WorldWideScience

Sample records for blue organic light-emitting

  1. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    International Nuclear Information System (INIS)

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m2. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  2. Organic optocoupler consisting of an optimized blue organic light emitting diode and an organic photoconductor

    Science.gov (United States)

    El Amrani, A.; Lucas, B.; Antony, R.

    2015-09-01

    We present an optocoupler device based on a blue organic light-emitting diode (OLED) as input unit, and a pentacene photoconductor as output unit. The optocoupler was realized on a transparent glass substrate. The luminance was found larger than 103 cd/m2 with a blue peak emission at 450 nm for the optimized ZnO (120 nm)/ITO (150 nm)/α-NPB (40 nm)/BCP (15 nm)/Alq3 (20 nm)/Al structure. The Ids-Illum/Ids-Dark current ratio, the sensitivity and the current density transfer ratio of the optocoupler are of about 7, 10-1 A/W, and 10-1, respectively. The rise as well as full times were found faster for high bias voltages. The equilibrium regime with less persistent current was reached more quickly, as evidenced by the fast current response for higher bias voltage, indicating a more favorable recombination processes of the charge carriers. The organic optocoupler with a blue OLED reveals promising results; thus, it can be investigated as a good candidates for practical uses in organic optoelectronic circuits with high bias voltages.

  3. Efficient charge balance in blue phosphorescent organic light emitting diodes by two types of mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyung Jin; Lee, Ho Won; Lee, Song Eun; Sun, Yong; Hwang, Kyo Min; Yoo, Han Kyu; Lee, Sung Kyu [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of)

    2015-07-31

    The authors have demonstrated a highly efficient and long-lifetime blue phosphorescent organic light emitting diode (PHOLED) that uses two types of mixed layers. The mixed layers play the role of carrier injection control and exciton generation zone extension. One of the layers is applied for mixing the hole transport layer (HTL) and host material at the HTL side for carrier injection control. The other works as a mixed electron transporting layer (ETL) and host material at the ETL side. The optimized blue PHOLED has been shown to achieve high performance owing to the mixed layer effects. It gave a maximum luminous efficiency of 25.55 cd/A, maximum external quantum efficiency of 13.05%, and lifetime of 7.24 h under 500 cd/m{sup 2}. These results indicate that applying mixed layers is a simple and efficient method that does not require significant structural change. - Highlights: • Highly efficient blue phosphorescent organic light-emitting diode (PHOLEDs) • Hole transporting layer consists with mixed layer for delayed hole injection • The blue PHOLEDs with long lifetime due to suppression of quenching process.

  4. High-brightness blue organic light emitting diodes with different types of guest-host systems

    Science.gov (United States)

    Wang, Xiao; Zhang, Jing-shuang; Peng, Cui-yun; Guo, Kun-ping; Wei, Bin; Zhang, Hao

    2016-03-01

    We demonstrate high-brightness blue organic light emitting diodes (OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene (perylene), di(4-fluorophenyl) amino-di (styryl) biphenyl (DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl (BCzVBi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl (CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.10), (0.15, 0.15) and (0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.

  5. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    International Nuclear Information System (INIS)

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration. (review)

  6. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhang Liying; Li Bin, E-mail: chenping0329@gmail.co, E-mail: syliu@jlu.edu.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2009-03-07

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C{sup 2'})iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C{sup 2})](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A{sup -1} and a maximum luminance of 39 050 cd m{sup -2}. The power efficiency is 8.7 lm W{sup -1} at 100 cd m{sup -2}. Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m{sup -2}.

  7. Electroluminescence enhancement in blue phosphorescent organic light-emitting diodes based on different hosts

    Science.gov (United States)

    Zhang, Wei; Zhang, Fang-hui; Huang, Jin; Zhang, Mai-li; Ma, Ying

    2013-09-01

    Blue phosphorescent organic light-emitting diodes (OLEDs) are fabricated by utilizing the hole transport-type host material of 1,3-bis(carbazol-9-yl)benzene (MCP) combined with the electron transport-type host material of 1,3-bis (triphenylsilyl) benzene (UGH3) with the ratios of 1:0, 8:2 and 6:4, and doping with blue phosphorescent dopant of bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrpic). The device with an optimum concentration proportion of MCP:UGH3 of 8:2 exhibits the maximum current efficiency of 19.18 cd/A at luminance of 35.71 cd/m2 with maintaining Commission Internationale de L'Eclairage (CIE) coordinates of (0.1481, 0.2695), which is enhanced by 35.7% compared with that of 1:0 with (0.1498, 0.2738). The improvements are attributed to the effective carrier injection and transport in emitting layer (EML) because of mixed host materials. In addition, electron and exciton are confined in the EML, and 4,4',4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) and Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane (TAPC) have the high lowest unoccupied molecular orbital (LUMO) energy level and triplet exiton energy.

  8. Improvement of operation voltage and efficiency in inverted blue phosphorescent organic light-emitting devices

    Science.gov (United States)

    Chang, Chih-Hao; Huang, Hao Siang; Su, Yu-De; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Chang, Hsin-Hua

    2013-09-01

    Inverted organic light-emitting diodes (IOLEDs) have drawn considerable attention for use in active-matrix OLED (AMOLED) displays because of their easy integration with n-channel metal-oxide-based thin film transistors (TFTs). The most crucial issue for IOLEDs is the poor electron injection caused by the bottom cathode. According to previous reports, the turn-on voltages of FIrpic-based IOLEDs are within a range from 4 to 8 V. In this study, we focus on developing bottom-emission IOLEDs with low operating voltages through the use of adequate-charge injection materials. We successfully demonstrate a turn-on voltage as low as 3.7 V for blue phosphorescent IOLEDs. The effective electron injection layers (EIL) were constructed by combining an ultrathin aluminum layer, an alkali metal oxide layer and an organic layer doped with alkali metal oxide, allowing for the effective adjustment of the carrier balance in IOLEDs. The peak efficiencies of the IOLEDs reached 15.6%, 31.8 cd/A and 23.4 lm/W. An external nanocomposite scattering layer was used to further improve light extraction efficiency. The IOLEDs equipped with the SiO2 nanocomposite scattering layer respectively provided performance improvements of 1.3 and 1.5 times that of pristine blue phosphorescent IOLEDs at practical luminance levels of 100 cd/m2 and 1000 cd/m2. Through sophisticated EIL and external light-extraction structures, we obtained blue phosphorescent IOLEDs with satisfactory efficiency and low operation voltages, thereby demonstrating the great potential of nanocomposite film for application in IOLEDs.

  9. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    Science.gov (United States)

    Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf

    2015-05-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).

  10. Efficient fluorescent red, green, and blue organic light-emitting devices with a blue host of spirobifluorene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.-H. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China)], E-mail: lerongho@yuntech.edu.tw; Huang, Y.-W.; Wang, Y.-Y. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Chang, H.-Y. [EChem Hightech CO., LTD, Hsin-Chu Industrial Park, Hu-Kou, Hsin-Chu, Taiwan (China)

    2008-06-02

    Efficient fluorescent blue, green, and red (RGB) organic light-emitting devices (OLEDs) were fabricated using a blue host material of pyrimidine-containing spirobifluorene derivative 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl]-9,9'-spirobifluorene (TBPSF) doped with blue dye perylene, green dye 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l] pyrano[6,7,8-ij] quinolizin-11-one (C545T), and red dye 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB), respectively. The brightness and current efficiency of the perylene doped blue device reached 10117 cd/m{sup 2} and 2.97 cd/A. Green emission of the C545T doped device reached 8500 cd/m{sup 2} and 13.0 cd/A. Red emission of the DCJTB doped device can be as high as 9000 cd/m{sup 2} and 2.0 cd/A, respectively. High color purity of the blue (Commission Internationale de L'Eclairage (CIE{sub x,y}) coordinates (CIE, x = 0.27, y = 0.24)), green (CIE, x = 0.19, y = 0.63) and red (CIE, x = 0.62, y = 0.37) emissions were achieved for RGB dyes doped TBPSF OLEDs. High brightness, large current efficiency, and good color purity of TBPSF-based RGB OLEDs were obtained by the configuration optimization device, such as inserting the hole and electron-injection materials, and suitable dopant content and light emitting layer thickness.

  11. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Science.gov (United States)

    Gentle, A. R.; Yambem, S. D.; Burn, P. L.; Meredith, P.; Smith, G. B.

    2016-06-01

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  12. Efficient white phosphorescent organic light-emitting diodes consisting of orange ultrathin and blue mixed host emission layers

    Science.gov (United States)

    Sheng, Ren; Zuo, Liangmei; Xue, Kaiwen; Duan, Yu; Chen, Ping; Cheng, Gang; Zhao, Yi

    2016-08-01

    We have successfully demonstrated highly efficient white phosphorescent organic light-emitting diodes (OLEDs) by inserting an ultrathin non-doped orange layer within blue mixed host emission layer. The key feature of the novel device is the employment of blue mixed host and orange ultrathin layers, resulting in an extended recombination region and more balanced charge carrier. The maximum efficiencies of 33.8 lm W‑1 and 32.2 cd A‑1 are obtained. Moreover, the resulting white device achieves a slight efficiency roll-off and a high luminance at low operating voltage. Our versatile concept suggests a promising simple method to achieve high performance white OLEDs.

  13. Highly efficient organic blue light emitting devices using doped transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, Nico; Reineke, Sebastian; Walzer, Karsten; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Physik/Photophysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Tomkeviciene, Ausra; Grazulevicius, Juozas V. [Department of Organic Technology, Kaunas University of Technology, Kaunas LT-50254 (Lithuania)

    2009-07-01

    In contrast to red and green OLEDs, blue light emitting devices are still far away from the theoretical limit of about 20 % external quantum efficiency. The best results so far have been achieved involving ultrahigh energy gap organosilicon compounds. Due to their poor transport properties, high efficiencies are obtained only at low current densities and high voltages. We used the blue phosphorescent emitter iridium(III)bis[(4,6-di-fluorophenyl)-pyridinato-N,C{sup 2{sup '}}]picolinate (FIrpic) as a dopant in the host material 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole, which possesses both a large triplet exciton energy and good charge carrier transport properties. It was therewith possible to efficiently confine the triplet excitons on the emitting molecules and keep the recombination zone away from the blocking layers. This results in a high external quantum efficiency of 13.1 % at a brightness of 1,000 cd/m{sup 2}. Due to the superior charge carrier injection properties provided by the doped transport layers, this brightness could be achieved at low voltages of only 4.0 V, resulting in a high power efficiency of 22.5 lm/W.

  14. Blue organic light-emitting diode as the electro-optical conversion device for high-speed switching applications

    International Nuclear Information System (INIS)

    Luminance of about 40 mW cm-2 with an emission peak at about 435 nm and the optical pulses of 100 MHz have been obtained from a blue organic light-emitting diode (OLED) based on the N,N'-di(naphtalen-1-yl)-N,N'- diphenylbenzidine emissive layer with the active area of 0.01 mm2. The performance of modulation speed was improved significantly by applying the positive offset voltage in the range of lower voltages. We demonstrate that the OLEDs can be applied to the electro-optical conversion device for high-speed switching applications. (author)

  15. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  16. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2012-06-01

    Full Text Available In this paper, we investigate the carrier injection and transport characteristics in iridium(IIIbis[4,6-(di-fluorophenyl-pyridinato-N,C2']picolinate (FIrpic doped phosphorescent organic light-emitting devices (OLEDs with oxadiazole (OXD as the bipolar host material of the emitting layer (EML. When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD.

  17. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq2) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ)2(acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  18. ORGANIC LIGHT EMITTING DIODE (OLED

    Directory of Open Access Journals (Sweden)

    Aririguzo Marvis Ijeaku

    2015-09-01

    Full Text Available An Organic Light Emitting Diode (OLED is a device composed of an organic layer that emits lights in response to an electrical current. Organic light emitting diodes have advanced tremendously over the past decades. The different manufacturing processes of the OLED itself to several advantages over flat panel displays made with LCD technology which includes its light weight and flexible plastic substrates, wider viewing angles, improved brightness, better power efficiency and quicker response time. However, its drawbacks include shorter life span, poor color balance, poor outdoor performance, susceptibility to water damage etc.The application of OLEDs in electronics is on the increase on daily basics from cameras to cell phones to OLED televisions, etc. Although OLEDs provides prospects for thinner, smarter, lighter and ultraflexible electronics displays, however, due to high cost of manufacturing, it is not yet widely used.

  19. A comparative study of blue, green and yellow light emitting diode structures grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Ramaiah, Kodigala Subba; Su, Y. K.; Chang, S. J.; Chen, C. H.

    2006-02-01

    The blue, green and yellow light emitting diode (LED) structures have been fabricated by metal organic chemical vapor deposition (MOCVD), and characterized by using different techniques, in order to understand the mechanism between these LEDs. Atomic force microscopy (AFM) analysis revealed that the surface roughness value and density of etch pits were different in the blue, green and yellow LEDs. The threading, misfit dislocations, interfacial dislocations, nano-pipe-like structures and quantum dot-like structures, which determine quality of the structures, were observed by transmission electron microscope (TEM) in the LED structures. The reasons for their formation in the layers are now elucidated. The indium composition, period width such as well and barrier widths were determined by simulating experimental high resolution X-ray diffraction (HRXRD) spectra. The In composition obtained by HRXRD and photoluminescence (PL) measurements for the same LED structure was not one and the same due to several reasons. In fact, the InGaN quantum well emission peaks at 2.667 and 2.544 eV of the blue and green LEDs, respectively showed S-shaped character shift, whereas the quantum well peak at 2.219 eV of yellow LEDs did not show any shift in the PL spectra with decreasing temperature. The blue, green and yellow LEDs showed different activation energies.

  20. Carbazolyldibenzofuran-type high-triplet-energy bipolar host material for blue phosphorescent organic light-emitting diodes

    International Nuclear Information System (INIS)

    A high-triplet-energy material, 9′-(4,4′-(phenylphosphoryl)bis(dibenzo[b,d]furan-6,2-diyl)) bis(9H-carbazole) (44DFCzPO), was synthesized as a bipolar host material for blue phosphorescent organic light-emitting diodes (PHOLEDs). 44DFCzPO was synthesized by the selective lithiation of the 4-position of a carbazole-modified dibenzofuran, followed by phosphorylation. 44DFCzPO showed a high triplet energy of 2.91 eV for energy transfer to a blue phosphorescent dopant, and bipolar charge transport properties for balanced hole and electron density in the emitting layer. A high quantum efficiency of 16.7% at a low doping concentration of 3% was obtained using 44DFCzPO as the host in blue PHOLEDs. -- Highlights: • High quantum efficiency and stable film morphology up to 110 °C. • High triplet energy of 2.91 eV for energy transfer to blue dopant. • Carbazolyldibenzofuran type high triplet energy host material

  1. Organic Light-Emitting Transistors

    OpenAIRE

    Karg, Siegfried; Rost-Bietsch, Constance; Riess, Walter; Loi, Maria Antonietta; Murgia, Mauro; Muccini, Michele

    2005-01-01

    A light-emitting OFET with pronounced ambipolar current characteristic has been prepared by co-evaporation of α-quinquethiophene (α-5T) as hole-transport material and ditridecyl-perylene-tetracarboxylic diimide (P13) as electron-transport material. The light intensity is controlled by both the drain-source voltage VDS and the gate voltage VG. Here, we demonstrate the general concept of adjusting electron and hole mobilities by co-evaporation of two different organic semiconductors.

  2. Rational design of charge transport molecules for blue organic light emitting devices

    Science.gov (United States)

    Padmaperuma, Asanga; Cosimbescu, Lelia; Koech, Phillip; Polikarpov, Evgueni; Swensen, James; Gaspar, Daniel

    2012-02-01

    The efficiency and stability of blue OLEDs continue to be the primary roadblock to developing organic solid-state white lighting as well as power efficient displays. It is generally accepted that such high quantum efficiency can be achieved with the use of organometallic phosphor doped OLEDs. The transport layers can be designed to increase the carrier density as a way to reduce the drive voltage. We have developed a comprehensive library of charge transporting molecules using combination of theoretical modeling and experimental evidence. Our work focuses on using chemical structure design and computational methods to develop host, transport, emitter, and blocking materials for high efficiency blue OLEDs, along with device architectures to take advantage of these new materials. Through chemical modification of materials we are able to influence both the charge balance and emission efficiency of OLEDs, and understand the influence of the location of photon emission in OLEDs as a function of minor chemical modifications of host and electron transport materials. Design rules, structure-property relationships and results from state of the art OLEDs will be presented.

  3. Efficient triplet exciton confinement of white organic light-emitting diodes using a heavily doped phosphorescent blue emitter

    International Nuclear Information System (INIS)

    We demonstrated efficient white electrophosphorescence with a heavily doped phosphorescent blue emitter and a triplet exciton blocking layer (TEBL) inserted between the hole transporting layer (HTL) and the emitting layer (EML). We fabricated white organic light-emitting diodes (WOLEDs) (devices A, B, C, and D) using a phosphorescent red emitter; bis(2-phenylquinolinato)-acetylacetonate iridium III (Ir(pq)2acac) doped in the host material; N,N'-dicarbazolyl-3,5-benzene (mCP) as the red EML and the phosphorescent blue emitter; bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) doped in the host material; p-bis(triphenylsilyly)benzene (UGH2) as the blue EML. The properties of device B, which demonstrate a maximum luminous efficiency and external quantum efficiency of 26.83 cd/A and 14.0%, respectively, were found to be superior to the other WOLED devices. It also showed white emission with CIEx,y coordinates of (x = 0.35, y = 0.35) at 8 V. Device D, which has a layer of P-type 4,4',4''-tri(N-carbazolyl)triphenylamine (TCTA) material between the HTL and TEBL, was compared with device A to determine the 430 nm emission peak.

  4. Approaches to blue light emitting polymers

    International Nuclear Information System (INIS)

    Blue-light emitting polymers are important for full colour displays. Blue- light emitting polymers, such as poly(fluorene)s have been reported, but tend to be soluble in the conjugated form. The aim of the project was to produce insoluble polymers, prepared via processible soluble precursor polymers, so that multilayer devices could be easily fabricated. Multilayer devices are often required for more efficient light emission. The target materials were derivatives of poly(p-phenylenevinylene) (PPV), a green-yellow emitting polymer. To blue shift the emission of PPV, bulky substituents, namely chloro, phenyl and alkyl, were attached to the vinylic linkage. These bulky substituents were incorporated to introduce steric interactions between the side group and the backbone phenyl protons, to shorten the effective conjugation length and increase the HOMO-LUMO energy gap. Chloro substituents quenched the fluorescence. Phenyl substituents resulted in highly conjugated precursor polymers with low molecular weights, showing blue- green to green emission in the conjugated form. Alkyl substituted PPV derivatives, prepared via chloro or xanthate precursors, were blue-light emitting conjugated polymers, which were electroluminescent in ITO/polymer/AI devices. The PL quantum yields were found to be up to 38%. The incorporation of electron withdrawing groups into the polymers was attempted, to lower the barrier to electron injection. Chloro groups quenched fluorescence and methylsulfone substituents resulted in insoluble polymers, probably due to cross-linking. However a copolymer containing methylsulfone electron withdrawing groups could be prepared. Phenylsulfone substituents were found to give fluorescent polymers which were soluble in the precursor form. (author)

  5. Blue emitting fluorophores of phenyleneethynylenes substituted by diphenylethenyl terminal groups for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Phenyleneethynylene motifs substituted by diphenylethenyl groups at both ends were prepared successfully by use of double elimination protocol of β-substituted sulfones for introducing phenyleneethynylene arrays followed by Wittig-Horner reaction for introducing diphenylethenyl moiety. The hybrid blue fluorophores exhibited strong emission even in the solid-state films (ΦF ≥ 0.60) while, in CHCl3 solution, incorporation of substituents on the central phenylene unit significantly enhanced emission efficiency up to ΦF = 0.57. The OLED devices with use of these blue fluorophores as an emitting material provided maximum external quantum efficiency of ηext = 2.4%

  6. Blue electroluminescent materials based on 2,7-distyrylfluorene for organic light-emitting diodes

    International Nuclear Information System (INIS)

    A series of blue fluorescent 9,9-diethyl-2,7-distyryl-9H-fluorene derivatives with various capping moieties such as diphenylamino; diphenylphosphino; triphenylsilyl; phenoxy; phenylmercapto; phenylselenoxy; and triphenymethyl groups were synthesized using the Honor-Emmons reaction. The highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels were characterized with a photoelectron spectrometer and rationalized with quantum mechanical density functional theory calculations. The electroluminescent properties were explored through the fabrication of multilayer devices with a structure of Indium-tin-oxide/N,N'-diphenyl-N,N'-(1-napthyl)-(1,1'-phenyl)-4,4'-diamine/ 2-methyl-9,10-di(2-naphthyl)anthracene:blue dopants (5-15 wt.%)/4,7-diphenyl-1,10-phenanthroline/lithium quinolate/Al. All devices, except that using NPh2, exhibited a Commission Internationale de I'Eclairage (CIE) y value less than 0.19. The best luminous efficiency of 3.87 cd/A and external quantum efficiency of 2.65% at 20 mA/cm2 were obtained in a device comprising the 4-phenylsulfanyl capped 9,9-diethyl-2,7-distyrylfluorene derivative with CIE coordinates (0.16, 0.18).

  7. Hybrid white organic light-emitting devices based on phosphorescent iridium–benzotriazole orange–red and fluorescent blue emitters

    International Nuclear Information System (INIS)

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange–red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N1,C3] iridium acetylacetonate, Ir(TBT)2(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1′;4′,1″]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT)2(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N′-(4,4′-(1E,1′E)-2,2′-(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange–red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy)3 ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: ► An iridium-based orange–red phosphor Ir(TBT)2(acac) was applied in hybrid white OLEDs. ► Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. ► Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  8. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  9. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huishan, E-mail: yanghuishan1697@163.com

    2013-10-15

    White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq{sub 3} (5 nm)/QAD(y nm)/Alq{sub 3}(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m{sup 2} at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88–90, which was essentially

  10. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer

    International Nuclear Information System (INIS)

    White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq3 (5 nm)/QAD(y nm)/Alq3(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq3) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m2 at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88–90, which was essentially voltage

  11. High-power-efficiency hybrid white organic light-emitting diodes with a single emitting layer doped with blue delayed fluorescent and yellow phosphorescent emitters

    International Nuclear Information System (INIS)

    High-efficiency hybrid white organic light-emitting diodes (HWOLEDs) with a blue thermally activated delayed fluorescent (TADF) emitter and a yellow phosphorescent emitter doped in a single emitting layer were developed. Exciton harvesting by the blue TADF and yellow phosphorescent emitters rendered both singlet and triplet excitons to contribute to the white emission, which leads to a high quantum efficiency of 22.4% and a power efficiency of 60.3 lm W−1 in the HWOLEDs. In addition, the electroluminescence spectra of the HWOLEDs were kept stable from 100 cd m−2 to 5, 000 cd m−2. (paper)

  12. Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes

    International Nuclear Information System (INIS)

    By using p-bis(p − N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode with a maximum external quantum efficiency of 6.19% and a stable lifetime at a high initial current density of 0.0375 A/cm2. We demonstrate that the change in the thicknesses of organic layers affects the operating voltage and luminous efficiency greater than the lifetime. The lifetime being independent of thickness is beneficial in achieving high-quality full-colour display devices and white lighting sources with multi-emitters. (atomic and molecular physics)

  13. Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices

    Science.gov (United States)

    Chen, Xifang; Yan, Ruolin; Zhang, Wenxia; Fan, Jiyang

    2016-04-01

    The underlying mechanism behind the blue/red color-switchable luminescence in the C8 carbon quantum dots (CQDs)/organic hybrid light-emitting devices (LEDs) is investigated. The study shows that the increasing bias alters the energy-level spatial distribution and reduces the carrier potential barrier at the CQDs/organic layer interface, resulting in transition of the carrier transport mechanism from quantum tunneling to direct injection. This causes spatial shift of carrier recombination from the organic layer to the CQDs layer with resultant transition of electroluminescence from blue to red. By contrast, the pure CQDs-based LED exhibits green-red electroluminescence stemming from recombination of injected carriers in the CQDs.

  14. A single blue nanorod light emitting diode

    Science.gov (United States)

    Hou, Y.; Bai, J.; Smith, R.; Wang, T.

    2016-05-01

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm‑2 is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities.

  15. Thermally enhanced blue light-emitting diode

    Science.gov (United States)

    Xue, Jin; Zhao, Yuji; Oh, Sang-Ho; Herrington, William F.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji; Ram, Rajeev J.

    2015-09-01

    We investigate thermoelectric pumping in wide-bandgap GaN based light-emitting diodes (LEDs) to take advantage of high junction temperature rather than avoiding the problem of temperature-induced efficiency droop through external cooling. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with nearly no reduction in the wall-plug efficiency (i.e., electrical-optical energy conversion efficiency) at bias V active region by a combination of electrical work and Peltier heat (phonons) drawn from the lattice. In this optimal operating regime at 615 K, the LED injection current (3.26 A/cm2) is of similar magnitude to the operating point of common high power GaN based LEDs (5-35 A/cm2). This result suggests the possibility of removing bulky heat sinks in current high power LED products thus realizing a significant cost reduction for solid-state lighting.

  16. Organic light-emitting diodes based on 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit as the deep-blue emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Young; Lee, Seul Bee [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Seok Jae [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-02-27

    A series of 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit, which prevented molecular aggregation and self-quenching effect, was designed and synthesized. By using various bridges between the 9-(2-naphthyl)anthracene group and the triphenylsilane unit, five deep-blue emitters were obtained and applied as non-doped emitting materials in organic light-emitting diodes (OLEDs) with a device structure of indium–tin-oxide (ITO) (180 nm)/4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB) (50 nm)/emitting materials (30 nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30 nm)/lithium quinolate (Liq) (2 nm)/Aluminium (100 nm). All devices showed blue emissions and their electroluminescence efficiencies are sensitive to the structural changes of the emitting materials. In particular, a device using 9-(2-naphthalenyl)-10-[6-(triphenylsilyl)-2-naphthalenyl]-anthracene (4) exhibited high luminous, power and quantum efficiencies of 2.28 cd/A, 1.42 lm/W and 2.40% at 20 mA/cm{sup 2}, respectively, and this device showed the deep blue emission with the CIE coordinates of (0.16, 0.10) at 6.0 V. - Highlights: • We synthesized 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit. • We study the conjugation-length effect on the electroluminescence properties. • The bulky triphenylsilane-anthracene derivatives show resistance to self-aggregation.

  17. Organic light-emitting diodes based on 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit as the deep-blue emitting layer

    International Nuclear Information System (INIS)

    A series of 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit, which prevented molecular aggregation and self-quenching effect, was designed and synthesized. By using various bridges between the 9-(2-naphthyl)anthracene group and the triphenylsilane unit, five deep-blue emitters were obtained and applied as non-doped emitting materials in organic light-emitting diodes (OLEDs) with a device structure of indium–tin-oxide (ITO) (180 nm)/4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB) (50 nm)/emitting materials (30 nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30 nm)/lithium quinolate (Liq) (2 nm)/Aluminium (100 nm). All devices showed blue emissions and their electroluminescence efficiencies are sensitive to the structural changes of the emitting materials. In particular, a device using 9-(2-naphthalenyl)-10-[6-(triphenylsilyl)-2-naphthalenyl]-anthracene (4) exhibited high luminous, power and quantum efficiencies of 2.28 cd/A, 1.42 lm/W and 2.40% at 20 mA/cm2, respectively, and this device showed the deep blue emission with the CIE coordinates of (0.16, 0.10) at 6.0 V. - Highlights: • We synthesized 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit. • We study the conjugation-length effect on the electroluminescence properties. • The bulky triphenylsilane-anthracene derivatives show resistance to self-aggregation

  18. Quinoline-Substituted 10-(naphthalene-7-yl)anthracene Derivatives for Blue Fluorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Chanwoo; Park, Soo Na; Lee, Seul Bee; Kim, Young Seok; Lee, Ho Won; Kim, Young Kwan; Yoon, Seung Soo

    2016-02-01

    In this study, we have designed and synthesized blue emitters based on quinoline-substituted 10-(naphthalene-7-yl)anthracene. Particularly, a material exhibited highly efficient blue electroluminescence with CIE coordinates of (0.15, 0.18). PMID:27433688

  19. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    Science.gov (United States)

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-02-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500-650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm.W-1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs.

  20. Blue organic light-emitting diodes with low driving voltage and maximum enhanced power efficiency based on buffer layer MoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Khizar-ul-Haq, E-mail: khizar_bhr@yahoo.co [School of Materials Science and Engineering, Shanghai University, Jiading Shanghai 201800 (China); Khan, M.A.; Jiang, X.Y. [School of Materials Science and Engineering, Shanghai University, Jiading Shanghai 201800 (China); Zhang, Z.L. [School of Materials Science and Engineering, Shanghai University, Jiading Shanghai 201800 (China)] [Key Laboratories of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072 (China); Zhang, X.W. [School of Materials Science and Engineering, Shanghai University, Jiading Shanghai 201800 (China); Wei, Bin [School of Materials Science and Engineering, Shanghai University, Jiading Shanghai 201800 (China)] [Key Laboratories of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072 (China); Wei, J.M.; Zhang Liang; Li Jun [School of Materials Science and Engineering, Shanghai University, Jiading Shanghai 201800 (China)

    2009-10-15

    Blue organic light-emitting devices based on wide bandgap host material, 2-(t-butyl)-9, 10-di-(2-naphthyl) anthracene (TBADN), blue fluorescent styrylamine dopant, p-bis(p-N,N-diphenyl-amino-styryl)benzene (DSA-Ph) have been realized by using molybdenum oxide (MoO{sub 3}) as a buffer layer and 4,7-diphenyl-1,10-phenanthroline (BPhen) as the ETL. The typical device structure used was glass substrate/ITO/MoO{sub 3} (5 nm)/NPB (30 nm)/[TBADN: DSA-Ph (3 wt%)](35 nm)/BPhen (12 nm)/LiF (0.8 nm)/Al (100 nm). It was found that the MoO{sub 3}-parallel BPhen-based device shows the lowest driving voltage and highest power efficiency among the referenced devices. At the current density of 20 mA/cm{sup 2}, its driving voltage and power efficiency are 5.4 V and 4.7 Lm/W, respectively, which is independently reduced 46%, and improved 74% compared with those the m-MTDATA-parallel Alq{sub 3} is based on, respectively. The J-V curves of 'hole-only' devices reveal that a small hole injection barrier between MoO{sub 3}-parallel NPB leads to a strong hole injection, resulting low driving voltage and high power efficiency. The results strongly indicate that carrier injection ability and balance shows a key significance in OLED performance.

  1. Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes

    Science.gov (United States)

    Wang, Zhiqiang; Liu, Wei; Xu, Chen; Ji, Baoming; Zheng, Caijun; Zhang, Xiaohong

    2016-08-01

    Two deep-blue emitting materials 2-tert-butyl-9,10-bis(3,5-diphenylphenyl)anthracene (An-1) and 2-tert-butyl-9,10-bis(3,5-diphenylbiphenyl-4‧-yl)anthracene (An-2) were successfully synthesized by the Pd-catalyzed Suzuki coupling reaction. Both of these compounds have high thermal stabilities and show strong deep-blue emission as solid-state film as well as in n-hexane solution. Two non-doped electroluminescent devices employing An-1 and An-2 as emitting layers were fabricated by vacuum vapor deposition. These devices exhibited highly efficient and stable deep-blue emission with high color purity. The CIE coordinate and maximum EQE of An-1 based device are 4.2% and (0.16, 0.06), respectively. Device based on An-2 achieved a maximum EQE of 4.0% and a CIE coordinate of (0.16, 0.10).

  2. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  3. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  4. Multi-3,3'-Bicarbazole-Substituted Arylsilane Host Materials with Balanced Charge Transport for Highly Efficient Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Sun, Dianming; Zhou, Xiaokang; Li, Huihui; Sun, Xiaoli; Ren, Zhongjie; Ma, Dongge; Yan, Shouke

    2015-08-19

    A series of 3,3'-bicarbazole (mCP)-functionalized tetraphenylsilane derivatives (SimCPx), including bis(3,5-di(9H-carbazol-9-yl)phenyl)diphenylsilane (SimCP2), tris(3,5-di(9H-carbazol-9-yl)phenyl)methylsilane (SimCP3-CH3), tris(3,5-di(9H-carbazol-9-yl)phenyl)phenylsilane (SimCP3-Ph), and tetrakis(3,5-di(9H-carbazol-9-yl)phenyl)silane (SimCP4), serving as bipolar blue hosts for bis[2-(4,6-difluorophenyl)pyridyl-N,C2']iridium(III) (FIrpic), have been synthesized by incorporating different ratios of mCP subunits into a central silicon atom. All of the SimCPx derivatives have wide bandgaps and high triplet energies because of the indirect linkage by silicon between each mCP subunit. The good solubility and high thermal and morphological stability of SimCPx are beneficial for forming amorphous and homogeneous films through solution processing. Density functional theory simulations manifest the better bipolar characteristics for SimCPx using three and four mCP units rather than the represented bipolar host SimCP2. As a result, SimCP4 presents the best electron-transporting ability for charge balance. Consequently, the lowest driving voltage of 4.8 eV, and the favorable maximum efficiencies of 14.2% for external quantum efficiency (28.4 cd A(-1), 13.5 lm W(-1)), are achieved by solution-processed, SimCP4-based blue phosphorescent organic light-emitting diodes as the highest performance among SimCPx, in which 32% improved device efficiencies compared to that of SimCP2 are obtained. It is inspiring to develop efficient bipolar hosts for blue phosphors by just incorporating monopolar carbazole into arylsilanes in two steps. PMID:26252613

  5. Doped and non-doped organic light-emitting diodes based on a yellow carbazole emitter into a blue-emitting matrix

    CERN Document Server

    Choukri, H; Forget, S; Chenais, S; Castex, M C; Geffroy, B; Ades, D; Siove, A; Choukri, Hakim; Fischer, Alexis; Forget, Sebastien; Chenais, Sebastien; Castex, Marie-Claude; Geffroy, Bernard; Ades, Dominique; Siove, Alain

    2007-01-01

    A new carbazole derivative with a 3,3'-bicarbazyl core 6,6'-substituted by dicyanovinylene groups (6,6'-bis(1-(2,2'-dicyano)vinyl)-N,N'-dioctyl-3,3'-bicarbazyl; named (OcCz2CN)2, was synthesized by carbonyl-methylene Knovenagel condensation, characterized and used as a component of multilayer organic light-emitting diodes (OLEDs). Due to its -donor-acceptor type structure, (OcCz2CN)2 was found to emit a yellow light at max=590 nm (with the CIE coordinates x=0.51; y = 0.47) and was used either as a dopant or as an ultra-thin layer in a blue-emitting matrix of 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi). DPVBi (OcCz2CN)2-doped structure exhibited, at doping ratio of 1.5 weight %, a yellowish-green light with the CIE coordinates (x = 0.31; y = 0.51), an electroluminescence efficiency EL=1.3 cd/A, an external quantum efficiency ext= 0.4 % and a luminance L= 127 cd/m2 (at 10 mA/cm2) whereas for non-doped devices utilizing the carbazolic fluorophore as a thin n...

  6. Synthesis and characterization of blue light emitting materials containing imidazole

    International Nuclear Information System (INIS)

    A series of novel imidazole derivatives as blue light emitting materials were synthesized by heck coupling reaction and characterized with respect to their chemical, luminescence and thermal properties. The results were shown that the imidazole derivatives were strongly blue fluorescent (λ = 455-487 nm) with high fluorescence quantum yields (Φf = 0.28-0.63). All of these compounds have excellent thermal properties (382-423 deg. C) due to the molecular structure introduced by imidazole heterocycles, and the imidazole derivatives (M1 and M2) can be polymerized as monomers

  7. All-solution processed transparent organic light emitting diodes.

    Science.gov (United States)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-12-21

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device. PMID:26566172

  8. Nanoengineering of organic light-emitting diodes

    International Nuclear Information System (INIS)

    This thesis reports nanoengineerging of the emission and transport properties of organic light-emitting diodes (LEDs). This is achieved by a control of the electronic material properties and the photonic device properties. A novel class of conjugated materials for electroluminescence (EL) applications is presented, based on successively branching, or dendritic, materials comprising an emissive core and a shielding dendritic architecture. Exciton localisation at the centre of these dendrimers is observed in both luminescence and absorption. A detailed quantum chemical investigation using an exciton model supports these findings and accurately describes the energies and oscillator strengths of transitions in the core and branches. The dendrimer generation describes the degree of branching and gives a direct measure of the separation and interaction between chromophores. Increasing generation is found to lead to a reduction in red tail emission. This correlates with an increase in operating field and LED efficiency. Dendrimer blends with triplet harvesting dendritic phosphors are also investigated and found to exhibit unique emission properties. A numerical device model is presented, which is used to describe the temperature dependence of single layer polymer LEDs by fitting the field-dependent mobility and the barrier to hole injection. The device model is also used to obtain mobility values for the dendrimer materials, which are in excellent agreement with results obtained from time-of-flight measurements. The dendrimer generation is shown to provide a direct control of hopping mobility, which decreases by two orders of magnitude as the dendrimer generation increases from 0 to 3. The photonic properties and spontaneous emission of an LED are modified by incorporating a periodic wavelength scale microstructure into the emitting film. This is found to double the amount of light emitted with no effect on the device current. An investigation of the angular dependence

  9. Blue light emitting diode internal and injection efficiency

    Directory of Open Access Journals (Sweden)

    Ilya E. Titkov

    2012-09-01

    Full Text Available A simple experimental method of light emitting diode (LED injection efficiency (IE determination was suggested. IE and internal quantum efficiency (IQE calculation is an actual and difficult problem in LED science. In this paper IE and IQE of blue LEDs were determined separately. The method is based on electroluminescence data fitting by the modified rate equation model. Efficiency droop caused by Auger recombination and poor injection were taken into account. Only one reasonable assumption was accepted during the calculations: IE tends to 1 at low current densities.

  10. Organic emitters: Light-emitting fabrics

    Science.gov (United States)

    Ortí, Enrique; Bolink, Henk J.

    2015-04-01

    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  11. Biologically Inspired Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications. PMID:27014918

  12. Size effect on efficiency droop of blue light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.B.; Chen, Z.Z. [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Institute of Photonics, University of Strathclyde, Glasgow G4 0NW (United Kingdom); Wang, S.Y.; Zhang, G.Y. [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Gong, Z.; Xie, E.Y.; Chen, Y.J.; Zhang, Y.F.; McKendry, J.; Massoubre, D.; Gu, E.D. [Institute of Photonics, University of Strathclyde, Glasgow G4 0NW (United Kingdom); Rae, B.R.; Henderson, R.K. [Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2012-03-15

    In this paper, the size effects on the efficiency droop (ED) in blue InGaN/GaN quantum well light emitting diode are investigated. The smaller size LEDs can work well under much higher power density, especially when the size is reduced to under 40 micro-meters. It shows a weaker ED in these small LEDs. Time correlated single photon counting (TCSPC) measurements show a longer electroluminescence lifetime for smaller size LEDs, which implicates the nonradiative recombination is reduced. It is likely due to Auger recombination reduction by quantum well (QW) band flattened with the device size decreasing. Cathodoluminescence results indicates that the strain in QWs is relaxed both in the whole pillar and along radial direction of the pillar. The better performance of the smaller size LED is likely attributed to strain relaxation (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Recent Progress toward white organic light emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Tao Yu-Tai

    2004-01-01

    An efficient and stable white organic light emitting diode (WOLED) is highly desirable in potential applications such as lighting, background light source, and full color display.A series of highly fluorescent dyes based on a dipyrazolopyridine skeleton,1,7-diphenyl-l,7-dihydrodipyrazolo[3,4-b,4′,3′-e]pyridine, were synthesized and evaluated as emitting as well as charge-transporting material in the fabrication of electroluminescent devices.Several of the blue derivatives are found to be useful as the source of blue emission in fabricating bright white-emitting devices. The choice of dopants, cathode materials, electron-transporting materials as well as the device configurations greatly affect the emission profile, efficiencies, as well as the device lifetime. The latest progress in achieving a more efficient, color stable, durable white light device will be discussed.

  14. Encapsulation of organic light emitting diodes

    Science.gov (United States)

    Visweswaran, Bhadri

    Organic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary. Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years. To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion. To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads. The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid

  15. [A novel yellow organic light-emitting device].

    Science.gov (United States)

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules. PMID:18844143

  16. Structure optimization of organic light-emitting devices

    Science.gov (United States)

    Wang, Hong; Yu, Jun-Sheng; Li, Lu; Tang, Xiao-Qing; Jiang, Ya-Dong

    2009-03-01

    A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/ N, N'-diphenyl- N, N'-bis(1-naphthyl) (1,1'-biphenyl)-4,4'-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydroxyquinoline aluminum (Alq3)/Mg:Ag has been fabricated by using the vacuum deposition method. The influence of different film thickness of BCP layer on the performance of the OLEDs has been investigated. The results show that when the thickness of the BCP layer film gradually ranges from 0.1-4.0 nm, the electroluminescence (EL) spectra of the OLEDs shift from green to greenish-blue to blue, and the BCP layer acts as the role for the recombination region of charge carriers related to EL spectrum, which enhances the brightness and power efficiency. The power efficiency of the OLEDs reaches to as high as 7.3 lm/W.

  17. Laminated active matrix organic light-emitting devices

    Science.gov (United States)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  18. Theoretical Design of Blue-light-emitting Material Based on 1,2,3-Benzotriazole-based Derivative

    Institute of Scientific and Technical Information of China (English)

    HU Bo; YAO Chan; HUANG Xu-Ri

    2011-01-01

    Theoretically,1,2,3-benzotriazole(BT)-based derivative is designed by the struc-tural tuning in 2,1,3-benzothiadiazole(BTD)-based derivative and presents potential for applications in organic light-emitting diodes(OLEDs).Calculations show that the emission spectrum of BT-based derivative is located at the blue scope,so it can act as a blue-light-emitting material.Importantly,the oscillator strength of emission spectrum is significantly enhanced by replacing BTD with BT,implying it possess large fluorescent intensity.Additionally,BT-based derivative exhibits improved hole transportation with respect to the BTD-based derivative.

  19. Proceedings of the 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004)

    Science.gov (United States)

    Suh, Eun-Kyung; Yoon, Euijoon; Lee, Hyung Jae

    2004-09-01

    The 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004) was held in Gyeongju, Korea, 15-19 March 2004. The purpose of the symposium was to provide a forum for scientists and engineers to discuss recent progress and future trends in the rapidly advancing wide band gap semiconductor science and technologies and their applications in blue laser and light emitting diodes.

  20. A Flexible Blue Light-Emitting Diode Based on ZnO Nanowire/Polyaniline Heterojunctions

    OpenAIRE

    Liu, Y Y; Wang, X. Y.; Cao, Y; X. D. Chen; Xie, S. F.; X. J. ZHENG; Zeng, H. D.

    2013-01-01

    An organic/inorganic light-emitting diode (LED) consisting of n-type vertically aligned ZnO nanowires (NWs) and p-type proton acid doped polyaniline (PANi) is reported. The device was fabricated on flexible indium-tin-oxide (ITO) coated polyethylene terephthalate (PET) substrate. A broad blue light emission band ranging from 390 nm to 450 nm was observed in the electroluminescence (EL) spectra of the device, which was related to the interface recombination of electrons in the conduction band ...

  1. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Yunzi; Nishio, Kazuyuki [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-hiroshima 739-8526 (Japan); Saitow, Ken-ichi, E-mail: saitow@hiroshima-u.ac.jp [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-hiroshima 739-8526 (Japan); Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Higashi-hiroshima 739-8526 (Japan)

    2015-05-18

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6 V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  2. Organic Light Emitting Diodes operation and application in displays

    Directory of Open Access Journals (Sweden)

    M.J. Małachowski

    2009-11-01

    Full Text Available Purpose: The aim of this work is to perform the review of the recent most important results of experimental and theoretical investigations connected with the organic light emitting devices (OLEDs.Design/methodology/approach: The recent achievements in the field of designing, fabricating and clarification of the OLEDs operation have been presented. The possibilities of numerous, present and future applications of these devices have been pointed out.Findings: We show that fundamental differences among organic and inorganic devices result from differences between inorganic and molecular semiconductor materials. No charges are present in OLED devices without charge injection. Emission is due to radiative transitions from the neutral excited states to the ground states. We pointed out the important role that the OLEDs play in display design (even the flexible ones.Research limitations/implications: The main disadvantage of OLEDs is reported to be short their lives (particularly the blue OLED and weak resistivity to moist but improvements are advancing.Originality/value: Our review concerns the most recent experimental and theoretical publications in the OLED investigation. We also show some recent examples of OLEDs application.

  3. Magnetoelectroluminescence in organic light emitting diodes

    CERN Document Server

    Lawrence, Joseph E; Manolopoulos, David E; Hore, P J

    2016-01-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with ex...

  4. Transparent white organic light emitting diodes with improved cathode transparency

    Science.gov (United States)

    Lee, Jeong-Ik; Lee, Jonghee; Lee, Joowon; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-08-01

    We have fabricated transparent white organic light emitting diode (WOLED) for lighting application based on a hybrid white OLED and a phosphorescence white OLED. For the hybrid WOLED, a blue fluorescence emitting layer (FLEML) and green and red phosphorescence emitting layers (PH-EMLs) have been used in the device structure of ITO/hole transporting layer (HTL)/PH-EMLs/interlayer/FL-EML/ETL/LiF/Al. The balanced emissions from the FLEML and the PH-EMLs have been obtained by using appropriate carrier (hole) trapping effects in the PH-EMLs, which resulted in external and power efficiencies of 15 % and 27 lm/W, respectively, at a luminance of 1000 cd/m2 without any out-coupling enhancement. The Commission Internationale de L'Eclairage (CIE) coordinates of this hybrid WOLED is (0.43,0.44) with color rendering index (CRI) of 80 and correlated color temperature (CCT) of 3200 K, respectively, in the bottom emission structure. Based on this hybrid WOLED, we established highly efficient transparent WOLED by introduction of a transparent cathode, and obtained over 19 lm/W of power efficiency at a total luminance of 1000 cd/m2 as well as over 60 % of transmittance at 550 nm with the conventional glass encapsulation. Moreover, when the phosphorescent white OLED was combined with a transparent cathode, the power efficiency was reached up to 24 lm/W of power efficiency at a total luminance of 1000 cd/m2.

  5. Magnetoelectroluminescence in organic light-emitting diodes

    Science.gov (United States)

    Lawrence, Joseph E.; Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2016-06-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.

  6. Towards fully spray coated organic light emitting devices

    Science.gov (United States)

    Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim

    2014-10-01

    Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.

  7. Organic Light-Emitting Diodes Driven by Organic Transistors

    Institute of Scientific and Technical Information of China (English)

    胡远川; 董桂芳; 王立铎; 梁琰; 邱勇

    2004-01-01

    Organic thin-film field-effect transistors (OTFTs) with pentacene as the semiconductor have been fabricated for driving an organic light-emitting diode (OLED). The driving circuit includes two OTFTs and one storage capacitor. The field-effect mobility of the transistors in the driving circuit is more than 0.3 cm2/Vs, and the on/off ratio is larger than 104. The light-emission area of the OLED is 0. 04mm2 and the brightness is larger than 400cd/m2 when the selected line voltage, data line voltage and drive voltage all are -40 V. The responding characteristics and holding characteristics are also researched when the selected line voltage and the date line voltage are changed.

  8. Phosphorescent organic light emitting diodes with high efficiency and brightness

    Science.gov (United States)

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  9. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.; Banerjee, D.

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...

  10. Organic light-emitting diodes from homoleptic square planar complexes

    Science.gov (United States)

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  11. Organic Light-Emitting Devices with Tandem Structure.

    Science.gov (United States)

    Chiba, Takayuki; Pu, Yong-Jin; Kido, Junji

    2016-06-01

    Tandem organic light-emitting devices (OLEDs) have attracted considerable attention for solid-state lighting and flat panel displays because their tandem architecture enables high efficiency and long operational lifetime simultaneously. In the tandem OLED structure, plural light-emitting units (LEUs) are stacked in series through a charge generation layer (CGL) and an electron injection layer (EIL). In this chapter, we focus on the key features of tandem OLEDs for high efficiency and long operational lifetimes. We also demonstrate the effect of the CGL comprising a Lewis acid, an n-type semiconductor metal oxide, and an organic electron-accepting material. We discuss the two types of EILs in tandem OLEDs: alkali metals containing n-type compounds and ultra-thin metals. Finally, we focus on the recent progress of the state-of-the-art solution-processed tandem OLEDs. PMID:27573273

  12. Novel Field Emission Organic Light Emitting Diodes with Dynode

    Institute of Scientific and Technical Information of China (English)

    Meiso YOKOYAMA; LI Chi-Shing; SU Shui-hsiang

    2011-01-01

    This work presents novel field emission organic light emitting diodes (FEOLEDs) with dynode, in which an organic EL light-emitting layer is used instead of an inorganic phosphor thin film in the field emission display (FED). The proposed FEOLEDs introduce field emission electrons into organic light emitting diodes (OLEDs),which exhibit a higher luminous efficiency than conventional OLED. The field emission electrons emitted from the carbon nanotubes (CNTs) cathode and to be amplified by impact the dynode in vacuum. These field emission electrons are injected into the multi-layer organic materials of OLED to increase the electron density. Additionally, the proposed FEOLED increase the luminance of OLED from 10 820 cd/m2 to 24 782 cd/m2 by raising the current density of OLED from an external electron source. The role of FEOLED is to add the quantity of electrons-holes pairs in OLED,which increase the exciton and further increase the luminous efficiency of OLED. Under the same operating current density, the FEOLED exhibits a higher luminous efficiency than that of OLED.

  13. Carrier Modulation Layer-Enhanced Organic Light-Emitting Diodes

    OpenAIRE

    Jwo-Huei Jou; Sudhir Kumar; Meenu Singh; Yi-Hong Chen; Chung-Chia Chen; Meng-Ting Lee

    2015-01-01

    Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among oth...

  14. High saturated blue phosphorescent organic lighting emitting devices%高饱和度蓝色磷光有机发光器件

    Institute of Scientific and Technical Information of China (English)

    丁磊; 张方辉; 李艳飞; 梁田静; 张静

    2011-01-01

    使用典型天蓝色磷光材料FIrpic作为磷光金属微腔有机发光器件(OLED)的发光层,以高反射的Al膜作为阴极顶电极和半透明的Al膜作为阳极底电极,采用空穴和电子注入层MoO3和LiF,制备了结构glass/Al(15nm)/MoO3(znm)/NPD(40nm)/mCP:Flrpic(30Ftm,7%)/BCP(20nm)/Alqa(20nm)/LiF(1nm)/Al(150nm)的底发射磷光金属微腔OLED,微腔OLED正方向电致发光(EL)光谱的中心波长为468nm,半波宽(FWHM)约为24nm,色坐标为(0.14,0.15),其发光波长得到调制,光谱得到窄化。理论模拟得到微腔OLED的发光增强因子与实际光谱吻合。%The sky-blue phosphor Flrpic-based electrophosphorescent bottom-emitting metallic microcavity organic lighvemitting device (OLED) employs a structure of glass/Al(15 nm)/MoO3 (x nm)/NPD (40 nm)/ mCP:FIrpie(30 nm,7%)/13CP(20 nm)/Alq3 (20 nm)/LiF(1 nm)/Al(150 nm),using MoO3 and LiF as efficient hole and electron injection layers, respectively. The cavity structure consists of the highly reflective Al cathode and the semitransparent Al anode. The emission spectrum of the microcavity OLED is centered at 468 nm with a full width at half maximum (FWHM) of 24 nm,and CIE color coordinates are x=0. 14 and y=0.15. It's indicated that the spectrum is modulated and narrowed. Theoretical simulations of the enhancement factor of the microcavity OLED agree with experimented results well.

  15. N-(4-tert-Butylphenyl)-N-phenyl-4-(9,10-diphenylanthracen-3-yl)benzenamine for blue organic light-emitting diodes

    Science.gov (United States)

    Kim, Young Seok; Kim, Dong Young; Lee, Song Eun; Kim, Young Kwan; Yoon, Seung Soo

    2016-06-01

    In this study, we have synthesized two blue fluorescent materials based on anthracene derivatives with electron-donating diphenylamine moieties by Suzuki cross-coupling reactions. To explore their electroluminescent properties as blue emitting materials, multilayer devices were fabricated in following sequence: indium–tin-oxide (180 nm)/4,4‧-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (50 nm)/blue emitters (30 nm)/bathophenanthroline (30 nm)/lithium quinolate (2 nm)/Al (100 nm). Among them, a device using N-(4-tert-butylphenyl)-N-phenyl-4-(9,10-diphenylanthracen-3-yl)benzenamine exhibited efficient blue emission with a luminous, power and external quantum efficiency of 3.11 cd/A, 2.39 lm/W, and 1.82% at 20 mA/cm2, respectively. The Commission International de L’Eclairage coordinates of this device were (x,y) = (0.14,0.15) at 6.0 V.

  16. Blue laser diode (LD) and light emitting diode (LED) applications

    Science.gov (United States)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  17. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes.

    Science.gov (United States)

    Höfle, Stefan; Bruns, Michael; Strässle, Stefan; Feldmann, Claus; Lemmer, Uli; Colsmann, Alexander

    2013-08-14

    WO3 deposition from tungsten ethoxide precursor solutions at room temperature is demonstrated. The W(OEt)6 precursor can be converted under inert conditions and hence avoids sample contamination with oxygen, opening a pathway to more stable devices. The stoichiometry of all WO3 layers and the optoelectronic performance of the respective SMOLEDs well match thermally evaporated WO3 and its corresponding SMOLEDs. The solution processed WO3 hole injection layers enable the fabrication of blue phosphorescent OLEDs with low onset voltage and current efficiencies of up to 14 cd A(-1) . PMID:23813694

  19. Capturing triplet emission in white organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of EHSE, School of Engineering and IT, B-purple-12, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-08-15

    The state-of-the art in the white organic light emitting devices (WOLEDs) is reviewed for further developments with a view to enhance the capture of triplet emission. In particular, applying the new exciton-spin-orbit-photon interaction operator as a perturbation, rates of spontaneous emission are calculated in a few phosphorescent materials and compared with experimental results. For iridium based phosphorescent materials the rates agree quite well with the experimental results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Light outcoupling enhanced flexible organic light-emitting diodes.

    Science.gov (United States)

    Ou, Qing-Dong; Xu, Lu-Hai; Zhang, Wen-Yue; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Chen, Jing-De; Tang, Jian-Xin

    2016-03-21

    Flexible organic light-emitting diodes (OLEDs) are emerging as a leading technology for rollable and foldable display applications. For the development of high-performance flexible OLEDs on plastic substrate, we report a transparent nanocomposite electrode with superior mechanical, electrical, and optical properties, which is realized by integrating the nanoimprinted quasi-random photonic structures into the ultrathin metal/dielectric stack to collectively optimize the electrical conduction and light outcoupling capabilities. The resulting flexible OLEDs with green emission yield the enhanced device efficiency, reaching the maximum external quantum efficiency of 43.7% and luminous efficiency of 154.9 cd/A, respectively. PMID:27136885

  1. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-06-01

    Full Text Available The development of Organic Light Emitting Diode (OLED, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene, PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis, Optical Parameters (OP and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the Quartz/ITO/PEDOT/PANI-X1 layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED, has indicated that the OLED has higher irradiance. After 1000 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  2. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    International Nuclear Information System (INIS)

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm2, the optimal radiance R could reach 0.38 mW/cm2, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be ∼ 10-5 cm2/Vs and ∼ 10-4 cm2/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces

  3. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  4. Organic light-emitting devices using spin-dependent processes

    Science.gov (United States)

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  5. Simulations of charge transport in organic light emitting diodes

    CERN Document Server

    Martin, S J

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for th...

  6. Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines

    Institute of Scientific and Technical Information of China (English)

    Jun-Sheng Yu; Lu Li; Ya-Dong Jiang; Xing-Qiao Ji; Tao Wang

    2007-01-01

    High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenyl-phenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyI-l,l'-biphenyI-4,4'-diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.

  7. Exciton dynamics in organic light-emitting diodes

    Science.gov (United States)

    Kim, Kwangsik; Won, Taeyoung

    2012-11-01

    In this paper, we present a numerical simulation for the optoelectronic material and device characterization in organic light-emitting diodes (OLEDs). Our model includes a Gaussian density of states to account for the energetic disorder in the organic semiconductors and the Fermi-Dirac statistics to account for the charge-hopping process between uncorrelated sites. The motivation for this work is the extraction of the emission profile and the source spectrum of a given OLED structure. The physical model covers all the key physical processes in OLEDs: namely, charge injection, transport and recombination, exciton diffusion, transfer, and decay. The exciton model includes generation, diffusion, energy transfer, and annihilation. We assume that the light emission originates from an oscillation and is thus embodied as excitons and is embedded in a stack of multilayers. The outcoupled emission spectrum is numerically calculated as a function of viewing angle, polarization, and dipole orientation. We also present simulated current-voltage and transient results.

  8. Model for Triplet State Engineering in Organic Light Emitting Diodes

    CERN Document Server

    Prodhan, Suryoday; Ramasesha, S

    2014-01-01

    Engineering the position of the lowest triplet state (T1) relative to the first excited singlet state (S1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S1 and T1. The factors studied are backbone dimerisation, different donor-acceptor substitutions and twisted geometry. The largest system studied is an eighteen carbon polyene which spans a Hilbert space of about 991 million. We show that for reverse intersystem crossing (RISC) process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors.

  9. Efficiency optimization of green phosphorescent organic light-emitting device

    International Nuclear Information System (INIS)

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp2) and green phosphorescent Ir(ppy)3 [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m2 is noticed in this Bepp2 single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  10. Kinetics of transient electroluminescence in organic light emitting diodes

    Science.gov (United States)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  11. Organic light-emitting diodes with nanostructured fullerene ultrathin layers

    Science.gov (United States)

    Lü, Zhaoyue; Deng, Zhenbo; Zheng, Jianjie; Yin, Yuehong; Chen, Yanli; Wang, Yongsheng

    2010-01-01

    Organic light-emitting diodes (OLEDs) with nanostructured fullerene (C 60) ultrathin layers were fabricated. The luminance and efficiency are decreased due to exciton quenching in the OLEDs with C 60 layers at the N,N‧-Di (naphth-2-yl)-N, N‧-diphenyl-benzidine (NPB)/8-hydroxyquinoline aluminum (Alq 3) interface. It is opposite to the results reported by Kato [K. Kato, K. Takahashi, K. Suzuki, T. Sato, K. Shinbo, F. Kaneko et al., Curr. Appl. Phys. 5, 2005, 321]. And C 60 ultrathin layers play a role of weak p-type delta-dopant in the NPB layer due to forming of a charge transfer complex C 60-:NPB +. The current density and luminance are enhanced in the OLEDs with 0.7 nm C 60 ultrathin layers inserted in NPB layer. A suggested explanation is p-type delta-doping effect in the NPB layer which increases the charge mobility of NPB films.

  12. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    Science.gov (United States)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  13. Gap state related blue light emitting boron-carbon core shell structures

    Science.gov (United States)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2016-05-01

    Boron- carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  14. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Guan Yunxia; Niu Lianbin [Key Laboratory of Optical Engineering, College of Physics and Information Technology, Chongqing Normal University, Chongqing 400047 (China)], E-mail: gyxybsy@126.com, E-mail: niulb03@126.com

    2009-03-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq{sub 3} /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  15. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO2) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices

  16. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    Science.gov (United States)

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V. PMID:20707129

  17. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  18. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    International Nuclear Information System (INIS)

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer

  19. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    Science.gov (United States)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.; Blom, P. W. M.

    2014-12-01

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  20. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Abbaszadeh, D.; Wetzelaer, G. A. H. [Molecular Electronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (Netherlands); Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven (Netherlands); Nicolai, H. T. [TNO/Holst Centre, High Tech Campus 31, 5605 KN, Eindhoven (Netherlands); Blom, P. W. M., E-mail: blom@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  1. Spectral variation of light-emitting diodes based on organic molecules doped polymer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Organic light-emitting diodes based on naphthylimine-gallium complexes doped into a PPV derivative have been fabricated by a spin coating method.Color variation from green to blue with increase of the applied voltage has been observed.And the electroluminescent intensity of the blend samples is much stronger than that of the samples containing the complexes only.The results have been attributed to the variation of the recombination zone and the charge transfer between the materials.The process of the charge transport has been analyzed in detail.

  2. White organic light-emitting device with both phosphorescent and fluorescent emissive layers

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Juan; Hun Yu-Lin; Wu Xiao-Ming; Wang Yu; Yin Shou-Geng

    2008-01-01

    This paper reports the fabrication of novel white organic light-emitting device(WOLED) by using a high efficiency blue fluorescent dye N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine (N-BDAVBi) and a red phosphoresecent dye bis (1-(phenyl) isoquinoline) iridium (Ⅲ) acety-lanetonate (Ir(piq)2(acac)). The configuration of the device was ITO/PVK:TPD/CBP: N-BDAVBi /CBP/ BALq:Ir(piq)2(acac)/BCP/Alq3/LiF:AL. By adjusting the proportion of the dopants (N-BDAVBi, Ir(piq)2(acac)) in the light-emitting layer, white light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35, 0.35) and a maximum luminance of 25350cd/m2 were obtained at an applied voltage of 22V. The WOLED exhibits maximum external quantum and current efficiency of 6.78% and 12ed/A respectively. By placing an undoped spacer CBP layer between the two light-emitting layers and using BCP as hole blocking layer, the colour stabilization slightly changed when the driving voltage increased from 6 to 22 V.

  3. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    Science.gov (United States)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  4. Improved interconnecting structure for a tandem organic light emitting diode

    International Nuclear Information System (INIS)

    Two-unit tandem organic light emitting diodes (OLEDs) employing two kinds of interconnecting structures, i.e. 5 nm lithium carbonate doped PTCDA (1:2 Li2CO3:PTCDA)/5 nm MoO3 and 5 nm Li2CO3 doped BCP (1:4 Li2CO3:BCP)/5 nm MoO3, have been fabricated, where PTCDA and BCP stand for 3, 4, 9, 10 perylenetetracarboxylic dianhydride and bathocuproine, respectively. Compared to the tandem OLED using the interconnecting structure of 5 nm 1:4 Li2CO3:BCP/5 nm MoO3, the one utilizing 5 nm 1:2 Li2CO3:PTCDA/5 nm MoO3 showed nearly same power efficiency and decreased operating voltage, mainly attributed to the higher electron conductivity of 1:2 Li2CO3:PTCDA relative to 1:4 Li2CO3:BCP. The charge generation and electron injection processes based on the interconnecting structure of 5 nm 1:2 Li2CO3:PTCDA/5 nm MoO3 were also discussed. We provide a simple and effective connecting structure to enhance the current conduction for tandem OLEDs

  5. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  6. Efficiency roll-off in organic light-emitting diodes.

    Science.gov (United States)

    Murawski, Caroline; Leo, Karl; Gather, Malte C

    2013-12-17

    Organic light-emitting diodes (OLEDs) have attracted much attention in research and industry thanks to their capability to emit light with high efficiency and to deliver high-quality white light that provides good color rendering. OLEDs feature homogeneous large area emission and can be produced on flexible substrates. In terms of efficiency, OLEDs can compete with highly efficient conventional light sources but their efficiency typically decreases at high brightness levels, an effect known as efficiency roll-off. In recent years, much effort has been undertaken to understand the underlying processes and to develop methods that improve the high-brightness performance of OLEDs. In this review, we summarize the current knowledge and provide a detailed description of the relevant principles, both for phosphorescent and fluorescent emitter molecules. In particular, we focus on exciton-quenching mechanisms, such as triplet-triplet annihilation, quenching by polarons, or field-induced quenching, but also discuss mechanisms such as changes in charge carrier balance. We further review methods that may reduce the roll-off and thus enable OLEDs to be used in high-brightness applications. PMID:24019178

  7. Carrier modulation layer-enhanced organic light-emitting diodes.

    Science.gov (United States)

    Jou, Jwo-Huei; Kumar, Sudhir; Singh, Meenu; Chen, Yi-Hong; Chen, Chung-Chia; Lee, Meng-Ting

    2015-01-01

    Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance. PMID:26193252

  8. Carrier Modulation Layer-Enhanced Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-07-01

    Full Text Available Organic light-emitting diode (OLED-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML, also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.

  9. Near-field photometry for organic light-emitting diodes

    Science.gov (United States)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  10. Graphene electrodes for organic metal-free light-emitting devices

    OpenAIRE

    Robinson, Nathaniel D; Edman, Ludvig; Chhowalla, Manish

    2012-01-01

    In addition to its fascinating electrical and mechanical properties, graphene is also an electrochemically stable and transparent electrode material. We demonstrate its applicability as both anode and cathode in a light-emitting electrochemical cell (LEC), an electrochemical analogue to a polymer organic light-emitting diode. Specifically, we summarize recent progress in carbon-based metal-free light-emitting devices enabled by chemically derived graphene cathodes on quartz and plastic substr...

  11. Luminance Mechanisms of White Organic Light-Emitting Devices Fabricated Utilizing a Charge Generation Layer with a Light-Emitting Function.

    Science.gov (United States)

    Kim, K H; Jeon, Y P; Choo, D C; Kim, T W

    2015-07-01

    The luminance mechanisms of the white organic light-emitting devices (WOLEDs) with a charge generation layer (CGL) consisting of a tungsten oxide layer and a 5,6,11,12-tetraphenyltetracene (rubrene) doped N,N',-bis-(1-naphthyl)-N,N'-diphenyl1-1'-biphenyl-4,4'-diamine (NPB) layer were investigated. Current densities and luminances of the WOLEDs increased with increasing a rubrene doping concentration because the formation of excitons in the rubrene-doped NPB layer increased due to the more exciton trapping in rubrene molecules and the delay of the electron injection due to the insertion of the litium qunolate layer. The yellow light emitted from the rubrene-doped NPB layer in the CGL combined with the blue light from the main emitting layer of the WOLEDs, resulting in the emission of the white light. The ratio between the yellow and the blue color peak intensities of the electroluminescence spectra for the WOLEDs was controlled by the rubrene doping concentration. The Commission Internationale de l'Eclairage coordinates of the fabricated WOLED were (0.31, 0.42) at 740.7 cd/m2, indicative of white emission color. PMID:26373110

  12. Improved blue light-emitting polymeric device by the tuning of drift mobility and charge balance

    Science.gov (United States)

    Chin, Byung Doo; Suh, Min Chul; Lee, Seong Taek; Chung, Ho Kyoon; Lee, Chang Hee

    2004-03-01

    We have prepared blue polymer-small molecule hybrid electroluminescence devices with improved efficiency and lower driving voltage by the statistical design method. Analysis of time-of-flight measurement shows that amorphous small molecule hole-transporter blended with a blue light-emitting polymer increases the field-dependent hole mobility, with transition from nondispersive to dispersive transport induced by the charge-trapping effect. Moreover, at the electroluminescent devices with different electron injection/transport layer (LiF/Al, LiF/Ca/Al, and Alq3/LiF/Al), efficiency was further increased. We have analyzed that carrier mobility of a multilayered device can also be controlled by the change of electron injection and transport layers. We find that structural design and matching overall charge balance is an essential factor to improve both the operating voltage and efficiency of existing blue polymer devices.

  13. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana;

    driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  14. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  15. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    Science.gov (United States)

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  16. Magnetic field effect in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Ulrich

    2009-12-14

    The discovery of a magnetic field dependent resistance change of organic light emitting diodes (OLEDs) in the year 2003 has attracted considerable scientific and industrial research interest. However, despite previous progress in the field of organic spin-electronics, the phenomenon of the ''organic magnetoresistance (OMR) effect'' is not yet completely understood. In order to improve the understanding of the microscopic mechanisms which ultimately cause the OMR effect, experimental investigations as well as theoretical considerations concerning the OMR are addressed in this thesis. In polymer-based OLED devices the functional dependencies of the OMR effect on relevant parameters like magnetic field, operating voltage, operating current and temperature are investigated. Based on these results, previously published models for potential OMR mechanisms are critically analyzed and evaluated. Finally, a concept for the OMR effect is favored which suggests magnetic field dependent changes of the spin state of electron-hole pairs as being responsible for changes in current flow and light emission in OLEDs. In the framework of this concept it is possible to explain all results from own measurements as well as results from literature. Another important finding made in this thesis is the fact that the value of the OMR signal in the investigated OLED devices can be enhanced by appropriate electrical and optical conditioning processes. In particular, electrical conditioning causes a significant enhancement of the OMR values, while at the same time it has a negative effect on charge carrier transport and optical device characteristics. These results can be explained by additional results from charge carrier extraction measurements which suggest that electrical conditioning leads to an increase in the number of electronic trap states inside the emission layer of the investigated OLED devices. The positive influence of trap states on the OMR effect is

  17. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  18. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes

    International Nuclear Information System (INIS)

    Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications

  19. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, Michiel J.J., E-mail: Michiel.Coenen@tmc.nl [Holst Centre, PO BOX 8550, 5605 KN Eindhoven (Netherlands); Slaats, Thijs M.W.L.; Eggenhuisen, Tamara M. [Holst Centre, PO BOX 8550, 5605 KN Eindhoven (Netherlands); Groen, Pim [Holst Centre, PO BOX 8550, 5605 KN Eindhoven (Netherlands); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft (Netherlands)

    2015-05-29

    Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications.

  20. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Inoue, M. [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Komino, T. [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Education Center for Global Leaders in Molecular System for Devices, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Kim, J.-H. [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Ribierre, J. C., E-mail: ribierre@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  1. White Organic Light-emitting Diodes with A Sr2 SiO4:Eu3+ Color Conversion Layer%White Organic Light-emitting Diodes with A Sr2SiO4:Eu3+ Color Conversion Layer

    Institute of Scientific and Technical Information of China (English)

    Meiso Yokoyama

    2013-01-01

    Hybrid inorganic/organic white organic light emitting diodes (hybrid-WOLEDs) are fabricated by combining the blue phosphorescent organic light emitting diodes (PHOLEDs) with red Sr2 SiO4∶ Eu3+ phosphor spin coated as a color conversion layer (CCL) over the other side of glass substrate on the devices.The basic configuration of the PHOLEDs consists a host material,N,N'-dicarbazolyl-3,5-benzene (mCP) which doped with a blue phosphorescent iridium complexes iridium (Ⅲ)bis [(4,6-di-fluorophenyl)-pyridinato-N-C2'] (FIrpic) to produce high efficient blue organic light emitting diodes.The hybrid-WOLED shows maximum luminous efficiency of 22.1 cd/ A,maximum power efficiency of 11.26 lm/W,external quantum efficiency of 10.2% and CIE coordinates of (0.32,0.34).Moreover,the output spectra and CIE coordinates of the hybrid-WOLED have a small shift in different driving current density,which demonstrate good color stability.

  2. Designing NHC-Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells.

    Science.gov (United States)

    Elie, Margaux; Sguerra, Fabien; Di Meo, Florent; Weber, Michael D; Marion, Ronan; Grimault, Adèle; Lohier, Jean-François; Stallivieri, Aurélie; Brosseau, Arnaud; Pansu, Robert B; Renaud, Jean-Luc; Linares, Mathieu; Hamel, Matthieu; Costa, Rubén D; Gaillard, Sylvain

    2016-06-15

    This study presents the influence of various substituents on the photophysical features of heteroleptic copper(I) complexes bearing both N-heterocyclic carbene (NHC) and dipyridylamine (dpa = dipyridylamine skeleton corresponding to ligand L1) ligands. The luminescent properties have been compared to our recently reported archetypal blue emitting [Cu(IPr)(dpa)][PF6] complex. The choice of the substituents on both ligands has been guided to explore the effect of the electron donor/acceptor and "push-pull" on the emission wavelengths and photoluminescence quantum yields. A selection of the best candidates in terms of their photophysical features were applied for developing the first blue light-emitting electrochemical cells (LECs) based on copper(I) complexes. The device analysis suggests that the main concern is the moderate redox stability of the complexes under high applied driving currents, leading to devices with moderate stabilities pointing to a proof-of-concept for further development. Nevertheless, under low applied driving currents the blue emission is stable, showing performance levels competitive to those reported for blue LECs based on iridium(III) complexes. Overall, this work provides valuable guidelines to tackle the design of enhanced NHC copper complexes for lighting applications in the near future. PMID:27224961

  3. Blue resonant-cavity light-emitting diode with half milliwatt output power

    Science.gov (United States)

    Yeh, Pinghui S.; Chang, Chi-Chieh; Chen, Yu-Ting; Lin, Da-Wei; Wu, Chun Chia; He, Jhao Hang; Kuo, Hao-Chung

    2016-03-01

    GaN-based resonant-cavity light-emitting diode (RCLED) has a circular output beam with superior directionality than conventional LED and has power scalability by using two-dimensional-array layout. In this work, blue RCLEDs with a top reflector of approximately 50% reflectance were fabricated and characterized. An output power of more than 0.5 mW per diode was achieved before packaging under room-temperature continuous-wave (CW) operation. The full width at half maximum (FWHM) of the emission spectrum was approximately 3.5 and 4.5 nm for 10- and 20-μm-diameter devices, respectively. And the peak wavelength as well as the FWHM remained stable at various currents and temperatures.

  4. Localized surface plasmon resonance effect in organic light-emitting devices with Ag islands

    Science.gov (United States)

    Shimazaki, Noritaka; Naka, Shigeki; Okada, Hiroyuki

    2014-04-01

    We report on luminescence enhancement of organic light-emitting devices (OLEDs) with silver islands (i-Ag) by a localized surface plasmon resonance (LSPR) effect. The devices were fabricated using tetraphenylporphyrin (TPP) as the red emission material, bis[N-(1-naphthyl)-N-phenyl] benzidine (α-NPD) as the blue emission and hole transport material, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as the electron transport material. To clarify the position of emission enhancement by energy transfer from i-Ag, an ultrathin TPP layer located within the α-NPD layer. In the device with i-Ag and the TPP layer located over 10 nm from i-Ag, TPP emission was enhanced in comparison with the device without i-Ag. The enhancement of TPP emission was suggested to be the effect of the enhanced electric field resulting from LSPR excited by α-NPD emission.

  5. Reduction in Power Consumption for Full-Color Active Matrix Organic Light-Emitting Devices

    Science.gov (United States)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Mameno, Kazunobu; Shibata, Kenichi

    2006-09-01

    The active matrix organic light-emitting diode (AMOLED) is expected to serve as next generation flat panels display with the outstanding features of wide viewing angle, vivid images, and quick response. For practical use of full-color AMOLEDs in mobile devices, it is essential to reduce the power consumption, which is generally higher than that of liquid crystal displays (LCDs). For this aim, a red, green, blue, and white (RGBW) pixel format combined with an RGB color filter array (RGBW format) with a common white emission layer (EML) has been developed. We find that the RGBW format can successfully reduce the power consumption of a full-color AMOLED by nearly half that of a conventionally filtered RGB pixel format. This improved power consumption is almost equal to the power consumption of a same-sized LCD. The RGBW format is a promising technique for the further reduction of the power consumption of a full-color AMOLED.

  6. Electroluminescence property of organic light emitting diode (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay [Yıldız Technical University, Department of Physics, Esenler, Istanbul (Turkey); Tekin, Emine; Pravadalı, Selin [National Metrology Instıtute of Turkey (TUBİTAK-UME), Kocaeli (Turkey)

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  7. Synthesis and blue light-emitting properties of 4,4'-bis(diphenylamino)-quinque(p-phenyl)s

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An excellent organic blue light-emitting diode based on 4,4'-bis(diphenylamino)-quinque(p-phenylene)s (OPP(5)-NPh) with a maximum luminance of up to 5000 cd/m2 and a luminanous efficiency of 1.3 cd/A was reported. This diode was made by using a wide band-gap hole-blocking layer, F-TBB instead of PBD in the OLED devices. We attribute the good performance to the one trade-off involved in the use of F-TBB to obtain higher luminance is the increased turn-on voltages and slightly decreased device efficiencies.(C) 2007 Zhong Hui Li. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  8. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour.

    Science.gov (United States)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R; Gather, Malte C

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today's mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm(-2)) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  9. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    Science.gov (United States)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-08-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm‑2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.

  10. Candlelight style organic light-emitting diode: a plausibly human-friendly safe night light

    Science.gov (United States)

    Jou, Jwo-Huei; Hsieh, Chun-Yu; Chen, Po-Wei; Kumar, Sudhir; Hong, James H.

    2014-01-01

    Candles emit sensationally warm light with a very low color temperature, comparatively most suitable for use at night. In response to the need for such a human-friendly night light, we demonstrate the employment of a high number of candlelight complementary organic emitters to generate and mimic candlelight based on organic light emitting diode (OLED). One resultant candlelight style OLED shows a very-high color rendering index (CRI), with an efficacy at least 300 times that of a candle or at least two times that of an incandescent bulb. The device can be fabricated, for example, by using four candlelight complementary emitters: red, yellow, green, and sky-blue phosphorescent dyes. These dyes, in the present system, can be vacuum deposited into two emission layers that are separated by a nanolayer of carrier modulation material that is used to maximize very high CRI and energy efficiency. A nano carrier modulation layer also played a significant role in maintaining the low blue emission and high-red emission, the low color temperature of device was obtained. Importantly, a romantic sensation giving and supposedly physiologically friendly candlelight style emission can hence be driven by electricity in lieu of hydrocarbon burning and greenhouse gas-releasing candles that were invented 5000 years ago.

  11. Recoverable electroluminescence from a contaminated organic/organic interface in an organic light-emitting diode

    Science.gov (United States)

    Liao, L. S.; Klubek, K. P.; Madathil, J. K.; Tang, C. W.; Giesen, D. J.

    2010-01-01

    An organic/organic interface, like an electrode/organic interface in an organic light-emitting diode (OLED), can be severely affected by ambient contamination. However, we surprisingly found that the contaminated surface or interface can be "cured" by depositing a thin interfacial layer containing a strong reducing agent onto the contaminated surface before finishing the fabrication of the device. For example, in comparison with a regular OLED, an OLED having a 5-min ambient exposure to the light-emitting layer/electron-transporting layer interface drops its initial electroluminescence (EL) intensity by 50%. The decreased EL intensity due to the 5-min ambient exposure can be fully recovered and the improved operational stability can be realized after curing the contaminated interface using a thin Li interfacial layer. The experimental results provide a useful method to cope with the interfacial contamination in OLEDs during a manufacturing process. In addition, our results support the failure mechanism of an Alq-based OLED suggested by [Papadimitrakopoulos et al., Chem. Mater. 8, 1363 (1996)].

  12. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue

    Indian Academy of Sciences (India)

    Lílian S Peloi; Rafael R S Soares; Carlos E G Biondo; Vagner R Souza; Noboru Hioka; Elza Kimura

    2008-06-01

    The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) photosensitizing effect in photodynamic therapy (PDT). Its effectiveness was tested against Staphylococcus aureus (ATCC 26923), Escherichia coli (ATCC 26922), Candida albicans (ATCC 90028) and Artemia salina. The maximum absorption of the LED lamps was at a wavelength of 663 nm, at intensities of 2, 4, 6 and 12 J.cm–2 for 10, 20, 30 and 60 min of exposure, respectively. Assays with and without LED exposure were carried out in plates containing MB at concentrations of 7 to 140.8 M for microorganisms and 13.35 to 668.5 M for microorganisms or microcrustaceans. The LED exposure induced more than 93.05%, 93.7% and 93.33% of growth inhibition for concentrations of 42.2 M for S. aureus (D-value=12.05 min) and 35.2 M for E. coli (D-value=11.51 min) and C. albicans (D-value=12.18 min), respectively after 20 min of exposure. LED exposure for 1 h increased the cytotoxic effect of MB against A. salina from 27% to 75%. Red LED is a promising light device for PDT that can effectively inhibit bacteria, yeast and microcrustacean growth.

  13. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  14. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  15. Cathodes incorporating thin fluoride layers for efficient injection in blue polymer light-emitting diodes

    Science.gov (United States)

    Brown, Thomas M.; Millard, Ian S.; Lacey, David; Burroughes, Jeremy H.; Friend, Richard H.; Cacialli, Franco

    2002-02-01

    Efficient blue Polymer Light-Emitting Diodes (PLEDs) were fabricated by evaporating thin LiF layers between Al or Ca cathodes. Electroabsorption measurements of the built-in potential across the diodes show that devices fabricated with LiF/Ca/Al cathodes exhibit the smallest average barrier height and operating voltage (compared to both Ca and LiF/Al currently amongst the most efficient electron injectors). The turn-on bias is essentially equivalent to the built-in potential (~2.7 V), indicating an effective minimisation of the barrier to electron injection. Results are also compared with devices incorporating CsF layers and are correlated with the electroluminescent characteristics of the LEDs. A very strong dependence (~ exponential) between the built-in potential and the current and luminance at a fixed electric field (0.5MV/cm) is observed and is explained with the reduction of the cathodic barrier height brought about by the different cathode multilayers.

  16. Degradation behaviors of high power GaN-based blue light emitting diodes

    International Nuclear Information System (INIS)

    The degradation mechanism of high power InGaN/GaN blue light emitting diodes (LEDs) is investigated in this paper. The LED samples were stressed at room temperature under 350-mA injection current for about 400 h. The light output power of the LEDs decreased by 35% during the first 100 h and then remained almost unchanged, and the reverse current at −5 V increased from 10−9 A to 10−7 A during the aging process. The power law, whose meaning was re-illustrated by the improved rate equation, was used to analyze the light output power-injection current (L—I) curves. The analysis results indicate that nonradiative recombination, Auger recombination, and the third-order term of carriers overflow increase during the aging process, all of which may be important reasons for the degradation of LEDs. Besides, simulating L—I curves with the improved rate equation reveal that higher-than-third-order terms of carriers overflow may not be the main degradation mechanism, because they change slightly when the LED is stressed

  17. Low driving voltage in white organic light-emitting diodes using an interfacial energy barrier free multilayer emitting structure

    International Nuclear Information System (INIS)

    The driving voltage of white organic light-emitting diodes (WOLEDs) with blue fluorescent and red phosphorescent emitting materials was lowered by using a device architecture with little energy barrier between emitting layers. A mixed layer of hole and electron transport materials was used as a host material and an interlayer, reducing the driving voltage of WOLEDs. The driving voltage of WOLEDs was reduced by more than 4 V and power efficiency of WOLEDs was improved by more than 40% due to little energy barrier for holes and electrons injection in light-emitting layer. In addition, there was little change of electroluminescence spectra from 100 to 10,000 cd/m2.

  18. Efficient Hybrid White Organic Light-Emitting Diodes for Application of Triplet Harvesting with Simple Structure

    CERN Document Server

    Hwang, Kyo Min; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Jwajin; Yoon, Seung Soo; Kim, Young Kwan

    2016-01-01

    In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with simple structure. All the hole transporting material and host in emitting layer (EML) of devices were utilized with same material by using N,N'-di-1-naphthalenyl-N,N'-diphenyl-[1,1':4',1":4",1"'-quaterphenyl]-4,4"'-diamine (4P-NPD) which were known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated three color with blue fluorescent and green, red phosphorescent materials. We was investigated the effect of triplet harvesting (TH) by exciton generation zone on simple hybrid WOLEDs. Characteristic of simple hybrid WOLEDs were dominant hole mobility, therefore exciton generation zone was expected in EML. Additionally, we was optimization thickness of hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. Simple hybrid WOLED exhibits maximum luminous efficiency of 29.3 cd/A and maximum external quantum efficiency of 11.2%. Commission Internatio...

  19. Effect of BCP ultrathin layer on the performance of organic light-emitting devices

    Science.gov (United States)

    Wang, Hong; Yu, Jun-Sheng; Li, Lu; Tang, Xiao-Qing; Jiang, Ya-Dong

    2008-09-01

    Based on conventional double layer device, triple layer organic light-emitting diodes (OLEDs) with two heterostructures of indium-tin oxide (ITO)/ N,N'-diphenyl- N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'-diamine(NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydroxyquinoline aluminum (Alq3)/Mg:Ag using vacuum deposition method have been fabricated. The influence of different film thickness of BCP layer on the performance of OLEDs has been investigated. The results showed that when the thickness of the BCP layer film gradually varied from 0.1 nm to 4.0 nm, the electroluminescence (EL) spectra of the OLEDs shifted from green to greenish-blue to blue, and the BCP layer acted as the recombination region of charge carriers related to EL spectrum, enhancing the brightness and power efficiency. The power efficiency of OLEDs reached as high as 7.3 lm/W.

  20. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    International Nuclear Information System (INIS)

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C2′)acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C2−] (FIrpic) and PO-01 into the same wide band-gap host of N,N′-dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices

  1. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    International Nuclear Information System (INIS)

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m2 luminance. The critical current density is as high as 210 mA/cm2. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers

  2. Red phosphorescent organic light-emitting diodes using pyridine based electron transport type triplet host materials

    International Nuclear Information System (INIS)

    Research highlights: → Pyridine based host material for red phosphorescent organic light emitting diode. → Device optimization at low doping concentration of 2%. → Simplified red phosphorescent organic light emitting diodes. - Abstract: Pyridine based electron transport type host materials were developed and their device performances were investigated according to doping concentration. The pyridine substituent was combined with a spirofluorenebenzofluorene core unit and a high quantum efficiency of 13.3% was achieved in red phosphorescent organic light-emitting diodes at a low doping concentration of 2%. A simple red device without any electron transport layer could be fabricated and a simple device without any electron transport layer showed better power efficiency than the standard device with an electron transport layer.

  3. Nanostructured thin films for organic photovoltaic cells and organic light-emitting diodes

    Science.gov (United States)

    Zheng, Ying

    2009-12-01

    heterojunction device based on the same D -- A materials. We also show that the efficiency of a deep-blue phosphorescent OLED (PHOLED) can be significantly enhanced by improving the exciton and charge confinement in the multilayer organic stack. A peak external quantum efficiency of (20 +/- 1) % is achieved, which approaches the theoretical maximum of PHOLED without specific out-coupling mechanisms. We further demonstrate PHOLEDs with enhanced power efficiency by using the p-i- n device structures to reduce driving voltage and achieved a maximum of (14 +/- 1) lm/W and (12 +/- 1) lm/W at a luminance of 100 cd/m 2. Moreover, an ultra low turn-on voltage of ˜ 1.3 V is observed in an orange-emitting polymer light-emitting diode (PLED) using ZnO nanoparticles as the electron injection layer. An Auger-assisted electron injection mechanism is proposed to explain the low turn-on voltage. The novel ZnO nanoparicles electron injection layer opens a new way to reduce driving voltage in PLED. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  4. Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films

    Science.gov (United States)

    Lin, Hoang-Yan; Lee, Jiun-Haw; Wei, Mao-Kuo; Dai, Ching-Liang; Wu, Chia-Fang; Ho, Yu-Hsuan; Lin, Hung-Yi; Wu, Tung-Chuan

    2007-07-01

    In this paper, we present and analyse the optical characteristics, such as spectral shift, CIE coordinates, viewing angle dependence, luminous current efficiency and luminous power efficiency, of an organic light-emitting device (OLED) with a commercial diffuser film or a brightness-enhancement film (BEF) attached. Compared to a planar green OLED, the luminous current efficiencies of the OLED with an attached diffuser film or BEF increase by 29% and 23%, respectively. The overall luminous power efficiencies are enhanced by 28% and 7%. Compared to the planar green device, we observe blue shifts at different viewing angles when microstructured films are attached, which is the evidence that the waveguiding modes are being extracted. In our planar OLED, the peak wavelength blue shifts and the full width at the half maximum (FWHM) decrease with increasing viewing angles due to the microcavity effect. When the diffuser is attached, the spectral peak has a constant blue shift (6 nm) compared to that of the planar OLED. On the other hand, in the BEF case, the spectral shift depends on the viewing angle (2-12 nm blue shifts from 0 to 80°). This is due to the different operating principles (scattering and redirected light) of the diffuser and BEF. Since the transmittance spectra of both the diffuser film and the BEF are flat over the visible range, it is suitable for lighting applications by using white OLED. When attaching the films on a commercial white OLED, the luminous current efficiencies of the OLED with an attached diffuser film or BEF increase by 34% and 31%, respectively. The overall luminous power efficiencies are enhanced by 42% and 8%.

  5. Multilayered Organic Light Emitting Diodes Based on Polyfluorenes

    Science.gov (United States)

    Bozano, Luisa; Marsitzky, Dirk; Carter, Kenneth; Swanson, Sally; Lee, Victor; Salem, Jesse; Miller, Robert; Scott, Campbell; Carter, Sue

    2001-03-01

    The electroluminescence of polyfluorene homopolymers and various arylene copolymers is in the deep blue, with peak emission wavelengths as small as 420 nm. These materials are therefore of great interest for use in full-color OLED displays both as emitters for blue subpixels and as hosts for red and green emitting dopants or comonomers. In this work, we compare the properties of single and multilayer diode structures based on dihexyl and di(2-ethylexyl) substituted polyfluorenes. A cross-linkable polymeric arylamine hole transport polymer and/or a polyquinoline electron transport layer are introduced to better balance the charge injection from the electrodes and optimize the recombination in the fluorene emitter layer. External quantum efficiencies increase from about 0.1layer devices to well over 1The electrical and optical response is determined by steady state and transient measurements. The effects on efficiency, emission spectrum and electrical response resulting from the introduction of dopant dyes into the emitter layer are also presented.

  6. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    Science.gov (United States)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  7. Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array

    Science.gov (United States)

    Lim, Jongsun; Oh, Seung Seok; Youp Kim, Doo; Cho, Sang Hee; Kim, In Tae; Han, S. H.; Takezoe, Hideo; Choi, Eun Ha; Cho, Guang Sup; Seo, Yoon Ho; Oun Kang, Seung; Park, Byoungchoo

    2006-07-01

    We studied microcavity organic light-emitting devices with a microlens system. A microcavity for organic light-emitting devices (OLED) was fabricated by stacks of SiO2 and SiNx layers and a metal cathode together with the microlens array. Electroluminescence of the devices showed that color variation under the viewing angle due to the microcavity is suppressed remarkably by microlens arrays, which makes the use of devices acceptable in many applications. It was also demonstrated that the external out-coupling factor of the devise increases by a factor of ~1.8 with wide viewing angles compared to conventional OLEDs.

  8. Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou; ZHANG Rong; LIU Bin; XIU Xiang-Qian; SU Hui; LI Yi; HUA Xue-Mei; ZHAO Hong; CHEN Peng

    2011-01-01

    @@ Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW) structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001) oriented (c-face) sapphire substrate, which consists of an approximately 2-Etm-thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM), which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x-ray diffraction(XRD)θ/2θ scan is carried out on the symmetric(0002) of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission, two main emissions of blue and amber light from these MQWs are found, which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.

  9. Effect of arylamine hole-transport units on the performance of blue polyspirobifulorene light-emitting diodes

    Science.gov (United States)

    Abbaszadeh, Davood; Nicolai, Herman T.; Crǎciun, N. Irina; Blom, Paul W. M.

    2014-11-01

    The operation of blue light-emitting diodes based on polyspirobifluorene with a varying number of N ,N ,N',N' tetraaryldiamino biphenyl (TAD) hole-transport units (HTUs) is investigated. Assuming that the electron transport is not affected by the incorporation of TAD units, model calculations predict that a concentration of 5% HTU leads to an optimal efficiency for this blue-emitting polymer. However, experimentally an optimum performance is achieved for 10% TAD HTUs. Analysis of the transport and recombination shows that polymer light-emitting diodes with 5%, 7.5%, and 12.5% TAD units follow the predicted behavior. The enhanced performance of the polymer with 10% TAD originates from a decrease in the number of electron traps, which is typically a factor of three lower than the universal value found in many polymers. This reduced number of traps leads to a reduction of nonradiative recombination and exciton quenching at the cathode.

  10. Spin dependent transport in organic light-emitting diodes

    OpenAIRE

    Silva, G. B.; C.F.O. Graeff; Nuesch, F.; Zuppiroli, L.

    2005-01-01

    Electrically Detected Magnetic Resonance (EDMR) was used to study a series of multilayer organic devices based on aluminum (III) 8-hydroxyquinoline. These devices were designed to identify the micoscopic origin of different spin dependent process, i.e. hopping and exciton formation. EDMR is demonstrated to probe molecular orbitals of charge, and thus indirectly explore interfaces, exciton formation, charge accumalation and electric fields in operating organic based devices.

  11. Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes

    Science.gov (United States)

    Suzuki, Hiroyuki; Hoshino, Satoshi

    1996-06-01

    We report the effects of dyes doped in the emitting layer on the electroluminescent characteristics of multilayer organic light-emitting diodes (LEDs) using a polysilane polymer, poly(methylphenylsilane) (PMPS), as the hole transporting material. We formed the emitting layer by dispersing in poly(styrene) (PS), one of four dyes whose fluorescence ranged from blue to orange. Two- or three-layer LEDs were prepared by combining PMPS and dye doped PS layers with the indium tin oxide and aluminum used for the hole and electron injecting electrodes, respectively. The three-layer LEDs had an additional vacuum-deposited tris-(8-hydroxyquinoline) aluminum layer. The electroluminescent (EL) characteristics of these multilayer organic LEDs, such as the current-voltage-EL intensity curve, the relative EL efficiency, and the EL emitting species, exhibit a marked dependence on the emitting dye. The observed dependence can be described consistently in terms of the dependence of the charge carrier trapping efficiency on the emitting dyes.

  12. High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold

    KAUST Repository

    Chan, Khaileok

    2012-01-01

    An efficient blue light emitting diode based on solution processable pyrene-1,3-alt-calix[4]arene is demonstrated, providing a record current efficiency of 10.5 cd A -1 in a simple non-doped OLED configuration. Complete suppression of pyrene aggregation in the solid state is achieved by controlling chromophore dispersion using the 1,3-alt-calix[4]arene scaffold. © 2012 The Royal Society of Chemistry.

  13. Next generation organic light-emitting materials and devices (Presentation Recording)

    Science.gov (United States)

    Kippelen, Bernard

    2015-10-01

    In this talk, we will discuss recent innovations in organic light-emitting materials and devices. First, we will report on organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF). We will show that devices based on the emitter 4CzIPN doped in a novel ambipolar host can yield a current efficacy of 81 cd/A and a maximum external quantum efficiency of 26.5%. These devices exhibit a low turn-on voltage of 3.2 V at 10 cd/m2, as well as reduced efficiency roll-off at high current densities. The performance of these devices is comparable to that of electrophosphorescent devices based on organic-metallic compounds that contain precious metals such as Iridium. In a second part we will report on highly efficient green-emitting organic light-emitting diodes (OLEDs) fabricated on shape memory polymer (SMP) substrates for flexible electronic applications. SMPs are a class of mechanically active materials that can change and store shape upon activation by a stimulus. The combination of the unique properties of SMP substrates with the light-emitting properties of OLEDs pave to the way for new applications, including conformable smart skin devices, minimally invasive biomedical devices, and flexible lighting/display technologies. Finally, we will present OLEDs fabricated on substrates made from cellulose nanocrystals (CNC) and discuss how such substrates can reduce the environmental footprint of printable organic electronics.

  14. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    NARCIS (Netherlands)

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  15. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oyewole, O. K. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, P.M.B 1530, Ilorin, Kwara State (Nigeria); Yu, D. [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Du, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 137 Reber Building, University Park, Pennsylvania (United States); Asare, J.; Fashina, A. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Anye, V. C. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Zebaze Kana, M. G. [Department of Materials Science and Engineering, Kwara State University, P.M.B 1530, Ilorin, Kwara State (Nigeria); Soboyejo, W. O., E-mail: soboyejo@princeton.edu [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria)

    2015-08-21

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  16. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    International Nuclear Information System (INIS)

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures

  17. Organic Light Emitting Diodes with an Organic Acceptor/Donor Interface Involved in Hole Injection

    Institute of Scientific and Technical Information of China (English)

    CAO Guo-Hua; QIN Da-Shan; GUAN Min; CAO Jun-Song; ZENG Yi-Ping; LI Jin-Min

    2007-01-01

    Organic light emitting diodes with an interface of organic acceptor 3-,4-,9-,10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5nm CuPc hole injection layer, the device using an interface of 10 nm PTCDA and 5nm CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.

  18. Simulations of emission from microcavity tandem organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq{sub 3}) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) ({alpha}-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  19. Angular Dependence of the Sharply Directed Emission in Organic Light Emitting Diodes with a Microcavity Structure

    Science.gov (United States)

    Juang, Fuh-Shyang; Laih, Li-Hong; Lin, Chia-Ju; Hsu, Yu-Jen

    2002-04-01

    An optical microcavity structure was used in organic light emitting diodes. We succeeded in fabricating a device with sharply directed emission vertical to an emission surface. The device shows green emission (bright green) at normal position which turns red (bright red) at the 30° position. The angular dependences of the electroluminescence and the emission patterns versus viewing angle in the microcavity OLED were studied. The resonance wavelength λ decreases with viewing angle. The emission peak at 490 nm is directed vertically to the device surface more sharply than that at 632 nm. The microcavity structure shows non-Lambertian emission. The spectra appear more blue off-axis and the intensity of the green-like emission decreases rapidly with increasing viewing angle. A significantly narrow linewidth of 7.4 nm in the 0° direction for the 490 nm peak was observed. The full-widths at half maximum (FWHM) of the green-like spectra are much smaller than those of the red-like ones, indicating better cavity quality.

  20. Organic white-light-emitting devices based on a multimode resonant microcavity

    Science.gov (United States)

    Zhang, Hongmei; You, Han; Wang, Wei; Shi, Jiawei; Guo, Shuxu; Liu, Mingda; Ma, Dongge

    2006-08-01

    Organic white-light-emitting devices (OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage (CIE) chromaticity coordinates changed from (0.29, 0.37) at 0° to (0.31, 0.33) at 40°. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m-2 at a current density of 200 mA cm-2, and the maximum current efficiency and power efficiency are 1.6 cd A-1 at a current density of 12 mA cm-2 and 0.41 lm W-1 at a current density of 1.6 mA cm-2, which are over 1.6 times higher than that of a noncavity OLED.

  1. Influence of Energy Level Matching on Device Performances of Organic Light-emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    LIU Chen; ZOU Xue-cheng; YIN Sheng

    2004-01-01

    Through experiments and computer simulation, the influence of the energy levels of organic materials and electrode materials in the organic light-emitting diodes (OLEDs) on the device performances is discussed. Results show that the device performances are influenced by not only the carrier injection barriers at the electrode interface but also the barriers at the organic heterojunction interface. This result is helpful to the selection of the organic materials and their arrangement in the optimal design of OLEDs.

  2. Phototransferred thermoluminescence from alpha-Al sub 2 O sub 3 :C using blue light emitting diodes

    CERN Document Server

    Bulur, E

    1999-01-01

    Phototransferred thermoluminescence (PTTL) from alpha-Al sub 2 O sub 3 :C single crystals was studied using a blue light emitting diode (LED) for phototransfer of charges from deep traps to the main dosimetry trap. The dose response was found to be linear in the region from approx 5 mGy to approx 5 Gy. It was observed that the corresponding deep traps were located near 500 deg. C and heating to temperatures >600 deg. C removes the PTTL effect induced by the light from the blue LED. The thermal activation energy of the source traps involved in the PTTL production was calculated as 3.23 eV.

  3. Highly efficient broad-area blue and white light-emitting diodes on bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Vampola, Kenneth J.; Fellows, Natalie N.; Masui, Hisashi; Chung, Roy B.; Sato, Hitoshi; Sonoda, Junichi; Hirasawa, Hirohiko; Iza, Michael; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California (United States); Brinkley, Stuart E.; Furukawa, Motoko [Electrical and Computer Engineering Department, University of California, Santa Barbara, California (United States); DenBaars, Steven P. [Materials Department, University of California, Santa Barbara, California (United States)]|[Electrical and Computer Engineering Department, University of California, Santa Barbara, California (United States)

    2009-02-15

    Highly efficient light emitting diodes (LEDs) with peak emission wavelengths of nominally 450 nm were grown, fabricated and tested. The growth was performed by metal organic chemical vapour deposition. The LEDs were grown on c-plane (0001) bulk GaN substrates and fabricated into broad-area devices with active area 0.01 cm{sup 2}. Considerations were made to improve extraction efficiency, including transparent contacts, suspended mirror-less packaging and encapsulation in a truncated pyramid optic. These factors resulted in LEDs with high peak external quantum efficiency and reduced efficiency droop. The output power and external quantum efficiency at 20 mA were 38.5 mW and 68.9%. At 100 mA, they were 170 mW and 60.9%. White LEDs were fabricated by application of a yellow phosphor to the blue LEDs. The white LED luminous flux and efficacy at 20 mA was 9.6 lm and 128 lm/W. The chromaticity coordinates and correlated colour temperature were (0.348 K, 0.378 K) and 4998 K. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Optical Properties of Blue-Light-Emitting (Ca,Sr)Mg2Si3O9:Eu2+ Phosphor

    Science.gov (United States)

    Lee, Hyun Ju; Choi, Sung Hwan; Kim, Kyung Pil; Shin, Hyun Ho; Yoo, Jae Soo

    2010-10-01

    For light-emitting diode (LED) excitation at 400 nm, the optical properties of a Eu2+-activated CaO-SrO-MgO-SiO2 material system were investigated. All the materials were synthesized by solid state reaction. In particular, (Ca,Sr)Mg2Si3O9:Eu2+, which has the same crystal structure as CaMgSi2O6, was found to be promising as a blue-light-emitting phosphor for near UV LED application. The luminance intensity was optimized by controlling the Eu2+ concentration and the composition of the host lattice. The ratio of calcium ions to strontium ions was a convenient parameter for adjusting the maximum excitation peak to 400 nm, which is favorable for near UV LED excitation. The highest luminance intensity of Ca1-x-ySryMg2Si3O9:Eux2+ under 405 nm excitation was achieved at the Eu2+ concentration of x=0.01 and a Sr2+ concentration of y=0.3. The luminance intensity of (Ca,Sr)Mg2Si3O9:Eu2+ was found to be superior to that of a commercial blue-light-emitting BaMgAl10O17:Eu2+ phosphor, which is used for near-UV LED excitation.

  5. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    International Nuclear Information System (INIS)

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m−2. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage

  6. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    Science.gov (United States)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  7. Mask-less patterning of organic light emitting diodes using electrospray and selective biasing on pixel electrodes

    Science.gov (United States)

    Lee, Sangyeob; Koo, Hyun; Cho, Sunghwan

    2015-04-01

    Wet process of soluble organic light emitting diode (OLED) materials has attracted much attention due to its potential as a large-area manufacturing process with high productivity. Electrospray (ES) deposition is one of candidates of organic thin film formation process for OLED. However, to fabricate red, green, and blue emitters for color display, a fine metal mask is required during spraying emitter materials. We demonstrate a mask-less color pixel patterning process using ES of soluble OLED materials and selective biasing on pixel electrodes and a spray nozzle. We show red and green line patterns of OLED materials. It was found that selective patterning can be allowed by coulomb repulsion between nozzle and pixel. Furthermore, we fabricated blue fluorescent OLED devices by vacuum evaporation and ES processes. The device performance of ES processed OLED showed nearly identical current-voltage characteristics and slightly lower current efficiency compared to vacuum processed OLED.

  8. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  9. Microwave assisted transformation of N,N-diphenylamine as precursors of organic light emitting diodes (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Jefri,; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id [Organic Chemistry Research Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    In this research, study on the transformation of N,N-diphenylamine (DPA) using iodine (I2) utilizing solid state Microwave Assisted Organic Synthesis (MAOS) method has been carried out. The reaction was performed by variations of three parameters namely the mole of reagents, the amount and type of solid support (alumina/Al2O3), and the reaction conditions. Experimental results showed that neutral-alumina was a better solid support than basic-alumina. The optimum temperature for the reaction was approximately at 125-133 °C with reaction time of 15 minutes and microwave reactor power at 500-600 W. The separation of the yellowish green product solution with preparative Thin Layer Chromatography (TLC) method using n-hexane:ethyl acetate = 4:1 (v/v) as eluent yielded two fractions (I and II) and both fractions can undergo fluorescence under 365 nm UV light. Based on the LC chromatogram with methanol:water = 95:5 (v/v) as eluent and its corresponding mass spectra (ESI+), fraction I contained three compounds, which were tetracarbazole A, triphenylamine, and impurities in the form of plasticizer such as bis(2-ethylhexyl) phthalate. Fraction II also contained three compounds, which were tetracarbazole C, tetraphenylhydrazine, and plasticizer such as bis(2-ethylhexyl) phthalate. Both FT-IR (KBr disks) and NMR (500 MHz, CDCl{sub 3}) spectra of fraction I and II confirmed the aromatic amine groups in those compounds. The observed fluorescence colors of fraction I and II were violet and violet-blue, respectively. Based on their structures and fluorescence characters, the compounds in fraction I and II have the potential to be used as Organic Light Emitting Diode (OLED) compound precursors.

  10. Microwave assisted transformation of N,N-diphenylamine as precursors of organic light emitting diodes (OLED)

    Science.gov (United States)

    Jefri, Wahyuningrum, Deana

    2015-09-01

    In this research, study on the transformation of N,N-diphenylamine (DPA) using iodine (I2) utilizing solid state Microwave Assisted Organic Synthesis (MAOS) method has been carried out. The reaction was performed by variations of three parameters namely the mole of reagents, the amount and type of solid support (alumina/Al2O3), and the reaction conditions. Experimental results showed that neutral-alumina was a better solid support than basic-alumina. The optimum temperature for the reaction was approximately at 125-133 °C with reaction time of 15 minutes and microwave reactor power at 500-600 W. The separation of the yellowish green product solution with preparative Thin Layer Chromatography (TLC) method using n-hexane:ethyl acetate = 4:1 (v/v) as eluent yielded two fractions (I and II) and both fractions can undergo fluorescence under 365 nm UV light. Based on the LC chromatogram with methanol:water = 95:5 (v/v) as eluent and its corresponding mass spectra (ESI+), fraction I contained three compounds, which were tetracarbazole A, triphenylamine, and impurities in the form of plasticizer such as bis(2-ethylhexyl) phthalate. Fraction II also contained three compounds, which were tetracarbazole C, tetraphenylhydrazine, and plasticizer such as bis(2-ethylhexyl) phthalate. Both FT-IR (KBr disks) and NMR (500 MHz, CDCl3) spectra of fraction I and II confirmed the aromatic amine groups in those compounds. The observed fluorescence colors of fraction I and II were violet and violet-blue, respectively. Based on their structures and fluorescence characters, the compounds in fraction I and II have the potential to be used as Organic Light Emitting Diode (OLED) compound precursors.

  11. Direct visualization and modeling of carrier distribution in organic light emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Mashiko, Yasuhiro; Taguchi, Dai; Manaka, Takaaki [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552 (Japan); Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552 (Japan); Weis, Martin [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia)

    2014-03-03

    By using microscopic electric field induced second harmonic generation (EFISHG) measurement, we studied the carrier distribution in the channel of organic light emitting transistors with an active layer of poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). EFISHG signals were clearly observed in the point where the electroluminescence is generated. Results suggested that the highest enhancement of the electric field is on zero-potential position in the channel, which represents the meeting point of electrons and holes and is an origin of the electroluminescence. The transmission line model analysis of the carrier distribution of the channel supported this conclusion. - Highlights: • Carrier distribution in organic light emitting transistor channel was determined. • Second-harmonic generation images were clearly observed in the emission region. • A transmission line model well accounted for the observed carrier behavior.

  12. The performance enhancement in organic light-emitting diode using a semicrystalline composite for hole injection

    Institute of Scientific and Technical Information of China (English)

    Cao Jun-Song; Guan Min; Cao Guo-Hua; Zeng Yi-Ping; Li Jin-Min; Qin Da-Shan

    2008-01-01

    A semicrystalline composite, 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) doped N, N'-di (1-naphthyl)-N, N'-diphenylbenzidine (NPB), has been fabricated and characterized. An organic light-emitting diode using such a composite in hole injection exhibits the improved performance as compared with the reference device using neat NPB in hole injection. For example, at a luminance of 2000 cd/m2, the former device gives a current efficiency of 2.0cd/A, higher than 1.6cd/A obtained from the latter device. Furthermore, the semicrystalline composite has been shown thermally to be more stable than the neat NPB thin film, which is useful for making organic light emitting diodes with a prolonged lifetime.

  13. Effect of Triplet Harvesting on the Lifetime Based on Fluorescence and Phosphorescence in Hybrid White Organic Light Emitting Diodes.

    Science.gov (United States)

    Lee, Eun; Lee, Ho Won; Yang, Hyung Jin; Sun, Yong; Lee, Jae Woo; Hwang, Kyo Min; Kim, Woo Young; Kim, Young Kwan

    2016-03-01

    We investigated efficient hybrid white organic light emitting diodes (WOLEDs) apply to triplet harvesting (TH) concept based on three complementary colors by mixing containing blue fluorescent emitter with phosphorescent emitters. The TH is to transfer these triplet excitons from a fluorescence to a phosphorescence, where they can decay radiatively. We fabricated several hybrid WOLEDs, having various emitting layer structures with blue fluorescent emitter and red, green phosphorescent emitter. The WOLED exhibited maximum luminous efficiency of 9.02 cd/A, and a maximum external quantum efficiency of 4.17%. The WOLED showed a highly color-stable white emission with the Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1,000 cd/m2. PMID:27455693

  14. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    International Nuclear Information System (INIS)

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  15. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    Science.gov (United States)

    Forrest, Stephen; Kanno, Hiroshi

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  16. Improved light extraction from white organic light-emitting devices using a binary random phase array

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Yasuhisa, E-mail: inada.yasuhisa@jp.panasonic.com; Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki [R and D Division, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501 (Japan); Matsuzaki, Jumpei [Device Development Center, Eco Solutions Company, Panasonic Corporation, 1048 Kadoma, Osaka 571-8686 Japan (Japan)

    2014-02-10

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs.

  17. Recent advances in light outcoupling from white organic light-emitting diodes

    OpenAIRE

    Gather, M.C.; Reineke, S.

    2015-01-01

    M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support. Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only...

  18. Polarization-matched quaternary superlattice electron blocking layer in blue InGaN light-emitting diodes

    Science.gov (United States)

    Kuo, Yen-Kuang; Chen, Fang-Ming; Chang, Jih-Yuan; Lin, Bing-Cheng

    2016-05-01

    The effect of polarization-matched AlInGaN/AlGaN superlattice (SL) electron blocking layer (EBL) on the physical characteristics of blue InGaN light-emitting diodes (LEDs) is investigated numerically. Simulation results show that the optical performance of the LEDs with polarization-matched SL EBL can be markedly improved due to the effectively suppressed polarization effect, enhanced hole injection efficiency, and reduced electron overflow. Comparing to the LEDs with conventional AlGaN EBL, an improvement of 53% in light output power is achieved for the proposed LED structure.

  19. White organic light-emitting devices with high color purity and stability

    International Nuclear Information System (INIS)

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm−2 at the applied voltage of 13.4 V and Commission International de 1′Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu′v′ = 0.0119) when the current density increases from 10 to 100 mA cm−2. It reveals that the emissive dopant Rb acts as charge traps to improve electron–hole balance, provides sites for electron–hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates. (paper)

  20. Enhanced light extraction from organic light-emitting devices using a sub-anode grid

    Science.gov (United States)

    Qu, Yue; Slootsky, Michael; Forrest, Stephen R.

    2015-11-01

    We demonstrate the highly effective extraction of waveguided light from the active region of organic light-emitting devices using a non-diffractive dielectric grid layer placed between the transparent anode and the substrate. The sub-anode grid couples out all waveguide mode power into the substrate without changing the device electrical properties, resulting in an increase in both the external quantum efficiency and luminous efficacy for green phosphorescent organic light-emitting devices from 15 ± 1% and 36 ± 2 lm W-1 to 18 ± 1% and 43 ± 2 lm W-1. These characteristics are further increased to 40 ± 2% and 95 ± 4 lm W-1 when all glass modes are also extracted. The use of a thick electron transport layer further reduces surface plasmon modes, resulting in an increase in the substrate and air modes by 50 ± 8% compared with devices lacking the grids. The sub-anode grid has minimal impact on organic light-emitting device emission wavelength and viewing angle, and is likely to prove beneficial for a broad range of display and lighting applications.

  1. Transparent stacked organic light emitting devices. II. Device performance and applications to displays

    Science.gov (United States)

    Gu, G.; Parthasarathy, G.; Tian, P.; Burrows, P. E.; Forrest, S. R.

    1999-10-01

    Vertical stacking of organic light emitting devices (OLEDs) that emit the three primary colors is shown to be a means for achieving efficient and bright full-color displays. In Paper I, we addressed stacked OLED (SOLED) design and fabrication principles to optimize emission colors, operating voltage, and efficiency. Here, we present results on two different (metal-containing and metal-free cathode) SOLED structures that exhibit performance suitable for many full-color display applications. The operating voltages at 10 mA/cm2 (corresponding to video display brightnesses) are 6.8, 8.5, and 12.1 V for the red (R), green (G), and blue (B) elements of the metal-containing SOLED, respectively. The respective subpixel luminous efficiencies are 0.53, 1.44, and 1.52 cd/A, and the Commission Internationale de L'Éclairage (CIE) chromaticity coordinates are (0.72, 0.28), (0.42, 0.56), and (0.20, 0.22). In the high transparency metal-free SOLED, an insulating layer was inserted between the two upper subpixels to allow for independent grounding of all color emitters in the stack. At operating voltages of 12-14 V, video display brightnesses were achieved with luminous efficiencies of 0.35, 1.36, and 1.05 cd/A for the R, G, and B subpixels, respectively. The respective CIE coordinates for R, G, and B emissions are (0.72, 0.28), (0.26, 0.63), and (0.17, 0.28) in the normal viewing direction, shifting inperceptibly as the viewing angle is increased to as large as 60°. Finally, we discuss addressing schemes of SOLED displays, and compare them with other strategies for achieving full-color, OLED-based displays.

  2. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    International Nuclear Information System (INIS)

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m2. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq)3 as phosphorescent red dopant in electron transport layer

  3. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    International Nuclear Information System (INIS)

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 μm in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  4. Fabrication and optimization of phosphorescent organic light emitting diodes for solid-state lighting applications

    Science.gov (United States)

    Bhansali, Unnat S.

    Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency ˜ 100% and power efficiency ˜100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 ≤ WOLEDs ≤ 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group. We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2-bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically

  5. Adhesion and degradation of organic and hybrid organic-inorganic light-emitting devices

    International Nuclear Information System (INIS)

    This paper presents the results of a combined analytical, computational, and experimental study of adhesion and degradation of Organic Light Emitting Devices (OLEDs). The adhesion between layers that are relevant to OLEDs is studied using an atomic force microscopy technique. The interfacial failure mechanisms associated with blister formation in OLEDs and those due to the addition of TiO2 nanoparticles into the active regions are then elucidated using a combination of fracture mechanics, finite element modeling and experiments. The blisters observed in the models are shown to be consistent with the results from adhesion, interfacial fracture mechanics models, and prior reports of diffusion-assisted phenomena. The implications of the work are then discussed for the design of OLED structures with improved lifetimes and robustness

  6. Adhesion and degradation of organic and hybrid organic-inorganic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Momodu, D. Y.; Chioh, A. V. [Department of Materials Science and Engineering, African University of Science and Technology, Federal Capital Territory, Abuja (Nigeria); Tong, T. [Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544 (United States); Zebaze Kana, M. G. [Physics Advanced Laboratory, Sheda Science and Technology Complex, Abuja (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete (Nigeria); Soboyejo, W. O. [Department of Materials Science and Engineering, African University of Science and Technology, Federal Capital Territory, Abuja (Nigeria); Princeton Institute of Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-02-28

    This paper presents the results of a combined analytical, computational, and experimental study of adhesion and degradation of Organic Light Emitting Devices (OLEDs). The adhesion between layers that are relevant to OLEDs is studied using an atomic force microscopy technique. The interfacial failure mechanisms associated with blister formation in OLEDs and those due to the addition of TiO{sub 2} nanoparticles into the active regions are then elucidated using a combination of fracture mechanics, finite element modeling and experiments. The blisters observed in the models are shown to be consistent with the results from adhesion, interfacial fracture mechanics models, and prior reports of diffusion-assisted phenomena. The implications of the work are then discussed for the design of OLED structures with improved lifetimes and robustness.

  7. Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template

    International Nuclear Information System (INIS)

    The high power GaN-based blue light emitting diode (LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition (MOCVD), hydride vapor-phase epitaxial (HVPE), and laser lift-off (LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), Rutherford back-scattering (RBS), photoluminescence, current-voltage and light output-current measurements. The width of (0002) reflection in XRD rocking curve, which reaches 173″ for the thick GaN template LED, is less than that for the conventional one, which reaches 258″. The HRTEM images show that the multiple quantum wells (MQWs) in 80-μm-thick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation. (condensed matter: structural, mechanical, and thermal properties)

  8. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  9. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    International Nuclear Information System (INIS)

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy)3) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm

  10. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoxiao; Li, Fushan, E-mail: fushanli@hotmail.com; Wu, Wei; Guo, Tailiang, E-mail: gtl_fzu@hotmail.com

    2014-03-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm.

  11. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  12. High-efficiency blue multilayer polymer light-emitting diode based on poly(9,9-dioctylfluorene)

    Science.gov (United States)

    Tseng, Shin-Rong; Li, Shiuan-Yi; Meng, Hsin-Fei; Yu, Yi-Hsiang; Yang, Chia-Ming; Liao, Hua-Hsien; Horng, Sheng-Fu; Hsu, Chian-Shu

    2007-04-01

    A highly efficient blue polymer light-emitting diode based exclusively on commercial poly(9,9-dioctylfluorene) and poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-s-butylphenyl)) diphenylamine)] is demonstrated. High electroluminescent efficiency is achieved by enhancing electron currents and making devices in multilayered structures. CsF/Al is used as the efficient electron injection cathode, and the fabrication process is in the glove box to enhance electron mobility by reducing oxygen adsorption. The multilayer structure is prepared by the liquid buffer layer technique. The maximum efficiency is 2.5 cd/A at deep blue with the corresponding external quantum efficiency of 2%.

  13. Experimental Study of Red-, Green-, and Blue-Based Light Emitting Diodes Visible Light Communications for Micro-Projector Application

    Science.gov (United States)

    Chou, H.-H.; Liaw, S.-K.; Jiang, J.-S.; Teng, C.

    2016-05-01

    In this research, an experimental short-range visible light communication link using red-, green-, and blue-based light-emitting diodes (LEDs) for portable micro-projector applications is presented. A Reconfigurable design of a post-equalizer aimed to improve the inherent narrow modulation bandwidth of red-, green-, and blue-based LEDs has been experimentally implemented, and its effectiveness with optical filters at the receiver is investigated. Reflective liquid-crystal-on-silicon-based micro-projection architecture, widely used in portable micro-projectors, was set up to evaluate the proposed visible light communication system. The measurement results demonstrated that a significant aggregative bandwidth improvement of 162 MHz as well as an aggregative data transmission rate of nearly 400 Mb/s can be achieved by using a non-return-to-zero-on-off keying (NRZ-OOK) modulation scheme based on only one polarization state of incident light without any offline signal processing.

  14. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian; Esler, James

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  15. All solution processed blue multi-layer light emitting diodes realized by thermal layer stabilization and orthogonal solvent processing

    Science.gov (United States)

    Nau, Sebastian; Trattnig, Roman; Pevzner, Leonid; Jäger, Monika; Schlesinger, Raphael; Nardi, Marco V.; Ligorio, Giovanni; Christodoulou, Christos; Schulte, Niels; Winkler, Stefanie; Frisch, Johannes; Vollmer, Antje; Baumgarten, Martin; Sax, Stefan; Koch, Norbert; Müllen, Klaus; List-Kratochvil, Emil J. W.

    2013-09-01

    Herein we report on the fabrication and the properties of two highly efficient blue light emitting multilayer polymer light emitting diodes (PLEDs). The first device structure combines a thermally stabilized polymer with a material processed from an orthogonal solvent, allowing for the fabrication of a triple layer structure from solution. The well known poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), which can be stabilized in a bake-out procedure, was used as a hole transporting layer. A novel pyrene - triphenylamine (PPyrTPA) copolymer was used as emissive layer. The stack was finalized by a poly(fluorene) - derivative with polar side-chains, therefore being soluble in a polar solvent which allows for the deposition onto PPyrTPA without redissolving. The resulting PLED showed bright-blue electroluminescence (CIE1931 coordinates x=0.163; y=0.216) with a high efficiency of 1.42 cd/A and a peak luminescence of 16500 cd/m². The second presented device configuration comprises a thermally stabilized indenofluorene - triphenylamine copolymer acting as hole transporter, and an emissive copolymer with building blocks specifically designed for blue light emission, effective charge carrier injection and transport as well as for exciton generation. This multilayer PLED led to deep-blue emission (CIE1931 x=0.144; y=0.129) with a remarkably high device efficiency of 9.7 cd/A. Additionally, atomic force microscopy was carried out to investigate the film morphology of the components of the stack and x-ray photoemission spectroscopy was performed to ensure a full coverage of the materials on top of each other. Ultraviolet photoemission spectroscopy confirmed the desired type-II band level offsets on the individual interfaces.

  16. Dry etching characteristics of GaN for blue/green light-emitting diode fabrication

    International Nuclear Information System (INIS)

    The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl2-based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl2/Ar plasma chemistry and SiO2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry

  17. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  18. Towards developing a tandem of organic solar cell and light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHS, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-01-15

    It is proposed here to design a tandem of organic solar cell (OSC) and white organic light emitting diode (WOLED) which can generate power in the day time from the sun and provide lighting at night. With the advancement of chemical technology, such device is expected to be very-cost effective and reasonably efficient. A device thus fabricated has the potential of meeting the world's sustainable domestic and commercial power and lighting needs (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Organic light emitting diodes the use of rare earth and transition metals

    CERN Document Server

    Pereira, Luiz F R

    2012-01-01

    The Organic Light Emitting Diode (OLED) world is one of the most fascinated fields of research with an enormous technological application market. Besides the actual use in displays, the intrinsic and unique properties of that electroluminescent devices opens new potential applications since efficient lighting to decorative environments, with a very simple incorporation in architectural design. This book addresses the development of OLEDs based on rare-earth and transition-metal complexes, focusing in special the Europium, Terbium, Ruthenium and Rhenium. The idea is to explain how these organic

  20. Organic Light-Emitting Devices with Extended Operating Lifetimes on Plastic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Michael (Universal Display Corporation); Michalski, L (Universal Display Corporation); Rajan, K (Universal Display); Rothman, M A.(Universal Display); Silvernail, J A.(Universal Display); Brown, Julie J.(Universal Display Corporation); Burrows, Paul E.(BATTELLE (PACIFIC NW LAB)); Graff, Gordon L.(BATTELLE (PACIFIC NW LAB)); Gross, Mark E.(BATTELLE (PACIFIC NW LAB)); Martin, Peter M.(BATTELLE (PACIFIC NW LAB)); Hall, Michael G.(BATTELLE (PACIFIC NW LAB)); Mast, Eric S.(BATTELLE (PACIFIC NW LAB)); Bonham, Charles C.(BATTELLE (PACIFIC NW LAB)); Bennett, Wendy D.(BATTELLE (PACIFIC NW LAB)); Zumhoff, Mac R.(BATTELLE (PACIFIC NW LAB))

    2001-11-01

    We fabricate long-lived organic light emitting devices using a 175-micrometer thick polyethylene terephthalte substrate coated with an organic-inorganic multilayered barrier film. To assess the permeability of the plastic substrate, a glass lid and epoxy seal are used to encapsulate the display in order to compare the rate of degradation to glass-based devices. The observed permeating rate of water vapor through the plastic substrate was estimated to be 2 x 10-6 g/m squared/day. Driven at 2.5 mA/cm squared, we measure a device lifetime of 3800 hours from an initial luminance of 425 cd/m squared.

  1. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating

    DEFF Research Database (Denmark)

    Sandstrom, Andreas; Dam, Henrik Friis; Krebs, Frederik C;

    2012-01-01

    The grand vision of manufacturing large-area emissive devices with low-cost roll-to-roll coating methods, akin to how newspapers are produced, appeared with the emergence of the organic light-emitting diode about 20 years ago. Today, small organic light-emitting diode displays are commercially av...... the initial preparation of inks, the subsequent coating of the constituent layers and the final device operation all could be executed under ambient air....

  2. Efficient inverted organic light-emitting devices by amine-based solvent treatment (Presentation Recording)

    Science.gov (United States)

    Song, Myoung Hoon; Choi, Kyoung-Jin; Jung, Eui Dae

    2015-10-01

    The efficiency of inverted polymer light-emitting diodes (iPLEDs) were remarkably enhanced by introducing spontaneously formed ripple-shaped nanostructure of ZnO (ZnO-R) and amine-based polar solvent treatment using 2-methoxyethanol and ethanolamine (2-ME+EA) co-solvents on ZnO-R. The ripple-shape nanostructure of ZnO layer fabricated by solution process with optimal rate of annealing temperature improves the extraction of wave guide modes inside the device structure, and 2-ME+EA interlayer enhances the electron injection and hole blocking and reduces exciton quenching between polar solvent treated ZnO-R and emissive layer. As a result, our optimized iPLEDs show the luminous efficiency (LE) of 61.6 cd A-1, power efficiency (PE) of 19.4 lm W-1 and external quantum efficiency (EQE) of 17.8 %. This method provides a promising method, and opens new possibilities for not only organic light-emitting diodes (OLEDs) but also other organic optoelectronic devices such as organic photovoltaics, organic thin film transistors, and electrically driven organic diode laser.

  3. White organic light-emitting diodes based on a combined electromer and monomer emission in doubly-doped polymers

    International Nuclear Information System (INIS)

    We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/Al. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A. (interdisciplinary physics and related areas of science and technology)

  4. A multi-zoned white organic light-emitting diode with high CRI and low color temperature

    Science.gov (United States)

    Zhang, Tao; He, Shou-Jie; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2016-02-01

    White organic light emitting diodes (WOLEDs) is becoming a new platform technology for a range of applications such as flat-panel displays, solid-state lightings etc., and are under intensive research. For general solid-state illumination applications, a WOLED’s color rendering index (CRI) and correlated color temperature (CCT) are two crucial parameters. This paper reports that WOLED device structures can be constructed using four stacked emission layers which independently emit lights at blue, green, yellow and red color respectively. The intensity of each emission layer is then engineered by funneling excitons to the targeted emission layer to achieve an ultrahigh 92 CRI at 5000 cd/m2, and to reduce CCT to below 2500 K.

  5. White organic light-emitting diodes based on a combined electromer and monomer emission in doubly-doped polymers

    Science.gov (United States)

    Meng, Ling-Chuan; Lou, Zhi-Dong; Yang, Sheng-Yi; Hou, Yan-Bing; Teng, Feng; Liu, Xiao-Jun; Li, Yun-Bai

    2012-08-01

    We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/Al. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A.

  6. Weak-microcavity organic light-emitting diodes with improved light-extraction and wide viewing-angle

    Science.gov (United States)

    Cho, Sang-Hwan; Lee, Yong-Hee; Song, Young-Woo; Kim, Yoon-Chang; Lee, Joon-Gu; Lee, Jong Hyuk; Hwang, Kyu Hwan; Zang, Dong-Sik

    2009-02-01

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays that deliver both a high light-extraction efficiency and wide viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs (WMOLEDs) are enhanced by 56%, 107%, and 26%, respectively with minimal changes viewing angle and EL spectra characteristics. The color purity is also improved for all three colors. Moreover, we fabricated full-color 128×160 passive-matrix bottom-emitting WMOLED displays to prove their manufacturability. This design is realized by simple one-step 20-nm etching of the low-index layer of red/green subpixels. The EL efficiency of white color in the WMOLED display is 27% higher than that of a conventional OLED display.

  7. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    Science.gov (United States)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  8. Flexible organic light-emitting diodes with ITO/Ag/ITO multi-layers as anodes

    Institute of Scientific and Technical Information of China (English)

    LI Yang; WANG Liduo; CHANG Chun; DUAN Lian; QIU Yong

    2004-01-01

    The transparent ITO/Ag/ITO multi-layers are developed as anodes on flexible PET (poly(ethylene terephthalate)) substrates. The influence of these anodes on FOLED (Flexible Organic Light-emitting Diodes) is investigated. From the results of research, it can be seen that the multi-layer anode has optimum characteristics, whose sheet resistance is 11 Ω and optical transmittance is about 80%,when the thickness of Ag sandwiched by two ITO layers is in the range of 14-18 nm. It is demonstrated that the OLED devices with multi-layer anodes give better luminescence and higher efficiency compared with those with single ITO an odes.

  9. New hybrid encapsulation for flexible organic light-emitting devices on plastic substrates

    Institute of Scientific and Technical Information of China (English)

    LIU Song; ZHANG DeQiang; LI Yang; DUAN Lian; DONG GuiFang; WANG LiDuo; QIU Yong

    2008-01-01

    The hybrid encapsulation for flexible organic light-emitting devices on plastic substrate was investi-gated. The hybrid encapsulation consisted of four periods of Alq3/LiF layers as the pre-encapsulation layer and a flexible aluminum foil coated with getter as the encapsulation cap. We measured the device lifetime at a continuous constant current of 20 mA/cm2, which corresponded to an initial luminance of 2000 cd/m2, The half-luminance decay time of the encapsulated device was about 458 h. More over, the hybrid encapsulation is ultrathin and flexible, ensuring device bendability.

  10. A non-doped phosphorescent organic light-emitting device with above 31% external quantum efficiency.

    Science.gov (United States)

    Wang, Qi; Oswald, Iain W H; Yang, Xiaolong; Zhou, Guijiang; Jia, Huiping; Qiao, Qiquan; Chen, Yonghua; Hoshikawa-Halbert, Jason; Gnade, Bruce E

    2014-12-23

    The demonstrated square-planar Pt(II)-complex has reduced triplet-triplet quenching and therefore a near unity quantum yield in the neat thin film. A non-doped phosphorescent organic light-emitting diode (PhOLED) based on this emitter achieves (31.1 ± 0.1)% external quantum efficiency without any out-coupling, which shows that a non-doped PhOLED can be comparable in efficiency to the best doped devices with very complicated device structures. PMID:25219957

  11. High luminance organic light-emitting diodes with efficient multi-walled carbon nanotube hole injectors

    OpenAIRE

    Shi, S; Silva, SRP

    2012-01-01

    We report high luminance organic light-emitting diodes by use of acid functionalized multi-walled carbon nanotube (o-MWCNTs) as efficient hole injector electrodes with a simple and solution processable device structure. At only 10 V, the luminance can reach nearly 50,000 cd/m2 with an external quantum efficiency over 2% and a current efficiency greater than 21 cd/A. The investigation of hole-only devices shows that the mechanism for hole injection is changed from injection limited to bulk lim...

  12. Collimated Light Source Using Patterned Organic Light-Emitting Diodes and Microlens

    Science.gov (United States)

    Sukekazu Aratani,; Masaya Adachi,; Masao Shimizu,; Tatsuya Sugita,; Toshinari Shibasaki,; Katsusuke Shimazaki,

    2010-04-01

    We developed for the first time a collimated organic light-emitting diode (OLED) light source using a patterned OLED and a microlens. The structure of the collimated OLED light source was designed by conventional ray-tracking simulation. We demonstrated that the collimated OLED light source enhanced the luminance of a liquid crystal display (LCD) with a low aperture ratio by a factor of more than two compared with a conventional OLED light source, which was not patterned. The collimated OLED light source with the patterned OLED and microlens is thus very effective for achieving a highly efficient LCD with OLED backlight.

  13. Large white organic light-emitting diode lighting panel on metal foils

    OpenAIRE

    Guaino, Philippe; Mazeri, Fabrizo; Hofmann, Michael; Birnstock, Jan; Avril, Ludovic; Viville, Pascal; Kanaan, Hani; Lazzaroni, Roberto; Loicq, Jerôme; Rotheudt, Frank; Pans, Christian

    2011-01-01

    Large-area top-emitting PIN structure (highly p- and n- type doped transport layers for electrons and holes and an undoped emitter layer)–organic light-emitting diode (OLED) on advanced metal foils were fabricated for lighting applications. ArcelorMittal has developed a new surface treatment on metal foils, suitable for roll-to-roll production and dedicated to large-area device integration. Both monochromatic and white devices are realized on advanced metal foils. Power efficiencies at 1000 c...

  14. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui

    2011-01-18

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  15. Improved AC pixel electrode circuit for active matrix of organic light-emitting display

    Science.gov (United States)

    Si, Yujuan; Lang, Liuqi; Chen, Wanzhong; Liu, Shiyong

    2004-05-01

    In this paper, a modified four-transistor pixel circuit for active-matrix organic light-emitting displays (AMOLED) was developed to improve the performance of OLED device. This modified pixel circuit can provide an AC driving mode to make the OLED working in a reversed-biased voltage during the certain cycle. The optimized values of the reversed-biased voltage and the characteristics of the pixel circuit were investigated using AIM-SPICE. The simulated results reveal that this circuit can provide a suitable output current and voltage characteristic, and little change was made in luminance current.

  16. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    Science.gov (United States)

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with Pt

  17. Organic Light Emitting Devices with Linearly-Graded Mixed Host Architecture

    Science.gov (United States)

    Lee, Sang Min

    Organic Light Emitting Devices (OLEDs) with a linearly-graded mixed (LGM) host architecture in the emissive layer (EML) were studied by the application of a newly-developed thermal deposition boat. A new thermal deposition boat, featuring indirect deposition control and fast rate response, was developed in order to make an evaporation coater of high space utilization and to achieve a real time linearly-graded rate control during the device fabrication process. A new design of dual-hole boat, based on the reduced wall resistance of the side hole toward the vapor flow, enabled the indirect deposition rate control with sufficient control accuracy by using the feature of the stable ratio of rates from top and side holes. Minimizing the thermal mass of the body and designing a direct heat transfer with a coil placed inside the boat resulted in the realization of the linearly-graded deposition rate within acceptable deviation range. Thanks to the feature of fast rate response, it was possible to control the linearly-graded rate of each host material during the process and to apply the architecture to some of the fluorescent and phosphorescent OLED devices. The reported efficiency improvement of a fluorescent OLED, based on step-graded junction in the literature, was well reproduced in an OLED with a LGM architecture, demonstrating that charge balance in the emissive layer can be further improved using the LGM architecture. By minimizing the internal energy barrier in the LGM device, a higher EL efficiency was well demonstrated over the uniformly-mixed (UM) host device, where residual internal interfaces were present as additional quenching sites in the EML. Similar effects were observed in blue phosphorescent OLED devices, where the mobility of the hole transport material (HTM) was usually much higher than that of the electron transport material (ETM) such that the recombination zone was more localized at the EML/ETL interface. It was found that the main effect of the

  18. Advances in phosphors based on organic materials for light emitting devices

    Science.gov (United States)

    Sharma, Kashma; Kumar, Vijay; Kumar, Vinod; Swart, Hendrik C.

    2016-01-01

    A brief overview is presented in the light emitting diodes (LEDs) based on purely organic materials. Organic LEDs are of great interest to the research community because of their outstanding properties and flexibility. Comparison between devices made using different organic materials and their derivatives with respect to synthetic protocols, characterizations, quantum efficiencies, sensitivity, specificity and their applications in various fields have been discussed. This review also discusses the essential requirement and scientific issues that arise in synthesizing cost-effective and environmental friendly organic LEDs diodes based on purely organic materials. This mini review aims to capture and convey some of the key current developments in phosphors formed by purely organic materials and highlights some possible future applications. Hence, this study comes up with a widespread discussion on the various contents in a single platform. Also, it offers avenues for new researchers for futuristic development in the area.

  19. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    Science.gov (United States)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  20. Enhancing color purity and efficiency of white organic light-emitting diodes using a double-emitting layer

    International Nuclear Information System (INIS)

    This paper presents white organic light-emitting diodes (WOLEDs) based on a novel double-emitting layer consisting of blue and white emitters. A blue fluorescent host of 4,40-bis(2,2-diphenylvinyl)-1,10-biphenyl (DPVBi) doped with 1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene (BCzVB) is used as the blue emitter, and this blue matrix doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4 H-pyran (DCJTB) is used as the white emitter. In this double-emitting system, the blue emitter not only emits but also assists energy transfer from DPVBi to DCJTB. More significantly, this blue emitter is expected to act as an effective trapping site for holes. It leads to the efficient recombination of electron–hole pairs in the emission region. The white emitter is used to fabricate WOLEDs, in which DCJTB, tris-(8-hydroxyquinoline) aluminum (Alq3) and DPVBi contribute to the red, green and blue emissive components, respectively. We have observed that this strategy can greatly improve the device performances such as better chromaticity, improved color stability and enhanced efficiency. Through the optimization of the device structure, a balanced white emission with Commission Internationale de L'Eclairage (CIE) color coordinates of (0.33, 0.37) was obtained. This device showed stable color coordinates, i.e. the maximum color shift is less than 0.02 units on CIE color coordinates at the current density range of 4–200 mA cm−2. The maximum luminance achieved was 21 044 cd m−2 at a driving voltage of 17 V, and the maximum luminance efficiency reached was 9.12 cd A−1 at the luminance of 292 cd m−2. Such excellent performance shows that this double-emitting layer structure has great potential as a white light source for eventual applications

  1. Light-emitting Diodes

    Science.gov (United States)

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  2. Performance improvement of InGaN blue light-emitting diodes with several kinds of electron-blocking layers

    Institute of Scientific and Technical Information of China (English)

    Chen Jun; Fan Guang-Han; Zhang Yun-Yan; Pang Wei; Zheng Shu-Wen; Yao Guang-Rui

    2012-01-01

    The performance of lnGaN blue light-emitting diodes(LEDs)with different kinds of electron-blocking layers is investigated numerically.We compare the simulated emission spectra,electron and hole concentrations,euergy band diagrams,electrostatic fields,and internal quantum efficiencies of the LEDs.The LED using A1GaN with gradually increasing Al content from 0% to 20% as the electron-blocking layer(EBL)has a strong spectrum intensity,mitigates efficiency droop,and possesses higher output power compared with the LEDs with the other three types of EBLs.These advantages could be because of the lower electron leakage current and more effective hole injection.The optical performance of the specifically designed LED is also improved in the case of large injection current.

  3. Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes

    International Nuclear Information System (INIS)

    The junction temperature of homoepitaxial green and blue GaInN/GaN quantum well light emitting diode (LED) dies is analyzed by micro-Raman, photoluminescence, cathodoluminescence mapping, and forward-voltage methods and compared to finite element simulations. Dies on GaN substrate and sapphire were analyzed under variable drive current up to 200 mA (246 A/cm2). At 100 mA, dies on bulk GaN remain as cool as 355 K (83 oC) while dies on sapphire heat up to 477 K (204 oC). The efficiency droop and spectral line shift in green LEDs with increasing current density can now be separated into electrical and thermal contributions.

  4. Organic light-emitting diodes based on a series of new polythienothiophene complexes and highly luminescent quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vashchenko, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Goriachiy, D. O., E-mail: goryachii@phystech.edu [Moscow Institute of Physics and Technology (Russian Federation); Vitukhnovsky, A. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Tananaev, P. N. [Dukhov Research Institute of Automation (Russian Federation); Vasnev, V. A.; Rodlovskaya, E. N. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation)

    2016-01-15

    Experimental samples of organic light-emitting diodes with transport layers based on polythienothiophenes and using CdSe/CdS/ZnS semiconductor quantum dots with an internal quantum efficiency up to 85% in the emitting layer are investigated. It is shown that solubility and film-forming properties are key for using polythienothiophenes in light-emitting diodes. The most promising polythienothiophenes are identified on the basis of the results obtained.

  5. Investigation of organic light-emitting diodes with novel organic electron injection layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunae; Sethuraman, Kunjithapatham; An, Jongdeok; Im, Chan [Konkuk University, Seoul (Korea, Republic of); Hwang, Boseon [Jinwoong Industrial Co. Ltd., Seoul (Korea, Republic of)

    2012-03-15

    1-(diphenyl-phosphinoyl)-4-(2,2-diphenyl-vinyl)-benzene (DpDvB) and 4-(diphenyl-phosphinoyl)-4'-(2,2-diphenyl-vinyl)-biphenyl (DpDvBp) have been prepared and used as efficient electron injection layers (EILs) between aluminum cathode and tris (8-hydroxyquinoline) aluminum organic light emitting diodes (OLED). The performances of devices with different thicknesses of DpDvB and DpDvBp were investigated. Experimental results show that the turn-on voltage of the devices was decreased and the luminance of the devices was enhanced with increasing thickness of the EILs. Power efficiencies of 1.07 lm/W and 0.97 lm/W were obtained by inserting a 3-nm-thick EIL of DpDvB and a 5 nm thick EIL of DpDvBp, respectively. These efficiencies are comparable to that of the device using LiF as an EIL. The results prove that DpDvB and DpDvBp layers are also suitable for efficient EILs in OLEDs.

  6. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. PMID:25045087

  7. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions

    International Nuclear Information System (INIS)

    We study in detail here the application of transparent, conductive carbon single-wall nanotube (SWNT) networks as electrodes in flexible organic light-emitting diodes (FOLEDs). Overall comparisons of these networks to the commonly used electrodes poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and indium tin oxide (ITO) are made, and SWNT networks are shown to have excellent optical and superior mechanical properties. The effects of protruding nanotubes, rough surface morphology, and SWNT network-adjacent layer dewetting are shown to be problematic, and approaches for addressing these issues are identified. The mechanical properties of SWNT networks and ITO are compared, and SWNT networks are shown to exhibit more durable sheet conductance under bending, which leads to bendable FOLEDs. We demonstrated FOLEDs with SWNT network anodes that exhibit outstanding light output and meet display requirements. SWNT-based FOLEDs show comparable lifetime performances to ITO-based devices. The promise and the remaining challenges for implementing SWNT networks in organic light-emitting diodes are discussed.

  8. Extracting and directing light out of organic light emitting diodes (Presentation Recording)

    Science.gov (United States)

    Lemmer, Uli; Egel, Amos; Hecht, Matthias; Preinfalk, Jan B.; Gomard, Guillaume

    2015-10-01

    Light extraction from organic light emitting diodes (OLEDs) is attracting considerable interest as being crucial for enhancing the energy efficiency in lighting applications. Light extraction can be realized by lithographically defined internal diffraction gratings or stochastic scattering centers. The former approach needs in addition an external optical layer for scrambling the angularly dependent emission spectra in order to avoid color shifts [1]. Micro lens arrays cannot only be used for fulfilling this task but they can also be used for enhancing the luminosity into a specific direction. We demonstrate recent advances towards high efficiency OLEDs with high directionality. In addition to the relevant technologies we have also developed a comprehensive simulation software for the quantitative description of the light propagation inside the devices. Here, a particular challenging task is the description of multiple and coherent optical scattering. We have recently developed a software for the exact simulation based on a scattering matrix formalism [2]. [1] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig and U. Lemmer, White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission Opt. Expr. 20, A932 (2012). [2] A. Egel, U. Lemmer, Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs, Journal of Quantitative Spectroscopy and Radiative Transfer 148, 165 (2014).

  9. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    International Nuclear Information System (INIS)

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridiumIII-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m2, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material

  10. Tri-Metal Layered Semitransparent Electrode for Red Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Lee, Jae Woo; Lee, Ho Won; Lee, Song Eun; Yang, Hyung Jin; Lee, Sung Kyu; Hwang, Kyo Min; Park, Soo Na; Yoon, Seung Soo; Kim, Young Kwan

    2015-10-01

    In this paper, we fabricated tri-metal layered thin film semitransparent electrodes consisting of a thin conductive metal layer, sandwiched between two nickel layers. An equal red phosphorescent organic light-emitting diode (PHOLED) structure was deposited on the anodes of indium tin oxide (ITO) and three types of tri-metal layers (Ni/Al/Ni, Ni/Cu/Ni, and Ni/Ag/Ni, thickness of 3/7/3 nm in common) on a glass substrate. The optical and electrical performances of the device using Ni/Ag/Ni were improved more than the performances of the other devices due to the micro-cavity effect in accordance with the various electrode characteristics. Moreover, we fabricated the same red PHOLED structures on a flexible substrate, as a consequence, showed competitive emission characteristics compared to the devices fabricated on a glass substrate. Therefore, this study could succeed to additional research on flexible display panel and light-emitting devices with ITO-free electrodes. PMID:26726477

  11. Comparison of organic light emitting diodes with different mixed layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Y.Y.; Siew, W.O. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tou, T.Y., E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2014-11-03

    A mixed-source thermal evaporation method was used to fabricate organic light emitting diodes (OLEDs) with uniformly mixed (UM), continuously graded mixed (CGM) and step-wise graded, mixed (SGM) light-emitting layers. N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine and Tris-(8-hydroxyquinoline)aluminum were used, respectively, as the hole- and electron-transport materials. As compared to the conventional, heterojunction OLED, the maximum brightness of UM-, CGM- and SGM-OLEDs without charge injection layers were improved by 2.2, 3.8 and 2.1 times, respectively, while the maximum power efficiencies improved by 1.5, 3.2 and 1.9 times. These improvements were discussed in terms of more distributed recombination zone and removal of interfacial barrier. - Highlights: • Fabrication of OLEDs using a mixed-source evaporation technique • Three different types of mixed-host OLEDs with better brightness • Improved electroluminescence and power efficiencies as compared to conventional OLED.

  12. Study of electrical fatigue by defect engineering in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, Andrea, E-mail: gassmann@e-mat.tu-darmstadt.de [Technische Universität Darmstadt, Materials Science and Geoscience Department, Electronic Materials Division, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Yampolskii, Sergey V. [Technische Universität Darmstadt, Materials Science and Geoscience Department, Materials Modeling Division, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Klein, Andreas [Technische Universität Darmstadt, Materials Science and Geoscience Department, Surface Science Division, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Albe, Karsten [Technische Universität Darmstadt, Materials Science and Geoscience Department, Materials Modeling Division, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Vilbrandt, Nicole [Technische Universität Darmstadt, Chemistry Department, Ernst Berl Institute for Macromolecular Research, Alarich-Weiss-Str. 4, 64287 Darmstadt (Germany); Pekkola, Oili [Technische Universität Darmstadt, Materials Science and Geoscience Department, Electronic Materials Division, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Genenko, Yuri A. [Technische Universität Darmstadt, Materials Science and Geoscience Department, Materials Modeling Division, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Rehahn, Matthias [Technische Universität Darmstadt, Chemistry Department, Ernst Berl Institute for Macromolecular Research, Alarich-Weiss-Str. 4, 64287 Darmstadt (Germany); Seggern, Heinz von [Technische Universität Darmstadt, Materials Science and Geoscience Department, Electronic Materials Division, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2015-02-15

    Graphical abstract: - Highlights: • Electrical fatigue is investigated in PPV-based polymer light-emitting diodes. • Bromide defects remaining from Gilch synthesis limit PLED lifetime. • Electrical stress yields lower hole mobility and transition to dispersive transport. • Triplet excitons reduce lifetime and EL-emission-induced degradation observed. • Self-consistent drift-diffusion model for charge carrier injection and transport. - Abstract: In this work the current knowledge on the electrical degradation of polymer-based light-emitting diodes is reviewed focusing especially on derivatives of poly(p-phenylene-vinylene) (PPV). The electrical degradation will be referred to as electrical fatigue and is understood as mechanisms, phenomena and material properties that change during continuous operation of the device at constant current. The focus of this review lies especially on the effect of chemical synthesis on the transport properties of the organic semiconductor and the device lifetimes. In addition, the prominent transparent conductive oxide indium tin oxide as well as In{sub 2}O{sub 3} will be reviewed and how their properties can be altered by the processing conditions. The experiments are accompanied by theoretical modeling shining light on how the change of injection barriers, charge carrier mobility or trap density influence the current–voltage characteristics of the diodes and on how and which defects form in transparent conductive oxides used as anode.

  13. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang, E-mail: stszx@mail.sysu.edu.cn [State Key Lab of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  14. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  15. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Science.gov (United States)

    Shi, Hongying; Deng, Lingling; Chen, Shufen; Xu, Ying; Zhao, Xiaofei; Cheng, Fan; Huang, Wei

    2014-04-01

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m2. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  16. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Directory of Open Access Journals (Sweden)

    Hongying Shi

    2014-04-01

    Full Text Available Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT of 4105 K and a color rendering index (CRI of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008 around warm white illumination coordinates (0.45, 0.44 is obtained over a large luminance range of 1000 to 10000 cd/m2. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  17. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  18. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    International Nuclear Information System (INIS)

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m2. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs

  19. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Science.gov (United States)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  20. Solution-Processed Small Molecular Organic Light-Emitting Devices with a Mixed Single Layer

    Science.gov (United States)

    Wang, Zhaokui; Naka, Shigeki; Okada, Hiroyuki

    2011-01-01

    We investigated the characteristics of solution-processed mixed-single-layer organic light-emitting devices (OLEDs) by mixing an electron injection material, a hole transport material, and a dopant material based on 5,6,11,12-tetraphenylnaphthacene (rubrene). The mixed-single-layer OLEDs showed better performance by optimizing the solution concentration and mixing ratio of organic materials. The performance was further improved by mixing chloroform (95 wt %) and toluene (5 wt %) as a solvent. The maximum luminance and power efficiency obtained were 12,400 cd/m2 and 1.1 lm/W, respectively. The mixed-single-layer OLEDs by solution process can be expected as an alternative route to the fabrication of small-molecular OLEDs with reduced cost of devices and avoiding the complexities of the co-evaporation of multiple organic materials in the vacuum deposition process.

  1. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    CERN Document Server

    Kwang Ohk Cheo

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either alpha-NPD or DPVBi host l...

  2. Organic Light-Emitting Diodes and Silicon Receivers for Monolithic Silicon Opto-Electronic Circuits.

    Science.gov (United States)

    Kim, Helen Haeran

    Power dissipation in electrical connections is an obstacle to achieving higher system performance; optical connections may be a solution. Our calculations highlight those situations where optical connections would be advantageous, compared to the electrical connections, based on the calculation of energy required to implement these connections. Based on today's technology, which unfortunately have a significant conversion loss between electronics and optics, optical connections have this advantage only over distances longer than {~}10 cm. Thus, optical connection may have near to middle term advantages for inter-chip connection. A highly desirable feature is to monolithically integrate opto-electronic components with chips in order to reduce both cost and energy dissipation. Because the overwhelming majority of very large scale integrated circuits are based on silicon (Si) technology, the transmitter and receiver should be process-compatible with Si technology. Unfortunately, Si is not an efficient light emitter. Because of their simple and ultimately inexpensive, Si-compatible processing, we selected semiconducting organic materials as light emitting materials. Based on our monolithically integrated Si receiver, we estimated the requirements of organic light emitting diodes (LEDs) for their efficiency and speed. Having learned the material properties of the organic materials and their device characteristics, we applied the organic LEDs on Si and enhanced the efficiency by using a silicon dioxide intermediate layer. This is the first report of organic LEDs fabricated on Si. In addition, the process is compatible with Si ICs. Although a large improvement has been made to achieve a higher LED efficiency, the speed of the organic LEDs is only in the MHz range. Much effort is needed to increase the mobility of these materials for their use in optical interconnects.

  3. Color stability of white organic light emitting devices with a color conversion layer utilizing CdSe/ZnS quantum dots and phosphors dispersed in polymethylmethacrylate.

    Science.gov (United States)

    Kwon, W J; Kim, S H; Lee, K S; Choo, D C; Kim, S W; Kim, S W; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W

    2013-06-01

    White organic light-emitting devices (WOLEDs) were fabricated by combining a blue emitting organic light-emitting devices (OLEDs) and a color conversion layer made of yttrium aluminum garnet phosphors and CdSe/ZnS quantum dots (QDs) embedded into polymethylmethacrylate. When the ratio of phosphors and QDs changed, a good color balance was achieved at a ratio of 1:5, and the maximum luminance of 18.21 cd/m2 was obtained. As the applied voltage varied from 12 to 16 V, Commission Internationale de l'Eclairage coordinates shifted only slightly from (0.32, 0.34) to (0.30, 0.33), indicating a good color stability. PMID:23862508

  4. Disentangling degradation and auto-recovery of luminescence in Alq3 based organic light emitting diodes

    International Nuclear Information System (INIS)

    Organic semiconductor devices and materials have matured sufficiently to be limited by intrinsic degradation processes which are as yet not understood well. We use high quality Alq3 based organic light emitting diodes to study the rate processes involved in degradation due to electrical stressing and its auto-recovery. The method involves interspersing degradation due to electrical pulsing with variable relaxation windows to monitor time evolution of loss and recovery of luminescence. The corresponding rate processes for permanent and auto-recoverable degradation is discussed on the basis of charging and discharging of traps, and a phenomenological model based on metastability in configuration-coordinate diagram is proposed. -- Highlights: • Luminescence degradation of high quality Alq3 based OLED device. • Auto-recovery of luminance as function of relaxation time is exponential. • Individual rates of permanent, recoverable and relaxation process measured. • A Phenomenological model based on metastable state in configuration-coordinate

  5. Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The TOF-SIMS analysis to investigate cathode diffusion during evaporation process. • Performance change of OLEDs prepared with different evaporation rate of Al cathode. • Change of electron transport behavior during thermal evaporation process. - Abstract: The relationship between the thermal evaporation rate of Al cathodes and the device performance of organic light-emitting diodes (OLEDs) was investigated to clarify the source of leakage current. Time-of-flight secondary ion mass spectrometry was applied to identify the diffusion of Li and Al fragments into the underlying organic layer during the thermal evaporation process. We prepared various OLEDs by varying the evaporation rates of the Al cathode to investigate different device performance. Interestingly, the leakage current level decreased when the evaporation rate reached ∼25 Å/s. In contrast, the best efficiency and operational lifetime was obtained when the evaporation rate was 5 Å/s

  6. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    International Nuclear Information System (INIS)

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A−1 and 20 lm W−1, respectively, and a maximum brightness of 10 000 cd m−2. (paper)

  7. A blue-emitting Sc silicate phosphor for ultraviolet excited light-emitting diodes.

    Science.gov (United States)

    Wang, Qian; Zhu, Ge; Xin, Shuangyu; Ding, Xin; Xu, Ju; Wang, Yuansheng; Wang, Yuhua

    2015-11-01

    A blue-emitting phosphor BaSc2Si3O10:Eu(2+) was synthesized using the conventional solid-state reaction. The crystallographic occupancy of Eu(2+) in the BaSc2Si3O10 matrix was studied based on the Rietveld refinement results and the photoluminescence properties. BaSc2Si3O10 exhibits blue emission ascribed to (3)T2-(1)A1 and (3)T1-(1)A1 charge transfer of SiO4(4-) excited by 360 nm. All the phosphors of BaSc2Si3O10:Eu(2+) exhibit strong broad absorption bands in the near ultraviolet range, and give abnormal blue emission upon 330 nm excitation. The abnormal phenomenon was explored in detail through many pieces of experimental evidence. The concentration of Eu(2+) is optimized to be 3 mol% according to emission intensity and the quenching mechanism is verified to be a quadrupole-quadrupole interaction. The CIE coordinates of BaSc2Si3O10:0.03Eu(2+) are calculated to be (0.15, 0.05) and BaSc2Si3O10:0.03Eu(2+) shows similar thermal stability to commercial BaMgAl10O17:Eu(2+). PMID:26242881

  8. A novel hybrid inorganic-organic single layer barrier for organic light-emitting diodes

    Science.gov (United States)

    Mandlik, Prashant

    Organic light-emitting diodes (OLEDs) suffer rapid degradation upon exposure to moisture or oxygen and require a permeation barrier to extend their lifetime. The goal of this project was to prepare an ultra-hermetic encapsulation barrier for OLEDs that can be prepared by a simple, environmentally friendly process. The approach was to employ plasma-enhanced chemical vapor deposition (PE-CVD) of hexamethyl disiloxane (HMDSO, a non-toxic and inexpensive organo-siloxane) and O2, to grow thin SiO2-like barrier films directly on OLEDs. The encapsulation barrier discovered during the project is a flexible, homogeneous, single-layer barrier film grown in a single PE-CVD chamber. The barrier material is a single-phase hybrid with part-inorganic and part-polymeric character. The OLEDs coated with this barrier film were stored at 65°C in 85% relative humidity, an accelerated environmental test. These OLEDs keep functioning after more than one year of accelerated storage tests, surpassing any existing encapsulation barrier including the glass plate encapsulation. Barrier film when deposited on a steel foil substrate can be flexed between 1-2% tensile strains. Infrared absorption, wetting contact angle of water, indentation hardness, Young's modulus, and atomic force micrographs reflect the barrier as a homogeneous SiO2-like film with residual silicone character. The permeation through the bulk of the barrier film is so slow that it exposes two secondary modes of moisture permeation. A relatively rapid degradation associated with particulate inclusions in the barrier, and the very slow degradation caused by permeation along barrier-substrate interfaces. Even though it is prepared by a simple and inexpensive process, this film has shown superior barrier performance than multilayer barrier (alternate inorganic-polymeric films), the current encapsulation technology, which requires a complicated and costly process.

  9. Research data supporting "Bright and efficient blue polymer light emitting diodes with reduced operating voltages processed entirely at low-temperature"

    OpenAIRE

    Hoye, R. L. Z.; Musselman, K.P.; Chua, M. R.; Sadhanala, A.; Raninga, R. D.; MacManus-Driscoll, J. L.; Friend, R. H.; Credgington, D.

    2015-01-01

    Raw data for all figures and ESI from manuscript "Bright and efficient blue polymer light emitting diodes with reduced operating voltages processed entirely at low-temperature" published in Journal of Materials Chemistry C (http://dx.doi.org/10.1039/C5TC01581B).

  10. Topical and Intradermal Efficacy of Photodynamic Therapy with Methylene Blue and Light-Emitting Diode in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis

    OpenAIRE

    Sbeghen, Mônica Raquel; Voltarelli, Evandra Maria; Campois, Tácito Graminha; Kimura, Elza; Aristides, Sandra Mara Alessi; Hernandes, Luzmarina; Caetano, Wilker; Hioka, Noboru; Lonardoni, Maria Valdrinez Campana; Silveira, Thaís Gomes Verzignassi

    2015-01-01

    Introduction: The topical and intradermal photodynamic therapy (PDT) effect of methylene blue (MB) using light-emitting diode (LED) as light source (MB/LED-PDT) in the treatment of lesions of American cutaneous leishmaniasis (ACL) caused by Leishmania braziliensis in hamsters were investigated.

  11. Thermally Stimulated Luminescence and Current in new heterocyclic materials for Organic field transistors and organic light emitting diodes

    OpenAIRE

    Prelipceanu, M.; Prelipceanu, O. S.; Tudose, O. G.; S. Schrader

    2007-01-01

    The present work is focused on theoretical and experimental study of localised levels in organic materials suitable for light-emitting devices and field effect transistors by means of thermal techniques. In our work we focused on low molecular compounds as well as on polymers, especially of two classes of materials: oxadiazoles and quinoxalines. Both organic compounds are well know as electron transport materials in OLEDs.

  12. Study of organic light emitting devices (OLEDs) with optimal emission efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple 12, Faculty of EHS, Charles Darwin University, Darwin, NT 0909 (Australia)

    2010-04-15

    The external emission efficiency of organic light emitting devices (OLEDs) is analysed by studying the rate of spontaneous emission of both singlet and triplet excitons and their corresponding radiative lifetimes. Rates of spontaneous emissions are calculated from the first order perturbation theory using the newly discovered time-dependent spin-orbit-exciton-photon interaction operator as the perturbation operator. It is clearly shown how the new interaction operator is responsible for attracting triplet excitons to a phosphor (heavy metal atom) and then it flips the spins to a singlet configuration. Thus, the spin forbidden transition becomes spin allowed. Calculated rates agree with the experimental results qualitatively. Results are of general interests for OLED studies. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Enhancement and Quenching of Fluorescence by Silver Nanoparticles in Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2013-01-01

    Full Text Available The influence of silver nanoparticles (SNPs on the performance of organic light-emitting diodes (OLEDs is investigated in this study. The SNPs are introduced between the electron-transport layers by means of thermal evaporation. SNPs are found to have the surface plasmon resonance at wavelength 525 nm when the mean particle size of SNPs is 34 nm. The optimized OLED, in terms of the spacing between the emitting layer and SNPs, is found to have the maximum luminance 2.4 times higher than that in the OLED without SNPs. The energy transfer between exciton and surface plasmons with the different spacing distances has been studied.

  14. Nondoped Electrophosphorescent Organic Light-Emitting Diodes Based on Platinum Complexes

    Institute of Scientific and Technical Information of China (English)

    YANG Gang; ZHANG Di; WANG Jun; JIANG Quan; ZHONG Jian; YU Jun-Sheng; ZHU Feng-Zhi; LUO Kai-Jun; XIE Yun; XU Ling-Ling

    2009-01-01

    An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ)(2-phenylpyridinato-N, C2) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency ηp of 6.62lm/W and current efficiency of 14.78cd/A at 745 cd/m2 are ob-tained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20 mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.

  15. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    Science.gov (United States)

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer. PMID:27451634

  16. Enhanced light extraction efficiency in organic light-emitting diode with randomly dispersed nanopattern.

    Science.gov (United States)

    Kim, Yang Doo; Han, Kyung-Hoon; Sung, Young Hoon; Kim, Jung-Bum; Choi, Hak-Jong; Lee, Heon; Kim, Jang-Joo

    2015-12-15

    An optical scattering layer composed of randomly dispersed nanopatterns (RDNPs) was introduced in an organic light-emitting diode (OLED) to increase the out-coupling efficiency. An RDNP was fabricated by direct printing on a glass substrate. Owing to its low haze and high transmittance, the RDNP acted as a light extraction layer in the OLED. The RDNP OLEDs showed higher current density and luminance than the reference devices at the same voltage. The current and power efficiencies of the RDNP OLED increased by 25% and 34%, respectively, without electrical degradation. Furthermore, the RDNP devices achieved an external quantum efficiency of 27.5% at 1 mA/cm². PMID:26670525

  17. Glare-Tunable Transparent Electrochemical Smart Window Coupled with Transparent Organic Light-Emitting Diode

    Science.gov (United States)

    Uchida, Takayuki; Shibasaki, Masaaki; Matsuzaki, Tatsuya; Nagata, Yujiro

    2013-04-01

    We fabricated a novel device assembled by coupling a transparent organic light-emitting diode (TOLED) and a glare-tunable transparent electrochemical device. This device could be operated in six different states, namely, (1) transparent, (2) mirror, (3) black, (4) dual emission, (5) single-side emission with mirror, and (6) single-side emission with black. Switching between each of these states could be tuned by varying/selecting the applied DC bias voltage. The device showed 63.8% transmittance in the transparent state, and 42.1% reflectance in the mirror state at 700 nm. Transmittance in both the mirror and black states was less than 0.1% in the visible range.

  18. Enhanced performance for organic light-emitting diodes by embedding an aerosol jet printed conductive grid

    International Nuclear Information System (INIS)

    A simple and low-cost method for improving organic light-emitting diode (OLED) performance by printing poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) grids on the anode is demonstrated. The PEDOT : PSS grids were printed by an aerosol jet printer on the ITO anode surface. The maximum current efficiency of the OLED modified with the PEDOT : PSS grids is 1.92 times higher than a conventional device. The power efficiency enhancement factor is 2.3 at the current density of 740 mA cm−2. The enhancement in performance can be attributed to the light extraction and conductivity of the embedded low-index grids. (paper)

  19. Cold welding of organic light emitting diode: Interfacial and contact models

    Science.gov (United States)

    Asare, J.; Adeniji, S. A.; Oyewole, O. K.; Agyei-Tuffour, B.; Du, J.; Arthur, E.; Fashina, A. A.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2016-06-01

    This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs). The effects of impurities (within the possible interfaces) are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces) on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding) is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

  20. Organic light-emitting devices integrated with solar cells: High contrast and energy recycling

    Science.gov (United States)

    Yang, Chih-Jen; Cho, Ting-Yi; Lin, Chun-Liang; Wu, Chung-Chih

    2007-04-01

    In this letter, the authors report that by integrating organic light-emitting devices (OLEDs) with solar cells, luminous ambient-light reflection as low as 1.4% (even superior to that achieved with polarizers) can be achieved without compromising the electroluminescence efficiency for high-contrast display applications. Furthermore, in such a configuration, the photon energies of the incident ambient light and the portion of OLED emission not getting outside of the device can be recycled into useful electrical power via the photovoltaic action, instead of being totally wasted as in other reported contrast-enhancement techniques. These features, the authors believe, shall make this technique attractive for high-contrast display applications and portable/mobile electronics that are highly power aware.

  1. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  2. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    International Nuclear Information System (INIS)

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED

  3. Very low color-temperature organic light-emitting diodes for lighting at night

    Science.gov (United States)

    Jou, Jwo-Huei; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Shen, Shih-Ming; Chen, Chien-Chih; Wang, Ching-Chiun; Chen, Chien-Tien

    2011-12-01

    Light sources with low color temperature (CT) are essential for their markedly less suppression effect on the secretion of melatonin, and high power efficiency is crucial for energy-saving. To provide visual comfort, the light source should also have a reasonably high color rendering index (CRI). In this report, we demonstrate the design and fabrication of low CT and high efficiency organic light-emitting diodes. The best resultant device exhibits a CT of 1,880 K, much lower than that of incandescent bulbs (2,000-2,500 K) and even as low as that of candles, (1,800-2,000 K), a beyond theoretical limit external quantum efficiency 22.7 %, and 36.0 lm/W at 100 cd/m 2. The high efficiency of the proposed device may be attributed to its interlayer, which helps effectively distribute the entering carriers into the available recombination zones.

  4. Mixed ligands 8-hydroxyquinoline aluminum complex with high electron mobility for organic light-emitting diodes

    Science.gov (United States)

    Xu, Bingshe; Chen, Liuqing; Liu, Xuguang; Zhou, Hefeng; Xu, Huixia; Fang, Xiaohong; Wang, Yanli

    2008-03-01

    A mixed ligands 8-hydroxyquinoline complex (Alq2A) with improved electron mobility was designed for organic light-emitting diodes. The electron mobility in Alq2A was determined via transient electroluminescence (EL) from bilayer devices with structure of indium tin oxide/4,4'-bis[N-(1-naphthyl)-N-Phenyl amino]biphenyl/Alq2A /LiF/Al. It was found that the electron mobility in Alq2A is between (2.7and4.4)×10-6cm2/Vs at electric fields ranging between 1.42×106 and 2.40×106V /cm, which is higher than that in Alq3. The Alq2A also shows a higher EL efficiency in steady-state EL studies, which is considered to be derived from (1) improved electron mobility, (2) high fluorescene efficiency, and (3) good film-forming.

  5. Improved Quantum Efficiency of Organic Light Emitting Diodes with Gradiently Doped Double Emitting Zone

    Institute of Scientific and Technical Information of China (English)

    高文宝; 姜文龙; 孙家鑫; 冯晶; 侯晶莹; 刘式墉

    2003-01-01

    We investigate electroluminescent characteristics of gradiently doped organic light-emitting diodes, which were gradiently doped in both the hole and the electron-transporting layer to form a double emitting zone. The device structure was ITO/(15nm) CuPc/(60nm)NPB:rubrene/(30nm)Alqs:rubrene/(20nm)Alqs/(0.5nm)LiF/Al. We observed that charge carriers were well trapped by the dopant molecules and the main emitting zone was localized at the NPB:rubrene side close to the interface of NPB:rubrene/Alqs:rubrene. The quantum efficiency (cd/A) was enhanced to 5.89 cd/A at 6 V. We attributed this improvement to the charge carriers trapping and the emitting of the double emitting zone.

  6. Evaluation of an organic light-emitting diode display for precise visual stimulation.

    Science.gov (United States)

    Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji

    2013-01-01

    A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception. PMID:23757510

  7. Front-Light Source Using Inverted Organic Light-Emitting Diodes with Microcathode Arrays

    Science.gov (United States)

    Urata, Kohei; Naka, Shigeki; Okada, Hiroyuki

    2010-04-01

    We have demonstrated an organic light-emitting diode (OLED) front-light source with a blinding microcathode array on a transparent electrode and a top-emission structure. Contrast ratio was improved by inserting MoO3 at the indium-tin-oxide (ITO)/Al interface. In a device of glass substrate/ITO/MoO3/meshed Al/lithium fluoride (LiF)/tris(8-hydroxyquinolinato) aluminum(III) (Alq3)/bis[N-(1-naphthyl)-N-phenyl] benzidine (α-NPD)/MoO3/semitransparent Au structure, the maximum luminance of top-side emission was 1,140 cd/m2, and the contrast ratio was 19:1. The transmittance was 44% at 555 nm.

  8. Simulation of mixed-host emitting layer based organic light emitting diodes

    Science.gov (United States)

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Yap, S. S.; Tou, T. Y.

    2015-04-01

    `SimOLED' simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq3) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq3 of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  9. Polarized electroluminescence from organic light-emitting devices using photon recycling.

    Science.gov (United States)

    Park, Byoungchoo; Huh, Yoon Ho; Jeon, Hong Goo

    2010-09-13

    We present results that show highly polarized electroluminescence (EL) from an organic light-emitting device (OLED) by using a quarter-wave (λ/4) retardation plate (QWP) film and a giant birefringent optical (GBO) photonic reflective polarizer. Polarized EL light of 13,400 cd/m(2) with high peak efficiencies (greater than 10 cd/A and 3.5 lm/W) was obtained from an OLED in this way. These values are almost double those of a polarized OLED that only uses a polarizer. The direction of polarization of the emitted EL light from the polarized OLED corresponded to the passing axis of the GBO reflective polarizer. Furthermore, the degree of linear polarization obtained, i.e. the ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis, is greater than 40 over the whole range of emitted luminance. PMID:20940874

  10. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Martin, E-mail: martin.weis@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia); Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@ome.pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  11. Dimmable sunlight-like organic light emitting diodes with ultra-high color rendering index

    Science.gov (United States)

    Wu, Jin-Han; Chi, Chien-An; Chiang, Chang-Lin; Chen, Guan-Yu; Lin, Yi-Ping; Chen, Cheng-Chang; Ho, Shu-Yi; Chen, Shih-Pu; Li, Jung-Yu

    2016-05-01

    We propose novel dimmable sunlight-like white organic light-emitting diodes that were fabricated using three luminophores to form an emitting spectrum similar to black body radiation at 2250 K with ultra-high color rendering index (CRI) value of 91, which nearly remained the constant at various luminance values ranging from 100 to more than 2500 cd/m2 at Commission Internationale de l'Eclairage chromaticity coordinates of (0.51, 0.41). Introducing charge modification layers suppressed the energy transfer between the emitting material layers and increased the probability of carrier recombination. Moreover, we reveal that covering long-wavelength ranges played a vital role in achieving high CRI values; the CRI values of a spectrum artificially shifted toward a long-wavelength direction (from 610 to 620 nm) remained constant, whereas those of a spectrum shifted toward a short-wavelength direction (from 610 to 600 nm) dropped to 79.

  12. Multi-spectral imaging with infrared sensitive organic light emitting diode.

    Science.gov (United States)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  13. Optical Interference Effects by Metal Cathode in Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    WU Zhao-Xin; WANG Li-Duo; QIU Yong

    2004-01-01

    The dependence of light intensities of organic light-emitting diodes (OLEDs) on the distance of emission zone to metal cathode is investigated numerically. The investigation is based on the half-space optical model that accounts for optical interference effects of metal cathode. We find that light intensities of OLEDs are functions of the distance of emission zone from the metal cathode because of the effect of interference of the metal cathode.This interference leads to an optimal location of emission zone in OLEDs for the maximum of light intensities.Optimal locations of emission zone are numerically shown in various emitting colour OLEDs with different metal cathodes and these results are expected to give insight into the preparation of high efficiency full colour or white light OLEDs.

  14. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    International Nuclear Information System (INIS)

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  15. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  16. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    Energy Technology Data Exchange (ETDEWEB)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  17. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  18. Negative differential resistance phenomena in colloidal quantum dots-based organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shengyi, E-mail: syyang@bit.edu.cn; Zhang, Li; Yang, Dan; Zou, Bingsuo [Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Center for Micro and Nano Technology, School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Liu, Peng; Jiang, Yurong [Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 (China); Guo, Sanwei [Wuhan Jiayuan Quantum Dots Co. Ltd., Wuhan 430075, Hubei Province (China)

    2014-01-20

    The influence of ligands on the electrical behavior of CdSe/ZnS core-shell colloidal quantum dots (CQDs)-based organic light-emitting diodes is presented. Negative differential resistance (NDR) phenomena at room temperature are observed from single-layer device ITO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/CQDs/Al in which the original capping ligand tri-n-octylphosphine oxide (TOPO) of CQDs is exchanged with oleylamine, as well as in both bilayer device ITO/PEDOT:PSS/CQDs/BCP(10 nm)/Al and trilayer device ITO/PEDOT:PSS/CQDs/BCP(10 nm)/Alq{sub 3}(10 nm)/Al. However, such a kind of NDR phenomenon disappears if TOPO is exchanged with hexadecylamine. Therefore, NDR phenomenon depends greatly on the ligands of the CQDs, and the origin of NDR from these devices is discussed.

  19. Operating organic light-emitting diodes imaged by super-resolution spectroscopy

    Science.gov (United States)

    King, John T.; Granick, Steve

    2016-06-01

    Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semiconducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packed chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. This points the way towards real-time analysis of materials design principles in devices as they actually operate.

  20. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    International Nuclear Information System (INIS)

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad(TM) of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process

  1. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    Science.gov (United States)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Doo Chin, Byung

    2007-08-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad™ of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process.

  2. Multi-spectral imaging with infrared sensitive organic light emitting diode

    Science.gov (United States)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  3. Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays.

    Science.gov (United States)

    Lee, Jiun-Haw; Ho, Yu-Hsuan; Chen, Kuan-Yu; Lin, Hoang-Yan; Fang, Jheng-Hao; Hsu, Sheng-Chih; Lin, Jia-Rong; Wei, Mao-Kuo

    2008-12-22

    In this paper, cylindrical microlens arrays with two different alignments were proposed to be applied in a commercial mobile phone having an organic light-emitting diode (OLED) panel. It was found that the parallel-aligned cylindrical array had better performance than the vertical-aligned one for the OLED panel. The parallel-aligned cylindrical microlens array can increase the luminous current efficiency at surface normal and the luminous power efficiency of the OLED panel by 45% and 38%, respectively. Besides, it can also make the spectrum of the OLED panel more insensitive to the viewing angle. Though it can slightly blur the image on the OLED panel, the universal image quality index can be maintained at a level of 0.8630. PMID:19104547

  4. Emiflective Display with Integration of Reflective Liquid Crystal Display and Organic Light Emitting Diode

    Science.gov (United States)

    Yang, Bo-Ru; Liu, Kang-Hung; Shieh, Han-Ping D.

    2007-01-01

    A novel emi-flective display which integrates a reflective liquid crystal display (R-LCD) and an organic light emitting diode (OLED) was demonstrated, whose OLED achieved a gain factor of 8 in contrast ratio (CR) compared with the conventional OLED. Under the high light ambience, the R-LCD is sustained with the CR of 10:1 at the viewing angle between ± 55°; while in the dim ambience, the OLED is operated with the CR of 5000:1 at ± 50°. By replacing the backlight system with OLED, emi-flective display has the benefits of lighter weight (<90%), thinner form factor (<40%), and lower power consumption (<2%, under sunlight) compared with the conventional LCD; therefore, to be very applicable for mobile products.

  5. Nondoped Electrophosphorescent Organic Light-Emitting Diodes Based on Platinum Complexes

    International Nuclear Information System (INIS)

    An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(II) (2-phenylpyridinato-N, C2) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency ηp of 6.62 lm/W and current efficiency of 14.78 cd/A at 745cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20 mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  6. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

    KAUST Repository

    Zou, Jianping

    2015-06-29

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.

  7. A randomly nano-structured scattering layer for transparent organic light emitting diodes

    Science.gov (United States)

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-08-01

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs. Electronic supplementary information (ESI) available: Simulation results of total (bottom and top) radiance of TOLEDs with the RSL depending on HTL and ETL thicknesses. See DOI: 10.1039/c4nr01520g

  8. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Min [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  9. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    Science.gov (United States)

    Cai, Min

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs' performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  10. High-efficiency diphenylsulfon derivatives-based organic light-emitting diode exhibiting thermally activated delayed fluorescence

    CERN Document Server

    Lee, Geon Hyeong

    2016-01-01

    Novel thermally activated delayed fluorescence (TADF) material with diphenyl sulfone (DPS) as an electron acceptor and 3,6-dimethoxycarbazole (DMOC) and 1,3,6,8-Tetramethyl-9H-carbazole (TMC) as electron donors were investigated theoretically for a blue organic light emitting diode (OLED) emitter. We calculate the energies of the first singlet (S1) and first triplet (T1)-excited states of TADF materials by performing density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations on the ground state using a dependence on charge transfer amounts for the optimal Hartree-Fock percentage in the exchange-correlation of TD-DFT. The calculated {\\Delta}EST values of TMC-DPS (0.094 eV) was smaller than DMOC-DPS (0.386 eV) because of the large dihedral angles between the donor and accepter moieties. We show that TMC-DPS would have a suitable blue OLED emitter, because it has a large dihedral angle that creates a small spatial overlap between the HOMO and the LUMO and, consequently, the small {\\Delta}EST an...

  11. Enhanced performances for top-emitting white organic light-emitting diodes by utilizing green phosphor as energy transfer medium

    Science.gov (United States)

    Deng, Lingling; Bao, Yiyang; Zhang, Yanan; Peng, Ling; Zhu, Wenjing; Zhao, Yue; Xu, Yewen; Chen, Shufen

    2016-06-01

    In top-emitting white organic light-emitting diodes (TWOLEDs), the device performances attribute to the several important factors, such as exciton profile, energy transfer, and microcavity effect. In this paper, a TWOLED containing a heterojunction blue emission layer (EML) and a red EML is reported. A host material with high triplet energy level is employed for the adjacent blue and red EML, while the inefficient red emission reduces the emission efficiency of the TWOLED. In order to enhance the red emission efficiency, mixed-host and co-doping technologies are used in the red EML. By mixing the hole transporting and electron transporting host materials, the exciton recombination zone extends to the red EML to increase the red emission intensity and reduce the efficiency roll-off. And by co-doping a green phosphor into the red EML as the energy transfer medium, the energy transfer rate is enhanced, and then the current efficiency increases. Besides, both the mixed-host and co-doping change the carrier transport and the exciton recombination zone, which further affects the microcavity resonance in the devices. Due to the enhancement on the red emission intensity and the shift of resonant wavelength, the chromaticity of the TWOLED is improved.

  12. Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array

    Science.gov (United States)

    Wei, Mao-Kuo; Lee, Jiun-Haw; Lin, Hoang-Yan; Ho, Yu-Hsuan; Chen, Kuan-Yu; Lin, Ciao-Ci; Wu, Chia-Fang; Lin, Hung-Yi; Tsai, Jen-Hui; Wu, Tung-Chuan

    2008-05-01

    In this paper, we present and analyze the influences of the fill factor and the sag of hexagon-based microlenses on the optical characteristics of an organic light-emitting device (OLED), such as spectral shift, CIE (abbreviation of the French 'Commission internationale de l'éclairage') coordinates, viewing angle dependence, luminous current efficiency and luminous power efficiency. Both the luminous current efficiency and luminous power efficiency of the OLED were found to increase linearly on increasing the fill factor of the microlenses. It is also found that the full width at half maximum (FWHM) of the OLED spectra and CIE coordinates decreased linearly on increasing the fill factor of the microlenses. Besides, the efficiency improvement of the OLED increased with the height ratio of attached microlenses. Compared to the OLED, the luminous current efficiency and luminous power efficiency of the device can be enhanced by 35% and 40%, respectively, by attaching a microlens array having a fill factor of 0.90 and a height ratio of 0.56. We also observed blue shifts at different viewing angles when microlens arrays were attached to the OLED, which is evidence that the waveguiding modes are being extracted. In our planar OLED, the peak wavelength blue shifted and the FWHM decreased on increasing the viewing angles, due to the microcavity effect.

  13. Solution-processed white organic light-emitting diodes with mixed-host structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xinwen [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Wu Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao Bo; Wang Dongdong; Wang Dawei; Hou Xun [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang Wei [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2012-03-15

    Efficient white light-emitting diodes (WOLEDs) were fabricated with a solution-processed single emission layer composed of a molecular and polymeric material mixed-host (MH). The main host used was a blue-emitting molecular material of 4,4 Prime -bis(2,2 Prime -diphenylvinyl)-1,1 Prime -biphenyl (DPVBi) and the assisting host used was a hole-transport-type polymer of poly(9-vinylcarbazole) (PVK). By co-doping 4,4 Prime -bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl and 5,6,11,12-tetraphenylnaphacene into the MH, the performances of the fabricated devices made with different mixing ratio of host materials were investigated, and were to depend on the mixing ratios. Under the optimal PVK:DPVBi ratio (3:7), we achieved a maximum luminance of 14 110 cd/m{sup 2} and a maximum current efficiency of 9.5 cd/A. These improvements were attributed to the MH structure, which effectively improved the thermal stability of spin-coated film and enhanced the hole-injection/transporting properties of WOLEDs. - Highlights: Black-Right-Pointing-Pointer Efficient WOLEDs with solution-processed mixed-host (MH) structures. Black-Right-Pointing-Pointer Dependence of performances of WOLEDs on the mixing ratios. Black-Right-Pointing-Pointer The MH structure effectively improved the thermal stability of spin-coated films and hole-injection of WOLEDs.

  14. Efficient blue and white polymer light emitting diodes based on a well charge balanced, core modified polyfluorene derivative.

    Science.gov (United States)

    Das, Dipjyoti; Gopikrishna, Peddaboodi; Singh, Ashish; Dey, Anamika; Iyer, Parameswar Krishnan

    2016-03-14

    Fabrication of efficient blue and white polymer light-emitting diodes (PLEDs) using a well charge balanced, core modified polyfluorene derivative, poly[2,7-(9,9'-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)] (PFONPN01), is presented. The excellent film forming properties as observed from the morphological study and the enhanced electron transport properties due to the inclusion of the NPN unit in the PFO main chain resulted in improved device properties. Bright blue light was observed from single layer PLEDs with PFONPN01 as an emissive layer (EML) as well as from double layer PLEDs using tris-(8-hydroxyquinoline) aluminum (Alq3) as an electron transporting layer (ETL) and LiF/Al as a cathode. The effect of ETL thickness on the device performance was studied by varying the Alq3 thickness (5 nm, 10 nm and 20 nm) and the device with an ETL thickness of 20 nm was found to exhibit the maximum brightness value of 11 662 cd m(-2) with a maximum luminous efficiency of 4.87 cd A(-1). Further, by using this highly electroluminescent blue PFONPN01 as a host and a narrow band gap, yellow emitting small molecule, dithiophene benzothiadiazole (DBT), as a guest at three different concentrations (0.2%, 0.4% and 0.6%), WPLEDs with the ITO/PEDOT:PSS/emissive layer/Alq3(20 nm)/LiF/Al configuration were fabricated and maximum brightness values of 8025 cd m(-2), 9565 cd m(-2) and 10 180 cd m(-2) were achieved respectively. 0.4% DBT in PFONPN01 was found to give white light with Commission International de l'Echairage (CIE) coordinates of (0.31, 0.38), a maximum luminous efficiency of 6.54 cd A(-1) and a color-rendering index (CRI) value of 70. PMID:26899815

  15. In vitro and in vivo Efficacy of New Blue Light Emitting Diode Phototherapy Compared to Conventional Halogen Quartz Phototherapy for Neonatal Jaundice

    OpenAIRE

    Chang, Yun Sil; Hwang, Jong Hee; Kwon, Hyuk Nam; Choi, Chang Won; Ko, Sun Young; Park, Won Soon; Shin, Son Moon; Lee, Munhyang

    2005-01-01

    High intensity light emitting diodes (LEDs) are being studied as possible light sources for the phototherapy of neonatal jaundice, as they can emit high intensity light of narrow wavelength band in the blue region of the visible light spectrum corresponding to the spectrum of maximal bilirubin absorption. We developed a prototype blue gallium nitride LED phototherapy unit with high intensity, and compared its efficacy to commercially used halogen quartz phototherapy device by measuring both i...

  16. Enhanced luminous efficiency and brightness using DNA electron blocking layers in bio-organic light emitting diodes

    Science.gov (United States)

    Hagen, Joshua A.

    The biopolymer deoxyribonucleic acid (DNA) has been extracted from salmon (saDNA) and used successfully as an electron blocking layer (EBL) in multiple structures of Organic Light Emitting Diodes (OLED). Water soluble saDNA was complexed with a cationic surfactant hexadecytrimethylammonium chloride (CTMA) which makes the resulting DNA-CTMA molecule water insoluble, and soluble in common organic media such as alcohols. Solutions of DNA-CTMA and butanol make uniform thin films from 20nm to 5 microns in thickness by varying spin coating parameters and molecular weight. The optical properties of DNA-CTMA thin films include high transparency and low optical loss for applications at wavelengths above 400nm. The DNA-CTMA films have an electrical resistivity on the order of 107 O*cm. All of these properties combined made DNA-CTMA a candidate as an EBL in OLEDs, and this resulting device was termed a Bio-organic Light Emitting Diode (BioLED). Enhanced electroluminescent efficiency has been demonstrated in both green and blue emitting BioLEDs. The resulting green and blue BioLEDs showed a maximum luminous efficiency of 8.2 and 0.8 cd/A, respectively. The DNA based BioLEDs were as much as 10x more efficient and 30x brighter than their OLED counterparts. The enhancement in performance is due to the electron blocking action with the 0.9 eV (lowest unoccupied molecular orbital) value, allows hole injection to proceed with a 5.6eV (highest occupied molecular orbital) value. DNA-CTMA has also been successfully deposited in thin film form via molecular beam deposition (MBD). The growth was achieved at 160°C at vacuum levels of 10-5 Torr at a deposition rate of 0.8A/s. MBD grown DNA-CTMA thin films were highly uniform, optically transparent, and adhere to silicon, quartz and glass substrates more strongly than spin coated films. The material deposited was verified as DNA-CTMA through optical absorption, energy dispersive X-ray analysis, and using a DNA indicating fluorescent dye

  17. Study on temperature characteristics of organic light-emitting diodes based on tris-(8-hydroxylquinoline)-aluminum

    Institute of Scientific and Technical Information of China (English)

    SUO Fan; YU JunSheng; LI WeiZhi; LOU ShuangLing; DENG Jing; JIANG YaDong

    2008-01-01

    Both single-layer and double-layer organic light-emitting devices based on tris-(8-hydroxylquinoline)-aluminum (Alq3) as emitter are fabricated by thermal vacuum deposition. The electroluminescent characteristics of these devices at various temperatures are measured, and the temperature characteristics of device performance are studied. The effect of temperature on device current conduction regime is analyzed in detail. The results show that the current-voltage (Ⅰ-Ⅴ) characteristics of devices are in good agreement with the theoretical prediction of trapped charge limited current (TCLC). In addition, both the charge carrier mobility and charge carrier concentration in the organic layer increase with the rise of temperature, which results in the monotonous increase of Alq3 device current. The current conduction mechanisms of two devices at different temperatures are identical, but the exponent m in current-voltage equation changes randomly with temperature. The device luminance increases slightly and the efficiency decreases monotonously due to the aging of Alq3 luminescent properties caused by high temperature. A tiny blue shift can be observed in the electroluminescent (EL) spectra as the temperature increases, and the reduction of device monochromaticity is caused by the intrinsic characteristics of organic semiconductor energy levels.

  18. Short-circuit prevention strategies in organic light-emitting diodes and solar cells

    Science.gov (United States)

    Michels, Jasper J.; Jolt Oostra, A.; Blom, Paul W. M.

    2016-08-01

    Short-circuit prevention and repair strategies are essential to allow for upscaled production of organic electronic devices based on thin-film production technology. Occurrence of short circuits is a consequence of manufacturing imperfections and particle contamination. After giving a concise review of short-circuit prevention methods for organic thin-film devices in the open literature of the past decade, this overview article summarizes our recent work on short-circuit prevention in organic light-emitting diodes and organic solar cells by chemical oxidation methods. Our main strategy is based on self-aligned disruption of the conductivity of exposed areas of the typically applied hole transport material poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) by aqueous sodium hypochlorite, prior to cathode deposition. The ten orders of magnitude decrease in local conductivity obtained proves sufficient to let deliberately flawed devices operate at pristine performance levels. We next show that in the case of organic solar cells based on a lithium fluoride/aluminium cathode the shunting junctions can be made sufficiently resistive to allow for near unflawed operation, without applying wet treatment.

  19. Tetracene films for light-emitting transistors: chemical and physical effects of the organic dielectric substrates

    Science.gov (United States)

    Santato, Clara; Cicoira, Fabio; Bertolazzi, Simone

    2010-03-01

    Tetracene vacuum-sublimed films have been used to demonstrate the first Organic Light Emitting Field Effect Transistor (OLEFET), in 2003. Because of their planar configuration, OLEFET are excellent systems to study fundamental processes such as charge injection, transport, and light emission in organic semiconductor films. OLEFET are intensively investigated for applications in active matrix full-color displays and, ultimately, lasers. Since the first Tetracene-OLEFET, a number of excellent studies have been reported on vacuum-sublimed as well as solution-processed films of organic semiconductors incorporated into OLEFET. Investigating the role played by the surface substrate chemistry and establishing sound structure-property relationships in organic semiconductor films incorporated into OLEFET structures are the keys to understand and improve the optoelectronic characteristics of OLEFET. Here we present our results on the morphological, structural, light-emission, and charge transport properties in field-effect transistor configuration of vacuum-sublimed tetracene films deposited on chemically and physically different organic dielectric substrates (HMDS- and OTS-treated SiO2, polystyrene, parylene, PMMA).

  20. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    Science.gov (United States)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  1. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing

    Science.gov (United States)

    Genina, Elina A.; Titorenko, Vladimir A.; Belikov, Andrey V.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2015-12-01

    The efficacy of blue light-emitting toothbrushes (B-LETBs) (405 to 420 nm, power density 2 mW/cm2) for reduction of dental plaques and gingival inflammation has been evaluated. Microbiological study has shown the multifactor therapeutic action of the B-LETBs on oral pathological microflora: in addition to partial mechanical removal of bacteria, photodynamic action suppresses them up to 97.5%. In the pilot clinical studies, subjects with mild to moderate gingivitis have been randomly divided into two groups: a treatment group that used the B-LETBs and a control group that used standard toothbrushes. Indices of plaque, gingival bleeding, and inflammation have been evaluated. A significant improvement of all dental indices in comparison with the baseline (by 59%, 66%, and 82% for plaque, gingival bleeding, and inflammation, respectively) has been found. The treatment group has demonstrated up to 50% improvement relative to the control group. We have proposed the B-LETBs to serve for prevention of gingivitis or as an alternative to conventional antibiotic treatment of this disease due to their effectiveness and the absence of drug side effects and bacterial resistance.

  2. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light

    Science.gov (United States)

    Cope, K. R.; Bugbee, B.

    2011-12-01

    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue

  3. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    International Nuclear Information System (INIS)

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps

  4. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    Science.gov (United States)

    Djidjou, T. K.; Chen, Ying; Basel, Tek; Shinar, J.; Rogachev, A.

    2015-03-01

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25-0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  5. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Djidjou, T. K.; Basel, Tek; Rogachev, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States); Chen, Ying; Shinar, J. [Ames Laboratory-USDOE, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  6. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    Energy Technology Data Exchange (ETDEWEB)

    Gang Li

    2003-12-12

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

  7. Performance improvement of rubrene-based organic light emitting devices with a mixed single layer

    Science.gov (United States)

    Wang, Zhaokui; Naka, Shigeki; Okada, Hiroyuki

    2010-09-01

    We have investigated the performance of organic light-emitting devices (OLEDs) with a rubrene-doped mixed single layer by using 4,4'-bis[N-(1-napthyl)-N-phenyl- amion] biphenyl ( α-NPD) as hole transport layer. Comparing to a conventional heterostructure OLED, equal luminance vs. current density characteristics were obtained. In addition, maximum power efficiency was threefold improved, and the achieved value was 5.90 lm/W by optimizing a mixing ratio of hole and electron transport materials. By evaluating the temperature dependence of the J - V characteristics for electron-injection dominated device, the electron injection from Al/LiF to mixed organic layer is attributed to Schottky thermal emission model. And the barrier height of the electron injection from Al/LiF into mixed single layer was obtained to be 0.62 eV, which is lower than Al/Alq3 interface. Meanwhile, the mixed single-layer device exhibited superior operational durability at a half-luminance of 2,250 h under a constant current operation mode. The reliability was improved with a factor of two compared to the heterostructure device due to the improvement of stability in mixed organic molecules and removal of the heterojunction interface in the mixed single-layer device.

  8. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Ohk Cheon

    2003-08-05

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either {alpha}-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  9. Active-matrix organic light-emitting displays on flexible metal foils

    Science.gov (United States)

    Chuang, T. K.; Jamshidi Roudbari, A.; Troccoli, M. N.; Chang, Y. L.; Reed, G.; Hatalis, M.; Spirko, J.; Klier, K.; Preis, S.; Pearson, R.; Najafov, H.; Biaggio, I.; Afentakis, T.; Voutsas, A.; Forsythe, E.; Shi, J.; Blomquist, S.

    2005-05-01

    This paper describes the development of a 3.5 inch diagonal Active Matrix Organic Light Emitting Diode Display on flexible metal foils. The active matrix array had the VGA format and was fabricated using the polysilicon TFT technology. The advantages that the metal foil substrates offer for flexible display applications will first be discussed, followed by a discussion on the multilayer coatings that were investigated in order to achieve a high quality insulating layer on the metal foil substrate prior to TFT fabrication. Then the polysilicon TFT device performance will be presented as a function of the polysilicon crystallization method. Both laser crystallized polysilicon and solid phased crystallized polysilicon films were investigated for the TFT device fabrication. Due to the opaque nature of the metal foil substrates the display had a top emission structure. Both small molecule and polymer based organic material were investigated for the display emissive part. The former were evaporated while the latter were applied by spin-cast. Various transparent multi-layer metal films were investigated as the top cathode. The approach used to package the finished AMOLED display in order to protect the organic layers from environmental degradation will be described. The display had integrated polysilicon TFT scan drivers consisting of shift registers and buffers but external data drivers. The driving approach of the display will be discussed in detail. The performance of the finished display will be discussed as a function of the various materials and fabrication processes that were investigated.

  10. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng, Youxuan, E-mail: yxzheng@mail.nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zuo, Jinglin; You, Xiaozeng [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-04-15

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium{sup III}-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m{sup 2}, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material.

  11. Fabrication of an organic light-emitting diode inside a liquid crystal display

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiun-Haw; Chang, Wei-Fu; Wu, Cheng-Che [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Lin, Chi-Feng [Department of Electro-Optical Engineering, National United University, Miaoli 36003, Taiwan, ROC (China); Lee, Jiunn-Yih [Department of Materials Science and Engineering, National Taiwan University Science and Technology, Taipei 10617, Taiwan, ROC (China); Chiu, Tien-Lung, E-mail: tlchiu@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan, ROC (China)

    2013-10-31

    The fabrication of a hybrid device architecture fully integrating a transparent organic light-emitting diode (OLED) and a liquid crystal display (LCD) within two glass substrates is reported in this study. The transparent OLED was fabricated on the inner surface of the glass substrate. Twisted nematic liquid crystal (LC) materials were used to fill the space between the two glass substrates. The OLED was driven by an indium-tin oxide (ITO) anode on the glass substrate and a thin bi-metal (Al/Ag) cathode, which also served as the electrode of the LCD. The other electrode for the LCD-mode operation was the ITO on the other glass substrate. A commercially available ultraviolet (UV)-curable resin was spun onto the thin Al/Ag as the passivation layer to protect the OLED from attacks by the following polyimide layer (serving as the alignment layer of the LCD), rubbing process and LC materials. In this device structure, the electrical characteristic of the OLED-mode operation was almost the same as that of the control device. Current efficiency (in terms of cd/A) of the hybrid device from top-emission (towards the LCD) decreased by 26.5% due to optical interference effect, whereas efficiency from bottom-emission remained the same. The driving voltage of the LCD-mode operation increased by 1.6 V due to the insertion of the passivation layer between the two electrodes. The contrast ratio decreased from 150 to 25 due to the reflection of the thin Al/Ag layer. Compared with that of the control device, the storage lifetime of the OLED increased as a result of filling the encapsulated cavity with LC materials, which helped repel ambient water and oxygen. - Highlights: • Organic light emitting device (OLED) was fabricated inside liquid crystal device (LCD). • LCD protected OLED from the attack of ambient oxygen and moisture. • OLED functions were not affected by LCD process with suitable treatment.

  12. Similarities and differences of alkali metal chlorides applied in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Zhaoyue [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng, Zhenbo [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Hou, Ying [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Xu, Haisheng, E-mail: hsxu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Kunshan Hisense Electronics, Co., Ltd., Kunshan, Jiangsu 215300 (China)

    2012-12-15

    The similarities and differences of alkali metal chlorides (sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl) and cesium chloride (CsCl)) applied in organic light-emitting diodes (OLEDs) are investigated. The behavior is similar for the OLEDs with these four chlorides as electron injection layer (EIL). Their maximum luminance and efficiency at 100 mA/cm{sup 2} are within the ranges of 18 550 {+-} 600 (cd/m{sup 2}) with an error of 3.23% and 4.09 {+-} 0.15 (cd/A) within an error of 3.67%, respectively. The similar performance is due to almost identical electron injection barrier for NaCl, KCl, RbCl and CsCl as EIL. Interestingly, the properties are different for devices with chlorides inserted inside tris (8-hydroxyquinoline) aluminum at the position of 20 nm away from aluminum cathode, labeled as NaCl-, KCl-, RbCl- and CsCl- devices. The relation of luminance is CsCl- > RbCl- = KCl- > NaCl-, where '>' and '=' mean 'better than' and 'the same as', respectively. And the device efficiencies are decreased from CsCl to NaCl. That is, the sort order of the efficiencies is CsCl- > RbCl- > KCl- > NaCl-. The mechanism is explained by tunneling model in terms of various energy gaps estimated by optical electronegativity of NaCl, KCl, RbCl and CsCl. - Highlights: Black-Right-Pointing-Pointer Effects of NaCl, KCl, RbCl and CsCl in organic light-emitting diodes are compared. Black-Right-Pointing-Pointer The similar performance is due to almost identical electron injection barrier. Black-Right-Pointing-Pointer The different behavior of chlorides inside Alq{sub 3} is explained by tunneling model. Black-Right-Pointing-Pointer The different behavior is attributed to various energy gaps of different chlorides. Black-Right-Pointing-Pointer The efficiency of device with chlorides inside Alq{sub 3} is decreased from CsCl to NaCl.

  13. A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes

    Science.gov (United States)

    Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.

    In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.

  14. Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials

    Science.gov (United States)

    Jurow, Matthew J.; Mayr, Christian; Schmidt, Tobias D.; Lampe, Thomas; Djurovich, Peter I.; Brütting, Wolfgang; Thompson, Mark E.

    2016-01-01

    Controlling the alignment of the emitting molecules used as dopants in organic light-emitting diodes is an effective strategy to improve the outcoupling efficiency of these devices. To explore the mechanism behind the orientation of dopants in films of organic host materials, we synthesized a coumarin-based ligand that was cyclometalated onto an iridium core to form three phosphorescent heteroleptic molecules, (bppo)2Ir(acac), (bppo)2Ir(ppy) and (ppy)2Ir(bppo) (bppo represents benzopyranopyridinone, ppy represents 2-phenylpyridinate, and acac represents acetylacetonate). Each emitter was doped into a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl host layer, and the resultant orientation of their transition dipole moment vectors was measured by angle-dependent p-polarized photoluminescent emission spectroscopy. In solid films, (bppo)2Ir(acac) is found to have a largely horizontal transition dipole vector orientation relative to the substrate, whereas (ppy)2Ir(bppo) and (bppo)2Ir(ppy) are isotropic. We propose that the inherent asymmetry at the surface of the growing film promotes dopant alignment in these otherwise amorphous films. Modelling the net orientation of the transition dipole moments of these materials yields general design rules for further improving horizontal orientation.

  15. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10-4 Ohm cm, 8.08 cm2/V-s and - 1.5 x 1021 cm-3, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO2 thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m2 as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices

  16. Organic Light Emitting Diodes Using Doped Alq3 as the Hole-transport Layer

    Institute of Scientific and Technical Information of China (English)

    LIANG Chun-Jun; WANG Yang; YI Li-Xin

    2008-01-01

    EFfects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping on the hole conductivity of Alq3 layer are measured.In the hole-only device of Alq3,the current densities increase in 1-3 orders of magnitude upon doping with F4TCNQ,suggesting that the doping can effectively enhance the hole-injection and holetransport ability of Alq3.An organic light-emitting device using an F4TCNQ doped Alq3 layer as the holeinjection and hole-transport layer,and pristine Alq3 as the electron-transport and emitting layer is fabricated and characterized.Bright emission is achieved in the simple OLED with p-doped Alqa as the hole-transport layer and the intrinsic Alq3 as the electron-transport and emitting layer.The emitting efficiency and brightness of the device are further improved by inserting a thin electron block layer to confine the carrier recombination zone in the middle of the organic layers.

  17. Organic Light Emitting Diodes with p-Si Anodes and Semitransparent Ce/Au Cathodes

    Institute of Scientific and Technical Information of China (English)

    SUN Zhiguo; JIANG Guangzhi

    2011-01-01

    The Ce (x nm)/Au (15 nm) stacked layers were used as semitransparent cathodes in the top-emission organic light emitting devices (TOLEDs) fabricated on a p-type silicon anodes and substrate, where x varies from 4 to 16. The consequence of the Ce layer thickness on transmittance and the device performance were studied when the organic layers NPB (60 nm)/ALQ (60 nm) were kept unchanged, where NPB was N, N,n'-bis-(l-naphthl)-diphenyl-l, 1 '-biphenyl-4, 4'-diamine, and AlQ is tris-(8-hydroxyquinoline) aluminum. The cathode of Ce (11 nm)/Au (15 nm) has a transparency of 46%, and the TOLED with it achieves the highest luminescence efficiencies: a current efficiency of 0.91 cd/A at 13.7 V and a peak power efficiency of 0.28 lm/W at 9 V. The tum-on voltage is 3.0 V. The Ce/Au cathode is both chemically and electrically stable.

  18. Enhancing The Efficiency of White Organic Light-emitting Diode Using Energy Recyclable Photovoltaic Cells

    Institute of Scientific and Technical Information of China (English)

    Meiso YOKOYAMA; WU Chung-ming; SU Shui-hsiang

    2012-01-01

    We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED)and an organic photovoltaic(OPV)cell.The device is called a PVOLED..It has a glass/ITO/CuPc/m-MTDATA:V2O5/NPB/CBP:FIrpic:DCJTB/ BPhen/LiF/Al/P3HT:PCBM/V2O5/Al structure.The power recycling efficiency of 10.133% is achieved under the WOLED of PVOLED operated at 9 V and at a brightness of 2 110 cd/m2,when the conversion efficiency of OPV is 2.3%.We have found that the power recycling efficiency is decreased under high brightness and high applied voltage due to an increase input power of WOLED.High efficiency(18.3 cd/A)and high contrast ratio(9.3)were obtained at the device operated at 2 500 cd/m2 under an ambient illumination of 24 000 lx.Reasonable white light emission with Commission Internationale De L'Eclairage(CIE)color coordinates of(0.32,0.44)at 20 mA/cm2 and slight color shift occurred in spite of a high current density of 50 mA/cm2.The proposed PVOLED is highly promising for use in outdoors display applications.

  19. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbok [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Lee, Jeihyun; Yi, Yeonjin, E-mail: yeonjin@yonsei.ac.kr [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Cho, Sang Wan [Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 220-710 (Korea, Republic of); Kim, Jeong Won [Korea Research Institute of Standards and Science, 267 Gajeong-ro, Daejeon 305-340 (Korea, Republic of)

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  20. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, C.; Vilani, C. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Calil, V.L. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil); Barud, H.S. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Quirino, W.G. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Achete, C.A. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); COPPE-Programa de Engenharia Metalurgica e de Materiais, UFRJ, Rio de Janeiro, RJ (Brazil); Ribeiro, S.J.L. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Cremona, M. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil)], E-mail: cremona@fis.puc-rio.br

    2008-12-01

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10{sup -4} Ohm cm, 8.08 cm{sup 2}/V-s and - 1.5 x 10{sup 21} cm{sup -3}, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO{sub 2} thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m{sup 2} as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices.

  1. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    International Nuclear Information System (INIS)

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m−2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m−2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed. (paper)

  2. Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes.

    Science.gov (United States)

    Gomez, Eliot F; Venkatraman, Vishak; Grote, James G; Steckl, Andrew J

    2015-12-01

    Naturally occurring biomolecules have increasingly found applications in organic electronics as a low cost, performance-enhancing, environmentally safe alternative. Previous devices, which incorporated DNA in organic light emitting diodes (OLEDs), resulted in significant improvements in performance. In this work, nucleobases (NBs), constituents of DNA and RNA polymers, are investigated for integration into OLEDs. NB small molecules form excellent thin films by low-temperature evaporation, enabling seamless integration into vacuum deposited OLED fabrication. Thin film properties of adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) are investigated. Next, their incorporation as electron-blocking (EBL) and hole-blocking layers (HBL) in phosphorescent OLEDs is explored. NBs affect OLED performance through charge transport control, following their electron affinity trend: G transport. C, T, and U have higher electron affinities (2.6-3.0 eV), transporting electrons and blocking hole transport. A-EBL-based OLEDs achieve current and external quantum efficiencies of 52 cd A(-1) and 14.3%, a ca. 50% performance increase over the baseline device with conventional EBL. The combination of enhanced performance, wide diversity of material properties, simplicity of use, and reduced cost indicate the promise of nucleobases for future OLED development. PMID:25503083

  3. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    Science.gov (United States)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  4. Manipulating the local light emission in organic light-emitting diodes by using patterned self-assembled monolayers

    NARCIS (Netherlands)

    Mathijssen, Simon G. J.; van Hal, Paul A.; van den Biggelaar, Ton J. M.; Smits, Edsger C. P.; de Boer, Bert; Kemerink, Martijn; Janssen, Rene A. J.; de Leeuw, Dago M.

    2008-01-01

    Patterned organic light-emitting diodes are fabricated by using microcontactDrinted self-assembled monolayers on a gold anode (see background figure). Molecules with dipole moments in opposite directions result in an increase or a decrease of the local work function (foreground picture), providing a

  5. Improved Performance of Organic Light-Emitting Diodes with MgF2 as the Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    XIE Jing; ZHANG De-Qiang; WANG Li-Duo; DUAN Lian; QIAO Juan; QIU Yong

    2006-01-01

    @@ Organic light-emitting diodes (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and tris (8-hydroxyquinoline) aluminium (Alq3) are improved by using a thin MgF2 buffer layer sandwiched between the indium tin oxide (ITO) anode and hole transporting layer (HTL) of NPB.

  6. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn; Liu, Bin; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Shi, Hongying [Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Huang, Wei, E-mail: iamdirector@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  7. Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level

    International Nuclear Information System (INIS)

    Photo- or electro-excited states in polyatomic molecules, aggregates, and conjugated polymers are at the center of organic light-emitting diodes (OLEDs). These can decay radiatively or non-radiatively, determining the luminescence quantum efficiency of molecular materials. According to Kasha’s rule, light-emission is dictated by the lowest-lying excited state. For conjugated polymers, the electron correlation effect can lead the lowest-lying excited state to the even-parity 2Ag state which is non-emissive. To understand the nature of the low-lying excited state structure, we developed the density matrix renormalization group (DMRG) theory and its symmetrization scheme for quantum chemistry applied to calculate the excited states structure. We found there are three types of 1Bu/2Ag crossover behaviors: with electron correlation strength U, with bond length alternation, and with conjugation length. These directly influence the light-emitting property. For the electro-excitation, carriers (electron and hole) are injected independently, forming both singlet and triplet excited bound states with statistically 25% and 75% portions, respectively. We found that the exciton formation rate can depend on spin manifold, and for conjugated polymers, the singlet exciton can have larger formation rate leading to the internal electroluminescence quantum efficiency larger than the 25% spin statistical limit. It is originated from the interchain electron correlation as well as intrachain lattice relaxation. For the dipole allowed emissive state, the radiative decay process via either spontaneous emission or stimulated emission can be computed from electronic structure plus vibronic couplings. The challenging issue lies in the non-radiative decay via non-adiabatic coupling and/or spin–orbit coupling. We developed a unified correlation function formalism for the excited state radiative and non-radiative decay rates. We emphasized the low-frequency mode mixing (Duschinsky rotation

  8. Non-doped phosphorescent white organic light-emitting devices with a quadruple-quantum-well structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Juan [State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yu Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang Lei; Wang Jun [State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2012-07-15

    Non-doped white organic light-emitting devices (WOLEDs) with a quadruple-quantum-well structure were fabricated. An alternate layer of ultrathin blue and yellow iridium complexes was employed as the potential well layer, while potential barrier layers (PBLs) were chosen to be 2,2',2''-(1,3,5-benzenetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) or N,N'-dicarbazolyl-3,5-benzene (mCP) combined TPBi. On adjusting the PBLs for device performance comparison, the results showed that the device with all-TPBi PBLs exhibited a yellow emission with the color coordinates of (0.50,0.47) at a luminance of 1000 cd/m{sup 2}, while stable white emission with the color coordinates of (0.36,0.44) was observed in the device using mCP combined TPBi as the PBLs. Meanwhile, for the WOLED, with a reduced efficiency roll-off, a maximum luminance, luminous efficiency, and external quantum efficiency of 12,610 cd/m{sup 2}, 10.2 cd/A, and 4.4%, respectively, were achieved. The performance improvement by the introduction of mCP PBL was ascribed to the well confined exciton and the reduced exciton quenching effect in the multiple emission regions.

  9. Color-tunable and stable-efficiency white organic light-emitting diode fabricated with fluorescent-phosphorescent emission layers

    International Nuclear Information System (INIS)

    White organic light emitting diodes (OLEDs) were fabricated for color-tunable lighting applications. Fluorescent and phosphorescent hybrid emission layers (EMLs) were used to enhance the luminance and stability of the devices, which have blue-EML/CBP interlayer/green-EML/phosphorescent-sensitized-EML/red-EML structures. The influence of the composition and structure of the EMLs on the electroluminescence properties of the devices were investigated from the viewpoint of their emission spectra. The possible exciton harvesting, diffusion, transport, and annihilation processes occurring in the EMLs were also evaluated. A maximum luminance intensity of 7400 cd/m2 and a highly stable current efficiency of 3.2 cd/A were obtained. Good color tunability was achieved for the white OLEDs; the chromatic coordinates linearly shifted from pure white (0.300, 0.398) to cold white (0.261, 0.367) when the applied voltage was varied from 10 to 14 V. -- Highlights: • Exciton harvesting, diffusion, transport, and annihilation processes were evaluated. • The electroluminescence properties were investigated from the viewpoint of the emission spectra. • Good color tunability and stable-efficiency were achieved for the white OLEDs

  10. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    Science.gov (United States)

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p migration speed, and is associated with increased reactive oxygen species generation in a dose-dependent manner without altering viability. LED-BL has the potential to contribute to the treatment of keloids and other fibrotic skin diseases and is worthy of further translational and clinical

  11. Enhanced electronic injection in organic light-emitting diodes by incorporating silver nanoclusters and cesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Chung; Gao, Chia-Yuan [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Sze, Po-Wen [Department of Electro-Optical Science and Engineering, Kao Yuan University, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-10-01

    Highlights: • The localized electric field around SNCs is enhanced. • When the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained. • The structure for efficient electron injection is critical to characteristics of the device. - Abstract: The influence of the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure (CSC-EIS) on the performance of organic light-emitting diodes is investigated in this study. The silver nanoclusters (SNCs) are introduced between the electron-injection layers by means of thermal evaporation. When the CSC-EIS replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained because the electron-injection barrier between the cathode and the electron-transport layer is remarkably reduced from 1.2 to 0 eV. In addition, surface plasmon resonance effect will cause the enhanced localized electric field around the SNCs, resulting that electron-injection ability is further enhanced from the cathode to the emitting layer.

  12. Characterization of phosphorescent organic light-emitting diodes using current noise cross-correlated spectroscopy

    Science.gov (United States)

    Kamdem Djidjou, Thaddee; Li, Sergey; Rogachev, Andrey

    2014-03-01

    Carrier injection and transport mechanism in small-molecule phosphorescent organic light-emitting diodes (PhOLED) have been investigated using current noise spectroscopy. The PhOLED devices studied consist of multilayers having the structure ITO / NPB / NPB:Irphq / Balq / Bpen:CsCO3/ Al. We found that in high bias regime, the noise spectral density can be described by two terms, 1/ f1.3 and 1/f2.8. The first term disappears below 2.5 V, as does the luminance; this suggests that this term is related to bimolecular recombination in the devices. The second term is more pronounced al low frequencies and its magnitude is linearly proportional to the current in the device. This term, which exists in all bias range, is likely related to the presence of traps with a distributed time constant. For applied voltages greater than 2.4 V, the frequency-independent noise is dominated by the shot noise. The Fano factor is one in the range 2.4 - 2.5 V, and decreases to a constant value of 0.4 at higher biases. This indicates the presence of a barrier for carrier injection into the device. Our overall results confirm the utility of noise measurements for OLED characterization.

  13. Thin film passivation of organic light emitting diodes by inductively coupled plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki [Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology (KIT), 1 Yangho-dong, Gumi, Gyeongbuk, 730-701 (Korea, Republic of)]. E-mail: hkkim@kumoh.ac.kr; Kim, Sang-Woo [Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology (KIT), 1 Yangho-dong, Gumi, Gyeongbuk, 730-701 (Korea, Republic of); Kim, Do-Geun [Surface Technology Research Center, Korea Institute of Machinery and Materials, 66 Sangnam-dong, Changwon-si, Gyeongnam, 641-831 (Korea, Republic of); Kang, Jae-Wook [Organic Light Emitting Diodes (OLED) Center, Seoul National University, Silim-dong, Seoul 151-741 (Korea, Republic of); Kim, Myung Soo [Core Technology Laboratory, Samsung SDI, Co., LTD., 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 442-391 (Korea, Republic of); Cho, Woon Jo [Nano Device Research Center, Korea Institute of Science and Technology, 39-1, Haweolgok-Dong, Seongbuk-Gu, Seoul, 136-791 (Korea, Republic of)

    2007-04-09

    The characteristics of an SiN {sub x} passivation layer grown by a specially designed inductively coupled plasma chemical vapor deposition (ICP-CVD) system with straight antennas for the top-emitting organic light emitting diodes (TOLEDs) are investigated. Using a high-density plasma on the order of {approx} 10{sup 11} electrons/cm{sup 3} formed by nine straight antennas connected in parallel, a high-density SiN {sub x} passivation layer was deposited on a transparent Mg-Ag cathode at a substrate temperature of 40 deg. C. Even at a low substrate temperature, single SiN {sub x} passivation layer prepared by ICP-CVD showed a low water vapor transmission rate of 5 x 10{sup -2} g/m{sup 2}/day and a transparency of {approx} 85% respectively. In addition, current-voltage-luminescence results of the TOLED passivated by the SiN {sub x} layer indicated that the electrical and optical properties of the TOLED were not affected by the high-density plasma during the SiN {sub x} deposition process.

  14. Top-Emission Organic Light Emitting Diode Fabrication Using High Dissipation Graphite Substrate

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Tsai

    2014-01-01

    Full Text Available This study uses a synthetic graphite fiber as the heat dissipation substrate for top-emission organic light emitting diode (TEOLED to reduce the impact from joule heat. UV glue (YCD91 was spin coated onto the substrate as the insulation layer. The TEOLED structure is (glass; copper; graphite substrate/YCD91 glue/Al/Au/EHI608/TAPC/Alq3/LiF/Al/Ag. The proposed graphite fiber substrate presents better luminous performance compared with glass and copper substrate devices with luminance of 3055 cd/m2 and current efficiency of 6.11 cd/A at 50 mA/cm2. When lighting period of different substrates TEOLED, the substrate case back temperature was observed using different lighting periods. A glass substrate element operating from 5 to 25 seconds at 3000 cd/m2 luminance produced a temperature rate of 1.207°C/sec. Under 4000 cd/m2 luminance the copper and graphite substrate temperature rates were 0.125°C/sec and 0.088°C/sec. Graphite component lifetime was determined to be 1.875 times higher than the glass components and 1.125 times higher than that of copper.

  15. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    International Nuclear Information System (INIS)

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN6)/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN6 and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m2. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN6 and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency

  16. White organic light-emitting diodes with an ultra-thin premixed emitting layer

    CERN Document Server

    Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena

    2014-01-01

    We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

  17. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar oC in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10-4Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm2

  18. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    International Nuclear Information System (INIS)

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq−1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A−1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices. (paper)

  19. Spatial resolution and noise in organic light-emitting diode displays for medical imaging applications.

    Science.gov (United States)

    Yamazaki, Asumi; Wu, Chih-Lei; Cheng, Wei-Chung; Badano, Aldo

    2013-11-18

    We report on the resolution and noise characteristics of handheld and workstation organic light-emitting diode (OLED) displays in comparison with liquid crystal displays (LCDs). The results demonstrate advantages, in terms of sharpness, of handheld OLED displays with modulation transfer function (MTF) values exceeding 0.60 at the Nyquist frequencies. The OLED workstation included in this study exhibits significant signal contamination among adjacent pixels resulting in degraded resolution performance indicated by horizontal and vertical MTF values of 0.13 and 0.24 at the Nyquist frequency. On the other hand, its noise characteristics are superior to the LCD workstation tested. While the noise power spectral (NPS) values of the OLED workstation are 8.0×10(-6) mm2 at 1 mm(-1), the LCD workstation has NPS values of 2.6×10(-5) mm2. Although phone-size OLED displays have superior resolution and noise per pixel, the perceived resolution characteristics at appropriate viewing distances are inferior to tablet-size and workstation LCDs. In addition, our results show some degree of dependency of the resolution and noise on luminance level and viewing orientation. We also found a slightly degraded resolution and increased low-frequency noise at off-normal orientations in the handheld displays. PMID:24514325

  20. Electron injection into hole-transporting layer from emitting layer in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, Taiju [Faculty of Engineering, Kyoto Sangyo University, Kamigamo (Japan); Kishimoto, Tadahi; Wako, Kazuhiro [Research Institute for Advanced Liquid Crystal Technology, Aomori (Japan); Matsuda, Kuniharu; Iguchi, Hirofumi [Tohoku Device Co., Ltd., Hanamaki, Iwate (Japan)

    2011-09-15

    Optical and electrical characteristics of organic light emitting diode devices with emitting layer of N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) doped with 0.2, 0.5, and 1.0% tris[1-phenylisoquinolinato-C2, N] iridium [Ir(piq){sub 3}] are presented. Tris(8-hydroxyquinoline) aluminum (Alq{sub 3}) and NPB were used as electron and hole transport layers, respectively. Emissions from Ir(piq){sub 3} dopant and Alq{sub 3} have been observed in all the devices. No emission from NPB host was observed even in device with 0.2% dopant concentration. This is understood by the high HOMO gap (0.8 eV) between NPB and Alq{sub 3} and by the very small HOMO gap (0.1 eV) between Ir(piq){sub 3} and Alq{sub 3}, which do not lead to injection of electrons from Alq{sub 3} electron transport layer into NPB host in emitting layer but lead to direct injection of electrons from Alq{sub 3} into Ir(piq){sub 3}. It was found that the driving voltage, external quantum efficiency, and luminous efficiency increase with increasing dopant concentration, but power efficiency decrease. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Highly efficient green organic light-emitting diodes from single exciplex emission

    Science.gov (United States)

    Wang, Dan; Li, Wenlian; Chu, Bei; Su, Zisheng; Bi, Defeng; Zhang, Dongyu; Zhu, Jianzhuo; Yan, Fei; Chen, Yiren; Tsuboi, Taiju

    2008-02-01

    Spectral single and stable green exciplex emission was demonstrated from organic light-emitting diodes (OLEDs) with 4,4',4″-tris[3-methylphenyl(phenyl)amino] triphenylamine and 4,7-diphenyl-1,10-phenanthroline that function as electron donor (D) and acceptor (A), respectively. As 8-hydroxyquinoline aluminum (Alq3) was attached to the acceptor layer, electroluminescent (EL) properties of the two exciplex-type OLEDs with D/A-bilayer and D:A mixture layer configurations were markedly improved, i.e., a peak current efficiency of 7.6cd/A at 2.38mA/cm2 in three-layer device and a maximum luminance of 6620cd/m2 at 8.7V in blend layer device were obtained, respectively, without changing the peak position (535nm) and the shape of EL spectrum. Discussion is given on the harvest of the pure green exciplex emission and enhancement of luminance which is obtained by inserting Alq3 layer.

  2. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  3. Doping in the Mixed Layer to Achieve High Brightness and Efficiency Organic Light Emitting Devices

    Institute of Scientific and Technical Information of China (English)

    高文宝; 杨开霞; 刘宏宇; 冯晶; 刘式墉

    2002-01-01

    Doping in the mixed layer was introduced to fabricate high brightness and high efficiency organic light emitting devices. In these devices, a copper phthalocyanine (CuPc) film acts as the buffer layer, a naphthylphenybiphenyl amine (NPB) film as the hole transport layer and a tris(8-hydroxyquinolinolate)aluminium (Alq3) film as the electron transport layer. The luminescent layer consists of the mixture of NPB, Alq3 (to be called the mixed layer), and an emitting dopant 5,6,11,12-petraphenylnaphthacene (rubrene), where the concentration of NPB declined and the concentration of Alq3 was increased gradually in the deposition process. Adopting this doping mixed layer, the device exhibits the maximum emission of 49300cd/m2 at 35 V and the maximum efficiency of 7.96cd/A at 10.5 V, which have been improved by two times in comparison with conventional doped devices. We attribute this improvement to the effective confinement of carriers in the mixed layer, which leads to the increase of the recombination efficiency of carriers.

  4. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers

    Science.gov (United States)

    Tsang, Daniel Ping-Kuen; Adachi, Chihaya

    2016-03-01

    Organic light-emitting diodes (OLEDs) under constant current operation suffer from a decrease of luminance accompanied by an increase of driving voltage. We report a way to greatly improve the stability of OLEDs having a green emitter exhibiting thermally activated delayed fluorescence (TADF), (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl) isophthalonitrile (4CzIPN), by introducing ultrathin (1 to 3 nm) interlayers of 8-hydroxyquinolinato lithium (Liq) between hole-blocking layer and its surrounding emissive and electron-transport layers. Under constant current operation starting at a luminescence of 1,000 cd/m2, the time to reach 90% of initial luminance (LT90) increased eight times, resulting in LT90 = 1,380 hours after insertion of the interlayers. Combining this new concept and mixed host system, LT95 was further extended to 1315 hours that is 16 times of reference device. This is the best value reported for TADF-based OLEDs and is comparable to the operational lifetimes of well-established phosphorescence-based OLEDs. Thermally stimulated current measurements showed that the number of deep charge traps was reduced with the insertion of the ultrathin Liq interlayer, indicating that reducing the number of deep traps is important for improving the operational lifetime and that exciton-polaron annihilation may be a source of the device degradation.

  5. The effect of Indium metal nanoparticles on the electronic properties of organic light emitting diodes (OLEDs)

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Davood, E-mail: d_kalhor@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of); Department of Physics, Damghan University, POB 3671941167, Damghan (Iran, Islamic Republic of); Mohajerani, Ezeddin, E-mail: e-mohajerani@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of); Hashemi Pour, Omid, E-mail: HashemiPour@sbu.ac.ir [Department of Electrical and Computer Engineering, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of)

    2015-11-15

    In this paper the effect of Indium nanoparticles (NPs) on the electronic properties of organic light emitting diodes (OLEDs) is experimentally investigated. The metal NPs which are added to the hole transfer layer can be considered as a blocker layer for injected electrons. By optimizing hole and electron ratio, current density and voltage can be decreased. In order to study this effect, among various fabricated devices, a specific structure, namely ITO/PEDOT:PSS (50 nm)/TPD (45 nm)/NPs (x nm)/Alq{sub 3} (50 nm)/Ag (80 nm) has been used. Also, the experiment is investigated for Au and Cu as different cathode the results of structures are compared with Ag cathode. A manually controllable shutter was used for vacuum deposition process to prepare the same structures and to avoid any disturbing effects. It is observed that specific Indium NPs reduce current density and turn on voltage of the device. - Highlights: • The effect of In NPs on the electronic properties of OLEDs is investigated. • Current density and voltage may be reduced by optimizing electron hole ratio. • In NPs reduce the current density and turn on voltage of the device.

  6. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ya-Hui; Duan, Yu, E-mail: duanyu@jlu.edu.cn; Wang, Xiao; Yang, Dan; Yang, Yong-Qiang; Chen, Ping; Sun, Feng-Bo; Xue, Kai-Wen; Zhao, Yi

    2015-10-01

    Graphical abstract: - Highlights: • An ultra-smooth AgNW film on a flexible photopolymer substrate has been fabricated. • The AgNW film has a low sheet resistance with high transparency and flexibility. • OLEDs based on AgNW:NOA63 substrate can be bent at a radius of curvature of 2 mm. - Abstract: Materials to replace indium tin oxide (ITO) for high transmittance and electrical conductivity are urgently needed. In this paper, we adopted a silver nanowire (AgNW)-photopolymer (NOA63) film as a new platform for flexible optoelectronic devices. This design combined a transparent electrode and a flexible substrate. We utilized this application to obtain flexible organic light-emitting devices (FOLEDs). A peel-off process combined with a spin-coating process created an ultra-smooth silver nanowire anode on a photopolymer substrate. The performance of the device was achieved via the perfect morphology of the AgNW anode, the optimal 5 mg/ml concentration of AgNW solution, and the 45.7 Ω/□ sheet resistance of the AgNW film. The maximum current efficiency of the FOLED is 13 cd/A with stable mechanical flexibility even when bent to a radius of curvature of 2 mm. The outstanding performance of the FOLED with peeled off AgNW anode shows that this approach is a promising alternative to ITO for FOLEDs.

  7. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    International Nuclear Information System (INIS)

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM

  8. Organic Light Emitting Diodes with Lithium Contained Alq3 as Electron Injection Layer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Novel lithium doped tris-8-hydroxylquinoline aluminium (Alq3:Li) layer is deposited between emission layer and electron injection aluminium electrode as an electron injection assistant layer in different organic light emitting diodes(OLED) to lower the electron injection barrier. In these devices, Alq3 is used as emission layer, and a bilayer film of N, N' -bis- ( 1-naphhyl)-N, N' -diphenyl- 1,1' -biphenyle-4,4" -diamine (NPB) and 4,4' , 4" -tris (3-methyl-phenylphenylamino) triphenylamine(m-MTDATA) used as hole transport layer(HTL). The electroluminescent performance of devices with different thicknesses of Alq3: Li shows that the insertion of the lithium doped Alq3 layer can reduce the turn on voltage by at least 2 volts, and the stability of devices with this lithium doped Alq3 layer is improved too. It can also change the efficiency of devices. Compared with an ultra-thin lithium fluoride(IiF) layer, Alq3 : Li sheet gives similar effects but higher efficiency and can be much thicker and hence it is easier to control the deposition.

  9. Improvement in Device Performance and Reliability of Organic Light-Emitting Diodes through Deposition Rate Control

    Directory of Open Access Journals (Sweden)

    Shun-Wei Liu

    2014-01-01

    Full Text Available We demonstrated a fabrication technique to reduce the driving voltage, increase the current efficiency, and extend the operating lifetime of an organic light-emitting diode (OLED by simply controlling the deposition rate of bis(10-hydroxybenzo[h]qinolinato beryllium (Bebq2 used as the emitting layer and the electron-transport layer. In our optimized device, 55 nm of Bebq2 was first deposited at a faster deposition rate of 1.3 nm/s, followed by the deposition of a thin Bebq2 (5 nm layer at a slower rate of 0.03 nm/s. The Bebq2 layer with the faster deposition rate exhibited higher photoluminescence efficiency and was suitable for use in light emission. The thin Bebq2 layer with the slower deposition rate was used to modify the interface between the Bebq2 and cathode and hence improve the injection efficiency and lower the driving voltage. The operating lifetime of such a two-step deposition OLED was 1.92 and 4.6 times longer than that of devices with a single deposition rate, that is, 1.3 and 0.03 nm/s cases, respectively.

  10. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Jäger, Lars; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, Augsburg (Germany); Noguchi, Yutaka [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki (Japan); Center of Frontier Science, Chiba University, Chiba (Japan); Ishii, Hisao [Center of Frontier Science, Chiba University, Chiba (Japan)

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  11. Simulation of mixed-host emitting layer based organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Tou, T. Y. [Faculty of Engineering, Multimedia University, 631000 Cyberjaya (Malaysia); Yap, S. S. [Faculty of Engineering, University of Malaya, 50603 Kuala Lampur (Malaysia)

    2015-04-24

    ‘SimOLED’ simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq{sub 3}) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq{sub 3} of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  12. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondragón, Margarita, E-mail: mmondragon@ipn.mx [Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, 02250 México D.F. (Mexico); Moggio, Ivana; León, Arxel de; Arias, Eduardo [Centro de Investigación en Química Aplicada, CIQA, Blvd. Enrique Reyna 140, 25253 Saltillo, Coahuila (Mexico)

    2013-12-15

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM.

  13. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  14. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  15. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  16. Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates

    Science.gov (United States)

    Najafabadi, E.; Zhou, Y. H.; Knauer, K. A.; Fuentes-Hernandez, C.; Kippelen, B.

    2014-08-01

    Organic light-emitting diodes (OLEDs) fabricated on recyclable and biodegradable substrates are a step towards the realization of a sustainable OLED technology. We report on efficient OLEDs with an inverted top-emitting architecture on recyclable cellulose nanocrystal (CNC) substrates. The OLEDs have a bottom cathode of Al/LiF deposited on a 400 nm thick N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (α-NPD) layer and a top anode of Au/MoO3. They achieve a maximum luminance of 74 591 cd/m2 with a current efficacy of 53.7 cd/A at a luminance of 100 cd/m2 and 41.7 cd/A at 1000 cd/m2. It is shown that the α-NPD layer on the CNC substrate is necessary for achieving high performance OLEDs. The electroluminescent spectra of the OLEDs as a function of viewing angle are presented and show that the OLED spectra are subject to microcavity effects.

  17. Active matrix organic light emitting diode (OLED)-XL life test results

    Science.gov (United States)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2008-04-01

    OLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. As a result of this need, the US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to improve the lifetime of OLED displays. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications, and RDECOM CERDEC NVESD ran life tests on these displays, finding over 200% lifetime improvement for the XL devices over the standard displays. Early results were published at the 2007 SPIE Defense and Security Symposium. Further life testing of XL and standard devices at ambient conditions and at high temperatures will be presented this year along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed. This is a continuation of the paper "Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications" presented at SPIE DSS in 2007.

  18. Organic light-emitting diode (OLED) and its application to lighting devices

    Science.gov (United States)

    Ide, Nobuhiro; Komoda, Takuya; Kido, Junji

    2006-08-01

    Organic Light Emitting Diode (OLED) is an emerging technology as one of the strong candidates for next generation solid state lighting with various advantages such as thin flat shape, no UV emission and environmental benefits. At this moment, OLED still has a lot of issues to be solved before widely used as lighting devices. Nonetheless, typical properties of OLED, such as efficiency and lifetime, have been recently made great progress. For example, a green phosphorescent OLED with over 100 lm/W and a red fluorescent OLED with an estimated half decay time of over 100,000 h at 1,000 cd/m2 were reported. Large area, white OLEDs with long lifetime were also demonstrated. In this way, some of the issues are going to be steadily overcome. In this publication, we will present a phosphorescent white OLED with a high luminous efficiency of 46 lm/W and an external quantum efficiency of 20.6 percent observed at 100 cd/m2. This device achieves a luminous efficiency of 62.8 lm/W with a light-outcoupling film attached on the glass substrate. This is one of the highest values so far reported for white OLEDs. And we will also show a color-tunable stacked OLED with improved emission characteristics. This device minimizes a viewing angle dependence of the emission spectra and has color tunability from white to reddish-white. These technologies will be applied to OLED lighting.

  19. Recent advances in light outcoupling from white organic light-emitting diodes

    Science.gov (United States)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  20. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition

    International Nuclear Information System (INIS)

    Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10−4 g m−2 day−1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h. (paper)

  1. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • An ultra-smooth AgNW film on a flexible photopolymer substrate has been fabricated. • The AgNW film has a low sheet resistance with high transparency and flexibility. • OLEDs based on AgNW:NOA63 substrate can be bent at a radius of curvature of 2 mm. - Abstract: Materials to replace indium tin oxide (ITO) for high transmittance and electrical conductivity are urgently needed. In this paper, we adopted a silver nanowire (AgNW)-photopolymer (NOA63) film as a new platform for flexible optoelectronic devices. This design combined a transparent electrode and a flexible substrate. We utilized this application to obtain flexible organic light-emitting devices (FOLEDs). A peel-off process combined with a spin-coating process created an ultra-smooth silver nanowire anode on a photopolymer substrate. The performance of the device was achieved via the perfect morphology of the AgNW anode, the optimal 5 mg/ml concentration of AgNW solution, and the 45.7 Ω/□ sheet resistance of the AgNW film. The maximum current efficiency of the FOLED is 13 cd/A with stable mechanical flexibility even when bent to a radius of curvature of 2 mm. The outstanding performance of the FOLED with peeled off AgNW anode shows that this approach is a promising alternative to ITO for FOLEDs

  2. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    International Nuclear Information System (INIS)

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process

  3. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    Science.gov (United States)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  4. Inverted organic light-emitting diodes using different transparent conductive oxide films as a cathode

    Science.gov (United States)

    Takada, Makoto; Kobayashi, Takashi; Nagase, Takashi; Naito, Hiroyoshi

    2016-03-01

    We report on poly(dioctylfluorene-alt-benzothiadiazole) (F8BT) based inverted organic light-emitting diodes (iOLEDs) using commercially available transparent conductive oxide (TCO) films as a cathode, indium tin oxide (ITO), Ga doped ZnO (GZO), and Al doped ZnO (AZO). The ITO, GZO, and AZO glasses work as an electron-injecting layer (EIL) and cathode. The device configuration that we prepared is ITO, GZO, or AZO/F8BT/MoO3/Au. The device characteristics of these iOLEDs are almost comparable to those of conventional iOLEDs with ZnO films prepared by spray pyrolysis as an EIL, indicating that the electron injection properties of ITO, GZO, or AZO as a cathode are similar to those of ZnO layer in conventional iOLEDs. These results demonstrate the low-cost fabrication of iOLEDs utilizing commercially available TCO glasses as a cathode without deposition of ZnO layers on ITO glass.

  5. Electroluminescence efficiency in bilayer organic light-emitting devices with LiF/Al cathode

    Institute of Scientific and Technical Information of China (English)

    LI HongJian; ZHU RuHui; YAN LingLing; ZHANG HaiYan

    2007-01-01

    An analytical model to calculate electroluminescence (EL) efficiency of bilayer organic light-emitting devices,considering the influence of introducing LiF insulating buffer layer at metal/organic interface on the barrier height for electron injection,was presented.The relations of EL efficiency versus the applied voltage and injection barrier or internal interfacial barrier or the thickness of organic layer were discussed.The results indicate that: (1) when δ e/δ h < 2,metal/organic (M/O) interface is ohmic contact; when δ e/δ h > 2,M/O becomes contact limited; and when δ e/δ h = 2 (Ф h ~ 0.2 eV,Ф e~ 0.3 eV),there is a transition from ohmic contact to contact limited; (2) η EL decreases with the increase of d ′e / d ′h; however,when δ ′e / δ′h > 2.5 (H ′h ~0.2 eV,H ′e ~ 0.4 eV),the changes of η EL are very small,which shows that ηEL is dominated by the carrier's injection; (3) when increasing Lh/L,ηR has a descending trend at low voltage and a rising one at higher voltage.For a given Lh/L,η EL first increases and then decreases with the increasing applied voltage,and as Lh/L further increases,the variation tendency of η EL is more obvious.These conclusions are in agreement with the reported theoretic and experimental results.

  6. Electroluminescence efficiency in bilayer organic light-emitting devices with LiF/Al cathode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An analytical model to calculate electroluminescence (EL) efficiency of bilayer organic light-emitting devices, considering the influence of introducing LiF insulating buffer layer at metal/organic interface on the barrier height for electron injection, was presented. The relations of EL efficiency versus the applied voltage and injection barrier or internal interfacial barrier or the thickness of organic layer were discussed. The results indicate that: (1) when δ e/δ h < 2, metal/organic (M/O) interface is ohmic contact; when δ e/δ h > 2, M/O becomes contact limited; and when δ e/δ h = 2 (Φ h ~ 0.2 eV, Φ e ~ 0.3 eV), there is a transition from ohmic contact to contact limited; (2) η EL decreases with the increase of δ′e / δ′h; however, when δ′e / δ′h > 2.5 (H ′h~ 0.2 eV, H ′e~ 0.4 eV), the changes of η EL are very small, which shows that η EL is dominated by the carrier’s injection; (3) when increasing Lh/L, η R has a descending trend at low voltage and a rising one at higher voltage. For a given Lh/L, η EL first increases and then decreases with the increasing applied voltage, and as Lh/L further increases, the variation tendency of η EL is more obvious. These conclusions are in agreement with the reported theoretic and experimental results.

  7. Influence of Dopant Concentration on Electroluminescent Performance of Organic White-Light-Emitting Device with Double-Emissive-Layered Structure

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Ming; HUA Yu-Lin; YIN Shou-Gen; ZHANG Li-Juan; WANG Yu; HOU Qing-Chuan; ZHANG Jun-Mei

    2008-01-01

    A novel phosphorescent organic white-light-emitting device(WOLED)with configuration of ITO/NPB/CBP:TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully,where the phosphorescent dye bis(1-(phenyl)isoquinoline)iridium(Ⅲ)acetylanetonate(Ir(piq)2(acac))doped into bis-(2-(2-hydroxyphenyl)benzothiazole)zinc(Zn (BTZ)2)(greenish-blue emitting material with electron transport character)as the red emitting layer,and fluorescent dye2,5,8,11-tetra-tertbutylperylene(TBPe)and5,6,11,12-tetraphenyl-naphthacene(rubrene)together doped into 4,4'-N,N'-dicarbazole-biphenyl(CBP)(ambipolar conductivity material)as the blue-orange emitting layer,respectively.The two emitting layers are sandwiched between the hole-transport layer N,N'-biphenyl-N,N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine(NPB)and electron-transport layer(Zn(BTZ)2).The optimum device turns on at the driving voltage of 4.5V.A maximum external quantum efficiency of 1.53%and brightness 15000 cd/m2 are presented.The best point of the Commission Internationale de l'Eclairage(CIE)coordinates locates at (0.335,0.338)at about 13 V. Moreover,we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.

  8. High-efficiency polymer light-emitting devices using organic salts: A multilayer structure to improve light-emitting electrochemical cells

    Science.gov (United States)

    Lee, Tae-Woo; Lee, Ho-Chul; Park, O. Ok

    2002-07-01

    Balanced charge injection in polymer light-emitting devices is very important for high brightness and quantum efficiency. To improve the well-known light-emitting electrochemical cells (LECs), we fabricated multilayer electroluminescent devices employing an ammonium salt-containing poly(ethylene oxide) blend as hole- or electron-injecting materials. The charge injection can be greatly promoted due to the ionic space charges near both electrodes. The current-voltage-optical output characteristics of the triple-layer device using both the hole- and the electron-injecting layers are very similar to the well-known LEC devices. We obtained high quantum efficiencies of 0.9% and 1.5% photons/electron in forward- and reverse-bias field of the triple-layer device, respectively.

  9. AC quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes (Presentation Recording)

    Science.gov (United States)

    Giebink, Noel C.

    2015-10-01

    Exciton annihilation processes impact both the lifetime and efficiency roll-off of organic light emitting diodes (OLEDs), however it is notoriously difficult to identify the dominant mode of annihilation in operating devices (exciton-exciton vs. exciton-charge carrier) and subsequently to disentangle its magnitude from competing roll-off processes such as charge imbalance. Here, we introduce a simple analytical method to directly identify and extract OLED annihilation rates from standard light-current-voltage (LIV) measurement data. The foundation of this approach lies in a frequency domain EQE analysis and is most easily understood in analogy to impedance spectroscopy, where in this case both the current (J) and electroluminescence intensity (L) are measured using a lock-in amplifier at different harmonics of the sinusoidal dither superimposed on the DC device bias. In the presence of annihilation, the relationship between recombination current and light output (proportional to exciton density) becomes nonlinear, thereby mixing the different EQE harmonics in a manner that depends uniquely on the type and magnitude of annihilation. We derive simple expressions to extract different annihilation rate coefficients and apply this technique to a variety of OLEDs. For example, in devices dominated by triplet-triplet annihilation, the annihilation rate coefficient, K_TT, is obtained directly from the linear slope that results from plotting EQE_DC-EQE_1ω versus L_DC (2EQE_1ω-EQE_DC). We go on to show that, in certain cases it is sufficient to calculate EQE_1ω directly from the slope of the DC light versus current curve [i.e. via (dL_DC)/(dJ_DC )], thus enabling this analysis to be conducted solely from common LIV measurement data.

  10. New double graded structure for enhanced performance in white organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yu Chen [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan (China); Herng Yih Ueng, E-mail: hueng@ee.nsysu.edu.t [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan (China); Yokoyama, Meiso [Department of Electronic Engineering, I-Shou University, Kaohsiung County, Taiwan (China)

    2010-10-15

    This study presents a new design that uses a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure to improve the electrical and optical performance of white organic light-emitting diodes (WOLEDs). The proposed structure is ITO/m-MTDATA (15 nm)/NPB (15 nm)/NPB: 25% BAlq (15 nm)/NPB: 50% BAlq (15 nm)/BAlq: 0.5% Rubrene (10 nm)/BAlq: 1% Rubrene (10 nm)/BAlq: 1.5% Rubrene (10 nm)/Alq{sub 3} (20 nm)/LiF (0.5 nm)/Al (200 nm). (m-MTDATA: 4,4',4'' -tris(3-methylphenylphenylamino)triphenylamine; NPB: N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1'-biphenyl)-4,4'-diamine; BAlq: aluminum (III) bis(2-methyl-8-quinolinato) 4-phenylphenolate; Rubrene: 5,6,11,12-tetraphenylnaphthacene; Alq{sub 3}: tris-(8-hydroxyquinoline) aluminum). By using this structure, the best performance of the WOLED is obtained at a luminous efficiency at 11.8 cd/A and the turn-on voltage of 100 cd/m{sup 2} at 4.6 V. The DG structure can eliminate the discrete interface, and degrade surplus holes, the electron-hole pairs are efficiently injected and balanced recombination in the emissive layer, thus the spectra are unchanged under various drive currents and quenching effects can be significantly suppressed. Those advantages can enhance efficiency and are immune to drive current density variations.

  11. Effects of parylene buffer layer on flexible substrate in organic light emitting diode

    International Nuclear Information System (INIS)

    Parylene was deposited on a bare polyethylene terephthalate (PET) and poly carbonate (PC) film surface to enhance the oxygen and water barrier properties at room temperature. The deposition rate of the parylene was observed to have increased linearly as the working pressure was increased. The oxygen plasma pre-treatment of the PET for the adhesion between bare film and parylene was mostly effective to 5B, while the treatment of N-(2-Aminoethyl)-3-Aminopropylmethyldimethoxysilane solution at PC film resulted in 3B. Surface morphology and roughness were observed by atomic force microscopy and the barrier property was measured by oxygen transmission rate and water vapor permeation test equipments. The oxygen transmission rate (OTR) and water vapor transmission rate (WTR) of the PET film were reduced from 13.2 to 11.3 cc/m2 day and from 4.6 to 2.0 g/m2 day, respectively. When the parylene layer was coated onto the PC film, however, the barrier effects were significant from out of detection limit to 53.9 cc/m2 day for the OTR, and from 24.7 to 3.5 g/m2 day for the WTR. The real organic light emitting diode (OLED) device was fabricated with a parylene coated flexible substrate, which was subsequently deposited by transparent conducting layer and scratch-resistant layer. The initial brightness of the OLED device with a parylene buffer layer was 173 cd/cm2, and 70% of its initial brightness was maintained after 40,000 s

  12. Transparent conductive PVP/AgNWs films for flexible organic light emitting diodes by spraying method

    Science.gov (United States)

    Hu, Jun-tao; Mei, Wen-juan; Ye, Kang-li; Wei, Qing-qing; Hu, Sheng

    2016-05-01

    In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).

  13. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    OpenAIRE

    Ching-Lin Fan; Hao-Wei Chen; Hui-Lung Lai; Bo-Liang Guo; Bohr-Ran Huang

    2014-01-01

    This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The v...

  14. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4:Mn color-conversion layer

    International Nuclear Information System (INIS)

    Zn2SiO4:Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn2SiO4:Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn2SiO4:Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn2SiO4:Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4T1-6A1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn2SiO4:Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn2SiO4:Mn color-conversion layer are described on the basis of the EL and PL spectra.

  15. Approach of organic light-emitting displays (OLED) to technology status

    Science.gov (United States)

    Saini, Gurdial S.; Hopper, Darrel G.

    1998-09-01

    A display is an electronic component or subsystem used to convert electrical signals into visual imagery in real time suitable for direct interpretation by a human observer. Until recently, the cathode ray tube (CRT) has been the main source of displays. During the last twenty years, it has been determined that alternatives to CRT displays need to found. One of the alternatives was the introduction of flat-panel displays. The term 'flat-panel display' is more of a concept than a specific entity. It is a display which is flat and light and may not require a great deal of power. A flat-panel display is often defined in terms of the ideal display, that being: thin form, low volume, even surface, having high resolution, high contrast, sunlight readable, color, low power, and being solid-state, light weight, and low cost. This is easy to conceive but difficult to deliver. The objective is to develop displays with as many desirable characteristics as possible. Flat-panel displays are basically of two types: the light valve type (that needs an external source of light such as a backlight or arc-lamp) and the emissive type (that generate light at the display surface). The light emitting diode (LED) display is of the emissive type. Inorganic LED and electroluminescent (EL) displays have been in use for more than 25 years in one form or the other because of their 'inherent' ruggedness and operation over extremely wide temperature ranges. Because of certain limitations of inorganic materials (such as cost, power, and color), LED displays do not dominate the high information content flat- panel display market. A recent discovery of polymer and other organic materials has changed LED prospects. It may now be possible to make organic LED displays that are inexpensive, low-power, and at the same time provide high resolution and full color. If present research objectives are met, organic LEDs may revolutionize the flat-panel display market. This paper addresses the various aspects

  16. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    Science.gov (United States)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  17. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm−2

    International Nuclear Information System (INIS)

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm−2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC. (paper)

  18. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyeon Soo; Cho, Sang Hee [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Seo, Jaewon; Park, Yongsup [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Suh, Min Chul, E-mail: mcsuh@khu.ac.kr [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-11-01

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer.

  19. Tunable and white light emitting AlPO{sub 4} mesoporous glass by design of inorganic/organic luminescent species

    Energy Technology Data Exchange (ETDEWEB)

    He, Jin; Li, Rihong, E-mail: lirihong@siom.ac.cn; Yuan, Xinqiang; Zhang, Long, E-mail: lzhang@siom.ac.cn [Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Yan [Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Shiqing [College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang 310018 (China)

    2015-04-01

    The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin) luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu{sup 2+}/Eu{sup 3+} ions and coumarin 535 in sol-gel AlPO{sub 4} mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  20. Chemically Compatible Sacrificial Layer-Assisted Lift-Off Patterning Method for Fabrication of Organic Light-Emitting Displays

    Science.gov (United States)

    Choi, Wonsuk; Kim, Min-Hoi; Lee, Sin-Doo

    2011-08-01

    We developed a generic platform to pattern combinatorial functional layers composed of different classes of organic materials using a repetitive lift-off method based on a chemically compatible sacrificial layer (SL) for organic light-emitting diodes (OLEDs). The essential features come from the chemically compatible SL of a fluorous-polymer that can be generated by laser-inscription or transfer-printing. The precise registration of lateral patterns of different materials was achieved on a single substrate through a series of SL-assisted lift-off processes. The chemical compatibility of the SL and the stability of the light-emitting characteristics were shown in a fluorous-solvent treated monochrome OLEDs.

  1. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  2. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    International Nuclear Information System (INIS)

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer

  3. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    International Nuclear Information System (INIS)

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages

  4. Driving conditions dependence of magneto-electroluminescence in tri-(8-hydroxyquinoline)-aluminum based organic light emitting diodes

    OpenAIRE

    Peng, Qiming; Sun, Jixiang; Li, Xianjie; Li, Mingliang; Li, Feng

    2011-01-01

    we investigated the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum based organic light-emitting diodes (OLEDs) through the steady-state and transient method simultaneously. The MELs show the great different behaviors when we turn the driving condition from a constant voltage to a pulse voltage. For devices driven by the constant voltage, the MELs are similar with the literature data; for devices driven by the pulse voltage, the MELs are quite different, they firstly in...

  5. Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element

    OpenAIRE

    Zhang, Shuyu; Turnbull, Graham A.; Samuel, Ifor David William

    2014-01-01

    Highly directional emission from an organic light-emitting diode (OLED) is demonstrated by out-coupling the substrate mode from a Eu-based OLED using a diffractive optical element embedded in the substrate. This approach gives emission that is confined in a single narrow cone with FWHM divergence of 15° or less, which is very different from the normal Lambertian emission of OLEDs.

  6. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    KAUST Repository

    Gutiérrez-Heredia, Gerardo

    2010-10-04

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/ parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 μA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 μA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O 3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas \\'parylene only\\' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented. © 2010 IOP Publishing Ltd.

  7. New rare-earth quinolinate complexes for organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, H. [Physics Department, Pontifical Catholic University of Rio de Janeiro, 22453-900 Rio de Janeiro (Brazil); Paolini, T.B. [Chemistry Institute, Department of Fundamental Chemistry, University of São Paulo, USP, 05599-970 São Paulo (Brazil); Niyama, E. [Physics Department, Pontifical Catholic University of Rio de Janeiro, 22453-900 Rio de Janeiro (Brazil); Brito, H.F. [Chemistry Institute, Department of Fundamental Chemistry, University of São Paulo, USP, 05599-970 São Paulo (Brazil); Cremona, M., E-mail: cremona@fis.puc-rio.br [Physics Department, Pontifical Catholic University of Rio de Janeiro, 22453-900 Rio de Janeiro (Brazil)

    2013-01-01

    Because of its thermal and morphological stability and optical and electrical properties, tris(8-hydroxyquinoline) aluminum (Alq{sub 3}) is one of the most widely used electron transporting materials in organic light-emitting devices (OLEDs). The search for substitutes for this compound constitutes an important field of research in organic electronics. We report on a study of a new rare-earth tetrakis 8-hydroxyquinoline complex. Synthesis of tris complexes with rare-earth metals and 8-hydroxyquinoline resulted in unstable compounds. However, the inclusion of an additional quinoline group stabilized these compounds. Li[RE(q){sub 4}] (where RE = La{sup 3+}, Lu{sup 3+} and Y{sup 3+} and q = 8-hydroxyquinoline) were synthesized and then used as the electron-transporting and emitting layer in OLEDs. Thin films were deposited in a high-vacuum environment by thermal evaporation on quartz and silicon substrates. Optical characterization of the RE complexes revealed emission in the 510–525 nm range, the same as that observed for Alq{sub 3}, while absorption was observed at wavelengths of 382 nm for the Y/La complexes and 388 nm for the Lu complex. The OLEDs were fabricated with an indium tin oxide layer (ITO) as the anode, (N,N′-bis (1-naphtyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine) NPB as the hole-transporting layer (25 nm), Li[RE(q){sub 4}] as the electron-transporting and emitting layer (40 nm) and aluminum as the cathode (120 nm). The electroluminescence (EL) spectra showed a broad band from 520 to 540 nm and green-colored emission associated with the 8-hydroxyquinoline ligand. There was an interesting dependence of the maximum energy peak position and half-width of the emission band in the EL spectra on the atomic radius of the RE ion used. The best luminance for the OLEDs produced in this study was achieved with the Li[RE(q){sub 4}] compound. The optical and electrical properties of this OLED were comparable to those of similar devices based on Alq{sub 3

  8. Molecular beam deposition and polymerization of parylene-N ultrathin films: Effective buffers in organic light emitting diodes

    International Nuclear Information System (INIS)

    Highlights: • Parylene-N (PPXN) films prepared by using a home-made Knudsen Cell were identified and characterized. • 1 nm PPXN thin films were inserted at different locations in the hole transport layers of organic light emitting diodes. • For an optimized PPXN inserted organic light emitting diodes, current efficiency improvement of 11% was achieved. • The device current efficiency improvement and the current density variation under operation were discussed. - Abstract: Ultrathin Parylene-N (PPXN) films were prepared by using a home-made Knudsen Cell (KC). The PPXN films were identified by infrared (IR) spectra. The morphology and insulativity of PPXN films were measured by atomic force microscope (AFM) and current density versus voltage (j–V) characteristics. Well controlled 1-nm-thick PPXN thin films were inserted at different locations in the N′-bis(naphthalene-1-yl)-N, N′-bis(phenyl) benzidine (NPB) layers of organic light emitting diodes (OLEDs) with the structure of ITO/NPB/tris (8-hydroxyquinolato) aluminum (Alq3)/LiF/Al. For an optimized PPXN inserted structure, current efficiency of 6.27 cd/A was achieved, 11% higher than the 5.64 cd/A of the control one with 1-nm-thick PPXN buffer inserted at the anode interface. The device current efficiency improvement is due to the electron blocking of PPXN buffers, and the current density variation of devices under operation was explained by tunneling barrier reduction

  9. Long-Range Energy Transfer and Singlet-Exciton Migration in Working Organic Light-Emitting Diodes

    Science.gov (United States)

    Ingram, Grayson L.; Nguyen, Carmen; Lu, Zheng-Hong

    2016-06-01

    Rapid industrialization of organic light-emitting devices for flat-panel displays and solid-state lighting makes a deep understanding of device physics more desirable than ever. Developing reliable experimental techniques to measure fundamental physical properties such as exciton diffusion lengths is a vital part of developing device physics. In this paper, we present a study of exciton diffusion and long-range energy transfer in working organic light-emitting devices, and a study of the interplay between these two tangled processes through both experimental probes and simulations. With the inclusion of multiple factors including long-range energy transfer, exciton boundary conditions, and the finite width of the exciton generation zone, we quantify exciton migration based on emission characteristics from rubrene sensing layers placed in working organic light-emitting devices. This comprehensive analysis is found to be essential to accurately measuring exciton diffusion length, and in the present case the measured singlet-exciton diffusion length in the archetype material 4' -bis(carbazol-9-yl)biphenyl is 4.3 ±0.3 nm with a corresponding diffusivity of (2.6 ±0.3 )×10-4 cm2/s .

  10. Integration of Multiple Organic Light Emitting Diodes and a Lens for Emission Angle Control

    Science.gov (United States)

    Rahadian, Fanny; Masada, Tatsuya; Fujieda, Ichiro

    We propose to integrate a single lens on top of multiple OLEDs. Angular distribution of the light emitted from the lens surface is altered by turning on the OLEDs selectively. We can use such a light source as a backlight for a liquid crystal display to switch its viewing angle range and/or to display multiple images in different directions. Pixel-level integration would allow one to construct an OLED display with a similar emission angle control.

  11. Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness

    International Nuclear Information System (INIS)

    High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/ N, N, N', N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD): tetrafluoro-tetracyanoqino dimethane (F4-TCNQ)/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB)/4,4-N,N-dicarbazolebiphenyl (CBP): iridium (III) diazine complexes (MPPZ)2Ir(acac)/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl)benzene (DSA-ph)/ bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2)/LiF/Al have been fabricated and characterized. The optimal brightness of the device is 69932 cd/m2 at a voltage of 13 V, and the Commission Internationale de l'Eclairage (CIE) chromaticity coordinates are almost constant during a large voltage change of 6–12 V. Furthermore, a current efficiency of 15.3 cd/A at an illumination-relevant brightness of 1000 cd/m2 is obtained, which rolls off slightly to 13.0 cd/A at an ultra high brightness of 50000 cd/m2 . We attribute this great performance to wisely selecting an appropriate spacer together with effectively utilizing the combinations of exciton-harvested orange-phosphorescence/ blue-fluorescence in the device. Undoubtedly, this is one of the most exciting results in two-wavelength HWOLEDs up to now

  12. Spatially Resolved Cathodoluminescence in the Vicinity of Defects in the High-Efficiency InGaN/GaN Blue Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Manh-Ha Doan

    2014-01-01

    Full Text Available In addition to the standard 447 nm blue emission from the InGaN/GaN multiple quantum wells, a high-energy shoulder is clearly observed in cathodoluminescence spectra of the high-efficiency InGaN/GaN blue light emitting diodes grown on sapphire substrates by metalorganic chemical vapor deposition. Monochromatic cathodoluminescence images of the samples measured at low temperature reveal a competition between the two emissions in the vicinity of the dislocations. The high-energy emission is dominant at the regions near the dislocation cores, while the blue emission is enhanced around the dislocation edges. The high-energy emission region is considered as a potential barrier that prevents the carriers for the blue emission from nonradiatively recombining at the dislocations.

  13. Organic Light-Emitting Diodes Based on New Oxadiazole and Pyrazoline Derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Ming; ZHANG Rui-Feng; WU Fang; MA Yu-Guang; LI Guo-Wen; TIAN Wen-Jing; SHEN Jia-Cong

    2000-01-01

    The bilayer heterojunction devices were fabricated successfully by using a novel oxadiazole derivative: 2, 2-(2,5-thiophenediyl) bis (5-(4-methyl) phenyl-1,3, 4-oxadiazole) (T-OXD) as the electron-transporting layer (ETL)and a pyrazoline derivative:1-phenyl-3-(dimethylamino)styryl-5-(p-(dimethylamino) phenyl)pyrazoline (PDP) as the light-emitting layer and the hole-transporting layer. The emission at 500nm was derived from PDP layer.In comparison with the bilayer device of tris (8-hydroxyquinoline) aluminum (Alq) as the ETL, the luminous efficiency of the PDP/T-OXD heterojunction device was enhanced by 104 times.

  14. Light-Emitting-Diodes based on ordered InGaN nanocolumns emitting in the blue, green and yellow spectral range.

    OpenAIRE

    Bengoechea Encabo, Ana; Albert, Steven; López-Romero Moraleda, David; Lefebvre, P.; Barbagini, Francesca; Torres Pardo, Almudena; González Calbet, José María; Sánchez García, Miguel Angel; Calleja Pardo, Enrique

    2014-01-01

    The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. The devices are driven under pulsed operation up ...

  15. 2,4-Dicyano-3-diethylamino-9,9-diethylfluorene Based Blue Light-emitting Star-shaped Compounds: Synthesis and Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN,Xiaohang; CHEN,Xiaopeng; ZHAO,Zujin; L(U),Ping; WANG,Yanguang

    2009-01-01

    Two new star-shaped molecules 1 and 2 containing a triphenylamine/benzene moiety as the central core and three 2,4-dicyano-3-diethylamino-9,9-diethylfluorene moieties as the peripheral functional groups were synthesized and characterized. Charge transfer properties for these compounds were observed in photophysical experiments due to their D-A molecular structure. Compound 1 presented dual fluorescence in high polar solvents. Moreover, these compounds exhibited moderate fluorescence and high thermal stabilities, indicating their potential application to blue light emitting materials.

  16. Effect of the length of ligands passivating quantum dots on the electrooptical characteristics of organic light-emitting diodes

    International Nuclear Information System (INIS)

    The electrooptical characteristics of organic light-emitting diodes with quantum dots passivated with organic ligands of different lengths as emitting centers are investigated. It is established that the thickness of the ligand coating covering the quantum dots has little effect on the Förster energy transfer in the diodes, but significantly affects the direct injection of charge carriers into the quantum-dot layer. It is shown that the thickness of the passivation coating covering the quantum dots in a close-packed nanoparticle layer is deter- mined both by the length of passivating ligands and the degree of quantum-dot coverage with ligands

  17. Mechanisms of Loss in Internal Quantum Efficiency in III-Nitride-based Blue-and Green-Light Emitting Diodes

    Science.gov (United States)

    Huang, Li

    The overarching goals of the research conducted for this dissertation have been to understand the scientific reasons for the losses in the internal quantum efficiency (IQE) in Group III-nitride-based blue and especially green light-emitting diodes (LEDs) containing a multi-quantum well (MQW) active region and to simultaneously develop LED epitaxial structures to ameliorate these losses. The p-type AlGaN EBL was determined to be both mandatory and effective in the prevention of electron overflow from the MQW region into the p-type cladding layer and the resultant lowering of the IQE. The overflow phenomenon was partially due to the low concentration (˜ 5 x 1017 cm-3) and mobility (˜ 10 cm2/(V•s)) of the holes injected into the active region. Electroluminescence (EL) studies of LEDs without an EBL revealed a dominant emission from donor-acceptor pair recombination in the p-type GaN layer. The incorporation of a 90 nm compositionally graded In0-0.1 Ga1-0.9N buffer layer between each MQW and n-GaN cladding layer grown on an Al/SiC substrate resulted in an increase in the luminescence intensity and a blue-shift in the emission wavelength, as observed in photoluminescence (PL) spectra. The graded InGaN buffer layer reduced the stress and thus the piezoelectric field across the MQW; this improved the electron/hole overlap that, in turn, resulted in an enhanced radiative recombination rate and an increase in efficiency. A direct correlation was observed between an increase in the IQE measured in temperature-dependent PL (TDPL) and an increase in the roughness of all the upper InGaN QW/GaN barrier interfaces, as determined using cross-sectional transmission electron microscopy of the MQW. These results agreed in general with the average surface roughness values of the pit-free region on the top GaN barrier determined via atomic force microscopy and the average roughness values of all the interfaces in the MQW calculated from the FWHM of the emission peak in the PL

  18. Using an organic radical precursor as an electron injection material for efficient and stable organic light-emitting diodes.

    Science.gov (United States)

    Bin, Zhengyang; Liu, Ziyang; Wei, Pengcheng; Duan, Lian; Qiu, Yong

    2016-04-29

    Materials with strong reducibility have been used as electron injection layers (EILs) to lower the work function of cathodes and reduce the driving voltage of organic light-emitting diodes (OLEDs). However, the most prominent electron injection materials presented so far are high-temperature-evaporable inorganic salts based on alkaline metals, which suffer from a high tendency of metal diffusion throughout the organic layer and thus reduce the device efficiency and stability. Here, we introduce a new kind of EIL based on a stable precursor of a strongly reducing organic radical. By using an organic precursor, we are able to take the advantage of the low-evaporation-temperature and avoid the problem of metal diffusion, thus improving the device efficiency and stability. Ultraviolet photoelectron spectroscopy (UPS) study indicates that inserting a thin layer of organic radical between the electron transport layer and cathode could greatly reduce the electron injection barrier due to the strong interaction of radical with cathode and the electron transporting material. As a result, OLEDs with an organic radical as the EIL showed a 25.2% higher efficiency and 2.2 times longer lifetime than the control device with conventional LiF as the EIL. PMID:26988713

  19. Using an organic radical precursor as an electron injection material for efficient and stable organic light-emitting diodes

    Science.gov (United States)

    Bin, Zhengyang; Liu, Ziyang; Wei, Pengcheng; Duan, Lian; Qiu, Yong

    2016-04-01

    Materials with strong reducibility have been used as electron injection layers (EILs) to lower the work function of cathodes and reduce the driving voltage of organic light-emitting diodes (OLEDs). However, the most prominent electron injection materials presented so far are high-temperature-evaporable inorganic salts based on alkaline metals, which suffer from a high tendency of metal diffusion throughout the organic layer and thus reduce the device efficiency and stability. Here, we introduce a new kind of EIL based on a stable precursor of a strongly reducing organic radical. By using an organic precursor, we are able to take the advantage of the low-evaporation-temperature and avoid the problem of metal diffusion, thus improving the device efficiency and stability. Ultraviolet photoelectron spectroscopy (UPS) study indicates that inserting a thin layer of organic radical between the electron transport layer and cathode could greatly reduce the electron injection barrier due to the strong interaction of radical with cathode and the electron transporting material. As a result, OLEDs with an organic radical as the EIL showed a 25.2% higher efficiency and 2.2 times longer lifetime than the control device with conventional LiF as the EIL.

  20. Mechanisms of radiative recombination in ambipolar light-emitting field-effect transistors based on organic polymers and inorganic nanoparticles

    Science.gov (United States)

    Chikalova-Luzina, O. P.; Aleshin, A. N.; Vyatkin, V. M.

    2016-02-01

    Mechanisms of radiative recombination in ambipolar light-emitting field-effect transistors with composite active layers based on the PFO organic polymer and inorganic ZnO nanoparticles are considered. Theoretical analysis of the radiative recombination in the accumulation layer of the structure is performed in the framework of a model permitting one to obtain an analytical description of the process. An expression for the total recombination rate has been obtained and numerical calculations have been carried out. Correspondence between the calculation results and experimental data has been obtained for the integral intensity of electrical luminescence in the composite structure under consideration.

  1. Efficient textured colour conversion layer of a down-converted white organic light-emitting diode by transfer imprinting

    International Nuclear Information System (INIS)

    In this paper, we demonstrated an efficient textured colour conversion layer (CCL) of a down-converted white organic light-emitting diode (WOLED), which was fabricated by a very simple transfer imprinting method based on silicon wafer. The textured CCL not only helped to extract wave-guided light in the device, but also had an outstanding performance in enhancing the colour conversion rate, which was 1.75 times greater than that of flat CCL. Compared to flat CCL, the lower-doped textured CCL produced better white emission and higher efficiency simultaneously. Moreover, the WOLED with textured CCL also exhibited good colour stability at various voltages. (paper)

  2. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations

    International Nuclear Information System (INIS)

    The importance of O3 pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al2O3 layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O3 pulse durations longer than 15 s produce dense and thin Al2O3 layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes

  3. Solution-processed photonic crystals to enhance the light outcoupling efficiency of organic light-emitting diodes.

    Science.gov (United States)

    Cho, Hwan-Hee; Park, Boik; Kim, Hyong-Jun; Jeon, Sohee; Jeong, Jun-Ho; Kim, Jang-Joo

    2010-07-20

    We report an effective solution process to fabricate planarized photonic crystal substrates to enhance the outcoupling efficiency of organic light-emitting diodes (OLEDs). The photonic crystal structure was fabricated using nanoimprint lithography using a UV-curable acrylate and was planarized by using a ZnO layer formed by the solgel process. The solgel process resulted in a smooth surface, and OLEDs have been successfully integrated on the planarized photonic crystal layer with a low leakage current. The resulting light outcoupling efficiency was enhanced by 38% compared with that of conventional OLEDs, which is well matched with a theoretical prediction. PMID:20648184

  4. Enhanced light extraction efficiency in organic light emitting diodes using a tetragonal photonic crystal with hydrogen silsesquioxane.

    Science.gov (United States)

    Kim, Yang Doo; Han, Kyeong-Hoon; Park, Sang-Jun; Kim, Jung-Bum; Shin, Ju-Hyeon; Kim, Jang Joo; Lee, Heon

    2014-10-15

    We report an organic light emitting diode (OLED) with a hydrogen silsesquioxane as a scattering material, for enhancing light extraction efficiency. A tetragonal photonic crystal was used as pattern type, and fabricated using a direct printing technique. Planarization was accomplished using TiO₂ solgel solution, having a refractive index identical to that of the indium zinc oxide transparent electrode. The current efficiency and power efficiency of the OLED increased by 17.3% and 43.4% at 10  mA/cm², respectively, without electric degradation. PMID:25361115

  5. Unique Room Temperature Light Emitting Diode Based on 2D Hybrid Organic-Inorganic Low Dimensional Perovskite Semiconductor

    CERN Document Server

    Vassilakopoulou, Anastasia; Koutselas, Ioannis

    2016-01-01

    Room temperature single layer light emitting diode(LED), based on a two dimensional hybrid organic-inorganic semiconductor(HOIS), is demonstrated. This simple, low cost excitonic LED operates at low voltages. Such an excitonic device is presented for the first time as functioning at room temperature. The newly introduced class of perovskite LEDs, until now based on 3D perovksite HOIS, is now broadened with the implementation of the 2D HOIS. Novel functionalities can be realized since it is now possible to access the hybrid's 2D semiconductor advantageous properties, such as the increased excitonic peak wavelength tunability, excitonic binding energy and oscillator strength.

  6. Enhanced light extraction and tunable chromaticity in white organic light-emitting devices with ZnO nanopillars.

    Science.gov (United States)

    Luo, Yu; Wang, Li; Yang, Xiaonan; Duan, Hui; Liu, Wei

    2016-03-15

    Robust ZnO nanopillars (NPs) with well-controlled morphology were directly prepared on the glass surface of a white organic light-emitting diode (WOLED) substrate using a hydrothermal process. The NPs can effectively recover light loss in the glass substrate and the current efficiency of the device increased by 20%. In addition, the chromaticity coordinates of the WOLED can be tuned by selecting the dimensions of the ZnO NPs. As a consequence, it is possible to produce a solar light spectrum using this technique. Furthermore, the nanotextured glass surface was superhydrophobic, which caused self-cleaning properties to the surface and help maintain maximum light output. PMID:26977673

  7. Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode

    Science.gov (United States)

    Cusumano, P.

    2009-09-01

    Organic light emitting diodes (OLEDs) based on tris-(8-idroxyquinoline)aluminum (Alq 3) with enhanced efficiency are reported here. This is obtained by improving the charge carrier balance, through a preliminary NaOH surface treatment of the indium tin oxide (ITO) anode, in order to decrease its work function and, consequently, reduce the hole injection. The obtained devices exhibit a 1.36% external quantum efficiency and a 1.2 lm/W power efficiency at a current density of 60 mA/cm 2. These values are more than double as compared with those of identical reference devices fabricated without the preliminary NaOH surface treatment.

  8. Solution-processable phosphorescent to organic light-emitting diodes based on chromophoric amphiphile/silica nanocomposite

    Science.gov (United States)

    Yang, Chung-He; Yang, Sheng-Hsiung; Hsu, Chain-Shu

    2009-08-01

    We report the synthesis of a tris-cyclometalated iridium complex which emits sky-blue light and its potential use in phosphorescent light-emitting devices. The hybrid meso-structured nanocomposites by sol-gel co-assembly with tetraethyl ortho-silicate and corresponding molecular interactions within mesopores were also demonstrated. Electroluminescent devices were fabricated using carbazole-based monomers and iridium complex as the active layer, acting as a host/guest system through a co-assembled sol-gel process. Devices based on this nanocomposite showed improved luminescent efficiencies several times higher than that of similar chromophores elaborated in the literature. A triple-layer electroluminescence device with the configuration of ITO/PEDOT/ Ir(F2OC11ppy)3:CA-C11:PBD nanocomposite/TPBI/Ca/Al showed a maximum brightness of 1389 cd m-2 at 12 V and a maximum efficiency of 3.29 cd A-1.

  9. Flexion bonding transfer of multilayered graphene as a top electrode in transparent organic light-emitting diodes

    Science.gov (United States)

    Tae Lim, Jong; Lee, Hyunkoo; Cho, Hyunsu; Kwon, Byoung-Hwa; Sung Cho, Nam; Kuk Lee, Bong; Park, Jonghyurk; Kim, Jaesu; Han, Jun-Han; Yang, Jong-Heon; Yu, Byoung-Gon; Hwang, Chi-Sun; Chu Lim, Seong; Lee, Jeong-Ik

    2015-12-01

    Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices.

  10. Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer

    International Nuclear Information System (INIS)

    In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l'Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode. (interdisciplinary physics and related areas of science and technology)

  11. Charge Carrier Transport Through the Interface Between Hybrid Electrodes and Organic Materials in Flexible Organic Light Emitting Diodes.

    Science.gov (United States)

    Zhou, Huanyu; Cheong, Hahn-Gil; Park, Jin-Woo

    2016-05-01

    We investigated the electronic properties of composite-type hybrid transparent conductive electrodes (h-TCEs) based on Ag nanowire networks (AgNWs) and indium tin oxide (ITO). These h-TCEs were developed to replace ITO, and their mechanical flexibility is superior to that of ITO. However, the characteristics of charge carriers and the mechanism of charge-carrier transport through the interface between the h-TCE and an organic material are not well understood when the h-TCE is used as the anode in a flexible organic light-emitting diode (f-OLED). AgNWs were spin coated onto polymer substrates, and ITO was sputtered atop the AgNWs. The electronic energy structures of h-TCEs were investigated by ultraviolet photoelectron spectroscopy. f-OLEDs were fabricated on both h-TCEs and ITO for comparison. The chemical bond formation at the interface between the h-TCE and the organic layer in f-OLEDs was investigated by X-ray photoelectron spectroscopy. The performances of f-OLEDs were compared based on the analysis results. PMID:27483896

  12. Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education

    Science.gov (United States)

    Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang

    2006-02-01

    Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.

  13. Characterization of an Optical Device with an Array of Blue Light Emitting Diodes LEDS for Treatment of Neonatal Jaundice.

    Science.gov (United States)

    Sebbe, Priscilla Fróes; Villaverde, Antonio G. J. Balbin; Nicolau, Renata Amadei; Barbosa, Ana Maria; Veissid, Nelson

    2008-04-01

    Phototherapy is a treatment that consists in irradiating a patient with light of high intensity, which promotes beneficial photochemical transformations in the irradiated area. The phototherapy for neonates is applied to break down the bilirubin, an organic pigment that is a sub product of the erythrocytes degradation, and to increase its excretion by the organism. Neonates should be irradiated with light of wavelength that the bilirubin can absorb, and with spectral irradiances between 4 and 16 μW/cm2/nm. The efficiency of the treatment depends on the irradiance and the area of the body that is irradiated. A convenient source of light for treatment of neonatal jaundice is the blue Light Emitter Diode (LED), emitting in the range of 400 to 500 nm, with power of the order of 10-150 mW. Some of the advantages for using LEDS are: low cost, operating long lifetime (over 100,000 hours), narrow emission linewith, low voltage power supply requirement and low heating. The aim of this work was to build and characterize a device for phototherapy treatment of neonatal jaundice. This consists of a blanket with 88 blue LEDs (emission peak at 472 nm), arranged in an 8×11 matrix, all connected in parallel and powered by a 5V-2A power supply. The device was characterized by using a spectroradiometer USB2000 (Ocean Optics Inc, USA), with a sensitivity range of 339-1019 nm. For determination of light spatial uniformity was used a calibrated photovoltaic sensor for measuring light intensity and mapping of the light intensity spatial distribution. Results indicate that our device shows a uniform spatial distribution for distances from the blanket larger than 10 cm, with a maximum of irradiance at such a distance. This device presenting a large and uniform area of irradiation, efficient wavelength emission and high irradiance seems to be promising for neonates' phototherapy treatment.

  14. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    Science.gov (United States)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  15. Highly Improved Efficiency of Deep-Blue Fluorescent Polymer Light-Emitting Device Based on a Novel Hole Interface Modifier with 1,3,5-Triazine Core.

    Science.gov (United States)

    Xia, Lianpeng; Xue, Yuyuan; Xiong, Kang; Cai, Chaosheng; Peng, Zuosheng; Wu, Ying; Li, Yuan; Miao, Jingsheng; Chen, Dongcheng; Hu, Zhanhao; Wang, Jianbin; Peng, Xiaobin; Mo, Yueqi; Hou, Lintao

    2015-12-01

    We present an investigation of deep-blue fluorescent polymer light-emitting diodes (PLEDs) with a novel functional 1,3,5-triazine core material (HQTZ) sandwiched between poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) layer and poly(vinylcarbazole) layer as a hole injection layer (HIL) without interface intermixing. Ultraviolet photoemission spectroscopy and Kelvin probe measurements were carried out to determine the change of anode work function influenced by the HQTZ modifier. The thin HQTZ layer can efficiently maximize the charge injection from anode to blue emitter and simultaneously enhance the hole mobility of HILs. The deep-blue device performance is remarkably improved with the maximum luminous efficiency of 4.50 cd/A enhanced by 80% and the maximum quantum efficiency of 4.93%, which is 1.8-fold higher than that of the conventional device without HQTZ layer, including a lower turn-on voltage of 3.7 V and comparable Commission Internationale de L'Eclairage coordinates of (0.16, 0.09). It is the highest efficiency ever reported to date for solution-processed deep-blue PLEDs based on the device structure of ITO/HILs/poly(9,9-dialkoxyphenyl-2,7-silafluorene)/CsF/AL. The results indicate that HQTZ based on 1,3,5-triazine core can be a promising candidate of interfacial materials for deep-blue fluorescent PLEDs. PMID:26422296

  16. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    OpenAIRE

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxyg...

  17. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes

    Science.gov (United States)

    Jitsui, Yusuke; Ohtani, Naoki

    2012-10-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co- N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found.

  18. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    International Nuclear Information System (INIS)

    A broadband superluminescent light emitting diode with In0.2Ga0.8N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ∼120 mA (∼7.5 kA/Cm2) at 300 K. The range of peak emission wavelengths for different currents is 423–426 nm and the emission bandwidth is ∼5 nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600 mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement

  19. Two Host-Dopant Emitting Systems Realizing Four-Color Emission: A Simple and Effective Strategy for Highly Efficient Warm-White Organic Light-Emitting Diodes with High Color-Rendering Index at High Luminance.

    Science.gov (United States)

    Zhuang, Xuming; Zhang, Hao; Ye, Kaiqi; Liu, Yu; Wang, Yue

    2016-05-11

    A four-color warm-white organic light-emitting diode employing a simple adjacent two-emitting-layer structure as a blue host-orange dopant/green host-red dopant has been fabricated, which exhibited a stable high electroluminescent performance: an external quantum efficiency of 23.3% and a power efficiency of 63.2 lm W(-1) at an illumination-relevant luminance of 1000 cd m(-2) with a high color-rendering index (CRI) of 92 and maintained high levels of 21.6% and 48.8 lm W(-1) with a CRI value of 93 at the extremely high luminance of 5000 cd m(-2). To our knowledge, this should be the best result so far for a white-light organic light-emitting diode with CRI > 90, simultaneously exhibiting very high efficiencies based on a high luminance level for the solid-state lighting. PMID:27105391

  20. Preparation of organic light-emitting diode using coal tar pitch, a low-cost material, for printable devices.

    Directory of Open Access Journals (Sweden)

    Miki Yamaoka

    Full Text Available We have identified coal tar pitch, a very cheap organic material made from coal during the iron-making process, as a source from which could be obtained emissive molecules for organic light-emitting diodes. Coal tar pitch was separated by simple dissolution in organic solvent, and subsequent separation by preparative thin-layer chromatography was used to obtain emissive organic molecules. The retardation factor of preparative thin-layer chromatography played a major role in deciding the emission characteristics of the solution as photoluminescence spectra and emission-excitation matrix spectra could be controlled by modifying the solution preparation method. In addition, the device characteristics could be improved by modifying the solution preparation method. Two rounds of preparative thin-layer chromatography separation could improve the luminance of organic light-emitting diodes with coal tar pitch, indicating that less polar components are favorable for enhancing the luminance and device performance. By appropriate choice of the solvent, the photoluminescence peak wavelength of separated coal tar pitch could be shifted from 429 nm (cyclohexane to 550 nm (chloroform, and consequently, the optical properties of the coal tar pitch solution could be easily tuned. Hence, the use of such multicomponent materials is advantageous for fine-tuning the net properties at a low cost. Furthermore, an indium tin oxide/poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate/coal tar pitch/LiF/Al system, in which the emissive layer was formed by spin-coating a tetrahydrofuran solution of coal tar pitch on the substrate, showed a luminance of 176 cd/m(2. In addition, the emission spectrum of coal tar pitch was narrowed after the preparative thin-layer chromatography process by removing the excess emissive molecules.

  1. Studies of solution-processed organic light-emitting diodes and their materials

    Energy Technology Data Exchange (ETDEWEB)

    Hellerich, Emily [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin

  2. A new interpretation for performance improvement of high-efficiency vertical blue light-emitting diodes by InGaN/GaN superlattices

    International Nuclear Information System (INIS)

    The effect of InGaN/GaN superlattices (SLs) on quantum efficiency and forward voltage of vertical blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LED) grown on Si substrate has been experimentally and theoretically investigated. We have prepared two LED samples, in which the 30 and 45 periods of SLs are inserted between MQW active layers and n-GaN layer, respectively. Electroluminescence measurement shows that the LED with 45 periods of SLs has higher quantum efficiency but lower forward voltage. It is observed that V-shaped pits grow up in size with an increase in SLs period number by means of scan transmission electron microscope and secondary ion mass spectrometry. Further numerical simulations confirm that the performance improvement of LED by SLs is mainly ascribed to enhancing hole injection from the V-shaped pits

  3. Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer

    Institute of Scientific and Technical Information of China (English)

    Zhao Fang; Yao Guang-Rui; Song Jing-Jing; Ding Bin-Bin; Xiong Jian-Yong; Su Chen; Zheng Shu-Wen

    2013-01-01

    The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically.The cartier concentrations in the quantum wells,energy band diagrams,electrostatic fields,and internal quantum efficiency are investigated.The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency,lower electron leakage,and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a A1GaN/GaN SL EBL.The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.

  4. Efficient polymer light-emit ting diodes with violet blue emission based on blends of PSiF6-PPP and PSiFC6C6

    Institute of Scientific and Technical Information of China (English)

    TIAN Renyu; MO Yueqi; PENG Junbiao

    2006-01-01

    Efficient polymer light-emitting diodes (PLEDs) with violet blue emission were fabricated using blends of copolymers of paraphenylene-cosilafluorene (PSiF6-PPP) and polymer of poly (9,9'alkyl-3,6-silafluorene) (PSiFC6C6). The performances of the devices are sensitive to the blend ratio.When the mass ratio of PSiF6-PPP to PSiFC6C6 is 1.96% at luminance of 105 cd.m-2, its electroluminescent (EL) spectrum peaks at 398 nm and full width at half maximum is 67 nm. The improvements of the device performances were due to the energy transfer from PSiFC6C6 to PSiF6-PPP and the balanced injection of electrons and holes.

  5. Transparent organic light-emitting devices with CsCl capping layers on semitransparent Ca/Ag cathodes

    International Nuclear Information System (INIS)

    We have developed transparent organic light-emitting devices (TOLEDs) with CsCl capping layers deposited on top of semitransparent Ca/Ag cathodes. The CsCl layer was deposited by the thermal evaporation method which does not result in any damage to the underlying organic layers. The transmittance was enhanced by depositing the CsCl layer on the Ca/Ag cathode. The current efficiency measured at the cathode side increased by the enhanced transmittance of the cathode, whereas the anode-side current efficiency was determined by the reflectance of the cathode. In a TOLED with semitransparent Ca/Ag/CsCl layer, the microcavity effect was not profound so that the electroluminescence spectrum was not seriously changed by the CsCl capping layer.

  6. Improvement of light extraction efficiency and reduction of driving voltage in organic light emitting diodes using a plasmonic crystal

    International Nuclear Information System (INIS)

    Two-dimensional periodic corrugation was introduced into the surface of metallic cathodes of organic light-emitting diodes (OLEDs) to extract surface plasmon energy, which is trapped in that surface, as free-space photons. The dependence of the improvement factor of the emission efficiency on the modulation depth of the corrugation was systematically investigated. The corrugation was fabricated by using a colloidal lithography technique, which can be easily applied to a wide area. The obtained maximum improvement factor in current efficiency was 1.67 for an OLED with a 40 nm modulation depth, whereas the improvement in power efficiency was 2.35 for an OLED with a 60 nm modulation depth. We attributed the former improvement factor purely to optical effects and the latter to both optical and electrical effects, namely, a reduction of the electrical resistance of the organic layers due to the introduced corrugation

  7. Novel concepts for high-efficiency white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Gregor

    2007-07-01

    This work deals with novel concepts to realize high efficiency white OLEDs by combining fluorescent blue and phosphorescent green and orange emitters. A key point determining the maximum efficiency possible, as well as the device structure to be chosen to reach high efficiency, is the triplet exciton energy of the fluorescent blue emitter. If its triplet state is lower than that of the phosphorescent emitters, mutual exciton quenching can occur. This problem is solved by the first concept with spatial separation of the fluorescent blue from the phosphorescent emitters by a large-gap exciton blocking layer. To still realize exciton generation on both sides, the interlayer has to be ambipolar. On the other hand, if the triplet exciton energy of the fluorescent blue is higher than that of at least one of the phosphorescent emitters, appropriate arrangement of the emission layers makes a separation layer obsolete, since phosphorescence quenching does not occur anymore. Moreover, the intrinsically non-radiative triplet excitons of the fluorescent blue emitter may be harvested by the phosphor for light emission, which means that even 100% internal quantum efficiency is possible. The last chapter 6 deals with this second concept, where the main issue is to simultaneously achieve exciton harvesting as complete as possible and a balanced white emission spectrum by appropriately distributing singlet and triplet excitons to the used emitters. All emitters used in this work are commercially available and their molecular structure is disclosed in order to make the results transparent. (orig.)

  8. Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes

    Directory of Open Access Journals (Sweden)

    M. H. Doan

    2012-06-01

    Full Text Available The influences of the laser lift-off (LLO process on the InGaN/GaN blue light emitting diode (LED structures, grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition, have been comprehensively investigated. The vertical LED structures on Cu carriers are fabricated using electroplating, LLO, and inductively coupled plasma etching processes sequentially. A detailed study is performed on the variation of defect concentration and optical properties, before and after the LLO process, employing high-resolution transmission electron microscopy (HRTEM, scanning electron microscopy (SEM observations, cathodoluminescence (CL, photoluminescence (PL, and high-resolution X-ray diffraction (HRXRD measurements. The SEM observations on the distribution of dislocations after the LLO show well that even the GaN layer near to the multiple quantum wells (MQWs is damaged. The CL measurements reveal that the peak energy of the InGaN/GaN MQW emission exhibits a blue-shift after the LLO process in addition to a reduced intensity. These behaviors are attributed to a diffusion of indium through the defects created by the LLO and creation of non-radiative recombination centers. The observed phenomena thus suggest that the MQWs, the active region of the InGaN/GaN light emitting diodes, may be damaged by the LLO process when thickness of the GaN layer below the MQW is made to be 5 μm, a conventional thickness. The CL images on the boundary between the KrF irradiated and non-irradiated regions suggest that the propagation of the KrF laser beam and an accompanied recombination enhanced defect reaction, rather than the propagation of a thermal shock wave, are the main origin of the damage effects of the LLO process on the InGaN/GaN MQWs and the n-GaN layer as well.

  9. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  10. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    Science.gov (United States)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  11. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Xu, Zong-Xiang, E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, P. R. China, 518055 (China); Yan, Yan; Roy, V. A. L., E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (Hong Kong)

    2015-10-15

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  12. Remarkable improvement in electroluminescence benefited from appropriate electron injection and transporting in ultraviolet organic light-emitting diode

    Science.gov (United States)

    You, Fengjiao; Mo, Bingjie; Liu, Liming; Wang, Honghang; Bin Wei; Xu, Jiwen; Zhang, Xiaowen

    2016-08-01

    Suitable thickness of LiF and 4,7-diphenyl-1, 10-phenanthroline with slightly weakened electron injection and transporting is proposed to match the intractable hole injection capacity in ultraviolet organic light-emitting diode (UV OLED). By using this strategy, the device performance is remarkably improved. With 4,4‧-bis(carbazol-9-yl)biphenyl (CBP) and 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ) as emitters, the UV OLED shows maximum radiance of 5.8 mW/cm2 and external quantum efficiency of 2.1% with emission peak of ~380 nm predominantly from TAZ and noticeable shoulder emission of ~410 nm from CBP. The retarded electron injection and transporting contribute to optimizing hole-electron recombination zone and balance within the emitting layers, which accounts for the improved electroluminescent intensity. The detailed mechanism is further clarified with impedance spectroscopy.

  13. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    CERN Document Server

    Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

    2015-01-01

    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

  14. A spectrum-adjusted white organic light-emitting diode for the optimization of luminous efficiency and color rendering index

    Science.gov (United States)

    Chen, Wei; Chen, Shu-ming

    2015-01-01

    High luminous efficiency and high color rendering index (CRI) are both the foremost factors for white organic light-emitting diodes (WOLEDs) to serve as next generation solid-state lighting sources. In this paper, we show that both luminous efficiency and CRI can be improved by adjusting the green/red spectra of WOLEDs. With green emission spectra matching with the human photopic curve, the WOLEDs exhibit higher luminous efficiency and higher CRI. Theoretical calculation shows that by tuning the white emission spectra to maximally match with the human photopic curve, the luminous efficiency can be improved by 41.8% without altering the color coordinates, the color correlated temperature (CCT) and the external quantum efficiency (EQE) of the WOLEDs.

  15. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    International Nuclear Information System (INIS)

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs

  16. Improving the stability of organic light-emitting devices using a solution-processed hole-injecting layer

    International Nuclear Information System (INIS)

    The stability of organic light-emitting devices with a spin-coated film of 4,4',4''-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) as hole-injection layer (HIL) was investigated. The lifetime of this device is increased to 40 900 h (with an initial luminance of 100 cd/m2), which is 2.7 times as large as that of the control device with a vacuum-deposited film of m-MTDATA as HIL. A significant feature with this method is that the performance and the operational stability of the device with spin-coated HIL are little attenuated by the rough substrate coated by the indium-tin oxide film. The surface morphology of the solution-processed m-MTDATA thin film is quite even and uniform, and it acts as a smoothing layer in the device, which leads to the stability enhancement of the device.

  17. New dual-curvature microlens array with a high fill-factor for organic light emitting diode modules

    Science.gov (United States)

    Lin, Tsung-Hung; Yang, Hsiharng; Chao, Ching-Kong; Shui, Hung-Chi

    2013-09-01

    A new method for fabricating a novel dual-curvature microlens array with a high fill-factor using proximity printing in a lithography process is reported. The lens shapes include dual-curvature, which is a novel shape composed of triangles and hexagons. We utilized UV proximity printing by controlling a printing gap between the mask and substrate. The designed high density microlens array pattern can fabricate a dual-curvature microlens array with a high fill-factor in a photoresist material. It is due to the UV light diffraction which deflects away from the aperture edges and produces a certain exposure in the photoresist material outside the aperture edges. A dual-curvature microlens array with a height ratio of 0.48 can boost axial luminance up to 22%. Therefore, the novel dual-curvature microlens array offers an economical solution for increasing the luminance of organic light emitting diodes.

  18. Use of space interlayer in phosphorescent organic light-emitting diodes to improve efficiency and reduce efficiency roll-off

    Science.gov (United States)

    Guo, Kunping; Chen, Changbo; Sun, Chang; Peng, Cuiyun; Yang, Lianqiao; Cai, Miao; Zhang, Xiaowen; Wei, Bin

    2016-06-01

    Typical phosphorescent organic light-emitting diodes (PhOLEDs) encounter efficiency roll-off problems and detrimentally degrades the device performance for practical applications particularity at high-brightness lightening. Here, we report high efficiency and reduced efficiency roll-off PhOLEDs by employing both 4,4‧,4″-tris-(N-carbazolyl)-triphenylamine (TCTA) and 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBi) as transporting, hosting and space interlayer (SIL) materials. The use of SIL blending TCTA into TPBi enables the current efficiency roll-up from 57.8 to 60.1 cd A‑1 with luminance increasing from 10.0 to 1143.0 cd m‑2. In particular, the current efficiency drops  ratio of the two materials in the SIL.

  19. Impact of electric fields on the emission from organic light-emitting diodes based on polyvinylcarbazole (PVK)

    International Nuclear Information System (INIS)

    Influences of electric fields on the emission from organic light-emitting diodes (OLEDs) based on 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and polyvinylcarbazole (PVK) are studied. Electroluminescence (EL) spectra are very different from its photoluminescence (PL) for blend of PVK and BCP in the weight ratio M PVK:M BCP=1:3. EL spectrum of device ITO/Blend/BCP(20 nm)/Alq3(12 nm)/Al maximizes at 500 nm. For trilayer device ITO/PVK/BCP(10 nm)/Alq 3(10 nm)/Al, the relative emission intensity of PVK to BCP, initially increases and then decreases with increasing electric field. Under high electric fields, holes can transport through thinner BCP layer and recombine with electrons in Alq 3 layer

  20. Electroluminescence and negative differential resistance studies of TPD:PBD:Alq3 blend organic-light-emitting diodes

    Indian Academy of Sciences (India)

    M A Mohd Sarjidan; S H Basri; N K Za’aba; M S Zaini; W H Abd Majid

    2015-02-01

    Ternary system of single-layer organic-light-emitting diodes (OLEDs) were fabricated containing tris(8-hydroxyquinoline) aluminium (Alq3) blended with N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole small molecules. Electroluminescence properties were investigated with respect to blend systems. Significant improvement in turn-on voltage and luminance intensity was observed by employing the blends technique. Negative differential resistance (NDR) characteristics observed at a low voltage region in blended OLED is related to the generation of guest hopping site and phonon scattering phenomenon. However, luminescence of the devices is not altered by the NDR effect.

  1. Effect of gold nanorods and nanocubes on electroluminescent performances in organic light-emitting diodes and its working mechanism

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2015-06-01

    Full Text Available In this manuscript we investigated the influence of Au nanoparticles on electrical and electroluminescent (EL performances in organic light-emitting diodes (OLEDs via doping as-synthesized Au nanorods (NRs or nanocubes (NCs into hole transport layer (HTL. Through accurately controlling the distance between the Au NRs and the emitting layer, altering the guest emitter’s lifetime, and replacing Au NRs with Au NCs to satisfy a better spectrum overlap with the emission guest, we got a conclusion that doping Au NRs or NCs into HTL has no significant influence on the device’s electrical and EL performances, although we observed an increase in the spontaneous emission rate in a fluorescent material by the exciton-surface plasmon-coupling. Our results suggest that a further research on emission mechanism in surface plasmon-enhanced OLEDs is still in process.

  2. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Science.gov (United States)

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Yan, Yan; Roy, V. A. L.; Xu, Zong-Xiang

    2015-10-01

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  3. An efficient flexible white organic light-emitting device with a screen-printed conducting polymer anode

    International Nuclear Information System (INIS)

    A screen-printed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer was used as the anode for a flexible white organic light-emitting device (FWOLED). After 700 bending cycles, the sheet resistance of the anode was increased to 1.8 times the initial value (296 Ω/□). The average transmission of the PEDOT:PSS layer on the PET substrate was 74% in the visible light region. At a brightness of 1000 cd m-2, the current and power efficiency of the FWOLED were 26.4 cd A-1 and 10.8 lm W-1, respectively. And after 100 outer bending cycles, the device also had a power efficiency of 5.0 lm W-1 at 1000 cd m-2.

  4. Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration

    Science.gov (United States)

    Mi, Rui; Cheng, Gang; Zhao, Yi; Xie, Wen-Fa; Hou, Jing-Ying; Ding, Tao; Liu, Shi-Yong

    2004-03-01

    We present red double-quantum-well organic light-emitting devices (DQW-OLEDs), in which N,N-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyo-4,4'-diamine (NPB) is used as potential barriers and hole transport layer, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-thtramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped tris (8-hydroxyquinoline) aluminium (Alq3) as potential wells and emitter, undoped Alq3 as electron transport layer, respectively. The turn-on voltage is about 4 V. The maximum brightness and electroluminescent (EL) efficiency of the DQW device can reach 5916 cd m-2 at 16 V and 2.85 cd A-1 at 7 V, respectively. In addition, the EL efficiency of the DQW device is relatively independent of the drive voltage in the range from 5 V to 16 V.

  5. Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration

    Institute of Scientific and Technical Information of China (English)

    MI Rui; CHENG Gang; ZHAO Yi; XIE Wen-Fa; HOU Jing-Ying; DING Tao; LIU Shi-Yong

    2004-01-01

    @@ We present red double-quantum-well organic light-emitting devices (DQW-OLEDs), in which N,N-bis-(1-naphthyl)N,N′-diphenyl-1,1′-biphenyo-4,4'-diamine (NPB) is used as potential barriers and hole transport layer, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-thtramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped tris (8-hydroxyquinoline) aluminum (Alq3) as potential wells and emitter, undoped Alq3 as electron transport layer, respectively. The turn-on voltage is about 4 V. The maximum brightness and electroluminescent (EL) efficiency of the DQW device can reach 5916cd m-2 at 16 V and 2.85cd A-1 at 7 V, respectively. In addition, the EL efficiency of the DQW device is relatively independent of the drive voltage in the range from 5 V to 16 V.

  6. Tetra-methyl substituted copper (II phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2015-10-01

    Full Text Available We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  7. High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device

    Science.gov (United States)

    Lee, Jiun-Haw; Zhu, Xinyu; Lin, Yi-Hsin; Kit Choi, Wing; Lin, Tien-Chun; Hsu, Sheng-Chih; Lin, Hoang-Yan; Wu, Shin-Tson

    2005-11-01

    A high ambient-contrast-ratio (A-CR) and large aperture-ratio display is conceptually demonstrated and experimentally validated by stacking a normally black reflective liquid crystal display (NB-RLCD) and an organic light-emitting device (OLED). Such a tandem device can be switched between the NB-RLCD mode and the OLED mode under bright and dark ambient light, respectively. The normally black characteristic of the RLCD also helps to boost the A-CR under OLED-mode operation. To obtain a better image quality in the RLCD mode, a bumpy and transmissive structure is used to eliminate the specular reflection and to increase the viewing angle performance that results in CR>2:1 over 55° viewing cone. Besides, such a structure can also increase the external quantum efficiency of the OLED by 49.4%. In our experiments, regardless of the ambient intensity the A-CR is kept higher than 100:1.

  8. Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices.

    Science.gov (United States)

    Bi, Yan-Gang; Feng, Jing; Ji, Jin-Hai; Chen, Yang; Liu, Yu-Shan; Li, Yun-Fei; Liu, Yue-Feng; Zhang, Xu-Lin; Sun, Hong-Bo

    2016-05-21

    An ultrathin, ultrasmooth and flexible Au film as an alternative of the indium-tin oxide (ITO) electrode in organic light-emitting devices (OLEDs) has been reported. The 7 nm Au film shows excellent surface morphology, optical and electronic characteristics including a root-mean-square roughness of 0.35 nm, a high transparency of 72% at 550 nm, and a sheet resistance of 23.75 Ω sq(-1). These features arise from the surface modification of the glass substrate by using a SU-8 film, which fixes metal atoms via chemical bond interactions between Au and SU-8 film to suppress the island growth mode. A 17% enhancement in current efficiency has been obtained from the OLEDs based on the ultrathin Au electrodes compared to that of the devices with the ITO electrodes. The OLEDs with the ultrathin Au/SU-8 anodes exhibit high flexibility and mechanical robustness. PMID:27128168

  9. Enhancement of the lifetime in organic light-emitting devices fabricated utilizing wide-bandgap-impurity-doped emitting layers

    International Nuclear Information System (INIS)

    The degradation behaviors of the electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated with an emitting layer (EML) doped with or without a wide-bandgap-impurity were investigated. The OLEDs with a wide-bandgap-doped Alq3 EML were more stable than those with an undoped Alq3 EML. The existence of the doped wide-bandgap-impurity in the EML decreased the trap-charge density in the EML, resulting in an increase in the number of electrons in the Alq3 EML. That increases in the number of electron in the Alq3 EML for the OLEDs with a wide-bandgap-impurity decreased the staying time of the holes in the Alq3 EML, resulting in an enhanced lifetime for the OLEDs. These results indicate that OLEDs with a wide-bandgap-impurity-doped EML hold promise for potential applications in long-lifetime OLED displays

  10. Variable sensitivity of organic light-emitting diodes to operation-induced chemical degradation: Nature of the antagonistic relationship between lifetime and efficiency

    Science.gov (United States)

    Kondakov, Denis Y.; Young, Ralph H.

    2010-10-01

    The efficiency of any organic light-emitting diode (OLED) decreases with prolonged operation. In fluorescent OLEDs containing the standard hole-transporting material NPB [N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine], prolonged operation also results in chemical degradation of the NPB. Qualitatively and quantitatively, the extent and location of chemical changes are consistent with the hypothesis that chemical degradation of NPB is largely responsible for the loss of device efficiency and that the degradation is initiated by bond-breaking in excited-state NPB. Blue fluorescent OLEDs with low operating voltages and high luminance efficiencies tend to lose efficiency much faster than OLEDs with higher operating voltages and lower efficiencies. Even so, the two types exhibit approximately the same kind and degree of chemical degradation after operation for equal times at equal current densities. In the low-voltage OLEDs, the electric field in the light-emitting layer is weaker, and the concentration of NPB radical-cations near the emission zone is smaller than in the higher-voltage devices. Apparently for this reason, degradation products impair the luminescent efficiency more severely in the low-voltage OLEDs. Such differing sensitivity of low-voltage and high-voltage OLEDs to the same amount of chemical degradation is further demonstrated by experiments with OLEDs that have been doped intentionally with a contaminant modeling a degradation product at realistic concentrations. It is also supported by a substantial recovery of efficiency after a conversion of a degraded low-voltage device into a high-voltage device by replacement of the cathode and electron-injecting interface.

  11. A New Blue-Emitting Mg2Al4Si5O18:Ce3+ Phosphor for White Light Emitting Diodes.

    Science.gov (United States)

    Chen, Jian; Ma, Hongyun; Liu, Yangai

    2016-04-01

    A series of blue-emitting Mg2Al4Si5O18:Ce3+ phosphors were prepared via the conventional high temperature solid-state reaction method. The phase structure, photoluminescence (PL) properties, PL thermal stability, and fluorescence decay curves of the samples were investigated for the first time. Under excitation at 365 nm, the phosphor exhibited a broad band blue emission with peak at 440 nm, which was ascribed to the 4f --> 5d transition of Ce3+, and the color coordinate was (0.1602, 0.0849). When the temperature increased to 150 °C, the luminescence intensity of the Mg2Al4Si5O18:0.06Ce3+ phosphor was 55.73% of the initial value at room temperature. The activation energy ΔE was calculated to be 0.25 eV, which proved the good thermal stability of the sample. The energy transfer critical distance between Ce3+ ions in Mg2Al4Si5O18 host were also calculated. The above results indicate that the Mg2Al4Si5O18:Ce3+ is a promising candidate as a blue-emitting near ultraviolet convertible phosphor for application in white light emitting diodes (WLEDs). PMID:27451657

  12. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    Science.gov (United States)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  13. A study of interfaces between organic and metal materials and their application in polymer light-emitting diodes and polymer photovoltaic solar cells

    Science.gov (United States)

    Li, Juo-Hao

    2009-12-01

    In the past few decades, it attracts a lot of attention for the researches of organic semiconductor due to its new and interesting properties, compared with conventional soft material and inorganic semiconductor. Several kinds of electronic devices such as light emitting diodes, thin film transistors and photovoltaic solar cell based on these organic semiconductors are also proposed and studied. This dissertation will focus on interface between organic and metal, which is one of the mysteries and critical issues remaining in the material properties and limiting the device performance. In the first chapter, a brief review and introduction of the organic semiconductor and organic electronics will be described. The purpose is to introduce the research background, motivation and methodology. Chapter two demonstrates the concept of top-emitting light-emitting diodes and the research focus on the interfaces between the light-emitting polymer and electrodes. An interfacial layer is introduced to improve the hole-injection from the anode. Except for alternating the electrode architecture, surface treatment or modification also have significant influences on interfacial electronic structure. Chapter three describes the discovery of solvent treatment on top of the light-emitting polymer and its application on organic electrophosphorescent devices. To further study the interfaces in organic electronics, an interface layer of sol-gel processed titanium oxide is introduced into organic electronic devices. Chapter four describes the amorphous titanium oxide and its application on polymer light-emitting diodes, while Chapter five demonstrates nanocrystalline titanium dioxide and its application in both light-emitting devices and polymer photovoltaic solar cells.

  14. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  15. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    International Nuclear Information System (INIS)

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq)3) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C2′)-iridium(III) (Ir(ppz)3) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz)3 is inserted between the blue phosphorescent emitter and the ultrathin red emitter

  16. Solution-processable phosphorescent to organic light-emitting diodes based on chromophoric amphiphile/silica nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chung-He; Yang, Sheng-Hsiung; Hsu, Chain-Shu, E-mail: cshsu@mail.nctu.edu.t [Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)

    2009-08-05

    We report the synthesis of a tris-cyclometalated iridium complex which emits sky-blue light and its potential use in phosphorescent light-emitting devices. The hybrid meso-structured nanocomposites by sol-gel co-assembly with tetraethyl ortho-silicate and corresponding molecular interactions within mesopores were also demonstrated. Electroluminescent devices were fabricated using carbazole-based monomers and iridium complex as the active layer, acting as a host/guest system through a co-assembled sol-gel process. Devices based on this nanocomposite showed improved luminescent efficiencies several times higher than that of similar chromophores elaborated in the literature. A triple-layer electroluminescence device with the configuration of ITO/PEDOT/ Ir(F2OC11ppy){sub 3}:CA-C11:PBD nanocomposite/TPBI/Ca/Al showed a maximum brightness of 1389 cd m{sup -2} at 12 V and a maximum efficiency of 3.29 cd A{sup -1}.

  17. Adhesion and Interfacial Fracture: From Organic Light Emitting Devices and Photovoltaic Cells to Solar Lanterns for Developing Regions

    Science.gov (United States)

    Tong, Tiffany Michelle

    From that “ah-ha!” moment when a new technology is first conceived until the time that it reaches the hands of consumers, products undergo numerous iterations of research, development, testing, and redesign in order to create an end-product that is relevant, desirable, functional, and affordable. One crucial step, particularly for electronic devices, is a rigorous testing stage to ensure that a product will be able to withstand regular wear-and-tear. An understanding of how, when, and under what conditions a technology will fail is important in improving device performance and creating high quality products that consumers trust. Understanding that success is inherently tied to failure, this thesis focuses on studies of mechanical failure related to two types of electronic devices: solar cells and light emitting devices. By considering the interfaces that are relevant to the next generation of solar cells and light emitting devices that are built using organic conducting polymers, an atomic force microscopy test is introduced to characterize and rank the relative interfacial adhesion between layers at the nano-scale. These results have implications for material selection that can enhance device processing and performance. This method is then linked to fracture mechanics techniques that determine critical loading forces that induce separation and, hence, mechanical failure between layers of these devices. These results demonstrate the effect of nano-scale interactions on macro-scale behavior, and are particularly valuable in product testing as flexible electronics gain interest. Finally, a case study is conducted in Rural Kenya that measures the impact of commercially-available LED lanterns that are charged by solar panels on a community that is disconnected from the power grid. By demonstrating the value of these lanterns for the community, the role of device reliability and lifetime is examined in underscoring the critical need for proper device testing before

  18. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of); Lee, Song Eun; Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of)

    2015-09-15

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm{sup 2}, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm{sup 2}, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs.

  19. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    International Nuclear Information System (INIS)

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm2, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm2, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs

  20. The influence of exciton behavior on luminescent characteristics of organic light-emitting diodes

    International Nuclear Information System (INIS)

    We used N,N'-bis-(1-naphthyl)-N,N'-1-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), 4,4'-N,N'-dicarbazole-biphenyl (CBP) and tris(8-hydroxyquinoline) aluminum (Alq3) to fabricate tri-layer electroluminescent (EL) device (device structure: ITO/NPB/CBP/Alq3/Al). In photoluminescence (PL) spectra of this device, the emission from NPB shifted to shorter wavelength accompanying with the decrease of its emission intensity and moreover the emission intensity of Alq3 increased relatively with the increase of reverse bias voltage. The blue-shifted emission and the decrease in emission intensity of NPB were attributed to the polarization and dissociation of NPB excitons under reverse bias voltage. The increase of emission intensity of Alq3 benefited from the recombination of electrons (produced by the dissociation of NPB exciton) and holes (injected from the Al cathode)

  1. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Hyuk; Lee, Jong Won; Kim, Dong Yeong; Kim, Jong Kyu, E-mail: kimjk@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Cho, Jaehee, E-mail: jcho@chonbuk.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 54896 (Korea, Republic of); Schubert, E. Fred [Department for Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2016-01-14

    The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specific dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities.

  2. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specific dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities

  3. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  4. Cyclodextrin-Isolated Alkynylpyrenes as UV-Stable and Blue-Light-Emitting Molecules Even in Condensed States.

    Science.gov (United States)

    Inouye, Masahiko; Yoshizawa, Atsushi; Shibata, Mari; Yonenaga, Yuki; Fujimoto, Kazuhisa; Sakata, Takuma; Matsumoto, Shinya; Shiro, Motoo

    2016-05-01

    Encapsulation of highly emissive alkynylpyrenes with permethylated α-cyclodextrin (PM-α-CD) followed by capping reaction yielded alkynylpyrene-based [3]rotaxanes. The [3]rotaxane emitted only blue light of monomeric pyrene under various circumstances such as lipophilic, hydrophilic, and even condensed states and exhibited extremely high stability for UV irradiation. These properties would result because PM-α-CD, like bulletproof glass, protected the alkynylpyrene core from the attack of another excited alkynylpyrene and singlet oxygen generated by the energy transfer from the excited alkynylpyrene. PMID:27058597

  5. Fabrication of a laser patterned flexible organic light-emitting diode on an optimized multilayered barrier

    NARCIS (Netherlands)

    Naithani, S.; Mandamparambil, R.; Fledderus, H.; Schaubroeck, D.; Steenberge, G. van

    2014-01-01

    The fast-growing market of organic electronics stimulates the development of versatile technologies for structuring thin-film materials. Ultraviolet lasers have proven their full potential for patterning organic thin films, but only a few studies report on interaction with thin-film barrier layers.

  6. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Study of the Distribution of Radiative Defects and Reabsorption of the UV in ZnO Nanorods-Organic Hybrid White Light Emitting Diodes (LEDs

    Directory of Open Access Journals (Sweden)

    Yousuf Soomro

    2011-07-01

    Full Text Available In this study, the low temperature aqueous chemical growth (ACG method was employed to synthesized ZnO nanorods to process-organic hybrid white light emitting diodes (LEDs on glass substrate. Electroluminescence spectra of the hybrid white LEDs demonstrate the combination of emission bands arising from radiative recombination of the organic and ZnO nanorods (NRs. Depth resolved luminescence was used for probing the nature and spatial distribution of radiative defects, especially to study the re-absorption of ultraviolet (UV in this hybrid white LEDs structure. At room temperature the cathodoluminescence (CL spectra intensity of the deep band emission (DBE is increased with the increase of the electron beam penetration depth due to the increase of defect concentration at the ZnO NRs/Polyfluorene (PFO interface and probably due to internal absorption of the UV. A strong dependency between the intensity ratio of the UV to the DBE bands and the spatial distribution of the radiative defects in ZnO NRs has been found. The comparison of the CL spectra from the PFO and the ZnO NRs demonstrate that PFO has a very weak violet-blue emission band, which confirms that most of the white emission components originate from the ZnO NRs.

  8. Enhancing the Efficiency and Contrast Ratio of White Organic Light-Emitting Diode Using Energy-Recyclable Photovoltaic Cells

    Science.gov (United States)

    Yokoyama, Meiso; Wu, Chung-Ming; Su, Shui-Hsiang

    2012-03-01

    We demonstrate that power recycling is feasible by using a semitransparent strip of Al electrode as an interconnecting layer to merge a white organic light-emitting device (WOLED) and an organic photovoltaic (OPV) cell. The device is called a photovoltaic organic light-emitting device (PVOLED). It has a glass/indium tin oxide (ITO)/copper phthalocyanine (CuPc)/4,4,4-tris(3-methyl-phenylphenylamino) triphenylamine (m-MTDATA):V2O5/2-N',N-bis(1-naphthyl)-N,N'-diphenyl-1'-biphenyl-4,4'-diamine (NPB)/4,4'-bis(carbazol-9-yl)biphenyl (CBP):bis[3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyridyl)] iridium(II) (FIrpic):4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM)/V2O5/Al structure. A power recycling efficiency of 10.133% is achieved using the WOLED of the PVOLED operated at 9 V and a brightness of 2110 cd/m2 when the conversion efficiency of the OPV cell is 2.3%. We found that the power recycling efficiency decreases at a high brightness and a high applied voltage owing to an increase in the input power of the WOLED. A high efficiency (18.3 cd/A) and a high contrast ratio (9.3) are obtained in the device operated at 2500 cd/m2 under an ambient illumination of 24000 lx. Reasonable white light emission with Commission Internationale De L'Eclairage (CIE) color coordinates of (0.32, 0.44) at 20 mA/cm2 and a slight color shift occur in spite of the high current density of 50 mA/cm2.

  9. Numerical model of tandem organic light-emitting diodes based on a transition metal oxide interconnector layer

    International Nuclear Information System (INIS)

    By utilizing a two-step process to express the charge generation and separation mechanism of the transition metal oxides (TMOs) interconnector layer, a numerical model was proposed for tandem organic light emitting diodes (OLEDs) with a TMOs thin film as the interconnector layer. This model is valid not only for an n-type TMOs interconnector layer, but also for a p-type TMOs interconnector layer. Based on this model, the influences of different carrier injection barriers at the interface of the electrode/organic layer on the charge generation ability of interconnector layers were studied. In addition, the distribution characteristics of carrier concentration, electric field intensity and potential in the device under different carrier injection barriers were studied. The results show that when keeping one carrier injection barrier as a constant while increasing another carrier injection barrier, carriers injected into the device were gradually decreased, the carrier generation ability of the interconnector layer was gradually reduced, the electric field intensity at the interface of the organic/electrode was gradually enhanced, and the electric field distribution became nearly linear: the voltage drops in two light units gradually became the same. Meanwhile, the carrier injection ability decreased as another carrier injection barrier increased. The simulation results agree with the experimental data. The obtained results can provide us with a deep understanding of the work mechanism of TMOs-based tandem OLEDs. (semiconductor devices)

  10. Improved performance of organic light-emitting devices with plasma treated ITO surface and plasma polymerized methyl methacrylate buffer layer

    Science.gov (United States)

    Lim, Jae-Sung; Shin, Paik-Kyun

    2007-02-01

    Transparent indium-tin-oxide (ITO) anode surface was modified using O 3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N, N'-Diphenyl- N, N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq 3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.

  11. Multi-color light-emitting transistors composed of organic single crystals

    NARCIS (Netherlands)

    Yomogida, Yohei; Sakai, Hayato; Sawabe, Kosuke; Gocho, Shota; Bisri, Satria Zulkarnaen; Nakanotani, Hajime; Adachi, Chihaya; Hasobe, Taku; Iwasa, Yoshihiro; Takenobu, Taishi

    2013-01-01

    We report a novel concept for multi-color light emission from an ambipolar organic single-crystal transistor using natural optical waveguides, the self-absorption effect, Davydov splitting and the unique alignment of the transition dipole moments. We used 9,10-bis(2,2-diphenylvinyl)-anthracene singl

  12. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2014-01-01

    Full Text Available This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The voltage programming method of the proposed pixel circuit comprises three periods: reset, compensation with data input, and emission periods. The simulated results reflected excellent performance. For instance, when ΔVTH=±0.33 V, the average error rate of the OLED current variation was low (<0.8%, and when ΔVTH_OLED=+0.33 V, the error rate of the OLED current variation was 4.7%. Moreover, when the I×R (current × resistance drop voltage of a power line was 0.3 V, the error rate of the OLED current variation was 5.8%. The simulated results indicated that the proposed pixel circuit exhibits high immunity to the threshold voltage deviation of both the driving poly-Si TFTs and OLEDs, and simultaneously compensates for the I×R drop voltage of a power line.

  13. Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(i) complex.

    Science.gov (United States)

    Weber, Michael D; Garino, Claudio; Volpi, Giorgio; Casamassa, Enrico; Milanesio, Marco; Barolo, Claudia; Costa, Rubén D

    2016-06-01

    This work provides the synthesis, structural characterization, electrochemical and photophysical features, as well as the application in light-emitting electrochemical cells (LECs) of a novel heteroleptic copper(i) complex - [Cu(impy)(POP)][PF6], where impy is 3-(2-methoxyphenyl)-1-(pyridine-2-yl)imidazo[1,5-a]pyridine and POP is bis{2-(diphenylphosphanyl)phenyl}ether. This compound shows blue photoluminescence (PL, λ = 450 nm) in solution and solid-state and excellent redox stability. Despite these excellent features, the electroluminescence (EL) response is located at ∼550 nm. Although the EL spectrum of LECs is typically red-shifted compared to the PL of the electroluminescent material, a shift of ca. 100 nm represents the largest one reported in LECs. To date, the large shift phenomena have been attributed to (i) a change in the nature of the lowest emitting state due to a concentration effect of the films, (ii) a reversible substitution of the ligands due to the weak coordination to the Cu(i), and (iii) a change in the distribution of the excited states due to polarization effects. After having discarded these along with others like the irreversible degradation of the emitter during device fabrication and/or under operation conditions, driving conditions, active layer composition, and changes in the excited states under different external electrical stimuli, we attribute the origin of this unexpected shift to a lack of a thermally activated delayed fluorescence (TADF) process due to the solely ligand-centered character of the excited states. As such, the lack of a charge transfer character in the excited states leads to a blue-fluorescence and yellow-phosphorescence photo- and electro-responses, respectively. This corroborates recent studies focused on the design of TADF for heteroleptic copper(i) complexes. Overall, this work is a clear insight into the design of new copper(i) complexes towards the preparation of blue LECs, which are still unexplored. PMID

  14. Pressure-assisted fabrication of organic light emitting diodes with MoO3 hole-injection layer materials

    International Nuclear Information System (INIS)

    In this study, pressures of ∼5 to ∼8 MPa were applied to organic light emitting diodes containing either evaporated molybdenum trioxide (MoO3) or spin-coated poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) hole-injection layers (HILs). The threshold voltages for both devices were reduced by about half, after the application of pressure. Furthermore, in an effort to understand the effects of pressure treatment, finite element simulations were used to study the evolution of surface contact between the HIL and emissive layer (EML) under pressure. The blister area due to interfacial impurities was also calculated. This was shown to reduce by about half, when the applied pressures were between ∼5 and 8 MPa. The finite element simulations used Young's modulus measurements of MoO3 that were measured using the nanoindentation technique. They also incorporated measurements of the adhesion energy between the HIL and EML (measured by force microscopy during atomic force microscopy). Within a fracture mechanics framework, the implications of the results are then discussed for the pressure-assisted fabrication of robust organic electronic devices.

  15. Highly Efficient Simplified Organic Light-Emitting Diodes Utilizing F4-TCNQ as an Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    DONG Mu-Sen; WU Xiao-Ming; HUA Yu-Lin; QI Qing-Jin; YIN Shou-Gen

    2010-01-01

    @@ We demonstrate that the electroluminescent performances of organic light-emitting diodes(OLEDs)are significantly improved by evaporating a thin F4-TCNQ film as an anode buffer layer on the ITO anode.The optimum Alq3-based OLEDs with F4-TCNQ buffer layer exhibit a lower turn-on voltage of 2.6 V,a higher brightness of39820cd/m2 at 13 V,and a higher current efficiency of 5.96cd/A at 6 V,which are obviously superior to those of the conventional device(turn-on voltage of 4.1 V,brightness of 18230cd/m2 at 13 V,and maximum current efficiency of 2.74 cd/A at 10 V).Furthermore,the buffered devices with F4-TCNQ as the buffer layer could not only increase the efficiency but also simplify the fabrication process compared with the p-doped devices in which F4-TCNQ is doped into/3-NPB as p-HTL(3.11 cd/A at 7 V).The reason why the current efficiency of the p-doped devices is lower than that of the buffered devices is analyzed based on the concept of doping,the measurement of absorption and photoluminescence spectra of the organic materials,and the current density-voltage characteristics of the corresponding hole-only devices.

  16. Pressure-assisted fabrication of organic light emitting diodes with MoO{sub 3} hole-injection layer materials

    Energy Technology Data Exchange (ETDEWEB)

    Du, J. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Anye, V. C.; Vodah, E. O. [Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Federal Capital Territory (Nigeria); Tong, T. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Zebaze Kana, M. G. [Physics Advanced Laboratory, Sheda Science and Technology Complex, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Kwara State (Nigeria); Soboyejo, W. O. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Federal Capital Territory (Nigeria)

    2014-06-21

    In this study, pressures of ∼5 to ∼8 MPa were applied to organic light emitting diodes containing either evaporated molybdenum trioxide (MoO{sub 3}) or spin-coated poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) hole-injection layers (HILs). The threshold voltages for both devices were reduced by about half, after the application of pressure. Furthermore, in an effort to understand the effects of pressure treatment, finite element simulations were used to study the evolution of surface contact between the HIL and emissive layer (EML) under pressure. The blister area due to interfacial impurities was also calculated. This was shown to reduce by about half, when the applied pressures were between ∼5 and 8 MPa. The finite element simulations used Young's modulus measurements of MoO{sub 3} that were measured using the nanoindentation technique. They also incorporated measurements of the adhesion energy between the HIL and EML (measured by force microscopy during atomic force microscopy). Within a fracture mechanics framework, the implications of the results are then discussed for the pressure-assisted fabrication of robust organic electronic devices.

  17. Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Kuan-Yu; Hsiao, Chia-Chiang; Chen, Hung-Chi; Chang, Chih-Hsiang; Kiang, Yean-Woei; Yang, C. C.

    2006-06-01

    We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

  18. High-Efficiency White Organic Light-Emitting Devices Based on Multiple Quantum-Well Structure

    Institute of Scientific and Technical Information of China (English)

    DUAN Yu; HOU Jing-Ying; WU Zhi-Jun; CHENG Gang; ZHAO Yi; LIU Shi-Yong

    2004-01-01

    @@ We report the white organic-light devices (WOLEDs) employing a multiple quantum-well (MQW) structure,which consist of alternate layers of 4,48-bis(2,28-diphenylvinyl)-1,18-biphenyl (DPVBi) and (DPVBi:Rubrene) as the potential barrier and the potential well, respectively. The results demonstrate that the MQW structure can prominently increase the performance of WOLEDs, the double quantum well device exhibits the efficiency up to 5.4 cd/A, and yields a peak luminance of 14206 cd/m2. It is also interesting to find that the MQW structure can enhance the colour stability of WOLEDs at different voltages.

  19. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    International Nuclear Information System (INIS)

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3 nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices

  20. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Rakhi, E-mail: grover.rakhi@gmail.com [Amity Institute of Advanced Research and Studies (Materials and Devices), Amity University, Noida, Uttar Pradesh 201303 (India); Srivastava, Ritu, E-mail: ritu@mail.nplindia.org; Dagar, Janardan; Kamalasanan, M. N. [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mehta, D. S. [Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2014-08-14

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3 nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.

  1. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    International Nuclear Information System (INIS)

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis

  2. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yuankun [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    rate due to microheterogeneity. Effect of TiO2 doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 μs). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  3. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yuankun

    2010-05-16

    microheterogeneity. Effect of TiO{sub 2} doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 {mu}s). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  4. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    International Nuclear Information System (INIS)

    doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 μs). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  5. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  6. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    International Nuclear Information System (INIS)

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4′-N,N′-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N′)iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED

  7. Effect of different solvents on the performance of organic light-emitting device based on red-fluorescent ACY dye by spin coating method

    Science.gov (United States)

    Yu, Shuangjiang; Yu, Junsheng; Wang, Hong; Jiang, Yadong

    2010-10-01

    A small-molecular red-fluorescent dye of [7-diethylamino-3-(2-thienyl)chronmen-2-ylidene]-2,2-dicyanoviny-lamine (ACY) has been blended into blue-emitting poly(N-vinylcarbazole) (PVK) by using different solvents of chloroform and 1,2-dichloroethane. Photoluminescence characteristic of solvent effects were investigated mainly from the aspect of solvent polarity. To demonstrate the solvent effects in organic light emitting devices (OLEDs), devices with a structure of indium-tin-oxide (ITO)/PVK: ACY (x wt %)/tris(8-quinolinolato) aluminum (Alq3)/Mg: Ag were fabricated, in which the weight doping ratios are x = 0.3, 0.5 and 0.7. Using spin coating method, a blending system of PVK: ACY is dissolved in both chloroform and 1,2-dichloroethane with various doping concentrations. As a result, by choosing chloroform as solvent, a high electroluminescent (EL) performance device with a maximum luminance of 7698 cd/m2 at a driving voltage of 15.5 V was obtained, with a concentration proportion of PVK: ACY at 1000: 7. In the EL spectra of the OLEDs, red and green fluorescence of ACY and Alq3 were detected. It was found that by using 1,2-dichloroethane as a solvent, fluorescent quenching emerged with the enhancement of doping concentration. Energy transfer and Alq3 cations quencher theories were used to discuss different solvent effects on OLEDs.

  8. Exciplex elimination in an organic light-emitting diode based on a fluorene derivative by inserting 4,4'-N,N'-dicarbazole-biphenylinto donor/acceptor interface

    International Nuclear Information System (INIS)

    Organic light-emitting diodes (OLEDs) composed of a novel fluorene derivative of 2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)-6,7-difluoroquinoxaline (F2Py) were fabricated, and exciplex emission was observed in the device. To depress the exciplex in an OLED for pure colour light emission, 4, 4'-N,N'-dicarbazole-biphenyl (CBP) was inserted as a separator at the donor/acceptor interface. It was found that the device without the CBP layer emitted a green light peaking at 542 nm from the exciplex and a shoulder peak about 430 nm from F2Py. In contrast, the OLED with CBP layer emitted only a blue light peak at about 432 nm from F2Py. Device efficiencies were calculated by a simulative mode in an injection controlled type mechanism, and the results showed that exciplexes yield much lower quantum efficiency than excitons. The device with CBP has a higher power efficiency as no exciplex was present. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. A Study of Piezoelectric Field Related Strain Difference in GaN-Based Blue Light-Emitting Diodes Grown on Silicon(111) and Sapphire Substrates.

    Science.gov (United States)

    Jeon, K S; Sung, J H; Lee, M W; Song, H Y; Shin, H Y; Park, W H; Jang, Y I; Kang, M G; Choi, Y H; Lee, J S; Ko, D H; Ryu, H Y

    2016-02-01

    We investigate the strain difference in InGaN/GaN multiple quantum wells of blue light-emitting diode (LED) structures grown on silicon(1 11) and c-plane sapphire substrates by comparing the strength of piezo-electric fields in MQWs. The piezo-electric fields for two LED samples grown on silicon and sapphire substrates are measured by using the reverse-bias electro-reflectance (ER) spectroscopy. The flat-band voltage is obtained by measuring the applied reverse bias voltage that induces a phase inversion in the ER spectra, which is used to calculate the strength of piezo-electric fields. The piezo-electric field is determined to be 1.36 MV/cm for the LED on silicon substrate and 1.83 MV/cm for the LED on sapphire substrate. The ER measurement results indicate that the strain-induced piezo-electric field is greatly reduced in the LED grown on silicon substrates consistent with previous strain measurement results by micro-Raman spectroscopy and high-resolution transmission electron microscopy. PMID:27433673

  10. Effect of red and blue light emitting diodes "CRB-LED" on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr.

    Science.gov (United States)

    Al-Mayahi, Ahmed Madi Waheed

    2016-10-01

    The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate "TSCH" (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p light during the course of date palm tissue cultures. PMID:27562594

  11. Enhanced orange-red emission from KSrVO4:Sm3+ nanophosphor for possible application in blue light-emitting diode based white LED

    International Nuclear Information System (INIS)

    In this paper, the combustion synthesis and photoluminescence properties of Sm3+ doped KSrVO4 nanophosphors are reported. The samples were characterized by different techniques such as x-ray powder diffraction, transmission electron microscopy, UV–vis spectrophotometry and photoluminescence spectroscopy. The lattice parameters were calculated as a=7.4688 (4) A-ring ´, b=5.8171 (4) A-ring ´, c=9.9490 (5) A-ring ´ and V=432.2485 (5) Ǻ3. The average grain size of the samples was estimated as 42 nm using the modified Scherrer’s equation. Under near UV excitation, the sharp emission line at 560, 600, 646 and 704 nm due to characteristic transitions of Sm3+ were observed. The maximum PL emission intensity was observed at 1.5 mol.% of the Sm3+ ions. The band gap of the phosphor was calculated from diffused reflectance data and was found to be 3.74 eV. The CIE 1931 chromaticity coordinates (x, y) of the phosphor were (0.61, 0.39), in a shade of orange-red color. The potential applications of this material as a down conversion phosphor under blue light excitation were evaluated for possible application as a high color-purity phosphor in light emitting diodes (LEDs) that can fill the 590–600 nm gap. (paper)

  12. Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    International Nuclear Information System (INIS)

    Eu2+ doped transparent oxyfluoride glass ceramics containing BaGdF5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd3+ to Eu2+ ions, the energy transfer efficiency from Gd3+ to Eu2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu2+ doped BaGdF5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED

  13. Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho[2,3]porphyrin)platinum(II).

    Science.gov (United States)

    Sommer, Jonathan R; Farley, Richard T; Graham, Kenneth R; Yang, Yixing; Reynolds, John R; Xue, Jiangeng; Schanze, Kirk S

    2009-02-01

    The new metalloporphyrin Pt(tptnp), where tptnp = tetraphenyltetranaphtho[2,3]porphyrin, has been prepared and subjected to photophysical and electrooptical device studies. In degassed toluene solution at room temperature Pt(tptnp) features efficient phosphorescence emission with lambda(max) 883 nm with a quantum efficiency of 0.22. The complex has been used as the active phosphor in polymer and organic light-emitting diodes. Polymer light-emitting diodes based on a spin-coated emissive layer consisting of a blend of Pt(tptnp) doped in poly(9-vinylcarbazole) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole exhibit near-IR emission with lambda(max) 896 nm, with a maximum external quantum efficiency (EQE) of 0.4% and a maximum radiant emittance of 100 muW/cm(2). Organic light-emitting diodes prepared via vapor deposition of all layers and that feature an optimized multilayer hole injection and electron blocking layer heterostructure with an emissive layer consisting of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) doped with Pt(tptnp) exhibit a maximum EQE of 3.8% and a maximum radiant emittance of 1.8 mW/cm(2). The polymer and organic light-emitting diodes characterized in this study exhibit record high efficiency for devices that emit in the near-IR at lambda >800 nm. PMID:20353214

  14. Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices

    International Nuclear Information System (INIS)

    The electro-optical behaviour of organic light emitting diode devices (OLEDs) is greatly influenced by the morphology of the films. A major parameter is due to the important role that the morphology of the active organic thin films plays in the phenomena that lead to light emission. For vacuum-grown OLEDs, the morphology of the specific thin films can be varied by modification of the deposition conditions. We have assessed the method (ultrahigh-vacuum organic molecular beam deposition) and conditions (variation of the deposition rate) for electro-emission (EL) optimization in a standard α-NPB (N,N'-bis-(1-naphthyl)-N,N' diphenyl-1,1' biphenyl-4-4' diamine)/Alq3 (tris-(8-hydroxyquinoline) aluminium) vacuum-grown OLED device. The best EL performances have been obtained for OLEDs made in ultrahigh vacuum with the Alq3 layer deposited with a differential deposition rate ranging from 1.0 to 0.3Angsts-1. The results are consistent with a model of different Alq3 morphologies, allowing efficient charge injection at the metal/organic interface, and of the minimization of grain boundaries at the electron-hole recombination interface, allowing efficient radiative excitonic decay. At the same time, with the objective of controlling and stabilizing the morphology changes and stabilizing the charge transport over a long OLED operating time, we have studied the effect of thermal annealing processing in the standard current behaviour of OLEDs. The large current fluctuations typically observed for standard vacuum-grown OLEDs have been smeared out and kept constant over a long operating time by the given thermal annealing conditions. The results are interpreted in terms of the stabilization of intrinsic polymorphism of the organic film's structure induced by thermal energy and leading the morphology to a lowest-energetic configuration

  15. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  16. White top-emitting organic light-emitting diodes with solution-processed nano-particle scattering layers

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Tim [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln (Germany); Schwab, Tobias; Lenk, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, Scotland (United Kingdom)

    2015-12-07

    A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDs by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.

  17. Improvement in performance of organic light-emitting devices by inclusion of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was modified by different concentrations of multi-wall carbon nanotubes (MWNTs), and the nanocomposites of PEDOT:PSS and MWNTs were firstly used as hole-injection layer in fabrication of organic light-emitting devices (OLEDs) by using a double-layer structure with hole-injection layer of doped PEDOT:PSS and emitting/electron transport layer of tris(8-hydroxyquinolinato) aluminum (Alq3). PEDOT:PSS solution doped with MWNTs was spin-coated on clean polyethylene terephthalate (PET) substrate with indium tin oxide (ITO). It was found that the electroluminescence (EL) intensity of the OLEDs were greatly improved by using PEDOT:PSS doped with MWNTs as hole-injection layer which might have resulted from the hole-injection ability improvement of the nanocomposites. Higher luminescence intensity and lower turn-on voltage were obtained by these devices and the luminance intensity obtained from the device with the hole-injection layer of PEDOT:PSS doped by 0.4 wt.% MWNTs was almost threefolds of that without doping

  18. Improving the outcoupling efficiency of white organic light-emitting devices based on a gradient refractive index substrate

    Science.gov (United States)

    Chang, Chih-Hao; Chang, Tzu-Fang; Liang, Yi-Hua; Lo, Yu-Jhong; Wu, Ying-Jie; Chang, Hsin-Hua

    2016-03-01

    For use in lighting applications, white organic light-emitting devices (WOLEDs) must operate at higher biases to ensure an ample flux. However, stressed operation voltages often result in poor performance and limited device lifetime. This could be addressed by modifying the inherent optical properties of OLEDs. This study proposes a gradient refractive index (GRIN) substrate to adjust the ratio of the light-waveguided modes as well as the radiation mode. An embedded nanocomposite film consisting of titanium dioxide (TiO2) nanoparticles (NPs) was inserted between ITO and glass to create an internal light-extraction structure (IES). The high refractive index of TiO2 is essential for increasing the refractive index of the photoresist film and thus diminishing the total internal reflection between the interfaces. In addition, the silicon dioxide NPs mixed poly(dimethylsiloxane) was used to form an external light-extraction structure (EES). The refractive indices of the IES and EES were adjusted to form a GRIN substrate. Compared with a control device, this sophisticated substrate produced a 1.6 fold efficiency improvement. Furthermore, the experiment results indicates that the size of NPs in the nanocomposite layer affects the efficiency enhancement of OLEDs with different emission colors.

  19. Evaluation and prediction of color-tunable organic light-emitting diodes based on carrier/exciton adjusting interlayer

    Science.gov (United States)

    Liu, Shengqiang; Li, Jie; Du, Chunlei; Yu, Junsheng

    2015-07-01

    A color tuning index (ICT) parameter for evaluating the color change capability of color-tunable organic light-emitting diodes (CT-OLEDs) was proposed and formulated. And a series of CT-OLEDs, consisting of five different carrier/exciton adjusting interlayers (C/EALs) inserted between two complementary emitting layers, were fabricated and applied to disclose the relationship between ICT and C/EALs. The result showed that the trend of electroluminescence spectra behavior in CT-OLEDs has good accordance with ICT values, indicating that the ICT parameter is feasible for the evaluation of color variation. Meanwhile, by changing energy level and C/EAL thickness, the optimized device with the widest color tuning range was based on N,N'-dicarbazolyl-3,5-benzene C/EAL, exhibiting the highest ICT value of 41.2%. Based on carrier quadratic hopping theory and exciton transfer model, two fitting ICT formulas derived from the highest occupied molecular orbital (HOMO) energy level and triplet energy level were simulated. Finally, a color tuning prediction (CTP) model was developed to deduce the ICT via C/EAL HOMO and triplet energy levels, and verified by the fabricated OLEDs with five different C/EALs. We believe that the CTP model assisted with ICT parameter will be helpful for fabricating high performance CT-OLEDs with a broad range of color tuning.

  20. Effects of the Na2CO3 dopant on electron injection and transport in organic light emitting devices

    International Nuclear Information System (INIS)

    Na2CO3 is used as an n-type dopant to improve the electro-optical properties of tris(8-hydroxyquinoline)aluminum (Alq3)-based organic light-emitting diodes (OLEDs). Device properties such as the turn-on voltage, maximum luminance, and device efficiency were improved as Na2CO3 was doped. The higher mobility of Na2CO3-doped samples has been derived using space-charge-limited current measurements. Photoelectron spectroscopy results show that some electrons transfer from Na2CO3 into Alq3, which moves the Fermi level close to the lowest unoccupied molecular orbital of Alq3. Therefore, both the electron-transporting ability and electron-injection efficiency were enhanced, which improves the charge carrier balance in OLEDs and leads to better device efficiency. - Highlights: ► Na2CO3-doped OLEDs have improved opto-electrical properties. ► Na2CO3-doped Alq3 layers possess an enhanced electron injection ability. ► The higher mobility of the Na2CO3-doped samples derived by the SCLC model. ► The reaction between Na2CO3 and Alq3 results in an electron transfer process. ► The Na2CO3-doping moves the Fermi level close to the LUMO of Alq3