WorldWideScience

Sample records for bmal1 protein stability

  1. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock

    Science.gov (United States)

    Dang, Fabin; Sun, Xiujie; Ma, Xiang; Wu, Rong; Zhang, Deyi; Chen, Yaqiong; Xu, Qian; Wu, Yuting; Liu, Yi

    2016-01-01

    Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms. PMID:27576939

  2. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells.

    Directory of Open Access Journals (Sweden)

    Rita L Peruquetti

    Full Text Available Spermatogenesis is a complex differentiation process that involves genetic and epigenetic regulation, sophisticated hormonal control, and extensive structural changes in male germ cells. RNA nuclear and cytoplasmic bodies appear to be critical for the progress of spermatogenesis. The chromatoid body (CB is a cytoplasmic organelle playing an important role in RNA post-transcriptional and translation regulation during the late steps of germ cell differentiation. The CB is also important for fertility determination since mutations of genes encoding its components cause infertility by spermatogenesis arrest. Targeted ablation of the Bmal1 and Clock genes, which encode central regulators of the circadian clock also result in fertility defects caused by problems other than spermatogenesis alterations. We show that the circadian proteins CLOCK and BMAL1 are localized in the CB in a stage-specific manner of germ cells. Both BMAL1 and CLOCK proteins physically interact with the ATP-dependent DEAD-box RNA helicase MVH (mouse VASA homolog, a hallmark component of the CB. BMAL1 is differentially expressed during the spermatogenic cycle of seminiferous tubules, and Bmal1 and Clock deficient mice display significant CB morphological alterations due to BMAL1 ablation or low expression. These findings suggest that both BMAL1 and CLOCK contribute to CB assembly and physiology, raising questions on the role of the circadian clock in reproduction and on the molecular function that CLOCK and BMAL1 could potentially have in the CB assembly and physiology.

  3. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells.

    Science.gov (United States)

    Peruquetti, Rita L; de Mateo, Sara; Sassone-Corsi, Paolo

    2012-01-01

    Spermatogenesis is a complex differentiation process that involves genetic and epigenetic regulation, sophisticated hormonal control, and extensive structural changes in male germ cells. RNA nuclear and cytoplasmic bodies appear to be critical for the progress of spermatogenesis. The chromatoid body (CB) is a cytoplasmic organelle playing an important role in RNA post-transcriptional and translation regulation during the late steps of germ cell differentiation. The CB is also important for fertility determination since mutations of genes encoding its components cause infertility by spermatogenesis arrest. Targeted ablation of the Bmal1 and Clock genes, which encode central regulators of the circadian clock also result in fertility defects caused by problems other than spermatogenesis alterations. We show that the circadian proteins CLOCK and BMAL1 are localized in the CB in a stage-specific manner of germ cells. Both BMAL1 and CLOCK proteins physically interact with the ATP-dependent DEAD-box RNA helicase MVH (mouse VASA homolog), a hallmark component of the CB. BMAL1 is differentially expressed during the spermatogenic cycle of seminiferous tubules, and Bmal1 and Clock deficient mice display significant CB morphological alterations due to BMAL1 ablation or low expression. These findings suggest that both BMAL1 and CLOCK contribute to CB assembly and physiology, raising questions on the role of the circadian clock in reproduction and on the molecular function that CLOCK and BMAL1 could potentially have in the CB assembly and physiology.

  4. Glucagon-CREB/CRTC2 Signaling Cascade Regulates Hepatic BMAL1 Protein*

    Science.gov (United States)

    Sun, Xiujie; Dang, Fabin; Zhang, Deyi; Yuan, Yuan; Zhang, Cui; Wu, Yuting; Wang, Yiguo; Liu, Yi

    2015-01-01

    Energy metabolism follows a diurnal pattern responding to the cycles of light and food exposures. Although food availability is a potent synchronizer of peripheral circadian clock in mammals, the underlying mechanism remains elusive. Here, we found that the temporal signals of fasting and refeeding hormones regulate the transcription of Bmal1, a key transcription activator of molecular clock, in the liver. During fasting, glucagon, a major fasting hormone, activates CREB/CRTC2 transcriptional complex that is recruited to Bmal1 promoter to induce its expression. Furthermore, we showed that CRTC2 is required for basal transcriptional regulation of Bmal1 by experiments using either adenovirus-mediated CRTC2 RNAi knockdown or primary Crtc2 null hepatocytes. On the other hand, insulin suppresses fasting-induced Bmal1 expression by inhibiting CRTC2 activity after refeeding. Taken together, our results indicate CRTC2 as a key component of the circadian oscillator that integrates the mammalian clock and energy metabolism. PMID:25480789

  5. Cancer/testis antigen PIWIL2 suppresses circadian rhythms by regulating the stability and activity of BMAL1 and CLOCK.

    Science.gov (United States)

    Lu, Yilu; Zheng, Xulei; Hu, Wei; Bian, Shasha; Zhang, Zhiwei; Tao, Dachang; Liu, Yunqiang; Ma, Yongxin

    2017-08-15

    Circadian rhythms are regulated by transcriptional and post-translational feedback loops generated by appropriate functions of clock proteins. Rhythmic degradation of the circadian clock proteins is critical for maintenance of the circadian oscillations. Notably, circadian clock does not work during spermatogenesis and can be disrupted in tumors. However, the underlying mechanism that suppresses circadian rhythms in germ cells and cancer cells remains largely unknown. Here we report that the cancer/testis antigen PIWIL2 can repress circadian rhythms both in the testis and cancer cells. By facilitating SRC binding with PI3K, PIWIL2 activates the PI3K-AKT pathway to phosphorylate and deactivate GSK3β, suppressing GSK3β-induced phosphorylation and degradation of circadian protein BMAL1 and CLOCK. Meanwhile, PIWIL2 can bind with E-Box sequences associated with the BMAL1/CLOCK complex to negatively regulate the transcriptional activation activity of promoters of clock-controlled genes. Taken together, our results first described a function for the germline-specific protein PIWIL2 in regulation of the circadian clock, providing a molecular link between spermatogenesis as well as tumorigenesis to the dysfunction of circadian rhythms.

  6. Glutamate-Dependent BMAL1 Regulation in Cultured Bergmann Glia Cells.

    Science.gov (United States)

    Chi-Castañeda, Donají; Waliszewski, Stefan M; Zepeda, Rossana C; Hernández-Kelly, Luisa C R; Caba, Mario; Ortega, Arturo

    2015-05-01

    Glutamate, the major excitatory amino acid, activates a wide variety of signal transduction cascades. This neurotransmitter is involved in photic entrainment of circadian rhythms, which regulate physiological and behavioral functions. The circadian clock in vertebrates is based on a transcription-translation feedback loop in which Brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like protein 1 (BMAL1) acts as transcriptional activator of others clock genes. This protein is expressed in nearly all suprachiasmatic nucleus neurons, as well as in the granular layer of the cerebellum. In this context, we decided to investigate the role of glutamate in the molecular mechanisms involved in the processes of transcription/translation of BMAL1 protein. To this end, primary cultures of chick cerebellar Bergmann glial cells were stimulated with glutamatergic ligands and we found that BMAL1 levels increased in a dose- and time dependent manner. Additionally, we studied the phosphorylation of serine residues in BMAL1 under glutamate stimulation and we were able to detect an increase in the phosphorylation of this protein. The increased expression of BMAL1 is most probably the result of a stabilization of the protein after it has been phosphorylated by the cyclic AMP-dependent protein kinase and/or the Ca(2+)/diacylglycerol dependent protein kinase. The present results strongly suggest that glutamate participates in regulating BMAL1 in glial cells and that these cells might prove to be important in the control of circadian rhythms in the cerebellum.

  7. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Ariana Frederick

    Full Text Available Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP and Enkephalin (Enk, expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis, thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%, and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable. These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.

  8. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Andrew C Liu

    2008-02-01

    Full Text Available The mammalian circadian clockwork is composed of a core PER/CRY feedback loop and additional interlocking loops. In particular, the ROR/REV/Bmal1 loop, consisting of ROR activators and REV-ERB repressors that regulate Bmal1 expression, is thought to "stabilize" core clock function. However, due to functional redundancy and pleiotropic effects of gene deletions, the role of the ROR/REV/Bmal1 loop has not been accurately defined. In this study, we examined cell-autonomous circadian oscillations using combined gene knockout and RNA interference and demonstrated that REV-ERBalpha and beta are functionally redundant and are required for rhythmic Bmal1 expression. In contrast, the RORs contribute to Bmal1 amplitude but are dispensable for Bmal1 rhythm. We provide direct in vivo genetic evidence that the REV-ERBs also participate in combinatorial regulation of Cry1 and Rorc expression, leading to their phase-delay relative to Rev-erbalpha. Thus, the REV-ERBs play a more prominent role than the RORs in the basic clock mechanism. The cellular genetic approach permitted testing of the robustness of the intracellular core clock function. We showed that cells deficient in both REV-ERBalpha and beta function, or those expressing constitutive BMAL1, were still able to generate and maintain normal Per2 rhythmicity. Our findings thus underscore the resilience of the intracellular clock mechanism and provide important insights into the transcriptional topologies underlying the circadian clock. Since REV-ERB function and Bmal1 mRNA/protein cycling are not necessary for basic clock function, we propose that the major role of the ROR/REV/Bmal1 loop and its constituents is to control rhythmic transcription of clock output genes.

  9. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    Directory of Open Access Journals (Sweden)

    Noheon Park

    Full Text Available The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC allele. The homozygous mutant (Bmal1GTΔC/GTΔC mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  10. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism.

    Science.gov (United States)

    Lee, Jiyeon; Lee, Seungbeom; Chung, Sooyoung; Park, Noheon; Son, Gi Hoon; An, Hongchan; Jang, Jaebong; Chang, Dong-Jo; Suh, Young-Ger; Kim, Kyungjin

    2016-01-15

    Circadian rhythms, biological oscillations with a period of about 24 h, are maintained by an innate genetically determined time-keeping system called the molecular circadian clockwork. Despite the physiological and clinical importance of the circadian clock, development of small molecule modulators targeting the core clock machinery has only recently been initiated. BMAL1, a core clock gene, is controlled by a ROR/REV-ERB-response element (RORE)-dependent mechanism, which plays an important role in stabilizing the period of the molecular circadian clock. Therefore, we aimed to identify a novel small molecule modulator that regulates Bmal1 gene expression in RORE-dependency, thereby influencing the molecular feedback loop of the circadian clock. For this purpose, we carried out a cell-based screen of more than 1000 drug-like compounds, using a luciferase reporter driven by the proximal region of the mouse Bmal1 promoter. One compound, designated KK-S6, repressed the RORE-dependent transcriptional activity of the mBmal1 promoter and reduced endogenous BMAL1 protein expression. More importantly, KK-S6 significantly altered the amplitude of circadian oscillations of Bmal1 and Per2 promoter activities in a dose-dependent manner, but barely affected the period length. KK-S6 effectively decreased mRNA expression of metabolic genes acting downstream of REV-ERBα, Pai-1 and Citrate synthase, that contain RORE cis-element in their promoter. KK-S6 likely acts in a RORE-dependent manner by reinforcing the REV-ERBα activity, though not by the same mechanism as known REV-ERB agonists. In conclusion, the present study demonstrates that KK-S6 functions as a novel modulator of the amplitude of molecular circadian rhythms by influencing RORE-mediated BMAL1 expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Sumoylation controls CLOCK-BMAL1-mediated clock resetting via CBP recruitment in nuclear transcriptional foci.

    Science.gov (United States)

    Lee, Yool; Chun, Sung Kook; Kim, Kyungjin

    2015-10-01

    CLOCK-BMAL1 is a key transcription factor complex of the molecular clock system that generates circadian gene expression and physiology in mammals. Here, we demonstrate that sumoylation of BMAL1 mediates the rapid activation of CLOCK-BMAL1 by CREB-binding protein (CBP) in nuclear foci and also the resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation-based fluorescence resonance energy transfer (BiFC-FRET) assay revealed that CLOCK-BMAL1 rapidly dimerized and formed a ternary complex with CBP in discrete nuclear foci in response to serum stimuli. We found that the formation of this ternary complex requires sumoylation of BMAL1 by SUMO3. These processes were abolished by both the ectopic expression of the SUMP2/3-specific protease, SUSP1, and mutation of the major sumoylation site (Lys259) of BMAL1. Moreover, molecular inhibition of BMAL1 sumoylation abrogated acute Per1 transcription and severely dampened the circadian gene oscillation triggered by clock synchronization stimuli. Taken together, these findings suggest that sumoylation plays a critical role in the spatiotemporal co-activation of CLOCK-BMAL1 by CBP for immediate-early Per induction and the resetting of the circadian clock. Copyright © 2015. Published by Elsevier B.V.

  12. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis

    Science.gov (United States)

    Geyfman, Mikhail; Kumar, Vivek; Liu, Qiang; Ruiz, Rolando; Gordon, William; Espitia, Francisco; Cam, Eric; Millar, Sarah E.; Smyth, Padhraic; Ihler, Alexander; Takahashi, Joseph S.; Andersen, Bogi

    2012-01-01

    The role of the circadian clock in skin and the identity of genes participating in its chronobiology remain largely unknown, leading us to define the circadian transcriptome of mouse skin at two different stages of the hair cycle, telogen and anagen. The circadian transcriptomes of telogen and anagen skin are largely distinct, with the former dominated by genes involved in cell proliferation and metabolism. The expression of many metabolic genes is antiphasic to cell cycle-related genes, the former peaking during the day and the latter at night. Consistently, accumulation of reactive oxygen species, a byproduct of oxidative phosphorylation, and S-phase are antiphasic to each other in telogen skin. Furthermore, the circadian variation in S-phase is controlled by BMAL1 intrinsic to keratinocytes, because keratinocyte-specific deletion of Bmal1 obliterates time-of-day–dependent synchronicity of cell division in the epidermis leading to a constitutively elevated cell proliferation. In agreement with higher cellular susceptibility to UV-induced DNA damage during S-phase, we found that mice are most sensitive to UVB-induced DNA damage in the epidermis at night. Because in the human epidermis maximum numbers of keratinocytes go through S-phase in the late afternoon, we speculate that in humans the circadian clock imposes regulation of epidermal cell proliferation so that skin is at a particularly vulnerable stage during times of maximum UV exposure, thus contributing to the high incidence of human skin cancers. PMID:22753467

  13. Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons.

    Science.gov (United States)

    Ikeda, Masayuki; Ikeda, Masaaki

    2014-09-03

    The hypothalamic suprachiasmatic nucleus (SCN) plays a pivotal role in the mammalian circadian clock system. Bmal1 is a clock gene that drives transcriptional-translational feedback loops (TTFLs) for itself and other genes, and is expressed in nearly all SCN neurons. Despite strong evidence that Bmal1-null mutant mice display arrhythmic behavior under constant darkness, the function of Bmal1 in neuronal activity is unknown. Recently, periodic changes in the levels of intracellular signaling messengers, such as cytosolic Ca(2+) and cAMP, were suggested to regulate TTFLs. However, the opposite aspect of how clock gene TTFLs regulate cytosolic signaling remains unclear. To investigate intracellular Ca(2+) dynamics under Bmal1 perturbations, we cotransfected some SCN neurons with yellow cameleon together with wild-type or dominant-negative Bmal1 using a gene-gun applied for mouse organotypic cultures. Immunofluorescence staining for a tag protein linked to BMAL1 showed nuclear expression of wild-type BMAL1 and its degradation within 1 week after transfection in SCN neurons. However, dominant-negative BMAL1 did not translocate into the nucleus and the cytosolic signals persisted beyond 1 week. Consistently, circadian Ca(2+) rhythms in SCN neurons were inhibited for longer periods by dominant-negative Bmal1 overexpression. Furthermore, SCN neurons transfected with a Bmal1 shRNA lengthened, whereas those overexpressing wild-type Bmal1 shortened, the periods of Ca(2+) rhythms, with a significant reduction in their amplitude. BMAL1 expression was intact in the majority of neighboring neurons in organotypic cultures. Therefore, we conclude that proper intrinsic Bmal1 expression, but not passive signaling via cell-to-cell interactions, is the determinant of circadian Ca(2+) rhythms in SCN neurons. Copyright © 2014 the authors 0270-6474/14/3412029-10$15.00/0.

  14. BMAL1 Deficiency Contributes to Mandibular Dysplasia by Upregulating MMP3

    Directory of Open Access Journals (Sweden)

    Jiajia Zhao

    2018-01-01

    Full Text Available Skeletal mandibular hypoplasia (SMH, one of the common types of craniofacial deformities, seriously affects appearance, chewing, pronunciation, and breathing. Moreover, SMH is prone to inducing obstructive sleep apnea syndrome. We found that brain and muscle ARNT-like 1 (BMAL1, the core component of the molecular circadian oscillator, was significantly decreased in mandibles of juvenile SMH patients. Accordingly, SMH was observed in circadian-rhythm-disrupted or BMAL1-deficient mice. RNA sequencing and protein chip analyses suggested that matrix metallopeptidase 3 (MMP3 is the potential target of BMAL1. Interestingly, in juvenile SMH patients, we observed that MMP3 was obviously increased. Consistently, MMP3 was upregulated during the whole growth period of 3–10 weeks in Bmal1−/− mice. Given these findings, we set out to characterize the underlying mechanism and found BMAL1 deficiency enhanced Mmp3 transcription through activating p65 phosphorylation. Together, our results provide insight into the mechanism by which BMAL1 is implicated in the pathogenesis of SMH.

  15. The Circadian Clock Gene Bmal1 Controls Thyroid Hormone-Mediated Spectral Identity and Cone Photoreceptor Function

    Directory of Open Access Journals (Sweden)

    Onkar B. Sawant

    2017-10-01

    Full Text Available Circadian clocks regulate various aspects of photoreceptor physiology, but their contribution to photoreceptor development and function is unclear. Cone photoreceptors are critical for color vision. Here, we define the molecular function of circadian activity within cone photoreceptors and reveal a role for the clock genes Bmal1 and Per2 in regulating cone spectral identity. ChIP analysis revealed that BMAL1 binds to the promoter region of the thyroid hormone (TH-activating enzyme type 2 iodothyronine deiodinase (Dio2 and thus regulates the expression of Dio2. TH treatment resulted in a partial rescue of the phenotype caused by the loss of Bmal1, thus revealing a functional relationship between Bmal1 and Dio2 in establishing cone photoreceptor identity. Furthermore, Bmal1 and Dio2 are required to maintain cone photoreceptor functional integrity. Overall, our results suggest a mechanism by which circadian proteins can locally regulate the availability of TH and influence tissue development and function.

  16. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    Science.gov (United States)

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  17. Food anticipation in Bmal1-/- and AAV-Bmal1 rescued mice: a reply to Fuller et al

    Directory of Open Access Journals (Sweden)

    Mistlberger Ralph E

    2009-08-01

    Full Text Available Abstract Evidence that circadian food-anticipatory activity and temperature rhythms are absent in Bmal1 knockout mice and rescued by restoration of Bmal1 expression selectively in the dorsomedial hypothalamus was published in 2008 by Fuller et al and critiqued in 2009 by Mistlberger et al. Fuller et al have responded to the critique with new information. Here we update our critique in the light of this new information. We also identify and correct factual and conceptual errors in the Fuller et al response. We conclude that the original results of Fuller et al remain inconclusive and fail to clarify the role of Bmal1 or the dorsomedial hypothalamus in the generation of food-entrainable rhythms in mice.

  18. Evolution of the CLOCK and BMAL1 genes in a subterranean rodent species (Lasiopodomys mandarinus).

    Science.gov (United States)

    Sun, Hong; Zhang, Yifeng; Shi, Yuhua; Li, Yangwei; Li, Wei; Wang, Zhenlong

    2018-04-01

    Lasiopodomys mandarinus, a subterranean rodent, spends its entire life underground. To test whether the CLOCK and BMAL1 genes of L. mandarinus have undergone adaptive evolution to underground darkness, we cloned and analyzed their complete cDNA sequences, using Lasiopodomys brandtii as a control. The phylogenetic trees of the CLOCK and BMAL1 genes were similar to the trees of the conserved Cyt b gene,further, L. mandarinus clustered with L. brandtii and Microtus ochrogaster in the phylogenetic tree. The Q-rich region of the CLOCK gene in L. mandarinus was different from that of other subterranean rodents. Using phylogenetic analysis maximum likelihood (PAML), the ω value (ωCLOCK gene, most of which were located in the trans-transcription activation domain (TAD). In conclusion, CLOCK and BMAL1 genes did not exhibit convergent molecular evolution in subterranean rodents. Moreover, our study highlights the important functionality of the TAD, which is putatively of functional relevance to CLOCK protein activity. The present findings provide novel insights into adaptation to underground darkness, at the gene level, in subterranean rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yali Wang

    2018-01-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease and is known to involve circadian dysfunction and oxidative stress. Although antioxidative defense is regulated by the molecular circadian clock, few studies have examined their function in PD and their regulation by silent information regulator 1 (SIRT1. We hypothesize that reduced antioxidative activity in models of PD results from dysfunction of the molecular circadian clock via the SIRT1 pathway. We treated rats and SH-SY5Y cells with 6-hydroxydopamine (6-OHDA and measured the expression of core circadian clock and associated nuclear receptor genes using real-time quantitative PCR as well as levels of SIRT1, brain and muscle Arnt-like protein 1 (BMAL1, and acetylated BMAL1 using Western blotting. We found that 6-OHDA treatment altered the expression patterns of clock and antioxidative molecules in vivo and in vitro. We also detected an increased ratio of acetylated BMAL1:BMAL1 and a decreased level of SIRT1. Furthermore, resveratrol, an activator of SIRT1, decreased the acetylation of BMAL1 and inhibited its binding with CRY1, thereby reversing the impaired antioxidative activity induced by 6-OHDA. These results suggest that a dysfunctional circadian clock contributes to an abnormal antioxidative response in PD via a SIRT1-dependent BMAL1 pathway.

  20. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    Science.gov (United States)

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  1. Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues.

    Science.gov (United States)

    Tamaru, Teruya; Takamatsu, Ken

    2018-01-03

    Circadian clocks dictate various physiological functions by brain SCN (a central clock) -orchestrating the temporal harmony of peripheral clocks of tissues/organs in the whole body, with adaptability to environments by resetting their timings. Dysfunction of this circadian adaptation system (CAS) occasionally causes/exacerbates diseases. CAS is based on cell-autonomous molecular clocks, which oscillate via a core transcriptional/translational feedback loop with clock genes/proteins, e.g., BMAL1: CLOCK circadian transcription driver and CRY1/2 and PER1/2 suppressors, and is modulated by various regulatory loops including clock protein modifications. Among mutants with a single clock gene, BMAL1-deficient mice exhibit the most drastic loss of circadian functions. Here, we highlight on numerous circadian protein modifications of mammalian BMAL1, e.g., multiple phosphorylations, SUMOylation, ubiquitination, acetylation, O-GlcNAcylation and S-nitrosylation, which mutually interplay to control molecular clocks and coordinate physiological functions from the brain to peripheral tissues through the input and output of the clocks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Regulation of circadian clock transcriptional output by CLOCK:BMAL1.

    Science.gov (United States)

    Trott, Alexandra J; Menet, Jerome S

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes.

  3. TNF-α induces expression of the circadian clock gene Bmal1 via dual calcium-dependent pathways in rheumatoid synovial cells.

    Science.gov (United States)

    Yoshida, Kohsuke; Nakai, Ayako; Kaneshiro, Kenta; Hashimoto, Naonori; Suzuki, Kohjin; Uchida, Koto; Hashimoto, Teppei; Kawasaki, Yoshiko; Tateishi, Koji; Nakagawa, Natsuko; Shibanuma, Nao; Sakai, Yoshitada; Hashiramoto, Akira

    2018-01-08

    Tumor necrosis factor (TNF)-α is responsible for expressions of several clock genes and affects joint symptoms of rheumatoid arthritis (RA) with diurnal fluctuation. We tried to determine the mechanism involved in over-expression of Bmal1, induced by TNF-α, in primary cultured rheumatoid synovial cells. Cells were incubated with intra-cellular Ca 2+ chelator BAPTA-AM, calcineurin inhibitor FK506 and p300/CBP (CREB binding protein) inhibitor C646, respectively, or transfected with p300 and CBP small interfering RNA (siRNA) before stimulation with TNF-α. Oscillation phase and amplitude of Bmal1, transcriptional activator Rorα, transcriptional repressor Rev-erbα, and histone acetyltransferases (p300 and Cbp) were evaluated by quantitative real-time PCR. As results, TNF-α did not influence the oscillation phase of Rev-erbα, while enhanced those of Rorα, resulting in over-expression of Bmal1. When Ca 2+ influx was inhibited by BAPTA-AM, TNF-α-mediated up-regulation of Rorα was cancelled, however, that of Bmal1 was still apparent. When we further explored another pathway between TNF-α and Bmal1, TNF-α suppressed the expression of Rev-erbα in the absence of Ca 2+ influx, as well as those of p300 and Cbp genes. Finally, actions of TNF-α, in increasing Bmal1/Rorα and decreasing Rev-erbα, were cancelled by C646 treatment or silencing of both p300 and Cbp. In conclusion, we determined a novel role of TNF-α in inducing Bmal1 via dual calcium dependent pathways; Rorα was up-regulated in the presence of Ca 2+ influx and Rev-erbα was down-regulated in the absence of that. Results proposed that inhibition of p300/CBP could be new therapeutic targets for RA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism.

    Directory of Open Access Journals (Sweden)

    David John Kennaway

    Full Text Available The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight. Bmal1 null mice aged 2 months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice displayed increased adiposity (1.8 fold and 2.3 fold respectively on the normal diet, but the high fat diet did not exaggerate these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines involved in the cellular control of glucose metabolism.

  5. Loss of Bmal1 decreases oocyte fertilization, early embryo development and implantation potential in female mice.

    Science.gov (United States)

    Xu, Jian; Li, Yan; Wang, Yizi; Xu, Yanwen; Zhou, Canquan

    2016-10-01

    Biological clock genes expressed in reproductive tissues play important roles in maintaining the normal functions of reproductive system. However, disruption of female circadian rhythm on oocyte fertilization, preimplantation embryo development and blastocyst implantation potential is still unclear. In this study, ovulation, in vivo and in vitro oocyte fertilization, embryo development, implantation and intracellular reactive oxygen species (ROS) levels in ovary and oviduct were studied in female Bmal1+/+ and Bmal1-/- mice. The number of naturally ovulated oocyte in Bmal1-/- mice decreased (5.2 ± 0.8 vs 7.8 ± 0.8, P fertilization rate and obtained blastocyst number were observed in Bmal1-/- female mice either mated with wild-type in vivo or fertilized by sperm from wild-type male mice in vitro (all P fertilization rate of oocytes derived from Bmal1-/- increased significantly compared with in vivo study (P fertilization rate, early embryo development and implantation potential in female mice, and these may be possibly caused by excess ROS levels generated in ovary and oviduct.

  6. Dynamical mechanism of Bmal 1 / Rev- erbα loop in circadian clock

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    2015-07-01

    In mammals, the circadian clock is driven by multiple integrated transcriptional feedback loops involving three kinds of central clock-controlled elements (CCEs): E-boxes, D-boxes and ROR-elements. With the aid of CCEs, the concentrations of the active proteins are approximated by the delayed concentrations of mRNAs, which simplifies the circadian system drastically. The regulatory loop composed by BMAL1 and REV-ERB- α plays important roles in circadian clock. With delay differential equations, we gave a mathematical model of this loop and investigated its dynamical mechanisms. Specially, we theoretically provided the sufficient conditions for sustained oscillation of the loop with Hopf bifurcation theory. The total of delays determines the emergence of oscillators, which explains the crucial roles of delays in circadian clock revealed by biological experiments. Numerically, we studied the amplitude and period against the variations of delays and the degradation rates. The different sensitivities of amplitude and period on these factors provide ideas to adjust the amplitude or period of circadian oscillators.

  7. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock.

    Science.gov (United States)

    DiTacchio, Luciano; Le, Hiep D; Vollmers, Christopher; Hatori, Megumi; Witcher, Michael; Secombe, Julie; Panda, Satchidananda

    2011-09-30

    In animals, circadian oscillators are based on a transcription-translation circuit that revolves around the transcription factors CLOCK and BMAL1. We found that the JumonjiC (JmjC) and ARID domain-containing histone lysine demethylase 1a (JARID1a) formed a complex with CLOCK-BMAL1, which was recruited to the Per2 promoter. JARID1a increased histone acetylation by inhibiting histone deacetylase 1 function and enhanced transcription by CLOCK-BMAL1 in a demethylase-independent manner. Depletion of JARID1a in mammalian cells reduced Per promoter histone acetylation, dampened expression of canonical circadian genes, and shortened the period of circadian rhythms. Drosophila lines with reduced expression of the Jarid1a homolog, lid, had lowered Per expression and similarly altered circadian rhythms. JARID1a thus has a nonredundant role in circadian oscillator function.

  8. Activation of MMPs in Macrophages by Mycobacterium tuberculosis via the miR-223-BMAL1 Signaling Pathway.

    Science.gov (United States)

    Lou, Jun; Wang, Yongli; Zhang, Zhimin; Qiu, Weiqiang

    2017-12-01

    An interaction between Mycobacterium tuberculosis and macrophages constitutes an essential step in tuberculosis development, as macrophages exert both positive and negative effects on M. tuberculosis-triggered organ lesions. In this study, we focused on the regulation of the expression of matrix metalloproteinases (MMPs), which is responsible for lung matrix degradation and bacteria dissection, in macrophages following M. tuberculosis infection. Female BALB/c mice were intravenously injected with the M. tuberculosis strain H37Rv at 0 h zeitgeber time (ZT0) or 12 h zeitgeber time (ZT12). The expression and activity of MMP-1, -2, -3, and -9 in lungs and spleens were then evaluated. In vitro, peritoneal macrophages were harvested at ZT0 or at ZT12 and infected with 10 MOI M. tuberculosis. The expression of MMPs, microRNA-223 and BMAL1 was analyzed by qRT-PCR and/or Western blot. The binding of BMAL1 3'-UTR by miR-223 was confirmed by luciferase activity assay. Additionally, wild-type BMAL1 or NLS mut BMAL1 plasmids were transfected to evaluate the effect of BMAL1 on MMPs. The results showed a differential expression of MMPs in mice tissues infected at different times. M. tuberculosis infection caused enhanced MMP-1, -9, and miR-223 expression, with inhibited BMAL1 expression. MiR-223 modulated BMAL1 expression via the direct binding of BMAL1 3'-UTR. Furthermore, wild-type BMAL1 other than NLS mut BMAL1 attenuated MMPs expression in M. tuberculosis-infected macrophages. Overall, this study demonstrated a potential involvement of circadian rhythm in MMP activation by M. tuberculosis in macrophages. J. Cell. Biochem. 118: 4804-4812, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice.

    Science.gov (United States)

    Udoh, Uduak S; Valcin, Jennifer A; Swain, Telisha M; Filiano, Ashley N; Gamble, Karen L; Young, Martin E; Bailey, Shannon M

    2018-03-01

    Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen

  10. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  11. Potential Roles of Dec and Bmal1 Genes in Interconnecting Circadian Clock and Energy Metabolism.

    Science.gov (United States)

    Sato, Fuyuki; Kohsaka, Akira; Bhawal, Ujjal K; Muragaki, Yasuteru

    2018-03-08

    The daily rhythm of mammalian energy metabolism is subject to the circadian clock system, which is made up of the molecular clock machinery residing in nearly all cells throughout the body. The clock genes have been revealed not only to form the molecular clock but also to function as a mediator that regulates both circadian and metabolic functions. While the circadian signals generated by clock genes produce metabolic rhythms, clock gene function is tightly coupled to fundamental metabolic processes such as glucose and lipid metabolism. Therefore, defects in the clock genes not only result in the dysregulation of physiological rhythms but also induce metabolic disorders including diabetes and obesity. Among the clock genes, Dec1 ( Bhlhe40 / Stra13 / Sharp2 ), Dec2 ( Bhlhe41 / Sharp1 ), and Bmal1 ( Mop3 / Arntl ) have been shown to be particularly relevant to the regulation of energy metabolism at the cellular, tissue, and organismal levels. This paper reviews our current knowledge of the roles of Dec1 , Dec2 , and Bmal1 in coordinating the circadian and metabolic pathways.

  12. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice

    Science.gov (United States)

    Shimomura, Kazuhiro; Kumar, Vivek; Koike, Nobuya; Kim, Tae-Kyung; Chong, Jason; Buhr, Ethan D; Whiteley, Andrew R; Low, Sharon S; Omura, Chiaki; Fenner, Deborah; Owens, Joseph R; Richards, Marc; Yoo, Seung-Hee; Hong, Hee-Kyung; Vitaterna, Martha H; Bass, Joseph; Pletcher, Mathew T; Wiltshire, Tim; Hogenesch, John; Lowrey, Phillip L; Takahashi, Joseph S

    2013-01-01

    Genetic and molecular approaches have been critical for elucidating the mechanism of the mammalian circadian clock. Here, we demonstrate that the ClockΔ19 mutant behavioral phenotype is significantly modified by mouse strain genetic background. We map a suppressor of the ClockΔ19 mutation to a ∼900 kb interval on mouse chromosome 1 and identify the transcription factor, Usf1, as the responsible gene. A SNP in the promoter of Usf1 causes elevation of its transcript and protein in strains that suppress the Clock mutant phenotype. USF1 competes with the CLOCK:BMAL1 complex for binding to E-box sites in target genes. Saturation binding experiments demonstrate reduced affinity of the CLOCKΔ19:BMAL1 complex for E-box sites, thereby permitting increased USF1 occupancy on a genome-wide basis. We propose that USF1 is an important modulator of molecular and behavioral circadian rhythms in mammals. DOI: http://dx.doi.org/10.7554/eLife.00426.001 PMID:23580255

  13. Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation

    DEFF Research Database (Denmark)

    Chu, Adrienne; Zhu, Lei; Blum, Ian D

    2013-01-01

    pituitaries rhythmically express clock components throughout all cycle-stages. To determine the role of the gonadotrope clock in the preovulatory LH and FSH surge process, we generated mice that specifically lack BMAL1 in gonadotropes (GBmal1KO). GBmal1KO females exhibited a modest elevation in both proestrus...... and baseline LH levels across all estrous stages. BMAL1 elimination from gonadotropes also led to increased variability in estrous cycle length, yet GBmal1KO animals were otherwise reproductively normal. Together our data suggest that the intrinsic clock in gonadotropes is dispensable for LH surge regulation...

  14. The Circadian Clock Gene BMAL1 Coordinates Intestinal RegenerationSummary

    Directory of Open Access Journals (Sweden)

    Kyle Stokes

    2017-07-01

    Full Text Available Background & Aims: The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. Methods: We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. Results: The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. Conclusions: Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology. Keywords: Intestine, Circadian Rhythms, Gastrointestinal Syndrome, TNF, Intestinal Stem Cells

  15. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  16. Diurnal rhythmicity of the canonical clock genes Per1, per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy

    DEFF Research Database (Denmark)

    Fahrenkrug, J.; Hannibal, J.; Georg, B.

    2008-01-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus (SCN), and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. Rhythmic...... expression of clock genes in the adrenal glands has previously been reported. Since the central clock in the SCN communicates with the adrenal glands via circadian release of adrenocorticotrophic hormone, we quantified the mRNAs for the canonical clock genes, Per1, Per2 and Bmal1 in the adrenal glands...... by real-time reverse transcription-polymerase chain reaction during a 24-h-cycle in normal and hypophysectomised rats. The mRNAs for all the three clock genes disclosed rhythmic oscillations with a period of 24 h and the phase did not differ between the hypophysectomised and intact rats. The expression...

  17. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Andrea R. Marti

    2017-10-01

    Full Text Available Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1 has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40 were exposed to forced activity, either in their rest phase (simulated night shift work or in their active phase (simulated day shift work for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0. Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus implicated in cognition and sleep loss, were analyzed with m7GTP (cap pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1 was significantly reduced in

  18. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake.

    Science.gov (United States)

    Milagro, Fermín I; Gómez-Abellán, Purificación; Campión, Javier; Martínez, J Alfredo; Ordovás, Jose M; Garaulet, Marta

    2012-11-01

    The circadian clock system instructs 24-h rhythmicity on gene expression in essentially all cells, including adipocytes, and epigenetic mechanisms may participate in this regulation. The aim of this research was to investigate the influence of obesity and metabolic syndrome (MetS) features in clock gene methylation and the involvement of these epigenetic modifications in the outcomes. Sixty normal-weight, overweight and obese women followed a 16-weeks weight reduction program. DNA methylation levels at different CpG sites of CLOCK, BMAL1 and PER2 genes were analyzed by Sequenom's MassARRAY in white blood cells obtained before the treatment. Statistical differences between normal-weight and overweight + obese subjects were found in the methylation status of different CpG sites of CLOCK (CpGs 1, 5-6, 8 and 11-14) and, with lower statistical significance, in BMAL1 (CpGs 6-7, 8, 15 and 16-17). The methylation pattern of different CpG sites of the three genes showed significant associations with anthropometric parameters such as body mass index and adiposity, and with a MetS score. Moreover, the baseline methylation levels of CLOCK CpG 1 and PER2 CpGs 2-3 and 25 correlated with the magnitude of weight loss. Interestingly, the percentage of methylation of CLOCK CpGs 1 and 8 showed associations with the intake of monounsaturated and polyunsaturated fatty acids. This study demonstrates for the first time an association between methylation status of CpG sites located in clock genes (CLOCK, BMAL1 and PER2) with obesity, MetS and weight loss. Moreover, the methylation status of different CpG sites in CLOCK and PER2 could be used as biomarkers of weight-loss success, particularly CLOCK CPGs 5-6.

  20. Protein stability, flexibility and function

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2011-01-01

    Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests...... for a delineation of the molecular details of their function. Several of these mutations interfered with the binding of a specific ligand with a concomitant effect on the stability of the protein scaffold. It has been ambiguous and not straightforward to recognize if any relationships exist between the stability...... of a protein and the affinity for its ligand. In this review, we present examples of proteins where changes in stability results in changes in affinity and of proteins where stability and affinity are uncorrelated. We discuss the possibility for a relationship between stability and binding. From the data...

  1. Shifting the circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune alterations which are influenced by ghrelin and the core clock gene Bmal1.

    Directory of Open Access Journals (Sweden)

    Jorien Laermans

    Full Text Available BACKGROUND: In our 24-hour society, an increasing number of people are required to be awake and active at night. As a result, the circadian rhythm of feeding is seriously compromised. To mimic this, we subjected mice to restricted feeding (RF, a paradigm in which food availability is limited to short and unusual times of day. RF induces a food-anticipatory increase in the levels of the hunger hormone ghrelin. We aimed to investigate whether ghrelin triggers the changes in body weight and gastric emptying that occur during RF. Moreover, the effect of genetic deletion of the core clock gene Bmal1 on these physiological adaptations was studied. METHODS: Wild-type, ghrelin receptor knockout and Bmal1 knockout mice were fed ad libitum or put on RF with a normal or high-fat diet (HFD. Plasma ghrelin levels were measured by radioimmunoassay. Gastric contractility was studied in vitro in muscle strips and in vivo (13C breath test. Cytokine mRNA expression was quantified and infiltration of immune cells was assessed histologically. RESULTS: The food-anticipatory increase in plasma ghrelin levels induced by RF with normal chow was abolished in HFD-fed mice. During RF, body weight restoration was facilitated by ghrelin and Bmal1. RF altered cytokine mRNA expression levels and triggered contractility changes resulting in an accelerated gastric emptying, independent from ghrelin signaling. During RF with a HFD, Bmal1 enhanced neutrophil recruitment to the stomach, increased gastric IL-1α expression and promoted gastric contractility changes. CONCLUSIONS: This is the first study demonstrating that ghrelin and Bmal1 regulate the extent of body weight restoration during RF, whereas Bmal1 controls the type of inflammatory infiltrate and contractility changes in the stomach. Disrupting the circadian rhythm of feeding induces a variety of diet-dependent metabolic, immune and gastrointestinal alterations, which may explain the higher prevalence of obesity and

  2. Bmal1 and Beta cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced Beta cell failure in mice

    Science.gov (United States)

    Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in Beta cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in Beta cells. To address this, we generated mice with Beta cell ...

  3. Protein stability: a crystallographer’s perspective

    International Nuclear Information System (INIS)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed

  4. Protein stability: a crystallographer’s perspective

    Science.gov (United States)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed. PMID:26841758

  5. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice

    OpenAIRE

    Dubrovsky, Yuliya V.; Samsa, William E.; Kondratov, Roman V.

    2010-01-01

    Circadian clock is implicated in the regulation of aging. The transcription factor CLOCK, a core component of the circadian system, operates in complex with another circadian clock protein BMAL1. Recently it was demonstrated that BMAL1 deficiency results in premature aging in mice. Here we investigate the aging of mice deficient for CLOCK protein. Deficiency of the CLOCK protein significantly affects longevity: the average lifespan of Clock−/− mice is reduced by 15% compared with wild type mi...

  6. Stabilization of protein-protein interaction complexes through small molecules.

    Science.gov (United States)

    Zarzycka, Barbara; Kuenemann, Mélaine A; Miteva, Maria A; Nicolaes, Gerry A F; Vriend, Gert; Sperandio, Olivier

    2016-01-01

    Most of the small molecules that have been identified thus far to modulate protein-protein interactions (PPIs) are inhibitors. Another promising way to interfere with PPI-associated biological processes is to promote PPI stabilization. Even though PPI stabilizers are still scarce, stabilization of PPIs by small molecules is gaining momentum and offers new pharmacological options. Therefore, we have performed a literature survey of PPI stabilization using small molecules. From this, we propose a classification of PPI stabilizers based on their binding mode and the architecture of the complex to facilitate the structure-based design of stabilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Protein-stabilized magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Soenen, S.J.H. [Interdisciplinary Research Center, Katholieke Universiteit Leuven-Campus Kortrijk, University Campus, B-8500 Kortrijk (Belgium); Hodenius, M.; Schmitz-Rode, T. [Helmholtz Institute, Applied Medical Engineering, RWTH Aachen University, Aachen (Germany); De Cuyper, M. [Interdisciplinary Research Center, Katholieke Universiteit Leuven-Campus Kortrijk, University Campus, B-8500 Kortrijk (Belgium)], E-mail: Marcel.DeCuyper@KULeuven-Kortrijk.be

    2008-03-15

    The adsorption of bovine serum albumin (BSA) and egg yolk phosvitin on magnetic fluid particles was investigated. Incubation mixtures were prepared by mixing an alkaline suspension of tetramethylammonium-coated magnetite cores with protein solutions at various protein/Fe{sub 3}O{sub 4} ratios, followed by dialysis against a 5 mM TES buffer (pH 7.0), after which separation of bound and non-bound protein by high-gradient magnetophoresis was executed. Both the kinetic profiles as well as the isotherms of adsorption strongly differed for both proteins. In case of the spherical BSA, initially, abundant adsorption occurred, then it decreased and-at high protein concentrations-it slowly raised again. In contrast, with the highly phosphorylated phosvitin, binding slowly started and the extent of protein adsorption remained unchanged both as a function of time and phosvitin concentration. Competition binding studies, using binary protein mixtures composed of equal weight amounts of BSA and phosvitin, showed that binding of the latter protein is 'unrealistically' high. Based on the geometry of the two proteins, putative pictures on their orientation on the particle's surface in the various experimental conditions were deduced.

  8. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.

    2016-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope...... and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta....../stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane...

  9. Thermostable exoshells fold and stabilize recombinant proteins.

    Science.gov (United States)

    Deshpande, Siddharth; Masurkar, Nihar D; Girish, Vallerinteavide Mavelli; Desai, Malan; Chakraborty, Goutam; Chan, Juliana M; Drum, Chester L

    2017-11-13

    The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis.

  10. Relationship between protein stabilization and protein rigidification induced by mannosylglycerate.

    Science.gov (United States)

    Pais, Tiago M; Lamosa, Pedro; Garcia-Moreno, Bertrand; Turner, David L; Santos, Helena

    2009-11-27

    Understanding protein stabilization by small organic compounds is a topic of great practical importance. The effect of mannosylglycerate, a charged compatible solute typical of thermophilic microorganisms, on a variant of staphylococcal nuclease was investigated using several NMR spectroscopy methods. No structural changes were apparent from the chemical shifts of amide protons. Measurements of (15)N relaxation and model-free analysis, water-amide saturation transfer (phase-modulated CLEAN chemical exchange), and hydrogen/deuterium exchange rates provided a detailed picture of the effects of mannosylglycerate on the backbone dynamics and time-averaged structure of this protein. The widest movements of the protein backbone were significantly constrained in the presence of mannosylglycerate, as indicated by the average 5-fold decrease of the hydrogen/deuterium exchange rates, but the effect on the millisecond timescale was small. At high frequencies, internal motions of staphylococcal nuclease were progressively restricted with increasing concentrations of mannosylglycerate or reduced temperature, while the opposite effect was observed with urea (a destabilizing solute). The order parameters showed a strong correlation with the changes in the T(m) values induced by different solutes, determined by differential scanning calorimetry. These data show that mannosylglycerate caused a generalised reduction of backbone motions and demonstrate a correlation between protein stabilization and protein rigidification.

  11. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein.

    Science.gov (United States)

    Pierre, Brennal; Labonte, Jason W; Xiong, Tina; Aoraha, Edwin; Williams, Asher; Shah, Vandan; Chau, Edward; Helal, Kazi Yasin; Gray, Jeffrey J; Kim, Jin Ryoun

    2015-11-02

    A universal method that improves protein stability and evolution has thus far eluded discovery. Recently, however, studies have shown that insertional fusion to a protein chaperone stabilized various target proteins with minimal negative effects. The improved stability was derived from insertion into a hyperthermophilic protein, Pyrococcus furiosus maltodextrin-binding protein (PfMBP), rather than from changes to the target protein sequence. In this report, by evaluating the thermodynamic and kinetic stability of various inserted β-lactamase (BLA) homologues, we were able to examine the molecular determinants of stability realized by insertional fusion to PfMBP. Results indicated that enhanced stability and suppressed aggregation of BLA stemmed from enthalpic and entropic mechanisms. This report also suggests that insertional fusion to a stable protein scaffold has the potential to be a useful method for improving protein stability, as well as functional protein evolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  13. Inactivation, stabilization and redox regulation of iron-containing proteins

    NARCIS (Netherlands)

    Spee, J.H.

    1997-01-01

    Summary

    Microperoxidases: kinetics and stability.

    Microperoxidases are small enzymes prepared by proteolytic digestion of cytochromes c. The proteolytic removal of most of the protein environment allows these enzymes to use a

  14. Methods and means for controlling the stability of proteins

    NARCIS (Netherlands)

    Mrabet, Nadir; Lasters, Ignace; Stanssens, Patrick; Matthyssens, Gaston; Wodak, Shoshana; Quax, Wim

    1994-01-01

    The invention pertains to a method for the production of a biologically active modified protein derived from a starting protein having essentially the same kind of biological activity with an attendant modulation effect on, particularly increase of, the stability as compared with that of the

  15. Heat stability of reconstituted, protein-standardized skim milk powders.

    Science.gov (United States)

    Sikand, V; Tong, P S; Walker, J

    2010-12-01

    We determined the effects of standardization material, protein content, and pH on the heat stability of reconstituted milk made from low-heat (LH) and medium-heat (MH) nonfat dry milk (NDM). Low-heat and MH NDM were standardized downward from 35.5% to 34, 32, and 30% protein by adding either edible lactose powder (ELP) or permeate powder (PP) from skim milk ultrafiltration. These powders were called standardized skim milk powders (SSMP). The LH and MH NDM and SSMP were reconstituted to 9% total solids. Furthermore, subsamples of reconstituted NDM and SSMP samples were set aside to measure heat stability at native (unadjusted) pH, and the rest were adjusted to pH 6.3 to 7.0. Heat stability is defined as heat coagulation time at 140°C of the reconstituted LH or MH NDM and SSMP samples. The entire experiment was replicated 3 times at unadjusted pH values and 2 times at adjusted pH values. At an unadjusted pH, powder type, standardization material, and protein content influenced the heat stability of the samples. Heat stability for reconstituted LH NDM and SSMP was higher than reconstituted MH NDM and SSMP. Generally, decreased heat stability was observed in reconstituted LH or MH SSMP as protein content was decreased by standardization. However, adding ELP to MH SSMP did not significantly change its heat stability. When pH was adjusted to values between 6.3 and 7.0, powder type, standardization material, and pH had a significant effect on heat stability, whereas protein content did not. Maximum heat stability was noted at pH 6.7 for both reconstituted LH NDM and SSMP samples, and at pH 6.6 for both reconstituted MH NDM and SSMP samples. Furthermore, for samples with adjusted pH, higher heat stability was observed for reconstituted LH SSMP containing PP compared with reconstituted milk from LH SSMP containing ELP. However, no statistical difference was observed in the heat stability of reconstituted milk from MH NDM and MH SSMP samples. We conclude that powder type

  16. Stabilization of protein-protein interactions in drug discovery.

    Science.gov (United States)

    Andrei, Sebastian A; Sijbesma, Eline; Hann, Michael; Davis, Jeremy; O'Mahony, Gavin; Perry, Matthew W D; Karawajczyk, Anna; Eickhoff, Jan; Brunsveld, Luc; Doveston, Richard G; Milroy, Lech-Gustav; Ottmann, Christian

    2017-09-01

    PPIs are involved in every disease and specific modulation of these PPIs with small molecules would significantly improve our prospects of developing therapeutic agents. Both industry and academia have engaged in the identification and use of PPI inhibitors. However in comparison, the opposite strategy of employing small-molecule stabilizers of PPIs is underrepresented in drug discovery. Areas covered: PPI stabilization has not been exploited in a systematic manner. Rather, this concept validated by a number of therapeutically used natural products like rapamycin and paclitaxel has been shown retrospectively to be the basis of the activity of synthetic molecules originating from drug discovery projects among them lenalidomide and tafamidis. Here, the authors cover the growing number of synthetic small-molecule PPI stabilizers to advocate for a stronger consideration of this as a drug discovery approach. Expert opinion: Both the natural products and the growing number of synthetic molecules show that PPI stabilization is a viable strategy for drug discovery. There is certainly a significant challenge to adapt compound libraries, screening techniques and downstream methodologies to identify, characterize and optimize PPI stabilizers, but the examples of molecules reviewed here in our opinion justify these efforts.

  17. FAD regulates CRYPTOCHROME protein stability and circadian clock in mice

    OpenAIRE

    Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J.

    2017-01-01

    The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin ki...

  18. White wine continuous protein stabilization by packed column.

    Science.gov (United States)

    Pashova, Vesselina; Güell, Carme; López, Francisco

    2004-03-24

    Protein stabilization is an important stage in the production of white wine. This paper studies white wine protein stabilization using a continuous process with zirconium oxide (powder and pellets) packed in a column. The results show that the total proteins decrease by 50 and 70% for the pellet and powdered zirconium oxides, respectively. Treatment with all zirconium oxides improves wine stability. The effect of the heat regeneration process on both zirconium oxide forms is to increase the adsorption capacity. The wine treated with powdered zirconium oxide after the regeneration is the most effective for preventing protein haze. The protein profile of wine after treatment shows that the 20-50 kDa and 50-70 kDa fractions are the ones removed preferentially, while the 15 kDa fraction and the ones higher than 70 kDa are removed the least. The results show that the protein fraction with a molecular weight of 15 kDa does not affect the protein instability of the wines studied. The protein fraction with a molecular weight higher than 70 kDa seems to influence protein instability. The physicochemical properties of wine after treatment were not affected, and the values obtained were like those of the standardized range.

  19. Robust enzyme design: bioinformatic tools for improved protein stability.

    Science.gov (United States)

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Protein engineering of subtilisins to improve stability in detergent formulations.

    Science.gov (United States)

    von der Osten, C; Branner, S; Hastrup, S; Hedegaard, L; Rasmussen, M D; Bisgård-Frantzen, H; Carlsen, S; Mikkelsen, J M

    1993-03-01

    Microbial proteases are used extensively in a large number of industrial processes and most importantly in detergent formulations facilitating the removal of proteinaceous stains. Site-directed mutagenesis has been employed in the construction of subtilisin variants with improved storage and oxidation stabilities. It is shown that in spite of significant structural homology between subtilisins subjected to protein engineering the effects of specific mutations can be quite different. Mutations that stabilize one subtilisin may destabilize another.

  1. Positively selected sites in cetacean myoglobins contribute to protein stability

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Serohijos, Adrian W R; Kepp, Kasper P

    2013-01-01

    Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10-20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity...... between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected...

  2. Positively selected sites in cetacean myoglobins contribute to protein stability.

    Directory of Open Access Journals (Sweden)

    Pouria Dasmeh

    Full Text Available Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10-20 fold increase in myoglobin (Mb concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8-1.2 µM(-1, folding stabilities of cetacean Mbs are ∼2-4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds.

  3. Improving protein stabilization by spray drying : formulation and process development

    NARCIS (Netherlands)

    Grasmeijer, Niels

    2016-01-01

    There is an increasing interest for dried protein formulations in pharmacy. They may offer several advantages over aqueous formulations, such as ease of storage, longer shelf life, and use for solid dosage forms. However, the mechanisms underlying stabilization in the solid state are not yet fully

  4. Enhanced Stability of a Protein with Increasing Temperature

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Kristensen, Søren M; Led, Jens J

    2010-01-01

    The unusual stability of a structured but locally flexible protein, human growth hormone (hGH) at pH 2.7, was investigated using the temperature dependence of the nanosecond-picosecond dynamics of the backbone amide groups obtained from (15)N NMR relaxation data. It is found that the flexibility ...

  5. Salinity induced changes in cell membrane stability, protein and ...

    African Journals Online (AJOL)

    control), 4.7, 9.4 and 14.1 dS m-1 to determine the effect of salt on vegetative growth, relative water content, cell membrane stability, protein and RNA contents in sand culture experiment. Fresh and dry weights of plants, shoots and roots decreased ...

  6. Inulin glasses for the stabilization of therapeutic proteins

    NARCIS (Netherlands)

    Hinrichs, W.L.J.; Prinsen, M.G.; Frijlink, H.W.

    2001-01-01

    Sugar glasses are widely used to stabilize proteins during drying and subsequent storage. To act successfully as a protectant. the sugars should have a high glass transition temperature (Tg). a poor hygroscopicity, a low crystallization rate, and contain no reducing groups. When freeze drying is

  7. Formation and stability of emulsions made with proteins and peptides

    NARCIS (Netherlands)

    Smulders, P.E.A.

    2000-01-01

    The formation and stabilization of oil-in-water emulsions using well-defined and well-characterized proteins and peptides was studied in order to elucidate the relation between their molecular and functional properties. The emulsions were formed with a high-pressure homogenizer. To study

  8. Physical and Oxidative Stability of Fish Oil-In-Water Emulsions Stabilized with Fish Protein Hydrolysates

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Guadix, Antonio; Guadix, Emilia M.

    2016-01-01

    The emulsifying and antioxidant properties of fish protein hydrolysates (FPH) for the physical and oxidative stabilization of 5% (by weight) fish oil-in-water emulsions were investigated. Muscle proteins from sardine (Sardina pilchardus) and small-spotted catshark (Scyliorhinus canicula) were...... hydrolyzed to degrees of hydrolysis (DH) of 3-4-5-6% with subtilisin. Sardine hydrolysates with low DH, 3% and 4%, presented the most effective peptides to physically stabilize emulsions with smaller droplet size. This implied more protein adsorbed at the interface to act as physical barrier against......% yielded a physically stable emulsion with low concentration of unsaturated aldehydes. These results show the potential of FPH as alternative protein emulsifiers for the production of oxidatively stable fish oil-in-water emulsions....

  9. A systematic investigation of the stability of green fluorescent protein fusion proteins.

    Science.gov (United States)

    Janczak, Monika; Bukowski, Michał; Górecki, Andrzej; Dubin, Grzegorz; Dubin, Adam; Wladyka, Benedykt

    2015-01-01

    X-ray crystallography provides important insights into structure-function relationship in biomolecules. However, protein crystals are usually hard to obtain which hinders our understanding of multiple important processes. Crystallization requires large amount of protein sample, whereas recombinant proteins are often unstable or insoluble. Green fluorescent protein (GFP) fusion is one of the approaches to increase protein synthesis, solubility and stability, facilitating crystallization. In this study we analyze the influence of the linker length, composition and the position of GFP relative to the fusion partner on the fusion protein production and stability. To this end, multiple constructs of enzymatically impaired variant of PemKSa toxin from Staphylococcus aureus CH91 fused to GFP were generated. Fusion protein production in Escherichia coli was evaluated. The proteins were purified and their stability tested. PemKSa-α14aa-GFP fusion provided best production and stability. Obtained results demonstrate the importance of optimization of fusion protein construct, including linker selection and the order of fusion partners, in obtaining high quantities of stable protein for crystallization.

  10. Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein

    Science.gov (United States)

    Peterson, Kelby

    2015-03-01

    This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.

  11. Entropic stabilization of proteins and its proteomic consequences.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Evolutionary traces of thermophilic adaptation are manifest, on the whole-genome level, in compositional biases toward certain types of amino acids. However, it is sometimes difficult to discern their causes without a clear understanding of underlying physical mechanisms of thermal stabilization of proteins. For example, it is well-known that hyperthermophiles feature a greater proportion of charged residues, but, surprisingly, the excess of positively charged residues is almost entirely due to lysines but not arginines in the majority of hyperthermophilic genomes. All-atom simulations show that lysines have a much greater number of accessible rotamers than arginines of similar degree of burial in folded states of proteins. This finding suggests that lysines would preferentially entropically stabilize the native state. Indeed, we show in computational experiments that arginine-to-lysine amino acid substitutions result in noticeable stabilization of proteins. We then hypothesize that if evolution uses this physical mechanism as a complement to electrostatic stabilization in its strategies of thermophilic adaptation, then hyperthermostable organisms would have much greater content of lysines in their proteomes than comparably sized and similarly charged arginines. Consistent with that, high-throughput comparative analysis of complete proteomes shows extremely strong bias toward arginine-to-lysine replacement in hyperthermophilic organisms and overall much greater content of lysines than arginines in hyperthermophiles. This finding cannot be explained by genomic GC compositional biases or by the universal trend of amino acid gain and loss in protein evolution. We discovered here a novel entropic mechanism of protein thermostability due to residual dynamics of rotamer isomerization in native state and demonstrated its immediate proteomic implications. Our study provides an example of how analysis of a fundamental physical mechanism of

  12. Nanobody stabilization of G protein coupled receptor conformational states

    Science.gov (United States)

    Steyaert, Jan; K Kobilka, Brian

    2011-01-01

    Remarkable progress has been made in the field of G protein coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis. PMID:21782416

  13. Protein Stability and Unfolding Following Glycine Radical Formation

    OpenAIRE

    Owen, Michael; Csizmadia, Imre G.; Viskolcz, Béla; Strodel, Birgit

    2017-01-01

    Glycine (Gly) residues are particularly susceptible to hydrogen abstraction; which results in the formation of the capto-dative stabilized Cα-centered Gly radical (GLR) on the protein backbone. We examined the effect of GLR formation on the structure of the Trp cage; tryptophan zipper; and the villin headpiece; three fast-folding and stable miniproteins; using all-atom (OPLS-AA) molecular dynamics simulations. Radicalization changes the conformation of the GLR residue and affects both neighbo...

  14. The effects of a protein osmolyte on the stability of the integral membrane protein glycerol facilitator.

    Science.gov (United States)

    Baturin, Simon; Galka, Jamie J; Piyadasa, Hadeesha; Gajjeraman, S; O'Neil, Joe D

    2014-12-01

    Osmolytes are naturally occurring molecules used by a wide variety of organisms to stabilize proteins under extreme conditions of temperature, salinity, hydrostatic pressure, denaturant concentration, and desiccation. The effects of the osmolyte trimethylamine N-oxide (TMAO) as well as the influence of detergent head group and acyl chain length on the stability of the Escherichia coli integral membrane protein glycerol facilitator (GF) tetramer to thermal and chemical denaturation by sodium dodecyl sulphate (SDS) are reported. TMAO promotes the association of the normally tetrameric α-helical protein into higher order oligomers in dodecyl-maltoside (DDM), but not in tetradecyl-maltoside (TDM), lyso-lauroylphosphatidyl choline (LLPC), or lyso-myristoylphosphatidyl choline (LMPC), as determined by dynamic light scattering (DLS); an octameric complex is particularly stable as indicated by SDS polyacrylamide gel electrophoresis. TMAO increases the heat stability of the GF tetramer an average of 10 °C in the 4 detergents and also protects the protein from denaturation by SDS. However, it did not promote re-association to the tetramer when added to SDS-dissociated protein. TMAO also promotes the formation of rod-like detergent micelles, and DLS was found to be useful for monitoring the structure of the protein and the redistribution of detergent during thermal dissociation of the protein. The protein is more thermally stable in detergents with the phosphatidylcholine head group (LLPC and LMPC) than in the maltoside detergents. The implications of the results for osmolyte mechanism, membrane protein stability, and protein-protein interactions are discussed.

  15. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  16. Protein stability regulators screening assay (Pro-SRSA): protein degradation meets the CRISPR-Cas9 library.

    Science.gov (United States)

    Wu, Yuanzhong; Kang, Tiebang

    2016-06-29

    The regulation of protein stability is a fundamental issue for biophysical processes, but there has not previously been a convenient and unbiased method of identifying regulators of protein stability. However, as reported in the article entitled "A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A," recently published in Cell Discovery, our team developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome clustered regularly interspaced short palindromic repeats Cas9 (CRISPR-Cas9) library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Based on our findings, we are confident that this efficient and unbiased screening method at the genome scale will be used by researchers worldwide to identify regulators of protein stability.

  17. Nucleic acid aptamers as stabilizers of proteins: the stability of tetanus toxoid.

    Science.gov (United States)

    Jain, Nishant Kumar; Jetani, Hardik C; Roy, Ipsita

    2013-07-01

    Exposure of tetanus toxoid to moisture leads to its aggregation and reduction of potency. The aim of this work was to use SELEX (systematic evolution of ligands by exponential enrichment) protocol and select aptamers which recognize tetanus toxoid (Mr ~150 kDa) with high affinity. Colyophilized preparations of tetanus toxoid and specific aptamers were encapsulated in PLGA microspheres and sustained release of the antigen was observed up to 55 days using different techniques. The total protein released was between 40-55% (24-45% residual antigenicity) in the presence of the aptamers as compared to 25% (11% residual antigenicity) for the antigen alone. We show that instead of inhibiting absorption of moisture, the aptamers blocked the protein unfolding upon absorption of moisture, inhibiting the initiation of aggregation. When exposed to accelerated storage conditions, some of the RNA sequences were able to inhibit moisture-induced aggregation in vitro and retain antigenicity of tetanus toxoid. Nucleic acid aptamers represent a novel class of protein stabilizers which stabilize the protein by interacting directly with it. This mechanism is unlike that of small molecules which alter the medium properties and hence depend on the stress condition a protein is exposed to.

  18. Small-molecule stabilization of the p53 - 14-3-3 protein-protein interaction.

    Science.gov (United States)

    Doveston, Richard G; Kuusk, Ave; Andrei, Sebastian A; Leysen, Seppe; Cao, Qing; Castaldi, Maria P; Hendricks, Adam; Brunsveld, Luc; Chen, Hongming; Boyd, Helen; Ottmann, Christian

    2017-08-01

    14-3-3 proteins are positive regulators of the tumor suppressor p53, the mutation of which is implicated in many human cancers. Current strategies for targeting of p53 involve restoration of wild-type function or inhibition of the interaction with MDM2, its key negative regulator. Despite the efficacy of these strategies, the alternate approach of stabilizing the interaction of p53 with positive regulators and, thus, enhancing tumor suppressor activity, has not been explored. Here, we report the first example of small-molecule stabilization of the 14-3-3 - p53 protein-protein interaction (PPI) and demonstrate the potential of this approach as a therapeutic modality. We also observed a disconnect between biophysical and crystallographic data in the presence of a stabilizing molecule, which is unusual in 14-3-3 PPIs. © 2017 Federation of European Biochemical Societies.

  19. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    Science.gov (United States)

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-04-07

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa.

    Science.gov (United States)

    Sun, Xiaodong; Chi-Ham, Cecilia L; Cohen-Davidyan, Tamar; DeBen, Christopher; Getachew, Girma; DePeters, Edward; Putnam, Daniel; Bennett, Alan

    2015-09-01

    The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery?

    Science.gov (United States)

    Thiel, Philipp; Kaiser, Markus; Ottmann, Christian

    2012-02-27

    The modulation of protein-protein interactions (PPIs) has been recognized as one of the most challenging tasks in drug discovery. While their systematic development has long been considered as intractable, this view has changed over the last years, with the first drug candidates undergoing clinical studies. To date, the vast majority of PPI modulators are interaction inhibitors. However, in many biological contexts a prolonged lifespan of a PPI might be desirable, calling for the complementary approach of PPI stabilization. In fact, nature offers impressive examples of this concept and some PPI-stabilizing natural products have already found application as important drugs. Moreover, directed small-molecule stabilization has recently been demonstrated. Therefore, it is time to take a closer look at the constructive side of modulating PPIs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Covalent immobilisation of transglutaminase: stability and applications in protein PEGylation.

    Science.gov (United States)

    Grigoletto, Antonella; Mero, Anna; Yoshioka, Hiroki; Schiavon, Oddone; Pasut, Gianfranco

    Microbial transglutaminase enzyme (mTGase) is an extremely useful enzyme that is increasingly employed in the food and pharmaceutical industries and as a tool for protein modification and tagging. The current study describes how we immobilised mTGase (iTGase) on a solid support to improve its stability during the PEGylation process by which polyethylene glycol chains are attached to protein and peptide drugs. When the enzyme was immobilised at the N-terminal sequence on agarose beads, it retained more than 53% of its starting activity. Kinetic studies on the immobilised and free mTGase disclosed a 1.7 and 1.5 fold decrease of K m and V max , respectively. Protein PEGylation was carried out using α-lactalbumin (α-LA) and granulocyte colony stimulating factor (G-CSF). In the former case, the iTGase showed a selective conjugation towards only one Gln residue of α-LA, avoiding formation of a mono- and bi-conjugate mixture that is achieved using the free enzyme. In the latter case, the immobilised enzyme still remained selective towards only one Gln, but avoided the undesired formation of deamidated G-CSF that took place when free mTGase was used. Overall, the results of the current study highlight the suitability of iTGase in preparing site-selective protein-polymer conjugates.

  3. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.

    Science.gov (United States)

    Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J

    2017-04-11

    The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice

    Directory of Open Access Journals (Sweden)

    Arisa Hirano

    2017-04-01

    Full Text Available The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD binding pocket of CRYPTOCHROME2 (CRY2, a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk, an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis. We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals.

  5. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

    Science.gov (United States)

    Smith, Everett Clinton; Smith, Stacy E; Carter, James R; Webb, Stacy R; Gibson, Kathleen M; Hellman, Lance M; Fried, Michael G; Dutch, Rebecca Ellis

    2013-12-13

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.

  6. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Directory of Open Access Journals (Sweden)

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  7. Stabilization of methionine-rich protein in Saccharomyces cerevisiae: targeting of BZN protein into the peroxisome.

    Science.gov (United States)

    Nicaud, J M; Raynal, A; Beyou, A; Merkamm, M; Ito, H; Labat, N

    1994-01-01

    We have constructed a gene coding for the 12-kDa intermediate form of the 2s methionine-rich protein from Bertholletia excelsa seeds. This protein, expressed intracellularly in yeast, is characterised by a 20-min half-life. By adding 11 amino acids corresponding to the peroxisome-targeting sequence (PTSc) of luciferase, we have significantly increased its half-life. This stabilization allowed accumulation of the BZN protein into the peroxisome as judged by cell fractionation. Accumulation of the 12-kDa protein results in a significant increase of the total methionine content in yeast cells (30%) indicating that such a microorganism could represent a practicable protected shuttle for an animal-feed additive.

  8. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A. (UNL)

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  9. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    Science.gov (United States)

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  10. Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration.

    Science.gov (United States)

    Kaplan, Andrew; Morquette, Barbara; Kroner, Antje; Leong, SooYuen; Madwar, Carolin; Sanz, Ricardo; Banerjee, Sara L; Antel, Jack; Bisson, Nicolas; David, Samuel; Fournier, Alyson E

    2017-03-08

    Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Protein Stability during Hot Melt Extrusion: The Effect of Extrusion Temperature, Hydrophilicity of Polymers and Sugar Glass Pre-stabilization

    NARCIS (Netherlands)

    Teekamp, Naomi; Olinga, Peter; Frijlink, Henderik W.; Hinrichs, Wouter

    2015-01-01

    Purpose Biodegradable polymers have been widely investigated for controlled release formulations for protein delivery. However, the processing stability of proteins remains a major challenge. The aim of this research is to assess the influence of the hot melt extrusion process on the activity of a

  12. Protein Stability during Hot Melt Extrusion : The Effect of Extrusion Temperature, Hydrophilicity of Polymers and Sugar Glass Pre-stabilization

    NARCIS (Netherlands)

    Teekamp, Naomi; Olinga, Peter; Hinrichs, Wouter; Frijlink, Henderik W.

    2015-01-01

    Purpose Biodegradable polymers have been widely investigated for controlled release formulations for protein delivery. However, the processing stability of proteins remains a major challenge. The aim of this research is to assess the influence of the hot melt extrusion process on the activity of a

  13. Forkhead box protein A2 (FOXA2 protein stability and activity are regulated by sumoylation.

    Directory of Open Access Journals (Sweden)

    Narasimhaswamy S Belaguli

    Full Text Available The forkhead box protein A2 (FOXA2 is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1 and mapped the sumoylation site to the amino acid lysine 6 (K6. Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.

  14. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation.

    Science.gov (United States)

    Belaguli, Narasimhaswamy S; Zhang, Mao; Brunicardi, F Charles; Berger, David H

    2012-01-01

    The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.

  15. Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization.

    Science.gov (United States)

    Bruździak, Piotr; Panuszko, Aneta; Stangret, Janusz

    2013-10-03

    Results concerning the thermostability of hen egg white lysozyme in aqueous solutions with stabilizing osmolytes, trimethylamine-N-oxide (TMAO), glycine (Gly), and its N-methyl derivatives, N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (betaine, TMG), have been presented. The combination of spectroscopic (IR) and calorimetric (DSC) data allowed us to establish a link between osmolytes' influence on water structure and their ability to thermally stabilize protein molecule. Structural and energetic characteristics of stabilizing osmolytes' and lysozyme's hydration water appear to be very similar. The osmolytes increase lysozyme stabilization in the order bulk water molecules affected by osmolytes in their surrounding. Obtained results verified the hypothesis concerning the role of water molecules in protein stabilization, explained the osmophobic effect, and finally helped to bring us nearer to the exact mechanism of protein stabilization by osmolytes.

  16. Limited coalescence and Ostwald ripening in emulsions stabilized by hydrophobin HFBII and milk proteins

    NARCIS (Netherlands)

    Dimitrova, Lydia M.; Boneva, Mariana P.; Danov, Krassimir D.; Kralchevsky, Peter A.; Basheva, Elka S.; Marinova, Krastanka G.; Petkov, Jordan T.; Stoyanov, Simeon D.

    2016-01-01

    Hydrophobins are proteins isolated from filamentous fungi, which are excellent foam stabilizers, unlike most of the proteins. In the present study, we demonstrate that hydrophobin HFBII can also serve as excellent emulsion stabilizer. The HFBII adsorption layers at the oil/water interface

  17. Effect of polyols on the conformational stability and biological activity of a model protein lysozyme.

    Science.gov (United States)

    Singh, Somnath; Singh, Jagdish

    2003-01-01

    The purpose of this study was to investigate the stabilizing action of polyols against various protein degradation mechanisms (eg, aggregation, deamidation, oxidation), using a model protein lysozyme. Differential scanning calorimeter (DSC) was used to measure the thermodynamic parameters, mid point transition temperature and calorimetric enthalpy, in order to evaluate conformational stability. Enzyme activity assay was used to corroborate the DSC results. Mannitol, sucrose, lactose, glycerol, and propylene glycol were used as polyols to stabilize lysozyme against aggregation, deamidation, and oxidation. Mannitol was found to stabilize lysozyme against aggregation, sucrose against deamidation both at neutral pH and at acidic pH, and lactose against oxidation. Stabilizers that provided greater conformational stability of lysozyme against various degradation mechanisms also protected specific enzyme activity to a greater extent. It was concluded that DSC and bioassay could be valuable tools for screening stabilizers in protein formulations.

  18. Structural and functional stabilization of protein entities: state-of-the-art.

    Science.gov (United States)

    Balcão, Victor M; Vila, Marta M D C

    2015-10-01

    Within the context of biomedicine and pharmaceutical sciences, the issue of (therapeutic) protein stabilization assumes particular relevance. Stabilization of protein and protein-like molecules translates into preservation of both structure and functionality during storage and/or targeting, and such stabilization is mostly attained through establishment of a thermodynamic equilibrium with the (micro)environment. The basic thermodynamic principles that govern protein structural transitions and the interactions of the protein molecule with its (micro)environment are, therefore, tackled in a systematic fashion. Highlights are given to the major classes of (bio)therapeutic molecules, viz. enzymes, recombinant proteins, (macro)peptides, (monoclonal) antibodies and bacteriophages. Modification of the microenvironment of the biomolecule via multipoint covalent attachment onto a solid surface followed by hydrophilic polymer co-immobilization, or physical containment within nanocarriers, are some of the (latest) strategies discussed aiming at full structural and functional stabilization of said biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding...

  20. Avoidance of toxic misfolding and protein stability do not explain the sequence constraints of highly expressed proteins.

    Science.gov (United States)

    Plata, Germán; Vitkup, Dennis

    2017-12-21

    The avoidance of cytotoxic effects associated with protein misfolding has been proposed as a dominant constraint on the sequence evolution and molecular clock of highly expressed proteins. Recently, Leuenberger et al. developed an elegant experimental approach to measure protein thermal stability at the proteome scale. The collected data allow us to rigorously test the predictions of the misfolding avoidance hypothesis that highly expressed proteins have evolved to be more stable, and that maintaining thermodynamic stability significantly constrains their evolution. Notably, careful re-analysis of the Leuenberger et al. data across four different organisms reveals no substantial correlation between protein stability and protein abundance. Therefore, the key predictions of the misfolding toxicity and related hypotheses are not supported by available empirical data. The data also suggest that, regardless of protein expression, protein stability does not substantially affect the protein molecular clock across organisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  2. A rapid, ensemble and free energy based method for engineering protein stabilities.

    Science.gov (United States)

    Naganathan, Athi N

    2013-05-02

    Engineering the conformational stabilities of proteins through mutations has immense potential in biotechnological applications. It is, however, an inherently challenging problem given the weak noncovalent nature of the stabilizing interactions. In this regard, we present here a robust and fast strategy to engineer protein stabilities through mutations involving charged residues using a structure-based statistical mechanical model that accounts for the ensemble nature of folding. We validate the method by predicting the absolute changes in stability for 138 experimental mutations from 16 different proteins and enzymes with a correlation of 0.65 and importantly with a success rate of 81%. Multiple point mutants are predicted with a higher success rate (90%) that is validated further by comparing meosphile-thermophile protein pairs. In parallel, we devise a methodology to rapidly engineer mutations in silico which we benchmark against experimental mutations of ubiquitin (correlation of 0.95) and check for its feasibility on a larger therapeutic protein DNase I. We expect the method to be of importance as a first and rapid step to screen for protein mutants with specific stability in the biotechnology industry, in the construction of stability maps at the residue level (i.e., hot spots), and as a robust tool to probe for mutations that enhance the stability of protein-based drugs.

  3. A functional protein retention and release multilayer with high stability

    Science.gov (United States)

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-01

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by

  4. Protein modification by acrolein: Formation and stability of cysteine adducts

    OpenAIRE

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2009-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to iden...

  5. The stability and formation of native proteins from unfolded monomers is increased through interactions with unrelated proteins.

    Directory of Open Access Journals (Sweden)

    Claudia Rodríguez-Almazán

    Full Text Available The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins.

  6. Magel2, a Prader-Willi syndrome candidate gene, modulates the activities of circadian rhythm proteins in cultured cells

    Directory of Open Access Journals (Sweden)

    Devos Julia

    2011-12-01

    Full Text Available Abstract Background The Magel2 gene is most highly expressed in the suprachiasmatic nucleus of the hypothalamus, where its expression cycles in a circadian pattern comparable to that of clock-controlled genes. Mice lacking the Magel2 gene have hypothalamic dysfunction, including circadian defects that include reduced and fragmented total activity, excessive activity during the subjective day, but they have a normal circadian period. Magel2 is a member of the MAGE family of proteins that have various roles in cellular function, but the specific function of Magel2 is unknown. Methods We used a variety of cell-based assays to determine whether Magel2 modifies the properties of core circadian rhythm proteins. Results Magel2 represses the activity of the Clock:Bmal1 heterodimer in a Per2-luciferase assay. Magel2 interacts with Bmal1 and with Per2 as measured by co-immunoprecipitation in co-transfected cells, and exhibits a subcellular distribution consistent with these interactions when visualized by immunofluorescence. As well, Magel2 induces the redistribution of the subcellular localization of Clock towards the cytoplasm, in contrast to the nucleus-directed effect of Bmal1 on Clock subcellular localization. Conclusion Consistent with the blunted circadian rhythm observed in Magel2-null mice, these data suggest that Magel2 normally promotes negative feedback regulation of the cellular circadian cycle, through interactions with key core circadian rhythm proteins.

  7. Membrane Protein Stability Analyses by Means of Protein Energy Profiles in Case of Nephrogenic Diabetes Insipidus

    Directory of Open Access Journals (Sweden)

    Florian Heinke

    2012-01-01

    Full Text Available Diabetes insipidus (DI is a rare endocrine, inheritable disorder with low incidences in an estimated one per 25,000–30,000 live births. This disease is characterized by polyuria and compensatory polydypsia. The diverse underlying causes of DI can be central defects, in which no functional arginine vasopressin (AVP is released from the pituitary or can be a result of defects in the kidney (nephrogenic DI, NDI. NDI is a disorder in which patients are unable to concentrate their urine despite the presence of AVP. This antidiuretic hormone regulates the process of water reabsorption from the prourine that is formed in the kidney. It binds to its type-2 receptor (V2R in the kidney induces a cAMP-driven cascade, which leads to the insertion of aquaporin-2 water channels into the apical membrane. Mutations in the genes of V2R and aquaporin-2 often lead to NDI. We investigated a structure model of V2R in its bound and unbound state regarding protein stability using a novel protein energy profile approach. Furthermore, these techniques were applied to the wild-type and selected mutations of aquaporin-2. We show that our results correspond well to experimental water ux analysis, which confirms the applicability of our theoretical approach to equivalent problems.

  8. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    Science.gov (United States)

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  9. Nucleic acid aptamers stabilize proteins against different types of stress conditions.

    Science.gov (United States)

    Jetani, Hardik C; Bhadra, Ankan Kumar; Jain, Nishant Kumar; Roy, Ipsita

    2014-01-01

    It has been observed that the same osmolyte cannot provide protection to a protein exposed to more than one stress condition. We wanted to study the effect of nucleic acid aptamers on the stabilization of proteins against a variety of stress conditions. Adjuvanted tetanus toxoid was exposed to thermal, freeze-thawing, and agitation stress. The stability and antigenicity of the toxoid were measured. Using nucleic acid aptamers selected against tetanus toxoid, we show that these specific RNA sequences were able to stabilize alumina-adsorbed tetanus toxoid against thermal-, agitation-, and freeze-thawing-induced stress. Binding affinity of the aptamer-protein complex did not show any significant change at elevated temperature as compared with that at room temperature, indicating that the aptamer protected the protein by remaining bound to it under stress conditions and did not allow either the protein to unfold or to promote protein-protein interaction. Thus, we show that by changing the stabilization strategy from a solvent-centric to a protein-centric approach, the same molecule can be employed as a stabilizer against more than one stress condition and thus probably reduce the cost of the product during its formulation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Effect of polyols on the conformational stability and biological activity of a model protein lysozyme

    OpenAIRE

    Singh, Somnath; Singh, Jagdish

    2003-01-01

    The purpose of this study was to investigate the stabilizing action of polyols against various protein degradation mechanisms (eg, aggregation, deamidation, oxidation), using a model protein lysozyme. Differential scanning calorimeter (DSC) was used to measure the thermodynamic parameters, mid point transition temperature and calorimetric enthalpy, in order to evaluate conformational stability. Enzyme activity assay was used to corroborate the DSC results. Mannitol, sucrose, lactose, glycerol...

  11. Interdependence of laforin and malin proteins for their stability and ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jbsc/040/05/0863-0871. Keywords. Epilepsy; locus heterogeneity; post-translational modification; protein-protein interaction. Abstract. Lafora disease (LD), an autosomal recessive and fatal form of neurodegenerative disorder, is characterized by the presence of polyglucosan inclusions in ...

  12. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Winther, J R

    2001-01-01

    have been suggested as transporters of monomers for cutin synthesis. We have analysed the stability of LTP1 towards denaturant, heat and proteases and found it to be a highly stable protein, which apparently does not denature at temperatures up to 100 degrees C. This high stability may be important...

  13. Thermal stabilization of putative karyoskeletal protein-enriched fractions from Saccharomyces cerevisiae.

    OpenAIRE

    Berrios, S; Fisher, P A

    1988-01-01

    Elevated growth temperature (heat shock) promoted the structural stability of karyoskeletal protein-enriched fractions isolated from Saccharomyces cerevisiae. Similar stabilization could be induced by brief incubation of nuclei at 37 degrees C in vitro. These results are similar to those reported for higher eucaryotes and have practical implications for investigation of the karyoskeleton in S. cerevisiae.

  14. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    Science.gov (United States)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  15. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    Science.gov (United States)

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  16. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes.

    Science.gov (United States)

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A; Macías-Silva, Marina

    2015-02-13

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein.

    Science.gov (United States)

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.

  18. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins.

    Science.gov (United States)

    Tonnis, W F; Mensink, M A; de Jager, A; van der Voort Maarschalk, K; Frijlink, H W; Hinrichs, W L J

    2015-03-02

    Protein-based biopharmaceuticals are generally produced as aqueous solutions and stored refrigerated to obtain sufficient shelf life. Alternatively, proteins may be freeze-dried in the presence of sugars to allow storage stability at ambient conditions for prolonged periods. However, to act as a stabilizer, these sugars should remain in the glassy state during storage. This requires a sufficiently high glass transition temperature (Tg). Furthermore, the sugars should be able to replace the hydrogen bonds between the protein and water during drying. Frequently used disaccharides are characterized by a relatively low Tg, rendering them sensitive to plasticizing effects of residual water, which strongly reduces the Tg values of the formulation. Larger sugars generally have higher Tgs, but it is assumed that these sugars are limited in their ability to interact with the protein due to steric hindrance. In this paper, the size and molecular flexibility of sugars was related to their ability to stabilize proteins. Four diverse proteins varying in size from 6 kDa to 540 kDa were freeze-dried in the presence of different sugars varying in size and molecular flexibility. Subsequently, the different samples were subjected to an accelerated stability test. Using protein specific assays and intrinsic fluorescence, stability of the proteins was monitored. It was found that the smallest sugar (disaccharide trehalose) best preserved the proteins, but also that the Tg of the formulations was only just high enough to maintain sufficient vitrification. When trehalose-based formulations are exposed to high relative humidities, water uptake by the product reduces the Tgs too much. In that respect, sugars with higher Tgs are desired. Addition of polysaccharide dextran 70 kDa to trehalose greatly increased the Tg of the formulation. Moreover, this combination also improved the stability of the proteins compared to dextran only formulations. The molecularly flexible oligosaccharide

  19. Exceptional heat stability of high protein content dispersions containing whey protein particles

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Linden, van der E.

    2014-01-01

    Due to aggregation and/or gelation during thermal treatment, the amount of whey proteins that can be used in the formulation of high protein foods e.g. protein drinks, is limited. The aim of this study was to replace whey proteins with whey protein particles to increase the total protein content and

  20. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface.

    Science.gov (United States)

    Bier, David; Bartel, Maria; Sies, Katharina; Halbach, Sebastian; Higuchi, Yusuke; Haranosono, Yu; Brummer, Tilman; Kato, Nobuo; Ottmann, Christian

    2016-04-19

    Small-molecule modulation of protein-protein interactions (PPIs) is one of the most promising new areas in drug discovery. In the vast majority of cases only inhibition or disruption of PPIs is realized, whereas the complementary strategy of targeted stabilization of PPIs is clearly under-represented. Here, we report the example of a semi-synthetic natural product derivative--ISIR-005--that stabilizes the cancer-relevant interaction of the adaptor protein 14-3-3 and Gab2. The crystal structure of ISIR-005 in complex with 14-3-3 and the binding motif of Gab2 comprising two phosphorylation sites (Gab2pS210pT391) showed how the stabilizing molecule binds to the rim-of-the-interface of the protein complex. Only in the direct vicinity of 14-3-3/Gab2pT391 site is a pre-formed pocket occupied by ISIR-005; binding of the Gab2pS210 motif to 14-3-3 does not create an interface pocket suitable for the molecule. Accordingly, ISIR-005 only stabilizes the binding of the Gab2pT391 but not the Gab2pS210 site. This study represents structural and biochemical proof of the druggability of the 14-3-3/Gab2 PPI interface with important implications for the development of PPI stabilizers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  2. Influence of Miscibility of Protein-Sugar Lyophilizates on Their Storage Stability

    NARCIS (Netherlands)

    Mensink, Maarten A.; Nethercott, Matthew J.; Hinrichs, Wouter L. J.; Maarschalk, Kees van der Voort; Frijlink, Henderik W.; Munson, Eric J.; Pikal, Michael J.

    For sugars to act as successful stabilizers of proteins during lyophilization and subsequent storage, they need to have several characteristics. One of them is that they need to be able to form interactions with the protein and for that miscibility is essential. To evaluate the influence of

  3. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins

    NARCIS (Netherlands)

    Tonnis, W. F.; Mensink, M. A.; de Jager, A.; Maarschalk, K. van der Voort; Frijlink, H. W.; Hinrichs, W. L. J.

    Protein-based biopharmaceuticals are generally produced as aqueous solutions and stored refrigerated to obtain sufficient shelf life. Alternatively, proteins may be freeze-dried in the presence of sugars to allow storage stability at ambient conditions for prolonged periods. However, to act as a

  4. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  5. Adsorption of plasma proteins : adsorption behaviour on apolar surfaces and effect on colloid stability

    NARCIS (Netherlands)

    van der Scheer, Albert

    1978-01-01

    In this thesis the adsorption of some plasma proteins (human albumin (HSA) and fibrinogen (HFb)) on non polar surfaces is studied, together with the influence of these proteins on the stability of polystyrene latices. The aim of these investigations is a better understanding of the processes

  6. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  7. Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Martinez, Virginia; Ronda, Carlotta

    2018-01-01

    In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interes...

  8. Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability.

    Science.gov (United States)

    Yi, Jiang; Fan, Yuting; Yokoyama, Wallace; Zhang, Yuzhu; Zhao, Liqing

    2016-06-01

    In this study, the interaction of WPI (whey protein isolate) and SC (sodium caseinate) with hydrophobic lutein was investigated through UV-vis spectroscopy and circular dichroism (CD) as well as fluorescence. The effects on lutein's chemical stability were also examined. The decrease of turbidity of lutein suggested that lutein's aqueous solubility was improved after binding with milk proteins. CD analysis indicated lutein had little impact on the secondary structures of both proteins. Different preparation methods have significant impacts on the binding constant. Fluorescence results indicated that WPI and SC interact with lutein by hydrophobic contacts. Milk proteins have protective effects on lutein against oxidation and decomposition, and SC showed better capability in protecting lutein from oxidation than WPI during 16 days storage. The lutein's chemical stability was increased with increasing of proteins concentration. The results indicated that milk proteins may act as effective carriers for lipophilic nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interdependence of laforin and malin proteins for their stability and ...

    Indian Academy of Sciences (India)

    Lafora disease (LD), an autosomal recessive and fatal form of neurodegenerative disorder, is characterized by the presence of polyglucosan inclusions in the affected tissues including the brain. LD can be caused by defects either in the 2 gene coding for the laforin protein phosphatase or the gene coding ...

  10. Identification of salivary proteins at oil-water interfaces stabilized by lysozyme and beta-lactoglobulin.

    Science.gov (United States)

    Silletti, Erika; Vitorino, Rui M P; Schipper, Raymond; Amado, Francisco M L; Vingerhoeds, Monique H

    2010-04-01

    In this research, we investigated the interaction occurring between oil-in-water emulsion droplets, stabilized by different emulsifiers, i.e. lysozyme and beta-lactoglobulin (beta-lg), and salivary proteins (SPs) with a molecular mass (M(r)) above about 10kDa. Different techniques, i.e. infrared spectroscopy, Western blotting, PAS staining and SDS-PAGE coupled to MS, were employed for this purpose. This study demonstrated the interaction between several salivary proteins and the emulsifiers at the oil-water interfaces. In particular, results show that the high M(r) mucin MUC5B was strongly bound to lysozyme stabilized emulsions, whereas beta-lg stabilized emulsions associated with MUC7 and, moderately, with MUC5B. Furthermore, we observed that salivary proteins in the range M(r) 10-100kDa associated differently with emulsion droplets. A large majority of SPs was found to interact with lysozyme stabilized emulsion droplets whilst in case of beta-lg stabilized emulsions, the SPs distribute more evenly between the fraction associated and non-associated with the droplets. A clear example is alpha-amylase (M(r) approximately 55kDa) which predominantly associates with lysozyme stabilized emulsion droplets, but not with beta-lg emulsion droplets. To conclude, our findings indicate that adsorption/association of salivary protein components onto the emulsion droplets is related to the type of emulsifying proteins at the oil-water interfaces and it is probably driven by the overall net charge at the droplet's oil-water interfaces, i.e. positive for lysozyme stabilized emulsions and negative for beta-lactoglobulin stabilized emulsion at neutral pH.

  11. Mechanism of Stabilization of Labile Compounds by Silk Fibroin Proteins

    Science.gov (United States)

    2017-04-05

    reviewing instructions, searching existing   data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...saliva, or urine , and their collection and storage is critical to obtain reliable results. Without proper temperature regulation protein biomarkers in...is demonstrated to be compatible with a number of immunoassays while providing enhanced sample preservation in comparison to traditional air-drying

  12. Importance of Rigidity in Designing Small Molecule Drugs To Tackle Protein-Protein Interactions (PPIs) through Stabilization of Desired Conformers.

    Science.gov (United States)

    Lawson, Alastair D G; MacCoss, Malcolm; Heer, Jag P

    2017-11-28

    Tackling PPIs, particularly by stabilizing clinically favored conformations of target proteins, with orally available, bona fide small molecules remains a significant but immensely worthwhile challenge for the pharmaceutical industry. Success may be more likely through the application of nature's learnings to build intrinsic rigidity into the design of clinical candidates.

  13. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker

    Science.gov (United States)

    Jeong, Woo Hyeon; Lee, Haerim; Song, Dong Hyun; Eom, Jae-Hoon; Kim, Sun Chang; Lee, Hee-Seung; Lee, Hayyoung; Lee, Jie-Oh

    2016-03-01

    Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a `fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures.

  14. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.

    Science.gov (United States)

    Shah, Dhawal; Shaikh, Abdul Rajjak

    2016-01-01

    Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.

  15. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  16. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    Science.gov (United States)

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  17. ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal

    Directory of Open Access Journals (Sweden)

    Sung-Hyun Kim

    2014-07-01

    Full Text Available Nanog regulates human and mouse embryonic stem (ES cell self-renewal activity. Activation of ERKs signaling negatively regulates ES cell self-renewal and induces differentiation, but the mechanisms are not understood. We found that ERK1 binds and phosphorylates Nanog. Activation of MEK/ERKs signaling and phosphorylation of Nanog inhibit Nanog transactivation, inducing ES cell differentiation. Conversely, suppression of MEK/ERKs signaling enhances Nanog transactivation to inhibit ES cell differentiation. We observed that phosphorylation of Nanog by ERK1 decreases Nanog stability through ubiquitination-mediated protein degradation. Further, we found that this phosphorylation induces binding of FBXW8 with Nanog to reduce Nanog protein stability. Overall, our results demonstrated that ERKs-mediated Nanog phosphorylation plays an important role in self-renewal of ES cells through FBXW8-mediated Nanog protein stability.

  18. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Directory of Open Access Journals (Sweden)

    Thomas Wallach

    2013-03-01

    Full Text Available Essentially all biological processes depend on protein-protein interactions (PPIs. Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc. contributing to temporal organization of cellular physiology in an unprecedented manner.

  19. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies

    Directory of Open Access Journals (Sweden)

    C.A. Royer

    2005-08-01

    Full Text Available A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

  20. Proteolytic Scanning Calorimetry: A Novel Methodology that Probes the Fundamental Features of Protein Kinetic Stability

    Science.gov (United States)

    Tur-Arlandis, Gema; Rodriguez-Larrea, David; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2010-01-01

    We introduce proteolytic scanning calorimetry, a modification of the differential scanning calorimetry approach to the determination of protein stability in which a proteolytic enzyme (thermolysin) is used to mimic a harsh environment. This methodology allows the straightforward calculation of the rate of irreversible denaturation as a function of temperature and concentration of proteolytic enzyme and, as a result, has the potential to probe efficiently the fundamental biophysical features of protein kinetic stability. In the particular case of Escherichia coli thioredoxin (used as an illustrative example in this article), we find that the rate of irreversible denaturation is determined by 1), the global unfolding mechanism at low thermolysin concentrations, indicating that thermodynamic stability may contribute directly to the kinetic stability of thioredoxin under moderately harsh conditions and 2), the rate of unfolding at high thermolysin concentrations, indicating that the free-energy barrier for unfolding may act as a safety mechanism that ensures significant kinetic stability, even in very harsh environments. This thioredoxin picture, however, is by no means expected to be general and different proteins may show different patterns of kinetic stabilization. Proteolytic scanning calorimetry is particularly well-suited to probe this diversity at a fundamental biophysical level. PMID:20303845

  1. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    Science.gov (United States)

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Method for rapid optimization of recombinant GPCR protein expression and stability using virus-like particles.

    Science.gov (United States)

    Ho, Thao T; Nguyen, Jasmine T; Liu, Juping; Stanczak, Pawel; Thompson, Aaron A; Yan, Yingzhuo G; Chen, Jasmine; Allerston, Charles K; Dillard, Charles L; Xu, Hao; Shoger, Nicholas J; Cameron, Jill S; Massari, Mark E; Aertgeerts, Kathleen

    2017-05-01

    Recent innovative approaches to stabilize and crystallize GPCRs have resulted in an unprecedented breakthrough in GPCR crystal structures as well as application of the purified receptor protein in biophysical and biochemical ligand binding assays. However, the protein optimization process to enable these technologies is lengthy and requires iterative overexpression, solubilization, purification and functional analysis of tens to hundreds of protein variants. Here, we report a new and versatile method to screen in parallel hundreds of GPCR variants in HEK293 produced virus-like particles (VLPs) for protein yield, stability, functionality and ligand binding. This approach reduces the time and resources during GPCR construct optimization by eliminating lengthy protein solubilization and purification steps and by its adaptability to many binding assay formats (label or label-free detection). We exemplified the robustness of our VLP method by screening 210 GALR3-VLP variants in a radiometric agonist-based binding assay and a subset of 88 variants in a label-free antagonist-based assay. The resulting GALR3 agonist or antagonist stabilizing variants were then further used for recombinant protein expression in transfected insect cells. The final purified protein variants were successfully immobilized on a biosensor chip and used in a surface plasmon resonance binding assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability.

    Science.gov (United States)

    Water, Jorrit J; Schack, Malthe M; Velazquez-Campoy, Adrian; Maltesen, Morten J; van de Weert, Marco; Jorgensen, Lene

    2014-10-01

    Complex coacervates of hyaluronic acid and lysozyme, a model protein, were formed by ionic interaction using bulk mixing and were characterized in terms of binding stoichiometry and protein structure and stability. The complexes were formed at pH 7.2 at low ionic strength (6mM) and the binding stoichiometry was determined using solution depletion and isothermal titration calorimetry. The binding stoichiometry of lysozyme to hyaluronic acid (870 kDa) determined by solution depletion was found to be 225.9 ± 6.6 mol, or 0.1 bound lysozyme molecules per hyaluronic acid monomer. This corresponded well with that obtained by isothermal titration calorimetry of 0.09 bound lysozyme molecules per hyaluronic acid monomer. The complexation did not alter the secondary structure of lysozyme measured by Fourier-transform infrared spectroscopy overlap analysis and had no significant impact on the Tm of lysozyme determined by differential scanning calorimetry. Furthermore, the protein stability of lysozyme was found to be improved upon complexation during a 12-weeks storage study at room temperature, as shown by a significant increase in recovered protein when complexed (94 ± 2% and 102 ± 5% depending on the polymer-protein weight to weight ratio) compared to 89 ± 2% recovery for uncomplexed protein. This study shows the potential of hyaluronic acid to be used in combination with complex coacervation to increase the physical stability of pharmaceutical protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Salt effects on the conformational stability of the visual G-protein-coupled receptor rhodopsin.

    Science.gov (United States)

    Reyes-Alcaraz, Arfaxad; Martínez-Archundia, Marlet; Ramon, Eva; Garriga, Pere

    2011-12-07

    Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Salt Effects on the Conformational Stability of the Visual G-Protein-Coupled Receptor Rhodopsin

    Science.gov (United States)

    Reyes-Alcaraz, Arfaxad; Martínez-Archundia, Marlet; Ramon, Eva; Garriga, Pere

    2011-01-01

    Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable. PMID:22261069

  6. Sample Stability and Protein Composition of Saliva: Implications for Its Use as a Diagnostic Fluid

    Directory of Open Access Journals (Sweden)

    Han Roelofsen

    2008-01-01

    Full Text Available Saliva is an easy accessible plasma ultra-filtrate. Therefore, saliva can be an attractive alternative to blood for measurement of diagnostic protein markers. Our aim was to determine stability and protein composition of saliva. Protein stability at room temperature was examined by incubating fresh whole saliva with and without inhibitors of proteases and bacterial metabolism followed by Surface Enhanced Laser Desorption/Ionization (SELDI analyses. Protein composition was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE fractionation of saliva proteins followed by digestion of excised bands and identification by liquid chromatography tandem mass spectrometry (LC-MS/MS. Results show that rapid protein degradation occurs within 30 minutes after sample collection. Degradation starts already during collection. Protease inhibitors partly prevented degradation while inhibition of bacterial metabolism did not affect degradation. Three stable degradation products of 2937 Da, 3370 Da and 4132 Da were discovered which can be used as markers to monitor sample quality. Saliva proteome analyses revealed 218 proteins of which 84 can also be found in blood plasma. Based on a comparison with seven other proteomics studies on whole saliva we identified 83 new saliva proteins. We conclude that saliva is a promising diagnostic fl uid when precautions are taken towards protein breakdown.

  7. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    Science.gov (United States)

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  8. Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function.

    Science.gov (United States)

    Smith, Everett Clinton; Culler, Megan R; Hellman, Lance M; Fried, Michael G; Creamer, Trevor P; Dutch, Rebecca Ellis

    2012-03-01

    While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.

  9. Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins

    Science.gov (United States)

    Faure, Guilhem; Koonin, Eugene V.

    2015-05-01

    Robustness to destabilizing effects of mutations is thought of as a key factor of protein evolution. The connections between two measures of robustness, the relative core size and the computationally estimated effect of mutations on protein stability (ΔΔG), protein abundance and the selection pressure on protein-coding genes (dN/dS) were analyzed for the organisms with a large number of available protein structures including four eukaryotes, two bacteria and one archaeon. The distribution of the effects of mutations in the core on protein stability is universal and indistinguishable in eukaryotes and bacteria, centered at slightly destabilizing amino acid replacements, and with a heavy tail of more strongly destabilizing replacements. The distribution of mutational effects in the hyperthermophilic archaeon Thermococcus gammatolerans is significantly shifted toward strongly destabilizing replacements which is indicative of stronger constraints that are imposed on proteins in hyperthermophiles. The median effect of mutations is strongly, positively correlated with the relative core size, in evidence of the congruence between the two measures of protein robustness. However, both measures show only limited correlations to the expression level and selection pressure on protein-coding genes. Thus, the degree of robustness reflected in the universal distribution of mutational effects appears to be a fundamental, ancient feature of globular protein folds whereas the observed variations are largely neutral and uncoupled from short term protein evolution. A weak anticorrelation between protein core size and selection pressure is observed only for surface residues in prokaryotes but a stronger anticorrelation is observed for all residues in eukaryotic proteins. This substantial difference between proteins of prokaryotes and eukaryotes is likely to stem from the demonstrable higher compactness of prokaryotic proteins.

  10. A Comparison of Protein Stability in Prefillable Syringes Made of Glass and Plastic.

    Science.gov (United States)

    Waxman, Lloyd; Vilivalam, Vinod D

    2017-01-01

    The development of protein therapeutics requires stabilization of these labile molecules during shipment and storage. Biologics, particularly monoclonal antibodies, are frequently packaged at high concentration in prefillable syringes traditionally made of glass. However, some biologics are unstable in glass due to sensitivity to silicone oil, tungsten, glue, or metal ions. Syringes made from the plastic cyclic olefin polymer, Daikyo Crystal Zenith® (CZ), with a Flurotec-laminated piston, have none of these issues. This study compared the stability of several proteins including biotherapeutics when stored up to 14 months at 5 °C and 25 °C in prefillable siliconized syringes made of glass or silicone oil-free CZ syringes, and when subjected to mild agitation by end-over-end rotation at room temperature. At each time point, proteins were analyzed by several techniques including turbidity, size exclusion high-performance liquid chromatography, reversed phase high-performance liquid chromatography, ion-exchange chromatography, electrophoresis, and light scattering to monitor changes in aggregation and degradation. The results show that proteins have comparable stability when stored in glass syringes or in syringes made of CZ sterilized by E-beam or autoclave. In addition, proteins stressed by agitation were generally more stable and aggregated less in syringes made of CZ than in ones made of glass. LAY ABSTRACT: Biotherapeutic protein drugs such as monoclonal antibodies are frequently packaged at high concentration in prefillable syringes, which allows the drug to be directly administered by the patient or caregiver. Protein drugs, or biologics, can be unstable, and may aggregate, particularly when shaken. These aggregates can be immunogenic, stimulating the body's immune system to produce antibodies that can reduce the drug's efficacy. Although prefillable syringes are traditionally made of glass, some biologics are unstable in glass syringes due to the presence of

  11. In vivo stability and inertness of various direct labelled and chelate-tagged protein

    International Nuclear Information System (INIS)

    Janoki, A.; Korosi, L.; Klivenyi, G.; Spett, B.

    1987-01-01

    There were looking for methods giving precise information about composition and activity distribution of protein components, both in the initial samples and serum samples after intravenous administration. It was tested the applicability of electroimmunoassay, polyacrilamide gel electrophoresis and high performance liquid chromatography for the assessment of in vivo stability and labelled proteins. The model compound was human serum albumin (HSA) labelled with 99m Tc and 125 I, respectively. Bifunctional chelate labelling was done with desferrioxamine, in this case protein was labelled with 67 Ga. Biodistribution of the labelled compounds and their elimination from the blood were studied in rabbits. Experience with various labelling proteins, especially with Tc-Sn-HSA system indicate that in vivo stability of this compounds are generally low. Following intravenous injection of proteins labelled with metal isotopes, due to dilution and to the presence of considerable amount of compatitive protein in the serum, part of the label is being detached from the carrier protein. Distribution of the detached metal is different from the original distribution of the protein. This problem arises also with radiopharmaceuticals based on monoclonal antibodies. (M.E.L.) [es

  12. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  13. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona.

    Science.gov (United States)

    Piella, Jordi; Bastús, Neus G; Puntes, Víctor

    2017-01-18

    Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.

  14. Disulfide bond-stabilized physical gels of an asymmetric collagen-inspired telechelic protein polymer

    NARCIS (Netherlands)

    Pham, T.H.T.; Skrzeszewska, P.J.; Werten, M.W.T.; Rombouts, W.H.; Cohen Stuart, M.A.; Wolf, de F.A.; Gucht, van der J.

    2013-01-01

    We designed and produced an asymmetric collagen-inspired telechelic protein polymer with end blocks that can form triple helices of different thermal stabilities. Both end blocks consist of a motif that can form triple helices at low temperature, but one of these blocks carries an additional

  15. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall

    2013-01-01

    The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used as the ...

  16. Identification of salivary proteins at oil–water interfaces stabilized by lysozyme and ß-lactoglobulin

    NARCIS (Netherlands)

    Silletti, E.; Vitorino, R.M.P.; Schipper, R.G.; Amado, F.M.L.; Vingerhoeds, M.H.

    2010-01-01

    In this research, we investigated the interaction occurring between oil-in-water emulsion droplets, stabilized by different emulsifiers, i.e. lysozyme and ß-lactoglobulin (ß-lg), and salivary proteins (SPs) with a molecular mass (Mr) above about 10 kDa. Different techniques, i.e. infrared

  17. Long-term stability of β-galactosidase protein expression in the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... 2School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600. Bangi Selangor .... the higher producer clones regarding their growth characteristics, protein productivity and their stability in long term culture. The aim of this study was to generate.

  18. Kinetic Stability of Proteins in Beans and Peas: Implications for Protein Digestibility, Seed Germination, and Plant Adaptation.

    Science.gov (United States)

    Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo

    2016-10-12

    Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.

  19. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    Science.gov (United States)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  20. Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Ramakrishnan, T.V.; Francis, F.J.

    1980-01-01

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  1. The effect of protein complexation on the mechanical stability of Im9.

    Science.gov (United States)

    Hann, Eleanore; Kirkpatrick, Nadine; Kleanthous, Colin; Smith, D Alastair; Radford, Sheena E; Brockwell, David J

    2007-05-01

    Force mode microscopy can be used to examine the effect of mechanical manipulation on the noncovalent interactions that stabilize proteins and their complexes. Here we describe the effect of complexation by the high affinity protein ligand E9 on the mechanical resistance of the simple four-helical protein, Im9. When concatenated into a construct of alternating I27 domains, Im9 unfolded below the thermal noise limit of the instrument ( approximately 20 pN). Complexation of E9 had little effect on the mechanical resistance of Im9 (unfolding force approximately 30 pN) despite the high avidity of this complex (K(d) approximately 10 fM).

  2. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions

    Directory of Open Access Journals (Sweden)

    Baoru Yin

    2015-03-01

    Full Text Available The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS, and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  3. Stabilizing Additives Added during Cell Lysis Aid in the Solubilization of Recombinant Proteins

    Science.gov (United States)

    Leibly, David J.; Nguyen, Trang Nhu; Kao, Louis T.; Hewitt, Stephen N.; Barrett, Lynn K.; Van Voorhis, Wesley C.

    2012-01-01

    Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl2, proline, xylitol, NDSB 201, CTAB and K2PO4) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher. PMID:23285060

  4. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins.

    Directory of Open Access Journals (Sweden)

    David J Leibly

    Full Text Available Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2, proline, xylitol, NDSB 201, CTAB and K(2PO(4 solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40% were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.

  5. Modification of the Sweetness and Stability of Sweet-Tasting Protein Monellin by Gene Mutation and Protein Engineering.

    Science.gov (United States)

    Liu, Qiulei; Li, Lei; Yang, Liu; Liu, Tianming; Cai, Chenggu; Liu, Bo

    2016-01-01

    Natural sweet protein monellin has a high sweetness and low calorie, suggesting its potential in food applications. However, due to its low heat and acid resistance, the application of monellin is limited. In this study, we show that the thermostability of monellin can be improved with no sweetness decrease by means of sequence, structure analysis, and site-directed mutagenesis. We analyzed residues located in the α-helix as well as an ionizable residue C41. Of the mutants investigated, the effects of E23A and C41A mutants were most remarkable. The former displayed significantly improved thermal stability, while its sweetness was not changed. The mutated protein was stable after 30 min incubation at 85°C. The latter showed increased sweetness and slight improvement of thermostability. Furthermore, we found that most mutants enhancing the thermostability of the protein were distributed at the two ends of α-helix. Molecular biophysics analysis revealed that the state of buried ionizable residues may account for the modulated properties of mutated proteins. Our results prove that the properties of sweet protein monellin can be modified by means of bioinformatics analysis, gene manipulation, and protein modification, highlighting the possibility of designing novel effective sweet proteins based on structure-function relationships.

  6. Increased Protein Stability and Decreased Protein Turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 Mutant.

    Science.gov (United States)

    Depuydt, Geert; Shanmugam, Nilesh; Rasulova, Madina; Dhondt, Ineke; Braeckman, Bart P

    2016-12-01

    In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35 S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  7. Preparation of iron bound succinylated milk protein concentrate and evaluation of its stability.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Sharma, Vivek; Bajaj, Rajesh Kumar; Tomar, S K

    2016-04-01

    Major problems associated with the fortification of soluble iron salts include chemical reactivity and incompatibility with other components. Milk protein concentrate (MPC) are able to bind significant amount of iron due to the presence of both casein and whey protein. MPC in its native state possess very poor solubility, therefore, succinylated derivatives of MPC (succ. MPC) were also used for the preparation of protein-iron complex. Preparation of the complex involved centrifugation (to remove insoluble iron), ultrafiltration (to remove unbound iron) and lyophilisation (to attain in dry form). Iron binding ability of MPC enhanced significantly (Piron from both varieties of complexes was monitored under different conditions encountered during processing. Higher stability (Piron was observed in succ. MPC-iron complex than native protein complex. This method could be adopted for the production of stable iron enriched protein, an organic iron source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit

    DEFF Research Database (Denmark)

    Rehling, M

    1988-01-01

    the quality of a commercial [99mTc]DTPA preparation (C.I.S., France) with reference to stability, protein binding and accuracy of the determined plasma clearance values as a measure of GFR. The stability of the preparations was studied by thin-layer chromatography, the in vitro protein binding by Sephadex...

  9. Synthetic affinity ligands as a novel tool to improve protein stability.

    Science.gov (United States)

    Sousa, I T; Ruiu, L; Lowe, C R; Taipa, M A

    2009-01-01

    Cutinase from Fusarium solani pisi is the model-system for a new approach to assess and enhance protein stability based on the use of synthetic triazine-scaffolded affinity ligands as a novel protein-stabilizing tool. The active site of cutinase is excluded from the main surface regions postulated to be involved in early protein's thermal unfolding events. Hence, these regions are suitable targets for binding complementary affinity ligands with a potential stabilizing effect. A random solid-phase combinatorial library of triazine-bisubstituted molecules was screened for binding cutinase by a rapid fluorescence-based method and affinity chromatography. The best binding substituents were combined with those previously selected by screening a rationally designed library. A second-generation solid-phase biased library was designed and synthesized, following a semi-rational methodology. A dual screening of this library enabled the selection of ligands binding cutinase with higher affinity while retaining its functionality. These compounds were utilized for thermostability assessment with adsorbed cutinase at 60 degrees C and pH 8.0. When bound to different types of ligands, the enzyme showed markedly distinct activity retention profiles, with some synthetic affinity ligands displaying a stabilizing effect on cutinase and others a clearly destabilizing effect, when compared with the free enzyme. Copyright (c) 2008 John Wiley & Sons, Ltd.

  10. Protein stabilization with a dipeptide-mimic triazine-scaffolded synthetic affinity ligand.

    Science.gov (United States)

    Sousa, I T; Lourenço, N M T; Afonso, C A M; Taipa, M A

    2013-02-01

    Protein stabilization was achieved by a novel approach based on the adsorption and establishment of affinity-like interactions with a biomimetic triazine-scaffolded ligand. A synthetic lead compound (ligand 3'/11, K(a) ≈ 10(4) M(-1)) was selected from a previously screened solid-phase library of affinity ligands for studies of adsorption and stabilization of cutinase from Fusarium solani pisi used as a model system. This ligand, directly synthesized in agarose by a well-established solid-phase synthesis method, was able to strongly bind cutinase and led to impressive half-lives of more than 8 h at 70 °C, and of approximately 34 h at 60 °C for bound protein (a 25- and 57-fold increase as compared with the free enzyme, respectively). The ligand density in the solid matrix was found to be a determinant parameter for cutinase stabilization. It is conceivable that the highly stabilizing effect observed results from the binding of more than one ligand residue to the enzyme, creating specific macromolecular configurations that lock structural mobility thus improving molecular stability. Copyright © 2013 John Wiley & Sons, Ltd.

  11. The structure, stability and pheromone binding of the male mouse protein sex pheromone darcin.

    Directory of Open Access Journals (Sweden)

    Marie M Phelan

    Full Text Available Mouse urine contains highly polymorphic major urinary proteins that have multiple functions in scent communication through their abilities to bind, transport and release hydrophobic volatile pheromones. The mouse genome encodes for about 20 of these proteins and are classified, based on amino acid sequence similarity and tissue expression patterns, as either central or peripheral major urinary proteins. Darcin is a male specific peripheral major urinary protein and is distinctive in its role in inherent female attraction. A comparison of the structure and biophysical properties of darcin with MUP11, which belongs to the central class, highlights similarity in the overall structure between the two proteins. The thermodynamic stability, however, differs between the two proteins, with darcin being much more stable. Furthermore, the affinity of a small pheromone mimetic is higher for darcin, although darcin is more discriminatory, being unable to bind bulkier ligands. These attributes are due to the hydrophobic ligand binding cavity of darcin being smaller, caused by the presence of larger amino acid side chains. Thus, the physical and chemical characteristics of the binding cavity, together with its extreme stability, are consistent with darcin being able to exert its function after release into the environment.

  12. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    Science.gov (United States)

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    Science.gov (United States)

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles.

    Science.gov (United States)

    Senske, Michael; Xu, Yao; Bäumer, Alexander; Schäfer, Sarah; Wirtz, Hanna; Savolainen, Janne; Weingärtner, Hermann; Havenith, Martina

    2018-03-28

    When comparing protein folding in vitro and in vivo significant differences have been found. This has been attributed to crowding and confinement effects. Using a combination of GHz- and THz-dielectric relaxation spectroscopy and MD simulations, we studied hydration dynamics and reviewed protein stability data inside sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and cetyltrimethylammonium bromide (CTAB) reverse micelles which are model systems for confinement. We find that water inside anionic AOT and cationic CTAB reverse micelles is characterized by a strong dielectric depolarization giving rise to a very low relative permittivity compared to an unconfined solution. Despite differences in the hydration dynamics of the surfactant's head groups, simulations using the two-phase thermodynamics method predict a similar reduction in water entropy for both reverse micelle systems compared to bulk water. When we compare the stability data of proteins in these reverse micelles we find that in contrast to our initial expectation, protein stability correlates rather with the local chemistry of the hydrated head groups than with the excluded volume effect or the low global permittivity.

  15. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin.

    Science.gov (United States)

    Wang, Haimei; Hosoda, Kazuo; Ishii, Takeshi; Arai, Ryo; Kohno, Toshiyuki; Terawaki, Shin-Ichi; Wakamatsu, Kaori

    2016-03-01

    Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  16. Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis.

    Science.gov (United States)

    Tan, Tinghong; Cai, Jingqing; Zhan, Erbao; Yang, Yongqing; Zhao, Jinfeng; Guo, Yan; Zhou, Huapeng

    2016-10-01

    Salt stress induces the degradation of 14-3-3 proteins, and affects the localization of 14-3-3 λ. Both the modulation of 14-3-3 protein stability and the subcellular localization of these proteins are involved in salt tolerance in plants. Salt tolerance in plants is regulated by multiple signaling pathways, including the salt overly sensitive (SOS) pathway, of which the SOS2 protein is a key component. SOS2 is activated under salt stress to enhance salt tolerance in plants. We previously identified 14-3-3 λ and κ as important regulators of salt tolerance. Both proteins interact with SOS2 to inhibit its kinase activity under normal growth conditions. In response to salt stress, 14-3-3 proteins dissociate from SOS2, releasing its activity and activating the SOS pathway to confer salt tolerance (Zhou et al. Plant Cell 26:1166-1182, 2014). Here we report that salt stress promotes the degradation of 14-3-3 λ and κ, at least in part via the actions of SOS3-like calcium binding protein 8/calcineurin-B-like10, and also decreases the plasma membrane (PM) localization of 14-3-3 λ. Salt stress also partially represses the interaction of SOS2 and 14-3-3 λ at the PM, but activates PM-localized SOS2. Together, these results suggest that, in plants, both the modulation of 14-3-3 stability and the subcellular localization of these proteins in response to salt stress are important for SOS2 activation and salt tolerance. These data provide new insights into the biological roles of 14-3-3 proteins in modulating salt tolerance.

  17. Brd4-Mediated Nuclear Retention of the Papillomavirus E2 Protein Contributes to Its Stabilization in Host Cells

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-01-01

    Full Text Available Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions.

  18. Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax

    DEFF Research Database (Denmark)

    Friis, Dennis Steven; Johnsen, Johannes Lørup; Kristiansen, Erlend

    2014-01-01

    , the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show......The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect...... that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths...

  19. Stabilization of the c-Myc Protein by CAMKIIγ Promotes T Cell Lymphoma.

    Science.gov (United States)

    Gu, Ying; Zhang, Jiawei; Ma, Xiaoxiao; Kim, Byung-Wook; Wang, Hailong; Li, Jinfan; Pan, Yi; Xu, Yang; Ding, Lili; Yang, Lu; Guo, Chao; Wu, Xiwei; Wu, Jun; Wu, Kirk; Gan, Xiaoxian; Li, Gang; Li, Ling; Forman, Stephen J; Chan, Wing-Chung; Xu, Rongzhen; Huang, Wendong

    2017-07-10

    Although high c-Myc protein expression is observed alongside MYC amplification in some cancers, in most cases protein overexpression occurs in the absence of gene amplification, e.g., T cell lymphoma (TCL). Here, Ca 2+ /calmodulin-dependent protein kinase II γ (CAMKIIγ) was shown to stabilize the c-Myc protein by directly phosphorylating it at serine 62 (S62). Furthermore, CAMKIIγ was shown to be essential for tumor maintenance. Inhibition of CAMKIIγ with a specific inhibitor destabilized c-Myc and reduced tumor burden. Importantly, high CAMKIIγ levels in patient TCL specimens correlate with increased c-Myc and pS62-c-Myc levels. Together, the CAMKIIγ:c-Myc axis critically influences the development and maintenance of TCL and represents a potential therapeutic target for TCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  1. Forkhead Box Protein A2 (FOXA2) Protein Stability and Activity Are Regulated by Sumoylation

    OpenAIRE

    Belaguli, Narasimhaswamy S.; Zhang, Mao; Brunicardi, F. Charles; Berger, David H.

    2012-01-01

    The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 t...

  2. Effects of lysine residues on structural characteristics and stability of tau proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo, E-mail: nass@korea.ac.kr

    2015-10-23

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  3. The role of PEG conformation in mixed layers: from protein corona substrate to steric stabilization avoiding protein adsorption

    Directory of Open Access Journals (Sweden)

    Joan Comenge

    2015-03-01

    Full Text Available Although nanoparticles (NPs have been traditionally modified with a single ligand layer, mixture of ligands might help to combine different functionalities and to further engineer the NP surface. A detailed study of the competition between an alkanethiol (11-mercaptoundecanoic acid and SH-PEG for the surface of AuNPs and the resultant behaviors of this model nanoconjugate is presented here. As a result, the physicochemical properties of these conjugates can be progressively tuned by controlling the composition and especially the conformation of the mixed monolayer. This has implications in the physiological stability. The controlled changes on the SH-PEG conformation rather than its concentration induce a change in the stabilization mechanism from electrostatic repulsion to steric hindrance, which changes the biological fate of NPs. Importantly, the adsorption of proteins on the conjugates can be tailored by tuning the composition and conformation of the mixed layer.

  4. The influence of selection for protein stability on dN/dS estimations

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Serohijos, Adrian W. R.; Kepp, Kasper Planeta

    2014-01-01

    stability where protein evolution is neutral. At low folding stabilities and under mutation-selection balance, we observe deviations from neutrality (per gene dN/dS > 1 and dN/dS positive selection detect statistically...... significant per site dN/dS > 1. Altogether, we show how protein biophysics affects the dN/dS estimations and its subsequent interpretation. These results are important for improving the current approaches for detecting positive selection.......Understanding the relative contributions of various evolutionary processes-purifying selection, neutral drift, and adaptation-is fundamental to evolutionary biology. A common metric to distinguish these processes is the ratio of nonsynonymous to synonymous substitutions (i.e., dN/dS) interpreted...

  5. [Handling G-protein-coupled receptors: expression, purification and in vitro stabilization].

    Science.gov (United States)

    Banères, Jean-Louis; Mouillac, Bernard

    2012-10-01

    Among the different classes of integral membrane proteins, G protein-coupled receptors (GPCR) constitute the largest family. They are involved in most essential physiological functions and particularly play a key role in cell-to-cell communication and sensory signal transduction. They represent targets for approximately 30% of currently marketed drugs. In order to better understand their functioning, define their tridimensional structure and develop novel selective and efficient therapeutic compounds, it is crucial to purify these proteins for a full characterization. However, this biochemical step is not trivial since GPCR are present in membranes at very low levels and they require detergents to be extracted from their natural lipid environment and be handled as functional proteins. No universal strategy for GPCR production, purification and stabilization is currently available; each single GPCR possesses a unique set of physicochemical characteristics, preference for some detergents upon solubilization and specific conditions for purification. During the last decade, major breakthroughs regarding overexpression, purification and above all GPCR stabilization, thanks to amphipols and nanodiscs, opened very exciting perspectives for structural and dynamic investigations of these membrane proteins. The aim of this chapter is to provide an overview of the different aspects of GPCR handling. © 2012 médecine/sciences – Inserm / SRMS.

  6. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    Full Text Available Functional inactivation of the von Hippel-Lindau (VHL tumor suppressor protein is linked to the development of several forms of cancer as well as oncogenic progression like sporadic renal clear-cell carcinomas (RCC. Despite the critical role played by VHL in destruction of hypoxia-inducible factor α (HIFα via ubiquitin-mediated proteolysis, very little is known about the post-translational modification which regulates VHL activity. Our previous study showed that the SUMO E3 ligase PIASy interacts with VHL and induces VHL SUMOylation on lysine residue 171 (Cai et al, PLoS ONE, 2010, 5(3:e9720. Here we further report that VHL also undergoes ubiquitylation on both lysine residues 171 and 196, which is blocked by PIASy. Moreover, using a VHL-SUMO1 or ubiquitin fusion protein, we found that ubiquitylated VHL is localized predominantly in the cytoplasm, while SUMOylated VHL results in increased VHL protein stability and nuclear redistribution. Interestingly, substitution of lysine 171 and 196 to arginine of VHL abrogates its inhibitory function on the transcriptional activity of HIFα, and tube formation in vitro. This demonstrates that post-translational modifications like ubiquitylation and SUMOylation contributes to VHL protein stability and nucleocytoplasmic shuttling, and that the overall function of VHL in tumor suppression may require a precise and dynamically regulated process which involves protein modification.

  7. Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Directory of Open Access Journals (Sweden)

    Qingzhong Kong

    2013-07-01

    Full Text Available Prion diseases, or transmissible spongiform encephalopathies (TSEs, are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases.

  8. SDM: a server for predicting effects of mutations on protein stability.

    Science.gov (United States)

    Pandurangan, Arun Prasad; Ochoa-Montaño, Bernardo; Ascher, David B; Blundell, Tom L

    2017-07-03

    Here, we report a webserver for the improved SDM, used for predicting the effects of mutations on protein stability. As a pioneering knowledge-based approach, SDM has been highlighted as the most appropriate method to use in combination with many other approaches. We have updated the environment-specific amino-acid substitution tables based on the current expanded PDB (a 5-fold increase in information), and introduced new residue-conformation and interaction parameters, including packing density and residue depth. The updated server has been extensively tested using a benchmark containing 2690 point mutations from 132 different protein structures. The revised method correlates well against the hypothetical reverse mutations, better than comparable methods built using machine-learning approaches, highlighting the strength of our knowledge-based approach for identifying stabilising mutations. Given a PDB file (a Protein Data Bank file format containing the 3D coordinates of the protein atoms), and a point mutation, the server calculates the stability difference score between the wildtype and mutant protein. The server is available at http://structure.bioc.cam.ac.uk/sdm2. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins.

    Science.gov (United States)

    Krayukhina, Elena; Tsumoto, Kouhei; Uchiyama, Susumu; Fukui, Kiichi

    2015-02-01

    Currently, polymer-based prefillable syringes are being promoted to the pharmaceutical market because they provide an increased break resistance relative to traditionally used glass syringes. Despite this significant advantage, the possibility that barrel material can affect the oligomeric state of the protein drug exists. The present study was designed to compare the effect of different syringe materials and silicone oil lubrication on the protein aggregation. The stability of a recombinant fusion protein, abatacept (Orencia), and a fully human recombinant immunoglobulin G1, adalimumab (Humira), was assessed in silicone oil-free (SOF) and silicone oil-lubricated 1-mL glass syringes and polymer-based syringes in accelerated stress study. Samples were subjected to agitation stress, and soluble aggregate levels were evaluated by size-exclusion chromatography and verified with analytical ultracentrifugation. In accordance with current regulatory expectations, the amounts of subvisible particles resulting from agitation stress were estimated using resonant mass measurement and dynamic flow-imaging analyses. The amount of aggregated protein and particle counts were similar between unlubricated polymer-based and glass syringes. The most significant protein loss was observed for lubricated glass syringes. These results suggest that newly developed SOF polymer-based syringes are capable of providing biopharmaceuticals with enhanced physical stability upon shipping and handling. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. New aspects of protein stability and turnover in the regulation of genome integrity

    DEFF Research Database (Denmark)

    Gallina, Irene

    -scale studies investigating factors involved in DNA metabolism, but no specific function has been assigned to Cmr1. Taking advantage of a series of high-throughput screens we characterize Cmr1 as a chromatinassociated protein, involved in the regulation of fork progression in the presence of replication stress....... Moreover, we dissect the association of Cmr1 and other nuclear and cytoplasmic proteins to the JUNQ compartment in response to replication stress, and propose a model where relocalization of replication-associated factors to the nuclear periphery is important for promoting fork stability and recovery after...... replication stress...

  11. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.

  12. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    Directory of Open Access Journals (Sweden)

    Jacek Dygut

    2016-10-01

    Full Text Available The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1 Shared hydrophobic cores (spanning the whole dimer; (2 Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  13. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane

    Czech Academy of Sciences Publication Activity Database

    Biedermannová, Lada; Riley, Kevin Eugene; Berka, Karel; Hobza, Pavel; Vondrášek, Jiří

    2008-01-01

    Roč. 10, č. 42 (2008), s. 6350-6359 ISSN 1463-9076 R&D Projects: GA ČR GA203/06/1727; GA ČR(CZ) GD203/05/H001; GA AV ČR IAA400550510; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : proline * stabilization interaction * an-initio methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.064, year: 2008

  14. Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1alpha mediated transcription.

    Science.gov (United States)

    Ampofo, Emmanuel; Kietzmann, Thomas; Zimmer, Andreas; Jakupovic, Mirza; Montenarh, Mathias; Götz, Claudia

    2010-10-01

    The von Hippel-Lindau tumour suppressor gene encodes a protein with 213 amino acids, which is known to be part of an E3-ubiquitin ligase targeting the HIF-1alpha transcription factor as well as to form a complex with p53. The VHL protein can be phosphorylated by protein kinase CK2 at serines 33, 38 and 43. However, the role of VHL phosphorylation in the context of p53 and HIF-1alpha regulation remained so far unknown. In the present study we investigated whether phosphorylation of VHL by CK2 might affect the function of p53 and HIF-1alpha. By using 4,5,6,7-tetrabromobenzotriazole (TBB), a CK2-specific inhibitor, as well as a mutant VHL where serines 33, 38 and 43 were replaced by alanines we found that CK2 phosphorylation affected the VHL protein half-life and increased VHL protein stability. Further, we found that inhibition of VHL phosphorylation by CK2 reduced p53 function. In addition, the enhanced levels of VHL due to CK2 inhibition contributed to the down-regulation of HIF-activity and degradation of HIF-1alpha. Thus, these results demonstrate that phosphorylation of VHL by CK2 plays an important role in the regulation of VHL protein stability and may contribute to the survival of tumour cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification.

    Science.gov (United States)

    Brownlee, Christopher W; Klebba, Joey E; Buster, Daniel W; Rogers, Gregory C

    2011-10-17

    Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2A(Twins)) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A's regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification.

  16. Non-local effects of point mutations on the stability of a protein module

    Science.gov (United States)

    Chwastyk, Mateusz; Vera, Andrés M.; Galera-Prat, Albert; Gunnoo, Melissabye; Thompson, Damien; Carrión-Vázquez, Mariano; Cieplak, Marek

    2017-09-01

    We combine experimental and theoretical methods to assess the effect of a set of point mutations on c7A, a highly mechanostable type I cohesin module from scaffoldin CipA from Clostridium thermocellum. We propose a novel robust and computationally expedient theoretical method to determine the effects of point mutations on protein structure and stability. We use all-atom simulations to predict structural shifts with respect to the native protein and then analyze the mutants using a coarse-grained model. We examine transitions in contacts between residues and find that changes in the contact map usually involve a non-local component that can extend up to 50 Å. We have identified mutations that may lead to a substantial increase in mechanical and thermodynamic stabilities by making systematic substitutions into alanine and phenylalanine in c7A. Experimental measurements of the mechanical stability and circular dichroism data agree qualitatively with the predictions provided the thermal stability is calculated using only the contacts within the secondary structures.

  17. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length.

    Science.gov (United States)

    Hayama, Ryosuke; Sarid-Krebs, Liron; Richter, René; Fernández, Virginia; Jang, Seonghoe; Coupland, George

    2017-04-03

    Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T ( FT ), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  18. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  19. Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V.

    Science.gov (United States)

    Zavodszky, M; Chen, C W; Huang, J K; Zolkiewski, M; Wen, L; Krishnamoorthi, R

    2001-01-01

    Attempts to increase protein stability by insertion of novel disulfide bonds have not always been successful. According to the two current models, cross-links enhance stability mainly through denatured state effects. We have investigated the effects of removal and addition of disulfide cross-links, protein flexibility in the vicinity of a cross-link, and disulfide loop size on the stability of Cucurbita maxima trypsin inhibitor-V (CMTI-V; 7 kD) by differential scanning calorimetry. CMTI-V offers the advantage of a large, flexible, and solvent-exposed loop not involved in extensive intra-molecular interactions. We have uncovered a negative correlation between retention time in hydrophobic column chromatography, a measure of protein hydrophobicity, and melting temperature (T(m)), an indicator of native state stabilization, for CMTI-V and its variants. In conjunction with the complete set of thermodynamic parameters of denaturation, this has led to the following deductions: (1) In the less stable, disulfide-removed C3S/C48S (Delta Delta G(d)(50 degrees C) = -4 kcal/mole; Delta T(m) = -22 degrees C), the native state is destabilized more than the denatured state; this also applies to the less-stable CMTI-V* (Delta Delta G(d)(50 degrees C) = -3 kcal/mole; Delta T(m) = -11 degrees C), in which the disulfide-containing loop is opened by specific hydrolysis of the Lys(44)-Asp(45) peptide bond; (2) In the less stable, disulfide-inserted E38C/W54C (Delta Delta G(d)(50 degrees C) = -1 kcal/mole; Delta T(m) = +2 degrees C), the denatured state is more stabilized than the native state; and (3) In the more stable, disulfide-engineered V42C/R52C (Delta Delta G(d)(50 degrees C) = +1 kcal/mole; Delta T(m) = +17 degrees C), the native state is more stabilized than the denatured state. These results show that a cross-link stabilizes both native and denatured states, and differential stabilization of the two states causes either loss or gain in protein stability. Removal of hydrogen

  20. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    Science.gov (United States)

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  1. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation.

    Science.gov (United States)

    Joglekar, Madhav M; Panaskar, Shrimant N; Chougale, Ashok D; Kulkarni, Mahesh J; Arvindekar, Akalpita U

    2013-10-01

    Inhibition of protein glycation is known to ameliorate secondary complications in diabetes. In the present study antiglycative properties of limonene, a natural product, were evaluated using BSA as a model protein. AMG (aminoguanidine) was used as a positive control. Measurement of total AGEs (Advanced Glycation End-products) and specific AGEs revealed that limonene could inhibit protein glycation to the extent of 56.3% and 75.1% respectively at 50 μM concentration as against 54.4% and 82.2% by AMG at 1 mM. Congo red binding and CD (Circular Dichroism) analysis revealed inhibition of α-helix to β-sheet transition wherein 18.5% β-sheet structures were observed in glycated BSA (bovine serum albumin) as against 4.9% with limonene. Glycation of protein in the presence of urea was enhanced by 18%, while in the presence of limonene it was reduced by 23% revealing the stabilizing effect of limonene. Electrophoretic mobility was similar to the normal control and a zeta potential value of -12.1 mV as against -15.1 mV in diabetic control was observed. Inhibition of glycation in limonene treated samples was confirmed through LC-MS analysis wherein AGEs such as pentosidine, CML (N(ε)-(carboxymethyl)lysine), CEL (N(ε)-(carboxyethyl)lysine), MOLD (methylglyoxal-lysine dimer) and imidazolone observed in glycated samples were absent in limonene treated samples. PatchDock studies revealed that limonene could bind to the major glycation sites IB, IIA and IIB sub domains and AMG to the IIIA sub domain. Thus limonene is a potent protein glycation inhibitor that prevents protein glycation through a novel mechanism of stabilization of protein structure through hydrophobic interactions.

  2. Computational study of elements of stability of a four-helix bundle protein biosurfactant

    Science.gov (United States)

    Schaller, Andrea; Connors, Natalie K.; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A.; Hubbuch, Jürgen; Middelberg, Anton P. J.

    2015-01-01

    Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal

  3. The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prates, Erica T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guan, Xiaoyang [University of Colorado; Li, Yaohao [University of Colorado; Wang, Xinfeng [University of Colorado; Chaffey, Patrick K. [University of Colorado; Skaf, Munir S. [University of Campinas; Tan, Zhongping [University of Colorado

    2018-03-02

    Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, with a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.

  4. Conventional and alternative principles for stabilization of protein and polyphenol fractions in beer

    Directory of Open Access Journals (Sweden)

    Marković Romeo S.

    2003-01-01

    Full Text Available Beer haze is primarily formed through complexation of protein and polyphenolic beer ingredients. The problem of reducing susceptibility of beer haze formation can be done either by lowering protein and/or polyphenol levels, or by minimizing the molecular size of protein/polyphenols. In experimental part of this work the shelf life of unstabilized beer is being compared with beer stabilized with various standard products, such as PVPP and silica gel. Furthermore, the trials have been made to prove the functionality of a new product consisting of carrageenan and cross-linked PVPP. The method used to determine shelf life was haze forcing test (0/60°C. Extract, alcohol, bitterness, foam, haze, color and pH were also monitored. The test results showed expectedly that combined treatment of beer ensures the highest level of product stability. Through selective stripping of polyphenols and protein fractions it is possible to improve shelf life of beer to a significant extent.

  5. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability

    Directory of Open Access Journals (Sweden)

    García-Lara Jorge

    2009-12-01

    Full Text Available Abstract Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  6. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  7. Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose.

    Science.gov (United States)

    Tardioli, Paulo W; Pedroche, Justo; Giordano, Raquel L C; Fernández-Lafuente, Roberto; Guisán, José M

    2003-01-01

    This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.

  8. Asp3Gly polymorphism affects fatty acid-binding protein 3 intracellular stability and subcellular localization.

    Science.gov (United States)

    Kusudo, Tatsuya; Hashida, Yasuhiko; Ando, Fujiko; Shimokata, Hiroshi; Yamashita, Hitoshi

    2015-08-19

    Fatty acid-binding proteins (FABP) play a crucial role in intracellular fatty acid transportation and metabolism. In this study, we investigate the effects of the FABP3 Asp3Gly (D3G) polymorphism on protein structure and function. Although the mutation did not alter protein secondary structure or the ability to bind 1-anilinonaphthalene-8-sulfonic acid and palmitate, the intracellular stability of the D3G mutant was significantly decreased. Immunocytochemical analysis reveals that the mutation alters FABP3 subcellular localization. Our results suggest that the D3G polymorphism may impact energy metabolism and physiological functions. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Prion protein insertional mutations increase aggregation propensity but not fiber stability

    Directory of Open Access Journals (Sweden)

    True Heather L

    2008-03-01

    Full Text Available Abstract Background Mutations in the PRNP gene account for ~15% of all prion disease cases. Little is understood about the mechanism of how some of these mutations in PRNP cause the protein to aggregate into amyloid fibers or cause disease. We have taken advantage of a chimeric protein system to study the oligopeptide repeat domain (ORD expansions of the prion protein, PrP, and their effect on protein aggregation and amyloid fiber formation. We replaced the ORD of the yeast prion protein Sup35p with that from wild type and expanded ORDs of PrP and compared their biochemical properties in vitro. We previously determined that these chimeric proteins maintain the [PSI+] yeast prion phenotype in vivo. Interestingly, we noted that the repeat expanded chimeric prions seemed to be able to maintain a stronger strain of [PSI+] and convert from [psi-] to [PSI+] with a much higher frequency. In this study we have attempted to understand the biochemical properties of these chimeric proteins and to establish a system to study the properties of the ORD of PrP both in vivo and in vitro. Results Investigation of the chimeric proteins in vitro reveals that repeat-expansions increase aggregation propensity and that the kinetics of fiber formation depends on the number of repeats. The fiber formation reactions are promiscuous in that the chimeric protein containing 14 repeats can readily cross-seed fiber formation of proteins that have the wild type number of repeats. Morphologically, the amyloid fibers formed by repeat-expanded proteins associate with each other to form large clumps that were not as prevalent in fibers formed by proteins containing the wild type number of repeats. Despite the increased aggregation propensity and lateral association of the repeat expanded proteins, there was no corresponding increase in the stability of the fibers formed. Therefore, we predict that the differences in fibers formed with different repeat lengths may not be due to

  10. Stereochemical criteria for prediction of the effects of proline mutations on protein stability.

    Directory of Open Access Journals (Sweden)

    Kanika Bajaj

    2007-12-01

    Full Text Available When incorporated into a polypeptide chain, proline (Pro differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.

  11. Stereochemical criteria for prediction of the effects of proline mutations on protein stability.

    Science.gov (United States)

    Bajaj, Kanika; Madhusudhan, M S; Adkar, Bharat V; Chakrabarti, Purbani; Ramakrishnan, C; Sali, Andrej; Varadarajan, Raghavan

    2007-12-01

    When incorporated into a polypeptide chain, proline (Pro) differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds) were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.

  12. A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.

    Science.gov (United States)

    Pazos, Manuel; Natale, Paolo; Vicente, Miguel

    2013-02-01

    In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.

  13. Different Stability and Proteasome-Mediated Degradation Rate of SMN Protein Isoforms.

    Directory of Open Access Journals (Sweden)

    Denise Locatelli

    Full Text Available The key pathogenic steps leading to spinal muscular atrophy (SMA, a genetic disease characterized by selective motor neuron degeneration, are not fully clarified. The full-length SMN protein (FL-SMN, the main protein product of the disease gene SMN1, plays an established role in the cytoplasm in snRNP biogenesis ultimately leading to mRNA splicing within the nucleus. It is also involved in the mRNA axonal transport. However, to what extent the impairment of these two SMN functions contributes to SMA pathogenesis remains unknown. A shorter SMN isoform, axonal-SMN or a-SMN, with more specific axonal localization, has been discovered, but whether it might act in concert with FL-SMN in SMA pathogenesis is not known. As a first step in defining common or divergent intracellular roles of FL-SMN vs a-SMN proteins, we here characterized the turn-over of both proteins and investigated which pathway contributed to a-SMN degradation. We performed real time western blot and confocal immunofluorescence analysis in easily controllable in vitro settings. We analyzed co-transfected NSC34 and HeLa cells and cell clones stably expressing both a-SMN and FL-SMN proteins after specific blocking of transcript or protein synthesis and inhibition of known intracellular degradation pathways. Our data indicated that whereas the stability of both FL-SMN and a-SMN transcripts was comparable, the a-SMN protein was characterized by a much shorter half-life than FL-SMN. In addition, as already demonstrated for FL-SMN, the Ub/proteasome pathway played a major role in the a-SMN protein degradation. We hypothesize that the faster degradation rate of a-SMN vs FL-SMN is related to the protection provided by the protein complex in which FL-SMN is assembled. The diverse a-SMN vs FL-SMN C-terminus may dictate different protein interactions and complex formation explaining the different localization and role in the neuronal compartment, and the lower expression and stability of a-SMN.

  14. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein.

    Science.gov (United States)

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-10-15

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Addition of carrageenan at different stages of winemaking for white wine protein stabilization.

    Science.gov (United States)

    Marangon, Matteo; Stockdale, Vanessa J; Munro, Peter; Trethewey, Timra; Schulkin, Alex; Holt, Helen E; Smith, Paul A

    2013-07-03

    Carrageenan added at different stages of winemaking was assessed for its protein removal and impact on wine heat stability and on the chemical and sensorial profile of the wines. Carrageenan was added to a Semillon during fermentation and after fermentation and to finished wines, and the effect of each addition was compared to that of bentonite fining at the same time point. Data on protein concentration, heat stability, and bentonite requirement indicate that when added at the correct dosage carrageenan was very effective in stabilizing wines at dosages at least three times lower than those of bentonite. In addition, carrageenan treatment did not cause an increase in lees volume relative to bentonite and resulted in very similar chemical parameters to the unfined and bentonite-treated wine. Sensorially, although carrageenan-treated wine was significantly different from the unfined wine, the magnitude of difference did not vary significantly when compared to bentonite treatment. The feasibility of carrageenan use in a winery production setting will need to be determined by individual wineries, as technical issues including frothing, slower filterability, and risk of overfining will need to be considered relative to the benefits, particularly when carrageenan is used before or during fermentation.

  16. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    Science.gov (United States)

    Murakami, Shota; Kinoshita, Masahiro

    2016-03-01

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the

  17. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  18. Stability of Structured Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Is Regulated by Protein Phosphorylation and Homodimerization

    Science.gov (United States)

    Majerciak, Vladimir; Pripuzova, Natalia; Chan, Calvin; Temkin, Nicholas; Specht, Suzanne I.

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 plays an essential role in KSHV lytic infection by promoting viral gene expression at the posttranscriptional level. Using bioinformatic and biochemical approaches, we determined that ORF57 contains two structurally and functionally distinct domains: a disordered nonstructural N-terminal domain (amino acids [aa] 1 to 152) and a structured α-helix-rich C-terminal domain (aa 153 to 455). The N-terminal domain mediates ORF57 interaction with several RNA-protein complexes essential for ORF57 to function. The N-terminal phosphorylation by cellular casein kinase II (CKII) at S21, T32, and S43, and other cellular kinases at S95 and S97 residues in proximity of the caspase-7 cleavage site, 30-DETD-33, inhibits caspase-7 digestion of ORF57. The structured C-terminal domain mediates homodimerization of ORF57, and the critical region for this function was mapped carefully to α-helices 7 to 9. Introduction of point mutations into α-helix 7 at ORF57 aa 280 to 299, a region highly conserved among ORF57 homologues from other herpesviruses, inhibited ORF57 homodimerization and led to proteasome-mediated degradation of ORF57 protein. Thus, homodimerization of ORF57 via its C terminus prevents ORF57 from degrading and allows two structure-free N termini of the dimerized ORF57 to work coordinately for host factor interactions, leading to productive KSHV lytic infection and pathogenesis. IMPORTANCE KSHV is a human oncogenic virus linked to the development of several malignancies. KSHV-mediated oncogenesis requires both latent and lytic infection. The KSHV ORF57 protein is essential for KSHV lytic replication, as it regulates the expression of viral lytic genes at the posttranscriptional level. This report provides evidence that the structural conformation of the ORF57 protein plays a critical role in regulation of ORF57 stability. Phosphorylation by CKII on the identified serine/threonine residues at the N

  19. An Improved Methodology for Multidimensional High-Throughput Preformulation Characterization of Protein Conformational Stability

    Science.gov (United States)

    Maddux, Nathaniel R.; Rosen, Ilan T.; Hu, Lei; Olsen, Christopher M.; Volkin, David B.; Middaugh, C. Russell

    2013-01-01

    The Empirical Phase Diagram (EPD) technique is a vector-based multidimensional analysis method for summarizing large data sets from a variety of biophysical techniques. It can be used to provide comprehensive preformulation characterization of a macromolecule’s higher-order structural integrity and conformational stability. In its most common mode, it represents a type of stimulus-response diagram using environmental variables such as temperature, pH, and ionic strength as the stimulus, with alterations in macromolecular structure being the response. Until now EPD analysis has not been available in a high throughput mode because of the large number of experimental techniques and environmental stressor/stabilizer variables typically employed. A new instrument has been developed that combines circular dichroism, UV-absorbance, fluorescence spectroscopy and light scattering in a single unit with a 6-position temperature controlled cuvette turret. Using this multifunctional instrument and a new software system we have generated EPDs for four model proteins. Results confirm the reproducibility of the apparent phase boundaries and protein behavior within the boundaries. This new approach permits two EPDs to be generated per day using only 0.5 mg of protein per EPD. Thus, the new methodology generates reproducible EPDs in high-throughput mode, and represents the next step in making such determinations more routine. PMID:22447621

  20. An improved methodology for multidimensional high-throughput preformulation characterization of protein conformational stability.

    Science.gov (United States)

    Maddux, Nathaniel R; Rosen, Ilan T; Hu, Lei; Olsen, Christopher M; Volkin, David B; Middaugh, C Russell

    2012-06-01

    The empirical phase diagram (EPD) technique is a vector-based multidimensional analysis method for summarizing large data sets from a variety of biophysical techniques. It can be used to provide comprehensive preformulation characterization of a macromolecule's higher-order structural integrity and conformational stability. In its most common mode, it represents a type of stimulus-response diagram using environmental variables such as temperature, pH, and ionic strength as the stimulus, with alterations in macromolecular structure being the response. Until now, EPD analysis has not been available in a high-throughput mode because of the large number of experimental techniques and environmental stressor/stabilizer variables typically employed. A new instrument has been developed that combines circular dichroism, ultraviolet absorbance, fluorescence spectroscopy, and light scattering in a single unit with a six-position, temperature-controlled cuvette turret. Using this multifunctional instrument and a new software system, we have generated EPDs for four model proteins. Results confirm the reproducibility of the apparent phase boundaries and protein behavior within the boundaries. This new approach permits two EPDs to be generated per day using only 0.5 mg of protein per EPD. Thus, the new methodology generates reproducible EPDs in high-throughput mode and represents the next step in making such determinations more routine. Copyright © 2012 Wiley Periodicals, Inc.

  1. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  2. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    Directory of Open Access Journals (Sweden)

    Thijs Roebroek

    2017-09-01

    Full Text Available Reversibly switchable fluorescent proteins (RSFPs enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.

  3. Kinetic stability analysis of protein assembly on the center manifold around the critical point.

    Science.gov (United States)

    Tsuruyama, Tatsuaki

    2017-02-02

    Non-linear kinetic analysis is a useful method for illustration of the dynamic behavior of cellular biological systems. To date, center manifold theory (CMT) has not been sufficiently applied for stability analysis of biological systems. The aim of this study is to demonstrate the application of CMT to kinetic analysis of protein assembly and disassembly, and to propose a novel framework for nonlinear multi-parametric analysis. We propose a protein assembly model with nonlinear kinetics provided by the fluctuation in monomer concentrations during their diffusion. When the diffusion process of a monomer is self-limited to give kinetics non-linearity, numerical simulations suggest the probability that the assembly and disassembly oscillate near the critical point. We applied CMT to kinetic analysis of the center manifold around the critical point in detail, and successfully demonstrated bifurcation around the critical point, which explained the observed oscillation. The stability kinetics of the present model based on CMT illustrates a unique feature of protein assembly, namely non-linear behavior. Our findings are expected to provide methodology for analysis of biological systems.

  4. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends*

    Science.gov (United States)

    Izumi, Takashi; Shimizu, Shigeomi

    2016-01-01

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. PMID:27514743

  5. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor

    2015-01-01

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol......-12%, respectively. The lyophilization process increased the colloidal stability of nanoparticles, and maintained their spherical shape and smooth surface, particularly in presence of lyoprotectants. XRPD revealed that the lyophilizates of nanoparticles with co-encapsulated lyoprotectants were amorphous, whereas...... formulations with externally added lyoprotectants, except trehalose, showed crystallinity. FTIR assessment showed that co-encapsulating lyoprotectants better preserved insulin structure upon lyophilization with a spectral area overlap of 82-87%, compared to only 72% in lyoprotectant absence. These results were...

  6. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  7. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    Science.gov (United States)

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  8. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains.

    Science.gov (United States)

    Yang, Zhengrong; Wang, Chi; Zhou, Qingxian; An, Jianli; Hildebrandt, Ellen; Aleksandrov, Luba A; Kappes, John C; DeLucas, Lawrence J; Riordan, John R; Urbatsch, Ina L; Hunt, John F; Brouillette, Christie G

    2014-06-01

    Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide-binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full-length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification. © 2014 The Protein Society.

  9. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles.

    Science.gov (United States)

    Martin, Matthew N; Allen, Andrew J; MacCuspie, Robert I; Hackley, Vincent A

    2014-09-30

    Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.

  10. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis.

    Science.gov (United States)

    Lin, Huixin; Yang, Yongqing; Quan, Ruidang; Mendoza, Imelda; Wu, Yisheng; Du, Wenming; Zhao, Shuangshuang; Schumaker, Karen S; Pardo, José M; Guo, Yan

    2009-05-01

    The Salt Overly Sensitive (SOS) pathway plays an important role in the regulation of Na+/K+ ion homeostasis and salt tolerance in Arabidopsis thaliana. Previously, we reported that the calcium binding proteins SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCaBP8) nonredundantly activate the protein kinase SOS2. Here, we show that SOS2 phosphorylates SCaBP8 at its C terminus but does not phosphorylate SOS3. In vitro, SOS2 phosphorylation of SCaBP8 was enhanced by the bimolecular interaction of SOS2 and SCaBP8 and did not require calcium ions. In vivo, this phosphorylation was induced by salt stress, occurred at the membrane, stabilized the SCaBP8-SOS2 interaction, and enhanced plasma membrane Na+/H+ exchange activity. When a Ser at position 237 in the SCaBP8 protein (the SOS2 phosphorylation target) was mutated to Ala, SCaBP8 was no longer phosphorylated by SOS2 and the mutant protein could not fully rescue the salt-sensitive phenotype of the scabp8 mutant. By contrast, when Ser-237 was mutated to Asp to mimic the charge of a phosphorylated Ser residue, the mutant protein rescued the scabp8 salt sensitivity. These data demonstrate that calcium sensor phosphorylation is a critical component of SOS pathway regulation of salt tolerance in Arabidopsis.

  11. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.

    Science.gov (United States)

    Morgan, Brittany R; Zitzewitz, Jill A; Massi, Francesca

    2017-08-08

    Amyotrophic lateral sclerosis (ALS) is the most common adult degenerative motor neuron disease. Experimental evidence indicates a direct role of transactive-response DNA-binding protein 43 (TDP-43) in the pathology of ALS and other neurodegenerative diseases. TDP-43 has been identified as a major component of cytoplasmic inclusions in patients with sporadic ALS; however, the molecular basis of the disease mechanism is not yet fully understood. Fragmentation within the second RNA recognition motif (RRM2) of TDP-43 has been observed in patient tissues and may play a role in the formation of aggregates in disease. To determine the structural and dynamical changes resulting from the truncation that could lead to aggregation and toxicity, we performed molecular dynamics simulations of the full-length RRM2 domain (the stability core of TDP-43) and of a truncated variant (where residues 189-207 are deleted to mimic a site of cleavage within RRM2 found in ALS patients). Our simulations show heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain compared to the full-length domain, consistent with previous experimental results. The decreased stability and structural reorganization in the truncated RRM2 result in a higher probability of protein-protein interactions through altered electrostatic surface charges and increased accessibility of hydrophobic residues (including the nuclear export sequence), providing a rationale for the increased cytoplasmic aggregation of RRM2 fragments seen in sporadic ALS patients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Sugioka-Sugiyama, Rie; Sugiyama, Tomoyasu

    2011-01-01

    Research highlights: → Sde2 is essential for telomere silencing. → Sde2 is involved in the maintenance of genomic stability. → Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4 + gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2Δ cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2Δ cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2Δ cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  13. Influence of the structural features of commercial mannoproteins in white wine protein stabilization and chemical and sensory properties.

    Science.gov (United States)

    Ribeiro, T; Fernandes, C; Nunes, F M; Filipe-Ribeiro, L; Cosme, F

    2014-09-15

    The cloudy aspect formed in white wines due to protein instability is a visual defect. Sodium bentonite is the most commonly used fining agent to treat this instability, but has usually a negative impact on the wine's physicochemical and sensory characteristics. Aiming to find suitable alternatives, eleven commercial mannoproteins were chemically characterized concerning their sugar composition and protein content, and their effectiveness on wine protein stabilization. Also, their effect on the amount and nature of phenolic compounds, browning potential, chromatic and sensory characteristic was evaluated. Protein stabilization effectiveness was related to their chemical composition, namely their high mannose to glucose ratio. Additionally, some mannoproteins decreased the browning potential. Thus, mannoproteins could be an effective alternative for protein stabilization, preserving or even improving wine quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lee

    Full Text Available Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K generated a melting temperature increase of 15.7°C. Thus, this study

  15. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    Directory of Open Access Journals (Sweden)

    Maia M Chan

    Full Text Available Hematopoietic protein-1 (Hem-1 is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein complex, which regulates filamentous actin (F-actin polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A, which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  16. Preformulation Characterization, Stabilization, and Formulation Design for the Acrylodan-Labeled Glucose-Binding Protein SM4-AC.

    Science.gov (United States)

    Sahni, Neha; Chaudhuri, Rajoshi; Hickey, John M; Manikwar, Prakash; D'Souza, Ajit; Metters, Andrew; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B

    2017-05-01

    This study describes the physicochemical characterization, stabilization, and formulation design of SM4-AC, an acrylodan-labeled glucose/galactose-binding protein for use in a continuous glucose monitoring device. The physical stability profile of SM4-AC as a function of pH and temperature was monitored using a combination of biophysical techniques and the resulting physical stability profile was visualized using an empirical phase diagram. Forced degradation chemical stability studies (Asn deamidation, Met oxidation) of SM4-AC were performed using a combination of capillary isoelectric focusing, peptide mapping, and reversed-phase HPLC. Differential scanning fluorimetry was then employed to screen various pharmaceutical excipients for their ability to physically stabilize SM4-AC. An optimized formulation of 20% sucrose and 2.5 mM calcium chloride in 10 mM MES buffer, 150 mM NaCl at pH 6.0 increased the conformational stability of SM4-AC by 15°C. Accelerated and real-time stability studies were setup to compare the SM4-AC protein's physicochemical stability and glucose-binding activity in 2 formulations for up to 12 months. SM4-AC in an optimized formulation (vs the original formulation) showed improved physical stability, and similar chemical stability and glucose binding activity profiles during storage up to 52 weeks at various temperatures. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Stability of whey protein hydrolysate powders: effects of relative humidity and temperature.

    Science.gov (United States)

    Zhou, Peng; Liu, Dasong; Chen, Xiaoxia; Chen, Yingjia; Labuza, Theodore P

    2014-05-01

    Whey protein hydrolysate (WPH) is now considered as an important and special dairy protein ingredient for its nutritional and functional properties. The objectives of the present study were to investigate the effect of environmental relative humidity (RH) and storage temperature on the physicochemical stability of three WPH powders with hydrolysis degrees (DH) of 5.2%, 8.8% and 14.9%, respectively. The water sorption isotherms of the three WPH powders fitted the Guggenheim-Andersson-DeBoer model well. An increase in water content leaded to a decrease in glass transition temperature (Tg), following a linear Tg vs log water content relationship. Moreover, an increase in DH caused the decrease in Tg at the same water content. Changes in microstructure and colour occurred significantly when the WPH powders were stored at high environmental RH or temperature, especially for those with high DH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Data on the role of accessible surface area on osmolytes-induced protein stabilization

    Directory of Open Access Journals (Sweden)

    Safikur Rahman

    2017-02-01

    Full Text Available This paper describes data related to the research article “Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins” [1]. Heat- and guanidinium chloride (GdmCl-induced denaturation of three disulfide free proteins (bovine cytochrome c (b-cyt-c, myoglobin (Mb and barstar in the presence of different concentrations of methylamines (sarcosine, glycine-betaine (GB and trimethylamine-N-oxide (TMAO was monitored by [ϴ]222, the mean residue ellipticity at 222 nm at pH 7.0. Methylamines belong to a class of osmolytes known to protect proteins from deleterious effect of urea. This paper includes comprehensive thermodynamic data obtained from the heat- and GdmCl-induced denaturations of barstar, b-cyt-c and Mb.

  19. Glucose-regulated protein 58 modulates β-catenin protein stability in a cervical adenocarcinoma cell line.

    Science.gov (United States)

    Liao, Chia-Jung; Wu, Tzu-I; Huang, Ya-Hui; Chang, Ting-Chang; Lai, Chyong-Huey; Jung, Shih-Ming; Hsueh, Chuen; Lin, Kwang-Huei

    2014-08-01

    Cervical cancer continues to threaten women's health worldwide, and the incidence of cervical adenocarcinoma (AD) is rising in the developed countries. Previously, we showed that glucose-regulated protein 58 (Grp58) served as an independent factor predictive of poor prognosis of patients with cervical AD. However, the molecular mechanism underlying the involvement of Grp58 in cervical carcinogenesis is currently unknown. DNA microarray and enrichment analysis were used to identify the pathways disrupted by knockdown of Grp58 expression. Among the pathway identified, the WNT signaling pathway was one of those that were significantly associated with knockdown of Grp58 expression in HeLa cells. Our experiments showed that β-catenin, a critical effector of WNT signaling, was stabilized thereby accumulated in stable Grp58 knockdown cells. Membrane localization of β-catenin was observed in Grp58 knockdown, but not control cells. Using a transwell assay, we found that accumulated β-catenin induced by Grp58 knockdown or lithium chloride treatment inhibited the migration ability of HeLa cells. Furthermore, an inverse expression pattern of Grp58 and β-catenin was observed in cervical tissues. Our results demonstrate that β-catenin stability is negatively regulated by Grp58 in HeLa cells. Overexpression of Grp58 may be responsible for the loss of or decrease in membranous β-catenin expression in cervical AD.

  20. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    Science.gov (United States)

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT

  1. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-01-01

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  2. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  3. Short-Chain Alkanethiol Coating for Small-Size Gold Nanoparticles Supporting Protein Stability

    Directory of Open Access Journals (Sweden)

    Cristina Cantarutti

    2017-11-01

    Full Text Available The application of gold nanoparticles (AuNPs is emerging in many fields, raising the need for a systematic investigation on their safety. In particular, for biomedical purposes, a relevant issue are certainly AuNP interactions with biomolecules, among which proteins are the most abundant ones. Elucidating the effects of those interactions on protein structure and on nanoparticle stability is a major task towards understanding their mechanisms at a molecular level. We investigated the interaction of the 3-mercaptopropionic acid coating of AuNPs (MPA-AuNPs with β2-microglobulin (β2m, which is a paradigmatic amyloidogenic protein. To this aim, we prepared and characterized MPA-AuNPs with an average diameter of 3.6 nm and we employed NMR spectroscopy and fluorescence spectroscopy to probe protein structure perturbations. We found that β2m interacts with MPA-AuNPs through a highly localized patch maintaining its overall native structure with minor conformational changes. The interaction causes the reversible precipitation of clusters that can be easily re-dispersed through brief sonication.

  4. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    Science.gov (United States)

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  5. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method

    Science.gov (United States)

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  6. Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy : A molecular dynamics simulation study

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    2003-01-01

    The relative stability of protein structures determined by either X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy has been investigated by using molecular dynamics simulation techniques. Published structures of 34 proteins containing between 50 and 100 residues have been

  7. Protein samples for NMR: expression and analysis without purification, and stabilization by covalent cyclization

    International Nuclear Information System (INIS)

    Otting, G.; Ozawa, K.; Prosselkov, P.; Williams, N.K.; Dixon, N.E.; Liepinsh, E.

    2002-01-01

    Full text: A modified cell-free in vitro expression system was established for the expression of milligram quantities of protein per mL reaction medium. Expression levels of the E coli cytoplasmic peptidyl-prolyl cis-trans isomerase, PpiB, in 0 6 mL reaction medium were sufficient for the direct recording of clean 15N-HSQC spectra without chromatographic purification or sample concentration steps, using a 600 MHz NMR spectrometer with cryoprobe. Besides providing a route to high-throughput sample preparation, in vitro expression systems are known to be highly economic in their utilization of selectively labelled ammo acids. Using dual-selective labelling with 15N- and 13C-labelled amino acids, the 15N-HSQC cross peaks of strategically selected ammo acids can readily be identified and monitored for their response to the presence of ligand molecules, again without sample purification. 2) The N-terminal domain of E coli DnaB is a protein of ca 110 residues with a structured core composed of 6 helices. Additional segments of 10 residues each at the N- and C-termini are highly mobile. Both ends are close in space and can be linked together in a covalent peptide bond using intern technology. The core structures of linear (lin-DnaB-N) and cyclized (cz-DnaB-N) protein are conserved, as evidenced by superimposable NOESY spectra and chemical shifts. The linker segment in cz-DnaB-N is mobile as shown by 1H-15N NOEs. Yet, the cyclic protein melts about 10 degrees higher than the linear version. A stabilization free energy of ca 2 kcal/mol is in agreement with predictions based on the reduced entropy in the unfolded state. Amide proton exchange rates are much slower in the cyclic protein and reveal cooperative exchange through total, global unfolding at a rate of once every 100 minutes in the linear protein

  8. The Role of Stress Proteins in Cell Stabilization: A Perspective from an Extremophile

    Science.gov (United States)

    Trent, Jonathan

    2001-01-01

    The existence of organisms that live at near boiling temperatures is living proof that all of the complex biochemical machinery of life can be adapted to function under these harsh conditions. The purpose of our research is to elucidate the role of a group of proteins known as heat shock proteins or HSP60s in this adaptation to high temperatures. HSP60s are found in all organisms and they are among the most highly conserved proteins known. We are investigating HSP60s in an organism growing at 80 C and pH 2.0 (Sulfolobus shibatae). This organism produces three closely-related HSP60 proteins, referred to as HSP60 alpha, beta, and gamma. Our DOE-funded research during the last two years has focused on clarifying the role of FiSP60 alpha and beta. These are among the two most abundant proteins in S. shibatae grown at high temperatures and significantly increase in abundance when the cells are exposed to near-lethal temperatures. We have demonstrated that these proteins protect the cells from lethal temperatures by stabilizing their membranes. During this last year we have been studying gamma, which was discovered by genome sequence analysis but nothing was known about its function. We have determined that gamma is only expressed at low temperatures. that it interacts with alpha and beta, and that it influences their ability to form higher-order structures critical to their function. We propose that gamma modulates HSP60 function at low temperatures.

  9. Optimization of the Extraction and Stability of Antioxidative Peptides from Mackerel (Pneumatophorus japonicus Protein

    Directory of Open Access Journals (Sweden)

    Xueqin Wang

    2017-01-01

    Full Text Available This study optimizes the preparation conditions for mackerel protein hydrolysate (MPH by response surface methodology (RSM and investigates the stability of the antioxidant activity of MPHs (<2.5 kDa. The optimal conditions were as follows: enzyme concentration of 1726.85 U/g, pH of 7.00, temperature of 39.55°C, time of 5.5 h, and water/material ratio of 25 : 1, and the maximum DPPH scavenging activity was 79.14%. The MPHs indicated significant cellular antioxidant activity at low concentrations. Furthermore, the temperature and freeze-thaw cycles had little effect on the antioxidative stability while pH had significant effect on the antioxidative stability. In addition, the MPHs were sensitive to the metal ions, such as Fe2+, Fe3+, Zn2+, and Cu2+. Notably, when the concentrations of Fe2+ and Fe3+ were 5 mM, the DPPH scavenging activities were only 1.1% and 0.6%, respectively; furthermore, Cu2+ at a 5 mM concentration could completely inhibit the DPPH scavenging activity of MPHs. In contrast, K+ and Mg2+ had no notable effect on the antioxidant activity of MPHs. These results may provide a scientific basis for the processing and application of MPHs.

  10. Biophysical evaluation of aminoclay as an effective protectant for protein stabilization during freeze-drying and storage

    Directory of Open Access Journals (Sweden)

    Song JG

    2016-12-01

    Full Text Available Jae Geun Song, Sang Hoon Lee, Hyo-Kyung Han College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to evaluate aminoclay (3-aminopropyl-functionalized magnesium phyllosilicate as an effective protectant for the stabilization of protein formulation in freeze-drying. Bovine serum albumin (BSA, as a model protein, was freeze-dried with aminoclay at various concentrations, and the effects of aminoclay on the structural stability of proteins were compared with those of the conventional stabilizers. The structural characteristics of the protein were determined by size exclusion chromatography (SEC, circular dichroism (CD, and Fourier transform infrared (FTIR spectroscopy. Furthermore, physicochemical and morphological characteristics were examined by X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. XRPD and DSC patterns indicated that the glass transition temperature (Tg of the amorphous formulation of aminoclay mixed with proteins was gradually elevated as the concentration of aminoclay increased. FTIR and CD spectral analysis suggested that the protein structure was well maintained with aminoclay during the freeze-drying process and 3 months of storage at 4°C and 40°C. Furthermore, aminoclay conferred the greatest protection against aggregation and retained the monomer content of BSA even at a high temperature. The morphological characteristics of lyophilized proteins were also well conserved during the storage with aminoclay. These results suggested that aminoclay may be useful as an alternative stabilizer for maintaining the structural stability of protein formulations. Keywords: aminoclay, cryoprotectant, lyoprotectant, freeze-drying, protein, stability

  11. Proteins that promote filopodia stability, but not number, lead to more axonal-dendritic contacts.

    Directory of Open Access Journals (Sweden)

    Pamela Arstikaitis

    2011-03-01

    Full Text Available Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1, a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation.

  12. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    Science.gov (United States)

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  13. Slow Histidine H/D Exchange Protocol for Thermodynamic Analysis of Protein Folding and Stability using Mass Spectrometry

    OpenAIRE

    Tran, Duc T.; Banerjee, Sambuddha; Alayash, Abdu I.; Crumbliss, Alvin L.; Fitzgerald, Michael C.

    2012-01-01

    Described here is a mass spectrometry based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the slow H/D exchange reaction of the imidazole C2 proton in histidine side chains. The protocol, which involves evaluating the denaturant dependence of this slow H/D exchange reaction in proteins, allows the global and/or subglobal unfolding/refolding properties of proteins and protein-ligand complexes to be probed. The protocol is developed using several m...

  14. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    Science.gov (United States)

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.

  15. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  16. Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

    Directory of Open Access Journals (Sweden)

    C. George Priya Doss

    2012-12-01

    Full Text Available Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1 destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%, PolyPhen 2.0 (61% and SNAP (58%. From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  17. Influence of yogurt fermentation and refrigerated storage on the stability of protein toxin contaminants.

    Science.gov (United States)

    Jackson, Lauren S; Triplett, Odbert A; Tolleson, William H

    2015-06-01

    Dairy products sold in a ready-to-eat form present the risk that adulterants persisting through manufacturing, storage, and distribution would reach consumers. Pathogenic microbes, including shigatoxigenic strains of Escherichia coli and the toxins they produce, are common food safety hazards associated with dairy products. Ricin and abrin are plant-derived ribosome-inactivating protein toxins related to the shiga-like toxins produced by E. coli. Limited information exists on the effects of manufacturing processes on the stabilities of these heat-resistant ribosome-inactivating proteins in the presence of foods. The goal of this study was to determine how typical yogurt manufacturing and storage processes influence ribosome-inactivating protein toxins. Ricin and abrin were added to skim or whole milk and batch pasteurized. Complete inactivation of both toxins was observed after 30 minutes at 85 °C. If the toxins were added after pasteurization, the levels of ricin and abrin in yogurt and their cytotoxic activities did not change significantly during fermentation or refrigerated storage for 4 weeks. The activities of ricin and abrin were inhibited by skim milk, nonfat yogurt, whole milk, and whole milk yogurt. The results showed minimal effects of the toxins on yogurt pH and %titratable acidity but inhibitory effects of yogurt on toxin activity. Published by Elsevier Ltd.

  18. Long term stabilization of reaction center protein photochemistry by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, Melinda; Hajdu, Kata; Szabo, Tibor; Nagy, Laszlo [Department of Medical Physics and Informatics, University of Szeged, 6720 Szeged (Hungary); Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, 6720 Szeged (Hungary); Dombi, Andras [Institute of Material Sciences and Engineering, University of Szeged, 6701 Szeged (Hungary); Horvath, Endre; Magrez, Arnaud; Forro, Laszlo [Institute of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2011-11-15

    The long term stability and the redox interaction between single walled carbon nanotubes (SWNTs) and photosynthetic reaction center proteins (RCs) purified from purple bacterium Rhodobacter sphaeroides R-26 in the SWNT/RC complex has been investigated. The binding of SWNT to RC results in an accumulation of positive (the oxidized primary electron donor, P{sup +}) and negative (semiquinone forms, Q{sup -}{sub A} and Q{sup -}{sub B}, the reduced primary and secondary quinones, respectively) charges followed by slow reorganization of the protein structure after excitation. The photochemical activity of the SWNT/RC complexes remains stable for several weeks even in dried form. In the absence of SWNT the secondary quinone activity decays quickly as a function of time after drying the RC onto a glass surface. Polarography measurements substantiate the idea that there is an electronic interaction between the RCs and SWNTs after light excitation, which was suggested earlier by optical measurements. The special electronic properties of the SWNT/protein complexes open the possibility for several applications, e.g., in microelectronics, analytics, or energy conversion and storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular β-catenin protein

    International Nuclear Information System (INIS)

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug; Kim, Dong-Eun; Yea, Sung Su; Shin, Jae-Gook; Oh, Sangtaek

    2008-01-01

    The Wnt/β-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/β-catenin signaling pathway. BIM increased β-catenin responsive transcription (CRT) and up-regulated intracellular β-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor γ (PPARγ) and CAATT enhancer-binding protein α (C/EBPα) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of β-catenin protein in 3T3-L1 preadipocyte cells

  20. An Outlook on Biothermodynamics: Needs, Problems, and New Developments. I. Stability and Hydration of Proteins

    Science.gov (United States)

    Keller, Jürgen U.

    2008-12-01

    The application of concepts, principles, and methods of thermodynamics of equilibria and processes to bioengineering systems has led to a new and growing field: engineering biothermodynamics. This article, which is meant as the first in a series, gives an outline of basic aspects, changes, and actual examples in this field. After a few introductory remarks, the basic concepts and laws of thermodynamics extended to systems with internal variables, which serve as models for biofluids and other biosystems, are given. The method of thermodynamics is then applied to the problem of thermal stability of aqueous protein solutions, especially to that of myoglobin solutions. After this, the phenomenon of hydration of proteins by adsorption and intrusion of water molecules is considered. Several other phenomena like the adsorption of proteins on solid surfaces or cell membranes and their temperature and pressure-related behavior represented by an equation of state, or the thermodynamics of bacterial solutions including chemical reactions like wine fermentation, etc., will be presented in Parts II and III of this article.

  1. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    Science.gov (United States)

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  2. The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2 Stabilizes New Spines: An In Vivo Mouse Study.

    Directory of Open Access Journals (Sweden)

    Amos Gdalyahu

    Full Text Available The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry.

  3. Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan.

    Science.gov (United States)

    Xu, Duoxia; Aihemaiti, Zulipiya; Cao, Yanping; Teng, Chao; Li, Xiuting

    2016-07-01

    The impact of chitosan (CTS) on the physicochemical stability, microrheological property and microstructure of whey protein isolate (WPI)-flaxseed gum (FG) stabilized lutein emulsions at pH 3.0 was studied. A layer-by-layer electrostatic deposition method was used to prepare multilayered lutein emulsions. Droplet size, zeta-potential, instability index, microstructure and microrheological behavior of lutein emulsions were measured. The influences of interfacial layer, metal chelator and free radical scavenger on the chemical stability of lutein emulsions were also investigated. It was found that multilayer emulsions had better physical stability showing the pronounced effect of 1wt% CTS. The mean square displacement analysis demonstrated that CTS led to increases of macroscopic viscosity and elasticity index for WPI-FG stabilized lutein emulsions due to CTS embedding in the network. CTS also helped to chemically stabilize the lutein emulsions against degradation. The combination of interfacial membrane and prooxidative metal chelator or free radical scavenger was an effective method to control lutein degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.

    Science.gov (United States)

    Masso, Majid; Vaisman, Iosif I

    2008-09-15

    Accurate predictive models for the impact of single amino acid substitutions on protein stability provide insight into protein structure and function. Such models are also valuable for the design and engineering of new proteins. Previously described methods have utilized properties of protein sequence or structure to predict the free energy change of mutants due to thermal (DeltaDeltaG) and denaturant (DeltaDeltaG(H2O)) denaturations, as well as mutant thermal stability (DeltaT(m)), through the application of either computational energy-based approaches or machine learning techniques. However, accuracy associated with applying these methods separately is frequently far from optimal. We detail a computational mutagenesis technique based on a four-body, knowledge-based, statistical contact potential. For any mutation due to a single amino acid replacement in a protein, the method provides an empirical normalized measure of the ensuing environmental perturbation occurring at every residue position. A feature vector is generated for the mutant by considering perturbations at the mutated position and it's ordered six nearest neighbors in the 3-dimensional (3D) protein structure. These predictors of stability change are evaluated by applying machine learning tools to large training sets of mutants derived from diverse proteins that have been experimentally studied and described. Predictive models based on our combined approach are either comparable to, or in many cases significantly outperform, previously published results. A web server with supporting documentation is available at http://proteins.gmu.edu/automute.

  5. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stability of white wine proteins: combined effect of pH, ionic strength, and temperature on their aggregation.

    Science.gov (United States)

    Dufrechou, Marie; Poncet-Legrand, Céline; Sauvage, François-Xavier; Vernhet, Aude

    2012-02-08

    Protein haze development in white wines is an unacceptable visual defect attributed to slow protein unfolding and aggregation. It is favored by wine exposure to excessive temperatures but can also develop in properly stored wines. In this study, the combined impact of pH (2.5-4.0), ionic strength (0.02-0.15 M), and temperature (25, 40, and 70 °C) on wine protein stability was investigated. The results showed three classes of proteins with low conformational stability involved in aggregation at room temperature: β-glucanases, chitinases, and some thaumatin-like protein isoforms (22-24 kDa). Unexpectedly, at 25 °C, maximum instability was observed at the lower pH, far from the protein isoelectric point. Increasing temperatures led to a shift of the maximum haze at higher pH. These different behaviors could be explained by the opposite impact of pH on intramolecular (conformational stability) and intermolecular (colloidal stability) electrostatic interactions. The present results highlight that wine pH and ionic strength play a determinant part in aggregation mechanisms, aggregate characteristics, and final haze.

  7. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates

    Science.gov (United States)

    Dal Molin, J. P.; Caliri, A.

    2018-01-01

    possible connection between the hydrophobic component of protein stability and the native structural topology. We simulated those same 200 targets again with the Mq A, only. However, this time we evaluated the relative frequency {ϕq } in which each target visits its corresponding native structure along an appropriate simulation time. Due to the presence of the hydrophobic effect in our approach we obtained a strong correlation between the stability and the folding rate (R = 0 . 85). So, as faster a sequence found its target, as larger is the hydrophobic component of its stability. The strong correlation fulfills our last goal. This final finding suggests that the hydrophobic effect could not be a general stabilizing factor for proteins.

  8. Analyzing bean extracts using time-dependent SDS trapping to quantify the kinetic stability of phaseolin proteins.

    Science.gov (United States)

    Thibeault, Jane; Church, Jennifer; Ortiz-Perez, Brian; Addo, Samuel; Hill, Shakeema; Khalil, Areeg; Young, Malaney; Xia, Ke; Colón, Wilfredo

    2017-09-30

    In common beans and lima bean, the storage protein phaseolin is difficult to degrade and SDS-resistant, a sign of kinetic stability. Kinetically stable proteins (KSPs) are characterized by having a high-energy barrier between the native and denatured states that results in very slow unfolding. Such proteins are resistant to proteolytic degradation and detergents, such as SDS. Here the method SDS-Trapping of Proteins (S-TraP) is applied directly on bean extracts to quantify the kinetic stability of phaseolin in lima bean and several common beans, including black bean, navy bean, and small red bean. The bean extracts were incubated in SDS at various temperatures (60-75 °C) for different time periods, followed by SDS-PAGE analysis at room temperature, and subsequent band quantification to determine the kinetics of phaseolin unfolding. Eyring plot analysis showed that the phaseolin from each bean has high kinetic stability, with an SDS-trapping (i.e. unfolding) half-life ranging from about 20-100 years at 24 °C and 2-7 years at 37 °C. The remarkably high kinetic stability of these phaseolin proteins is consistent with the low digestibility of common beans and lima bean, as well as their relatively high germination temperatures. From a practical perspective, this work exemplifies that S-TraP is a useful and cost-effective method for quantifying the kinetic stability of proteins in biological extracts or lysates. Depending on the protein to be studied and its abundance, S-TraP may be performed directly on the extract without need for protein purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Argentiere, Simona, E-mail: simona.argentiere@fondazionefilarete.com; Cella, Claudia, E-mail: claudia.cella@unimi.it [Fondazione Filarete (Italy); Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi” (Italy); Milani, Paolo, E-mail: paolo.milani@mi.infn.it; Lenardi, Cristina, E-mail: cristina.lenardi@mi.infn.it [Università degli Studi di Milano, CIMAINA and Dipartimento di Fisica (Italy)

    2016-08-15

    Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV–Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV–Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

  10. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  11. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends.

    Science.gov (United States)

    Konishi, Akimitsu; Izumi, Takashi; Shimizu, Shigeomi

    2016-09-23

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Stability Mechanisms of Laccase Isoforms using a Modified FoldX Protocol Applicable to Widely Different Proteins

    DEFF Research Database (Denmark)

    Christensen, Niels J.; Kepp, Kasper P.

    2013-01-01

    ) and thermostability (Topt ∼ 45–80 °C) and with 67–77% sequence identity. The extended protocol uses (i) statistical averaging, (ii) a molecular-dynamics-validated “compromise” homology model to minimize bias that causes proteins close in sequence to a structural template to be too stable due to having the benefits...... with experimental distributions of stability effects from mutation. The residues causing the differential stability of the four isoforms are consistent with a range of compiled laccase wild type data, suggesting that we may have identified general drivers of laccase stability. Several sites near Cu, notably 79, 241...

  13. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    Science.gov (United States)

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  14. Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Andrade, Fernanda; Azevedo, Cláudia

    2016-01-01

    PURPOSE: The freezing step in lyophilization is the most determinant for the quality of biopharmaceutics. Using insulin as model of therapeutic protein, our aim was to evaluate the freezing effect in the stability and bioactivity of insulin-loaded PLGA nanoparticles. The performance of trehalose......, sucrose and sorbitol as cryoprotectants was evaluated. METHODS: Cryoprotectants were co-encapsulated with insulin into PLGA nanoparticles and lyophilized using an optimized cycle with freezing at -80°C, in liquid nitrogen, or ramped cooling at -40°C. Upon lyophilization, the stability of protein structure...

  15. The deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis.

    Science.gov (United States)

    Weber, Arnim; Heinlein, Melanie; Dengjel, Jörn; Alber, Claudia; Singh, Prafull Kumar; Häcker, Georg

    2016-05-01

    Bim is a pro-apoptotic Bcl-2 family member of the BH3-only protein subgroup. Expression levels of Bim determine apoptosis susceptibility in non-malignant and in tumour cells. Bim protein expression is downregulated by proteasomal degradation following ERK-dependent phosphorylation and ubiquitination. Here, we report the identification of a deubiquitinase, Usp27x, that binds Bim upon its ERK-dependent phosphorylation and can upregulate its expression levels. Overexpression of Usp27x reduces ERK-dependent Bim ubiquitination, stabilizes phosphorylated Bim, and induces apoptosis in PMA-stimulated cells, as well as in tumour cells with a constitutively active Raf/ERK pathway. Loss of endogenous Usp27x enhances the Bim-degrading activity of oncogenic Raf. Overexpression of Usp27x induces low levels of apoptosis in melanoma and non-small cell lung cancer (NSCLC) cells and substantially enhances apoptosis induced in these cells by the inhibition of ERK signalling. Finally, deletion of Usp27x reduces apoptosis in NSCLC cells treated with an EGFR inhibitor. Thus, Usp27x can trigger via its proteolytic activity the deubiquitination of Bim and enhance its levels, counteracting the anti-apoptotic effects of ERK activity, and therefore acts as a tumour suppressor. © 2016 The Authors.

  16. Oxidative stability and quality characteristics of whey protein coated rohu (Labeo rohita) fillets.

    Science.gov (United States)

    Khan, Muhammad Issa; Adrees, Muhammad Nawaz; Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Jo, Cheorun; Sameen, Aysha

    2015-06-23

    Edible coatings have beneficial effect on quality of fish and act as barrier against moisture transfer and uptake of oxygen. Edible coating made up of biodegradable materials is helpful to control the quality deterioration and enhance the shelf life. The present study was designed to elucidate the effects of whey based protein using two plasticizers i.e. sorbitol and glycerol on oxidative stability and quality characteristics of Rohu (Labeo rohita). Coating solutions were prepared by incorporating whey (8% protein; w/ w) in distilled water followed addition of sorbitol and glycerol. Dipping method was used to apply coating on fish fillets. The coated fillets were subjected to quality characteristics, pH, color, TBARS, peroxide value, volatile basic nitrogen (TVBN) and sensory evaluation during 40 days of storage. The results showed significant impact on different quality attributes of fish fillets. Highest (TVBN) and TBARS were observed in control samples (T0) (12.60 ± 0.25, mg/100 g, 0.820 ± 0.02 mg MDA/kg) while lowest in T3 coated samples (8.81 ± 0.18 mg/100 g., 0.352 ± 0.01 mg MDA/kg of meat). Moreover, sensorial findings did not showed adverse effects and T3 coated samples were ranked higher by consumers. In conclusion, coating fish with Whey: Glycerol: Sorbitol (1:1:1) in current investigation enhances the storage life and quality of fish fillets.

  17. Topology Engineering of Proteins in Vivo Using Genetically Encoded, Mechanically Interlocking SpyX Modules for Enhanced Stability.

    Science.gov (United States)

    Liu, Dong; Wu, Wen-Hao; Liu, Ya-Jie; Wu, Xia-Ling; Cao, Yang; Song, Bo; Li, Xiaopeng; Zhang, Wen-Bin

    2017-05-24

    Recombinant proteins are traditionally limited to linear configuration. Herein, we report in vivo protein topology engineering using highly efficient, mechanically interlocking SpyX modules named AXB and BXA. SpyX modules are protein domains composed of p53dim (X), SpyTag (A), and SpyCatcher (B). The p53dim guides the intertwining of the two nascent protein chains followed by autocatalytic isopeptide bond formation between SpyTag and SpyCatcher to fulfill the interlocking, leading to a variety of backbone topologies. Direct expression of AXB or BXA produces protein catenanes with distinct ring sizes. Recombinant proteins containing SpyX modules are obtained either as mechanically interlocked obligate dimers if the protein of interest is fused to the N- or C-terminus of SpyX modules, or as star proteins if the protein is fused to both N- and C-termini. As examples, cellular syntheses of dimers of (GB1) 2 (where GB1 stands for immunoglobulin-binding domain B1 of streptococcal protein G) and of four-arm elastin-like star proteins were demonstrated. Comparison of the catenation efficiencies in different constructs reveals that BXA is generally much more effective than AXB, which is rationalized by the arrangement of three domains in space. Mechanical interlocking induces considerable stability enhancement. Both AXB and BXA have a melting point ∼20 °C higher than the linear controls and the BXA catenane has a melting point ~2 °C higher than the cyclic control BX'A. Notably, four-arm elastin-like star proteins demonstrate remarkable tolerance against trypsin digestion. The SpyX modules provide a convenient and versatile approach to construct unconventional protein topologies via the "assembly-reaction" synergy, which opens a new horizon in protein science for stability enhancement and function reinforcement via topology engineering.

  18. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    Science.gov (United States)

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  20. Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application.

    Science.gov (United States)

    Shamriz, Shabnam; Ofoghi, Hamideh; Moazami, Nasrin

    2016-09-01

    Recombinant protein technology has revolutionized the world of biology and medicine. Following this progress, fusion protein technology, as a novel innovation, has opened new horizons for the development of proteins that do not naturally exist. Fusion proteins are generated via genetically fusing two or more genes coding for separate proteins, thus the product is a single protein having functional properties of both proteins. As an indispensable element in fusion protein construction, linkers are used to separate the functional domains in order to improve their expression, folding and stability. We computationally fused an antigen and an adjuvant together using different linkers to obtain a two-domain fusion construct which can potentially act as an oral vaccine candidate against malaria. We then predicted the structures computationally to find out the probable folding of each domain in the designed construct. One of the fusion constructs was selected based on the highest value for C-score. Ramchandran Plot analysis represented that most residues were fallen in favorable regions. Our in silico analysis showed that (GGGGS)3 linker confers the best structure and stability for our target fusion protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Benzalkonium Chloride Provides Remarkable Stability to Liquid Protein Lures for Trapping Anastrepha obliqua (Diptera: Tephritidae).

    Science.gov (United States)

    Lasa, R; Williams, T

    2017-12-05

    Hydrolyzed protein lures are widely used to monitor fruit fly pests but are rapidly degraded by microbial activity and must be replaced frequently. To improve the stability of lures, the quaternary ammonium biocide, benzalkonium chloride (BC), was evaluated in mixtures with two hydrolyzed proteins commonly used to monitor Anastrepha spp. The mean number of Anastrepha obliqua adults captured during six consecutive weeks using Captor + borax with the addition of 240 mg BC/liter, not renewed during the test, was similar to Captor + borax that was replaced at weekly intervals and was more effective than Captor + borax without BC. Numbers of A. obliqua flies captured in 30% CeraTrap diluted in water containing 240 mg BC/liter were similar to those caught in traps baited with Captor + borax or 30% CeraTrap without BC in the first 9 d of evaluation but was significantly more effective than both lures after 56 d. After >2 mo of use, 30% CeraTrap containing 240 mg BC/liter remained as effective as newly prepared 30% CeraTrap. The addition of BC to lures reduced surface tension of liquid lures by ~40-50%. However, when BC was increased to 720 mg BC/liter, only a small additional reduction in surface tension was observed and higher concentrations of BC did not increase capture rates. These findings could contribute to reduced costs for trapping networks and the development of long-lasting formulations of liquid protein lures for bait stations and mass-trapping targeted at major tephritid pests. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Biotransformation and in vivo stability of protein biotherapeutics: impact on candidate selection and pharmacokinetic profiling.

    Science.gov (United States)

    Hall, Michael P

    2014-11-01

    Historically, since the metabolism of administered peptide/protein drugs ("biotherapeutics") has been expected to undergo predictable pathways similar to endogenous proteins, comprehensive biotherapeutic metabolism studies have not been widely reported in the literature. However, since biotherapeutics have rapidly evolved into an impressive array of eclectic modalities, there has been a shift toward understanding the impact of metabolism on biotherapeutic development. For biotherapeutics containing non-native chemical linkers and other moieties besides natural amino acids, metabolism studies are critical as these moieties may impart undesired toxicology. For biotherapeutics that are composed solely of natural amino acids, where end-stage peptide and amino acid catabolites do not generally pose toxicity concerns, the understanding of biotherapeutic biotransformation, defined as in vivo modifications such as peripherally generated intermediate circulating catabolites prior to end-stage degradation or elimination, may impact in vivo stability and potency/clearance. As of yet, there are no harmonized methodologies for understanding biotherapeutic biotransformation and its impact on drug development, nor is there clear guidance from regulatory agencies on how and when these studies should be conducted. This review provides an update on biotherapeutic biotransformation studies and an overview of lessons learned, tools that have been developed, and suggestions of approaches to address issues. Biotherapeutic biotransformation studies, especially for certain modalities, should be implemented at an early stage of development to 1) understand the impact on potency/clearance, 2) select the most stable candidates or direct protein re-engineering efforts, and 3) select the best bioanalytical technique(s) for proper drug quantification and subsequent pharmacokinetic profiling and exposure/response assessment. Copyright © 2014 by The American Society for Pharmacology and

  3. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function.

    Science.gov (United States)

    Singh, Surinder M; Bandi, Swati; Shah, Dinen D; Armstrong, Geoffrey; Mallela, Krishna M G

    2014-01-01

    Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM). However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD). We created and expressed the wild-type (WT) N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts), and unfolds faster than the WT (stopped-flow kinetics). Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments). These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.

  4. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.

    Science.gov (United States)

    Le Brun, Virginie; Friess, Wolfgang; Schultz-Fademrecht, Torsten; Muehlau, Silke; Garidel, Patrick

    2009-09-01

    The purpose of the presented study is to understand the physicochemical properties of proteins in aqueous solutions in order to identify solution conditions with reduced attractive protein-protein interactions, to avoid the formation of protein aggregates and to increase protein solubility. This is assessed by measuring the osmotic second virial coefficient (B(22)), a parameter of solution non-ideality, which is obtained using self-interaction chromatography. The model protein is lysozyme. The influence of various solution conditions on B(22) was investigated: protonation degree, ionic strength, pharmaceutical relevant excipients and combinations thereof. Under acidic solution conditions B(22) is positive, favoring protein repulsion. A similar trend is observed for the variation of the NaCl concentration, showing that with increasing the ionic strength protein attraction is more likely. B(22) decreases and becomes negative. Thus, solution conditions are obtained favoring attractive protein-protein interactions. The B(22) parameter also reflects, in general, the influence of the salts of the Hofmeister series with regard to their salting-in/salting-out effect. It is also shown that B(22) correlates with protein solubility as well as physical protein stability.

  5. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    Science.gov (United States)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field?

    Science.gov (United States)

    Bouyer, Eléonore; Mekhloufi, Ghozlene; Rosilio, Véronique; Grossiord, Jean-Louis; Agnely, Florence

    2012-10-15

    Emulsions are widely used in pharmaceutics for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to answer the increasing demand for clean label excipients, natural polymers can replace the potentially irritative synthetic surfactants used in emulsion formulation. Indeed, biopolymers are currently used in the food industry to stabilize emulsions, and they appear as promising candidates in the pharmaceutical field too. All proteins and some polysaccharides are able to adsorb at a globule surface, thus decreasing the interfacial tension and enhancing the interfacial elasticity. However, most polysaccharides stabilize emulsions simply by increasing the viscosity of the continuous phase. Proteins and polysaccharides may also be associated either through covalent bonding or electrostatic interactions. The combination of the properties of these biopolymers under appropriate conditions leads to increased emulsion stability. Alternative layers of oppositely charged biopolymers can also be formed around the globules to obtain multi-layered "membranes". These layers can provide electrostatic and steric stabilization thus improving thermal stability and resistance to external treatment. The novel biopolymer-stabilized emulsions have a great potential in the pharmaceutical field for encapsulation, controlled digestion, and targeted release although several challenging issues such as storage and bacteriological concerns still need to be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins.

    Science.gov (United States)

    Teekamp, Naomi; Duque, Luisa F; Frijlink, Henderik W; Hinrichs, Wouter L J; Olinga, Peter

    2015-08-01

    Therapeutic proteins and peptides often require parenteral administration, which compels frequent administration and patient discomfort. This ultimately decreases compliance and leads to therapy failure. Biocompatible and biodegradable polymers offer a versatile matrix for particles suitable for the parenteral delivery of these biomacromolecules, with the added possibility of long-term controlled release. During the past decade, research on polymeric microparticles and nanoparticles as delivery vehicles has intensified; nevertheless, only few products have been commercialized. This review discusses the different production techniques for microparticles and nanoparticles suitable for peptide and protein delivery, including examples of recently developed formulations. Stability of the biomacromolecules related to these production techniques is evaluated, as it is a critical parameter to be considered during product development. Additionally, several strategies to improve stability are described in detail, providing insight and guidance for further formulation development. In the conventionally used and thoroughly investigated emulsification method, stability of peptides and proteins is still a challenge. Emerging methods like solvent displacement, layer-by-layer polymer deposition, electrospraying and supercritical fluid technologies have the potential to improve stability of the protein and peptide. Nonetheless, these methods are still under development and they need critical evaluation to improve production efficiency before proceeding to in vivo efficacy studies. Improvement should be achieved by strengthening cooperation between academic research groups, pharmaceutical companies and regulatory authorities.

  8. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.

    Science.gov (United States)

    Gates, Zachary P; Baxa, Michael C; Yu, Wookyung; Riback, Joshua A; Li, Hui; Roux, Benoît; Kent, Stephen B H; Sosnick, Tobin R

    2017-02-28

    The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without α-helices or β-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state manner and is moderately stable at room temperature. We believe that a major part of the stability arises from the unusual match between residue-level PP2 dihedral angle bias in the unfolded state and PP2 helical structure in the native state. Additional stabilizing factors that compensate for the dearth of hydrophobic burial include shorter and stronger H-bonds, and increased entropy in the folded state. These results extend our understanding of the origins of cooperativity and stability in protein folding, including the balance between solvent and polypeptide chain entropies.

  9. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    Science.gov (United States)

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  10. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  11. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    Science.gov (United States)

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  12. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    Science.gov (United States)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  13. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability.

    Science.gov (United States)

    Wang, Shenghao; Tang, Li; Lin, Junyu; Shen, Zhongliang; Yao, Yikun; Wang, Wei; Tao, Shuai; Gu, Chenjian; Ma, Jie; Xie, Youhua; Liu, Yanfeng

    2017-10-07

    Melanoma is the most aggressive type of skin cancer. Melanoma has an extremely poor prognosis because of its high potential for vascular invasion, metastasis and recurrence. The mechanism of melanoma metastasis is not well understood. ATP-binding cassette sub-family B member 5 (ABCB5) plays a key role in melanoma growth. However, it is uncertain what function ABCB5 may exert in melanoma metastasis. In this report, we for the first time demonstrate ABCB5 as a crucial factor that promotes melanoma metastasis. ABCB5 positive (ABCB5 + ) malignant melanoma initiating cells (MMICs) display a higher metastatic potential compared with ABCB5 negative (ABCB5 - ) melanoma subpopulation. Knockdown of ABCB5 expression reduces melanoma cell migration and invasion in vitro and melanoma pulmonary metastasis in tumor xenograft mice. ABCB5 and NF-κB p65 expression levels are positively correlated in both melanoma tissues and cell lines. Consequently, ABCB5 activates the NF-κB pathway by inhibiting p65 ubiquitination to enhance p65 protein stability. Our finding highlights ABCB5 as a novel pro-metastasis factor and provides a potential therapeutic target for melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  15. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes.

    Science.gov (United States)

    Barnett, Gregory V; Razinkov, Vladimir I; Kerwin, Bruce A; Blake, Steven; Qi, Wei; Curtis, Robin A; Roberts, Christopher J

    2016-04-07

    Preferential interactions of proteins with water and osmolytes play a major role in controlling the thermodynamics of protein solutions. While changes in protein stability and shifts in phase behavior are often reported with the addition of osmolytes, the underlying protein interactions with water and/or osmolytes are typically inferred rather than measured directly. In this work, Kirkwood-Buff integrals for protein-water interactions (G12) and protein-osmolyte interactions (G23) were determined as a function of osmolyte concentration from density measurements of antistreptavidin immunoglobulin gamma-1 (AS-IgG1) in ternary aqueous solutions for a set of common neutral osmolytes: sucrose, trehalose, sorbitol, and poly(ethylene glycol) (PEG). For sucrose and PEG solutions, both protein-water and protein-osmolyte interactions depend strongly on osmolyte concentrations (c3). Strikingly, both osmolytes change from being preferentially excluded to preferentially accumulated with increasing c3. In contrast, sorbitol and trehalose solutions do not show large enough preferential interactions to be detected by densimetry. G12 and G23 values are used to estimate the transfer free energy for native AS-IgG1 (Δμ2N) and compared with existing models. AS-IgG1 unfolding via calorimetry shows a linear increase in midpoint temperatures as a function of trehalose, sucrose, and sorbitol concentrations, but the opposite behavior for PEG. Together, the results highlight limitations of existing models and common assumptions regarding the mechanisms of protein stabilization by osmolytes. Finally, PEG preferential interactions destabilize the Fab regions of AS-IgG1 more so than the CH2 or CH3 domains, illustrating preferential interactions can be specific to different protein domains.

  16. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.

    Science.gov (United States)

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B; Rossmann, Michael G

    2010-01-29

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a "glue" between neighboring hexameric capsomers, forming a "cage" that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 A resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  17. May disordered protein cause serious drug side effect?

    Science.gov (United States)

    Tou, Weng Ieong; Chen, Calvin Yu-Chian

    2014-04-01

    Insomnia is a self-reported disease where patients lose their ability to initiate and maintain sleep, leading to daytime performance impairment. Several drug targets to ameliorate insomnia symptoms have been discovered; however, these drug targets lead to serious side effects. Thus, we characterize the structural properties of these sleep-related receptors and the clock complex and discuss a possible drug design that will reduce side effects. Computational prediction shows that disordered property is shared. Over 30% of the structure of CLOCK, PER1/2/3, BMAL-1, muscarinic acetylcholine receptor-M1, melatonin receptor and casein kinase I are structurally disordered (the remaining proteins represent insomnia drugs might be closely related to the protein architecture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  19. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  20. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.

    Science.gov (United States)

    Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter

    2017-04-24

    Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon

  1. Stabilization of Nrf2 protein by D3T provides protection against ethanol-induced apoptosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2011-02-01

    Full Text Available Previous studies have demonstrated that maternal ethanol exposure induces a moderate increase in Nrf2 protein expression in mouse embryos. Pretreatment with the Nrf2 inducer, 3H-1, 2-dithiole-3-thione (D3T, significantly increases the Nrf2 protein levels and prevents apoptosis in ethanol-exposed embryos. The present study, using PC12 cells, was designed to determine whether increased Nrf2 stability is a mechanism by which D3T enhances Nrf2 activation and subsequent antioxidant protection. Ethanol and D3T treatment resulted in a significant accumulation of Nrf2 protein in PC 12 cells. CHX chase analysis has shown that ethanol treatment delayed the degradation of Nrf2 protein in PC12 cells. A significantly greater decrease in Nrf2 protein degradation was observed in the cells treated with D3T alone or with both ethanol and D3T. In addition, D3T treatment significantly reduced ethanol-induced apoptosis. These results demonstrate that the stabilization of Nrf2 protein by D3T confers protection against ethanol-induced apoptosis.

  2. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  3. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  4. Hepatitis B virus X protein stimulates the Hedgehog-Gli activation through protein stabilization and nuclear localization of Gli1 in liver cancer cells.

    Science.gov (United States)

    Kim, Hye Young; Cho, Hyun Kook; Hong, Sung Pyo; Cheong, Jaehun

    2011-10-28

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver diseases, which frequently results in hepatits, cirrhosis, fibrosis, and ultimately hepatocellular carcinoma (HCC). Recent studies have shown the activation of Hedgehog signaling in HCC. Here, we provide evidences that HBV induces Gli-directed gene transactivation. HBx increases the protein stability of Gli proteins, which are key transcription factors of the Hedgehog signaling pathway, and nucleus translocation of Gli1 through direct protein interaction of HBx and Gli1. This functional synergism of Gli1 protein by HBx increases the Hedgehog activation-directed gene expression. Taken together, these results suggest that HBV infection might induce hepatocellular carcinoma by modulating post-translational activation of the hedgehog signaling components. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process.

    Science.gov (United States)

    Lee, San San; Fu, Nai Yang; Sukumaran, Sunil K; Wan, Kah Fei; Wan, Qian; Yu, Victor C

    2009-04-15

    Bax, a multi-domain pro-apoptotic Bcl-2 family member, is a key regulator for the release of apoptogenic factors from mitochondria. MOAP-1, which was first isolated from a screen for Bax-associating proteins, interacts with Bax upon apoptotic induction. MOAP-1 is a short-lived protein that is constitutively degraded by the ubiquitin-proteasome system. Apoptotic stimuli upregulate MOAP-1 rapidly through inhibition of its poly-ubiquitination process. However, cellular factors that regulate the stability of MOAP-1 have not yet been identified. In this study, we report the identification of TRIM39 as a MOAP-1-binding protein. TRIM39 belongs to a family of proteins characterized by a Tripartite Motif (TRIM), consisting of RING domain, B-box and coiled-coil domain. Several TRIM family members are known to demonstrate E3 ubiquitin ligase activity. Surprisingly, TRIM39 significantly extends the half-life of MOAP-1 by inhibiting its poly-ubiquitination process. In agreement with its effect on enhancing MOAP-1 stability, TRIM39 sensitizes cells to etoposide-induced apoptosis. Conversely, knockdown of TRIM39 reduces the sensitivity of cells to etoposide-stimulated apoptosis. Furthermore, TRIM39 elevates the level of MOAP-1 in mitochondria and promotes cytochrome c release from isolated mitochondria stimulated by recombinant Bax. Together, these data suggest that TRIM39 can promote apoptosis signalling through stabilization of MOAP-1.

  6. Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration

    Directory of Open Access Journals (Sweden)

    A.T. Pettersson-Klein

    2018-03-01

    Full Text Available Objective: The peroxisome proliferator-activated receptor-γ coactivator-1α1 (PGC-1α1 regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1α1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1α1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1α1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1α1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions. Methods: We designed a cell-based high-throughput screening system to identify PGC-1α1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1α1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes. Results: Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1α1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes. Conclusions: We identify compounds that induce PGC-1α1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders. Keywords: Small molecule screening, PGC-1a, PGC-1alpha, PGC-1alpha1, Protein stabilization, UCP1, Mitochondrial respiration, Brown adipose tissue

  7. Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules.

    Science.gov (United States)

    Mani, Muralidharan; Lee, Unn Hwa; Yoon, Nal Ae; Yoon, Eun Hye; Lee, Byung Ju; Cho, Wha Ja; Park, Jeong Woo

    2017-11-04

    Previously we have reported that developmentally regulated GTP-binding protein 2 (DRG2) localizes on Rab5 endosomes and plays an important role in transferrin (Tfn) recycling. We here identified DRG2 as a key regulator of membrane tubule stability. At 30 min after Tfn treatment, DRG2 localized to membrane tubules which were enriched with phosphatidylinositol 4-monophosphate [PI(4)P] and did not contain Rab5. DRG2 interacted with Rac1 more strongly with GTP-bound Rac1 and tubular localization of DRG2 depended on Rac1 activity. DRG2 depletion led to destabilization of membrane tubules, while ectopic expression of DRG2 rescued the stability of the membrane tubules in DRG2-depleted cells. Our results reveal a novel mechanism for regulation of membrane tubule stability mediated by DRG2. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  9. Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation

    International Nuclear Information System (INIS)

    Yamauchi, Motohiro; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    Phosphorylation of p53 at Ser15, Thr18, and Ser20 has been thought to be important for p53 stabilization in response to ionizing radiation. In the present study, we examined the X-ray-induced stabilization of Ala-substituted p53 protein at Ser15, Thr18, and Ser20, whose gene expression was controlled under an ecdyson-inducible promoter. We found that all single-, double-, or triple-Ala-substituted p53 at Ser15, Yhr18, and Ser20 were accumulated in the nucleus similarly to wild-type p53 after X-irradiation. These results indicate that the phosphorylation of p53 at Ser15, Thr18, and Ser20 is not necessarily needed for p53 stabilization in response to ionizing radiation

  10. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  11. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  12. Interfacial properties of whey protein and whey protein hydrolysates and their influence on O/W emulsion stability

    NARCIS (Netherlands)

    Schroder, A.J.; Berton-Carabin, C.C.; Venema, P.; Cornacchia, L.

    2017-01-01

    Protein hydrolysates are commonly used in high-tolerance or hypoallergenic formulae. The relation between the physicochemical properties of hydrolysed proteins (i.e., size, molecular weight distribution, charge, hydrophobicity), and their emulsifying properties is not fully understood. In this work,

  13. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  14. Calculation of the Relative Chemical Stabilities of Proteins as a Function of Temperature and Redox Chemistry in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2011-01-01

    Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems. PMID:21853048

  15. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization.

    Science.gov (United States)

    Yang, Jr-M; Schiapparelli, P; Nguyen, H-N; Igarashi, A; Zhang, Q; Abbadi, S; Amzel, L M; Sesaki, H; Quiñones-Hinojosa, A; Iijima, M

    2017-06-29

    PTEN is a PIP3 phosphatase that antagonizes oncogenic PI3-kinase signalling. Due to its critical role in suppressing the potent signalling pathway, it is one of the most mutated tumour suppressors, especially in brain tumours. It is generally thought that PTEN deficiencies predominantly result from either loss of expression or enzymatic activity. By analysing PTEN in malignant glioblastoma primary cells derived from 16 of our patients, we report mutations that block localization of PTEN at the plasma membrane and nucleus without affecting lipid phosphatase activity. Cellular and biochemical analyses as well as structural modelling revealed that two mutations disrupt intramolecular interaction of PTEN and open its conformation, enhancing polyubiquitination of PTEN and decreasing protein stability. Moreover, promoting mono-ubiquitination increases protein stability and nuclear localization of mutant PTEN. Thus, our findings provide a molecular mechanism for cancer-associated PTEN defects and may lead to a brain cancer treatment that targets PTEN mono-ubiquitination.

  16. Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration.

    Science.gov (United States)

    Pettersson-Klein, A T; Izadi, M; Ferreira, D M S; Cervenka, I; Correia, J C; Martinez-Redondo, V; Southern, M; Cameron, M; Kamenecka, T; Agudelo, L Z; Porsmyr-Palmertz, M; Martens, U; Lundgren, B; Otrocka, M; Jenmalm-Jensen, A; Griffin, P R; Ruas, J L

    2018-03-01

    The peroxisome proliferator-activated receptor-γ coactivator-1α1 (PGC-1α1) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1α1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1α1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1α1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1α1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions. We designed a cell-based high-throughput screening system to identify PGC-1α1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1α1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes. Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1α1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes. We identify compounds that induce PGC-1α1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  18. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit

    DEFF Research Database (Denmark)

    Rehling, M

    1988-01-01

    the quality of a commercial [99mTc]DTPA preparation (C.I.S., France) with reference to stability, protein binding and accuracy of the determined plasma clearance values as a measure of GFR. The stability of the preparations was studied by thin-layer chromatography, the in vitro protein binding by Sephadex...... filtration after incubation with human serum albumin and in vivo protein binding by filtration of human plasma. The accuracy of the plasma clearance values was investigated by comparison with the simultaneously measured plasma clearance of [51Cr]EDTA. There was no detectable free pertechnetate or hydrolysed...... reduced technetium in eight vials five and six hours after the preparation. The in vitro protein binding 10 (20), 120 and 300 min after the preparation of eight vials was 2.3% (0.8%), 0.2% and 0.1%, respectively. The in vivo protein binding in 12 patients 5, 90 and 180 min after the injection was 0.3%, 0...

  19. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution

    Science.gov (United States)

    Minakuchi, Kazunobu; Murata, Dai; Okubo, Yuji; Nakano, Yoshiyuki; Yoshida, Shinichi

    2013-01-01

    Protein A affinity chromatography is the standard purification process for the capture of therapeutic antibodies. The individual IgG-binding domains of protein A (E, D, A, B, C) have highly homologous amino acid sequences. From a previous report, it has been assumed that the C domain has superior resistance to alkaline conditions compared to the other domains. We investigated several properties of the C domain as an IgG-Fc capture ligand. Based on cleavage site analysis of a recombinant protein A using a protein sequencer, the C domain was found to be the only domain to have neither of the potential alkaline cleavage sites. Circular dichroism (CD) analysis also indicated that the C domain has good physicochemical stability. Additionally, we evaluated the amino acid substitutions at the Gly-29 position of the C domain, as the Z domain (an artificial B domain) acquired alkaline resistance through a G29A mutation. The G29A mutation proved to increase the alkaline resistance of the C domain, based on BIACORE analysis, although the improvement was significantly smaller than that observed for the B domain. Interestingly, a number of other amino acid mutations at the same position increased alkaline resistance more than did the G29A mutation. This result supports the notion that even a single mutation on the originally alkali-stable C domain would improve its alkaline stability. An engineered protein A based on this C domain is expected to show remarkable performance as an affinity ligand for immunoglobulin. PMID:23868198

  20. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability

    DEFF Research Database (Denmark)

    Nielsen, J.; Kristensen, M. A.; Willemoes, Martin

    2004-01-01

    of low stability, whereas the second step was the discriminatory event that converted a putative RNA target into a ‘locked' stable RNP. The ability to dimerize was also observed between members of the IMP family of zipcode-binding proteins, providing a multitude of further interaction possibilities......Active cytoplasmic RNA localization depends on the attachment of RNA-binding proteins that dictate the destination of the RNA molecule. In this study, we used an electrophoretic mobility-shift assay in combination with equilibrium and kinetic analyses to characterize the assembly of the human...

  1. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    activation of the Notch>Hes1 pathway impacts formation of the trunk domain in the pancreas causing multipotent progenitors to lose acinar, while gaining endocrine and ductal, competence. The subsequent selection of fate from such bipotential progenitors is then governed by lateral inhibition, where Notch...... protein stabilization in the normal mouse pancreas explants. We conclude that the mutually exclusive expression pattern of Ngn3/Hes1 proteins in the mammalian pancreas is partially controlled through Notch-mediated post-translational regulation and we demonstrate that the formation of insulin...

  2. A novel WISp39 protein links Hsp90 and p21 stability to the G2/M checkpoint.

    Science.gov (United States)

    Benzeno, Sharon; Diehl, J Alan

    2005-04-01

    Transcriptional regulation of the p21(Cip1) cyclin-dependent kinase inhibitor is a well-established mechanism by which the cell orchestrates a proper spatial and temporal cell cycle progression. Now, in the January 2005 issue of Molecular Cell (2005; Vol 17, 237-49), a study by Jascur et al identifies a novel multi-protein complex that is critical in contributing to a p53-dependent G2 cell cycle checkpoint. The authors demonstrate the significance of stabilizing the p21 protein in the context of this complex.

  3. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health

    Directory of Open Access Journals (Sweden)

    Wendy Russell

    2013-04-01

    Full Text Available Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p < 0.05 improved oxidative stability of patties by 20%–30% (spinach < yellow pea < onion < red pepper < green pea < tomato. Improved lipid oxidative stability was strongly correlated with the decreased formation of protein carbonyls (r = 0.747, p < 0.01. However, improved lipid stability could not be ascribed to phenolic acids nor recognized antioxidants, such as α- and γ-tocopherol, despite their significant (p < 0.01 contribution to the total antioxidant capacity of the patties. Use of chemically complex vegetable powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake.

  4. Proteolytic stability in colloidal systems : interaction of proteins with the solid-water interface

    NARCIS (Netherlands)

    Maste, M.C.L.

    1996-01-01


    Proteolytic enzymes in liquid detergents suffer from lack of stability in the sense that activity diminishes with time. Although the phenomenon could be attributed to several factors, the influence of colloidal surfaces on the enzymatic stability was investigated. Besides the types of

  5. Cell-based protein stabilization assays for the detection of interactions between small-molecule inhibitors and BRD4.

    Science.gov (United States)

    Schulze, Jessica; Moosmayer, Dieter; Weiske, Joerg; Fernández-Montalván, Amaury; Herbst, Christopher; Jung, Marie; Haendler, Bernard; Bader, Benjamin

    2015-02-01

    Bromodomain protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) protein family, acts as a central element in transcriptional elongation and plays essential roles in cell proliferation. Inhibition of BRD4 binding to acetylated histone tails via its two bromodomains, BD1 and BD2, with small-molecule inhibitors has been shown to be a valid strategy to prevent cancer growth. We have evaluated and established two novel assays that quantify the interaction of transfected BRD4 BD1 with chemical inhibitors inside cultured cells. Both methods are based on the principle of ligand-induced protein stabilization by which the binding of a small-molecule inhibitor stabilizes intracellular BRD4 BD1 and protects it from proteolytic degradation. We demonstrate the universal character of this principle by using two orthogonal, highly sensitive detection technologies for the quantification of BRD4 BD1 levels in cellular lysates: enzyme fragment complementation and time-resolved fluorescence resonance energy transfer (TR-FRET). Upon optimization of both assays to a miniaturized high-throughput format, the methods were validated by testing a set of small-molecule BET inhibitors and comparing the results with those from a cell-free binding assay and a biophysical thermal shift assay. In addition, point mutations were introduced into BRD4 BD1, and the corresponding mutants were characterized in the TR-FRET stabilization assay. © 2014 Society for Laboratory Automation and Screening.

  6. Metals content of Glossoscolex paulistus extracellular hemoglobin: Its peroxidase activity and the importance of these ions in the protein stability.

    Science.gov (United States)

    Caruso, Celia S; Biazin, Ezer; Carvalho, Francisco A O; Tabak, Marcel; Bachega, José F R

    2016-08-01

    In this work we investigate the presence of divalent cations bound to the Glossoscolex paulistus (HbGp) hemoglobin and their effect over the protein stability and the peroxidase (POD) activity. Atomic absorption studies show that the HbGp iron content is consistent with the presence of 144 ions per protein. Moreover, using iron as a reference, the content of calcium was estimated as 30±4 ions per protein, independently of the EDTA pre-treatment or not prior to the acidic treatment performed in the protein digestion. The zinc content was 14±2 ions in the absence of EDTA pre-treatment, and 3±1 ions per protein in the presence of EDTA pre-treatment, implying the presence of one zinc ion per protomer (1/12 of the whole molecule). Finally, the copper concentration is negligible. Different from the vertebrate hemoglobins, where the effectors are usually organic anions, the hexagonal bilayer hemoglobins have as effectors inorganic cations that increase the oxygen affinity and stabilize the structure. Previous studies have suggested that the presence of divalent cations, such as copper and zinc, is related to the different types of antioxidant enzymatic activities as the superoxide dismutase (SOD) activity shown by giant hemoglobin from Lumbricus terrestris (HbLt). Recently, studies on HbGp crystal structure have confirmed the presence of Zn(2+) and Ca(2+) binding sites. The Ca(2+) sites are similar as observed in the HbLt crystal structure. Otherwise, the Zn(2+) sites have no relation with those observed in Cu/Zn SODs. Our peroxidase assays with guaiacol confirm the POD activity and the effect of the zinc ions for HbGp. Our present results on HbGp metal content and their stability effects is the first step to understand the role of these cations in HbGp function in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Hybrid method to solve HP model on 3D lattice and to probe protein stability upon amino acid mutations.

    Science.gov (United States)

    Guo, Yuzhen; Tao, Fengying; Wu, Zikai; Wang, Yong

    2017-09-21

    Predicting protein structure from amino acid sequence is a prominent problem in computational biology. The long range interactions (or non-local interactions) are known as the main source of complexity for protein folding and dynamics and play the dominant role in the compact architecture. Some simple but exact model, such as HP model, captures the pain point for this difficult problem and has important implications to understand the mapping between protein sequence and structure. In this paper, we formulate the biological problem into optimization model to study the hydrophobic-hydrophilic model on 3D square lattice. This is a combinatorial optimization problem and known as NP-hard. Particle swarm optimization is utilized as the heuristic framework to solve the hard problem. To avoid premature in computation, we incorporated the Tabu search strategy. In addition, a pulling strategy was designed to accelerate the convergence of algorithm based on the characteristic of native protein structure. Together a novel hybrid method combining particle swarm optimization, Tabu strategy, and pulling strategy can fold the amino acid sequences on 3D square lattice efficiently. Promising results are reported in several examples by comparing with existing methods. This allows us to use this tool to study the protein stability upon amino acid mutation on 3D lattice. In particular, we evaluate the effect of single amino acid mutation and double amino acids mutation via 3D HP lattice model and some useful insights are derived. We propose a novel hybrid method to combine several heuristic strategies to study HP model on 3D lattice. The results indicate that our hybrid method can predict protein structure more accurately and efficiently. Furthermore, it serves as a useful tools to probe the protein stability on 3D lattice and provides some biological insights.

  8. Forkhead Box Protein 1 (Foxa1) and the Sumoylation Pathway that Regulates Foxa1 Stability are Potential Targets for Breast Cancer Treatment

    National Research Council Canada - National Science Library

    Belaguli, Narasimhaswamy S

    2007-01-01

    .... In contrast to the related forkhead box protein A2 (Foxa2) in which the K6R mutation induced protein destabilization, mutation of the conserved K6 sumoylation site did not strongly affect the stability of the Foxa1 protein...

  9. Effect of different fining agents and additives in white wine protein stability

    OpenAIRE

    Ribeiro, Tânia Isabel Monteiro; Fernandes, Conceição; Filipe-Ribeiro, L.; Cosme, Fernanda; Mendes-Faia, Arlete

    2012-01-01

    Proteins in white wine could become insoluble and precipitate causing the appearance of a haze in bottled wine. Protein instability may be due to intrinsically or extrinsically factor such as protein molecular weight, isoelectric point, ionic strength, alcohol degree and wine pH or storage temperature. These modifications may occur during aging, storage or when diverse wines are blended. The type and concentration of proteins in the wine depends on grape variety, maturation deg...

  10. Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells

    NARCIS (Netherlands)

    Tüysüz, Nesrin; van Bloois, Louis|info:eu-repo/dai/nl/304839183; van den Brink, Stieneke; Begthel, Harry; Verstegen, Monique M A; Cruz, Luis J; Hui, Lijian; van der Laan, Luc J W; de Jonge, Jeroen; Vries, Robert; Braakman, Eric; Mastrobattista, Enrico|info:eu-repo/dai/nl/228061105; Cornelissen, Jan J; Clevers, Hans|info:eu-repo/dai/nl/07164282X; Ten Berge, Derk

    2017-01-01

    Wnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature,

  11. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  12. Cation-Induced Stabilization of Protein Complexes in the Gas Phase: Mechanistic Insights From Hemoglobin Dissociation Studies

    Science.gov (United States)

    Liu, JiangJiang; Konermann, Lars

    2014-04-01

    Collision-induced dissociation (CID) of electrosprayed protein complexes usually involves asymmetric charge partitioning, where a single unfolded chain gets ejected that carries a disproportionately large fraction of charge. Using hemoglobin (Hb) tetramers as model system, we confirm earlier reports that bound metal ions can stabilize protein complexes under CID conditions. We examine the mechanism underlying this effect. Nonvolatile salts cause extensive adduct formation. Significant stabilization was observed for Mg2+ and Ca2+, whereas K+, Rb+, and Cs+ had no effect. Precursor ion selection was used to examine Hb subpopulations with well-defined metal binding levels. K+, Rb+, and Cs+-adducted tetramers eject monomers that carry roughly one-quarter of the metal ions that were bound to the precursor. This demonstrates that charge migration during CID is exclusively due to proton transfer, not metal ion transfer. Also, replacement of highly mobile charge carriers (protons) with less mobile species (metal ions) does not exert a stabilizing influence under the conditions used here. Interestingly, Hb carrying stabilizing ions (Mg2+ and Ca2+) generates monomeric CID products that are metal depleted. This effect is attributed to a combination of two factors: (1) Me2+ binding stabilizes Hb via formation of chelation bridges (e.g., R-COO- Me2+ -OOC-R); the more Me2+ a subunit contains the more stable it is. (2) More than ~90 % of the tetramers contain at least one subunit with a below-average number of Me2+. The prevalence of monomeric CID products with depleted Me2+ levels is caused by the tendency of these low metal-containing subunits to undergo preferential unfolding/ejection.

  13. Changing folding and binding stability in a viral coat protein: a comparison between substitutions accessible through mutation and those fixed by natural selection.

    Science.gov (United States)

    Miller, Craig R; Lee, Kuo Hao; Wichman, Holly A; Ytreberg, F Marty

    2014-01-01

    Previous studies have shown that most random amino acid substitutions destabilize protein folding (i.e. increase the folding free energy). No analogous studies have been carried out for protein-protein binding. Here we use a structure-based model of the major coat protein in a simple virus, bacteriophage φX174, to estimate the free energy of folding of a single coat protein and binding of five coat proteins within a pentameric unit. We confirm and extend previous work in finding that most accessible substitutions destabilize both protein folding and protein-protein binding. We compare the pool of accessible substitutions with those observed among the φX174-like wild phage and in experimental evolution with φX174. We find that observed substitutions have smaller effects on stability than expected by chance. An analysis of adaptations at high temperatures suggests that selection favors either substitutions with no effect on stability or those that simultaneously stabilize protein folding and slightly destabilize protein binding. We speculate that these mutations might involve adjusting the rate of capsid assembly. At normal laboratory temperature there is little evidence of directional selection. Finally, we show that cumulative changes in stability are highly variable; sometimes they are well beyond the bounds of single substitution changes and sometimes they are not. The variation leads us to conclude that phenotype selection acts on more than just stability. Instances of larger cumulative stability change (never via a single substitution despite their availability) lead us to conclude that selection views stability at a local, not a global, level.

  14. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala.

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    Full Text Available Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.

  15. The presence of the iron-sulfur motif is important for the conformational stability of the antiviral protein, Viperin.

    Directory of Open Access Journals (Sweden)

    Shubhasis Haldar

    Full Text Available Viperin, an antiviral protein, has been shown to contain a CX(3CX(2C motif, which is conserved in the radical S-adenosyl-methionine (SAM enzyme family. A triple mutant which replaces these three cysteines with alanines has been shown to have severe deficiency in antiviral activity. Since the crystal structure of Viperin is not available, we have used a combination of computational methods including multi-template homology modeling and molecular dynamics simulation to develop a low-resolution predicted structure. The results show that Viperin is an α-β protein containing iron-sulfur cluster at the center pocket. The calculations suggest that the removal of iron-sulfur cluster would lead to collapse of the protein tertiary structure. To verify these predictions, we have prepared, expressed and purified four mutant proteins. In three mutants individual cysteine residues were replaced by alanine residues while in the fourth all the cysteines were replaced by alanines. Conformational analyses using circular dichroism and steady state fluorescence spectroscopy indicate that the mutant proteins are partially unfolded, conformationally unstable and aggregation prone. The lack of conformational stability of the mutant proteins may have direct relevance to the absence of their antiviral activity.

  16. Post-translational regulation of PTEN catalytic function and protein stability in the hibernating 13-lined ground squirrel.

    Science.gov (United States)

    Wu, Cheng-Wei; Bell, Ryan A; Storey, Kenneth B

    2015-11-01

    The insulin signaling pathway functions as a major regulator of many metabolic and cellular functions, and has been shown to be reversibly suppressed in many species during hibernation. This study characterized the regulation of PTEN phosphatase, a negative regulator of the insulin receptor network, over the torpor-arousal cycle of hibernation in the skeletal muscle of Ictidomys tridecemlineatus. Western blotting and RT-PCR were used to analyze post-translational and transcriptional regulations of PTEN respectively. Enzymatic activities were determined by the malachite green assay, while protein stability was assessed the using pulse-proteolysis method. During torpor, the ratio of non-phosphorylated PTEN (S380/T382/T383) was significantly elevated by 1.4-fold during late torpor compared with euthermic controls; this was coupled with an increase in substrate affinity for PIP3 (by 56%) in late torpor. Two proteolytic cleavage PEST motifs were identified in the C-terminus that overlapped with the phosphorylation sites of PTEN; pulse-proteolysis analysis of PTEN protein showed a decrease in protein stability during late torpor (Cm of urea decreased by 21%). Furthermore, the increase in PTEN activity observed was correlated with a decrease in PDK-1 phosphorylation by 32%, suggesting a downstream effect of PTEN activation during torpor. Transcriptional analysis showed that mRNA expression of pten and pdk-1 remain unchanged during hibernation, suggesting post-translation modification as the primary regulatory mechanism of PTEN function. Phosphorylation plays an important role in the regulation of PTEN enzymatic activity and protein stability. Activation of PTEN during torpor can regulate insulin signaling during periods of low energy state. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: function of VP2 protein in the stability of NoV VLPs.

    Science.gov (United States)

    Lin, Yao; Fengling, Li; Lianzhu, Wang; Yuxiu, Zhai; Yanhua, Jiang

    2014-11-01

    VP2 is the minor structural protein of noroviruses (NoV) and may function in NoV particle stability. To determine the function of VP2 in the stability of the NoV particle, we constructed and purified two kinds of virus-like particles (VLPs), namely, VLPs (VP1) and VLPs (VP1+VP2), from Sf9 cells infected with recombinant baculoviruses by using a Bac-to-Bac® baculovirus expression system. The two kinds of VLPs were treated with different phosphate buffers (pH 2 to pH 8); the secondary structure was then analyzed by far UV circular dichroism (CD) spectroscopy. Results showed that significant disruptions of the secondary structure of proteins were not observed at pH 2 to pH 7. At pH 8, the percentages of a-helix, β-sheet, and β-turn in VLPs (VP1) were decreased from 11% to 8%, from 37% to 32%, and from 20% to 16%, respectively. The percentage of coil was increased from 32% to 44%. By contrast, the percentages of α-helix, β-sheet, and β-turn in VLPs (VP1+VP2) were decreased from 11% to 10%, from 37% to 35%, and from 20% to 19%, respectively. The percentage of coil was increased from 32% to 36%. VLPs (VP1+VP2) was likely more stable than VLPs (VP1), as indicated by the percentage of the secondary structures analyzed by CD. These results suggested that VP2 could stabilize the secondary structure of VLPs under alkaline pH conditions. This study provided novel insights into the molecular mechanism of the function of VP2 in the stability of NoV particles.

  18. Colloidal stability of gold nanorod solution upon exposure to excised human skin: Effect of surface chemistry and protein adsorption.

    Science.gov (United States)

    Mahmoud, Nouf N; Al-Qaoud, Khaled M; Al-Bakri, Amal G; Alkilany, Alaaldin M; Khalil, Enam A

    2016-06-01

    In this study, we evaluated the colloidal stability of gold nanorods (with positive, negative and neutral surface charge) in solution upon contact with excised human skin. UV-vis absorption, plasmon peak broadening index (PPBI%) and transmission electron microscope analysis were used to follow nanoparticles aggregation in solution. Our results show that positively charged gold nanorods aggregate extensively upon exposure to excised human skin compared to negatively and neutrally charged gold nanorods. Skin-induced aggregation of cationic gold nanorods was linked to the adsorption of proteins released from the dermis layer to the surface of gold nanorods. Protein adsorption significantly screen nanorod's effective surface charge and induce their aggregation. Moreover, we demonstrate that the presence of polyethylene glycol polymer on the surface of cationic gold nanorods minimize this aggregation significantly by providing steric repulsion (non-electrostatic stabilization mechanism). This work highlights the importance of evaluating the colloidal stability of nanoparticles in solution upon contact with skin, which is a "usually overlooked" parameter when studying the nanoparticle-skin interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assembly and stability of Salmonella enterica ser. Typhi TolC protein in POPE and DMPE.

    Science.gov (United States)

    Leong, Siew Wen; Lim, Theam Soon; Tye, Gee Jun; Ismail, Asma; Aziah, Ismail; Choong, Yee Siew

    2014-09-01

    In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.

  20. Native expression and purification of hormone-sensitive lipase from Psychrobacter sp. TA144 enhances protein stability and activity.

    Science.gov (United States)

    Ascione, Giuseppina; de Pascale, Donatella; De Santi, Concetta; Pedone, Carlo; Dathan, Nina Alayne; Monti, Simona Maria

    2012-04-13

    Psychrobacter, a micro-organism originally isolated from Antarctic sea water, expresses an extremely active hormone-sensitive lipase (HSL) which catalyzes the hydrolysis of fatty acid esters at very low temperature and is therefore of great potential industrial and pharmaceutical interest. An insoluble form of the entire enzyme has previously been cloned and expressed in Escherichia coli, subsequently refolded and shown to be active, whilst a shorter but completely inactive version, lacking the N-terminal 98 amino acids has been expressed in soluble form. In this study the entire enzyme has been expressed as a fully soluble protein in E. coli in the presence of either the osmolyte trehalose, plus high salt concentration, or the membrane fluidizer benzyl alcohol. Trehalose promotes protein mono-dispersion by increasing the viscosity of the growth medium for bacterial cells, thereby helping circumvent protein aggregation, whilst the heat-shock inducer benzyl alcohol stimulates the production of a network of endogenous chaperones which actively prevent protein misfolding, whilst also converting recombinant aggregates to native, correctly folded proteins. The resultant recombinant protein proved to be more stable than its previously expressed counterpart, as shown by CD and enzymatic activity data which proved the enzyme to be more active at a higher temperature than its refolded counterpart. By light scattering analysis it was shown that the newly expressed protein was monomeric. The stability of the full length native protein will help in understanding the structure of PsyHSL and the role of its regulatory N-terminal for eventual application in a myriad of biotechnological processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization.

    Science.gov (United States)

    Desmurs, Marjorie; Foti, Michelangelo; Raemy, Etienne; Vaz, Frédéric Maxime; Martinou, Jean-Claude; Bairoch, Amos; Lane, Lydie

    2015-04-01

    Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function.

    Science.gov (United States)

    Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-07-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.

  3. Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability.

    Science.gov (United States)

    Hughes, David C; Marcotte, George R; Marshall, Andrea G; West, Daniel W D; Baehr, Leslie M; Wallace, Marita A; Saleh, Perrie M; Bodine, Sue C; Baar, Keith

    2017-05-01

    The loss of muscle strength with age has been studied from the perspective of a decline in muscle mass and neuromuscular junction (NMJ) stability. A third potential factor is force transmission. The purpose of this study was to determine the changes in the force transfer apparatus within aging muscle and the impact on membrane integrity and NMJ stability. We measured an age-related loss of dystrophin protein that was greatest in the flexor muscles. The loss of dystrophin protein occurred despite a twofold increase in dystrophin mRNA. Importantly, this disparity could be explained by the four- to fivefold upregulation of the dystromir miR-31. To compensate for the loss of dystrophin protein, aged muscle contained increased α-sarcoglycan, syntrophin, sarcospan, laminin, β1-integrin, desmuslin, and the Z-line proteins α-actinin and desmin. In spite of the adaptive increase in other force transfer proteins, over the 48 hours following lengthening contractions, the old muscles showed more signs of impaired membrane integrity (fourfold increase in immunoglobulin G-positive fibers and 70% greater dysferlin mRNA) and NMJ instability (14- to 96-fold increases in Runx1, AchRδ, and myogenin mRNA). Overall, these data suggest that age-dependent alterations in dystrophin leave the muscle membrane and NMJ more susceptible to contraction-induced damage even before changes in muscle mass are obvious. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing

    NARCIS (Netherlands)

    Zhang, Lina; Boeren, Sjef; Smits, Marcel; Hooijdonk, van Toon; Vervoort, Jacques; Hettinga, Kasper

    2016-01-01

    Milk proteins have been shown to be very sensitive to processing. This study aims to investigate the changes of the bovine, camel, and caprine milk proteins after freezing, pasteurization (62 °C, 30 min), and spray drying by proteomic techniques, filter-aided sample preparation (FASP) and

  5. Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions

    DEFF Research Database (Denmark)

    Gravador, Rufielyn Sungcaya; Jongberg, Sisse; Andersen, Mogens Larsen

    2014-01-01

    . The citrus pulp groups, Cp24 and Cp35, significantly decreased protein radicals and carbonyls, and preserved more thiols within six days of storage compared to the Control group. The citrus pulp groups significantly slowed down the rate of protein oxidation, indicating that dietary citrus pulp reduced...

  6. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  7. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  8. Pre-analytical factors influencing the stability of cerebrospinal fluid proteins

    DEFF Research Database (Denmark)

    Simonsen, Anja H; Bahl, Justyna M C; Danborg, Pia B

    2013-01-01

    Cerebrospinal fluid (CSF) is a potential source for new biomarkers due to its proximity to the brain. This study aimed to clarify the stability of the CSF proteome when undergoing pre-analytical factors. We investigated the effects of repeated freeze/thaw cycles, protease inhibitors and delayed...

  9. Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A

    NARCIS (Netherlands)

    Benoit, Isabelle; Asther, Michèle; Sulzenbacher, Gerlind; Record, Eric; Marmuse, Laurence; Parsiegla, Goetz; Gimbert, Isabelle; Asther, Marcel; Bignon, Christophe

    2006-01-01

    The thermal stability of four molecular forms (native, refolded, glycosylated, non-glycosylated) of feruloyl esterase A (FAEA) was studied. From the most to the least thermo-resistant, the four molecular species ranked as follows: (i) glycosylated form produced native, (ii) non-glycosylated form

  10. The Escherichia coli antiterminator protein BglG stabilizes the 5 ...

    Indian Academy of Sciences (India)

    Unknown

    showed a decay pattern similar to pMN22AE (figure 2c). Based on these observations, it is conceivable that the role of BglG in positive regulation of the bgl operon is two- fold: stabilization of the leader transcript upstream of the terminator and facilitation of transcription read-through past the terminator. Its action at these two ...

  11. Orthokinetic flocculation of caseinate-stabilized emulsions : influence of calcium concentration, shear rate and protein content

    NARCIS (Netherlands)

    Schokker, E.P.; Dalgleish, D.G.

    2000-01-01

    Calcium-induced flocculation of caseinate-stabilized soybean oil-in- water emulsions in conditions of Couette flow was studied. A concentrated emulsion (20% oil, 0.5-2.0% sodium caseinate in 20 mM imidazole, pH 7) was diluted 20 times in buffer containing concentrations of CaCl2 between 9 and 17 mM

  12. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been...... reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function...

  13. Methylglyoxal alters the function and stability of critical components of the protein quality control.

    Directory of Open Access Journals (Sweden)

    Carla Figueira Bento

    Full Text Available BACKGROUND: Increased production and accumulation of methylglyoxal (MGO, as well as increased modification of proteins by glycoxidation, are hallmarks of aging and diabetes. MGO was shown to modify proteins and to contribute to the accumulation of damaged proteins that can be toxic to cells. However, the effect of MGO on the cell systems responsible for repairing or degrading damaged proteins is still unclear. In this study, the effect of MGO on the function of the ubiquitin-proteasome system (UPS and on molecular chaperones, two cooperative mechanisms associated with protein quality control, was investigated. PRINCIPAL FINDINGS: In this work it is shown that treatment of cells with MGO leads to accumulation of ubiquitin conjugates and depletion of free ubiquitin. Moreover, MGO significantly decreases the proteolytic activity of the 20S proteasome. Data further shows that MGO decreases the levels of the molecular chaperones Hsc70 and Hsp90 and leads to accumulation of CHIP-, Hsp40- and ubiquitin-containing aggregates. The formation of large aggregates containing CHIP is a consequence of its binding to misfolded proteins and to molecular chaperones. Moreover, dysfunction of the chaperones/CHIP/UPS axis is associated with accumulation of oxidized and argpyrimidine-modified proteins, which is likely to be associated with decreased cell viability. Interestingly, data further shows that MGO-induced stress induces the activation of heat shock factor-1 (Hsf-1, the main transcription factor involved in the regulation of the expression of heat shock proteins (HSPs and cell response to stress. CONCLUSIONS: The data obtained in this work suggests that MGO impairs both the UPS and the protein quality control dependent on CHIP and molecular chaperones, leading to accumulation of toxic aggregates and increased cell death. However, these MGO-induced changes appear to elicit a response from the Hsf-1 system, which is crucial to help cells to cope with cellular

  14. Methylglyoxal alters the function and stability of critical components of the protein quality control.

    Science.gov (United States)

    Bento, Carla Figueira; Marques, Filipa; Fernandes, Rosa; Pereira, Paulo

    2010-09-24

    Increased production and accumulation of methylglyoxal (MGO), as well as increased modification of proteins by glycoxidation, are hallmarks of aging and diabetes. MGO was shown to modify proteins and to contribute to the accumulation of damaged proteins that can be toxic to cells. However, the effect of MGO on the cell systems responsible for repairing or degrading damaged proteins is still unclear. In this study, the effect of MGO on the function of the ubiquitin-proteasome system (UPS) and on molecular chaperones, two cooperative mechanisms associated with protein quality control, was investigated. In this work it is shown that treatment of cells with MGO leads to accumulation of ubiquitin conjugates and depletion of free ubiquitin. Moreover, MGO significantly decreases the proteolytic activity of the 20S proteasome. Data further shows that MGO decreases the levels of the molecular chaperones Hsc70 and Hsp90 and leads to accumulation of CHIP-, Hsp40- and ubiquitin-containing aggregates. The formation of large aggregates containing CHIP is a consequence of its binding to misfolded proteins and to molecular chaperones. Moreover, dysfunction of the chaperones/CHIP/UPS axis is associated with accumulation of oxidized and argpyrimidine-modified proteins, which is likely to be associated with decreased cell viability. Interestingly, data further shows that MGO-induced stress induces the activation of heat shock factor-1 (Hsf-1), the main transcription factor involved in the regulation of the expression of heat shock proteins (HSPs) and cell response to stress. The data obtained in this work suggests that MGO impairs both the UPS and the protein quality control dependent on CHIP and molecular chaperones, leading to accumulation of toxic aggregates and increased cell death. However, these MGO-induced changes appear to elicit a response from the Hsf-1 system, which is crucial to help cells to cope with cellular stress and to re-establish homeostasis.

  15. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  16. Antioxidant effectiveness of vegetable powders on the lipid and protein oxidative stability of cooked Turkey meat patties: implications for health.

    Science.gov (United States)

    Duthie, Garry; Campbell, Fiona; Bestwick, Charles; Stephen, Sylvia; Russell, Wendy

    2013-04-17

    Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p protein carbonyls (r = 0.747, p powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake.

  17. Electrochemical sensing of tumor suppressor protein p53-deoxyribonucleic acid complex stability at an electrified interface

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Černocká, Hana; Ostatná, Veronika; Navrátilová, Lucie; Brázdová, Marie

    2014-01-01

    Roč. 828, MAY2014 (2014), s. 1-8 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA13-00956S; GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : Deoxyribonucleic acid-protein binding * Tumor suppressor protein p53 * Electrochemical sensing Subject RIV: BO - Biophysics Impact factor: 4.513, year: 2014

  18. Phosphorylation at serines 216 and 221 is important for Drosophila HeT-A Gag protein stability.

    Directory of Open Access Journals (Sweden)

    Sukhdev S Brar

    Full Text Available Telomeres from Drosophila appear to be very different from those of other organisms - in size and the mechanism of their maintenance. In the absence of the enzyme telomerase, Drosophila telomeres are maintained by retrotransposition of three elements, HeT-A, TART, and TAHRE, but details of their transposition mechanisms are not known. Here we characterized some biochemical characteristics of the HeT-A Gag protein encoded by the HeT-A element to understand this mechanism. The HeT-A Gag protein when overexpressed in S2 cells was localized to the nucleus but was resistant to high salt, detergents and nuclease extraction treatments. Analysis of the HeT-A Gag protein by tandem mass spectrophotometry revealed that serines 216 and 221 are phosphorylated. Substituting these serines with alanine or aspartic acid by site-directed mutagenesis did not result in any changes in HeT-A Gag translocation across the nucleus, suggesting that phosphorylation of these sites is not associated with HeT-A Gag translocation, but time course experiments showed that these phosphorylation sites are important for Gag-protein stability.

  19. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    Science.gov (United States)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  1. DNA polymerase eta is regulated by poly(rC)-binding protein 1 via mRNA stability

    Science.gov (United States)

    Ren, Cong; Cho, Seong-Jun; Jung, Yong-Sam; Chen, Xinbin

    2015-01-01

    DNA polymerase eta (POLH), a target of p53 tumor suppressor, plays a key role in translesion DNA synthesis (TLS). Loss of POLH is responsible for human cancer prone syndrome, Xeroderma Pigmentosum Variant (XPV). Due to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In this study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding poly(rC)-binding protein 1 (PCBP1). We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to POLH 3′UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3′UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Altogether, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability. PMID:25268038

  2. DNA polymerase η is regulated by poly(rC)-binding protein 1 via mRNA stability.

    Science.gov (United States)

    Ren, Cong; Cho, Seong-Jun; Jung, Yong-Sam; Chen, Xinbin

    2014-12-15

    POLH (DNA polymerase η), a target of p53 tumour suppressor, plays a key role in TLS (translesion DNA synthesis). Loss of POLH is responsible for the human cancer-prone syndrome XPV (xeroderma pigmentosum variant). Owing to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In the present study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding PCBP1 [poly(rC)-binding protein 1]. We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to the POLH 3'-UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3'-UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Taken together, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability.

  3. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes.

    Science.gov (United States)

    Burlet, E; HogenEsch, H; Dunham, A; Morefield, G

    2017-05-01

    Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.

  4. Effects of solute-solute interactions on protein stability studied using various counterions and dendrimers.

    Directory of Open Access Journals (Sweden)

    Curtiss P Schneider

    Full Text Available Much work has been performed on understanding the effects of additives on protein thermodynamics and degradation kinetics, in particular addressing the Hofmeister series and other broad empirical phenomena. Little attention, however, has been paid to the effect of additive-additive interactions on proteins. Our group and others have recently shown that such interactions can actually govern protein events, such as aggregation. Here we use dendrimers, which have the advantage that both size and surface chemical groups can be changed and therein studied independently. Dendrimers are a relatively new and broad class of materials which have been demonstrated useful in biological and therapeutic applications, such as drug delivery, perturbing amyloid formation, etc. Guanidinium modified dendrimers pose an interesting case given that guanidinium can form multiple attractive hydrogen bonds with either a protein surface or other components in solution, such as hydrogen bond accepting counterions. Here we present a study which shows that the behavior of such macromolecule species (modified PAMAM dendrimers is governed by intra-solvent interactions. Attractive guanidinium-anion interactions seem to cause clustering in solution, which inhibits cooperative binding to the protein surface but at the same time, significantly suppresses nonnative aggregation.

  5. UV-Visible intensity ratio (aggregates/single particles) as a measure to obtain stability of gold nanoparticles conjugated with protein A

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M. A. [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico); Garcia-Perez, B. E. [Instituto Politecnico Nacional, Departamento de Inmunologia, ENCB (Mexico); Jaramillo-Flores, M. E. [Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, ENCB (Mexico); Gayou, V. L.; Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico)

    2013-05-15

    We have analyzed the titration process of gold nanoparticles with several amounts of protein A (0.3, 0.5, 1, 3, 6, and 9 {mu}g/ml) in the presence of NaCl, which induces aggregation if the surface of particles is not fully covered with protein A. The colloidal solutions with different particle size (16, 18, 20, 33 nm) were synthesized by citrate reduction to be conjugated with protein A. UV-Visible spectroscopy was used to measure the absorption of the surface plasmon resonance of gold nanoparticles as a function of the concentration of protein A. Such dependence shows an aggregation region (0 < x<6 {mu}g/ml), where the amount of protein A was insufficient to cover the surface of particles, obtaining aggregation caused by NaCl. The next part is the stability region (x {>=} 6 {mu}g/ml), where the amount of protein used covers the surface of particles and protects it from the aggregation. In addition to that the ratio between the intensities of both: the aggregates and of the gold nanoparticle bands was plotted as a function of the concentration of protein A. It was determined that 6 {mu}g/ml is a sufficient value of protein A to stabilize the gold nanoparticle-protein A system. This method provides a simple way to stabilize gold nanoparticles obtained by citrate reduction, with protein A.

  6. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  7. The Effect of Protein PEGylation on Physical Stability in Liquid Formulation

    DEFF Research Database (Denmark)

    Holm, Louise Stenstrup; Mcumber, Aaron; Rasmussen, Jakob Ewald

    2014-01-01

    . Surprisingly, the PEGylated Lyz adsorbed an order of magnitude faster onto SO, despite being much larger in size, as determined by small-angle X-ray scattering and dynamic light scattering measurements. Thus, PEGylation may significantly reduce, but not prevent, micron aggregate formation of a protein during......The presence of micron aggregates in protein formulations has recently attracted increased interest from regulatory authorities, industry, and academia because of the potential undesired side effects of their presence. In this study, we characterized the micron aggregate formation of hen egg......-white lysozyme (Lyz) and its diPEGylated (5 kDa) analog as a result of typical handling stress conditions. Both proteins were subjected to mechanical stress in the absence and presence of silicone oil (SO), elevated temperatures, and freeze-thaw cycles. Flow imaging microscopy showed that PEGylated Lyz formed...

  8. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.

    Science.gov (United States)

    Madan, Bharat; Sokalingam, Sriram; Raghunathan, Govindan; Lee, Sun-Gu

    2014-10-01

    Both Type I' and Type II' β-turns have the same sense of the β-turn twist that is compatible with the β-sheet twist. They occur predominantly in two residue β-hairpins, but the occurrence of Type I' β-turns is two times higher than Type II' β-turns. This suggests that Type I' β-turns may be more stable than Type II' β-turns, and Type I' β-turn sequence and structure can be more favorable for protein folding than Type II' β-turns. Here, we redesigned the native Type II' β-turn in GFP to Type I' β-turn, and investigated its effect on protein folding and stability. The Type I' β-turns were designed based on the statistical analysis of residues in natural Type I' β-turns. The substitution of the native "GD" sequence of i+1 and i+2 residues with Type I' preferred "(N/D)G" sequence motif increased the folding rate by 50% and slightly improved the thermodynamic stability. Despite the enhancement of in vitro refolding kinetics and stability of the redesigned mutants, they showed poor soluble expression level compared to wild type. To overcome this problem, i and i + 3 residues of the designed Type I' β-turn were further engineered. The mutation of Thr to Lys at i + 3 could restore the in vivo soluble expression of the Type I' mutant. This study indicates that Type II' β-turns in natural β-hairpins can be further optimized by converting the sequence to Type I'. © 2014 Wiley Periodicals, Inc.

  9. Stability of plant defense proteins in the gut of insect herbivores.

    Science.gov (United States)

    Chen, Hui; Gonzales-Vigil, Eliana; Wilkerson, Curtis G; Howe, Gregg A

    2007-04-01

    Plant defense against insect herbivores is mediated in part by enzymes that impair digestive processes in the insect gut. Little is known about the evolutionary origins of these enzymes, their distribution in the plant kingdom, or the mechanisms by which they act in the protease-rich environment of the animal digestive tract. One example of such an enzyme is threonine (Thr) deaminase (TD), which in tomato (Solanum lycopersicum) serves a dual role in isoleucine (Ile) biosynthesis in planta and Thr degradation in the insect midgut. Here, we report that tomato uses different TD isozymes to perform these functions. Whereas the constitutively expressed TD1 has a housekeeping role in Ile biosynthesis, expression of TD2 in leaves is activated by the jasmonate signaling pathway in response to herbivore attack. Ingestion of tomato foliage by specialist (Manduca sexta) and generalist (Trichoplusia ni) insect herbivores triggered proteolytic removal of TD2's C-terminal regulatory domain, resulting in an enzyme that degrades Thr without being inhibited through feedback by Ile. This processed form (pTD2) of TD2 accumulated to high levels in the insect midgut and feces (frass). Purified pTD2 exhibited biochemical properties that are consistent with a postingestive role in defense. Shotgun proteomic analysis of frass from tomato-reared M. sexta identified pTD2 as one of the most abundant proteins in the excrement. Among the other tomato proteins identified were several jasmonate-inducible proteins that have a known or proposed role in anti-insect defense. Subtilisin-like proteases and other pathogenesis-related proteins, as well as proteins of unknown function, were also cataloged. We conclude that proteomic analysis of frass from insect herbivores provides a robust experimental approach to identify hyperstable plant proteins that serve important roles in defense.

  10. Tradeoff between stability and multispecificity in the design of promiscuous proteins.

    Directory of Open Access Journals (Sweden)

    Menachem Fromer

    2009-12-01

    Full Text Available Natural proteins often partake in several highly specific protein-protein interactions. They are thus subject to multiple opposing forces during evolutionary selection. To be functional, such multispecific proteins need to be stable in complex with each interaction partner, and, at the same time, to maintain affinity toward all partners. How is this multispecificity acquired through natural evolution? To answer this compelling question, we study a prototypical multispecific protein, calmodulin (CaM, which has evolved to interact with hundreds of target proteins. Starting from high-resolution structures of sixteen CaM-target complexes, we employ state-of-the-art computational methods to predict a hundred CaM sequences best suited for interaction with each individual CaM target. Then, we design CaM sequences most compatible with each possible combination of two, three, and all sixteen targets simultaneously, producing almost 70,000 low energy CaM sequences. By comparing these sequences and their energies, we gain insight into how nature has managed to find the compromise between the need for favorable interaction energies and the need for multispecificity. We observe that designing for more partners simultaneously yields CaM sequences that better match natural sequence profiles, thus emphasizing the importance of such strategies in nature. Furthermore, we show that the CaM binding interface can be nicely partitioned into positions that are critical for the affinity of all CaM-target complexes and those that are molded to provide interaction specificity. We reveal several basic categories of sequence-level tradeoffs that enable the compromise necessary for the promiscuity of this protein. We also thoroughly quantify the tradeoff between interaction energetics and multispecificity and find that facilitating seemingly competing interactions requires only a small deviation from optimal energies. We conclude that multispecific proteins have been

  11. Understanding the relationship between biotherapeutic protein stability and solid-liquid interfacial shear in constant region mutants of IgG1 and IgG4.

    Science.gov (United States)

    Tavakoli-Keshe, Roumteen; Phillips, Jonathan J; Turner, Richard; Bracewell, Daniel G

    2014-02-01

    Relative stability of therapeutic antibody candidates is currently evaluated primarily through their response to thermal degradation, yet this technique is not always predictive of stability in manufacture, shipping, and storage. A rotating disk shear device is proposed that produces defined shear conditions at a known solid-liquid interface to measure stability in this environment. Five variants of IgG1 and IgG4 antibodies were created using combinations of two discrete triple amino acid sequence mutations denoted TM and YTE. Antibodies were ranked for stability based on shear device output (protein decay coefficient, PDC), and compared with accelerated thermal stability data and the melting temperature of the CH2 domain (Tm 1) from differential scanning calorimetry to investigate technique complimentarity. Results suggest that the techniques are orthogonal, with thermal methods based on intramolecular interaction and shear device stability based on localized unfolding revealing less stable regions that drive aggregation. Molecular modeling shows the modifications' effects on the antibody structures and indicates a possible role for Fc conformation and Fab-Fc docking in determining suspended protein stability. The data introduce the PDC value as an orthogonal stability indicator, complementary to traditional thermal methods, allowing lead antibody selection based on a more full understanding of process stability. © 2013 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids

    DEFF Research Database (Denmark)

    Reinau, Marika Ejby; Otzen, Daniel

    2009-01-01

    the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's α-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude...

  13. Long-term stability and circadian variation in circulating levels of surfactant protein D

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida

    2010-01-01

    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested...

  14. Thermal stability, storage and release of proteins with tailored fit in silica.

    Science.gov (United States)

    Chen, Yun-Chu; Smith, Tristan; Hicks, Robert H; Doekhie, Aswin; Koumanov, Francoise; Wells, Stephen A; Edler, Karen J; van den Elsen, Jean; Holman, Geoffrey D; Marchbank, Kevin J; Sartbaeva, Asel

    2017-04-24

    Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a "cold chain" of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica "cage", rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This "ensilication" method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the "cold chain" problem for biological materials, in particular for vaccines.

  15. Long-term stability of β-galactosidase protein expression in the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... protein expression with specific β-gal activity in the absence of zeocin were almost constant at 1.5704 and 4.3017 units β-gal .... RPMI-1640 with no serum and the mixture was incubated for 15 min at room ... amplification process, different clones and cell pools were screened for their productivities using ...

  16. SPROUTS: a database for the evaluation of protein stability upon point mutation.

    Science.gov (United States)

    Lonquety, Mathieu; Lacroix, Zoé; Papandreou, Nikolaos; Chomilier, Jacques

    2009-01-01

    SPROUTS (Structural Prediction for pRotein fOlding UTility System) is a new database that provides access to various structural data sets and integrated functionalities not yet available to the community. The originality of the SPROUTS database is the ability to gain access to a variety of structural analyses at one place and with a strong interaction between them. SPROUTS currently combines data pertaining to 429 structures that capture representative folds and results related to the prediction of critical residues expected to belong to the folding nucleus: the MIR (Most Interacting Residues), the description of the structures in terms of modular fragments: the TEF (Tightened End Fragments), and the calculation at each position of the free energy change gradient upon mutation by one of the 19 amino acids. All database results can be displayed and downloaded in textual files and Excel spreadsheets and visualized on the protein structure. SPROUTS is a unique resource to access as well as visualize state-of-the-art characteristics of protein folding and analyse the effect of point mutations on protein structure. It is available at http://bioinformatics.eas.asu.edu/sprouts.html.

  17. Probing Bio-Nano Interactions between Blood Proteins and Monolayer-Stabilized Graphene Sheets

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Han, Dongxue

    2015-01-01

    Meeting proteins is regarded as the starting event for nanostructures to enter biological systems. Understanding their interactions is thus essential for a newly emerging field, nanomedicine. Chemically converted graphene (CCG) is a wonderful two-dimesional (2D) material for nanomedecine, but its...

  18. Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes

    OpenAIRE

    1985-01-01

    The stability and movement of several polyadenylated (poly A+) and nonpolyadenylated (poly A-) mRNAs in Xenopus oocytes have been examined. At least 50% of the poly A+ mRNA molecules (9S rabbit globin mRNA, chicken ovalbumin, and lysozyme) were stable in oocytes over a 48- h period, irrespective of the amount injected. About 50% of injected poly A- reovirus mRNAs was degraded within the first 24 h of injection, irrespective of the amount injected, although no further degradation was observed ...

  19. The cis-state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface.

    Science.gov (United States)

    Korbus, Michael; Backé, Sarah; Meyer-Almes, Franz-Josef

    2015-03-01

    The photocontrol of protein function like enzyme activity has been the subject of many investigations to enable reversible and spatiotemporally defined cascading biochemical reactions without the need for separation in miniaturized and parallelized assay setups for academic and industrial applications. A photoswitchable amidohydrolase variant from Bordetella/Alcaligenes with the longest reported half-life (approximately 30 h) for the cis-state of the attached azobenzene group was chosen as a model system to dissect the underlying mechanism and molecular interactions that caused the enormous deceleration of the thermal cis-to-trans relaxation of the azobenzene photoswitch. A systematic site-directed mutagenesis study on the basis of molecular dynamics simulation data was employed to investigate enzyme and thermal cis-to-trans relaxation kinetics in dependence on selected amino acid substitution, which revealed a prominent histidine and a hydrophobic cluster as molecular determinants for the stabilization of the cis-isomer of the attached azobenzene moiety on the protein surface. The nature of the involved interactions consists of polar, hydrophobic, and possibly aromatic Π-Π contributions. The elucidated principles behind the stabilization of the cis-state of azobenzene derivatives on a protein surface can be exploited to design improved biologically inspired photoswitches. Moreover, the findings open the door to highly long-lived cis-states of azobenzene groups yielding improved bistable photoswitches that can be controlled by single light-pulses rather than continuous irradiation with UV light that causes potential photodamage to the employed biomolecules. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Mittler, Gerhard

    2008-01-01

    CaT skin and MCF-7 breast cancer cell lines were established. Quantitative PCR and an enzymatic assay were used to quantify the reporter mRNA and protein levels, respectively. Proteins binding to the CPEs were identified by RNA-immunoprecipitation (IP) and quantitative mass spectroscopy. RESULTS: The wild......-type p53 3'UTR reduced mRNA steady state levels of the reporter gene and point mutations in the CPEs rescued the mRNA steady state levels in the MCF-7 cells, but not in the HaCaT cells. In both cell lines, the CPEs had a significant effect on translation of the reporter and influenced the effect of UV...... irradiation. Several proteins (including GAPDH, heterogeneous nuclear ribonucleoprotein (hnRNP) D and A/B) were identified from the MCF-7 cytoplasmic extracts that bound specifically to the CPEs. CONCLUSION: Two conserved CPEs in the p53 3'UTR regulate stability and translation of a reporter mRNA in non...

  1. Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44.

    Science.gov (United States)

    Xu, Ding; Yang, Lichen; Wang, Yu; Wang, Gejiao; Rensing, Christopher; Zheng, Shixue

    2018-03-19

    Elemental selenium nanoparticles (SeNPs) are useful in medicine, environmental remediation and in material science. Biosynthesized SeNPs (BioSeNPs) by bacteria are cheap, eco-friendly and have a lower cytotoxicity in comparison with chemically synthesized ones. Organic matters were found to cap on the surface of BioSeNPs, but the functions were still not entirely clear. The purified BioSeNPs were coated in a thick layer of organic substrates observed by transmission electron microscopy (TEM). Fourier Transform Infrared (FT-IR) and quantitative detection of the coating agents showed that one gram of purified BioSeNPs bound 1069 mg proteins, 23 mg carbohydrates and only very limited amounts of lipids. Proteomics of BioSeNPs showed more than 800 proteins bound to BioSeNPs. Proteins enriched in charged amino acids are the major factor thought to govern the formation process and stabilization of BioSeNPs in bacteria. In view of the results reported here, a schematic model for the molecular mechanism of BioSeNPs formation in bacteria is proposed. These findings are helpful for the artificial green synthesis of stable SeNPs under specific condition and guiding the surface modification of SeNPs for medicine application.

  2. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion

    Science.gov (United States)

    Pečová, M.; Šebela, M.; Marková, Z.; Poláková, K.; Čuda, J.; Šafářová, K.; Zbořil, R.

    2013-03-01

    In this work, magnetosomes produced by microorganisms were chosen as a suitable magnetic carrier for covalent immobilization of thermostable trypsin conjugates with an expected applicability for efficient and rapid digestion of proteins at elevated temperatures. First, a biogenic magnetite was isolated from Magnetospirillum gryphiswaldense and its free surface was coated with the natural polysaccharide chitosan containing free amino and hydroxy groups. Prior to covalent immobilization, bovine trypsin was modified by conjugating with α-, β- and γ-cyclodextrin. Modified trypsin was bound to the magnetic carriers via amino groups using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling reagents. The magnetic biomaterial was characterized by magnetometric analysis and electron microscopy. With regard to their biochemical properties, the immobilized trypsin conjugates showed an increased resistance to elevated temperatures, eliminated autolysis, had an unchanged pH optimum and a significant storage stability and reusability. Considering these parameters, the presented enzymatic system exhibits properties that are superior to those of trypsin forms obtained by other frequently used approaches. The proteolytic performance was demonstrated during in-solution digestion of model proteins (horseradish peroxidase, bovine serum albumin and hen egg white lysozyme) followed by mass spectrometry. It is shown that both magnetic immobilization and chemical modification enhance the characteristics of trypsin making it a promising tool for protein digestion.

  3. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion

    International Nuclear Information System (INIS)

    Pečová, M; Šebela, M; Marková, Z; Poláková, K; Čuda, J; Šafářová, K; Zbořil, R

    2013-01-01

    In this work, magnetosomes produced by microorganisms were chosen as a suitable magnetic carrier for covalent immobilization of thermostable trypsin conjugates with an expected applicability for efficient and rapid digestion of proteins at elevated temperatures. First, a biogenic magnetite was isolated from Magnetospirillum gryphiswaldense and its free surface was coated with the natural polysaccharide chitosan containing free amino and hydroxy groups. Prior to covalent immobilization, bovine trypsin was modified by conjugating with α-, β- and γ-cyclodextrin. Modified trypsin was bound to the magnetic carriers via amino groups using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling reagents. The magnetic biomaterial was characterized by magnetometric analysis and electron microscopy. With regard to their biochemical properties, the immobilized trypsin conjugates showed an increased resistance to elevated temperatures, eliminated autolysis, had an unchanged pH optimum and a significant storage stability and reusability. Considering these parameters, the presented enzymatic system exhibits properties that are superior to those of trypsin forms obtained by other frequently used approaches. The proteolytic performance was demonstrated during in-solution digestion of model proteins (horseradish peroxidase, bovine serum albumin and hen egg white lysozyme) followed by mass spectrometry. It is shown that both magnetic immobilization and chemical modification enhance the characteristics of trypsin making it a promising tool for protein digestion. (paper)

  4. Using the fluorescence red edge effect to assess the long-term stability of lyophilized protein formulations.

    Science.gov (United States)

    Qian, Ken K; Grobelny, Pawel J; Tyagi, Madhusudan; Cicerone, Marcus T

    2015-04-06

    Nanosecond relaxation processes in sugar matrices are causally linked through diffusional processes to protein stability in lyophilized formulations. Long-term protein degradation rates track mean-squared displacement (⟨u(2)⟩) of hydrogen atoms in sugar glasses, a parameter describing dynamics on a time scale of picoseconds to nanoseconds. However, measurements of ⟨u(2)⟩ are usually performed by neutron scattering, which is not conducive to rapid formulation screening in early development. Here, we present a benchtop technique to derive a ⟨u(2)⟩ surrogate based on the fluorescence red edge effect. Glycerol, lyophilized trehalose, and lyophilized sucrose were used as model systems. Samples containing 10(-6) mole fraction of rhodamine 6G, a fluorophore, were excited at either 532 nm (main peak) or 566 nm (red edge), and the ⟨u(2)⟩ surrogate was determined based the corresponding Stokes shifts. Results showed reasonable agreement between ⟨u(2)⟩ from neutron scattering and the surrogate from fluorescence, although deviations were observed at very low temperatures. We discuss the sources of the deviations and suggest technique improvements to ameliorate these. We expect that this method will be a valuable tool to evaluate lyophilized sugar matrices with respect to their ability to protect proteins from diffusion-limited degradation processes during long-term storage. Additionally, the method may have broader applications in amorphous pharmaceutical solids.

  5. Radiation stability of protein crystals grown by nanostructured templates: synchrotron microfocus analysis

    International Nuclear Information System (INIS)

    Pechkova, Eugenia; Tropiano, Giuseppe; Riekel, Christian; Nicolini, Claudio

    2004-01-01

    X-ray radiation damage of lysozyme single crystals by an intense monochromatic beam from a focussed third-generation synchrotron radiation source has been studied. The preliminary results show a significantly higher resistance to synchrotron radiation of lysozyme microcrystals produced by means of nanotechnology-based template with respect to those prepared by classical methodology. The implications of this finding for protein crystallography are discussed

  6. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions

    OpenAIRE

    Cieplak, Andrzej Stanis?aw

    2017-01-01

    Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates' morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer's and related disorders. Unfortunately, our present comprehension of foldin...

  7. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution.

    Science.gov (United States)

    Sarparanta, Mirkka; Bimbo, Luis M; Rytkönen, Jussi; Mäkilä, Ermei; Laaksonen, Timo J; Laaksonen, Päivi; Nyman, Markus; Salonen, Jarno; Linder, Markus B; Hirvonen, Jouni; Santos, Hélder A; Airaksinen, Anu J

    2012-03-05

    Rapid immune recognition and subsequent elimination from the circulation hampers the use of many nanomaterials as carriers to targeted drug delivery and controlled release in the intravenous route. Here, we report the effect of a functional self-assembled protein coating on the intravenous biodistribution of (18)F-labeled thermally hydrocarbonized porous silicon (THCPSi) nanoparticles in rats. (18)F-Radiolabeling enables the sensitive and easy quantification of nanoparticles in tissues using radiometric methods and allows imaging of the nanoparticle biodistribution with positron emission tomography. Coating with Trichoderma reesei HFBII altered the hydrophobicity of (18)F-THCPSi nanoparticles and resulted in a pronounced change in the degree of plasma protein adsorption to the nanoparticle surface in vitro. The HFBII-THCPSi nanoparticles were biocompatible in RAW 264.7 macrophages and HepG2 liver cells making their intravenous administration feasible. In vivo, the distribution of the nanoparticles between the liver and spleen, the major mononuclear phagocyte system organs in the body, was altered compared to that of uncoated (18)F-THCPSi. Identification of the adsorbed proteins revealed that certain opsonins and apolipoproteins are enriched in HFBII-functionalized nanoparticles, whereas the adsorption of abundant plasma components such as serum albumin and fibrinogen is decreased.

  8. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  9. Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover.

    Science.gov (United States)

    Windoffer, Reinhard; Borchert-Stuhlträger, Monika; Leube, Rudolf E

    2002-04-15

    Desmosomes are prominent cell adhesion structures that are major stabilizing elements, together with the attached cytoskeletal intermediate filament network, of the cytokeratin type in epithelial tissues. To examine desmosome dynamics in tightly coupled cells and in situations of decreased adhesion, fluorescent desmosomal cadherin desmocollin 2a (Dsc2a) chimeras were stably expressed in human hepatocellular carcinoma-derived PLC cells (clone PDc-13) and in Madin-Darby canine kidney cells (clone MDc-2) for the continuous monitoring of desmosomes in living cells. The hybrid polypeptides integrated specifically and without disturbance into normal-appearing desmosomes that occurred in association with typical cytokeratin filament bundles. Tracking of labeled adhesion sites throughout the cell cycle by time-lapse fluorescence microscopy revealed that they were immobile and that they maintained their structural integrity for long periods of time. Time-space diagrams further showed that desmosomal positioning was tightly controlled, even during pronounced cell shape changes, although the desmosomal arrays extended and contracted, suggesting that they were interconnected by a flexible system with intrinsic elasticity. Double-fluorescence microscopy detecting Dsc2a chimeras together with fluorescent cytokeratin 18 chimeras revealed the association and synchronous movement of labeled desmosomes and fluorescent cytokeratin filaments. Only a minor destabilization of desmosomes was observed during mitosis, demonstrated by increased diffuse plasma membrane fluorescence and the fusion of desmosomes into larger structures. Desmosomes did not disappear completely at any time in any cell, and residual cytokeratin filaments remained in association with adhesion sites throughout cell division. On the other hand, a rapid loss of desmosomes was observed upon calcium depletion, with irreversible uptake of some desmosomal particles. Simultaneously, diffusely distributed desmosomal

  10. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Xinghong Dai

    2013-08-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP, while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM, we determine three-dimensional structures of HCMV capsid (no pp150 and virion (with pp150 at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.

  11. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis.

    Science.gov (United States)

    Frei dit Frey, Nicolas; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe

    2010-05-01

    Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death-associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.

  12. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein

    DEFF Research Database (Denmark)

    Klukkert, Marten; Van De Weert, Marco; Fanø, Mathias

    2015-01-01

    The objective of this study was to investigate the influence of compaction on the conformation of trypsin, its transition temperature (Tm ) of unfolding, and its folding reversibility after thermal denaturation. Plain trypsin was compacted at 40-382 MPa. Pressure-induced changes in the trypsin...... was performed to determine the Tm as well as the folding reversibility after thermal denaturation of the reconstituted samples. It was found that compacted samples showed reduced activity accompanied by an altered secondary structure. Conformational changes that occur in the solid state were partially...... reversible upon tablet reconstitution. Aqueous-state IR spectroscopy combined with partial least squares was shown to be a powerful tool to follow irreversible structural changes and evaluate sample bioactivity. Besides its conformation, the thermal stability of trypsin was altered as a result of the applied...

  13. Analysis of Conformational Stability of Abnormal Prion Protein Aggregates across the Spectrum of Creutzfeldt-Jakob Disease Prions

    Science.gov (United States)

    Cescatti, Maura; Saverioni, Daniela; Capellari, Sabina; Tagliavini, Fabrizio; Kitamoto, Tetsuyuki; Ironside, James; Giese, Armin

    2016-01-01

    ABSTRACT The wide phenotypic variability of prion diseases is thought to depend on the interaction of a host genotype with prion strains that have self-perpetuating biological properties enciphered in distinct conformations of the misfolded prion protein PrPSc. This concept is largely based on indirect approaches studying the effect of proteases or denaturing agents on the physicochemical properties of PrPSc aggregates. Furthermore, most data come from studies on rodent-adapted prion strains, making current understanding of the molecular basis of strains and phenotypic variability in naturally occurring diseases, especially in humans, more limited. To fill this gap, we studied the effects of guanidine hydrochloride (GdnHCl) and heating on PrPSc aggregates extracted from 60 sporadic Creutzfeldt-Jakob disease (CJD) and 6 variant CJD brains. While denaturation curves obtained after exposure of PrPSc to increasing GdnHCl concentrations showed similar profiles among the 7 CJD types analyzed, PrPSc exposure to increasing temperature revealed significantly different and type-specific responses. In particular, MM1 and VV2, the most prevalent and fast-replicating CJD types, showed stable and highly resistant PrPSc aggregates, whereas VV1, a rare and slowly propagating type, revealed unstable aggregates that easily dissolved at low temperature. Taken together, our results indicate that the molecular interactions mediating the aggregation state of PrPSc, possibly enciphering strain diversity, are differently targeted by GdnHCl, temperature, and proteases. Furthermore, the detected positive correlation between the thermostability of PrPSc aggregates and disease transmission efficiency makes inconsistent the proposed hypothesis that a decrease in conformational stability of prions results in an increase in their replication efficiency. IMPORTANCE Prion strains are defined as infectious isolates propagating distinctive phenotypic traits after transmission to syngeneic hosts

  14. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  15. The impact of particle preparation methods and polymorphic stability of lipid excipients on protein distribution in microparticles

    DEFF Research Database (Denmark)

    Liu, Jingying; Christophersen, Philip C; Yang, Mingshi

    2017-01-01

    into SLM prepared with different excipients, i.e. trimyristin (TG14), glyceryl distearate (GDS), and glyceryl monostearate (GMS), by water-oil-water (w/o/w) or solid-oil-water (s/o/w) method. The distribution of lysozyme in SLM and the release of the protein from SLM were evaluated by confocal laser...... formulated by the w/o/w method or evenly distributed in TG14 SLM prepared by the s/o/w method. Stability study at 37 °C revealed that only TG14 SLM made by the w/o/w method was able to maintain the lysozyme amount both on the particle surface and released from the SLM. Elevated storage temperature induced...

  16. Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2.

    Directory of Open Access Journals (Sweden)

    Svetlana Rajkumar Maurya

    Full Text Available Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2, one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 - 13,000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol(-1 for full-length hVDAC-2 and ∼23 kcal mol(-1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.

  17. CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase

    Science.gov (United States)

    Singh, Amir Kumar; Pati, Uttam

    2015-01-01

    In patient with Alzheimer’s disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin–proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIPUbox domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53’s DNA-binding conformation and its binding upon 5′ UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP–BACE1–p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD. PMID:25773675

  18. n --> pi* Interaction and n)(pi Pauli repulsion are antagonistic for protein stability.

    Science.gov (United States)

    Jakobsche, Charles E; Choudhary, Amit; Miller, Scott J; Raines, Ronald T

    2010-05-19

    In many common protein secondary structures, such as alpha-, 3(10), and polyproline II helices, an n --> pi* interaction places the adjacent backbone amide carbonyl groups in close proximity to each other. This interaction, which is reminiscent of the Burgi-Dunitz trajectory, involves delocalization of the lone pairs (n) of the oxygen (O(i-1)) of a peptide bond over the antibonding orbital (pi*) of C(i)=O(i) of the subsequent peptide bond. Such a proximal arrangement of the amide carbonyl groups should be opposed by the Pauli repulsion between the lone pairs (n) of O(i-1) and the bonding orbital (pi) of C(i)=O(i). We explored the conformational effects of this Pauli repulsion by employing common peptidomimetics, wherein the n --> pi* interaction is attenuated while the Pauli repulsion is retained. Our results indicate that this Pauli repulsion prevents the attainment of such proximal arrangement of the carbonyl groups in the absence of the n --> pi* interaction. This finding indicates that the poor mimicry of the amide bond by many peptidomimetics stems from their inability to partake in the n --> pi* interaction and emphasizes the quantum-mechanical nature of the interaction between adjacent amide carbonyl groups in proteins.

  19. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal); Ivanova, Galya [Universidade do Porto, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias (Portugal); Coelho, Manuel, E-mail: mcoelho@fe.up.pt [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal)

    2012-09-15

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 {+-} 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (<20 {mu}m), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH-polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30-50 % over time, compared to free CH molecules. In cellular medium at 37 Degree-Sign C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  20. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress.

    Science.gov (United States)

    Zhang, You-Wei; Brognard, John; Coughlin, Chris; You, Zhongsheng; Dolled-Filhart, Marisa; Aslanian, Aaron; Manning, Gerard; Abraham, Robert T; Hunter, Tony

    2009-08-28

    ATR and Chk1 are two key protein kinases in the replication checkpoint. Activation of ATR-Chk1 has been extensively investigated, but checkpoint termination and replication fork restart are less well understood. Here, we report that DNA damage not only activates Chk1, but also exposes a degron-like region at the carboxyl terminus of Chk1 to an Fbx6-containing SCF (Skp1-Cul1-F box) E3 ligase, which mediates the ubiquitination and degradation of Chk1 and, in turn, terminates the checkpoint. The protein levels of Chk1 and Fbx6 showed an inverse correlation in both cultured cancer cells and in human breast tumor tissues. Further, we show that low levels of Fbx6 and consequent impairment of replication stress-induced Chk1 degradation are associated with cancer cell resistance to the chemotherapeutic agent, camptothecin. We propose that Fbx6-dependent Chk1 degradation contributes to S phase checkpoint termination and that a defect in this mechanism might increase tumor cell resistance to certain anticancer drugs.

  1. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

  2. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  3. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  4. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    -like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans -complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. Copyright © 2017 American Society for Microbiology.

  5. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics

    Science.gov (United States)

    Gul, Ahmet; Erman, Burak

    2018-03-01

    Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.

  6. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models.

    Science.gov (United States)

    Staines, Katherine A; Prideaux, Matt; Allen, Steve; Buttle, David J; Pitsillides, Andrew A; Farquharson, Colin

    2016-06-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. © 2015 The Authors. Journal of

  7. Stabilization of the prostate-specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim-1 in prostate cancer cells.

    Science.gov (United States)

    Padmanabhan, Achuth; Gosc, Eliza B; Bieberich, Charles J

    2013-05-01

    Loss of NKX3.1 is an early and consistent event in prostate cancer and is associated with increased proliferation of prostate epithelial cells and poor prognosis. NKX3.1 stability is regulated post-translationally through phosphorylation at multiple sites by several protein kinases. Here, we report the paradoxical stabilization of the prostate-specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim-1 in prostate cancer cells. Pharmacologic Pim-1 inhibition using the small molecule inhibitor CX-6258 decreased steady state levels and half-life of NKX3.1 protein but mRNA was not affected. This effect was reversed by inhibition of the 26S-proteasome, demonstrating that Pim-1 protects NKX3.1 from proteasome-mediated degradation. Mass spectrometric analyses revealed Thr89, Ser185, Ser186, Ser195, and Ser196 as Pim-1 phospho-acceptor sites on NKX3.1. Through mutational analysis, we determined that NKX3.1 phosphorylation at Ser185, Ser186, and within the N-terminal PEST domain is essential for Pim-1-mediated stabilization. Further, we also identified Lys182 as a critical residue for NKX3.1 stabilization by Pim-1. Pim-1-mediated NKX3.1 stabilization may be important in maintaining normal cellular homeostasis in normal prostate epithelial cells, and may maintain basal NKX3.1 protein levels in prostate cancer cells. Copyright © 2012 Wiley Periodicals, Inc.

  8. Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability.

    Science.gov (United States)

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke

    2015-04-01

    Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions.

    Science.gov (United States)

    Cieplak, Andrzej Stanisław

    2017-01-01

    Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates' morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer's and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer's amyloid β and tau, Parkinson's α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid

  10. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability

    Directory of Open Access Journals (Sweden)

    Kong Sun-Young

    2008-10-01

    Full Text Available Abstract Background Elucidating the molecular mechanisms by which tumors become resistant to Herceptin is critical for the treatment of Her2-overexpressed metastatic breast cancer. Methods To further understand Herceptin resistance mechanisms at the molecular level, we used comparative proteome approaches to analyze two human breast cancer cell lines; Her2-positive SK-BR-3 cells and its Herceptin-resistant SK-BR-3 (SK-BR-3 HR cells. Results Heat-shock protein 27 (HSP27 expression was shown to be upregulated in SK-BR-3 HR cells. Suppression of HSP27 by specific siRNA transfection increased the susceptibility of SK-BR-3 HR cells to Herceptin. In the presence of Herceptin, Her2 was downregulated in both cell lines. However, Her2 expression was reduced by a greater amount in SK-BR-3 parent cells than in SK-BR-3 HR cells. Interestingly, co-immunoprecipitation analysis showed that HSP27 can bind to Her2. In the absence of Herceptin, HSP27 expression is suppressed and Her2 expression is reduced, indicating that downregulation of Her2 by Herceptin can be obstructed by the formation of a Her2-HSP27 complex. Conclusion Our present study demonstrates that upregulated HSP27 in human breast cancer cells can reduce Herceptin susceptibility by increasing Her2 protein stability.

  11. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells

    International Nuclear Information System (INIS)

    Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter; Zha Xiliang

    2007-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis

  12. The Stress Protein/Chaperone Grp94 Counteracts Muscle Disuse Atrophy by Stabilizing Subsarcolemmal Neuronal Nitric Oxide Synthase

    Science.gov (United States)

    Vitadello, Maurizio; Gherardini, Jennifer

    2014-01-01

    Abstract Aims: Redox and growth-factor imbalance fosters muscle disuse atrophy. Since the endoplasmic-reticulum chaperone Grp94 is required for folding insulin-like growth factors (IGFs) and for antioxidant cytoprotection, we investigated its involvement in muscle mass loss due to inactivity. Results: Rat soleus muscles were transfected in vivo and analyzed after 7 days of hindlimb unloading, an experimental model of muscle disuse atrophy, or standard caging. Increased muscle protein carbonylation and decreased Grp94 protein levels (pmuscle atrophy regulators identified 160 kDa neuronal nitric oxide synthase (nNOS) as a new Grp94 partner. Unloading was demonstrated to untether nNOS from myofiber subsarcolemma; here, we show that such nNOS localization, revealed by means of NADPH-diaphorase histochemistry, appeared preserved in unloaded myofibers expressing recombinant Grp94, compared to those transfected with the empty vector or deleted Grp94 cDNA (p<0.02). Innovation: Grp94 interacts with nNOS and prevents its untethering from sarcolemma in unloaded myofibers. Conclusion: Maintenance of Grp94 expression is sufficient to counter unloading atrophy and oxidative stress by mechanistically stabilizing nNOS-multiprotein complex at the myofiber sarcolemma. Antioxid. Redox Signal. 20, 2479–2496. PMID:24093939

  13. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions.

    Directory of Open Access Journals (Sweden)

    Andrzej Stanisław Cieplak

    Full Text Available Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates' morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer's and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer's amyloid β and tau, Parkinson's α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and

  14. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B.

    Directory of Open Access Journals (Sweden)

    Ángeles Bañares-Hidalgo

    Full Text Available Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B, along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment.

  15. Self-Assembling Peptide Surfactants A6K and A6D Adopt a-Helical Structures Useful for Membrane Protein Stabilization

    Directory of Open Access Journals (Sweden)

    Furen Zhuang

    2011-10-01

    Full Text Available Elucidation of membrane protein structures have been greatly hampered by difficulties in producing adequately large quantities of the functional protein and stabilizing them. A6D and A6K are promising solutions to the problem and have recently been used for the rapid production of membrane-bound G protein-coupled receptors (GPCRs. We propose that despite their short lengths, these peptides can adopt α-helical structures through interactions with micelles formed by the peptides themselves. These α-helices are then able to stabilize α-helical motifs which many membrane proteins contain. We also show that A6D and A6K can form β-sheets and appear as weak hydrogels at sufficiently high concentrations. Furthermore, A6D and A6K together in sodium dodecyl sulfate (SDS can form expected β-sheet structures via a surprising α-helical intermediate.

  16. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  18. Multi-scale thermal stability of a hard thermoplastic protein-based material

    Science.gov (United States)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-09-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.

  19. Expression, purification and characterization of a novel double-sites mutant of the single-chain sweet-tasting protein monellin (MNEI) with both improved sweetness and stability.

    Science.gov (United States)

    Zheng, Weiwei; Yang, Liu; Cai, Chenggu; Ni, Jinfeng; Liu, Bo

    2018-03-01

    The sweet protein monellin has high sweet potency with limited stability. In this study, 3 double-sites mutants (E2N/E23A, E2N/Y65R and E23A/Y65R) of the single-chain monellin (MNEI) were constructed. The proteins were expressed in E. coli BL21 and purified to homogeneity by nickel affinity chromatography with yields above 10 mg/L cell culture. Introduction of a sweeter mutant E2N into E23A or Y65R (E2N/E23A and E2N/Y65R) led to about 3-fold increase of sweetness, while addition of a more stable mutant E23A into E2N or Y65R (E2N/E23A and E23A/Y65R) resulted in improved thermal stability (about 10 °C). The results indicate that residues E2 and E23 mediate the sweetness and thermal stability of the protein, respectively. Multiple mutations of different residues (E2N/E23A) led to an additive performance with both improved sweetness and stability, suggesting that the sweetness and stability could be modulated by the independent molecular mechanism. The sweeter and thermal stable variant has a potential in further industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Global shape and pH stability of ovorubin, an oligomeric protein from the eggs of Pomacea canaliculata.

    Science.gov (United States)

    Dreon, Marcos S; Ituarte, Santiago; Ceolín, Marcelo; Heras, Horacio

    2008-09-01

    Ovorubin, a 300-kDa thermostable oligomer, is the major egg protein from the perivitellin fluid that surrounds the embryos of the apple snail Pomacea canaliculata. It plays essential roles in embryo development, including transport and protection of carotenoids, protease inhibition, photoprotection, storage, and nourishment. Here, we report ovorubin dimensions and global shape, and test the role of electrostatic interactions in conformational stability by analyzing the effects of pH, using small-angle X-ray scattering (SAXS), transmission electron microscopy, CD, and fluorescence and absorption spectroscopy. Analysis of SAXS data shows that ovorubin is an anisometric particle with a major axis of 130 A and a minor one varying between 63 and 76 A. The particle shape was not significantly affected by the absence of the cofactor astaxanthin. The 3D model presented here is the first for an invertebrate egg carotenoprotein. The quaternary structure is stable over a wide pH range (4.5-12.0). At a pH between 2.0 and 4.0, a reduction in the gyration radius and a loss of tertiary structure are observed, although astaxanthin binding is not affected and only minor alterations in secondary structure are observed. In vitro pepsin digestion indicates that ovorubin is resistant to this protease action. The high stability over a considerable pH range and against pepsin, together with the capacity to bear temperatures > 95 degrees C, reinforces the idea that ovorubin is tailored to withstand a wide variety of conditions in order to play its key role in embryo protection during development.

  1. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus.

    Directory of Open Access Journals (Sweden)

    Nastassia Havarushka

    Full Text Available Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15 °C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50 °C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface.

  2. Unexpectedly strong energy stabilization inside the hydrophobic core of small protein Rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Vondrášek, Jiří; Bendová, Lada; Klusák, Vojtěch; Hobza, Pavel

    2005-01-01

    Roč. 127, č. 8 (2005), s. 2615-2619 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA400550510 Institutional research plan: CEZ:AV0Z4055905 Keywords : hydrophobic core * globular proteins * stabilization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  3. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability.

    Science.gov (United States)

    Mensink, Maarten A; Van Bockstal, Pieter-Jan; Pieters, Sigrid; De Meyer, Laurens; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J; De Beer, Thomas

    2015-12-30

    Sugars are often used as stabilizers of protein formulations during freeze-drying. However, not all sugars are equally suitable for this purpose. Using in-line near-infrared spectroscopy during freeze-drying, it is shown here that hydrogen bond formation during freeze-drying, under secondary drying conditions in particular, can be related to the preservation of the functionality and structure of proteins during storage. The disaccharide trehalose was best capable of forming hydrogen bonds with the model protein, lactate dehydrogenase, thereby stabilizing it, followed by the molecularly flexible oligosaccharide inulin 4kDa. The molecularly rigid oligo- and polysaccharides dextran 5kDa and 70kDa, respectively, formed the least amount of hydrogen bonds and provided least stabilization of the protein. It is concluded that smaller and molecularly more flexible sugars are less affected by steric hindrance, allowing them to form more hydrogen bonds with the protein, thereby stabilizing it better. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1.

    Directory of Open Access Journals (Sweden)

    Katsiaryna Skryhan

    Full Text Available Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1 responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1 that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2 that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1, thioredoxin m4 (Trxm4 and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC. AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%. Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%. In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these

  5. Wilms' tumor 1-associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability.

    Science.gov (United States)

    Tang, Jingyuan; Wang, Feng; Cheng, Gong; Si, Shuhui; Sun, Xi; Han, Jie; Yu, Hao; Zhang, Wei; Lv, Qiang; Wei, Ji-Fu; Yang, Haiwei

    2018-02-27

    Wilms' tumor 1-associating protein (WTAP) plays an important role in physiological processes and the development of tumor such as cell cycle regulation. The regulation of cell cycle is mainly dependent on cyclins and cyclin-dependent protein kinases (CDKs). Recent studies have shown that CDKs are closely related to the tumor diagnosis, progression and response to treatment. However, their specific biological roles and related mechanism in renal cell carcinoma (RCC) remain unknown. Quantitative real-time PCR, western blotting and immunohistochemistry were used to detect the expression of WTAP and CDK2. The survival analysis was adopted to explore the association between WTAP expression and the prognosis of RCC. Cells were stably transfected with lentivirus approach and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of WTAP in RCC. RNA immunoprecipitation, Luciferase reporter assay and siRNA were employed to identify the direct binding sites of WTAP with CDK2 transcript. Colony formation assay was conducted to confirm the function of CDK2 in WTAP-induced growth promoting. In RCC cell lines and tissues, WTAP was significantly over-expressed. Compared with patients with low expression of WTAP, patients with high expression of WTAP had lower overall survival rate. Additionally, cell function test indicated that cell proliferation abilities in WTAP over-expressed group were enhanced, while WTAP knockdown showed the opposite results. Subcutaneous xenograft tumor model displayed that knockdown of WTAP could impede tumorigenesis in vivo. Mechanism study exhibited that CDK2 expression was positively associated with the expression of WTAP. Moreover, WTAP stabilized CDK2 transcript to enhance CDK2 expression via binding to 3'-UTR of CDK2 transcript. Additionally, specific inhibitors of CDK2 activity and small interfering RNA (siRNA) of CDK2 expression inhibited WTAP-mediated promotion of proliferation. These

  6. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1.

    Science.gov (United States)

    Skryhan, Katsiaryna; Cuesta-Seijo, Jose A; Nielsen, Morten M; Marri, Lucia; Mellor, Silas B; Glaring, Mikkel A; Jensen, Poul E; Palcic, Monica M; Blennow, Andreas

    2015-01-01

    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%). In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is

  7. Stability ofLactobacillus rhamnosusGG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate.

    Science.gov (United States)

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Macnaughtan, William; Parmenter, Christopher; Fisk, Ian D

    2017-09-01

    The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (κ-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of L. rhamnosus GG. Losses of L. rhamnosus GG throughout the drying process ranged from 0.87 to 3.06 log CFU/g for the systems without WPC, losses were significantly reduced to 0 to 1.17 log CFU/g in the presence of WPC. Storage stability (over 25d) of L. rhamnosus GG at both tested temperatures (4 and 25 °C), in descending order, was κ-CAR/LBG > HSA > GEL > LSA = PEC. In addition, supplementation of film forming agents with WPC led to a 1.8- to 6.5-fold increase in shelf-life at 4 °C (calculated on the WHO/FAO minimum requirements of 6 logCFU/g), and 1.6-4.3-fold increase at 25 °C. Furthermore probiotic films based on HSA/WPC and κ-CAR/LBG/WPC blends had both acceptable mechanical and barrier properties.

  8. Recombinant expression and purification of T4 phage Hoc, Soc, gp23, gp24 proteins in native conformations with stability studies.

    Directory of Open Access Journals (Sweden)

    Paulina Miernikiewicz

    Full Text Available Understanding the biological activity of bacteriophage particles is essential for rational design of bacteriophages with defined pharmacokinetic parameters and to identify the mechanisms of immunobiological activities demonstrated for some bacteriophages. This work requires highly purified preparations of the individual phage structural proteins, possessing native conformation that is essential for their reactivity, and free of incompatible biologically active substances such as bacterial lipopolysaccharide (LPS. In this study we describe expression in E. coli and purification of four proteins forming the surface of the bacteriophage T4 head: gp23, gp24, gphoc and gpsoc. We optimized protein expression using a set of chaperones for effective production of soluble proteins in their native conformations. The assistance of chaperones was critical for production of soluble gp23 (chaperone gp31 of T4 phage and of gpsoc (chaperone TF of E. coli. Phage head proteins were purified in native conditions by affinity chromatography and size-exclusion chromatography. Two-step LPS removal allowed immunological purity grade with the average endotoxin activity less than 1 unit per ml of protein preparation. The secondary structure and stability of the proteins were studied using circular dichroism (CD spectrometry, which confirmed that highly purified proteins preserve their native conformations. In increasing concentration of a denaturant (guanidine hydrochloride, protein stability was proved to increase as follows: gpsoc, gp23, gphoc. The denaturation profile of gp24 protein showed independent domain unfolding with the most stable larger domain. The native purified recombinant phage proteins obtained in this work were shown to be suitable for immunological experiments in vivo and in vitro.

  9. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway.

    Science.gov (United States)

    Shang, Zeng-Fu; Tan, Wei; Liu, Xiao-Dan; Yu, Lan; Li, Bing; Li, Ming; Song, Man; Wang, Yu; Xiao, Bei-Bei; Zhong, Cai-Gao; Guan, Hua; Zhou, Ping-Kun

    2015-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.

  10. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Mittler, Gerhard

    2008-01-01

    BACKGROUND: The 3' untranslated region (UTR) of p53 mRNA contains two conserved U-rich sequences resembling cytoplasmic polyadenylation elements (CPE). It is not known if these sequences regulate p53 expression by post-transcriptional mechanisms. MATERIALS AND METHODS: Stable p53 3'UTR reporter Ha......-type p53 3'UTR reduced mRNA steady state levels of the reporter gene and point mutations in the CPEs rescued the mRNA steady state levels in the MCF-7 cells, but not in the HaCaT cells. In both cell lines, the CPEs had a significant effect on translation of the reporter and influenced the effect of UV...... irradiation. Several proteins (including GAPDH, heterogeneous nuclear ribonucleoprotein (hnRNP) D and A/B) were identified from the MCF-7 cytoplasmic extracts that bound specifically to the CPEs. CONCLUSION: Two conserved CPEs in the p53 3'UTR regulate stability and translation of a reporter mRNA in non...

  11. Light backscatter fiber optic sensor: a new tool for predicting the stability of pork emulsions containing antioxidative potato protein hydrolysate.

    Science.gov (United States)

    Nieto, Gema; Xiong, Youling L; Payne, Fred; Castillo, Manuel

    2015-02-01

    The objective of this study was to determine whether light backscatter response from fresh pork meat emulsions is correlated to final product stability indices. A specially designed fiber optic measurement system was used in combination with a miniature fiber optic spectrometer to determine the intensity of light backscatter within the wavelength range 300-1100 nm (UV/VIS/NIR) at different radial distances (2, 2.5 and 3mm) with respect to the light source in pork meat emulsions with two fat levels (15%, 30%) and two levels (0, 2.5%) of the natural antioxidant hydrolyzed potato protein (HPP). Textural parameters (hardness, deformability, cohesiveness and breaking force), cooking loss, TBARS (1, 2, 3, and 7 days of storage at 4 °C) and CIELAB color coordinates of cooked emulsions were measured. The light backscatter was directly correlated with cooking losses, color, breaking force and TBARS. The optical configuration proposed would compensate for the emulsion heterogeneity, maximizing the existing correlation between the optical signal and the emulsion quality metrics.

  12. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat

    Directory of Open Access Journals (Sweden)

    Mariam Sabbar

    2017-09-01

    Full Text Available Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p. during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD cycle and in complete darkness (DD. At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir- of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances.

  13. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  14. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation

    DEFF Research Database (Denmark)

    Holm, Jeppe; Dasmeh, Pouria; Kepp, Kasper Planeta

    2016-01-01

    that predicts multi-site ΔΔG as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1 kcal...

  15. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage.

    Science.gov (United States)

    Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann

    2017-11-15

    Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Association of circadian rhythm genes ARNTL/BMAL1 and CLOCK with multiple sclerosis.

    Science.gov (United States)

    Lavtar, Polona; Rudolf, Gorazd; Maver, Aleš; Hodžić, Alenka; Starčević Čizmarević, Nada; Živković, Maja; Šega Jazbec, Saša; Klemenc Ketiš, Zalika; Kapović, Miljenko; Dinčić, Evica; Raičević, Ranko; Sepčić, Juraj; Lovrečić, Luca; Stanković, Aleksandra; Ristić, Smiljana; Peterlin, Borut

    2018-01-01

    Prevalence of multiple sclerosis varies with geographic latitude. We hypothesized that this fact might be partially associated with the influence of latitude on circadian rhythm and consequently that genetic variability of key circadian rhythm regulators, ARNTL and CLOCK genes, might contribute to the risk for multiple sclerosis. Our aim was to analyse selected polymorphisms of ARNTL and CLOCK, and their association with multiple sclerosis. A total of 900 Caucasian patients and 1024 healthy controls were compared for genetic signature at 8 SNPs, 4 for each of both genes. We found a statistically significant difference in genotype (ARNTL rs3789327, P = 7.5·10-5; CLOCK rs6811520 P = 0.02) distributions in patients and controls. The ARNTL rs3789327 CC genotype was associated with higher risk for multiple sclerosis at an OR of 1.67 (95% CI 1.35-2.07, P = 0.0001) and the CLOCK rs6811520 genotype CC at an OR of 1.40 (95% CI 1.13-1.73, P = 0.002). The results of this study suggest that genetic variability in the ARNTL and CLOCK genes might be associated with risk for multiple sclerosis.

  17. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G. [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada); Pacioni, Natalia L. [Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, INFIQC, Departamento de Quimica Organica (Argentina); Poblete, Horacio [Center for Bioinformatics and Molecular Simulations, Universidad de Talca (Chile); Scaiano, J. C., E-mail: tito@photo.chem.uottawa.ca [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada)

    2013-01-15

    Thermally denatured human serum albumin interacts with {approx}3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH{sub 2} blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank's buffer, Tris-HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag{sup +} ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH{sub 2} in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH{sub 2} blocking, leading primarily to cubes and plates with sizes around 5-15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  18. The role of surface electrostatics on the stability, function and regulation of human cystathionine β-synthase, a complex multidomain and oligomeric protein.

    Science.gov (United States)

    Pey, Angel L; Majtan, Tomas; Kraus, Jan P

    2014-09-01

    Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Huawen Lin

    Full Text Available Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs and small insertions/deletions (indels among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3 in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  20. Coniferyl Aldehyde Reduces Radiation Damage Through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo-Young [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Hae-June [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Nam, Joo-Won; Seo, Eun-Kyoung [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Yun-Sil, E-mail: yslee0425@ewha.ac.kr [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of)

    2015-03-15

    Purpose: We previously screened natural compounds and found that coniferyl aldehyde (CA) was identified as an inducer of HSF1. In this study, we further examined the protective effects of CA against ionizing radiation (IR) in normal cell system. Methods and Materials: Western blotting and reverse transcription-polymerase chain reaction tests were performed to evaluate expression of HSF1, HSP27, and HSP70 in response to CA. Cell death and cleavage of PARP and caspase-3 were analyzed to determine the protective effects of CA in the presence of IR or taxol. The protective effects of CA were also evaluated using animal models. Results: CA increased stability of the HSF1 protein by phosphorylation at Ser326, which was accompanied by increased expression of HSP27 and HSP70. HSF1 phosphorylation at Ser326 by CA was mediated by EKR1/2 activation. Cotreatment of CA with IR or taxol in normal cells induced protective effects with phosphorylation- dependent patterns at Ser326 of HSF1. The decrease in bone marrow (BM) cellularity and increase of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive BM cells by IR were also significantly inhibited by CA in mice (30.6% and 56.0%, respectively). A549 lung orthotopic lung tumor model indicated that CA did not affect the IR-mediated reduction of lung tumor nodules, whereas CA protected normal lung tissues from the therapeutic irradiation. Conclusions: These results suggest that CA may be useful for inducing HSF1 to protect against normal cell damage after IR or chemotherapeutic agents.

  1. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.

    Science.gov (United States)

    Uehara, Norihisa; Yoshizawa, Katsuhiko; Tsubura, Airo

    2012-07-01

    Vorinostat is a histone deacetylase inhibitor that blocks cancer cell proliferation through the regulation of cyclin-dependent kinase inhibitors. We, herein, examined the involvement of S-phase kinase-associated protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1), the components of the SCFSkp2-Cks1 (Skp1/Cul1/F-box protein) ubiquitin ligase complex, in the regulation of p27 and p21 during vorinostat-induced growth arrest of MDA-MB-231 and MCF-7 human breast cancer cells. Vorinostat significantly reduced BrdU incorporation in MDA-MB-231 and MCF-7 cells, which was associated with increased p27 and p21 protein levels without concomitant induction of p27 mRNA. Vorinostat-induced accumulation of p27 and p21 proteins was inversely correlated with the mRNA and protein levels of Skp2 and Cks1. Cycloheximide chase analysis revealed that vorinostat increased the half-life of p27 and p21 proteins. The accumulation of p27 and p21 proteins was attenuated by forced expression of Skp2 and Cks1, which conferred resistance to the vorinostat-induced S-phase reduction. These results suggest that vorinostat-induced growth arrest may be in part due to the enhanced protein stability of p27 and p21 through the downregulation of Skp2 and Cks1.

  2. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2015-07-01

    The objective of this study was to investigate product performance of freeze dried l-arginine/sucrose-based formulations under variation of excipient weight ratios, l-arginine counter ions and formulation pH as a matrix to stabilize a therapeutic monoclonal antibody (MAb) during freeze drying and shelf life. Protein and placebo formulations were lyophilized at aggressive primary drying conditions and key attributes of the freeze dried solids were correlated to their thermal properties and critical formulation temperature. Stability (physical) during processing and long-term storage of the MAb in different formulations was assessed by SE-HPLC. Thermal properties of the mixtures were greatly affected by the type of l-arginine counter ion. High glass transition temperatures were achieved by adding multivalent acids, whereas the temperature values significantly decreased in the presence of chloride ions. All mixtures were stable during freeze drying, but storage stability varied for the different preparations and counter ions. For l-arginine-based formulations, the protein was most stable in the presence of chloride ion, showing no obvious correlation to estimated global mobility of the glass. Besides drying behavior and thermal properties of the freeze dried solids, the counter ion of l-arginine must be considered relevant for protein shelf life stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. The HCM-linked W792R mutation in cardiac myosin binding protein-C reduces C6 FnIII domain stability.

    Science.gov (United States)

    Smelter, Dan F; De Lange, Willem J; Cai, Wenxuan; Ge, Ying; Ralphe, John C

    2018-02-16

    Cardiac myosin binding protein-C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue (mECT) constructs. Based on complete conservation of tryptophan at this location in FnIII domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII-domain, destabilizing the mutant protein. Adenoviral transduction of the wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance but not equivalent protein levels with W792R compared to WT controls. mECT constructs expressing W792R demonstrated abnormal contractile kinetics compared to WT that were nearly identical to cMyBP-C deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability, and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of haploinsufficiency.

  4. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus Lipase T6 for enhanced stability in methanol.

    Science.gov (United States)

    Dror, Adi; Shemesh, Einav; Dayan, Natali; Fishman, Ayelet

    2014-02-01

    The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production.

  5. Protein Engineering by Random Mutagenesis and Structure-Guided Consensus of Geobacillus stearothermophilus Lipase T6 for Enhanced Stability in Methanol

    Science.gov (United States)

    Dror, Adi; Shemesh, Einav; Dayan, Natali

    2014-01-01

    The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production. PMID:24362426

  6. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Pelayo, Andres; Yu, Sen

    2018-01-01

    The encapsulation of fish oil in electrosprayed capsules using whey protein and carbohydrates (pullulan and dextran or glucose syrup) mixtures as glassy wall materials was studied. Capsules with fish oil emulsified by using only a rotor-stator emulsification exhibited higher oxidative stability.......9 ± 0.4 meq/kg oil and 1-penten-3-ol of 1161.0 ± 222.0 ng/g oil). This finding may be attributed to differences in oxygen permeability between both types of capsules. These results indicated the potential of both combinations of whey protein, pullulan, and dextran or glucose syrup as shell materials...

  7. Increased Acid Stability of the Hemagglutinin Protein Enhances H5N1 Influenza Virus Growth in the Upper Respiratory Tract but Is Insufficient for Transmission in Ferrets

    OpenAIRE

    Zaraket, Hassan; Bridges, Olga A.; Duan, Susu; Baranovich, Tatiana; Yoon, Sun-Woo; Reed, Mark L.; Salomon, Rachelle; Webby, Richard J.; Webster, Robert G.; Russell, Charles J.

    2013-01-01

    Influenza virus entry is mediated by the acidic-pH-induced activation of hemagglutinin (HA) protein. Here, we investigated how a decrease in the HA activation pH (an increase in acid stability) influences the properties of highly pathogenic H5N1 influenza virus in mammalian hosts. We generated isogenic A/Vietnam/1203/2004 (H5N1) (VN1203) viruses containing either wild-type HA protein (activation pH 6.0) or an HA2-K58I point mutation (K to I at position 58) (activation pH 5.5). The VN1203-HA2-...

  8. Inhibition of HIV-1 infection in humanized mice and metabolic stability of protein phosphatase-1-targeting small molecule 1E7-03

    OpenAIRE

    Lin, Xionghao; Kumari, Namita; DeMarino, Catherine; Kont, Yasemin Saygideğer; Ammosova, Tatiana; Kulkarni, Amol; Jerebtsova, Marina; Vazquez-Meves, Guelaguetza; Ivanov, Andrey; Dmytro, Kovalskyy; Üren, Aykut; Kashanchi, Fatah; Nekhai, Sergei

    2017-01-01

    We recently identified the protein phosphatase-1 - targeting compound, 1E7-03 which inhibited HIV-1 in vitro. Here, we investigated the effect of 1E7-03 on HIV-1 infection in vivo by analyzing its metabolic stability and antiviral activity of 1E7-03 and its metabolites in HIV-1 infected NSG-humanized mice. 1E7-03 was degraded in serum and formed two major degradation products, DP1 and DP3, which bound protein phosphatase-1 in vitro. However, their anti-viral activities were significantly redu...

  9. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    for stability of the structure have likewise been identified and are Phe5, Ala9, Val12, Leu15, Leu25, Tyr28, Lys32, Gln33, Tyr73, Val77, and Leu80. Essentially, all of the conserved residues that maintain the stability are hydrophobic residues at the interface of the helices. Only one conserved polar residue...

  10. Characteristic of sausages as influenced by partial replacement of pork back-fat using pre-emulsified soybean oil stabilized by fish proteins isolate

    Directory of Open Access Journals (Sweden)

    Nopparat Cheetangdee

    2017-08-01

    Full Text Available Substitution of animal fat with oils rich in n-3 is a feasible way to improve the nutritive value of comminuted meat product. The effect on the characteristics of sausages was investigated of partial replacement of porcine fat with soybean oil (SBO using a pre-emulsification technique. Fish protein isolate (FPI produced from yellow stripe trevally (Selaroides leptolepis was used as an emulsifier to prepare pre-emulsified SBO (preSBO, and its concentration effect (1%, 2% and 3%, w/v was observed in comparison with soy protein isolate (SPI. Substitution of porcine fat using preSBO enhanced the product stability. SPI exhibited better emulsifying ability than FPI. However, FPI was more effective at reinforcing the protein matrix of the sausages than SPI, as suggested by a lowered cooking loss and the restored textural attributes of the sausages formulated with FPI stabilized preSBO. The effective concentration of FPI to improve the product stability was 2%. This work suggested that FPI was promising in the preparation of emulsified meat products.

  11. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP.

    Directory of Open Access Journals (Sweden)

    Dinen D Shah

    Full Text Available Binding immunoglobulin protein (BiP is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE. BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell.

  12. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The cryptochrome-photolyase protein family in diatoms.

    Science.gov (United States)

    König, Sarah; Juhas, Matthias; Jäger, Stefanie; Kottke, Tilman; Büchel, Claudia

    2017-10-01

    The cryptochrome - photolyase family (CPF) consists of homologous flavoproteins having completely different functions involving DNA repair, circadian rhythm and/or photoreception. From the original photolyases, working either as (6-4) or cyclobutane pyrimidine dimer photolyases, the animal- and plant-type cryptochromes, respectively, evolved and also the more intermediate DASH cryptochromes. Whereas animal cryptochromes work mostly in clock-related functions, plant cryptochromes are also directly involved in developmental processes such as hypocotyl elongation or flower induction. In diatoms, all types of cryptochromes and photolyases were predicted from genome sequences. However, up to now only two proteins have been characterised in more detail, CPF1 and CryP. CPF1 is related to animal-type cryptochromes, but works as a (6-4) photolyase in addition to having photoreceptor functions. It was shown to interact with the CLOCK:Bmal1 heterodimer in a heterologous system, and thus is probably involved in clock-related processes. Moreover, CPF1 directly influences transcription. The latter was also true for CryP, which is a cryptochrome distantly related to plant-type cryptochromes. In addition, CryP influences light-harvesting protein accumulation. For all diatom cryptochromes, down-stream signalling has to proceed via interaction partners different from the classical proteins involved in cryptochrome signalling in higher plants, because these candidates are missing in diatoms. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of Snail protein.

    Science.gov (United States)

    Zhang, Yong; Zhang, Xinxin; Ye, Mingxiang; Jing, Pengyu; Xiong, Jie; Han, Zhiping; Kong, Jing; Li, Mengyang; Lai, Xiaofeng; Chang, Ning; Zhang, Jian; Zhang, Jian

    2018-04-10

    The E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBW7α) functions as a putative tumor suppressor in non-small cell lung cancer (NSCLC) due to its regulation of a set of oncogenic proteins associated with cell proliferation and mitosis. Increasing efforts have been focused on the understanding of FBW7 in determining cell cycle progression and apoptosis induction, however, the correlation between FBW7 and tumor metastasis is not fully understood. In this study, we reported a potential anti-metastatic effect of FBW7 in non-small cell lung cancer (NSCLC). In this model, FBW7 inhibited cancer cell metastasis primarily by inducing ubiquitination and proteolysis of the transcriptional factor Snail, which suppressed E-cadherin cell tight junction protein expression. Loss of FBW7 would stabilize the Snail protein, thus, inhibit E-cadherin expression and promote metastasis in vitro and in vivo. Moreover, Snail ubiquitination and degradation were also achieved by pharmacological approach, in which the FBW7 agonist oridonin treatment led to Snail proteolysis. Furthermore, FBW7 silencing stabilized Snail protein and induced epithelial-to mesenchymal transition (EMT), and acquisition of migration and invasion properties in NSCLC. Overall, our study provides new insights into the FBW7-Snail axis in regulating cell migration and invasion, and suggests that targeting FBW7 may be a potent approach to inhibit metastasis in NSCLC. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins.

    Directory of Open Access Journals (Sweden)

    Sheeza Khan

    Full Text Available Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o and functional activity parameters (K m and k cat of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea] ratio, (ii any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea] ratios for RNase-A, lysozyme and α-lactalbumin, respectively.

  16. Stabilization of beta-lactoglobulin by polyols and sugars against temperature-induced denaturation involves diverse and specific structural regions of the protein.

    Science.gov (United States)

    Barbiroli, Alberto; Marengo, Mauro; Fessas, Dimitrios; Ragg, Enzio; Renzetti, Stefano; Bonomi, Francesco; Iametti, Stefania

    2017-11-01

    Temperature sensitivity of bovine milk beta-lactoglobulin (BLG) was assessed in the presence/absence of non-reducing sugars (sucrose and trehalose) and polyols (glycerol and sorbitol). None of them affected the structural features of the protein at room temperature, where the only observed effect was an increased affinity towards hydrophobic probes in the presence of all co-solutes but glycerol. Although most of the observed effects in temperature-ramp experiments are due to entropic effects (fitting within the "preferential exclusion" theory of protein stabilization), this study indicates that each co-solute exhibit different efficacy at stabilizing specific regions of BLG, suggesting that each of them acts in a specific way on the solvent/protein system. The relevance of these observations with respect to systems of practical relevance is discussed, given the widespread use of heat-polymerizing proteins - such as BLG - in many food formulations that very often include significant amounts of sugars and/or polyols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    Science.gov (United States)

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  18. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins.

    Science.gov (United States)

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-05-30

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.

    Science.gov (United States)

    Hierrezuelo, J M; Carnero Ruiz, C

    2015-08-01

    Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Sorafenib overcomes the chemoresistance in HBx-expressing hepatocellular carcinoma cells through down-regulation of HBx protein stability and suppresses HBV gene expression.

    Science.gov (United States)

    Kim, Hye Young; Jung, Hye Uk; Yoo, Seung Hee; Yoo, Ki Soo; Cheong, JaeHun; Park, Bong Soo; Yun, Il; Yoo, Young Hyun

    2014-12-01

    Previous studies have revealed that HBx expression has anti-apoptotic effects, resulting in increased drug resistance in HCC cells. Thus, we examined if sorafenib efficiently induces apoptosis in HBx-overexpressing HCC cells. Noticeably, sorafenib efficiently induced apoptosis, even in HBx-expressing HepG2 cells, indicating that the HBx protein does not attenuate sorafenib-induced apoptosis. We next investigated if sorafenib modulates autophagy, allowing HCC cells to overcome the chemoresistance conferred by the HBx protein. Although autophagy plays a cytoprotective role against sorafenib-induced lethality, sorafenib was effective irrespective of HBx protein overexpression. We next examined if sorafenib exerts its cytotoxic effect via direct effects on the HBx protein. Importantly, sorafenib decreased HBx protein stability through a proteasome-dependent degradation pathway. Moreover, sorafenib decreased HBV gene expression and viral promoter activity. Taken together, sorafenib efficiently induces apoptotic cell death in HBx-expressing HCC cells via the downregulation of the HBx protein, a key factor in the anti-cancer drug resistance observed in HBV-induced HCC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2

    NARCIS (Netherlands)

    van Ooijen, G.; Lukasik, E.; van den Burg, H.A.; Vossen, J.H.; Cornelissen, B.J.C.; Takken, F.L.W.

    2010-01-01

    Race-specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB-ARC-LRR proteins that carry a C-terminal leucine-rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report

  2. The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products.

    Directory of Open Access Journals (Sweden)

    Alessandra Apicella

    Full Text Available In a current procedure for periodontal tissue regeneration, enamel matrix derivative (EMD, which is the active component, is mixed with a propylene glycol alginate (PGA gel carrier and applied directly to the periodontal defect. Exposure of EMD to physiological conditions then causes it to precipitate. However, environmental changes during manufacture and storage may result in modifications to the conformation of the EMD proteins, and eventually premature phase separation of the gel and a loss in therapeutic effectiveness. The present work relates to efforts to improve the stability of EMD-based formulations such as Emdogain™ through the incorporation of arginine, a well-known protein stabilizer, but one that to our knowledge has not so far been considered for this purpose. Representative EMD-buffer solutions with and without arginine were analyzed by 3D-dynamic light scattering, UV-Vis spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy at different acidic pH and temperatures, T, in order to simulate the effect of pH variations and thermal stress during manufacture and storage. The results provided evidence that arginine may indeed stabilize EMD against irreversible aggregation with respect to variations in pH and T under these conditions. Moreover, stopped-flow transmittance measurements indicated arginine addition not to suppress precipitation of EMD from either the buffers or the PGA gel carrier when the pH was raised to 7, a fundamental requirement for dental applications.

  3. Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: influence of muscle on oxidative processes.

    Science.gov (United States)

    Filgueras, R S; Gatellier, P; Aubry, L; Thomas, A; Bauchart, D; Durand, D; Zambiazi, R C; Santé-Lhoutellier, V

    2010-11-01

    Physicochemical characteristics and oxidative stability during storage were determined in Gastrocnemius pars interna (GN) and Iliofiburalis (IF) muscles of Rhea americana. Glycolytic potential (GP) and pH decline of muscles were measured within the first 24 h post mortem. Colour, lipid and protein stability were determined during storage of meat, i.e. 5 days under air-packaging at 4°C, or 28 days under vacuum-packaging at 4°C. In parallel, anti-oxidant status of muscles was estimated by measuring α-tocopherol content and anti-oxidant enzyme activities (superoxide dismutase and catalase), while pro-oxidant status was evaluated by determining haeminic iron and long chain fatty acids (especially polyunsaturated fatty acids). The ultimate pH was similar in both muscles, but the GP value was significantly higher in IF than in GN muscle. Haeminic iron and alpha-tocopherol content differed between muscles, with 30% more haeminic iron (psensorial analysis. Under vacuum-packaging, both muscles showed a high stability of colour and no oxidation of lipids and proteins. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  4. The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD) Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products

    Science.gov (United States)

    Bolisetty, Sreenath; Marascio, Matteo; Gemperli Graf, Anja; Garamszegi, Laszlo; Mezzenga, Raffaele; Fischer, Peter; Månson, Jan-Anders

    2015-01-01

    In a current procedure for periodontal tissue regeneration, enamel matrix derivative (EMD), which is the active component, is mixed with a propylene glycol alginate (PGA) gel carrier and applied directly to the periodontal defect. Exposure of EMD to physiological conditions then causes it to precipitate. However, environmental changes during manufacture and storage may result in modifications to the conformation of the EMD proteins, and eventually premature phase separation of the gel and a loss in therapeutic effectiveness. The present work relates to efforts to improve the stability of EMD-based formulations such as Emdogain™ through the incorporation of arginine, a well-known protein stabilizer, but one that to our knowledge has not so far been considered for this purpose. Representative EMD-buffer solutions with and without arginine were analyzed by 3D-dynamic light scattering, UV-Vis spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy at different acidic pH and temperatures, T, in order to simulate the effect of pH variations and thermal stress during manufacture and storage. The results provided evidence that arginine may indeed stabilize EMD against irreversible aggregation with respect to variations in pH and T under these conditions. Moreover, stopped-flow transmittance measurements indicated arginine addition not to suppress precipitation of EMD from either the buffers or the PGA gel carrier when the pH was raised to 7, a fundamental requirement for dental applications. PMID:26670810

  5. Stress-Stimulated Mitogen-Activated Protein Kinases Control the Stability and Activity of the Cdt1 DNA Replication Licensing Factor ▿

    Science.gov (United States)

    Chandrasekaran, Srikripa; Tan, Ting Xu; Hall, Jonathan R.; Cook, Jeanette Gowen

    2011-01-01

    DNA replication is tightly coordinated both with cell cycle cues and with responses to extracellular signals to maintain genome stability. We discovered that human Cdt1, an essential origin licensing protein whose activity must be restricted to G1 phase, is a substrate of the stress-activated mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). These MAP kinases phosphorylate Cdt1 both during unperturbed G2 phase and during an acute stress response. Phosphorylation renders Cdt1 resistant to ubiquitin-mediated degradation during S phase and after DNA damage by blocking Cdt1 binding to the Cul4 adaptor, Cdt2. Mutations that block normal cell cycle-regulated MAP kinase-mediated phosphorylation interfere with rapid Cdt1 reaccumulation at the end of S phase. Phosphomimetic mutations recapitulate the stabilizing effects of Cdt1 phosphorylation but also reduce the ability of Cdt1 to support origin licensing. Two other CRL4Cdt2 targets, the cyclin-dependent kinase (CDK) inhibitor p21 and the methyltransferase PR-Set7/Set8, are similarly stabilized by MAP kinase activity. These findings support a model in which MAP kinase activity in G2 promotes reaccumulation of a low-activity Cdt1 isoform after replication is complete. PMID:21930785

  6. Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression.

    Science.gov (United States)

    David, Diana; Surendran, Arun; Thulaseedharan, Jissa V; Nair, Asha S

    2018-03-13

    Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immu