd, Kimberly A.; Diamond, Michael S.

    2017-01-01

    The structural flexibility or ‘breathing’ of the envelope (E) protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F) of the West Nile virus (WNV) E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV), but not Zika virus (ZIKV), E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing. PMID:28207910

  18. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability.

    Science.gov (United States)

    Xu, Dongyi; Guo, Rong; Sobeck, Alexandra; Bachrati, Csanad Z; Yang, Jay; Enomoto, Takemi; Brown, Grant W; Hoatlin, Maureen E; Hickson, Ian D; Wang, Weidong

    2008-10-15

    BLM, the helicase mutated in Bloom syndrome, associates with topoisomerase 3alpha, RMI1 (RecQ-mediated genome instability), and RPA, to form a complex essential for the maintenance of genome stability. Here we report a novel component of the BLM complex, RMI2, which interacts with RMI1 through two oligonucleotide-binding (OB)-fold domains similar to those in RPA. The resulting complex, named RMI, differs from RPA in that it lacks obvious DNA-binding activity. Nevertheless, RMI stimulates the dissolution of a homologous recombination intermediate in vitro and is essential for the stability, localization, and function of the BLM complex in vivo. Notably, inactivation of RMI2 in chicken DT40 cells results in an increased level of sister chromatid exchange (SCE)--the hallmark feature of Bloom syndrome cells. Epistasis analysis revealed that RMI2 and BLM suppress SCE within the same pathway. A point mutation in the OB domain of RMI2 disrupts the association between BLM and the rest of the complex, and abrogates the ability of RMI2 to suppress elevated SCE. Our data suggest that multi-OB-fold complexes mediate two modes of BLM action: via RPA-mediated protein-DNA interaction, and via RMI-mediated protein-protein interactions.

  19. Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles.

    Science.gov (United States)

    Wang, Yufang; Wang, Xiaoyong

    2015-12-01

    This work is to study the potential of particles fabricated from soy protein isolate (SPI) as a protective carrier for quercetin. When the concentration of SPI particles increases from 0 to 0.35 g/L, quercetin gives a gradually increased fluorescence intensity and fluorescence anisotropy. The addition of quercetin can highly quench the intrinsic fluorescence of SPI particles. These results are explained in terms of the binding of quercetin to the hydrophobic pockets of SPI particles mainly through the hydrophobic force together with the hydrogen bonding. The small difference in the binding constants at 25 and 40 °C suggests the structural stability of SPI particles. The relative changes in values of Gibbs energy, enthalpy, and entropy indicate that the binding of quercetin with SPI particles is spontaneous and hydrophobic interaction is the major force. Furthermore, SPI particles are superior to native SPI for improving the stability and radical scavenging activity of quercetin.

  20. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.

    Science.gov (United States)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-03-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80°C for 15 min. During heating of w/o emulsions containing 10% (w/v) WPI proteins in the water phase, the emulsions displayed turbid-transparent-turbid phase transitions, which is ascribed to the change in the size of the protein-containing water droplets caused by thermal cross-linking between denatured protein molecules. The transparent stage indicated the formation of WPI NPs. WPI NPs of different sizes were obtained by varying the mixing speed. WPI NPs of 200-500 nm were selected to prepare o/w Pickering emulsions because of their good stability against coalescence. By Confocal Laser Scanning Microscopy, it was observed that WPI NPs were closely packed and distributed at the surface of the emulsion droplets. By measuring water contact angles of WPI NPs films, it was found that under most conditions WPI NPs present good partial wetting properties, but that at the isoelectric point (pI) and high ionic strength the particles become more hydrophobic, resulting in less stable Pickering emulsion. Thus, at pH above and below the pI of WPI NPs and low to moderate ionic strengths (1-10 mM), and with a WPI NPs concentration of 2% (w/v), a stable Pickering emulsion can be obtained. The results may provide useful information for applications of WPI NPs in environmentally friendly and food grade applications, notably in food, pharmaceutical and cosmetic products.

  1. High-throughput identification of protein mutant stability computed from a double mutant fitness landscape.

    Science.gov (United States)

    Wu, Nicholas C; Olson, C Anders; Sun, Ren

    2016-02-01

    The effect of a mutation on protein stability is traditionally measured by genetic construction, expression, purification, and physical analysis using low-throughput methods. This process is tedious and limits the number of mutants able to be examined in a single study. In contrast, functional fitness effects can be measured in a high-throughput manner by various deep mutational scanning tools. Using protein GB 1, we have recently demonstrated the feasibility of estimating the mutational stability effect ( ΔΔG) of single-substitution based on the functional fitness profile of all double-substitutions. The principle is to identify genetic backgrounds that have an exhausted stability margin. The functional effect of an additional substitution on these genetic backgrounds can then be used to compute the mutational ΔΔG based on the biophysical relationship between functional fitness and thermodynamic stability. However, to identify such genetic backgrounds, the approach described in our previous study required a benchmark dataset, which is a set of known mutational ΔΔG. In this study, a benchmark-independent approach is developed. The genetic backgrounds of interest are identified using k-means clustering with the integration of structural information. We further demonstrated that a reasonable approximation of ΔΔG can also be obtained without taking structural information into account. In summary, this study describes a novel method for computing ΔΔG from double-substitution functional fitness profiles alone, without relying on any known mutational ΔΔG as a benchmark.

  2. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein

    OpenAIRE

    de Folter, J.W.J.; van Ruijven, M.W.M.; Velikov, K.

    2012-01-01

    Few fully natural and biocompatible materials are available for the effective particle-stabilization of emulsions since strict requirements, such as insolubility in both fluid phases and intermediate wettability, need to be met. In this paper, we demonstrate the first use of water-insoluble proteins, employing the corn protein zein as a representative of this family, as effective particle-stabilizers of oil-in-water emulsions of natural oils and water. For this purpose, we synthesized zein co...

  3. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    Science.gov (United States)

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  4. Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing Polymorphism within the Core Region*

    Science.gov (United States)

    Cobb, Nathan J.; Apostol, Marcin I.; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K.

    2014-01-01

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region. PMID:24338015

  5. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells

    Science.gov (United States)

    Choi, Seung H.; Wright, Jason B.; Gerber, Scott A.; Cole, Michael D.

    2010-01-01

    Rapid Myc protein turnover is critical for maintaining basal levels of Myc activity in normal cells and a prompt response to changing growth signals. We characterize a new Myc-interacting factor, TRPC4AP (transient receptor potential cation channel, subfamily C, member 4-associated protein)/TRUSS (tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein), which is the receptor for a DDB1 (damage-specific DNA-binding protein 1)–CUL4 (Cullin 4) E3 ligase complex for selective Myc degradation through the proteasome. TRPC4AP/TRUSS binds specifically to the Myc C terminus and promotes its ubiquitination and destruction through the recognition of evolutionarily conserved domains in the Myc N terminus. TRPC4AP/TRUSS suppresses Myc-mediated transactivation and transformation in a dose-dependent manner. Finally, we found that TRPC4AP/TRUSS expression is strongly down-regulated in most cancer cell lines, leading to Myc protein stabilization. These studies identify a novel pathway targeting Myc degradation that is suppressed in cancer cells. PMID:20551172

  6. Thermal stability of pepsin: A predictive thermodynamic model of a multi-domain protein

    Directory of Open Access Journals (Sweden)

    Ali Asghar Rastegari

    2017-03-01

    Full Text Available Pepsin is generally used in the preparation of F(ab2 fragments from antibodies. The antibodies that are one of the largest and fastest growing categories of bio- pharmaceutical candidates. Differential scanning calorimetric is principally suitable method to follow the energetics of a multi-domain, fragment to perform a more exhaustive description of the thermodynamics in an associating system. The thermodynamical models of analysis include the construction of a simultaneous fitting of a theoretical expression. The expression depending on the equilibrium unfolding data from multimeric proteins that have a two-state monomer. The aim of the present study is considering the DSC data in connection with pepsin going through reversible thermal denaturation. Afterwards, we calculate the homology modeling identification of pepsin in complex multi-domain families with varied domain architectures. In order to analyze the DSC data, the thermal denaturation of multimer proteins were considered, the “two independent two-state sequential transitions with domains dissociation model” was introduced by using of the effective ΔG concept. The reversible unfolding of the protein description was followed by the two-state transition quantities which is a slower irreversible process of aggregation. The protein unfolding is best described by two non-ideal transitions, suggesting the presence of unfolding intermediates. These evaluations are also applicable for high throughput investigation of protein stability.

  7. [Mechanisms of human plasma proteins adsorption on the surface of perfluorocarbon emulsion stabilized with proxanol 268].

    Science.gov (United States)

    Zhalimov, V K; Sklifas, A N; Kukushkin, N I

    2012-01-01

    It has been shown that sorption of most proteins with the molecular weight lower than 200 kDa from human blood plasma on the surface of perfluorocarbon emulsion, stabilized with proxanol 268, is mainly based on hydrophobic interaction, whereas sorption of immunoglobulin G is mainly the result of electrostatic interaction. The removal of lipidic components from plasma leads to the increase of a total amount of adsorbed proteins by 35%. Particularly, when lipidic components are removed, sorption of apolipoprotein AI and immunoglobulin G is considerably bettered as well as sorption of other proteins with the molecular weight of about 50 and 60 kDa occurs. It has been out that apolipoprotein AI in the adsorbed condition loses its capability of tryptophan fluorescence, which might be probably determined by the quenching influence of the perfluorocarbon core of nanoparticle. We think that the findings obtained also indicates considerable conformational rearrangements of this protein during adsorption. It was shown, that the fluorescence of proteins with sorption on nanoparticles in emulsion based on the hydrophobic interaction, is completely or partially quenched.

  8. Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax.

    Science.gov (United States)

    Friis, Dennis S; Johnsen, Johannes L; Kristiansen, Erlend; Westh, Peter; Ramløv, Hans

    2014-06-01

    The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm , of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths of the ice binding motifs; high melting temperature AFPs (high disulfide content, TxT motifs), low melting temperature but high refolding capability AFPs (one disulfide bridge, TxTxTxT motifs) and irreversibly unfolded AFPs at low temperatures (no disulfide bridges, TxTxTxTxT motifs). The property of being able to cope with high temperature exposures may appear peculiar for proteins which strictly have their effect at subzero temperatures. Different aspects of this are discussed.

  9. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka-Sugiyama, Rie [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugiyama, Tomoyasu, E-mail: sugiyamt@biol.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  10. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance

    OpenAIRE

    Miura, Kenji; Ohta, Masaru; Nakazawa, Machiko; Ono, Michiyuki; Hasegawa, Paul M.

    2011-01-01

    ICE1, a MYC-type transcription factor, has an important role in the induction of CBF3/DREB1A for regulation of cold signaling and tolerance. Here we reveal that serine 403 of ICE1 is involved in regulating the transactivation and stability of the ICE1 protein. Substitution of serine 403 by alanine enhanced the transactivational activity of ICE1 in Arabidopsis protoplasts. Over-expression of ICE1(S403A) conferred more freezing tolerance than ICE1(WT) in Arabidopsis, and the expression of cold-...

  11. Structure and stability of complexes of agmatine with some functional receptor residues of proteins

    Science.gov (United States)

    Remko, Milan; Broer, Ria; Remková, Anna; Van Duijnen, Piet Th.

    2017-04-01

    The paper reports the results of a theoretical study of the conformational behavior and basicity of biogenic amine agmatine. The complexes modelling of agmatine - protein interaction are also under scrutiny of our investigation using the Becke3LYP and B97D levels of the density functional theory. The relative stabilities (Gibbs energies) of individual complexes are by both DFT methods described equally. Hydration has a dramatic effect on the hydrogen bonded complexes studied. The pairing acidic carboxylate group with different agmatine species resulted in charged hydrogen bond complexes containing negatively charged acetate species acting as proton acceptors.

  12. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation

    DEFF Research Database (Denmark)

    Holm, Jeppe; Dasmeh, Pouria; Kepp, Kasper Planeta

    2016-01-01

    The evolution of cetaceans (whales, dolphins, and porpoises) from land to water is one of the most spectacular events in mammal evolution. It has been suggested that selection for higher myoglobin stability (ΔG of folding) allowed whales to conquer the deep-diving niche. The stability of multi...... that predicts multi-site ΔΔG as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1 kcal....../mol) occurred very early, and stability was later relaxed in dolphins and porpoises, but was further increased in the sperm whales. This suggests that single proteins can affect whole organism evolution and indicates a role of Mb stability in the evolution of cetaceans. Transition to the deep-diving niche...

  13. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability.

    Science.gov (United States)

    Karimi, Maryam; Ignasiak, Marta T; Chan, Bun; Croft, Anna K; Radom, Leo; Schiesser, Carl H; Pattison, David I; Davies, Michael J

    2016-12-12

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 10(4) in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.

  14. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability

    Science.gov (United States)

    Karimi, Maryam; Ignasiak, Marta T.; Chan, Bun; Croft, Anna K.; Radom, Leo; Schiesser, Carl H.; Pattison, David I.; Davies, Michael J.

    2016-12-01

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 104 in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.

  15. Data on the role of accessible surface area on osmolytes-induced protein stabilization

    Directory of Open Access Journals (Sweden)

    Safikur Rahman

    2017-02-01

    Full Text Available This paper describes data related to the research article “Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins” [1]. Heat- and guanidinium chloride (GdmCl-induced denaturation of three disulfide free proteins (bovine cytochrome c (b-cyt-c, myoglobin (Mb and barstar in the presence of different concentrations of methylamines (sarcosine, glycine-betaine (GB and trimethylamine-N-oxide (TMAO was monitored by [ϴ]222, the mean residue ellipticity at 222 nm at pH 7.0. Methylamines belong to a class of osmolytes known to protect proteins from deleterious effect of urea. This paper includes comprehensive thermodynamic data obtained from the heat- and GdmCl-induced denaturations of barstar, b-cyt-c and Mb.

  16. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation.

    Science.gov (United States)

    Lu, Diannan; Yang, Cheng; Liu, Zheng

    2012-01-12

    Glycosylation is one of the most common post-translational modifications in the biosynthesis of protein, but its effect on the protein conformational transitions underpinning folding and stabilization is poorly understood. In this study, we present a coarse-grained off-lattice 46-β barrel model protein glycosylated by glycans with different hydrophobicity and glycosylation sites to examine the effect of glycans on protein folding and stabilization using a Langevin dynamics simulation, in which an H term was proposed as the index of the hydrophobicity of glycan. Compared with its native counterpart, introducing glycans of suitable hydrophobicity (0.1 enthalpy effect. The simulations have shown both the stabilization and the destabilization effects of glycosylation, as experimentally reported in the literature, and provided molecular insight into glycosylated proteins. The understanding of the effects of glycans with different hydrophobicities on the folding and stability of protein, as attempted by the present work, is helpful not only to explain the stabilization and destabilization effect of real glycoproteins but also to design protein-polymer conjugates for biotechnological purposes.

  17. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    Science.gov (United States)

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT

  18. Milk protein composition and stability changes affected by iron in water sources.

    Science.gov (United States)

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  19. The First Residue of the PWWP Motif Modulates HATH Domain Binding, Stability, and Protein-Protein Interaction.

    Science.gov (United States)

    Hung, Yi-Lin; Lee, Hsia-Ju; Jiang, Ingjye; Lin, Shang-Chi; Lo, Wei-Cheng; Lin, Yi-Jan; Sue, Shih-Che

    2015-07-01

    Hepatoma-derived growth factor (hHDGF) and HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic structural motif, namely the PWWP motif. The HATH domain has attracted attention because of its ability to bind with heparin/heparan sulfate, DNA, and methylated histone peptide. Depending on the sequence of the PWWP motif, HRP HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro) forms. A-type HATH is highly unstable and tends to precipitate in solution. We replaced the Pro residue in P-type HATHHDGF with Ala and evaluated the influence on structure, dynamics, and ligand binding. Nuclear magnetic resonance (NMR) hydrogen/deuterium exchange and circular dichroism (CD) measurements revealed reduced stability. Analysis of NMR backbone (15)N relaxations (R1, R2, and nuclear Overhauser effect) revealed additional backbone dynamics in the interface between the β-barrel and the C-terminal helix bundle. The β1-β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction through the loop. A-type HATH, therefore, shows a stronger tendency to aggregate when binding with heparin and DNA oligomers. This study defines the role of the first residue of the PWWP motif in modulating HATH domain stability and oligomer formation in binding.

  20. Metabolic effects of a stabilizing peptide fusion protein of leptin in normal mice.

    Science.gov (United States)

    Park, H; Lee, S-B; Koh, J; Kim, J

    2012-06-01

    Leptin is a protein hormone produced by adipocytes. It is secreted into the blood stream and plays a key role in regulating body energy homeostasis by inhibiting feeding behavior followed by decreased body weight. Because protein aggregation is a major problem in therapeutic proteins, we previously demonstrated that a stabilizing peptide (SP) fusion protein of leptin (SP-leptin) appeared to resist aggregation induced by agitation, freezing/thawing, or heat stress. In this study, we fused mouse leptin with the stabilizing peptide and compared the biological activities of leptin and SP-leptin in vivo using a male C57Bl mouse model and ex vivo using MCF7 breast cancer cell lines. Each group of mice was treated with saline, leptin, and SP-leptin for 20 days and the differences in body weight, food intake, abdominal fat contents, and TG concentration were measured. The SP-leptin appeared to decrease the body weight and food intake in male C57Bl mice more significantly than wild type leptin, and the SP-leptin treated MCF7 cells displayed better cell proliferation than leptin. As a consequence of decreased body weight, the SP-leptin treated mouse group showed decreased abdominal fat contents and low triglyceride (TG) concentration. Moreover, the SP-leptin treated mouse group had fewer lipid droplets in liver and reduced lipid droplet size when analyzed by Oil red O and H & E staining. These results demonstrated that SP-leptin is more effective than wild type leptin in normal mice in lowering their body weight and fat contents in the abdominal region, the serum, and the liver.

  1. Mutation bias favors protein folding stability in the evolution of small populations.

    Science.gov (United States)

    Mendez, Raul; Fritsche, Miriam; Porto, Markus; Bastolla, Ugo

    2010-05-01

    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.

  2. Mutation bias favors protein folding stability in the evolution of small populations.

    Directory of Open Access Journals (Sweden)

    Raul Mendez

    2010-05-01

    Full Text Available Mutation bias in prokaryotes varies from extreme adenine and thymine (AT in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC, for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.

  3. The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability.

    Science.gov (United States)

    Selzer, Lisa; Katen, Sarah P; Zlotnick, Adam

    2014-09-02

    During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer-dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61-C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome.

  4. Genistein induces apoptosis by stabilizing intracellular p53 protein through an APE1-mediated pathway.

    Science.gov (United States)

    Zhu, Jianwu; Zhang, Chong; Qing, Yi; Cheng, Yi; Jiang, Xiaolin; Li, Mengxia; Yang, Zhenzhou; Wang, Dong

    2015-09-01

    Genistein (GEN) has been previously shown to have a proapoptotic effect on cancer cells through a p53-dependent pathway, the mechanism of which remains unclear. One of its intracellular targets, APE1, protects against apoptosis under genotoxic stress and interacts with p53. In this current study, we explored the mechanism of the proapoptotic effect of GEN by examining the APE1-p53 protein-protein interaction. We initially showed that the p53 protein level was elevated in GEN-treated human non-small lung cancer A549 cells and cervical cancer HeLa cells. By examining both protein synthesis and degradation, we found that GEN enhances p53 intracellular stability by interfering with the interaction of APE1 and p53, which provided a plausible explanation for how GEN initiates apoptosis. Furthermore, we found that the interaction between APE1 and p53 is important for the degradation of p53 and is dependent on the redox domain of APE1 by utilizing the redox domain mutant APE1 C65A. Our data suggest that the degradation of wild-type p53 is blocked when the redox domain of APE1 is masked or interrupted. Based on this evidence, we hereby report a novel mechanism of p53 degradation through an APE1-mediated, redox-dependent pathway.

  5. Whey protein coating increases bilayer rigidity and stability of liposomes in food-like matrices.

    Science.gov (United States)

    Frenzel, Monika; Steffen-Heins, Anja

    2015-04-15

    Liposomes are suitable for encapsulating lipophilic bioactive compounds, enhancing compound solubility, stability and bioavailability. To enhance physical stability of liposomes in food-like matrices they were coated with positively charged whey protein isolate (WPI). WPI concentration, for a successful coating, was optimised by dynamic light scattering (DLS) and zeta potential measurements. Membrane properties of coated and uncoated vesicles were investigated by electron paramagnetic resonance (EPR) with site-directed and non-site-directed spin probes. Coexistence of two or three simulated spin probe populations indicated a less fluid membrane and higher concentration of water molecules in the phosphate/glycerol moiety with WPI coating. This relies on the insertion of WPI into the membrane, which is favoured by the molten globule state under investigated acidic conditions. Physical stability of liposomes benefits from WPI coating, as indicated by prolonged shelf-life, cancellation of osmotic effects in the presence of salts or sugars and a lower sensitivity towards low pH values during in vitro gastric digestion.

  6. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    Science.gov (United States)

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the

  7. High throughput computing to improve efficiency of predicting protein stability change upon mutation.

    Science.gov (United States)

    Wu, Chao-Chin; Lai, Lien-Fu; Gromiha, M Michael; Huang, Liang-Tsung

    2014-01-01

    Predicting protein stability change upon mutation is important for protein design. Although several methods have been proposed to improve prediction accuracy it will be difficult to employ those methods when the required input information is incomplete. In this work, we integrated a fuzzy query model based on the knowledge-based approach to overcome this problem, and then we proposed a high throughput computing method based on parallel technologies in emerging cluster or grid systems to discriminate stability change. To improve the load balance of heterogeneous computing power in cluster and grid nodes, a variety of self-scheduling schemes have been implemented. Further, we have tested the method by performing different analyses and the results showed that the present method can process hundreds of predication queries in more reasonable response time and perform a super linear speedup to a maximum of 86.2 times. We have also established a website tool to implement the proposed method and it is available at http://bioinformatics.myweb.hinet.net/para.htm.

  8. [High protein and vitamin cereal bars: enzymatic and vitamins C and E stability during storage].

    Science.gov (United States)

    Freitas, Daniela G C; Moretti, Roberto H

    2006-09-01

    Cereal-based products have become an excellent vehicle for delivering tasty functional food ingredients to busy consumers. One emerging trends is food products formulates with soy protein because of its proven health benefits. Because of the potential usefulness of these products, it was considered of interest to determine the stability of cereal bars based on soy protein, wheat germ and oat, enriched with vitamin C (ascorbic acid) and E (acetate of a-tocopherol 50%), during the storage. Three films with different properties of barrier (A: PET/PEBD; B: PETMET/PEBD; C: PET/PEBD/ALIPEBD) were used as packing and the cereal bars were stored at temperature (25 +/- 2 degrees C) and relative humidity ambient (56%) for six months. The stability of vitamin C, vitamin E and, its lipase and peroxidase activity was verified. During the study, the cereal bars packed in three tested films presented retention in the vitamin C lesser that 50%. However, packing structuralized with aluminum (C) leaf provided to minor speed of reaction during the storage, k = 0.00437 (-day), and greater time of half-life (146 days). The vitamin E (acetate of a-tocopherol) in the cereal bars presented a little variation during the storage. It had a significant (p < or = 0.05) increase in the peroxidase activity at 90 days of storage in the packages tested, while that the lipase activity demonstrated no significant increase during the period studied.

  9. Preservation of protein in marine systems: Hydrophobic and other noncovalent associations as major stabilizing forces

    Science.gov (United States)

    Nguyen, Reno T.; Harvey, H. Rodger

    2001-05-01

    - The fate of proteins during early diagenesis was investigated in environments with low mineral content to assess preservation mechanisms other than mineral sorption. Preservation was examined in anoxic, organic-rich sediments of Mangrove Lake, a marine environment located in Bermuda, and for particulate material generated during oxic decay of diatoms. N-phenacylthiazolium bromide (PTB) treatment tested the hypothesis that proteins may undergo modification reactions with glucose to form advanced-glycation end products (AGEs). A small but significant release (additional 14%) of proteins was observed after PTB treatment in surficial sediments, indicating that some aggregations can proceed through an α-dicarbonyl intermediate of the AGE pathway. Size-exclusion high-pressure liquid chromatography with protein fluorescence, absorbance, and evaporative light-scattering detector measurements under native (phosphate or bicarbonate buffers) and denaturing (guanidine · HCl, urea, or acetonitrile) conditions point to the importance of hydrophobic and other noncovalent interactions in the stabilization of proteinaceous material in the environment. Soluble aggregates of substantial, relative molecular mass ( Mr ≳ 10 6) appear to be formed early in the diagenetic sequence. The preferential preservation of very high Mr, multisubunit phytoplankton proteins in sediments suggests that such aggregations confer resistance to degradation. Alternatively, some of the proteinaceous material may represent that fraction of organic matter that is highly prone to aggregations. Extended incubations (18 h; 37°C) with trypsin and proteinase-K showed that much of the aggregates that could be extracted are receptive to proteolytic cleavage. Buffer-, surfactant-, and NaOH-extractable aggregates comprised most of the acid-hydrolyzable proteinaceous material in detritus and surficial sediments but <35% in 9.7-m-deep sediments, suggesting additional mechanisms for preservation might be in

  10. Lipid digestion of protein stabilized emulsions investigated in a dynamic in vitro gastro-intestinal model system

    NARCIS (Netherlands)

    Helbig, A.; Silletti, E.; Aken, G.A. van; Oosterveld, A.; Minekus, M.; Hamer, R.J.; Gruppen, H.

    2013-01-01

    This study investigated the effect of gastric passage of protein stabilized emulsions, i.e., whey protein isolate (WPI) and lysozyme, under dynamic in vitro conditions on both the gastric and intestinal lipolysis. Emulsions were prepared at neutral pH to enable an opposite surface charge. Experiment

  11. Lipid Digestion of Protein Stabilized Emulsions Investigated in a Dynamic In Vitro Gastro-Intestinal Model System

    NARCIS (Netherlands)

    Helbig, A.; Silletti, E.; Aken, van G.A.; Oosterveld, A.; Minekus, M.; Hamer, R.J.; Gruppen, H.

    2013-01-01

    This study investigated the effect of gastric passage of protein stabilized emulsions, i.e., whey protein isolate (WPI) and lysozyme, under dynamic in vitro conditions on both the gastric and intestinal lipolysis. Emulsions were prepared at neutral pH to enable an opposite surface charge. Experiment

  12. Impact of α-lactalbumin:β-lactoglobulin ratio on the heat stability of model infant milk formula protein systems.

    Science.gov (United States)

    Crowley, Shane V; Dowling, Aisling P; Caldeo, Veronica; Kelly, Alan L; O'Mahony, James A

    2016-03-01

    Model infant milk formula systems (5.5% protein) were formulated to contain α-lactalbumin:β-lactoglobulin ratios of 0.1, 0.5, 1.3, 2.1 or 4.6 and assessed for heat stability and heat-induced changes. 'Humanising' the model formulas by increasing α-lactalbumin:β-lactoglobulin enhanced heat stability at 140°C in the pH range 6.6-6.9. The model formulas were analysed after lab-scale high-temperature short-time heating at pH 6.8. Gel electrophoresis indicated that increased heat stability in high α-lactalbumin:β-lactoglobulin samples was due to decreased covalent interactions between proteins. In low α-lactalbumin:β-lactoglobulin formulas, protein-protein interactions caused marked increases in protein particle size and viscosity of the heated systems; conversely, covalent interactions between proteins were minimal in high α-lactalbumin:β-lactoglobulin formulas. Reduced protein-protein interactions with increasing α-lactalbumin:β-lactoglobulin has important implications for subsequent processing; for example, lower viscosity post-heating may affect bulk density in spray-dried products or physical stability in ready-to-feed products.

  13. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method

    Science.gov (United States)

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  14. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    protein stabilization in the normal mouse pancreas explants. We conclude that the mutually exclusive expression pattern of Ngn3/Hes1 proteins in the mammalian pancreas is partially controlled through Notch-mediated post-translational regulation and we demonstrate that the formation of insulin...

  15. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    Science.gov (United States)

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  16. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    Science.gov (United States)

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  17. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    Science.gov (United States)

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

  18. Trp RNA-binding attenuation protein: modifying symmetry and stability of a circular oligomer.

    Directory of Open Access Journals (Sweden)

    Oliver W Bayfield

    Full Text Available BACKGROUND: Subunit number is amongst the most important structural parameters that determine size, symmetry and geometry of a circular protein oligomer. The L-tryptophan biosynthesis regulator, TRAP, present in several Bacilli, is a good model system for investigating determinants of the oligomeric state. A short segment of C-terminal residues defines whether TRAP forms an 11-mer or 12-mer assembly. To understand which oligomeric state is more stable, we examine the stability of several wild type and mutant TRAP proteins. METHODOLOGY/PRINCIPAL FINDINGS: Among the wild type B. stearothermophilus, B. halodurans and B. subtilis TRAP, we find that the former is the most stable whilst the latter is the least. Thermal stability of all TRAP is shown to increase with L-tryptophan concentration. We also find that mutant TRAP molecules that are truncated at the C-terminus - and hence induced to form 12-mers, distinct from their 11-mer wild type counterparts--have increased melting temperatures. We show that the same effect can be achieved by a point mutation S72N at a subunit interface, which leads to exclusion of C-terminal residues from the interface. Our findings are supported by dye-based scanning fluorimetry, CD spectroscopy, and by crystal structure and mass spectrometry analysis of the B. subtilis S72N TRAP. CONCLUSIONS/SIGNIFICANCE: We conclude that the oligomeric state of a circular protein can be changed by introducing a point mutation at a subunit interface. Exclusion (or deletion of the C-terminus from the subunit interface has a major impact on properties of TRAP oligomers, making them more stable, and we argue that the cause of these changes is the altered oligomeric state. The more stable TRAP oligomers could be used in potential applications of TRAP in bionanotechnology.

  19. Ligand specificity and conformational stability of human fatty acid-binding proteins.

    Science.gov (United States)

    Zimmerman, A W; van Moerkerk, H T; Veerkamp, J H

    2001-09-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.

  20. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  1. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions.

    Science.gov (United States)

    Kizuka, Yasuhiko; Nakano, Miyako; Kitazume, Shinobu; Saito, Takashi; Saido, Takaomi C; Taniguchi, Naoyuki

    2016-01-01

    β-Site amyloid precursor protein-cleaving enzyme-1 (BACE1) is a protease essential for amyloid-β (Aβ) production in Alzheimer's disease (AD). BACE1 protein is known to be up-regulated by oxidative stress-inducing stimuli but the mechanism for this up-regulation still needs to be clarified. We have recently found that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc) by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene) and that GnT-III deficiency reduces Aβ-plaque formation in the brain by accelerating lysosomal degradation of BACE1. Therefore, we hypothesized that bisecting GlcNAc would stabilize BACE1 protein on oxidative stress. In the present study, we first show that Aβ deposition in the mouse brain induces oxidative stress, together with an increase in levels of BACE1 and bisecting GlcNAc. Furthermore, prooxidant treatment induces expression of BACE1 protein in wild-type mouse embryonic fibroblasts (MEFs), whereas it reduces BACE1 protein in GnT-III (Mgat3) knock-out MEFs by accelerating lysosomal degradation of BACE1. We purified BACE1 from Neuro2A cells and performed LC/ESI/MS analysis for BACE1-derived glycopeptides and mapped bisecting GlcNAc-modified sites on BACE1. Point mutations at two N-glycosylation sites (Asn(153) and Asn(223)) abolish the bisecting GlcNAc modification on BACE1. These mutations almost cancelled the enhanced BACE1 degradation seen in Mgat3(-/-) MEFs, indicating that bisecting GlcNAc on BACE1 indeed regulates its degradation. Finally, we show that traumatic brain injury-induced BACE1 up-regulation is significantly suppressed in the Mgat3(-/-) brain. These results highlight the role of bisecting GlcNAc in oxidative stress-induced BACE1 expression and offer a novel glycan-targeted strategy for suppressing Aβ generation.

  2. Conformational changes in DNA-binding proteins: relationships with precomplex features and contributions to specificity and stability.

    Science.gov (United States)

    Andrabi, Munazah; Mizuguchi, Kenji; Ahmad, Shandar

    2014-05-01

    Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA-binding proteins by superimposing DNA-bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA-binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner.

  3. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions.

    Science.gov (United States)

    Bochicchio, Brigida; Tamburro, Antonio Mario

    2002-11-01

    In the last years polyproline II (PPII) structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response. The polyproline left-handed helical structure was nearly unknown until now and often confused with unordered, disordered, irregular, unstructured, extended, or random coil conformations because it is neither alpha-helical nor beta-turn nor beta-sheet, i.e., a classical structure. In spite of the regularity of the PPII structure and, more precisely, its well-defined dihedral angle values, a typical feature of PPII structure is the absence of any intramolecular hydrogen bonds that renders the PPII structure indistinguishable from an irregular backbone structure by (1)H-NMR spectroscopy. The only way to unambiguously reveal PPII structure in solution is to use spectroscopies based on optical activity, such as circular dichroism (CD), vibrational circular dichroism (VCD), and Raman optical activity (ROA). Herein we focus on the identification of PPII structure by CD, widely considered to be the most reliable methodology. Then we report on VCD and ROA spectroscopies as tools in the identification of PPII structure. A third section is dedicated to the analysis of the stabilization of PPII conformation in aqueous solution. Finally, the significance of PPII in self-assembly processes, in elasticity of elastomeric proteins, and in proteins-(peptides) proteins molecular recognition processes are considered.

  4. Influence of yogurt fermentation and refrigerated storage on the stability of protein toxin contaminants.

    Science.gov (United States)

    Jackson, Lauren S; Triplett, Odbert A; Tolleson, William H

    2015-06-01

    Dairy products sold in a ready-to-eat form present the risk that adulterants persisting through manufacturing, storage, and distribution would reach consumers. Pathogenic microbes, including shigatoxigenic strains of Escherichia coli and the toxins they produce, are common food safety hazards associated with dairy products. Ricin and abrin are plant-derived ribosome-inactivating protein toxins related to the shiga-like toxins produced by E. coli. Limited information exists on the effects of manufacturing processes on the stabilities of these heat-resistant ribosome-inactivating proteins in the presence of foods. The goal of this study was to determine how typical yogurt manufacturing and storage processes influence ribosome-inactivating protein toxins. Ricin and abrin were added to skim or whole milk and batch pasteurized. Complete inactivation of both toxins was observed after 30 minutes at 85 °C. If the toxins were added after pasteurization, the levels of ricin and abrin in yogurt and their cytotoxic activities did not change significantly during fermentation or refrigerated storage for 4 weeks. The activities of ricin and abrin were inhibited by skim milk, nonfat yogurt, whole milk, and whole milk yogurt. The results showed minimal effects of the toxins on yogurt pH and %titratable acidity but inhibitory effects of yogurt on toxin activity.

  5. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity.

    Science.gov (United States)

    Stockton, Rebecca A; Shenkar, Robert; Awad, Issam A; Ginsberg, Mark H

    2010-04-12

    Endothelial cell-cell junctions regulate vascular permeability, vasculogenesis, and angiogenesis. Familial cerebral cavernous malformations (CCMs) in humans result from mutations of CCM2 (malcavernin, OSM, MGC4607), PDCD10 (CCM3), or KRIT1 (CCM1), a Rap1 effector which stabilizes endothelial cell-cell junctions. Homozygous loss of KRIT1 or CCM2 produces lethal vascular phenotypes in mice and zebrafish. We report that the physical interaction of KRIT1 and CCM2 proteins is required for endothelial cell-cell junctional localization, and lack of either protein destabilizes barrier function by sustaining activity of RhoA and its effector Rho kinase (ROCK). Protein haploinsufficient Krit1(+/-) or Ccm2(+/-) mouse endothelial cells manifested increased monolayer permeability in vitro, and both Krit1(+/-) and Ccm2(+/-) mice exhibited increased vascular leak in vivo, reversible by fasudil, a ROCK inhibitor. Furthermore, we show that ROCK hyperactivity occurs in sporadic and familial human CCM endothelium as judged by increased phosphorylation of myosin light chain. These data establish that KRIT1-CCM2 interaction regulates vascular barrier function by suppressing Rho/ROCK signaling and that this pathway is dysregulated in human CCM endothelium, and they suggest that fasudil could ameliorate both CCM disease and vascular leak.

  6. Human single-stranded DNA binding proteins: guardians of genome stability

    Institute of Scientific and Technical Information of China (English)

    Yuanzhong Wu; Jinping Lu; Tiebang Kang

    2016-01-01

    Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms.All processes related to DNA,such as replication,excision,repair,and recombination,require the participation of SSBs whose oligonucleotideaoligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA).For a long time,the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukanyotes to participate in ssDNA processing,while mitochondrial SSBs that are consewed with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria.In recent years,two new proteins,hSSB1 and hSSB2 (human SSBs 1/2),were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA.This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage,as well as their relationships with cancer.

  7. Long term stabilization of reaction center protein photochemistry by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, Melinda; Hajdu, Kata; Szabo, Tibor; Nagy, Laszlo [Department of Medical Physics and Informatics, University of Szeged, 6720 Szeged (Hungary); Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, 6720 Szeged (Hungary); Dombi, Andras [Institute of Material Sciences and Engineering, University of Szeged, 6701 Szeged (Hungary); Horvath, Endre; Magrez, Arnaud; Forro, Laszlo [Institute of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2011-11-15

    The long term stability and the redox interaction between single walled carbon nanotubes (SWNTs) and photosynthetic reaction center proteins (RCs) purified from purple bacterium Rhodobacter sphaeroides R-26 in the SWNT/RC complex has been investigated. The binding of SWNT to RC results in an accumulation of positive (the oxidized primary electron donor, P{sup +}) and negative (semiquinone forms, Q{sup -}{sub A} and Q{sup -}{sub B}, the reduced primary and secondary quinones, respectively) charges followed by slow reorganization of the protein structure after excitation. The photochemical activity of the SWNT/RC complexes remains stable for several weeks even in dried form. In the absence of SWNT the secondary quinone activity decays quickly as a function of time after drying the RC onto a glass surface. Polarography measurements substantiate the idea that there is an electronic interaction between the RCs and SWNTs after light excitation, which was suggested earlier by optical measurements. The special electronic properties of the SWNT/protein complexes open the possibility for several applications, e.g., in microelectronics, analytics, or energy conversion and storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Entropic formulation for the protein folding process: hydrophobic stability correlates with folding rates

    CERN Document Server

    Molin, J P Dal

    2016-01-01

    We assume that the protein folding process follows two autonomous steps: the conformational search for the native, mainly ruled by the hydrophobic effect; and, the final adjustment stage, which eventually gives stability to the native. Our main tool of investigation is a 3D lattice model provided with a ten-letter alphabet, the stereochemical model. This model was conceived for Monte Carlo (MC) simulations when one keeps in mind the kinetic behavior of protein-like chains in solution. In order to characterize the folding characteristic time ({\\tau}) by two distinct sampling methods, first we present two sets of 10^{3} MC simulations for a fast protein-like sequence. For these sets of folding times, {\\tau} and {\\tau}_{q} were obtained with the application of the standard Metropolis algorithm (MA), and a modified algorithm (M_{q}A). The results for {\\tau}_{q}reveal two things: i) the hydrophobic chain-solvent interactions plus a set of inter-residues steric constraints are enough to emulate the first stage of t...

  9. Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

    Directory of Open Access Journals (Sweden)

    C. George Priya Doss

    2012-12-01

    Full Text Available Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1 destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%, PolyPhen 2.0 (61% and SNAP (58%. From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  10. Possible Linkage of SP6 Transcriptional Activity with Amelogenesis by Protein Stabilization

    Directory of Open Access Journals (Sweden)

    Trianna W. Utami

    2011-01-01

    Full Text Available Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.

  11. Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization.

    Science.gov (United States)

    Utami, Trianna W; Miyoshi, Keiko; Hagita, Hiroko; Yanuaryska, Ryna Dwi; Horiguchi, Taigo; Noma, Takafumi

    2011-01-01

    Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.

  12. An Outlook on Biothermodynamics: Needs, Problems, and New Developments. I. Stability and Hydration of Proteins

    Science.gov (United States)

    Keller, Jürgen U.

    2008-12-01

    The application of concepts, principles, and methods of thermodynamics of equilibria and processes to bioengineering systems has led to a new and growing field: engineering biothermodynamics. This article, which is meant as the first in a series, gives an outline of basic aspects, changes, and actual examples in this field. After a few introductory remarks, the basic concepts and laws of thermodynamics extended to systems with internal variables, which serve as models for biofluids and other biosystems, are given. The method of thermodynamics is then applied to the problem of thermal stability of aqueous protein solutions, especially to that of myoglobin solutions. After this, the phenomenon of hydration of proteins by adsorption and intrusion of water molecules is considered. Several other phenomena like the adsorption of proteins on solid surfaces or cell membranes and their temperature and pressure-related behavior represented by an equation of state, or the thermodynamics of bacterial solutions including chemical reactions like wine fermentation, etc., will be presented in Parts II and III of this article.

  13. Influence of maltodextrin and environmental stresses on stability of whey protein concentrate/κ-carrageenan stabilized sesame oil-in-water emulsions.

    Science.gov (United States)

    Onsaard, E; Putthanimon, J; Singthong, J; Thammarutwasik, P

    2014-12-01

    The influence of maltodextrin with different concentrations (0-30%) and dextrose equivalent (dextrose equivalent 10 and dextrose equivalent 15) under different environmental stresses (pH 3-8, NaCl 0-500 mM, and sucrose 0-20%) on the stability of whey protein concentrate/κ-carrageenan stabilized sesame oil-in-water emulsions was investigated by mean particle diameter, particle size distribution, ζ-potential, microstructure, and viscosity. Sesame oil-in-water emulsions containing anionic droplets stabilized by interfacial membranes comprising whey protein concentrate/κ-carrageenan/maltodextrin (15% sesame oil, 0.5% whey protein concentrate, 0.2% κ-carrageenan, 0.02% sodium azide and 0-30% maltodextrin with dextrose equivalent of 10 and 15, 5 mM phosphate buffer, pH 7) were produced using a homogenizer. The primary emulsion (1°) containing whey protein concentrate-coated droplets was prepared by homogenizing. The secondary emulsion (2°) containing whey protein concentrate-κ-carrageenan in the absence or presence of maltodextrin was produced by mixing the 1° emulsion with an aqueous κ-carrageenan in the absence or presence of maltodextrin solution. There were no significant changes in mean droplet diameter and ζ-potential of droplets at any maltodextrin concentration (0-30%) or dextrose equivalent (10 and 15) after 24 h storage. The apparent viscosity of emulsions increased when the maltodextrin concentration increased. The 2° emulsion containing 15% maltodextrin with dextrose equivalent of 10 had the stability to aggregation at pH 6-8, NaCl ≤ 300 mM, and sucrose 0-20%. The addition of maltodextrin to emulsion can be used to form emulsions with different physicochemical properties for various applications in food processing (for example, encapsulation).

  14. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    Science.gov (United States)

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  15. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography.

    Science.gov (United States)

    Zhou, Ling; Danielson, Neil D

    2013-12-01

    The room temperature ionic liquid isopropylammonium formate (IPAF) is studied as a reversed phase HPLC mobile phase modifier for separation of native proteins using a polymeric column and the protein stability is compared to that using acetonitrile (MeCN) as the standard organic mobile phase modifier. A variety of important proteins with different numbers of subunits are investigated, including non-subunit proteins: albumin, and amyloglucosidase (AMY); a two subunit protein: thyroglobulin (THY); and four subunit proteins: glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). A significant enhancement in protein stability is observed in the chromatograms upon using IPAF as a mobile phase modifier. The first sharper peak at about 2min represented protein in primarily the native form and a second broader peak more retained at about 5-6min represented substantially denatured or possibly aggregated protein. The investigated proteins (except LDH) could maintain the native form within up to 50% IPAF, while a mobile phase, with as low as 10% MeCN, induced protein denaturation. The assay for pyruvate using LDH has further shown that enzymatic activity can be maintained up to 30% IPAF in water in contrast to no activity using 30% MeCN.

  16. FAT10 suppression stabilizes oxidized proteins in liver cells: Effects of HCV and ethanol.

    Science.gov (United States)

    Ganesan, Murali; Hindman, Joseph; Tillman, Brittany; Jaramillo, Lee; Poluektova, Larisa I; French, Barbara A; Kharbanda, Kusum K; French, Samuel W; Osna, Natalia A

    2015-12-01

    FAT10 belongs to the ubiquitin-like modifier (ULM) family that targets proteins for degradation and is recognized by 26S proteasome. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by IFNγ and TNFα in the non-immune (liver parenchymal) cells. It is not clear how viral proteins and alcohol regulate FAT10 expression on liver cells. In this study, we aimed to investigate whether FAT10 expression on liver cells is activated by the innate immunity factor, IFNα and how HCV protein expression in hepatocytes and ethanol-induced oxidative stress affect the level of FAT10 in liver cells. For this study, we used HCV(+) transgenic mice that express structural HCV proteins and their HCV(-) littermates. Mice were fed Lieber De Carli diet (control and ethanol) as specified in the NIH protocol for chronic-acute ethanol feeding. Alcohol exposure enhanced steatosis, induced oxidative stress and decreased proteasome activity in the liversof these mice, with more robust response to ethanol in HCV(+) mice. IFNα induced transcriptional activation of FAT10 in liver cells, which was dysregulated by ethanol feeding. Accordingly, IFNα-activated expression of FAT10 in hepatocytes (measured by indirect immunofluorescent of liver tissue) was also suppressed by ethanol exposure in both HCV(+) and HCV(-) mice. This suppression was accompanied with ethanol-mediated induction of lipid peroxidation marker, 4-HNE. All aforementioned effects of ethanol were attenuated by in vivo feeding of mice with the pro-methylating agent, betaine, which exhibits strong anti-oxidant properties. Based on this study, we hypothesize that FAT10 targets oxidatively modified proteins for proteasomal degradation, and that the reduction in FAT10 levels along with decreased proteasome activity may contribute to stabilization of these altered proteins in hepatocytes. In conclusion, IFNα induced FAT10 expression, which is suppressed by ethanol feeding in both HCV

  17. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    Science.gov (United States)

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  18. Using protein-fatty acid complexes to improve vitamin D stability

    DEFF Research Database (Denmark)

    Pedersen, Jannik Nedergaard; Frislev, Henriette Kristina Søster; Pedersen, Jan Skov;

    2016-01-01

    and evaluated their ability to protect vitD upon exposure to heating or intense UV light. Additionally, the stability of liprotides toward pH, Ca(2+), and BSA was determined. The best results were obtained with liprotides made from α-lactalbumin and oleate. These liprotides were able to completely solubilize...... to those made at 20°C. Nevertheless, the fatty acid binding protein BSA reduced the ability of both liprotides to protect vitD; the amount of vitD left after 20 d at 20°C fell from 79 ± 3% in the absence of BSA to 49 ± 4 and 23 ± 3% in the presence of BSA for liprotides made at 80 and 20°C, respectively...

  19. Mechanistic insights into osmolyte action in protein stabilization under harsh conditions: N-methylacetamide in glycine betaine-urea mixture

    Science.gov (United States)

    Kumar, Narendra; Kishore, Nand

    2014-10-01

    Glycine betaine (GB), a small naturally occurring osmolyte, stabilizes proteins and counteracts harsh denaturing conditions such as extremes of temperature, cellular dehydration, and presence of high concentration of urea. In spite of several studies on understanding mechanism of protein stabilization and counteraction of these harsh conditions by osmolytes, studies centred on GB, one of the most important osmolyte, are scarce, hence, there is need for more investigations. To explore mechanism of protein stabilization and counteraction of denaturing property of urea by GB, molecular dynamics studies of N-methylacetamide (NMA), a model peptide representing denatured state of a protein, in the presence of GB, urea, and GB-urea mixture were carried out. The results show that GB and urea work such that the strength of GB as a protecting osmolyte is increased and the denaturing ability of urea is decreased in the GB-urea mixture. It can be inferred that GB counteracts urea by decreasing its hydrophobic interactions with proteins. The mutual interactions between GB and urea also play an important role in protein stabilization. This study provides insights on osmolyte induced counteraction of denaturing property of urea.

  20. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.

    Science.gov (United States)

    Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao

    2014-11-04

    We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.

  1. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions.

    Science.gov (United States)

    Chityala, Pavan Kumar; Khouryieh, Hanna; Williams, Kevin; Conte, Eric

    2016-12-01

    The effect of xanthan gum (XG) and enzyme-modified guar (EMG) gum mixtures on the physicochemical properties and oxidative stability of 2wt% whey protein isolate (WPI) stabilized oil-in-water (O/W) emulsions containing 20%v/v fish oil was investigated. EMG was obtained by hydrolyzing native guar gum using α-galactosidase enzyme. At higher gum concentrations (0.2 and 0.3wt%), the viscosity of the emulsions containing XG/EMG gum mixtures was significantly higher (Pgum mixtures did not affect the droplet size of emulsions. Microstructure images revealed decreased flocculation at higher concentrations. Primary and secondary lipid oxidation measurements indicated a slower rate of oxidation in emulsions containing XG/EMG gum mixtures, compared to XG, guar (GG), and XG/GG gum mixtures. These results indicate that XG/EMG gum mixtures can be used in O/W emulsions to increase physical and oxidative stabilities of polyunsaturated fatty acids in foods.

  2. Spray-dried amorphous isomalt and melibiose, two potential protein-stabilizing excipients.

    Science.gov (United States)

    Lipiäinen, Tiina; Peltoniemi, Marikki; Räikkönen, Heikki; Juppo, Anne

    2016-08-20

    The possibility of producing amorphous isomalt and melibiose by spray drying was studied. The impact of process parameters on yield and solid-state stability was compared to sucrose and trehalose. All powders remained amorphous during 2-3 weeks. Processing was challenging due to powder stickiness. Low-temperature and low-humidity drying processes generally performed best. Most isomalt and sucrose powder was retrieved when using 60°C inlet temperature, 800L/h atomizing rate, 1.4ml/min feed rate, 15% concentration and 100% aspirator rate, giving 42-43°C outlet temperature. Isomalt was the most problematic, because it had the lowest Tg and became sticky very easily, therefore process parameters needed to be precisely balanced. There was more freedom in designing processes for melibiose but best yields were obtained with low-temperature (50°C inlet temperature, 800L/h atomizing rate, 4.9ml/min feed rate, 10% concentration and 100% aspirator, 39°C outlet temperature). Trehalose was different in that higher temperatures resulted in better yields. Yet, trehalose generally contained the highest moisture contents. The possibility to produce amorphous isomalt and melibiose at low-temperature process conditions makes them promising considering spray drying applications for heat-sensitive proteins. Melibiose is a better candidate than isomalt because of easier processability and superior solid-state stability.

  3. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  4. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  5. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

    Science.gov (United States)

    Argentiere, Simona; Cella, Claudia; Cesaria, Maura; Milani, Paolo; Lenardi, Cristina

    2016-08-01

    Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV-Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV-Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

  6. Impact of different wort boiling temperatures on the beer foam stabilizing properties of lipid transfer protein 1.

    Science.gov (United States)

    Van Nierop, Sandra N E; Evans, David E; Axcell, Barry C; Cantrell, Ian C; Rautenbach, Marina

    2004-05-19

    Beer consumers demand satisfactory and consistent foam stability; thus, it is a high priority for brewers. Beer foam is stabilized by the interaction between certain beer proteins, including lipid transfer protein 1 (LTP1), and isomerized hop alpha-acids, but destabilized by lipids. In this study it was shown that the wort boiling temperature during the brewing process was critical in determining the final beer LTP1 content and conformation. LTP1 levels during brewing were measured by an LTP1 ELISA, using antinative barley LTP1 polyclonal antibodies. It was observed that the higher wort boiling temperatures ( approximately 102 degrees C), resulting from low altitude at sea level, reduced the final beer LTP1 level to 2-3 microg/mL, whereas the lower wort boiling temperatures ( approximately 96 degrees C), resulting from higher altitudes (1800 m), produced LTP1 levels between 17 and 35 microg/mL. Low levels of LTP1 in combination with elevated levels of free fatty acids (FFA) resulted in poor foam stability, whereas beer produced with low levels of LTP1 and FFA had satisfactory foam stability. Previous studies indicated the need for LTP1 denaturing to improve its foam stabilizing properties. However, the results presented here show that LTP1 denaturation reduces its ability to act as a binding protein for foam-damaging FFA. These investigations suggest that wort boiling temperature is an important factor in determining the level and conformation of LTP1, thereby favoring satisfactory beer foam stability.

  7. Contribution of proton linkage to the thermodynamic stability of the major cold-shock protein of Escherichia coli CspA.

    OpenAIRE

    Petrosian, S. A.; Makhatadze, G. I.

    2000-01-01

    The stability of protein is defined not only by the hydrogen bonding, hydrophobic effect, van der Waals interactions, and salt bridges. Additional, much more subtle contributions to protein stability can arise from surface residues that change their properties upon unfolding. The recombinant major cold shock protein of Escherichia coli CspA an all-beta protein unfolds reversible in a two-state manner, and behaves in all other respects as typical globular protein. However, the enthalpy of CspA...

  8. Influence of the stability of a fused protein and its distance to the amyloidogenic segment on fibril formation.

    Directory of Open Access Journals (Sweden)

    Anja Buttstedt

    Full Text Available Conversion of native proteins into amyloid fibrils is irreversible and therefore it is difficult to study the interdependence of conformational stability and fibrillation by thermodynamic analyses. Here we approached this problem by fusing amyloidogenic poly-alanine segments derived from the N-terminal domain of the nuclear poly (A binding protein PABPN1 with a well studied, reversibly unfolding protein, CspB from Bacillus subtilis. Earlier studies had indicated that CspB could maintain its folded structure in fibrils, when it was separated from the amyloidogenic segment by a long linker. When CspB is directly fused with the amyloidogenic segment, it unfolds because its N-terminal chain region becomes integrated into the fibrillar core, as shown by protease mapping experiments. Spacers of either 3 or 16 residues between CspB and the amyloidogenic segment were not sufficient to prevent this loss of CspB structure. Since the low thermodynamic stability of CspB (ΔG(D = 12.4 kJ/mol might be responsible for unfolding and integration of CspB into fibrils, fusions with a CspB mutant with enhanced thermodynamic stability (ΔG(D = 26.9 kJ/mol were studied. This strongly stabilized CspB remained folded and prevented fibril formation in all fusions. Our data show that the conformational stability of a linked, independently structured protein domain can control fibril formation.

  9. Physical and Oxidative Stability of Functional olive Oil-in-Water Emulsions Formulated Using Olive Mill Wastewater and Whey Proteins

    OpenAIRE

    Caporaso, Nicola; Genovese, Alessandro; Burke, Roisin; Barry-Ryan, Catherine; Sacchi, Raffaele

    2016-01-01

    The present paper reports on the use of phenolic extracts from olive mill wastewater (OMW) in model olive oil-in-water (O/W) emulsions to study their effect on their physical and chemical stability. Spray-dried OMW polyphenols were added to a model 20% olive O/W emulsion stabilized with whey protein isolate (WPI) and xanthan gum, in phosphate buffer solution at pH 7. The emulsions were characterised under accelerated storage conditions (40 °C) up to 30 days. Physical stability was evaluated b...

  10. On the influence of hydrated imidazolium-based ionic liquid on protein structure stability: A molecular dynamics simulation study

    Science.gov (United States)

    Shao, Qiang

    2013-09-01

    The structure stability of three α-helix bundle (the B domain of protein A) in an imidazolium-based ionic liquid (1-butyl-3-methylimidazolium chloride (BMIM-Cl)) is studied by molecular dynamics simulations. Consistent with previous experiments, the present simulation results show that the native structure of the protein is consistently stabilized in BMIM-Cl solutions with different concentrations. It is observed that BMIM+ cations have a strong tendency to accumulate on protein surface whereas Cl- anions are expelled from protein. BMIM+ cations cannot only have electrostatic interactions with the carbonyl groups on backbone and the carboxylate groups on negatively charged side chains, but also have hydrophobic interactions with the side chains of non-polar residues. In the meanwhile, the accumulation of large-size BMIM+ cations on protein surface could remove the surrounding water molecules, reduce the hydrogen bonding from water to protein, and thus stabilize the backbone hydrogen bonds. In summary, the present study could improve our understanding of the molecular mechanism of the impact of water-miscible ionic liquid on protein structure.

  11. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    Science.gov (United States)

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  12. The deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis.

    Science.gov (United States)

    Weber, Arnim; Heinlein, Melanie; Dengjel, Jörn; Alber, Claudia; Singh, Prafull Kumar; Häcker, Georg

    2016-05-01

    Bim is a pro-apoptotic Bcl-2 family member of the BH3-only protein subgroup. Expression levels of Bim determine apoptosis susceptibility in non-malignant and in tumour cells. Bim protein expression is downregulated by proteasomal degradation following ERK-dependent phosphorylation and ubiquitination. Here, we report the identification of a deubiquitinase, Usp27x, that binds Bim upon its ERK-dependent phosphorylation and can upregulate its expression levels. Overexpression of Usp27x reduces ERK-dependent Bim ubiquitination, stabilizes phosphorylated Bim, and induces apoptosis in PMA-stimulated cells, as well as in tumour cells with a constitutively active Raf/ERK pathway. Loss of endogenous Usp27x enhances the Bim-degrading activity of oncogenic Raf. Overexpression of Usp27x induces low levels of apoptosis in melanoma and non-small cell lung cancer (NSCLC) cells and substantially enhances apoptosis induced in these cells by the inhibition of ERK signalling. Finally, deletion of Usp27x reduces apoptosis in NSCLC cells treated with an EGFR inhibitor. Thus, Usp27x can trigger via its proteolytic activity the deubiquitination of Bim and enhance its levels, counteracting the anti-apoptotic effects of ERK activity, and therefore acts as a tumour suppressor.

  13. CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins

    Science.gov (United States)

    Suzuki, Toru; Kikuguchi, Chisato; Sharma, Sahil; Sasaki, Toshio; Tokumasu, Miho; Adachi, Shungo; Natsume, Tohru; Kanegae, Yumi; Yamamoto, Tadashi

    2015-01-01

    The CCR4-NOT complex is conserved in eukaryotes and is involved in mRNA metabolism, though its molecular physiological roles remain to be established. We show here that CNOT3-depleted mouse embryonic fibroblasts (MEFs) undergo cell death. Levels of other complex subunits are decreased in CNOT3-depleted MEFs. The death phenotype is rescued by introduction of wild-type (WT), but not mutated CNOT3, and is not suppressed by the pan-caspase inhibitor, zVAD-fluoromethylketone. Gene expression profiling reveals that mRNAs encoding cell death-related proteins, including receptor-interacting protein kinase 1 (RIPK1) and RIPK3, are stabilized in CNOT3-depleted MEFs. Some of these mRNAs bind to CNOT3, and in the absence of CNOT3 their poly(A) tails are elongated. Inhibition of RIPK1-RIPK3 signaling by a short-hairpin RNA or a necroptosis inhibitor, necrostatin-1, confers viability upon CNOT3-depleted MEFs. Therefore, we conclude that CNOT3 targets specific mRNAs to prevent cells from being disposed to necroptotic death. PMID:26437789

  14. Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein.

    Science.gov (United States)

    Laaksonen, Päivi; Kivioja, Jani; Paananen, Arja; Kainlauri, Markku; Kontturi, Kyösti; Ahopelto, Jouni; Linder, Markus B

    2009-05-05

    We present an approach where biomolecular self-assembly is used in combination with lithography to produce patterns of metallic nanoparticles on a silicon substrate. This is achieved through a two-step method, resulting in attachment of nanoparticles on desired sites on the sample surfaces, which allowed a detailed characterization. First, a genetically modified hydrophobin protein, NCysHFBI, was attached by self-assembly on a hydrophobic surface or a surface patterned with hydrophobic and hydrophilic domains. The next step was to label the protein layers with 17.8 nm gold nanoparticles, to allow microscopic characterization of the films. Kinetics and extent of attachment of nanoparticles were characterized by UV-vis spectroscopy and transmission electron microscopy. It was shown that the attachment of citrate-stabilized gold nanoparticles was strongly dependent on the electrostatic properties of the capping ligand layer and the density of nanoparticles in the monolayer could be controlled via pH. The resulting nanoparticle assemblies followed the original pattern created by optical lithography in high accuracy. We demonstrate that combining bottom-up and top-down nanotechnological approaches in a good balance can provide very effective ways to produce nanoscale components providing a functional interface between electronics and the biological world.

  15. Analysis of alpha hemoglobin stabilizing protein overexpression in murine β-thalassemia.

    Science.gov (United States)

    Nasimuzzaman, Md; Khandros, Eugene; Wang, Xiaomei; Kong, Yi; Zhao, Huifen; Weiss, David; Rivella, Stefano; Weiss, Mitchell J; Persons, Derek A

    2010-10-01

    Excess free alpha-globin is cytotoxic and contributes to the pathophysiology of b-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds free alpha-globin to promote its folding and inhibit its ability to produce damaging reactive oxygen species. Reduced AHSP levels correlate with increased severity of b-thalassemia in some human cohorts, but causal mechanistic relationships are not established for these associations. We used transgenic and lentiviral gene transfer methods to investigate whether supraphysiologic AHSP levels could mitigate the severity of b-thalassemia intermedia by providing an increased sink for the excess pool of alpha-globin chains. We tested wild-type AHSP and two mutant versions with amino acid substitutions that confer 3- or 13-fold higher affinity for alpha-globin. Erythroid overexpression of these AHSP proteins up to 11-fold beyond endogenous levels had no major effects on hematologic parameters in b-thalassemic animals. Our results demonstrate that endogenous AHSP is not limiting for a-globin detoxification in a murine model of b-thalassemia.

  16. α-Hemoglobin-stabilizing Protein: An Effective Marker for Erythroid Precursors in Bone Marrow Biopsy Specimens.

    Science.gov (United States)

    Yu, Hongbo; Pinkus, Jack L; Pinkus, Geraldine S

    2016-01-01

    Accurate analysis of the erythroid lineage is essential in evaluating bone marrow biopsies and can be particularly challenging in settings of dyserythropoiesis. α-Hemoglobin-stabilizing protein (AHSP) is an erythroid-specific chaperone protein and represents a potential specific marker for erythroid elements. This study defines the immunohistochemical profile of AHSP, as compared with an established erythroid marker CD71, in 101 bone marrow biopsies including normal marrows and cases of acute pure erythroid leukemia, acute erythroid/myeloid leukemia, other types of acute myeloid leukemia, myelodysplastic syndrome, chronic myelogenous leukemia, other types of myeloproliferative neoplasm, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, plasma cell neoplasm, and metastatic carcinoma. In acute pure erythroid leukemia, blasts in 7 of 11 cases showed similar reactivity for CD71 and AHSP, whereas less extensive reactivity was observed for AHSP as compared with CD71 in the remaining 4 cases. In normal marrows and other various disorders, reactivity for AHSP was similar to CD71 and was restricted to the erythroid lineage. Mature erythrocytes were negative for AHSP as were myeloblasts, lymphoblasts, nonerythroid hematopoietic marrow elements, plasma cells, and carcinoma cells. AHSP is an effective marker for detection of normal or abnormal erythroid precursors in bone marrow biopsies and is a useful addition to an immunohistochemical panel for assessment of neoplastic cells of possible erythroid derivation.

  17. Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field

    Science.gov (United States)

    Kalimeri, Maria; Derreumaux, Philippe; Sterpone, Fabio

    2017-01-01

    We present the first investigation of the kinetic and thermodynamic stability of two homologous thermophilic and mesophilic proteins based on the coarse-grained model OPEP. The object of our investigation is a pair of G-domains of relatively large size, 200 amino acids each, with an experimental stability gap of about 40 K. The OPEP force field is able to maintain stable the fold of these relatively large proteins within the hundrend-nanosecond time scale without including external constraints. This makes possible to characterize the conformational landscape of the folded protein as well as to explore the unfolding. In agreement with all-atom simulations used as a reference, we show that the conformational landscape of the thermophilic protein is characterized by a larger number of substates with slower dynamics on the network of states and more resilient to temperature increase. Moreover, we verify the stability gap between the two proteins using replica-exchange simulations and estimate a difference between the melting temperatures of about 23 K, in fair agreement with experiment. The detailed investigation of the unfolding thermodynamics, allows to gain insight into the mechanism underlying the enhanced stability of the thermophile relating it to a smaller heat capacity of unfolding.

  18. Advanced oxidation protein products in plasma: stability during storage and correlation with other clinical characteristics.

    Science.gov (United States)

    Matteucci, E; Biasci, E; Giampietro, O

    2001-12-01

    Proteins are susceptible to free radical damage. We measured advanced oxidation protein products (AOPP) in the plasma of 56 hospitalised patients. Concentrations of AOPP were expressed as chloramine-T equivalents by measuring absorbance in acidic conditions at 340 nm in the presence of potassium iodide. We also determined erythrocyte sedimentation rate (ESR), circulating urea, creatinine, glucose, uric acid, electrolytes, lipids, total proteins and fractions and fibrinogen. Twenty-four samples were processed both immediately and after 7, 15, 30, 90, 180 and 438 days of storage at both at -20 degrees C and -80 degrees C (aliquots were frozen and thawed only once) to evaluate AOPP stability. The remaining 32 samples were also processed for thiobarbituric-acid-reactive substances (TBARS). Mean AOPP concentration in all 56 patients was 48.3+/-37.2 microM. Mean basal concentration of AOPP in the 24 plasma samples (55.0+/-47.1 microM) showed no significant change at each intermediate determination, yet significantly increased after 438 days of storage both at -80 degrees C (96.6+/-83.2, p<0.01) and, markedly, at -20 degrees C (171.3+/-94.6, p<0.001). TBARS concentration was 1.59+/-0.65 micromol/l. Multiple regression analysis evidenced that AOPP concentration was positively correlated (multiple r=0.62, p<0.001) with serum urea and triglycerides, but negatively correlated with patient age (indeed, serum albumin and total proteins decreased with increasing age, r=0.3, p<0.05). TBARS concentration was associated with ESR and serum glucose (multiple r=0.73, p<0.001), yet positively with AOPP (r=0.39, simple p<0.05). We conclude that AOPP remain stable during sample storage both at -20 degrees C and -80 degrees C for 6 months. Renal failure and hypertriglyceridemia probably enhance the in vivo process of AOPP formation. Oxidative damage as measured by TBARS may be increased because of exposure to hyperglycemia causing nonenzymatic glycation of plasma proteins.

  19. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    Science.gov (United States)

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  20. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    Science.gov (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.

  1. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  2. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    Science.gov (United States)

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.

  3. All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer.

    Science.gov (United States)

    Perlmutter, Jason D; Drasler, William J; Xie, Wangshen; Gao, Jiali; Popot, Jean-Luc; Sachs, Jonathan N

    2011-09-06

    Amphipathic polymers called amphipols (APols) have been developed as an alternative to detergents for stabilizing membrane proteins (MPs) in aqueous solutions. APols provide MPs with a particularly mild environment and, as a rule, keep them in a native functional state for longer periods than do detergents. Amphipol A8-35, a derivative of polyacrylate, is widely used and has been particularly well studied experimentally. In aqueous solutions, A8-35 molecules self-assemble into well-defined globular particles with a mass of ∼40 kDa and a R(g) of ∼2.4 nm. As a first step towards describing MP/A8-35 complexes by molecular dynamics (MD), we present three sets of simulations of the pure APol particle. First, we performed a series of all-atom MD (AAMD) simulations of the particle in solution, starting from an arbitrary initial configuration. Although AAMD simulations result in stable cohesive particles over a 45 ns simulation, the equilibration of the particle organization is limited. This motivated the use of coarse-grained MD (CGMD), allowing us to investigate processes on the microsecond time scale, including de novo particle assembly. We present a detailed description of the parametrization of the CGMD model from the AAMD simulations and a characterization of the resulting CGMD particles. Our third set of simulations utilizes reverse coarse-graining (rCG), through which we obtain all-atom coordinates from a CGMD simulation. This allows a higher-resolution characterization of a configuration determined by a long-timescale simulation. Excellent agreement is observed between MD models and experimental, small-angle neutron scattering data. The MD data provides new insight into the structure and dynamics of A8-35 particles, which is possibly relevant to the stabilizing effects of APols on MPs, as well as a starting point for modeling MP/A8-35 complexes.

  4. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins.

    Science.gov (United States)

    Tompa, Dharma Rao; Gromiha, M Michael; Saraboji, K

    2016-03-01

    Proteins belonging to the same class, having similar structures thus performing the same function are known to have different thermal stabilities depending on the source- thermophile or mesophile. The variation in thermo-stability has not been attributed to any unified factor yet and understanding this phenomenon is critically needed in several areas, particularly in protein engineering to design stable variants of the proteins. Toward this motive, the present study focuses on the sequence and structural investigation of a dataset of 373 pairs of proteins; a thermophilic protein and its mesophilic structural analog in each pair, from the perspectives of hydrophobic free energy, hydrogen bonds, physico-chemical properties of amino acids and residue-residue contacts. Our results showed that the hydrophobic free energy due to carbon, charged nitrogen and charged oxygen atoms was stronger in 65% of thermophilic proteins. The number of hydrogen bonds which bridges the buried and exposed regions of proteins was also greater in case of thermophiles. Amino acids of extended shape, volume and molecular weight along with more medium and long range contacts were observed in many of the thermophilic proteins. These results highlight the preference of thermophiles toward the amino acids with larger side chain and charged to make up greater free energy, better packing of residues and increase the overall compactness.

  5. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.

    Science.gov (United States)

    Gates, Zachary P; Baxa, Michael C; Yu, Wookyung; Riback, Joshua A; Li, Hui; Roux, Benoît; Kent, Stephen B H; Sosnick, Tobin R

    2017-02-13

    The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without α-helices or β-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state manner and is moderately stable at room temperature. We believe that a major part of the stability arises from the unusual match between residue-level PP2 dihedral angle bias in the unfolded state and PP2 helical structure in the native state. Additional stabilizing factors that compensate for the dearth of hydrophobic burial include shorter and stronger H-bonds, and increased entropy in the folded state. These results extend our understanding of the origins of cooperativity and stability in protein folding, including the balance between solvent and polypeptide chain entropies.

  6. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein

    NARCIS (Netherlands)

    de Folter, J.W.J.; van Ruijven, M.W.M.; Velikov, K.

    2012-01-01

    Few fully natural and biocompatible materials are available for the effective particle-stabilization of emulsions since strict requirements, such as insolubility in both fluid phases and intermediate wettability, need to be met. In this paper, we demonstrate the first use of water-insoluble proteins

  7. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V;

    1999-01-01

    measured by the extent of binding of the ligand dodecanoyl-CoA using isothermal titration calorimetry, and effects on protein stability were measured with chemical denaturation followed by intrinsic tryptophan and tyrosine fluorescence. The sequence sites that have been conserved for direct functional...

  8. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    Science.gov (United States)

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  9. KRAS protein stability is regulated through SMURF2: UBCH5 complex-mediated β-TrCP1 degradation.

    Science.gov (United States)

    Shukla, Shirish; Allam, Uday Sankar; Ahsan, Aarif; Chen, Guoan; Krishnamurthy, Pranathi Meda; Marsh, Katherine; Rumschlag, Matthew; Shankar, Sunita; Whitehead, Christopher; Schipper, Matthew; Basrur, Venkatesha; Southworth, Daniel R; Chinnaiyan, Arul M; Rehemtulla, Alnawaz; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K; Ray, Dipankar

    2014-02-01

    Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells.

  10. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Roosild, Tarmo P.; Castronovo, Samantha; Choe, Senyon, E-mail: choe@salk.edu [Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 (United States)

    2006-09-01

    The X-ray crystallographic analysis of anti-FLAG M2 Fab is reported and the implications of the structure on FLAG epitope binding are described as a first step in the development of a tool for the structural and biophysical study of membrane proteins. The inherent difficulties of stabilizing detergent-solubilized integral membrane proteins for biophysical or structural analysis demand the development of new methodologies to improve success rates. One proven strategy is the use of antibody fragments to increase the ‘soluble’ portion of any membrane protein, but this approach is limited by the difficulties and expense associated with producing monoclonal antibodies to an appropriate exposed epitope on the target protein. Here, the stabilization of a detergent-solubilized K{sup +} channel protein, KvPae, by engineering a FLAG-binding epitope into a known loop region of the protein and creating a complex with Fab fragments from commercially available anti-FLAG M2 monoclonal antibodies is reported. Although well diffracting crystals of the complex have not yet been obtained, during the course of crystallization trials the structure of the anti-FLAG M2 Fab domain was solved to 1.86 Å resolution. This structure, which should aid future structure-determination efforts using this approach by facilitating molecular-replacement phasing, reveals that the binding pocket appears to be specific only for the first four amino acids of the traditional FLAG epitope, namely DYKD. Thus, the use of antibody fragments for improving the stability of target proteins can be rapidly applied to the study of membrane-protein structure by placing the short DKYD motif within a predicted peripheral loop of that protein and utilizing commercially available anti-FLAG M2 antibody fragments.

  11. Impaired protein stability and nuclear localization of NOBOX variants associated with premature ovarian insufficiency.

    Science.gov (United States)

    Ferrari, Ilaria; Bouilly, Justine; Beau, Isabelle; Guizzardi, Fabiana; Ferlin, Alberto; Pollazzon, Marzia; Salerno, Mariacarolina; Binart, Nadine; Persani, Luca; Rossetti, Raffaella

    2016-10-23

    Premature ovarian insufficiency (POI) is a clinical syndrome defined by a loss of ovarian activity before the age of 40. Its pathogenesis is still largely unknown, but increasing evidences support a genetic basis in most cases. Among these, heterozygous mutations in NOBOX, a homeobox gene encoding a transcription factor expressed specifically by oocyte and granulosa cells within the ovary, have been reported in ∼6% of women with sporadic POI. The pivotal role of NOBOX in early folliculogenesis is supported by findings in knock-out mice. Here, we report the genetic screening of 107 European women with idiopathic POI, recruited in various settings, and the molecular and functional characterization of the identified variants to evaluate their involvement in POI onset. Specifically, we report the identification of two novel and two recurrent heterozygous NOBOX variants in 7 out of 107 patients, with a prevalence of 6.5% (upper 95% confidence limit of 11.17%). Furthermore, immunolocalization, Western Blot and transcriptional assays conducted in either HEK293T or CHO cells revealed that all the studied variants (p.R44L, p.G91W, p.G111R, p.G152R, p.K273*, p.R449* and p.D452N) display variable degrees of functional impairment, including defects in transcriptional activity, autophagosomal degradation, nuclear localization or protein instability. Several variants conserve the ability to interact with FOXL2 in intracellular aggregates. Their inability to sustain gene expression, together with their likely aberrant effects on protein stability and degradation, make the identified NOBOX mutations a plausible cause of POI onset.

  12. Stabilization of the Soliton Transported Bio-energy in Protein Molecules in the Improved Model

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-Feng; LUO Yu-Hui

    2004-01-01

    We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge-Kutta method and physical parameter values appropriate to the α-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.

  13. Properties and storage stability of whey protein edible film with spice powders.

    Science.gov (United States)

    Ket-On, Apisada; Pongmongkol, Natkritta; Somwangthanaroj, Anongnat; Janjarasskul, Theeranun; Tananuwong, Kanitha

    2016-07-01

    The impact of spice powders on physical, mechanical, thermal and barrier properties, and on storage stability, of whey protein isolate (WPI)-based films was determined. Films with added spices were prepared from casting solution containing 10 % (w/w) heat-denatured WPI, glycerol (WPI:glycerol of 3:2 w/w), sodium chloride (0.4 g/100 g solution), garlic and pepper powders (≤3 g each/100 g solution). Water activity (aw) of all films was 0.53-0.57. Addition of spice powders increased thickness, darkness and yellowness of the WPI films. Films with added spices had lower tensile strength (TS), percent elongation (%E), and melting enthalpy of WPI matrices, but possessed higher water vapor permeability (WVP) than WPI film without sodium chloride and spices. The WPI film containing highest amount of garlic powder and lowest amount of pepper powder was selected for storage tests at 25-45 °C. Storage for up to 49 days resulted in reduced aw and %E, increased TS, and color changes at 35 and 45 °C, with few changes at 25 °C. However, film WVP and OP were not affected by storage conditions after 7 days storage. Active ingredients decreased over time with up to 81 % allicin and 37 % piperine retained in the film matrix after 47 days storage.

  14. Regulation of EGFR protein stability by the HECT-type ubiquitin ligase SMURF2.

    Science.gov (United States)

    Ray, Dipankar; Ahsan, Aarif; Helman, Abigail; Chen, Guoan; Hegde, Ashok; Gurjar, Susmita Ramanand; Zhao, Lili; Kiyokawa, Hiroaki; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K

    2011-07-01

    Epidermal growth factor receptor (EGFR) is overexpressed in a variety of epithelial tumors and is considered to be an important therapeutic target. Although gene amplification is responsible for EGFR overexpression in certain human malignancies including lung and head and neck cancers, additional molecular mechanisms are likely. Here, we report a novel interaction of EGFR with an HECT-type ubiquitin ligase SMURF2, which can ubiquitinate, but stabilize EGFR by protecting it from c-Cbl-mediated degradation. Conversely, small interfering RNA (siRNA)-mediated knockdown of SMURF2 destabilized EGFR, induced an autophagic response and reduced the clonogenic survival of EGFR-expressing cancer cell lines, with minimal effects on EGFR-negative cancer cells, normal fibroblasts, and normal epithelial cells. UMSCC74B head and neck squamous cancer cells, which form aggressive tumors in nude mice, significantly lost in vivo tumor-forming ability on siRNA-mediated SMURF2 knockdown. Gene expression microarray data from 443 lung adenocarcinoma patients, and tissue microarray data from 67 such patients, showed a strong correlation of expression between EGFR and SMURF2 at the messenger RNA and protein levels, respectively. Our findings suggest that SMURF2-mediated protective ubiquitination of EGFR may be responsible for EGFR overexpression in certain tumors and support targeting SMURF2-EGFR interaction as a novel therapeutic approach in treating EGFR-addicted tumors.

  15. Regulation of EGFR Protein Stability by the HECT-type Ubiquitin Ligase SMURF2

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    2011-07-01

    Full Text Available Epidermal growth factor receptor (EGFR is overexpressed in a variety of epithelial tumors and is considered to be an important therapeutic target. Although gene amplification is responsible for EGFR overexpression in certain human malignancies including lung and head and neck cancers, additional molecular mechanisms are likely. Here, we report a novel interaction of EGFR with an HECT-type ubiquitin ligase SMURF2, which can ubiquitinate, but stabilize EGFR by protecting it from c-Cbl-mediated degradation. Conversely, small interfering RNA (siRNA-mediated knockdown of SMURF2 destabilized EGFR, induced an autophagic response and reduced the clonogenic survival of EGFR-expressing cancer cell lines, with minimal effects on EGFR-negative cancer cells, normal fibroblasts, and normal epithelial cells. UMSCC74B head and neck squamous cancer cells, which form aggressive tumors in nudemice, significantly lost in vivo tumor-forming ability on siRNA-mediated SMURF2 knockdown. Gene expressionmicroarray data from 443 lung adenocarcinoma patients, and tissue microarray data from 67 such patients, showed a strong correlation of expression between EGFR and SMURF2 at the messenger RNA and protein levels, respectively. Our findings suggest that SMURF2-mediated protective ubiquitination of EGFR may be responsible for EGFR overexpression in certain tumors and support targeting SMURF2-EGFR interaction as a novel therapeutic approach in treating EGFR-addicted tumors.

  16. Completely Green Synthesis of Ag Nanoparticles Stabilized by Soy Protein Isolate under UV Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Ren; LIU Shilin; ZHOU Hua; YANG Cheng; LIU Xiaoya

    2012-01-01

    A completely green pathway for the preparation of Ag nanoparticles was proposed,by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation.Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm,and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver.UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles.Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized.The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria,staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI.

  17. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  18. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    Science.gov (United States)

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.

  19. Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage.

    Science.gov (United States)

    Jiang, Jiang; Xiong, Youling L

    2015-11-01

    The potential health risk associated with excessive dietary intake of fat and cholesterol has led to a renewed interest in replacing animal fat with nutritionally-balanced unsaturated oil in processed meats. However, as oils are more fluid and unsaturated than fats, one must overcome the challenge of maintaining both physical and chemical (oxidative) stabilities of prepared emulsions. Apart from physical entrapments, an emulsion droplet to be incorporated into a meat protein gel matrix (batter) should be equipped with an interactive protein membrane rather than a small surfactant, and the classical DLVO stabilization theory becomes less applicable. This review paper describes the steric effects along with chemical roles (radical scavenging and metal ion chelation) of proteins and their structurally modified derivatives as potential interface-building materials for oxidatively stable meat emulsions.

  20. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit

    DEFF Research Database (Denmark)

    Rehling, M

    1988-01-01

    [99mTc]DTPA has achieved widespread use for the measurement of glomerular filtration rate (GFR) with the single injection plasma clearance technique and for gamma-camera renography. However, the quality of the commercial preparations varies. The purpose of the present investigation was to study...... the quality of a commercial [99mTc]DTPA preparation (C.I.S., France) with reference to stability, protein binding and accuracy of the determined plasma clearance values as a measure of GFR. The stability of the preparations was studied by thin-layer chromatography, the in vitro protein binding by Sephadex...... filtration after incubation with human serum albumin and in vivo protein binding by filtration of human plasma. The accuracy of the plasma clearance values was investigated by comparison with the simultaneously measured plasma clearance of [51Cr]EDTA. There was no detectable free pertechnetate or hydrolysed...

  1. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin.

    Science.gov (United States)

    Lim, Hui-Peng; Tey, Beng-Ti; Chan, Eng-Seng

    2014-07-28

    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.

  2. Mechanism for the stabilization of protein clusters above the solubility curve: the role of non-ideal chemical reactions

    CERN Document Server

    Lutsko, James F

    2016-01-01

    Dense protein clusters are known to play an important role in nucleation of protein crystals from dilute solutions. While these have generally been thought to be formed from a metastable phase, the observation of similar, if not identical, clusters above the critical point for the dilute-solution/strong-solution phase transition has thrown this into doubt. Furthermore, the observed clusters are stable for relatively long times. Because protein aggregation plays an important role in some pathologies, understanding the nature of such clusters is an important problem. One mechanism for the stabilization of such structures was proposed by Pan, Vekilov and Lubchenko and was investigated using a DDFT model which confirmed the viability of the model. Here, we revisit that model and incorporate additional physics in the form of state-dependent reaction rates. We show by a combination of numerical results and general arguments that the state-dependent rates disrupt the stability mechanism. Finally, we argue that the s...

  3. On the Role of Internal Water on Protein Thermal Stability: the Case of Homologous G-domains

    Science.gov (United States)

    Rahaman, Obaidur; Kalimeri, Maria; Melchionna, Simone; Hénin, Jérôme; Sterpone, Fabio

    2016-01-01

    In this work we address the question whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologues G-domains of different stability: the mesophilic G domain of the Elongation-Factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time-scale we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favourable for both systems, with the hyperthermophilic protein offering a slightly more favourable environment to host water molecules. We estimate that under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that at extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G-domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue. PMID:25317828

  4. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions.

    Science.gov (United States)

    Monera, O. D.; Kay, C. M.; Hodges, R. S.

    1994-01-01

    The objective of this study was to address the question of whether or not urea and guanidine hydrochloride (GdnHCl) give the same estimates of the stability of a particular protein. We previously suspected that the estimates of protein stability from GdnHCl and urea denaturation data might differ depending on the electrostatic interactions stabilizing the proteins. Therefore, 4 coiled-coil analogs were designed, where the number of intrachain and interchain electrostatic attractions (A) were systematically changed to repulsions (R): 20A, 15A5R, 10A10R, and 20R. The GdnHCl denaturation data showed that the 4 coiled-coil analogs, which had electrostatic interactions ranging from 20 attractions to 20 repulsions, had very similar [GdnHCl]1/2 values (average of congruent to 3.5 M) and, as well, their delta delta Gu values were very close to 0 (0.2 kcal/mol). In contrast, urea denaturation showed that the [urea]1/2 values proportionately decreased with the stepwise change from 20 electrostatic attractions to 20 repulsions (20A, 7.4 M; 15A5R, 5.4 M; 10A10R, 3.2 M; and 20R, 1.4 M), and the delta delta Gu values correspondingly increased with the increasing differences in electrostatic interactions (20A-15A5R, 1.5 kcal/mol; 20A-10A10R, 3.7 kcal/mol; and 20A-20R, 5.8 kcal/mol). These results indicate that the ionic nature of GdnHCl masks electrostatic interactions in these model proteins, a phenomenon that was absent when the unchanged urea was used. Thus, GdnHCl and urea denaturations may give vastly different estimates of protein stability, depending on how important electrostatic interactions are to the protein. PMID:7703845

  5. 蛋白质工程在提高蛋白质稳定性中的应用%The Application of Protein Engineering in Improving Protein Stability

    Institute of Scientific and Technical Information of China (English)

    赵黎明

    2011-01-01

    过去18年中,通过蛋白质工程技术进行体外突变来提高蛋白质稳定性的大量文献被报道.这些报道涉及从利用最早的理性设计来处理像T4溶菌酶和芽孢杆菌RNA酶等一些小酶,以及目前的蛋白设计和定向进化技术.本文着重介绍提高蛋白质稳定性的途径以及通过理性设计、DNA改组、组合设计、数据驱动设计方法等提高蛋白质,特别是酶的稳定性的研究进展.%During the past 18 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to present protein design and directed evolution technique. This literature plays emphasis on introducing the paths to improve protein stability, and the advances of researches in enhance the stability of protein especially of the enzyme, by rational design method, DNA shuffling, combinational design and data-driven design methods.

  6. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.

    Science.gov (United States)

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B; Rossmann, Michael G

    2010-01-29

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a "glue" between neighboring hexameric capsomers, forming a "cage" that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 A resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  7. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  8. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  9. Stabilization of Nrf2 protein by D3T provides protection against ethanol-induced apoptosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Jian Dong

    Full Text Available Previous studies have demonstrated that maternal ethanol exposure induces a moderate increase in Nrf2 protein expression in mouse embryos. Pretreatment with the Nrf2 inducer, 3H-1, 2-dithiole-3-thione (D3T, significantly increases the Nrf2 protein levels and prevents apoptosis in ethanol-exposed embryos. The present study, using PC12 cells, was designed to determine whether increased Nrf2 stability is a mechanism by which D3T enhances Nrf2 activation and subsequent antioxidant protection. Ethanol and D3T treatment resulted in a significant accumulation of Nrf2 protein in PC 12 cells. CHX chase analysis has shown that ethanol treatment delayed the degradation of Nrf2 protein in PC12 cells. A significantly greater decrease in Nrf2 protein degradation was observed in the cells treated with D3T alone or with both ethanol and D3T. In addition, D3T treatment significantly reduced ethanol-induced apoptosis. These results demonstrate that the stabilization of Nrf2 protein by D3T confers protection against ethanol-induced apoptosis.

  10. Mechanism of protein stabilization by trehalose during freeze-drying analyzed by in situ micro-raman spectroscopy.

    Science.gov (United States)

    Hedoux, Alain; Paccou, Laurent; Achir, Samira; Guinet, Yannick

    2013-08-01

    Raman investigations were performed in situ during freeze-drying of two model proteins, lysozyme and chymotrypsinogen. The structures of proteins dissolved in 0-30 wt % solutions of trehalose in D2 O were monitored with the fingerprint (800-1800 cm(-1) ) spectrum, simultaneously with freezing, ice sublimation, and water desorption analyzed in the O-D stretching (2200-2700 cm(-1) ) region. In the absence of trehalose, the main changes were detected at the end of primary drying, and correspond to distortion and disordering of secondary structures. A stabilizing effect of trehalose was evidenced in primary and secondary drying stages. Raman images were calculated after freezing and primary drying, providing the distributions of trehalose, water, and protein which occur during the first two stages of the lyophilization cycle. Raman images show a slight heterogeneity in the degree of protein denaturation at the end of primary drying, in relation with the structure of the frozen product observed during freezing. The ability of trehalose to make the protein more rigid was determined as responsible for the protein stabilization during a lyophilization cycle.

  11. Role of T198 modification in the regulation of p27(Kip1 protein stability and function.

    Directory of Open Access Journals (Sweden)

    Monica Schiappacassi

    Full Text Available The tumor suppressor gene p27(Kip1 plays a fundamental role in human cancer progression. Its expression and/or functions are altered in almost all the different tumor histotype analyzed so far. Recently, it has been demonstrated that the tumor suppression function of p27 resides not only in the ability to inhibit Cyclins/CDKs complexes through its N-terminal domain but also in the capacity to modulate cell motility through its C-terminal portion. Particular interest has been raised by the last amino-acid, (Threonine 198 in the regulation of both protein stability and cell motility.Here, we describe that the presence of Threonine in position 198 is of primary importance for the regulation of the protein stability and for the control of cell motility. However, while the control of cell motility is dependent on the phosphorylation of T198, the stability of the protein is specifically controlled by the steric hindrance of the last amino acid. The effects of T198 modification on protein stability are not linked to the capacity of p27 to bind Cyclins/CDKs complexes and/or the F-box protein Skp2. Conversely, our results support the hypothesis that conformational changes in the disordered structure of the C-terminal portion of p27 are important in its ability to be degraded via a proteasome-dependent mechanism. On the other hand T198 phosphorylation favors p27/stathmin interaction eventually contributing to the regulation of cell motility, supporting the hypothesis that the presence of T198 is fundamental for the regulation of p27 functions.

  12. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, R.L.; Mackenzie, J.M., E-mail: jason.mackenzie@unimelb.edu.au

    2015-07-15

    The West Nile virus strain Kunjin virus (WNV{sub KUN}) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV{sub KUN} replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV{sub KUN} replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein.

  13. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution

    Directory of Open Access Journals (Sweden)

    He W

    2013-08-01

    Full Text Available Wei He,1,2 Yi Lu,1 Jianping Qi,1 Lingyun Chen,3 Lifang Yin,2 Wei Wu1 1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, Shanghai, 2Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China; 3Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada Background: Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Methods: Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, ß-lactoglobulin as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. Results: The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much

  14. The splicing factor U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeonghee; Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr

    2014-01-17

    Highlights: •Identification of U2AF65 as a novel TRF1-interacting protein. •U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. •U2AF65 interferes with the interaction between TRF1 and Fbx4. •U2AF65 represents a new route for modulating TRF1 function at telomeres. -- Abstract: The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure proper telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.

  15. Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax

    DEFF Research Database (Denmark)

    Friis, Dennis Steven; Johnsen, Johannes Lørup; Kristiansen, Erlend

    2014-01-01

    The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect......, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show...... that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths...

  16. Effect of integral proteins in the phase stability of a lipid bilayer: Application to raft formation in cell membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2010-04-01

    The existence of lipid rafts is a controversial issue. The affinity of cholesterol for saturated lipids is manifested in macroscopic phase separation in model membranes, and is believed to be the thermodynamic driving force for raft formation. However, there is no clear reason to explain the small (nanometric) size of raft domains in cell membranes. In a recent paper Yethiraj and Weisshaar [Biophys. J. 93, 3113 (2007)] proposed that the effect of neutral integral membrane proteins may prevent from the formation of large lipid domains. In this paper we extend this approach by studying the effect of the protein size, as well as the lipid-protein interaction. Depending on these factors, two different mechanisms for nanodomain stabilization are shown to be possible for static proteins. The application of these results to a biological context is discussed.

  17. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  18. Development and characterization of stabilized, polymerized phospholipid bilayers on silica particles for specific immobilization of His-tagged proteins

    Indian Academy of Sciences (India)

    Seid M Adem

    2015-04-01

    Stabilized phospholipid bilayer (PLB) coated silica microspheres were prepared via polymerization of lipid monomers. These lipid coated silica microspheres are stable to both extended storage in solution at 4°C and dry storage at room temperature. These stabilized lipid coated microspheres have also been functionalized with nickel-chelating lipids, a commonly used tool for immobilizing polyhistidine-tagged proteins. It is shown that 6xHis-EGFP interacts with (poly)bis-SorbPC/DOGS-NTA-Ni2+ coated silica and this interaction was interrupted by washing with imidazole indicating the reversibility of the interaction. No interaction was observed between the functionalized silica substrate and EGFP, which lacks the 6xHis-tag. Furthermore, these biocompatible (poly)bis-SorbPC coated microspheres were able to minimize non-specific protein adsorption.

  19. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    Science.gov (United States)

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  20. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability

    DEFF Research Database (Denmark)

    Nielsen, J.; Kristensen, M. A.; Willemoes, Martin;

    2004-01-01

    zipcode-binding protein IMP1 on targets in the 3'-UTR from Igf-II mRNA and in H19 RNA. In both cases, two molecules of IMP1 bound to RNA by a sequential, cooperative mechanism, characterized by an initial fast step, followed by a slow second step. The first step created an obligatory assembly intermediate...... of low stability, whereas the second step was the discriminatory event that converted a putative RNA target into a ‘locked' stable RNP. The ability to dimerize was also observed between members of the IMP family of zipcode-binding proteins, providing a multitude of further interaction possibilities...

  1. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.

    Science.gov (United States)

    Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F

    2002-09-01

    Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism.

  2. Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R.; Fariselli, P.; Vivarelli, F. [Univ. of Bologna (Italy); Compiani, M. [Univ. of Camerino (Italy)

    1995-12-31

    Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from crystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental {Delta}G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol{sup -1} rather independently of the residue sequence, with an average error per protein of about 9 kcal mol{sup -1}.

  3. Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks.

    Science.gov (United States)

    Casadio, R; Compiani, M; Fariselli, P; Vivarelli, F

    1995-01-01

    Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from chrystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental delta G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol-1 rather independently of the residue sequence, with an average error per protein of about 9 kcal mol-1.

  4. A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite.

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-31

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.

  5. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  6. The influence of barley malt protein modification on beer foam stability and their relationship to the barley dimeric alpha-amylase inhibitor-I (BDAI-I) as a possible foam-promoting protein.

    Science.gov (United States)

    Okada, Yoshihiro; Iimure, Takashi; Takoi, Kiyoshi; Kaneko, Takafumi; Kihara, Makoto; Hayashi, Katsuhiro; Ito, Kazutoshi; Sato, Kazuhiro; Takeda, Kazuyoshi

    2008-02-27

    The foam stability of beer is one of the important key factors in evaluating the quality of beer. The purpose of this study was to investigate the relationship between the level of malt modification (degradation of protein, starch, and so on) and the beer foam stability. This was achieved by examining foam-promoting proteins using two-dimensional gel electrophoresis (2DE). We found that the foam stability of beer samples brewed from the barley malts of cultivars B and C decreased as the level of malt modification increased; however, the foam stability of cultivar A did not change. To identify the property providing the increased foam stability of cultivar A, we analyzed beer proteins using 2DE. We analyzed three fractions that could contain beer foam-promoting proteins, namely, beer whole proteins, salt-precipitated proteins, and the proteins concentrated from beer foam. As a result, we found that in cultivar A, some protein spots did not change in any of these three protein fractions even when the level of malt modification increased, although the corresponding protein spots in cultivars B and C decreased. We analyzed these protein spots by peptide mass finger printing using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As a result, all of these spots were identified as barley dimeric alpha-amylase inhibitor-I (BDAI-I). These results suggest that BDAI-I is an important contributor to beer foam stability.

  7. Stabilization of native amyloid β-protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP).

    Science.gov (United States)

    Williams, Thomas L; Serpell, Louise C; Urbanc, Brigita

    2016-03-01

    Oligomeric assemblies are postulated to be proximate neurotoxic species in human diseases associated with aberrant protein aggregation. Their heterogeneous and transient nature makes their structural characterization difficult. Size distributions of oligomers of several amyloidogenic proteins, including amyloid β-protein (Aβ) relevant to Alzheimer's disease (AD), have been previously characterized in vitro by photo-induced cross-linking of unmodified proteins (PICUP) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Due to non-physiological conditions associated with the PICUP chemistry, Aβ oligomers cross-linked by PICUP may not be representative of in vivo conditions. Here, we examine an alternative Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP), which utilizes naturally occurring divalent copper ions and hydrogen peroxide and does not require photo activation. Our results demonstrate that CHICUP and PICUP applied to the two predominant Aβ alloforms, Aβ40 and Aβ42, result in similar oligomer size distributions. Thioflavin T fluorescence data and atomic force microscopy images demonstrate that both CHICUP and PICUP stabilize Aβ oligomers and attenuate fibril formation. Relative to noncross-linked peptides, CHICUP-treated Aβ40 and Aβ42 cause prolonged disruption to biomimetic lipid vesicles. CHICUP-stabilized Aβ oligomers link the amyloid cascade, metal, and oxidative stress hypotheses of AD into a more comprehensive understanding of the molecular basis of AD pathology. Because copper and hydrogen peroxide are elevated in the AD brain, CHICUP-stabilized Aβ oligomers are biologically relevant and should be further explored as a new therapeutic target.

  8. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    Science.gov (United States)

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems.

  9. The effect of the application of protein and cellulose preparations as iodine carriers on stability of thiamine in processed meats

    OpenAIRE

    Krystyna Szymandera-Buszka; Katarzyna Waszkowiak; Marzanna Hęś; Anna Jędrusek-Golińska

    2011-01-01

      Fortification of processed meat with iodised table salt was shown to increase thiamine losses, both during thermal processing and storage. Taking into consideration the fact, as well as the recommendation for reduction of consumption of table salt, alternative iodine carriers need to be searched for. Thus the aim of the study was to determine the effect of soy protein isolate (SPI) and wheat fibre (WF) as iodine salts’ (potassium iodide and iodate) carriers on thiamine stabil...

  10. Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150.

    Science.gov (United States)

    Elsworth, Brendan; Sanders, Paul R; Nebl, Thomas; Batinovic, Steven; Kalanon, Ming; Nie, Catherine Q; Charnaud, Sarah C; Bullen, Hayley E; de Koning Ward, Tania F; Tilley, Leann; Crabb, Brendan S; Gilson, Paul R

    2016-11-01

    The Plasmodium translocon for exported proteins (PTEX) has been established as the machinery responsible for the translocation of all classes of exported proteins beyond the parasitophorous vacuolar membrane of the intraerythrocytic malaria parasite. Protein export, particularly in the asexual blood stage, is crucial for parasite survival as exported proteins are involved in remodelling the host cell, an essential process for nutrient uptake, waste removal and immune evasion. Here, we have truncated the conserved C-terminus of one of the essential PTEX components, PTEX150, in Plasmodium falciparum in an attempt to create mutants of reduced functionality. Parasites tolerated C-terminal truncations of up to 125 amino acids with no reduction in growth, protein export or the establishment of new permeability pathways. Quantitative proteomic approaches however revealed a decrease in other PTEX subunits associating with PTEX150 in truncation mutants, suggesting a role for the C-terminus of PTEX150 in regulating PTEX stability. Our analyses also reveal three previously unreported PTEX-associated proteins, namely PV1, Pf113 and Hsp70-x (respective PlasmoDB numbers; PF3D7_1129100, PF3D7_1420700 and PF3D7_0831700) and demonstrate that core PTEX proteins exist in various distinct multimeric forms outside the major complex.

  11. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    Directory of Open Access Journals (Sweden)

    Zhiqiang Tian

    2011-03-01

    Full Text Available Wei He1, Yanan Tan1, Zhiqiang Tian1, Lingyun Chen2, Fuqiang Hu3, Wei Wu11Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China; 2Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Alberta, Canada; 3Department of Pharmaceutics, School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of ChinaAbstract: Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, ß-lactoglobulin were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium-bromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, ß-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.Keywords: oil in water nanoemulsions, food proteins, poorly water-soluble drugs, biocompatibility, in vivo absorption

  12. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability.

    Science.gov (United States)

    Copela, Laura A; Chakshusmathi, Ghadiyaram; Sherrer, R Lynn; Wolin, Sandra L

    2006-04-01

    Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p. In addition, two pseudouridine synthases, PUS3 and PUS4, are important for growth in strains carrying a mutation in tRNA(Arg)(CCG) and are essential when La is deleted in these strains. Depletion of Pus3p results in accumulation of the aminoacylated mutant tRNA(Arg)(CCG) in nuclei, while depletion of Pus4p results in decreased stability of the mutant tRNA. Interestingly, the degradation of mutant unstable forms of tRNA(Arg)(CCG) does not require the Trf4p poly(A) polymerase, suggesting that yeast cells possess multiple pathways for tRNA decay. These data demonstrate that La functions redundantly with both tRNA modifications and proteins that associate with tRNAs to achieve tRNA structural stability and efficient biogenesis.

  13. Universal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions.

    Science.gov (United States)

    Rawat, Kamla; Bohidar, H B

    2012-09-13

    This study reports pH dependent stability of protein dispersions of five common proteins, bovine serum albumin (BSA), human serum albumin (HSA), immunoglobulin (IgG), β-lactoglobulin (β-Lg), and gelatin-B (Gel-B), all having isoelectric pH, pI ≈ 5, in room temperature ionic liquid solutions of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride (concentration 0-0.2% w/v). Molecular hydrophobicity index, (H-index = hydrophobicity/hydrophilicity) of these molecules spanned the range 0.43-0.87. Electrophoretic characteristics, surface tension data and hydrodynamic size information revealed that IL solutions provide dispersion stability owing to specific protein-IL binding which did not alter their pI values though their surface charge was considerably screened. Change in maximum (ζ(max)) and minimum (ζ(min)) zeta potential values observed at pH ~3 (maximum protonated state) and pH ~8 (maximum deprotonated state) could be described universally as function of IL concentration, c as Δζ(x) = [1 - exp(-ac)] where Δζ(x) is either |(ζ(max) - ζ(w))|/ζ(w) or |(ζ(min) - ζ(w))|/ζ(w), and ζ(w) is the corresponding value in water. Tensiometry data showed two major stages of protein-IL interactions: (i) for c cmc free IL-aggregates begin to form. Similarly, we can define Δγ(x) as either |(γ(max) - γ(w))|/γ(w) at pH 3 or |(γ(min) - γ(w))|/γ(w) at pH 8. Both Δζ(x) and Δγ(x) showed linear dependence with c, Δγ(min, max) (or Δζ(min, max)) = (1 - K(γ) (or K(ζ)) H-index), where the slopes K(ζ) and K(γ) defined intermolecular interactions. Hydrodynamic radii data revealed protein stabilization, circular dichroism spectra implied retention of secondary structures, and Raman spectra confirmed a marginal increase in water structure. Results concluded that selective binding of IL molecules to protein surface in the form of bilayer screen protein surface charge, thereby, contributing to its dispersion stability.

  14. Mangiferin increases Nrf2 protein stability by inhibiting its ubiquitination and degradation in human HL60 myeloid leukemia cells.

    Science.gov (United States)

    Zhao, Jie; Zhang, Benping; Li, Shanshan; Zeng, Linglan; Chen, Yan; Fang, Jun

    2014-05-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway is a key target for cancer chemoprevention. Recent studies have that Nrf2 activation may be the result of an increase in Nrf2 protein stability. Mangiferin (MA), a compound monomer extracted from the mango plant, has antioxidant and cytoprotective activities. Our previous study demonstrated that MA increased Nrf2 expression and activated Nrf2 signaling in hematopoietic cells. Thus, in the present study, we aimed to investigate the mechanisms by which MA increases Nrf2 expression in human HL60 myeloid leukemia cells in vitro. Our western blot analysis results revealed that MA markedly increased Nrf2 expression in dose- and time-dependent manner. However treatment with MA did not affect the Nrf2 mRNA level. The results of cycloheximide (CHX)-chase analysis demonstrated that the Nrf2 protein half-life was prolonged to 58 min when the HL60 cells were pre-incubated with 50 µM MA for 4 h, whereas its half-life was only 20 min in the non-MA treated control cells. Further experiments revealed that MA mainly enhanced non-ubiquitinated Nrf2 protein levels when increasing Nrf2 protein stability; these effects differed from those induced by the proteasome inhibitor, MG132. Subsequent immunoprecipitation experiments confirmed that MA inhibited Nrf2 ubiquitination in HL60 cells. These results provide evidence that MA increases Nrf2 protein stability by inhibiting its ubiquitination and degradation in hematopoietic cells. This may be one of the mechanisms through which MA activates the Nrf2-mediated antioxidant response and exerts cytoprotective effects.

  15. KRAS Protein Stability Is Regulated through SMURF2: UBCH5 Complex-Mediated β-TrCP1 Degradation

    Directory of Open Access Journals (Sweden)

    Shirish Shukla

    2014-02-01

    Full Text Available Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2 and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, β-transducing repeat containing protein 1 (β-TrCP1. Conversely, β-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, β-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P residues in UBCH5 critical for SMURF2 interaction; mutation of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells.

  16. The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability.

    Science.gov (United States)

    Choi, Myung-Suk; Min, Sang-Hyun; Jung, Haiyoung; Lee, Ju Dong; Lee, Tae Ho; Lee, Heung Kyu; Yoo, Ook-Joon

    2011-03-11

    The phosphatase of regenerating liver-3 (PRL-3) is a member of protein tyrosine phosphatases and whose deregulation is implicated in tumorigenesis and metastasis of many cancers. However, the underlying mechanism by which PRL-3 is regulated is not known. In this study, we identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as an interacting protein of PRL-3 using a yeast two-hybrid system. FKBP38 specifically binds to PRL-3 in vivo, and that the N-terminal region of FKBP38 is crucial for binding with PRL-3. FKBP38 overexpression reduces endogenous PRL-3 expression levels, whereas the depletion of FKBP38 by siRNA increases the level of PRL-3 protein. Moreover, FKBP38 promotes degradation of endogenous PRL-3 protein via protein-proteasome pathway. Furthermore, FKBP38 suppresses PRL-3-mediated p53 activity and cell proliferation. These results demonstrate that FKBP38 is a novel regulator of the oncogenic protein PRL-3 abundance and that alteration in the stability of PRL-3 can have a dramatic impact on cell proliferation. Thus, FKBP38 may play a critical role in tumorigenesis.

  17. Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles

    Science.gov (United States)

    Sahare, P.; Ayala, M.; Vazquez-Duhalt, R.; Pal, U.; Loni, A.; Canham, L. T.; Osorio, I.; Agarwal, V.

    2016-09-01

    The study of the stability enhancement of a peroxidase immobilized onto mesoporous silicon/silica microparticles is presented. Peroxidases tend to get inactivated in the presence of hydrogen peroxide, their essential co-substrate, following an auto-inactivation mechanism. In order to minimize this inactivation, a second protein was co-immobilized to act as an electron acceptor and thus increase the stability against self-oxidation of peroxidase. Two heme proteins were immobilized into the microparticles: a fungal commercial peroxidase and cytochrome c from equine heart. Two types of biocatalysts were prepared: one with only covalently immobilized peroxidase (one-protein system) and another based on covalent co-immobilization of peroxidase and cytochrome c (two-protein system), both immobilized by using carbodiimide chemistry. The amount of immobilized protein was estimated spectrophotometrically, and the characterization of the biocatalyst support matrix was performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared (FTIR) analyses. Stability studies show that co-immobilization with the two-protein system enhances the oxidative stability of peroxidase almost four times with respect to the one-protein system. Thermal stability analysis shows that the immobilization of peroxidase in derivatized porous silicon microparticles does not protect the protein from thermal denaturation, whereas biogenic silica microparticles confer significant thermal stabilization.

  18. Molecular cloning, expression profile, odorant affinity, and stability of two odorant-binding proteins in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae).

    Science.gov (United States)

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2017-02-01

    The polyembryonic endoparasitoid wasp Macrocentrus cingulum Brischke (Hymenoptera: Braconidae) is deployed successfully as a biocontrol agent for corn pest insects from the Lepidopteran genus Ostrinia in Europe and throughout Asia, including Japan, Korea, and China. The odorants are recognized, bound, and solubilized by odorant-binding protein (OBP) in the initial biochemical recognition steps in olfaction that transport them across the sensillum lymph to initiate behavioral response. In the present study, we examine the odorant-binding effects on thermal stability of McinOBP2, McinOBP3, and their mutant form that lacks the third disulfide bonds. Real-time PCR experiments indicate that these two are expressed mainly in adult antennae, with expression levels differing by sex. Odorant-binding affinities of aldehydes, terpenoids, and aliphatic alcohols were measured with circular dichroism spectroscopy based on changes in the thermal stability of the proteins upon their affinities to odorants. The obtained results reveal higher affinity of trans-caryophelle, farnesene, and cis-3-Hexen-1-ol exhibits to both wild and mutant McinOBP2 and McinOBP3. Although conformational flexibility of the mutants and shape of binding cavity make differences in odorant affinity between the wild-type and mutant, it suggested that lacking the third disulfide bond in mutant proteins may have chance to incorrect folded structures that reduced the affinity to these odorants. In addition, CD spectra clearly indicate proteins enriched with α-helical content.

  19. Temperature Dependence of the Stability of Ion Pair Interactions, and its Implications on the Thermostability of Proteins from Thermophiles

    Indian Academy of Sciences (India)

    SWETHA BIKKINA; AGASTYA P BHATI; SILADITYA PADHI; U DEVA PRIYAKUMAR

    2017-03-01

    An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrenceof salt bridges. The current study employs free energy calculations to elucidate the thermodynamics of the formation of salt bridge interactions and the temperature dependence, using acetate and methylguanidium ionsas model systems. Three different orientations of the methylguanidinium approaching the carboxylate grouphave been considered for obtaining the free energy profiles. The association of the two ions becomes more favorable with an increase in temperature. The desolvation penalty corresponding to the association of the ionpair is the lowest at high temperatures. The occurrence of bridging water molecules between the ions ensures that the ions are not fully desolvated, and this could provide an explanation for the existence of internal watermolecules in thermostable proteins reported recently. The findings provide a detailed picture of the interactions that make ion pair association at high temperatures a favorable process, and reaffirm the importance of saltbridges in the design of thermostable proteins.

  20. Id1 interacts and stabilizes the Epstein-Barr virus latent membrane protein 1 (LMP1 in nasopharyngeal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Pok Man Hau

    Full Text Available The EBV-encoded latent membrane protein 1 (LMP1 functions as a constitutive active form of tumor necrosis factor receptor (TNFR and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC cell line (C666-1 and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.

  1. Structure and mechanism of maximum stability of isolated alpha-helical protein domains at a critical length scale.

    Science.gov (United States)

    Qin, Zhao; Fabre, Andrea; Buehler, Markus J

    2013-05-01

    The stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.

  2. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins.

    Science.gov (United States)

    Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck

    2015-07-20

    External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials.

  3. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  4. Transcriptome and proteome exploration to model translation efficiency and protein stability in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Clémentine Dressaire

    2009-12-01

    Full Text Available This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also, for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to other environments and/or other micro-organisms.

  5. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    Science.gov (United States)

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  6. Characterization of expression and stability of recombinant cystein-rich protein human MT1A from yeast.

    Science.gov (United States)

    Jie, Li; Kaifeng, Shao; Dian, Yao; Lin, An; Binggen, Ru

    2005-08-01

    Metallothionein (MT) is the protein that has been shown to bind heavy metals, scavenge free radicals, protect DNA from radiation damage, and alleviate disease symptoms. However, only very limited success has been achieved in expression and production of active recombinant metallothionein. In this study, human metallothionein 1A (hMT1A) was transformed into yeast Pichia pastoris for expression with secretion of the protein into the medium. The expression system was optimized to obtain the targeted protein in active form at 335 mg per litre culture. hMT1A showed the character of extreme instability in the experiment. High concentration, aeration and heavy metal ions are the main factors affecting hMT1A stability.

  7. Predicting important residues and interaction pathways in proteins using Gaussian Network Model: binding and stability of HLA proteins.

    Directory of Open Access Journals (Sweden)

    Turkan Haliloglu

    Full Text Available A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified and their relations to disease are discussed.

  8. The presence of the iron-sulfur motif is important for the conformational stability of the antiviral protein, Viperin.

    Directory of Open Access Journals (Sweden)

    Shubhasis Haldar

    Full Text Available Viperin, an antiviral protein, has been shown to contain a CX(3CX(2C motif, which is conserved in the radical S-adenosyl-methionine (SAM enzyme family. A triple mutant which replaces these three cysteines with alanines has been shown to have severe deficiency in antiviral activity. Since the crystal structure of Viperin is not available, we have used a combination of computational methods including multi-template homology modeling and molecular dynamics simulation to develop a low-resolution predicted structure. The results show that Viperin is an α-β protein containing iron-sulfur cluster at the center pocket. The calculations suggest that the removal of iron-sulfur cluster would lead to collapse of the protein tertiary structure. To verify these predictions, we have prepared, expressed and purified four mutant proteins. In three mutants individual cysteine residues were replaced by alanine residues while in the fourth all the cysteines were replaced by alanines. Conformational analyses using circular dichroism and steady state fluorescence spectroscopy indicate that the mutant proteins are partially unfolded, conformationally unstable and aggregation prone. The lack of conformational stability of the mutant proteins may have direct relevance to the absence of their antiviral activity.

  9. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala.

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    Full Text Available Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.

  10. A comprehensive comparison of normalization methods for loading control and variance stabilization of reverse-phase protein array data.

    Science.gov (United States)

    Liu, Wenbin; Ju, Zhenlin; Lu, Yiling; Mills, Gordon B; Akbani, Rehan

    2014-01-01

    Loading control (LC) and variance stabilization of reverse-phase protein array (RPPA) data have been challenging mainly due to the small number of proteins in an experiment and the lack of reliable inherent control markers. In this study, we compare eight different normalization methods for LC and variance stabilization. The invariant marker set concept was first applied to the normalization of high-throughput gene expression data. A set of "invariant" markers are selected to create a virtual reference sample. Then all the samples are normalized to the virtual reference. We propose a variant of this method in the context of RPPA data normalization and compare it with seven other normalization methods previously reported in the literature. The invariant marker set method performs well with respect to LC, variance stabilization and association with the immunohistochemistry/florescence in situ hybridization data for three key markers in breast tumor samples, while the other methods have inferior performance. The proposed method is a promising approach for improving the quality of RPPA data.

  11. Computational Studies of the Structural Stability of Rabbit Prion Protein Compared to Human and Mouse Prion Proteins

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. The neurodegenerative diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Str$\\ddot{a}$ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle belong to prion diseases. By now there have not been some effective therapeutic approaches to treat all these prion diseases. Dogs, rabbits and horses were reported to be resistant to prion diseases. By the end of year 2010 all the NMR structures of dog, rabbit and horse prion proteins (X-ray for rabbits too) had been finished to release into protein data bank. Thus, at this moment it is very worth studying the NMR and X-ray molecular structures of horse, dog and rabbit prion proteins to obtain insights into their immunity prion diseases. The author found that dog and horse prion proteins have sta...

  12. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells.

    Science.gov (United States)

    Chen, Xi; Shen, Jianjun; Li, Xingyu; Wang, Xi; Long, Min; Lin, Fang; Wei, Junxia; Yang, Longfei; Yang, Chinglai; Dong, Ke; Zhang, Huizhong

    2014-07-01

    Stathmin is an oncoprotein and is expressed at high levels in a wide variety of human malignancies, which plays important roles in maintenance of malignant phenotypes. The regulation of Stathmin gene overexpression has been wildly explored, but the exact mechanism still needs to be elucidated. It is believed that regulation of an oncogene protein abundance through post-translational modifications is essential for maintenance of malignant phenotypes. Here we identified the Rlim, a Ring H2 zinc finger protein with intrinsic ubiquitin ligase activity, as a Stathmin-interacting protein that could increase Stathmin turnover through binding with this targeted protein and then induce its degradation by proteasome in a ubiquitin-dependent manner. Inhibition of endogenous Rlim expression by siRNA could increase the level of Stathmin protein, which further led to cell proliferation and cell cycle changes in human osteosarcoma cell lines. On the other hand, forced overexpression of Rlim could decrease the level of Stathmin protein. These results demonstrate that Rlim is involved in the negative regulation of Stathmin protein level through physical interaction and ubiquitin-mediated proteolysis. Hence, Rlim is a novel regulator of Stathmin protein in a ubiquitin-dependent manner, and represents a new pathway for malignant phenotype turnover by modulating the level of Stathmin protein in human osteosarcomas.

  13. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability.

    Science.gov (United States)

    Mensink, Maarten A; Van Bockstal, Pieter-Jan; Pieters, Sigrid; De Meyer, Laurens; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J; De Beer, Thomas

    2015-12-30

    Sugars are often used as stabilizers of protein formulations during freeze-drying. However, not all sugars are equally suitable for this purpose. Using in-line near-infrared spectroscopy during freeze-drying, it is shown here that hydrogen bond formation during freeze-drying, under secondary drying conditions in particular, can be related to the preservation of the functionality and structure of proteins during storage. The disaccharide trehalose was best capable of forming hydrogen bonds with the model protein, lactate dehydrogenase, thereby stabilizing it, followed by the molecularly flexible oligosaccharide inulin 4kDa. The molecularly rigid oligo- and polysaccharides dextran 5kDa and 70kDa, respectively, formed the least amount of hydrogen bonds and provided least stabilization of the protein. It is concluded that smaller and molecularly more flexible sugars are less affected by steric hindrance, allowing them to form more hydrogen bonds with the protein, thereby stabilizing it better.

  14. Engineering of isoamylase: improvement of protein stability and catalytic efficiency through semi-rational design.

    Science.gov (United States)

    Li, Youran; Zhang, Liang; Ding, Zhongyang; Gu, Zhenghua; Shi, Guiyang

    2016-01-01

    Isoamylase catalyzes the hydrolysis of α-1,6-glycosidic linkages in glycogen, amylopectin and α/β-limit dextrins. A semi-rational design strategy was performed to improve catalytic properties of isoamylase from Bacillus lentus. Three residues in vicinity of the essential residues, Arg505, Asn513, and Gly608, were chosen as the mutation sites and were substituted by Ala, Pro, Glu, and Lys, respectively. Thermal stability of the mutant R505P and acidic stability of the mutant R505E were enhanced. The k cat /K m values of the mutant G608V have been promoted by 49%, and the specific activity increased by 33%. This work provides an effective strategy for improving the catalytic activity and stability of isoamylase, and the results obtained here may be useful for the improvement of catalytic properties of other α/β barrel enzymes.

  15. The critical role of N- and C-terminal contact in protein stability and folding of a family 10 xylanase under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    Full Text Available BACKGROUND: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. METHODOLOGY: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. CONCLUSION: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DeltaF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.

  16. Hepatitis B Virus X Upregulates HuR Protein Level to Stabilize HER2 Expression in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chao-Ming Hung

    2014-01-01

    Full Text Available Hepatitis B virus- (HBV- associated hepatocellular carcinoma (HCC is the most common type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very complicated and HBV-encoded X protein (HBx has been reported to play the most important role in this process. Activation of downstream signal pathways of epidermal growth factor receptor (EGFR family is known to mediate HBx-dependent HCC tumor progression. Interestingly, HER2 (also known as ErbB2/Neu/EGFR2 is frequently overexpressed in HBx-expressing HCC patients and is associated with their poor prognosis. However, it remains unclear whether and how HBx regulates HER2 expression. In this study, our data showed that HBx expression increased HER2 protein level via enhancing its mRNA stability. The induction of RNA-binding protein HuR expression by HBx mediated the HER2 mRNA stabilization. Finally, the upregulated HER2 expression promoted the migration ability of HBx-expressing HCC cells. These findings deciphered the molecular mechanism of HBx-mediated HER2 upregulation in HBV-associated HCC.

  17. Corn fiber gum and milk protein conjugates with improved emulsion stability

    Science.gov (United States)

    Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of the corn kernel milling by-product “corn fiber” was covalently conjugated with Beta-lactoglobulin (Beta-LG) and whey protein isolate (WPI). Covalent coupling of CFG to protein was achieved by dry heating reaction (Maillard-type) of CFG ...

  18. Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing

    NARCIS (Netherlands)

    Zhang, Lina; Boeren, Sjef; Smits, Marcel; Hooijdonk, van Toon; Vervoort, Jacques; Hettinga, Kasper

    2016-01-01

    Milk proteins have been shown to be very sensitive to processing. This study aims to investigate the changes of the bovine, camel, and caprine milk proteins after freezing, pasteurization (62 °C, 30 min), and spray drying by proteomic techniques, filter-aided sample preparation (FASP) and dimethy

  19. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;

    2010-01-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Ma...

  20. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...

  1. On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study

    Science.gov (United States)

    Shao, Qiang; Wang, Jinan; Zhu, Weiliang

    2014-09-01

    Mixtures of osmolytes and/or inorganic salts are present in the cell. Therefore, the understanding of the interplay of mixed osmolyte molecules and inorganic salts and their combined effects on protein structure is of fundamental importance. A novel test is presented to investigate the combined effects of urea and a chaotropic inorganic salt, potassium iodide (KI), on protein structure by using molecular dynamics simulation. It is found that the coexistence of KI and urea does not affect their respective distribution in solution. The solvation of KI salt in urea solution makes the electrostatic interactions of urea more favorable, promoting the hydrogen bonding between urea (and water) to protein backbone. The interactions from K+ and hydrogen bonding from urea and water to protein backbone work as the driving force for protein denaturation. The collaborative behavior of urea and KI salt thus enhances the denaturing ability of urea and KI mixed solution.

  2. C-H…pi interactions in proteins: prevalence, pattern of occurrence, residue propensities, location, and contribution to protein stability.

    Science.gov (United States)

    Kumar, Manjeet; Balaji, Petety V

    2014-02-01

    C-H…pi interactions are a class of non-covalent interactions found in different molecular systems including organic crystals, proteins and nucleic acids. High-resolution protein structures have been analyzed in the present study to delineate various aspects of C-H…pi interactions. Additionally, to determine the extent to which redundancy of a database biases the outcome, two datasets differing from each other in the level of redundancy have been analyzed. On average, only one out of six {with C-H(Aro) group} or eight {with C-H(Ali) group} residues in a protein participate as C-H group donors. Neither the frequency of occurrence in proteins nor the number of C-H groups present in it is correlated to the propensity of an amino acid to participate in C-H…pi interactions. Most of the residues that participate in C-H…pi interactions are solvent-shielded. Solvent shielded nature of most of the C-H…pi interactions and prevalence of intra- as well as inter-secondary structural element C-H…pi interactions suggest that the contribution of these interactions to the enthalpy of folded form will be significant. The separation in the primary structure between donor and acceptor residues is found to be correlated to secondary structure type. Other insights obtained from this study include the presence of networks of C-H…pi interactions spanning multiple secondary structural elements. To our knowledge this has not been reported so far. A substantial number of residues involved in C-H…pi interactions are found in catalytic and ligand binding sites suggesting their possible role in maintaining active site geometry. No significant differences of C-H…pi interactions in the two datasets are found for any of the parameters/features analyzed.

  3. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  4. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.

  5. [Blood plasma protein adsorption capacity of perfluorocarbon emulsion stabilized by proxanol 268 (in vitro and in vivo studies)].

    Science.gov (United States)

    Sklifas, A N; Zhalimov, V K; Temnov, A A; Kukushkin, N I

    2012-01-01

    The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 ml of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits, intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 hours or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorpted new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5-5 mg of proteins per 1 ml of the emulsion) after 24 hours.

  6. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics.

    Directory of Open Access Journals (Sweden)

    Jackson Buss

    2015-04-01

    Full Text Available The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome. Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation.

  7. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein

    DEFF Research Database (Denmark)

    Klukkert, Marten; Van De Weert, Marco; Fanø, Mathias;

    2015-01-01

    reversible upon tablet reconstitution. Aqueous-state IR spectroscopy combined with partial least squares was shown to be a powerful tool to follow irreversible structural changes and evaluate sample bioactivity. Besides its conformation, the thermal stability of trypsin was altered as a result of the applied...

  8. Improvement of Solubility and Stability of the Antimicrobial Peptide Nisin by Protein Engineering

    NARCIS (Netherlands)

    Rollema, Harry S.; Kuipers, Oscar P.; Both, Paula; Vos, Willem M. de; Siezen, Roland J.

    1995-01-01

    Nisin is a 3.4-kDa antimicrobial peptide that, as a result of posttranslational modifications, contains unsaturated amino acids and lanthionine residues. It is applied as a preservative in various food products. The solubility and stability of nisin and nisin mutants have been studied. It is demonst

  9. Orthokinetic flocculation of caseinate-stabilized emulsions : influence of calcium concentration, shear rate and protein content

    NARCIS (Netherlands)

    Schokker, E.P.; Dalgleish, D.G.

    2000-01-01

    Calcium-induced flocculation of caseinate-stabilized soybean oil-in- water emulsions in conditions of Couette flow was studied. A concentrated emulsion (20% oil, 0.5-2.0% sodium caseinate in 20 mM imidazole, pH 7) was diluted 20 times in buffer containing concentrations of CaCl2 between 9 and 17 mM

  10. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors.

    Science.gov (United States)

    Clifton, Ben E; Whitfield, Jason H; Sanchez-Romero, Inmaculada; Herde, Michel K; Henneberger, Christian; Janovjak, Harald; Jackson, Colin J

    2017-01-01

    Small molecule biosensors based on Förster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors.

  11. The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA

    OpenAIRE

    Lopez de Silanes, I.; Gorospe, M.; Taniguchi, H; Abdelmohsen, K; Srikantan, S.; Alaminos, M.; Berdasco, M.; Urdinguio, R. G.; Fraga, M. F.; Jacinto, F. V.; Esteller, M.

    2009-01-01

    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3???UTR pr...

  12. Factors affecting the oxidative stability of omega-3 emulsions prepared with milk proteins

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    importance for the resulting oxidation. This presentation will give an overview of parameters that are expected to change the properties and structure of milk protein components at the interface of 10% fish oil-in-water emulsions. Results from three different studies will be included. The first study...... compared the effect of two different high pressure homogenizers on oxidation in caseinate and whey protein isolate emulsions. The second study evaluated the effect of homogenization pressure and temperature on emulsions prepared either with whey proteins or a combination of caseinate and β...

  13. The challenges in and importance of analysing protein structure and physical stability in complex formulations

    DEFF Research Database (Denmark)

    Jorgensen, L.; Jensen, Minna Grønning; Roest, N.

    2013-01-01

    In this review several analytical challenges that may be encountered during protein formulation development of complex formulations are discussed through recent examples. These examples show how selected advanced biophysical methods can greatly increase our understanding of the system under...

  14. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends.

    Science.gov (United States)

    Moser, Poliana; Telis, Vânia Regina Nicoletti; de Andrade Neves, Nathália; García-Romero, Esteban; Gómez-Alonso, Sergio; Hermosín-Gutiérrez, Isidro

    2017-01-01

    The stabilities of the phenolic compounds, antioxidant activity and colour parameters of microencapsulated powdered BRS Violeta red grape juice were evaluated throughout storage at 5, 25 and 35°C for up to 150days. Different soy protein (S) or whey protein (W) blends with maltodextrin (M) were used as carrier agents, added at diverse concentrations and proportions. The treatment combining S and M with the highest carrier agent concentration (1SM) preserved almost all the anthocyanins. Except for 1SM, the proportion of p-coumaroylated anthocyanins increased during storage, and the flavonol content of the 1SM powder decreased after 150days. The hydroxycinnamate content decreased for all treatments, independent of storage temperature, and flavan-3-ols were lost at 35°C. The time and temperature did not influence the antioxidant activity of the powder or the colour of the reconstituted grape juice after 150days.

  15. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

    Science.gov (United States)

    He, Lihua; Kota, Pradeep; Aleksandrov, Andrei A; Cui, Liying; Jensen, Tim; Dokholyan, Nikolay V; Riordan, John R

    2013-02-01

    Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

  16. Optimizations of force-field parameters for protein systems with the secondary-structure stability and instability

    CERN Document Server

    Sakae, Yoshitake

    2013-01-01

    We propose a novel method for refining force-field parameters of protein systems. In this method, the agreement of the secondary-structure stability and instability between the protein conformations obtained by experiments and those obtained by molecular dynamics simulations is used as a criterion for the optimization of force-field parameters. As an example of the applications of the present method, we refined the force-field parameter set of the AMBER ff99SB force field by searching the torsion-energy parameter spaces of $\\psi$ (N-C$^{\\alpha}$-C-N) and $\\zeta$ (C$^{\\beta}$-C$^{\\alpha}$-C-N) of the backbone dihedral angles. We then performed folding simulations of $\\alpha$-helical and $\\beta$-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff99SB force field.

  17. Is dynamic heterogeneity of water in presence of a protein denaturing agent different from that in presence of a protein stabilizer? A molecular dynamics simulation study

    Indian Academy of Sciences (India)

    SANDIPA INDRA; RANJIT BISWAS BISWAS

    2016-12-01

    Rotational and translational dynamic heterogeneities (DHs) of ambient aqueous solutions of trimethylamine-N-oxide (TMAO) and tetramethylurea (TMU) at several solute concentrations have been investigated and compared. Motional characteristics of water molecules at solute interfaces and in bulk solutionshave been thoroughly examined for the search of slow dynamics. Note, TMAO possesses zwitterionic structure and is a protein stabilizer whereas TMU is a neutral dipolar molecule and a strong denaturant. Results suggest that water-TMAO solutions possess stronger DH than water-TMU solutions with the solute concentration dependence being stronger for TMAO than for TMU. Diffusive dynamics slows down near the solute surface for both the solutes. Solvation structure shows TMAO-water interaction is stronger than TMU-waterinteraction, producing longer H-bond fluctuation timescale in TMAO solutions. In short, this paper presents, for the first time, a systematic and comparative study of motional features and inter-species interactions between aqueous solutions containing solutes that differ in their individual impacts on protein stability.

  18. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  19. miR-346 controls release of TNF-α protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization.

    Directory of Open Access Journals (Sweden)

    Noha Semaan

    Full Text Available TNF-α is a major cytokine implicated in rheumatoid arthritis. Its expression is regulated both at the transcriptional and posttranscriptional levels and recent data demonstrated that miRNAs are implicated in TNF-α response in macrophages. LPS-activated FLS isolated from RA patients express TNF-α mRNA but not the mature protein. This prompted us to look for miRNAs which could be implicated in this anti-inflammatory effect. Using a microarray, we found two miRNAs, miR-125b and miR-939 predicted to target the 3'-UTR of TNF-α mRNA, to be up-regulated in RA FLS in response to LPS, but their repression did not restore mature TNF-α expression in FLS. We showed previously that miR-346, which is upregulated in LPS-activated FLS, inhibited Btk expression that stabilized TNF-α mRNA. Blocking miR-346 reestablished TNF-α expression in activated FLS. Interestingly, transfection of miR-346 in LPS-activated THP-1 cells inhibited TNF-α secretion. We also demonstrated that TTP, a RNA binding protein which inhibited TNF-α synthesis, is overexpressed in activated FLS and that inhibition of miR-346 decreases its expression. Conversely, transfection of miR-346 in LPS-activated THP-1 cells increased TTP mRNA expression and inhibited TNF-α release. These results indicate that miR-346 controls TNF-α synthesis by regulating TTP expression.

  20. Alkali-aided protein extraction of chicken dark meat: composition and stability to lipid oxidation of the recovered proteins.

    Science.gov (United States)

    Moayedi, V; Omana, D A; Chan, J; Xu, Y; Betti, M

    2010-04-01

    Chicken dark meat has been considered as a major underused commodity due to the increasing demand for further-processed breast meat products. One option to increase the utilization of chicken dark meat is to extract myofibrillar proteins and separate them from fat and pigments to enhance their application for the preparation of further-processed meat products. The objective of the current study was to determine the effect of pH, in the range of 10.5 to 12.0, on the alkaline solubilization process of chicken dark meat. Aspects studied were the effect of the alkali-aided process on protein content, lipid composition, lipid oxidation, and color characteristics of the extracted meat. Each experiment and each assay were done at least in triplicate. Lipid content of the extracted meat showed a 50% reduction compared with the chicken dark meat. Neutral lipids were reduced by 61.51%, whereas polar lipids were not affected by the alkali treatments. There was a higher amount of TBA reactive substances observed in the extracted meat compared with chicken dark meat, indicating that extracted meat was more susceptible to oxidation. Long-chain polyunsaturated fatty acids (22:4n-6, 20:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3), which were detected only in the polar lipids, were responsible for increasing lipid oxidation susceptibility of extracted meat compared with chicken dark meat. Alkali-aided extraction of chicken dark meat lightened the color of the meat. The redness, yellowness, and total heme pigments in extracted meat significantly decreased by 83, 11, and 53%, respectively, compared with chicken dark meat. Even though this process did not remove polar lipids, based on our early findings, the extracted meat had considerable physicochemical and textural properties for product preparation compared with those of raw dark meat. Hence, alkali recovery of protein can be considered a potentially useful method to increase the utilization of dark chicken meat.

  1. Thermal stability and unfolding pathways of hyperthermophilic and mesophilic periplasmic binding proteins studied by molecular dynamics simulation.

    Science.gov (United States)

    Chen, Lin; Li, Xue; Wang, Ruige; Fang, Fengqin; Yang, Wanli; Kan, Wei

    2016-07-01

    The ribose binding protein (RBP), a sugar-binding periplasmic protein, is involved in the transport and signaling processes in both prokaryotes and eukaryotes. Although several cellular and structural studies have been reported, a description of the thermostability of RBP at the molecular level remains elusive. Focused on the hyperthermophilic Thermoytoga maritima RBP (tmRBP) and mesophilic Escherichia coli homolog (ecRBP), we applied molecular dynamics simulations at four different temperatures (300, 380, 450, and 500 K) to obtain a deeper insight into the structural features responsible for the reduced thermostability of the ecRBP. The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two homologs and the ecRBP unfolds faster than the hyperthermophilic homologs at certain temperatures in accordance with the lower thermal stability found experimentally. Essential dynamics analysis uncovers that the essential subspaces of ecRBP and tmRBP are non-overlapping and these two proteins show different directions of motion within the simulations trajectories. Such an understanding is required for designing efficient proteins with characteristics for a particular application.

  2. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.

  3. Molecular Dynamics Studies on the Structural Stability of Wild-Type Rabbit Prion Protein: Surface Electrostatic Charge Distributions

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    Prion diseases cover a large range of neurodegenerative diseases in humans and animals, which are invariably fatal and highly infectious. By now there have not been some effective therapeutic approaches or medications to treat all prion diseases. Fortunately, numerous experimental experiences have showed that rabbits are resistant to infection from prion diseases isolated from other species, and recently the molecular structures of rabbit prion protein and its mutants were released into protein data bank. Prion diseases are "protein structural conformational" diseases. Thus, in order to reveal some secrets of prion diseases, it is amenable to study rabbits by techniques of the molecular structure and its dynamics. Wen et al. (PLoS One 5(10) e13273 (2010), Journal of Biological Chemistry 285(41) 31682-31693 (2010)) reported the surface of NMR RaPrPC(124-228) molecular snapshot has a large land of continuous positive charge distribution, which contributes to the structural stability of rabbit prion protein. Thi...

  4. Effects of solute-solute interactions on protein stability studied using various counterions and dendrimers.

    Directory of Open Access Journals (Sweden)

    Curtiss P Schneider

    Full Text Available Much work has been performed on understanding the effects of additives on protein thermodynamics and degradation kinetics, in particular addressing the Hofmeister series and other broad empirical phenomena. Little attention, however, has been paid to the effect of additive-additive interactions on proteins. Our group and others have recently shown that such interactions can actually govern protein events, such as aggregation. Here we use dendrimers, which have the advantage that both size and surface chemical groups can be changed and therein studied independently. Dendrimers are a relatively new and broad class of materials which have been demonstrated useful in biological and therapeutic applications, such as drug delivery, perturbing amyloid formation, etc. Guanidinium modified dendrimers pose an interesting case given that guanidinium can form multiple attractive hydrogen bonds with either a protein surface or other components in solution, such as hydrogen bond accepting counterions. Here we present a study which shows that the behavior of such macromolecule species (modified PAMAM dendrimers is governed by intra-solvent interactions. Attractive guanidinium-anion interactions seem to cause clustering in solution, which inhibits cooperative binding to the protein surface but at the same time, significantly suppresses nonnative aggregation.

  5. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein

    Directory of Open Access Journals (Sweden)

    Alireza G. Senejani, J. Peter Gogarten

    2007-01-01

    Full Text Available Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1, is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn2+ and not Mg2+ metal cations for activity.

  6. A cis-proline in alpha-hemoglobin stabilizing protein directs the structural reorganization of alpha-hemoglobin.

    Science.gov (United States)

    Gell, David A; Feng, Liang; Zhou, Suiping; Jeffrey, Philip D; Bendak, Katerina; Gow, Andrew; Weiss, Mitchell J; Shi, Yigong; Mackay, Joel P

    2009-10-23

    alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.

  7. A cis-Proline in α-Hemoglobin Stabilizing Protein Directs the Structural Reorganization of α-Hemoglobin*

    Science.gov (United States)

    Gell, David A.; Feng, Liang; Zhou, Suiping; Jeffrey, Philip D.; Bendak, Katerina; Gow, Andrew; Weiss, Mitchell J.; Shi, Yigong; Mackay, Joel P.

    2009-01-01

    α-Hemoglobin (αHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with αHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting αHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in αHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro30, in loop 1 of AHSP. Mutation of Pro30 to a variety of residue types results in reduced ability to convert αHb. In complex with αHb, AHSP Pro30 adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in αHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the αHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of αHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops. PMID:19706593

  8. Effect of the increased stability of the penicillin amidase mRNA on the protein expression levels.

    Science.gov (United States)

    Viegas, Sandra C; Schmidt, Dorothea; Kasche, Volker; Arraiano, Cecília M; Ignatova, Zoya

    2005-09-12

    Several factors at transcriptional, post-transcriptional or post-translational level determine the fate of a target protein and can severely restrict its yield. Here, we focus on the post-transcriptional regulation of the biosynthesis of the periplasmic protein, penicillin amidase (PA). The PA mRNA stability was determined under depleted RNase conditions in strains carrying single or multiple RNase deletions. Single deletion of the endonuclease RNase E yielded, as the highest, a fourfold stabilization of the PA mRNA. This effect, however, was reduced twice at post-translational level. The RNase II, generating secondary exonucleolytic cleavages in the mRNA, although not significantly influencing the PA mRNA decay, led also to an increase of the amount of mature PA. The non-proportional correlation between increased mRNA longevity and amount of active enzyme propose that the rational strategies for yield improvement must be based on a simultaneous tuning of more than one yield restricting factor.

  9. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  10. Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions

    DEFF Research Database (Denmark)

    Gravador, Rufielyn Sungcaya; Jongberg, Sisse; Andersen, Mogens Larsen;

    2014-01-01

    The antioxidant effects of dried citrus pulp on proteins in lamb meat, when used as a replacement of concentrate in the feed, was studied using meat from 26 male Comisana lambs. The lambs of age 90. days had been grouped randomly to receive one of the three dietary treatments: (1) commercial...... concentrate with 60% barley (Control, n=8), (2) concentrate with 35% barley and 24% citrus pulp (Cp24, n=9), or (3) concentrate with 23% barley and 35% citrus pulp (Cp35, n=9). Slices from the longissimus thoracis et lomborum muscle were packed aerobically and stored for up to 6. days at 4°C in the dark....... The citrus pulp groups, Cp24 and Cp35, significantly decreased protein radicals and carbonyls, and preserved more thiols within six days of storage compared to the Control group. The citrus pulp groups significantly slowed down the rate of protein oxidation, indicating that dietary citrus pulp reduced...

  11. UV-Visible intensity ratio (aggregates/single particles) as a measure to obtain stability of gold nanoparticles conjugated with protein A

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M. A. [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico); Garcia-Perez, B. E. [Instituto Politecnico Nacional, Departamento de Inmunologia, ENCB (Mexico); Jaramillo-Flores, M. E. [Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, ENCB (Mexico); Gayou, V. L.; Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico)

    2013-05-15

    We have analyzed the titration process of gold nanoparticles with several amounts of protein A (0.3, 0.5, 1, 3, 6, and 9 {mu}g/ml) in the presence of NaCl, which induces aggregation if the surface of particles is not fully covered with protein A. The colloidal solutions with different particle size (16, 18, 20, 33 nm) were synthesized by citrate reduction to be conjugated with protein A. UV-Visible spectroscopy was used to measure the absorption of the surface plasmon resonance of gold nanoparticles as a function of the concentration of protein A. Such dependence shows an aggregation region (0 < x<6 {mu}g/ml), where the amount of protein A was insufficient to cover the surface of particles, obtaining aggregation caused by NaCl. The next part is the stability region (x {>=} 6 {mu}g/ml), where the amount of protein used covers the surface of particles and protects it from the aggregation. In addition to that the ratio between the intensities of both: the aggregates and of the gold nanoparticle bands was plotted as a function of the concentration of protein A. It was determined that 6 {mu}g/ml is a sufficient value of protein A to stabilize the gold nanoparticle-protein A system. This method provides a simple way to stabilize gold nanoparticles obtained by citrate reduction, with protein A.

  12. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Science.gov (United States)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; do Carmo Pereira, Maria; Ivanova, Galya; Coelho, Manuel

    2012-09-01

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 ± 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  13. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    OpenAIRE

    M. Fricker; O'Prey, J; Tolkovsky, A. M.; Ryan, K.M.

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first ...

  14. The Role of RNA Binding Proteins in Insulin Messenger Stability and Translation

    OpenAIRE

    2010-01-01

    Although the reason for insufficient release of insulin in diabetes mellitus may vary depending on the type and stage of the disease, it is of vital importance that an amplified insulin biosynthesis can meet the increased need during periods of hyperglycemia. The insulin mRNA is highly abundant in beta cells and changes in insulin mRNA levels are, at least in part, controlled by altered rates of mRNA degradation. Since the mechanisms behind the control of insulin messenger stability and trans...

  15. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability.

    Science.gov (United States)

    Qi, Qi; Li, Dean Y; Luo, Hongbo R; Guan, Kun-Liang; Ye, Keqiang

    2015-06-09

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.

  16. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    Science.gov (United States)

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  17. Extensible byssus of Pinctada fucata: Ca(2+)-stabilized nanocavities and a thrombospondin-1 protein.

    Science.gov (United States)

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-08

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca(2+) by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  18. Long-term stability and circadian variation in circulating levels of surfactant protein D

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida;

    2010-01-01

    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested ...

  19. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    NARCIS (Netherlands)

    T. Tamaru (Teruya); M. Hattori (Mitsuru); K. Honda (Kousuke); Y. Nakahata (Yasukazu); P. Sassone-Corsi (Paolo); G.T.J. van der Horst (Gijsbertus); T. Ozawa (Takeaki); K. Takamatsu (Ken)

    2015-01-01

    textabstractIntracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we establi

  20. ARNTL (BMAL1 and NPAS2 gene variants contribute to fertility and seasonality.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available BACKGROUND: Circadian clocks guide the metabolic, cell-division, sleep-wake, circadian and seasonal cycles. Abnormalities in these clocks may be a health hazard. Circadian clock gene polymorphisms have been linked to sleep, mood and metabolic disorders. Our study aimed to examine polymorphisms in four key circadian clock genes in relation to seasonal variation, reproduction and well-being in a sample that was representative of the general population, aged 30 and over, living in Finland. METHODOLOGY/PRINCIPAL FINDINGS: Single-nucleotide polymorphisms in the ARNTL, ARNTL2, CLOCK and NPAS2 genes were genotyped in 511 individuals. 19 variants were analyzed in relation to 31 phenotypes that were assessed in a health interview and examination study. With respect to reproduction, women with ARNTL rs2278749 TT genotype had more miscarriages and pregnancies, while NPAS2 rs11673746 T carriers had fewer miscarriages. NPAS2 rs2305160 A allele carriers had lower Global Seasonality Scores, a sum score of six items i.e. seasonal variation of sleep length, social activity, mood, weight, appetite and energy level. Furthermore, carriers of A allele at NPAS2 rs6725296 had greater loadings on the metabolic factor (weight and appetite of the global seasonality score, whereas individuals with ARNTL rs6290035 TT genotype experienced less seasonal variation of energy level. CONCLUSIONS/SIGNIFICANCE: ARNTL and NPAS2 gene variants were associated with reproduction and with seasonal variation. Earlier findings have linked ARNTL to infertility in mice, but this is the first time when any polymorphism of these genes is linked to fertility in humans.

  1. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    Science.gov (United States)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  2. H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression

    Science.gov (United States)

    Li, Xing-Hui; Xue, Wen-Long; Wang, Ming-Jie; Zhou, Yu; Zhang, Cai-Cai; Sun, Chen; Zhu, Lei; Liang, Kun; Chen, Ying; Tao, Bei-Bei; Tan, Bo; Yu, Bo; Zhu, Yi-Chun

    2017-01-01

    The aims of the present study are to determine whether hydrogen sulfide (H2S) is involved in the expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, and to identify the role of microRNA-455-3p (miR-455-3p) during those processes. In cultured human umbilical vein endothelial cells (HUVECs), the expression of miR-455-3p, eNOS protein and the NO production was detected after administration with 50 μM NaHS. The results indicated that H2S could augment the expression of miR-455-3p and eNOS protein, leading to the increase of NO level. We also found that overexpression of miR-455-3p in HUVECs increased the protein levels of eNOS whereas inhibition of miR-455-3p decreased it. Moreover, H2S and miR-455-3p could no longer increase the protein level of eNOS in the presence of proteasome inhibitor, MG-132. In vivo, miR-455-3p and eNOS expression were considerably increased in C57BL/6 mouse aorta, muscle and heart after administration with 50 μmol/kg/day NaHS for 7 days. We also identified that H2S levels and miR-455-3p expression increased in human atherosclerosis plaque while H2S levels decreased in plasma of atherosclerosis patients. Our data suggest that the stability of eNOS protein and the NO production could be regulated by H2S through miR-455-3p. PMID:28322298

  3. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease.

    Science.gov (United States)

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-07-04

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand.

  4. pRb controls estrogen receptor alpha protein stability and activity.

    Science.gov (United States)

    Caligiuri, Isabella; Toffoli, Giuseppe; Giordano, Antonio; Rizzolio, Flavio

    2013-06-01

    A cross talk between the Estrogen Receptor (ESR1) and the Retinoblastoma (pRb) pathway has been demonstrated to influence the therapeutic response of breast cancer patients but the full mechanism remains poorly understood. Here we show that the N-terminal domain of pRb interacts with the CD domain of ESR1 to allow for the assembly of intermediate complex chaperone proteins HSP90 and p23. We demonstrated that a loss of pRb in human/mouse breast cells decreases the expression of the ESR1 protein through the proteasome pathway. Our work reveals a novel regulatory mechanism of ESR1 basal turnover and activity and an unanticipated relationship with the pRb tumor suppressor.

  5. Yeast surface display for directed evolution of protein expression, affinity, and stability.

    Science.gov (United States)

    Boder, E T; Wittrup, K D

    2000-01-01

    The described protocols enable thorough screening of polypeptide libraries with high confidence in the isolation of improved clones. It should be emphasized that the protocols have been fashioned for thoroughness, rather than speed. With library plasmid DNA in hand, the time to plated candidate yeast display mutants is typically 2-3 weeks. Each of the experimental approaches required for this method is fairly standard: yeast culture, immunofluorescent labeling, flow cytometry. Protocols that are more rapid could conceivably be developed by using solid substrate separations with magnetic beads, for instance. However, loss of the two-color normalization possible with flow cytometry would remove the quantitative advantage of the method. Yeast display complements existing polypeptide library methods and opens the possibility of examining extracellular eukaryotic proteins, an important class of proteins not generally amenable to yeast two-hybrid or phage display methodologies.

  6. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches.

    Directory of Open Access Journals (Sweden)

    Tobias Sikosek

    2016-06-01

    Full Text Available Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.

  7. Cystine Plug and Other Novel Mechanisms of Large Mechanical Stability in Dimeric Proteins

    Science.gov (United States)

    Sikora, Mateusz; Cieplak, Marek

    2012-11-01

    We identify three dimeric proteins whose mechanostability is anisotropic and should exceed 1 nN along some directions. They come with distinct mechanical clamps: either shear-based, or involving a cystine slipknot, or due to dragging of a cystine plug through a cystine ring. The latter two mechanisms are topological in nature; the cystine plug mechanism has not yet been discussed but it turns out to provide the largest resistance to stretching. Its possible applications in elastomers are discussed.

  8. Extensive lysine methylation in hyperthermophilic crenarchaea : potential implications for protein stability and recombinant enzymes

    OpenAIRE

    Botting, Catherine H.; Paul Talbot; Sonia Paytubi; White, Malcolm F

    2010-01-01

    In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in alpha-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome re...

  9. A novel role for the nuclear localization signal in regulating hnRNP K protein stability in vivo.

    Science.gov (United States)

    Hutchins, Erica J; Belrose, Jamie L; Szaro, Ben G

    2016-09-16

    hnRNP K is a highly conserved nucleocytoplasmic shuttling protein, which associates with RNAs through synergistic binding via its three KH domains. hnRNP K is required for proper nuclear export and translational control of its mRNA targets, and these processes are controlled by hnRNP K's movement between subcellular compartments. Whereas the nuclear export and localization of hnRNP K that is associated with mRNP complexes has been well studied, the trafficking of hnRNP K that is unbound to mRNA has yet to be elucidated. To that end, we expressed an EGFP-tagged RNA binding-defective form of hnRNP K in intact Xenopus embryos, and found it was rapidly degraded in vivo. Deleting hnRNP K's nuclear localization signal (NLS), which contains two prospective ubiquitination sites, rescued the protein from degradation. These data demonstrate a novel activity for the NLS of hnRNP K in regulating the protein's stability in vivo when it is unbound to nucleic acids.

  10. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    Science.gov (United States)

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents.

  11. Using the fluorescence red edge effect to assess the long-term stability of lyophilized protein formulations.

    Science.gov (United States)

    Qian, Ken K; Grobelny, Pawel J; Tyagi, Madhusudan; Cicerone, Marcus T

    2015-04-06

    Nanosecond relaxation processes in sugar matrices are causally linked through diffusional processes to protein stability in lyophilized formulations. Long-term protein degradation rates track mean-squared displacement (⟨u(2)⟩) of hydrogen atoms in sugar glasses, a parameter describing dynamics on a time scale of picoseconds to nanoseconds. However, measurements of ⟨u(2)⟩ are usually performed by neutron scattering, which is not conducive to rapid formulation screening in early development. Here, we present a benchtop technique to derive a ⟨u(2)⟩ surrogate based on the fluorescence red edge effect. Glycerol, lyophilized trehalose, and lyophilized sucrose were used as model systems. Samples containing 10(-6) mole fraction of rhodamine 6G, a fluorophore, were excited at either 532 nm (main peak) or 566 nm (red edge), and the ⟨u(2)⟩ surrogate was determined based the corresponding Stokes shifts. Results showed reasonable agreement between ⟨u(2)⟩ from neutron scattering and the surrogate from fluorescence, although deviations were observed at very low temperatures. We discuss the sources of the deviations and suggest technique improvements to ameliorate these. We expect that this method will be a valuable tool to evaluate lyophilized sugar matrices with respect to their ability to protect proteins from diffusion-limited degradation processes during long-term storage. Additionally, the method may have broader applications in amorphous pharmaceutical solids.

  12. Characterization of ML-IAP protein stability and physiological role in vivo.

    Science.gov (United States)

    Varfolomeev, Eugene; Moradi, Elham; Dynek, Jasmin N; Zha, Jiping; Fedorova, Anna V; Deshayes, Kurt; Fairbrother, Wayne J; Newton, Kim; Le Couter, Jennifer; Vucic, Domagoj

    2012-11-01

    ML-IAP [melanoma IAP (inhibitor of apoptosis)] is an anti-apoptotic protein that is expressed highly in melanomas where it contributes to resistance to apoptotic stimuli. The anti-apoptotic activity and elevated expression of IAP family proteins in many human cancers makes IAP proteins attractive targets for inhibition by cancer therapeutics. Small-molecule IAP antagonists that bind with high affinities to select BIR (baculovirus IAP repeat) domains have been shown to stimulate auto-ubiquitination and rapid proteasomal degradation of c-IAP1 (cellular IAP1) and c-IAP2 (cellular IAP2). In the present paper, we report ML-IAP proteasomal degradation in response to bivalent, but not monovalent, IAP antagonists. This degradation required ML-IAP ubiquitin ligase activity and was independent of c-IAP1 or c-IAP2. Although ML-IAP is best characterized in melanoma cells, we show that ML-IAP expression in normal mammalian tissues is restricted largely to the eye, being most abundant in ciliary body epithelium and retinal pigment epithelium. Surprisingly, given this pattern of expression, gene-targeted mice lacking ML-IAP exhibited normal intraocular pressure as well as normal retinal structure and function. The results of the present study indicate that ML-IAP is dispensable for both normal mouse development and ocular homoeostasis.

  13. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution.

    Science.gov (United States)

    Sarparanta, Mirkka; Bimbo, Luis M; Rytkönen, Jussi; Mäkilä, Ermei; Laaksonen, Timo J; Laaksonen, Päivi; Nyman, Markus; Salonen, Jarno; Linder, Markus B; Hirvonen, Jouni; Santos, Hélder A; Airaksinen, Anu J

    2012-03-01

    Rapid immune recognition and subsequent elimination from the circulation hampers the use of many nanomaterials as carriers to targeted drug delivery and controlled release in the intravenous route. Here, we report the effect of a functional self-assembled protein coating on the intravenous biodistribution of (18)F-labeled thermally hydrocarbonized porous silicon (THCPSi) nanoparticles in rats. (18)F-Radiolabeling enables the sensitive and easy quantification of nanoparticles in tissues using radiometric methods and allows imaging of the nanoparticle biodistribution with positron emission tomography. Coating with Trichoderma reesei HFBII altered the hydrophobicity of (18)F-THCPSi nanoparticles and resulted in a pronounced change in the degree of plasma protein adsorption to the nanoparticle surface in vitro. The HFBII-THCPSi nanoparticles were biocompatible in RAW 264.7 macrophages and HepG2 liver cells making their intravenous administration feasible. In vivo, the distribution of the nanoparticles between the liver and spleen, the major mononuclear phagocyte system organs in the body, was altered compared to that of uncoated (18)F-THCPSi. Identification of the adsorbed proteins revealed that certain opsonins and apolipoproteins are enriched in HFBII-functionalized nanoparticles, whereas the adsorption of abundant plasma components such as serum albumin and fibrinogen is decreased.

  14. Sequence-specific size, structure, and stability