WorldWideScience

Sample records for blue haze enhanced

  1. Polarization imaging enhancement for target vision through haze

    Science.gov (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu

    2016-10-01

    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  2. Haze image enhancement based on space fractional-order partial differential equation

    Science.gov (United States)

    Xue, Wendan; Zhao, Fengqun

    2017-07-01

    Based on good amplitude frequency characteristics and the spatial global correlation of fractional-order differential, an energy functional of haze image enhancement is established by taking fractional derivative on both sides of the atmospheric physics scattering model, and a haze image enhancement model based on space fractional-order partial differential equation is obtained by using steepest descent method. Based on fast wavelet transform, the low-frequency part of patch transmission and the high-frequency part of point transmission are fused to estimate the transmission. Finally, the numerical solution of the fractional-order partial differential equation is obtained by the finite difference method. The experimental results show that the algorithm can improve the contrast, brightness and clarity of the image, and it is an effective image enhancement method for haze images.

  3. Urban heat islands in China enhanced by haze pollution

    OpenAIRE

    Cao, Chang; Lee, Xuhui; Liu, Shoudong; Schultz, Natalie; Xiao, Wei; Zhang, Mi; Zhao, Lei

    2016-01-01

    The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the surrounding rural land, is commonly attributed to changes in biophysical properties of the land surface associated with urbanization. Here we provide evidence for a long-held hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a contributor to the UHI. Our results are based on satellite observations and urban climate model calculations. We find that a significant factor c...

  4. Blue enhanced light sources: opportunities and risks

    Science.gov (United States)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  5. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  6. Light absorption enhancement of black carbon from urban haze in Northern China winter.

    Science.gov (United States)

    Chen, Bing; Bai, Zhe; Cui, Xinjuan; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2017-02-01

    Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (E MAC ) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with E MAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    Science.gov (United States)

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  8. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2016-10-01

    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  9. Extinction Memory Improvement by the Metabolic Enhancer Methylene Blue

    Science.gov (United States)

    Gonzalez-Lima, F.; Bruchey, Aleksandra K.

    2004-01-01

    We investigated whether postextinction administration of methylene blue (MB) could enhance retention of an extinguished conditioned response. MB is a redox compound that at low doses elevates cytochrome oxidase activity, thereby improving brain energy production. Saline or MB (4 mg/kg intraperitoneally) were administered to rats for 5 d following…

  10. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    Science.gov (United States)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  11. Optimization of Tapered Photonic Crystal Fibers for Blue-Enhanced Supercontinuum Generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation....

  12. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    Science.gov (United States)

    Greiner, Jill T; McGlathery, Karen J; Gunnell, John; McKee, Brent A

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  13. Blue Light for Enhancing Alertness in Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the final year of a directed research project that had reduced aims due to an unexpected funding reduction. The goal is to study the efficacy of blue or...

  14. Speciated atmospheric mercury on haze and non-haze days in an inland city in China

    Directory of Open Access Journals (Sweden)

    Q. Hong

    2016-11-01

    Full Text Available Long-term continuous measurements of speciated atmospheric mercury were conducted from July 2013 to June 2014 in Hefei, a midlatitude inland city in eastern central China that experiences frequent haze pollution. The mean concentrations (±standard deviation of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particle-bound mercury (PBM were 3.95 ± 1.93 ng m−3, 2.49 ± 2.41 and 23.3 ± 90.8 pg m−3, respectively, on non-haze days, and 4.74 ± 1.62 ng m−3, 4.32 ± 8.36 and 60.2 ± 131.4 pg m−3, respectively, on haze days. Potential source contribution function (PSCF analysis suggested that atmospheric mercury pollution on haze days was caused primarily by local emissions, instead of via long-range transport. The poorer mixing conditions on haze days also favored the accumulation of atmospheric mercury. Compared to GEM and GOM, PBM was especially sensitive to haze pollution. The mean PBM concentration on haze days was 2.5 times that on non-haze days due to elevated concentrations of particulate matter. PBM also showed a clear seasonal trend; its concentration was the highest in fall and winter, decreased rapidly in spring and was the lowest in summer, following the same order in the frequency of haze days in different seasons. On both non-haze and haze days, GOM concentrations remained low at night, but increased rapidly just before sunrise, which could be due to diurnal variation in air exchange between the boundary layer and free troposphere. However, non-haze and haze days showed different trends in daytime GEM and GOM concentrations. On non-haze days, GEM and GOM declined synchronously through the afternoon, probably due to the retreat of the free tropospheric air as the height of the atmospheric boundary layer increases. In contrast, on haze days, GOM and GEM showed opposite trends with the highest GOM and lowest GEM observed in the afternoon, suggesting the occurrence of

  15. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis

    Science.gov (United States)

    Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  16. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    NARCIS (Netherlands)

    Dijkstra, P.D.; Preenen, P.T.Y.; Essen, H. van

    2018-01-01

    The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue

  17. Optimum PCF tapers for blue-enhanced supercontinuum sources

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this article we will review the state-of-the-art in fiber tapers, and discuss the underlying mechanisms of supercontinuum gen...

  18. Haze episodes at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available During our aerosol measurement program at Syowa Station, Antarctica in 2004-2007, some low visibility (haze phenomena were observed under conditions with weak wind and without drifting snow and fog in winter-spring. In the "Antarctic haze" phenomenon, the number concentration of aerosol particles and black carbon concentration increased by one-two orders higher relative to background conditions at Syowa Station, while surface O_3 concentration simultaneously dropped especially after polar sunrise. Major aerosol constituents in the haze phenomenon were sea-salts (e.g., Na^+ and Cl^-. From the trajectory analysis and NAAPS model, the plumes from biomass burning in South America and southern Africa were transported to Syowa Station, Antarctic coast, during eastward (occasionally westward approach of cyclones in the Southern Ocean. Thus, poleward flow of the plume from mid-latitudes and injection of sea-salt particles during the transport may lead to the Antarctic haze phenomenon at Syowa Station. The difference of O_3 concentration between the background and the haze conditions tended to be larger in spring (polar sunrise relative to that in winter. Because enhancement of sea-salt particles can play an important role as an additional source of reactive halogen species, the haze episodes might make a significant contribution to surface O_3 depletion during the polar sunrise on the Antarctic coast.

  19. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Arney, Giada N.; Meadows, Victoria S.; Tovar, Guadalupe; Schwieterman, Edward [University of Washington Astronomy Department, Box 351580, U.W. Seattle, WA 98195 (United States); Domagal-Goldman, Shawn D.; Deming, Drake; Robinson, Tyler D. [NASA Astrobiology Institute Virtual Planetary Laboratory, Box 351580, U.W. Seattle, WA 98195 (United States); Wolf, Eric T., E-mail: giada.n.arney@nasa.gov [University of Colorado at Boulder Laboratory for Astrophysics and Space Physics, 1234 Innovation Drive, Boulder, CO 80303 (United States)

    2017-02-10

    Hazes are common in known planetary atmospheres, and geochemical evidence suggests that early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zones of several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), ϵ Eridani (K2V), and σ Boötis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze because of the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs, whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope , haze makes gaseous absorption features at wavelengths < 2.5 μ m 2–10 σ shallower than a haze-free planet, and methane and carbon dioxide are detectable at >5 σ . A haze absorption feature can be detected at 5 σ near 6.3 μ m, but a higher signal-to-noise ratio is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 pc using a coronagraphic 10 m class ultraviolet–visible–near-infrared telescope, a UV–blue haze absorption feature would be strongly detectable at >12 σ in 200 hr.

  20. Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation.

    Science.gov (United States)

    Xue, Jian; Yuan, Zibing; Griffith, Stephen M; Yu, Xin; Lau, Alexis K H; Yu, Jian Zhen

    2016-07-19

    In recent years in a few Chinese megacities, fog events lasting one to a few days have been frequently associated with high levels of aerosol loading characterized by high sulfate (as high as 30 μg m(-3)), therefore termed as haze-fog events. The concomitant pollution characteristics include high gas-phase mixing ratios of SO2 (up to 71 ppbv) and NO2 (up to 69 ppbv), high aqueous phase pH (5-6), and smaller fog droplets (as low as 2 μm), resulting from intense emissions from fossil fuel combustion and construction activities supplying abundant Ca(2+). In this work, we use an observation-based model for secondary inorganic aerosols (OBM-SIA) to simulate sulfate formation pathways under conditions of haze-fog events encountered in Chinese megacities. The OBM analysis has identified, at a typical haze-fogwater pH of 5.6, the most important pathway to be oxidation of S(IV) by dissolved NO2, followed by the heterogeneous reaction of SO2 on the aerosol surface. The aqueous phase oxidation of S(IV) by H2O2 is a very minor formation pathway as a result of the high NOx conditions suppressing H2O2 formation. The model results indicate that the unique cocktail of high fogwater pH, high concentrations of NO2, SO2, and PM, and small fog droplets are capable of greatly enhancing sulfate formation. Such haze-fog conditions could lead to rapid sulfate production at night and subsequently high PM2.5 in the morning when the fog evaporates. Sulfate formation is simulated to be highly sensitive to fogwater pH, PM, and precursor gases NO2 and SO2. Such insights on major contributing factors imply that reduction of road dust and NOx emissions could lessen PM2.5 loadings in Chinese megacities during fog events.

  1. Removal enhancement of basic blue 41 by brick waste from an aqueous solution

    Directory of Open Access Journals (Sweden)

    Fethi Kooli

    2015-05-01

    Full Text Available A modification of brick waste by acid or base solutions was carried out to enhance its physicochemical properties. Treating brick waste with acid did not improve the removal capacity of basic blue 41. However, treating the brick waste with base increased its removal capacity two fold. The adsorption capacity (percentage of removal decreased from 100% to 10% when the initial concentrations of basic blue and dose of the brick waste increased from 25 to 900 mg/L. The particle size of non treated brick waste affected also the removal capacity; more dye was removed with a smaller particle diameter, at the same initial dye concentrations. The resulting experimental equilibrium data were well-represented by the Langmuir isotherm, and the kinetic data fit a pseudo-second order model well. The maximum removal of basic blue 41 dye was 60–70 mg/g.

  2. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    I. Abdul Rahman

    2014-01-01

    Full Text Available ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.

  3. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes

    Science.gov (United States)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.

  4. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth.

    Science.gov (United States)

    Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E

    2015-12-01

    Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.

  5. Polygyny and extra-pair paternity enhance the opportunity for sexual selection in blue tits

    OpenAIRE

    Vedder, Oscar; Komdeur, Jan; van der Velde, Marco; Schut, Elske; Magrath, Michael J. L.

    2010-01-01

    Polygyny and extra-pair paternity are generally thought to enhance sexual selection. However, the extent to which these phenomena increase variance in male reproductive success will depend on the covariance between success at these two strategies. We analysed these patterns over four breeding seasons in facultatively polygynous blue tits Cyanistes caeruleus. We found that both polygyny and extra-pair paternity increased variance in male reproductive success and that standardised variance in a...

  6. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  7. Role of atmospheric circulations in haze pollution in December 2016

    Science.gov (United States)

    Yin, Zhicong; Wang, Huijun

    2017-09-01

    In the east of China, recent haze pollution has been severe and damaging. In addition to anthropogenic emissions, atmospheric circulations and local meteorological conditions were conducive factors. The number of December haze days over North China and the Huanghuai area has increased sharply since 2010 and was greatest in 2016. During 2016, the most aggressive control measures for anthropogenic emissions were implemented from 16 to 21 December, but the most severe haze pollution still occurred, covering approximately 25 % of the land area of China and lasting for 6 days. The atmospheric circulations must play critical roles in the sub-seasonal haze events. Actually, the positive phase of the East Atlantic-West Russia pattern in the middle troposphere strengthened the anomalous anti-cyclone over the NH area that confined vertical motion below. The associated southerly anomalies made the cold air and surface wind speed weaker, but enhanced the humid flow. Thus, the horizontal and vertical dispersion of atmospheric particulates was suppressed and the pollutants gathered within a narrow space. In December 2016, these key indices were strongly beneficial for haze occurrence and combined to result in the severest haze pollution. The influences of the preceding autumn sea surface temperature near the Gulf of Alaska and the subtropical eastern Pacific, October-November snow cover in western Siberia, and associated physical processes on haze pollution are also discussed.

  8. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Directory of Open Access Journals (Sweden)

    T. Sun

    2018-03-01

    Full Text Available The climatological variation of aerosol properties and the planetary boundary layer (PBL during 2013–2015 over the Yangtze River Delta (YRD region were investigated by employing ground-based Micro Pulse Lidar (MPL and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD in June and September is higher due to high single scattering albedo (SSA from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH is greater (means ranging from 1.23 to 1.84 km and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by

  9. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Science.gov (United States)

    Sun, Tianze; Che, Huizheng; Qi, Bing; Wang, Yaqiang; Dong, Yunsheng; Xia, Xiangao; Wang, Hong; Gui, Ke; Zheng, Yu; Zhao, Hujia; Ma, Qianli; Du, Rongguang; Zhang, Xiaoye

    2018-03-01

    The climatological variation of aerosol properties and the planetary boundary layer (PBL) during 2013-2015 over the Yangtze River Delta (YRD) region were investigated by employing ground-based Micro Pulse Lidar (MPL) and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF) model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD) in June and September is higher due to high single scattering albedo (SSA) from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH) is greater (means ranging from 1.23 to 1.84 km) and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by stable weather conditions

  10. Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, Armida J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Human Factors and Statistics; Stevens-Adams, Susan Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Risk and Reliability Analysis; Silva, Austin Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cognitive Modeling; Nauer, Kevin S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cyber Security Technologies; Anderson, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Assurance Technologies and Assessment; Forsythe, James Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cognitive Modeling

    2012-09-01

    This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the context of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.

  11. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    Science.gov (United States)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric; Schwieterman, Edward

    2016-10-01

    Hazes are common in planetary atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze. The formation of organic hazes is initiated by methane photochemistry sensitive to the host star UV spectrum. Because methane can be produced by a variety of biological and geological processes, organic-rich terrestrial planets with hazes may be common in the galaxy. We use a 1D photochemical-climate model to examine the production of fractal organic haze on Archean Earthlike planets orbiting several different stars: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), a modeled quiescent M dwarf (M3.5V), ɛ Eridani (K2V), and σ Boötis (F2V). For the planetary atmospheric compositions used, planets orbiting stars with the highest or lowest UV fluxes do not form haze. Low UV-stars are unable to drive the photochemistry needed for haze formation. High UV stars generate photochemical oxygen radicals that halt haze production. Organic hazes can impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized for hazy M dwarf planets whose incident stellar radiation arrives at wavelengths where organic hazes are largely transparent. We generate synthetic planetary spectra to test the detectability of haze. For 10 transits of an Archean-analog planet orbiting GJ 876 observed by the James Webb Space Telescope, gaseous absorption features at wavelengths 5σ assuming photon-limited noise levels. An absorption feature from the haze can be detected at the 5σ level near 6.3μm, but higher signal-to-noise would be needed to uniquely distinguish haze from other absorbers in this spectral region. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at >12σ in 200 hours. Although haze is often considered a feature that conceals planetary features, organic haze can indicate a

  12. Public Sector Responses to Sustainable Haze Management in Upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Yongyut Tiyapairat

    2012-06-01

    Full Text Available This research focuses on urban haze in Upper Northern Thailand (UNT, where smoke haze often produce impacts on human health, tourism, and transportation. The objective was to better understand how the public sector responded to the haze impacts in policy review interviews and analyses of compiled haze-related data during 2007-2011. Moreover, integration of haze adaptation policy and coherency was also explored. The results revealed that Thailand has mainly implemented three National Haze Action Plans since 1997, together with laws and regulations for haze management. Further examination of haze policy at all levels of governance disclosed only vertical integration, whereas cross-boundary integration was reported only with the data and budget. Practically, manpower and function have not yet brought satisfactory outcomes. Moreover, the extent of state responses has been centralized –not decentralized from their centralized political structure. Low participation of people living in both urban and rural areas and cooperative efforts were identified as the main factors contributing to failures in combating smoke haze. Therefore, individuals are of utmost importance for effective solutions. There is a continuous need for prevention campaigns to enhance local people's understanding and participation as well as local communities' networking for solutions to the haze problem.

  13. Urbanization and industrialization effects on haze in China: take Jinagsu for example

    Science.gov (United States)

    Liu, Duanyang; Wei, Jiansu; Kang, Zhiming; Yan, Wenlian; Cao, Lu; Chen, Hao

    2017-04-01

    Since the policy of ''Reform and Open to the Outside World'' was implemented from 1978, urbanization and industrialization have been rapid in China, leading to the expansion of urban areas, industrial district and population synchronous with swift advances in economy. With urban industrialization development underway, the urban heat island (UHI) and air pollution are being enhanced, together with vegetation coverage and relative humidity on the decrease. Based on the surface meteorological data of Jiangsu Province during 1980-2012, the climatic characteristics and the trends of haze were analyzed. The results indicated that during 1980-2012 haze days increased; in particular, severe and moderate haze days significantly increased. In the northern and coastal cities of Jiangsu Province China, haze days showed a significant increase. Haze often appeared in fall and winter, and rare in summer in the study area. It also occurred more often inland, and less along the coast. Haze occurred more often in June due to straw burning in the harvest time. The haze day increased during the 1990's over southern and southwestern Jiangsu Province; in central and northern Jiangsu, haze day increased after 2000. The continuous, regional and regional continuous haze days all showed increasing trends. As the urban area expanded each year, industrial emissions, coal consumption and car ownership increased accordingly, resulting in regional temperature increase and relative humidity decrease, which formed the urban heat island and dry island effects. Hence, haze formation and maintenance conditions became more favorable for more haze days, which led to the increase of haze days, and the significant increases of continuous, regional and regional continuous haze days.

  14. Dehazed Image Quality Assessment by Haze-Line Theory

    Science.gov (United States)

    Song, Yingchao; Luo, Haibo; Lu, Rongrong; Ma, Junkai

    2017-06-01

    Images captured in bad weather suffer from low contrast and faint color. Recently, plenty of dehazing algorithms have been proposed to enhance visibility and restore color. However, there is a lack of evaluation metrics to assess the performance of these algorithms or rate them. In this paper, an indicator of contrast enhancement is proposed basing on the newly proposed haze-line theory. The theory assumes that colors of a haze-free image are well approximated by a few hundred distinct colors, which form tight clusters in RGB space. The presence of haze makes each color cluster forms a line, which is named haze-line. By using these haze-lines, we assess performance of dehazing algorithms designed to enhance the contrast by measuring the inter-cluster deviations between different colors of dehazed image. Experimental results demonstrated that the proposed Color Contrast (CC) index correlates well with human judgments of image contrast taken in a subjective test on various scene of dehazed images and performs better than state-of-the-art metrics.

  15. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: aqwang@licp.cas.cn [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)

    2015-02-28

    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  16. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    International Nuclear Information System (INIS)

    Brahiti, N.; Hadjersi, T.; Menari, H.; Amirouche, S.; El Kechai, O.

    2015-01-01

    Highlights: • SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. • Yield of photodegardation increases with UV irradiation time. • SiNWs modified with Pd nanoparticles show the best photocatalytic activity. • A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect of metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue

  17. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul

    2004-01-01

    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  18. Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films.

    Science.gov (United States)

    Karthikeyan, B; Pandiyarajan, T; Mangalaraja, R V

    2016-01-05

    ZnO:PVA nanocomposite films were prepared and their fluorescence and time resolved photoluminescence properties were discussed. X-ray diffraction and infrared spectroscopy results confirmed the ZnO:PVA interaction. Optical absorption spectra showed two bands at 280 and 367nm which were ascribed to PVA and excitonic absorption band, respectively. Fluorescence spectra showed that the blue emission of ZnO was enhanced about tenfold through chemical interface electron transfer. The electron transfer from ZnO to PVA and its decay dynamics were experimentally analyzed through time resolved fluorescence measurements. The study revealed that the excited electrons found pathway through PVA to ground state which was slower than the pure ZnO nanoparticles. Copyright © 2015. Published by Elsevier B.V.

  19. Immediate effect of blue-enhanced light on reproductive hormones in women.

    Science.gov (United States)

    Danilenko, Konstantin V; Sergeeva, Oksana Y

    2015-01-01

    Light is known to stimulate reproductive function in women. We here investigated the immediate effect of light on reproductive hormones, addressing the role of blue-sensitive (~480 nm) melanopsin-based photoreception mediating the non-visual effects of light. Sixteen healthy women attended the Institute at ~07:25 (shortly after waking; sunglasses worn) twice in 2-3 days in April-May, within days 4-10 of their menstrual cycle. During one session, a broad-spectrum white-appearing light with a superimposed peak at 469 nm was presented against 5-10 lux background; during the other session, short-spectrum red light peaked at 651 nm with similar irradiance level (~7.0 W/m², corresponds to ~1200 lux) was used. Venous blood was taken at 0, 22 and 44 minutes of light exposure to measure concentrations of follicle-stimulating hormone (FSH), luteinising hormone (LH), prolactin, estradiol, progesterone and cortisol, and saliva was sampled to measure melatonin as a recognised indicator of the spectral-specific action of light. Melatonin values, as expected, were lower with white vs. red light (p=0.014), with the greatest difference at 22 minutes. Of the other hormones, only FSH concentrations differed significantly: they were mildly higher at white vs. red light (again, at 22 minutes; p=0.030; statistical analysis adjusted for menstrual cycle day and posture change [pre-sampling time seated]). Moderately bright blue-enhanced white light, compared to matched-by-irradiance red light, transiently (within 22 minutes) and mildly stimulated morning secretion of follicle-stimulating hormone in women in mid-to-late follicular phase of their menstrual cycle suggesting a direct functional link between the light and reproductive system.

  20. Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peter; Marley, Mark S.; Zahnle, Kevin [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Robinson, Tyler D. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lewis, Nikole K., E-mail: pgao@caltech.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-03-01

    Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H{sub 2}S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope ( WFIRST ), a planned NASA space telescope. For temperate (250 K <  T {sub eq} < 700 K) Jupiter-mass planets, photochemical destruction of H{sub 2}S results in the production of ∼1 ppmv of S{sub 8} between 100 and 0.1 mbar, which, if cool enough, will condense to form a haze. Nominal haze masses are found to drastically alter a planet’s geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μ m, due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ∼0.7, due to scattering. Strong absorption by the haze shortward of 0.4 μ m results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze by WFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μ m, which is currently beyond WFIRST ’s design.

  1. Understanding the Southeast Asian haze

    Science.gov (United States)

    G, Karthik K. R.; Baikie, T.; T, Mohan Dass E.; Huang, Y. Z.; Guet, C.

    2017-08-01

    The Southeast Asian region had been subjected to a drastic reduction in air quality from the biomass burnings that occurred in 2013 and 2015. The smoke from the biomass burnings covered the entire region including Brunei, Indonesia, Malaysia, Singapore and Thailand, with haze particulate matter (PM) reducing the air quality to hazardous levels. Here we report a comprehensive size-composition-morphology characterization of the PM collected from an urban site in Singapore during the two haze events. The two haze events were a result of biomass burning and occurred in two different geographical source regions. We show the similarities and variations of particle size distribution during hazy and clear days during the two haze events. Sub-micron particles (<1 μm) dominate (˜50%) the aerosols in the atmosphere during clear and hazy days. Using electron microscopy, we also categorize the PM, namely soot, organic-inorganic clusters and hybrid particles. The composition and morphology were similar in both the haze events. The majority of the PM is composed of carbon (˜51%) and other elements pertaining to the earth’s crust. The complexity of the mixing state of the PM is highlighted and the role of the capture mode is addressed. We also present the morphological characterization of all the classified PM. The box counting method is used to determine the fractal dimensions of the PM, and the dimensionality varied for every classification from 1.79 to 1.88. We also report the complexities of particles and inconsistencies in the existing approaches to understand them.

  2. Enhanced light emission in blue light-emitting diodes by multiple Mie scattering from embedded silica nanosphere stacking layers.

    Science.gov (United States)

    Park, Young Jae; Kang, Ji Hye; Kim, Hee Yun; Lysak, Volodymyr V; Chandramohan, S; Ryu, Jae Hyoung; Kim, Hyun Kyu; Han, Nam; Jeong, Hyun; Jeong, Mun Seok; Hong, Chang-Hee

    2011-11-07

    We demonstrate enhanced light emission in blue light-emitting diodes (LEDs) by multiple Mie scattering from embedded silica nanosphere stacking layers (SNSL). A honeycomb cone structure is introduced in the GaN epilayer to confine a maximum number of silica nanospheres (SNs). We found that the light is predominantly directed vertically by scattering and geometrical effect in SNSL embedded LEDs. Consequently, the light output power is enhanced by 2.7 times, which we attribute to the improvement in light extraction efficiency due to the multiple Mie scattering of light from the embedded SNSL. The experimental results are verified by simulation using finite difference time domain method (FDTD).

  3. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing

    Science.gov (United States)

    Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang

    2018-01-01

    Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable

  4. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.

    Science.gov (United States)

    Molina, Rosana S; Tran, Tam M; Campbell, Robert E; Lambert, Gerard G; Salih, Anya; Shaner, Nathan C; Hughes, Thomas E; Drobizhev, Mikhail

    2017-06-15

    Fluorescent proteins (FPs) are indispensable markers for two-photon imaging of live tissue, especially in the brains of small model organisms. The quantity of physiologically relevant data collected, however, is limited by heat-induced damage of the tissue due to the high intensities of the excitation laser. We seek to minimize this damage by developing FPs with improved brightness. Among FPs with the same chromophore structure, the spectral properties can vary widely due to differences in the local protein environment. Using a physical model that describes the spectra of FPs containing the anionic green FP (GFP) chromophore, we predict that those that are blue-shifted in one-photon absorption will have stronger peak two-photon absorption cross sections. Following this prediction, we present 12 blue-shifted GFP homologues and demonstrate that they are up to 2.5 times brighter than the commonly used enhanced GFP (EGFP).

  5. Evans blue dye-enhanced imaging of the brain microvessels using spectral focusing coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Bo-Ram Lee

    Full Text Available We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature.

  6. Characteristics and source apportionment of fine haze aerosol in Beijing during the winter of 2013

    Science.gov (United States)

    Shang, Xiaona; Zhang, Kai; Meng, Fan; Wang, Shihao; Lee, Meehye; Suh, Inseon; Kim, Daigon; Jeon, Kwonho; Park, Hyunju; Wang, Xuezhong; Zhao, Yuxi

    2018-02-01

    For PM2.5 filter samples collected daily at the Chinese Research Academy of Environmental Sciences (Beijing, China) from December of 2013 to February of 2014 (the winter period), chemical characteristics and sources were investigated with an emphasis on haze events in different alert levels. During the 3 months, the average PM2.5 concentration was 89 µg m-3, exceeding the Chinese national standard of 75 µg m-3 in 24  h. The maximum PM2.5 concentration was 307 µg m-3, which characterizes developed-type pollution (PM2.5 / PM10>0.5) in the World Health Organization criteria. PM2.5 was dominated by SO42-, NO3-, and pseudo-carbonaceous compounds with obvious differences in concentrations and proportions between non-haze and haze episodes. The non-negative matrix factorization (NMF) analysis provided reasonable PM2.5 source profiles, by which five sources were identified: soil dust, traffic emission, biomass combustion, industrial emission, and coal combustion accounting for 13, 22, 12, 28, and 25  % of the total, respectively. The dust impact increased with northwesterlies during non-haze periods and decreased under stagnant conditions during haze periods. A blue alert of heavy air pollution was characterized by the greatest contribution from industrial emissions (61  %). During the Chinese Lantern Festival, an orange alert was issued and biomass combustion was found to be the major source owing to firework explosions. Red-alert haze was almost equally contributed by local traffic and transported coal combustion emissions from the vicinity of Beijing (approximately 40  % each) that was distinguished by the highest levels of NO3- and SO42-, respectively. This study also reveals that the severity and source of haze are largely dependent on meteorological conditions.

  7. Characteristics and source apportionment of fine haze aerosol in Beijing during the winter of 2013

    Directory of Open Access Journals (Sweden)

    X. Shang

    2018-02-01

    Full Text Available For PM2.5 filter samples collected daily at the Chinese Research Academy of Environmental Sciences (Beijing, China from December of 2013 to February of 2014 (the winter period, chemical characteristics and sources were investigated with an emphasis on haze events in different alert levels. During the 3 months, the average PM2.5 concentration was 89 µg m−3, exceeding the Chinese national standard of 75 µg m−3 in 24  h. The maximum PM2.5 concentration was 307 µg m−3, which characterizes developed-type pollution (PM2.5 / PM10>0.5 in the World Health Organization criteria. PM2.5 was dominated by SO42−, NO3−, and pseudo-carbonaceous compounds with obvious differences in concentrations and proportions between non-haze and haze episodes. The non-negative matrix factorization (NMF analysis provided reasonable PM2.5 source profiles, by which five sources were identified: soil dust, traffic emission, biomass combustion, industrial emission, and coal combustion accounting for 13, 22, 12, 28, and 25  % of the total, respectively. The dust impact increased with northwesterlies during non-haze periods and decreased under stagnant conditions during haze periods. A blue alert of heavy air pollution was characterized by the greatest contribution from industrial emissions (61  %. During the Chinese Lantern Festival, an orange alert was issued and biomass combustion was found to be the major source owing to firework explosions. Red-alert haze was almost equally contributed by local traffic and transported coal combustion emissions from the vicinity of Beijing (approximately 40  % each that was distinguished by the highest levels of NO3− and SO42−, respectively. This study also reveals that the severity and source of haze are largely dependent on meteorological conditions.

  8. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files.

    Science.gov (United States)

    Plotino, Gianluca; Grande, Nicola M; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca

    2014-09-01

    The aim of the present study was to evaluate the difference in cyclic fatigue resistance between Vortex Blue (Dentsply Tulsa Dental, Tulsa, OK) and Profile Vortex nickel-titanium (Dentsply Tulsa Dental) rotary instruments. Two groups of nickel-titanium endodontic instruments, ProFile Vortex and Vortex Blue, consisting of identical instruments in tip size and taper (15/.04, 20/.06, 25/.04, 25/.06, 30/.06, 35/.06, and 40/.04) were tested. Ten instruments from each system and size were tested for cyclic fatigue resistance, resulting in a total of 140 new instruments. All instruments were rotated in a simulated root canal with a 60° angle of curvature and a 5-mm radius of curvature of a specific cyclic fatigue testing device until fracture occurred. The number of cycles to failure and the length of the fractured tip were recorded for each instrument in each group. The mean values and standard deviation were calculated, and data were subjected to 1-way analysis of variance and a Bonferroni t test. Significance was set at the 95% confidence level. When comparing the same size of the 2 different instruments, a statistically significant difference (P .05) was noted among all groups tested in terms of fragment length. Vortex Blue showed a significant increase in cyclic fatigue resistance when compared with the same sizes of ProFile Vortex. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. APMP Pilot Study on Transmittance Haze

    Science.gov (United States)

    Liu, Wen-Chun; Hwang, Jisoo; Koo, Annette; Wu, Houping; Leecharoen, Rojana; Yu, Hsueh-Ling

    2018-02-01

    Five NMIs within APMP, including CMS/ITRI, MSL, NIM, NIMT and KRISS from TCPR applied to the APMP technical committee initiative project for funding to carry out a pilot comparison of transmittance haze in 2012. The project started in 2014 and the final report was completed at the end of 2016. In this pilot comparison, three different haze standards were adopted, and transmittance haze for each standard was measured according to ASTM D1003 or ISO 14782. This paper presents the first results of an APMP pilot study of transmittance haze and the analysis of the variation among different haze measurement systems which are commonly used. The study shows that the variables such as sphere multiplier, transmittance distribution, fluorescence of samples and optical path of the incident beam cause discrepancies among NMIs and highlight deficiencies in current documentary standards.

  10. Significant color space blue-shift of green OLED emitter with sustaining lifetime and substantial efficiency enhancement

    Science.gov (United States)

    Li, Jung-Yu; Chen, Shih-Pu; Siao, Huei-Jhen; Wu, Jin-Han; Chen, Guan-Yu; Chen, Cheng-Chang; Ho, Shu-Yi; Lin, Yi-Ping; Hsu, Hong-Hui; Lin, Jin-Sheng; Jeng, Ming-Shan; Chen, Nai-Chuan; Zeng, Hui-Kai; Juang, Jenh-Yih

    2017-08-01

    In this study, we demonstrate that by embedding a plasmonic coupling metal layer beneath the active layer of an organic light-emitting diode, the resultant device is capable of inducing significant blue shifts in CIE color space coordinates of emitting light from the green emitting material without compromising the lifetime of the parent material. The implemented device consists of multilayers of organic emitting materials sandwiched by two thin metal layers to form a metal-dielectric-metal (MDM) cavity-like structure. The original green emission with CIE coordinates of (0.22, 0.56) was significantly color space blue-shifted to CIE coordinates of (0.10, 0.53). The MDM device exhibits an efficiency of 62 cd/A at a luminance of 1000 cd/m2, which represents a two-fold enhancement of current efficiency. Moreover, the spectral peak intensity is 4.3 times higher than that in a conventional device, which is much higher than that expected for an optical microcavity model, suggesting that the Purcell effect resulting from the coupling of surface plasmon waves may contribute to the extra enhancement of emission intensity.

  11. The role of fog in haze episode in Tianjin, China: A case study for November 2015

    Science.gov (United States)

    Hao, Tianyi; Han, Suqin; Chen, Shucheng; Shan, Xiaolin; Zai, Ziying; Qiu, Xiaobin; Yao, Qing; Liu, Jingle; Chen, Jing; Meng, Lihong

    2017-09-01

    A severe haze episode that heavy fog appeared in its later stage emerged in Tianjin, east-central China, from November 27 to December 2, 2015. With meteorological data and pollutants monitoring data, the characteristics of this event and the role of fog in haze were investigated. During this process, the visibility was less than 600 m, especially in the haze and fog coexisting period (below 100 m). The peak value of PM2.5 mass concentration appeared in the haze only period was 446 μg/m3. The fog played a role in scavenging and removing PM2.5 during haze and fog coexisting period. The surface high humidity province can match well with the high PM2.5 concentration region in pollutants removal period. The fog top height was reduced to about 200 m by cold air. Although the cold air has arrived in Tianjin high altitude, the saturated layer below 200 m maintained for nearly 12 h. The heavy fog prevented the momentum in upper atmosphere from transmitting downward and caused the high altitude cold air difficult to reach the ground. The latent heat flux was transmitted upward ahead of sensible heat flux in pollutants removal period, indicating the increasing tendency of mechanical turbulence after fog dissipation. Turbulent kinetic energy (Etk) and the surface mean kinetic energy (E) also enhanced after fog dissipation. It demonstrates that the termination of haze was delayed by heavy fog.

  12. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  13. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    Science.gov (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-04-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  14. Planetary science: Haze cools Pluto's atmosphere

    Science.gov (United States)

    West, Robert A.

    2017-11-01

    Modelling suggests that Pluto's atmospheric temperature is regulated by haze, unlike the other planetary bodies in the Solar System. The finding has implications for our understanding of exoplanetary atmospheres. See Letter p.352

  15. Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage

    Directory of Open Access Journals (Sweden)

    Huiyun Sun

    2018-01-01

    Full Text Available Mesostructure engineering is a potential avenue towards the property control of coordination polymers in addition to the traditional structure design on an atomic/molecular scale. Mesoframes, as a class of mesostructures, have short diffusion pathways for guest species and thus can be an ideal platform for fast storage of guest ions. We report a synthesis of Prussian Blue analogue mesoframes by top-down etching of cubic crystals. Scanning and transmission electron microscopy revealed that the surfaces of the cubic crystals were selectively removed by HCl, leaving the corners, edges, and the cores connected together. The mesoframes were used as a host for the reversible insertion of sodium ions with the help of electrochemistry. The electrochemical intercalation/de-intercalation of Na+ ions in the mesoframes was highly reversible even at a high rate (166.7 C, suggesting that the mesoframes could be a promising cathode material for aqueous sodium ion batteries with excellent rate performance and cycling stability.

  16. The seasonal cycle of Titan's detached haze

    Science.gov (United States)

    West, Robert A.; Seignovert, Benoît; Rannou, Pascal; Dumont, Philip; Turtle, Elizabeth P.; Perry, Jason; Roy, Mou; Ovanessian, Aida

    2018-04-01

    Titan's `detached' haze, seen in Voyager images in 1980 and 1981 and monitored by the Cassini Imaging Science Subsystem (ISS) during the period 2004-2017, provides a measure of seasonal activity in Titan's mesosphere with observations over almost half of Saturn's seasonal cycle. Here we report on retrieved haze extinction profiles that reveal a depleted layer (having a diminished aerosol content), visually manifested as a gap between the main haze and a thin, detached upper layer. Our measurements show the disappearance of the feature in 2012 and its reappearance in 2016, as well as details after the reappearance. These observations highlight the dynamical nature of the detached haze. The reappearance seems congruent with earlier descriptions by climate models but more complex than previously described. It occurs in two steps, first as haze reappearing at 450 ± 20 km and one year later at 510 ± 20 km. These observations provide additional tight and valuable constraints about the underlying mechanisms, especially for Titan's mesosphere, that control Titan's haze cycle.

  17. Polygyny and extra-pair paternity enhance the opportunity for sexual selection in blue tits

    NARCIS (Netherlands)

    Vedder, Oscar; Komdeur, Jan; van der Velde, Marco; Schut, Elske; Magrath, Michael J. L.

    Polygyny and extra-pair paternity are generally thought to enhance sexual selection. However, the extent to which these phenomena increase variance in male reproductive success will depend on the covariance between success at these two strategies. We analysed these patterns over four breeding

  18. Qualitative review of hazing in collegiate and school sports: consequences from a lack of culture, knowledge and responsiveness.

    Science.gov (United States)

    Diamond, Alex B; Callahan, S Todd; Chain, Kelly F; Solomon, Gary S

    2016-02-01

    As with most mental health disorders, the topic of hazing is not exclusive to the student athlete. However, it is also clear that the unique set of situations faced by athletes create a set of additional and difficult challenges to their mental and physical well-being. A deep-rooted culture, a lack of knowledge about hazing and its causal relationships, and a failure to act by teammates and adults all play a role in the propagation of this danger. Also, in an era where the popular press similarly celebrates and chastises episodes of hazing, it is increasingly crucial to turn to the scientific literature for guidance. To provide a comprehensive review of the scientific research on hazing in sports and to make recommendations for enhancing the approach and assistance to those in need on an individual and societal level. Qualitative literature review of hazing in collegiate and school sports. Databases including PubMed, Google Scholar, SPORTDiscus, EMBASE and MEDLINE were searched using standardised terms, alone and in combination, including 'hazing', 'bullying', 'sport', 'athlete', 'college', 'school' and 'youth'. Despite increased attention to its dangers, hazing remains pervasive throughout the sports world. However, many do not recognise those actions as consistent with hazing. A change in culture, increased education and awareness, along with methodologically sound strategies for action must occur in order to reduce the ill effects and cycle of hazing. To date, current information and efforts are lacking. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells

    International Nuclear Information System (INIS)

    R, Navanietha Krishnaraj; R, Karthikeyan; Berchmans, Sheela; Chandran, Saravanan; Pal, Parimal

    2013-01-01

    Highlights: • Preparation of biocompatible chitosan–alginate electrode. • The synergism between Acetobacter aceti and Gluconobacter roseus. • Better biofilm formation and enhanced electricity generation. • Immobilized Prussian blue system replaces the conventional ferricyanide system. - Abstract: This work is aimed at finding new strategies for the modification of anode and cathode that can lead to improved performance of microbial fuel cells (MFCs). The electrochemical deposition of chitosan onto carbon felt followed by further modification with alginate led to the formation of a biocompatible platform for the prolific growth of microorganisms on the anode (Chit–Alg/carbon felt anode). The novel modification strategy for the formation of Prussian blue film, on the electrochemically deposited chitosan layer, has helped in circumventing the disadvantages of using ferricyanide in the cathode compartment and also for improving the electron transfer characteristics of the film in phosphate buffer. The anode was tested for its efficacy with four different substrates viz., glucose, ethanol, acetate and grape juice in a two compartment MFC. The synergistic effect of the mixed culture of Acetobacter aceti and Gluconobacter roseus was utilized for current generation. The electrocatalytic activity of the biofilm and its morphology were characterized by cyclic voltammetry and scanning electron microscopy, respectively. The power densities were found to be 1.55 W/m 3 , 2.80 W/m 3 , 1.73 W/m 3 and 3.87 W/m 3 for glucose, ethanol, acetate and grape juice, respectively. The performance improved by 20.75% when compared to the bare electrode

  20. Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Science.gov (United States)

    Alyami, Abeer; Saviello, Daniela; McAuliffe, Micheal A. P.; Cucciniello, Raffaele; Mirabile, Antonio; Proto, Antonio; Lewis, Liam; Iacopino, Daniela

    2017-08-01

    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences.

  1. Efficiency enhancement of fluorescence blue organic light-emitting diodes by incorporating Ag nanoparticles layers due to a localized surface plasmon

    Science.gov (United States)

    Nam, Minwoo; Chung, Nak-Kwan; Shim, Seob; Yun, Ju-Young; Kim, Jin-Tae; Pyo, Sung Gyu

    2017-09-01

    Enhanced electroluminescence in blue organic light-emitting diodes (OLEDs) is obtained by incorporating Ag nanoparticles (NPs) into hole injection layer of poly(3,4- ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS). The absorption peak of the localized surface plasmons (LSPs) introduced by the 60 nm Ag NPs matches the emission wavelength of the blue OLEDs were matched at wavelength of 442 nm. In addition, to maximize their coupling and to prevent the quenching of the emission, the distance between surface plasmons (SPs) around NPs and organic fluorophores is optimized. Finally, the emission intensity and the current efficiency of diode with Ag NPs were increased by 19% and 18%, respectively.

  2. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  3. Enhanced photocatalytic degradation of methylene blue on carbon nanotube-TiO{sub 2}-Pd composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hye; Choi, Hyun Chul [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of)

    2016-11-15

    Semiconductor-based photocatalysis is recognized as a promising technique for addressing energy and environmental issues. Among various semiconductors, the use of titanium dioxide (TiO-2) as a photocatalyst in solar energy conversion and pollutant degradation has been widely investigated because of its high efficiency, photostability, and low toxicity. However, its practical application is restricted by the intrinsic wide band gap of TiO-2 and the rapid recombination of photogenerated electron–hole pairs. Therefore, several remedial methods have been proposed, such as the doping of TiO{sub 2} with metallic or non-metallic elements, increasing its surface area, sensitization with dyes, and the generation of defect structures. We have successfully prepared CNT–TiO{sub 2}–Pd composites with a simple two-step sol–gel method. We characterized the composites with TEM and XRD, and demonstrated that anatase TiO{sub 2} and metallic Pd nanoparticles were deposited onto the surfaces of the CNTs. The average particle size of these nanoparticles was approximately 3.4 nm. The prepared catalyst was found to exhibit a higher activity in MB photodegradation than the reference systems. The synergy of the combination of CNTs and Pd nanoparticles with TiO{sub 2} provides superior MB degradation. More comprehensive studies of the mechanism for this synergy between the metal nanoparticles and TiO{sub 2} that enhances the photocatalytic activity of CNT–TiO{sub 2} are underway in our laboratory.

  4. Enhanced Photocatalytic Degradation of Methylene Blue Using ZnFe2O4/MWCNT Composite Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Sonal Singhal

    2013-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using arc discharge method at a magnetic field of 430 G and purified using HNO3/H2O2. Transmission electron micrographs revealed that MWCNTs had inner and outer diameter of ~2 nm and ~4 nm, respectively. Raman spectroscopy confirmed formation of MWCNTs showing G-band at 1577 cm−1. ZnFe2O4 and ZnFe2O4/MWCNT were produced using one step hydrothermal method. Powder X-ray diffraction (XRD confirmed the formation of cubic spinel ZnFe2O4 as well as incorporation of MWCNT into ZnFe2O4. Visible light photocatalytic degradation of methylene blue (MB was studied using pure ZnFe2O4 and ZnFe2O4/MWCNT. The results showed that ZnFe2O4/MWCNT composite had higher photocatalytic activity as compared to pure ZnFe2O4. After irradiation for 5 hours in the visible light, MB was almost 84% degraded in the presence of ZnFe2O4 photocatalyst, while 99% degradation was observed in case of ZnFe2O4/MWCNT composite. This enhancement in the photocatalytic activity of composite may be attributed to the inhibition of recombination of photogenerated charge carriers.

  5. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue

    Science.gov (United States)

    Zhao, Guoqing; Li, Caifeng; Wu, Xia; Yu, Jingang; Jiang, Xinyu; Hu, Wenjihao; Jiao, Feipeng

    2018-03-01

    Calcined layered double hydroxides (CLDH) are one of the remarkable photocatalysts passionately studied for photodecolorization of organic dyes. NiFe-CLDH was successfully modified by reduced graphene oxide (RGO) through a facile in situ crystallization technique. The obtained RGO/NiFe-CLDH composites were fully characterized by powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), and UV-vis diffuse reflectance spectroscopy (DRS). The results analysis indicated that RGO sheets could work as base course to prompt the growth of LDH crystallites and NiFe-LDH lamellar crystal promiscuously distributed on the sheets with a strong interplay between each other. The photocatalytic performance of RGO/NiFe-CLDH composites toward decolorization of methylene blue tightly depended on the mass fraction of RGO and calcinated temperature. At the RGO weight loading of 1%, calcination temperature of 500 °C, the photocatalytic degradation efficiency of RGO/NiFe-CLDH composites reached 93.0% within 5.0 h. The enhanced activity of RGO/NiFe-CLDH composites may be due to the concerted catalysis effect between two constituents of as-prepared composites.

  6. Cassini limb images of hazes in Saturn’s northern hemisphere

    Science.gov (United States)

    Sanchez-Lavega, Agustin M.; Garcia, Daniel; del Rio-Gaztelurrutia, Teresa; Garcia-Muñoz, Antonio; Perez-Hoyos, Santiago; Hueso, Ricardo

    2017-10-01

    We have used high resolution Cassini ISS images of the limb of Saturn to study the vertical distribution, altitude location, thickness and optical properties of the haze layers in the northern hemisphere (1°S to 82°N) in 2013 and 2015. The images cover an ample spectral range from the ultraviolet (UV1 filter, 264 nm) to the near infrared (CB3 filter, 938 nm) including methane absorption bands at 619 nm, 724 nm and 890 nm. Spatial resolution ranges from 1.6 to 13 km/pixel depending on wavelength and latitude. Three latitude bands were selected for the analysis according to the background zonal wind profile measured at cloud level and known dynamical activity: (a) North Polar Region encompassing the Hexagon latitude (74°N) (b) Mid-latitudes (45°N-52°N), and (3) Equator (1°N-3°S). The best defined haze structures and most extended haze layers were found at the latitude of the Hexagon. Up to 6-8 haze layers extending up to 400 km in altitude above clouds (in the pressure range from about 0.7 bar to 0.1 mbar) were detected. The vertical thickness of the layers is in the range 3-15 km compared to the scale height which is about 40 km. The spectral reflectivity is relatively uniform between the layers in the blue and red continuum wavelengths coming from the backward light scattering from the haze particles, while the brightness in the methane bands (relative to red continuum) and in the ultraviolet shows the effects of methane absorption and Rayleigh scattering by the gas, respectively. At mid-latitudes 3-4 haze layers are found spanning up to altitudes 200 km above the clouds. At the Equator 5-6 layers are found extending up to altitudes 250 km above the clouds (up to 2 mbar in pressure level) in a region of great dynamical interest because of the particular structure of the zonal winds and their known oscillations. We comment on the possible nature of the haze layers on the basis of condensing species and photochemistry.

  7. Fabrication of Simple Indoor Air Haze Purifier using Domestic Discarded Substances and Its Haze Removal Performance

    Science.gov (United States)

    Wang, Zhou; Cao, Haoshu; Zhao, Shuang

    2018-01-01

    Based on the concept of circular economy, discarded plastic bottles stuffed with discarded cotton, clothing and sofa cushion were used as pre-filter to remove big particles (dust and coal dust) in air and 4 L tap water in discarded plastic bottle was worked as an absorbing medium to dissolve the water soluble ions in air (SO4 2-, NO3-, NH4+, Cl- and Ca2+). Moreover, the internet control design was used in this homemade indoor air haze purifier to achieve the performance of remote control and intelligent management. The experimental results showed that this indoor air haze purifier can effectively reduce the level of indoor air haze and the air quality after 20 minutes treatment is higher than that of two commercial well-known air haze purifier

  8. A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang, China

    Science.gov (United States)

    Qin, Kai; Wang, Luyao; Wu, Lixin; Xu, Jian; Rao, Lanlan; Letu, Husi; Shi, Tiewei; Wang, Runfeng

    2017-12-01

    As the capital of the most air-polluted Hebei province in China, Shijiazhuang has been suffering serious haze pollutions especially during wintertime. An integrated campaign for investigating aerosol optical properties under haze conditions over Shijiazhuang were carried out using a sunphotometer, an aethalometer and a lidar in the winter from late 2013 to early 2014. The results indicated that the haze episodes during the measurement period were severer and more frequent over Shijiazhuang than Beijing. Under heavy pollution conditions (PM2.5 > 150 μg/m3) over Shijiazhuang, fine-mode fractions of AOD500nm were larger than 0.80 with more dispersive angstrom exponent due to hygroscopic growth. The mean values of SSA over Shijiazhuang were smaller than those over Beijing both in this study and the severe haze episodes in January 2013, suggesting that there were more fine-mode absorbing particles over Shijiazhuang. More significant spectrally-dependence of imaginary part of refractive index over Shijiazhuang implies larger relative magnitude of brown carbon (BrC) as compared to Beijing. The black carbon (BC) measurement displayed extremely high records with a larger ratio of BC to PM2.5 (12.11% in average) comparing with other cities in China. The high carbonaceous aerosols (BC and BrC) should be attributed to large amounts of coal consumption. During the hazes with high BC concentrations, the daily maximal planetary boundary layer (PBL) heights were consistently lower than 500 m, implying the impacts of BC aerosols on the PBL development and hence enhance the surface haze pollution.

  9. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    Science.gov (United States)

    Quan, Jiannong; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang; Liu, Yangang

    2015-12-01

    The effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM2.5 concentration.

  10. Hazing in the U.S. Armed Forces: Recommendations for Hazing Prevention Policy and Practice

    Science.gov (United States)

    2015-01-01

    life. 2. Bullying —United States. 3. Hazing— United States—Government policy. 4. Military offenses—United States. 5. Soldiers— United States—Social...for hazing prevention and swift enforcement of punishment for hazing. – Ensure that there are options for reporting anonymously and outside the chain...standalone category in the database P P P P The system tracks bullying separately P The system tracks anonymous reports P P The system tracks initial

  11. Haze variation in valley region its affecting factors

    Science.gov (United States)

    Liu, Yinge; Zhao, Aling; Wang, Yan; Wang, Shaoxiong; Dang, Caoni

    2018-02-01

    The haze has a great harm on the environment and human health. Based on the daily meteorological observation data including visibility, relative humidity, wind speed, temperature, air pollution index and weather record of Baoji region in China, and using least squares method, wavelet and correlation analysis method, the temporal and spatial characteristics of haze were analyzed. While the factors affecting the haze change were discussed. The results showed that the haze mainly occurs in plain areas, and in hilly areas and mountain the haze frequency is relatively small. Overall the annual average haze is decreasing, especially in winter and spring the reduction trend of haze is most obvious, however, in summer haze is increasing. The haze has a 5-year short period and 10-year and 15-year long-term cycles change. Moreover, there was a significant negative correlation between temperature and wind speed with haze, while the relative humidity was significantly positively correlated with haze. These studies provide the basis for atmospheric environmental monitor and management.

  12. Defining High School Hazing: Control through Clarity

    Science.gov (United States)

    Tokar, Krzysztof; Stewart, Craig

    2010-01-01

    The purpose of this study was to investigate the extent of hazing that had existed in former high school athletes who were enrolled in introduction to coaching classes in a Northern Rocky Mountain state. A nationally accepted survey was given to 189 college students of whom the majority had participated in high school sports. Results were…

  13. Chinese haze versus Western smog: lessons learned.

    Science.gov (United States)

    Zhang, Junfeng Jim; Samet, Jonathan M

    2015-01-01

    Air pollution in many Chinese cities has been so severe in recent years that a special terminology, the "Chinese haze", was created to describe China's air quality problem. Historically, the problem of Chinese haze has developed several decades after Western high-income countries have significantly improved their air quality from the smog-laden days in the early- and mid-20(th) century. Hence it is important to provide a global and historical perspective to help China combat the current air pollution problems. In this regard, this article addresses the followings specific questions: (I) What is the Chinese haze in comparison with the sulfurous (London-type) smog and the photochemical (Los Angeles-type) smog? (II) How does Chinese haze fit into the current trend of global air pollution transition? (III) What are the major mitigation measures that have improved air quality in Western countries? and (IV) What specific recommendations for China can be derived from lessons and experiences from Western countries?

  14. HAZE POLLUTION IN INDONESIA MELDA KAMIL ARIADNO*

    African Journals Online (AJOL)

    Chikara Onda

    concerning Forest Fire Management as it frequently be the main source .... This meeting adopted the ASEAN Cooperation Plan on Transboundary ..... management. Furthermore, the ASEAN Coordinating Centre for. Transboundary Haze Pollution Control was established to function as a coordination center in dealing with ...

  15. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Akram, Fatma Elzahraa; El-Tayeb, Tarek; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-08-17

    Silver nanoparticles (AgNPs) are potential antimicrobials agents, which can be considered as an alternative to antibiotics for the treatment of infections caused by multi-drug resistant bacteria. The antimicrobial effects of double and triple combinations of AgNPs, visible blue light, and the conventional antibiotics amoxicillin, azithromycin, clarithromycin, linezolid, and vancomycin, against ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) were investigated. The antimicrobial activity of AgNPs, applied in combination with blue light, against selected isolates of MRSA was investigated at 1/2-1/128 of its minimal inhibitory concentration (MIC) in 24-well plates. The wells were exposed to blue light source at 460 nm and 250 mW for 1 h using a photon emitting diode. Samples were taken at different time intervals, and viable bacterial counts were determined. The double combinations of AgNPs and each of the antibiotics were assessed by the checkerboard method. The killing assay was used to test possible synergistic effects when blue light was further combined to AgNPs and each antibiotic at a time against selected isolates of MRSA. The bactericidal activity of AgNPs, at sub-MIC, and blue light was significantly (p linezolid in 30-40 % of the double combinations with no observed antagonistic interaction against the tested isolates. Combination of the AgNPs with vancomycin did not result in enhanced killing against all isolates tested. The antimicrobial activity against MRSA isolates was significantly enhanced in triple combinations of AgNPs, blue light and antibiotic, compared to treatments involving one or two agents. The bactericidal activities were highest when azithromycin or clarithromycin was included in the triple therapy compared to the other antibiotics tested. A new strategy can be used to combat serious infections caused by MRSA by combining AgNPs, blue light, and antibiotics. This triple therapy may include antibiotics, which

  16. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  17. Absence of red-light enhancement of phototropism in pea seedlings at limiting irradiances of blue light

    International Nuclear Information System (INIS)

    Britz, S.J.; Carroll, L.J. II

    1993-01-01

    The kinetics of phototropism were determined from infrared video recordings of third internodes of intact 7 d etiolated pea seedlings (Pisum sativum L. cv Alcan) exposed to continuous, unilateral blue light (460 nm). Small but significant curvatures (ca. 1–2°) were observed after a 2 h stimulation at 0.8 pmol m -2 s -1 . Both latency (i.e., lag time) and rate of curvature were dependent on irradiance between 0.8 and 80 pmol m -2 s -1 . Maximum rates of curvature at the highest irradiance of blue light were 74% greater in seedlings that received 2 min red light (270 J m -2 ) 20 h earlier, but latency was unaffected. An irradiance-response curve for curvature at 2 h was obtained with unilateral, broad-spectrum blue light between 4 and 90,000 pmol m -2 s -1 . Maximum tropistic response in dark-grown seedlings (ca. 25°) occurred between 30 and 1000 pmol m -2 s -1 . Peak response for red light-treated seedlings (ca. 55°) was obtained at 1000 pmol m -2 s -1 . Above this irradiance, phototropism declined by 12–15° for both red-treated and dark-grown plants. Red light did not significantly stimulate phototropism at lower, limiting irradiances of blue light. The data do not support the hypothesis that phytochrome affects the amount or activity of a photoreceptor for phototropism

  18. Hazing practices in higher education : a study with portuguese students

    OpenAIRE

    Caldeira, Suzana Nunes; Silva, Osvaldo; Mendes, Maria; Botelho, Susana P.

    2015-01-01

    Hazing practices in higher education institutions are perceived controversially. This study looked at the perception towards hazing practices of students from the University of the Azores in first cycle (n=247). It analyses if their perception was positive, emphasizing the integrative aspects of hazing practices, or if it was negative, inclining to define those practises like being violent and humiliating. The applied questionnaire measures 3 factors to define individual’s perception with haz...

  19. Blue lesions.

    Science.gov (United States)

    Longo, Caterina; Scope, Alon; Lallas, Aimilios; Zalaudek, Iris; Moscarella, Elvira; Gardini, Stefano; Argenziano, Giuseppe; Pellacani, Giovanni

    2013-10-01

    Blue color is found in a wide range of malignant and benign melanocytic and nonmelanocytic lesions and in lesions that result from penetration of exogenous materials, such as radiation or amalgam tattoo or traumatic penetration of particles. Discriminating between different diagnostic entities that display blue color relies on careful patient examination and lesion assessment. Dermoscopically, the extent, distribution, and patterns created by blue color can help diagnose lesions with specificity and differentiate between benign and malignant entities. This article provides an overview of the main diagnoses whereby blue color can be found, providing simple management rules for these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The nature and extent of college student hazing.

    Science.gov (United States)

    Allan, Elizabeth J; Madden, Mary

    2012-01-01

    This study explored the nature and extent of college student hazing in the USA. Hazing, a form of interpersonal violence, can jeopardize the health and safety of students. Using a web-based survey, data were collected from 11,482 undergraduate students, aged 18-25 years, who attended one of 53 colleges and universities. Additionally, researchers interviewed 300 students and staff at 18 of the campuses. Results reveal hazing among USA college students is widespread and involves a range of student organizations and athletic teams. Alcohol consumption, humiliation, isolation, sleep-deprivation and sex acts are hazing practices common across student groups. Furthermore, there is a large gap between the number of students who report experience with hazing behaviors and those that label their experience as hazing. To date, hazing prevention efforts in post-secondary education have focused largely on students in fraternities/sororities and intercollegiate athletes. Findings from this study can inform development of more comprehensive and research-based hazing prevention efforts that target a wider range of student groups. Further, data can serve as a baseline from which to measure changes in college student hazing over time.

  1. Depolarized haze of nano-porous AAO film via porosity and aspect control

    Science.gov (United States)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  2. Hazing in orientation programmes in boys-only secondary schools

    African Journals Online (AJOL)

    hazing; learner safety and wellbeing; masculinity; orientation programmes; psychological theories; survey ... such as the military, secret societies, universities and schools and sports teams (Wegener, 2001). ... proactive in this regard if legal charges of dangerous hazing activities made by parents or students are to be ...

  3. Integrating models to predict regional haze from wildland fire.

    Science.gov (United States)

    D. McKenzie; S.M. O' Neill; N. Larkin; R.A. Norheim

    2006-01-01

    Visibility impairment from regional haze is a significant problem throughout the continental United States. A substantial portion of regional haze is produced by smoke from prescribed and wildland fires. Here we describe the integration of four simulation models, an array of GIS raster layers, and a set of algorithms for fire-danger calculations into a modeling...

  4. Hazing in orientation programmes in boys-only secondary schools ...

    African Journals Online (AJOL)

    Hazing, associated with initiation, aims at taking newcomers from novice status to a status of functional and acknowledged members of a new group. However, the process is often dangerous, injurious, and usually secretive. Hazing may occur as an unauthorised component of institutionally sanctioned orientation ...

  5. Haze pollution in Indonesia | Ariadno | Journal of Sustainable ...

    African Journals Online (AJOL)

    A necessary way forward would be to ratify the 2002 Association of Southeast Asian Nations (ASEAN) Agreement on Transboundary Haze Pollution, which Indonesia fails to ratify. This paper discusses the problems of haze pollution in Indonesia, the applicable rules under international law including the state responsibility ...

  6. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure.

    Science.gov (United States)

    Ye, Tiantian; He, Rui; Wu, Yue; Shang, Lei; Wang, Shujun

    2018-04-01

    Isosulfan blue (IB) is being used as a lymphatic tracer has been approved by the FDA in 1981. This study aimed at improving lymphatic exposure of IB injection by osmotic pressure regulation to achieve step-by step lymphatic tracing. First, IB injection with appropriate osmotic pressure, stability, and suitable pH was prepared. Next, the lymphatic tracing ability of different osmotic pressure was studied to determine the blue-stained state of IB in three-level lymph nodes after subcutaneous administration. Furthermore, pharmacokinetics of lymphatic drainage, lymph node uptake, and plasma concentration was investigate to explore the improving law of the lymphatic tracing by osmotic pressure, and combined with tissue irritation to determine the optimal osmotic pressure. At last, the tissue distribution in mice of IB injection which had the property of optimal osmotic pressure was investigated. The results showed that increasing osmotic pressure could significantly reduce injection site retention and increase IB concentration of lymph node. The lymph nodes could be obviously blue-stained by IB injection which had 938 mmol/kg osmotic pressure and would not cause inflammatory reaction and blood exposure. The tissue distribution study suggested that IB injection which had 938 mmol/kg osmotic pressure was mainly distributed into gallbladder and duodenum that verified the reports that 90% IB was excreted through the feces through biliary excretion. In conclusion, this study provides the basic study to improve lymphatic exposure of IB injection by regulate the osmotic pressure and have the potential to be the helpful guidance for the elective lymph node dissection.

  7. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  8. Does Pluto Have a Haze Layer?

    Science.gov (United States)

    Elliot, James L.

    1997-01-01

    The goal of this research was to determine whether Pluto has a haze layer through observations (with the Kuiper Airborne Observatory) of a stellar occultation by Pluto that was originally predicted to occur on 1993 October 3. As described in the attached material, our extensive astrometric measurements determined that this occultation would not be visible from Earth, and we canceled plans to observe it with the KAO. Efforts were then directed toward improving our astrometric techniques so that we could find future occultations with which we could satisfy the original goals of the research proposed for this grant.

  9. Wine protein haze: mechanisms of formation and advances in prevention.

    Science.gov (United States)

    Van Sluyter, Steven C; McRae, Jacqui M; Falconer, Robert J; Smith, Paul A; Bacic, Antony; Waters, Elizabeth J; Marangon, Matteo

    2015-04-29

    Protein haze is an aesthetic problem in white wines that can be prevented by removing the grape proteins that have survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of more efficient processes for protein removal and haze prevention requires understanding the mechanisms such as the main drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.

  10. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  11. Variations of polycyclic aromatic hydrocarbons in ambient air during haze and non-haze episodes in warm seasons in Hangzhou, China.

    Science.gov (United States)

    Lu, Hao; Wang, Shengsheng; Wu, Zuliang; Yao, Shuiliang; Han, Jingyi; Tang, Xiujuan; Jiang, Boqiong

    2017-01-01

    To investigate the characteristics of polycyclic aromatic hydrocarbons (PAHs) during haze episodes in warm seasons, daily PM 2.5 and gaseous samples were collected from March to September 2015 in Hangzhou, China. Daily samples were further divided into four groups by the definition of haze according to visibility and relative humidity (RH), including non-haze (visibility, >10 km), light haze (visibility, 8-10 km, RH <90 %), medium haze (visibility, 5-8 km, RH <90 %), and heavy haze (visibility, <5 km, RH <90 %). Significantly higher concentrations of PM 2.5 -bound PAHs were found in haze days, but the mean PM 2.5 -bound PAH concentrations obviously decreased with the aggravation of haze pollution from light to heavy. The gas/particle partitioning coefficients of PAHs decreased from light-haze to heavy-haze episodes, which indicated that PM 2.5 -bound PAHs were restricted to adhere to the particulate phase with the aggravation of haze pollution. Absorption was considered the main mechanism of gas/particle partitioning of PAHs from gaseous to particulate phase. Analysis of air mass transport indicated that the PM 2.5 -bound PAH pollution in haze days was largely from regional sources but also significantly affected by long-range air mass transport. The inhalation cancer risk associated with PAHs exceeded the acceptable risk level markedly in both haze and non-haze days.

  12. The effects of El Niño-Southern Oscillation on the winter haze pollution of China

    Science.gov (United States)

    Zhao, Shuyun; Zhang, Hua; Xie, Bing

    2018-02-01

    It has been reported in previous studies that El Niño-Southern Oscillation (ENSO) influenced not only the summer monsoon, but also the winter monsoon over East Asia. This contains some clues that ENSO may affect the winter haze pollution of China, which has become a serious problem in recent decades, through influencing the winter climate of East Asia. In this work, we explored the effects of ENSO on the winter (from December to February) haze pollution of China statistically and numerically. Statistical results revealed that the haze days of southern China tended to be fewer (more) than normal in El Niño (La Niña) winter, whereas the relationships between the winter haze days of northern and eastern China and ENSO were not significant. Results from numerical simulations also showed that ENSO influenced the winter atmospheric anthropogenic aerosol content over southern China more obviously than it did over northern and eastern China. Under the emission level of aerosols for the year 2010, winter atmospheric anthropogenic aerosol content over southern China was generally greater (less) than normal in El Niño (La Niña) winter. This was because the transport of aerosols from South and Southeast Asia to southern China was enhanced (weakened), which masked the better (worse) scavenging conditions for aerosols in El Niño (La Niña) winter. The frequency distribution of the simulated daily surface concentrations of aerosols over southern China indicated that the region tended to have fewer clean and moderate (heavy) haze days, but more heavy (moderate) haze days in El Niño (La Niña) winter.

  13. Pyrene-Based Blue AIEgen: Enhanced Hole Mobility and Good EL Performance in Solution-Processed OLEDs

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2017-12-01

    Full Text Available Organic luminogens with strong solid-state emission have attracted much attention for their widely practical applications. However, the traditional organic luminogens with planar conformations often suffer from the notorious aggregation-caused quenching (ACQ effect in solid state for the π–π stacking. Here, a highly efficient blue emitter TPE-4Py with an aggregation-induced emission (AIE effect is achieved by combining twisted tetraphenylethene (TPE core and planar pyrene peripheries. When the emitter was spin-coated in non-doped OLEDs with or without a hole-transporting layer, comparable EL performance was achieved, showing the bifunctional property as both an emitter and a hole-transporting layer. Furthermore, its EL efficiency was promoted in doped OLED, even at a high doping concentration (50%, because of its novel AIE effect, with a current efficiency up to 4.9 cd/A at 484 nm.

  14. Factors Contributing to Haze Pollution: Evidence from Macao, China

    Directory of Open Access Journals (Sweden)

    Wai-Ming To

    2017-09-01

    Full Text Available Haze is a major environmental concern in many cities because it adversely affects people’s physiological and psychological well-being. This paper examines the extent of haze in Macao during the period 1986–2016. It identifies the relationships between haze, energy use, and meteorological conditions directly. The haze in Macao changed over the period 1986–2016 with air pollution getting worse and then improving after 2007. Specifically, the number of haze hours increased from 3 in 1986 to 766 in 2007, and then dropped to 57 in 2016, while the total energy use increased from 12,246 TJ in 1986 to 37,144 TJ in 2007, and then to 42,405 TJ in 2016. As per primary energy, Macao used 12,096 TJ in 1986, 21,388 TJ in 2007, and 16,647 TJ in 2016 excluding aviation kerosene. Bivariate correlations show that haze was most positively and significantly associated with annual primary energy use. Multiple regression analysis indicates that the number of hours with haze was significantly, positively related to the consumption of gas oil/diesel, fuel oil, and natural gas in Macao and aviation kerosene. Nevertheless, the improvement in Macao could come at a cost to areas in downwind of Zhuhai’s coal power stations supplying Macao’s electricity energy.

  15. An integrated campaign for investigation of winter-time continental haze over Indo-Gangetic Basin and its radiative effects

    International Nuclear Information System (INIS)

    Das, Sanat Kumar; Chatterjee, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji

    2015-01-01

    An outflow of continental haze occurs from Indo-Gangetic Basin (IGB) in the North to Bay of Bengal (BoB) in the South. An integrated campaign was organized to investigate this continental haze during December 2013–February 2014 at source and remote regions within IGB to quantify its radiative effects. Measurements were carried out at three locations in eastern India; 1) Kalas Island, Sundarban (21.68°N, 88.57°E) — an isolated island along the north-east coast of BoB, 2) Kolkata (22.57°N, 88.42°E) — an urban metropolis and 3) Siliguri (26.70°N, 88.35°E) — an urban region at the foothills of eastern Himalayas. Ground-based AOD (at 0.5 μm) is observed to be maximum (1.25 ± 0.18) over Kolkata followed by Siliguri (0.60 ± 0.17) and minimum over Sundarban (0.53 ± 0.18). Black carbon concentration is found to be maximum at Kolkata (21.6 ± 6.6 μg·m −3 ) with almost equal concentrations at Siliguri (12.6 ± 5.2 μg·m −3 ) and Sundarban (12.3 ± 3.0 μg·m −3 ). Combination of MODIS-AOD and back-trajectories analysis shows an outflow of winter-time continental haze originating from central IGB and venting out through Sundarban towards BoB. This continental haze with high extinction coefficient is identified up to central BoB using CALIPSO observations and is found to contribute ~ 75% to marine AOD over central BoB. This haze produces significantly high aerosol radiative forcing within the atmosphere over Kolkata (75.4 Wm −2 ) as well as over Siliguri and Sundarban (40 Wm −2 ) indicating large forcing over entire IGB, from foothills of the Himalayas to coastal region. This winter-time continental haze also causes about similar radiative heating (1.5 K·day −1 ) from Siliguri to Sundarban which is enhanced over Kolkata (3 K·day −1 ) due to large emission of local urban aerosols. This high aerosol heating over entire IGB and coastal region of BoB can have considerable impact on the monsoonal circulation and more importantly, such haze

  16. Studies on hydrothermal synthesis of photolumniscent rare earth (Eu3+ & Tb3+) doped NG@FeMoO4 for enhanced visible light photodegradation of methylene blue dye

    Science.gov (United States)

    Singh, R.; Kumar, M.; Khajuria, H.; Sharma, S.; Sheikh, H. Nawaz

    2018-02-01

    FeMoO4 nanorods and their rare earth (Eu3+ and Tb3+) doped composites with nitrogen doped graphene (NG) were synthesized by facile hydrothermal method in aqueous medium. X-ray diffraction (XRD) analysis of the as-synthesized samples was done to study the phase purity and crystalline nature. FTIR and Raman Spectroscopy have been studied for investigating the bonding in nanostructures. The surface morphology of the samples was investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The photolumniscent nature of the samples was investigated by the using the fluorescence spectrophotometer. The photocatalytic degradation efficiency of the prepared pure FeMoO4 and its rare earth doped composites with nitrogen doped graphene was evaluated as function of visible light irradiation versus concentration of methylene blue (MB dye). The prepared nanocomposites show enhanced photocatalytic efficiency as compared to the bare FeMoO4 nanorods.

  17. Polarization of Hazes and Aurorae on Jupiter

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; McLean, Will; PACA_Jupiter

    2017-10-01

    Our solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Changes in the clouds/thermal filed can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for outer planets is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. For example, at the equator, much of the observed reflected radiation is due to the presence of clouds and therefore, low polarization. Polar asymmetry exists between the two poles, while the planetary disk is unpolarized. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project. With NASA/Juno mission in a 53-day orbit around Jupiter, and recent outbreaks in the atmosphere, changes in the polarimetric signature will provide insight to the changes occurring in the atmosphere. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers based in the U.K., Australia and Europe. France

  18. Detection of haze and/or cloud

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Mukai, Makiko; Kokhanovsky, Alexander

    2015-04-01

    It is highly likely that large-scale air pollution will continue to occur because air pollution becomes severe due to both the increasing emissions of the anthropogenic aerosols and the complicated behavior of natural aerosols, especially in Asia. It is natural to consider that incident solar light multiply interacts with the atmospheric aerosols due to dense radiation field in such a heavy haze. Accordingly efficient and practical algorithms for radiation simulation are indispensable to retrieve aerosol characteristics in a hazy atmosphere. It has been shown that aerosol retrieval in the hazy atmosphere is achieved based on MSOS (method of successive order of scattering) [1]. The satellite polarimetric sensor POLDER-1, 2, 3 has shown that the spectro-photopolarimetry of the terrestrial atmosphere is very useful for the observation of the Earth, especially for atmospheric particles. JAXA has been developing the new Earth observing system, GCOM satellite. GCOM-C will board the polarimetric sensor SGLI (second-generation global imager) in 2017. The SGLI has two polarization channels at near-infrared wavelengths of 670 and 870 nm. Furthermore, EUMETSAT plans to collect polarization measurements with a POLDER follow on 3MI/EPS-SG in 2021. Then the efficient algorithms for radiation simulation in the optically thick atmosphere by using polarization information denoted by Stokes parameters are shown in this work. It is of interest to mention that multi-spectral data are available for detection and/or distinction of hazy aerosol and/or cloud. In this work our MSOS is expected to be available for atmospheric particle retrieval in a mixture case of cloud and haze. The MSOS is available for the radiation simulation reflected from the optically semi-infinite atmosphere.[1]. Here we intend to improve MSOS-scalar into more efficient and practical form, and further into MSOS-vector form. We show here that a dense aerosol episode can be well simulated by a semi-infinite radiation

  19. Tropospheric haze and colors of the clear daytime sky.

    Science.gov (United States)

    Lee, Raymond L

    2015-02-01

    To casual observers, haze's visible effects on clear daytime skies may seem mundane: significant scattering by tropospheric aerosols visibly (1) reduces the luminance contrast of distant objects and (2) desaturates sky blueness. However, few published measurements of hazy-sky spectra and chromaticities exist to compare with these naked-eye observations. Hyperspectral imaging along sky meridians of clear and hazy skies at one inland and two coastal sites shows that they have characteristic colorimetric signatures of scattering and absorption by haze aerosols. In addition, a simple spectral transfer function and a second-order scattering model of skylight reveal the net spectral and colorimetric effects of haze.

  20. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Directory of Open Access Journals (Sweden)

    H. Li

    2018-04-01

    Full Text Available Compared to the severe winter haze episodes in the North China Plain (NCP, haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1 measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang, the average PM1 concentrations were 35.0 and 64.2 µg m−3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA, and low-volatility oxygenated organic aerosol (LV-OOA in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high

  1. Photodynamic antibacterial enhanced effect of methylene blue-gold nanoparticles conjugate on Staphylococcal aureus isolated from impetigo lesions in vitro study.

    Science.gov (United States)

    Tawfik, Abeer Attia; Alsharnoubi, Jehan; Morsy, Mona

    2015-06-01

    Staphylococcal aureus is the most common organism which has been encountered in impetigo infection. Gold nanoparticles can be used as a tool to deliver antimicrobials or to enhance photodynamic destruction of bacteria. To evaluate the photodynamic effect of methylene blue gold nanoparticles (MB-gold nanoparticles conjugate) on S. aureus which were isolated from impetigo lesions. Twenty children were diagnosed clinically as impetigo, and aged from 3 to 5 years of both sexes were recruited in the study. Two bacteriological samples were collected from each patient, identified and cultured. Samples of S. aureus of a concentration of 10(-1)ml were divided into four groups. S. aureus was treated by MB-gold nanoparticles conjugate, gold nanoparticles, MB, and the fourth group served as a control group. Diode laser (660 nm) was used for photoactivation. The bacterial growth inhibition was determined by two methods: the percentage of reduction of viable bacteria count and the optical density (O.D) of bacterial growth. The highest significant inhibitory effect on S. aureus was obtained with MB-gold nanoparticles conjugate when irradiated by diode laser 660 nm (P < 0.0001). The percentage of viable bacteria was 3%. The photoactivated gold nanoparticles showed a significant inhibitory effect on bacterial growth (P < 0.05). A non-significant inhibitory effect was elicited in other groups. The photoactivated MB-gold nanoparticles conjugate showed the maximum inhibitory effect on S. aureus activity. The gold nanoparticles proved efficacy as a drug delivery system. It enhanced the photodynamic antibacterial effect of methylene blue. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Suman; Bahadur, Lal, E-mail: lbahadur@bhu.ac.in

    2015-05-15

    A single dye usually absorbs light only in a limited range of solar spectrum. In order to widen the absorption range, a combination of dyes, namely, Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based dye sensitized solar cell (DSSC). It has been found that the DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. It has been ascribed to the enhanced absorption of light particularly in higher energy region (λ=400–550 nm) when both dyes were used together as was evident from the absorption spectra of dyes adsorbed onto ZnO electrode. The DSSC using ZnO electrode sensitized by mixed dyes provided J{sub SC}=5.6 mA cm{sup −2}, V{sub OC}=0.606 V, FF=0.53 and maximum energy conversion efficiency (η) of 1.35% on illuminating the cell with visible light of 150 mW cm{sup −2} intensity. - Highlights: • Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based DSSC. • DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. • Enhanced absorption of light particularly in higher energy region (λ=400–550 nm) have been observed when both dyes were used together. • The DSSC using ZnO electrode sensitized by mixed dyes provided J{sub sc}=5.6 mA cm{sup −2}, V{sub oc}=0.606 V, FF=0.53. • Efficiency of 1.35% is achieved at visible light intensity of 150 mW cm{sup −2}.

  3. Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

    Science.gov (United States)

    Xie, Yuanyuan; Ye, Xingnan; Ma, Zhen; Tao, Ye; Wang, Ruyu; Zhang, Ci; Yang, Xin; Chen, Jianmin; Chen, Hong

    2017-06-01

    We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA / PM1. 0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the representative PM episode, the calculated PM was always consistent with the measured PM1. 0, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three banana-shaped particle evolutions were consistent with the rapid increase of PM1. 0 mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.

  4. Blue gods, blue oil, and blue people.

    Science.gov (United States)

    Fairbanks, V F

    1994-09-01

    Studies of the composition of coal tar, which began in Prussia in 1834, profoundly affected the economies of Germany, Great Britain, India, and the rest of the world, as well as medicine and surgery. Such effects include the collapse of the profits of the British indigo monopoly, the growth in economic power of Germany based on coal tar chemistry, and an economic crisis in India that led to more humane tax laws and, ultimately, the independence of India and the end of the British Empire. Additional consequences were the development of antiseptic surgery and the synthesis of a wide variety of useful drugs that have eradicated infections and alleviated pain. Many of these drugs, particularly the commonly used analgesics, sulfonamides, sulfones, and local anesthetics, are derivatives of aniline, originally called "blue oil" or "kyanol." Some of these aniline derivatives, however, have also caused aplastic anemia, agranulocytosis, and methemoglobinemia (that is, "blue people"). Exposure to aniline drugs, particularly when two or three aniline drugs are taken concurrently, seems to be the commonest cause of methemoglobinemia today.

  5. Energetics study of West African dust haze

    International Nuclear Information System (INIS)

    Omotosho, J.B.

    1988-10-01

    The causes of the large and often persistent negative anomalies of equivalent potential temperature observed in the 900-700 hpa layer and which occurs in association with dust haze outbreaks over Kano in winter is investigated. Energetics results indicate that the primary mechanism for such anomalies is the horizontal transport of drier and, to a lesser extent, colder air at the upper levels by eddy motions, with consequent destabilization of the atmospheric boundary layer over the station. This is suggested as the mobilization mechanism responsible for raising dust from the surface over the Bilma/Faya-Largeau source region much further poleward. Temperature inversions were also found to be more pronounced during dust spells than in clear periods. (author). 18 refs, 6 figs, 2 tabs

  6. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  7. Biomass-burning emissions and associated haze layers over Amazonia

    Science.gov (United States)

    Andreae, M. O.; Browell, E. V.; Gregory, G. L.; Harriss, R. C.; Hill, G. F.; Sachse, G. W.; Talbot, R. W.; Garstang, M.; Jacob, D. J.; Torres, A. L.

    1988-01-01

    The characteristics of haze layers, which were visually observed over the central Amazon Basin during many of the Amazon Boundary Layer Experiment 2A flights in July/August 1985, were investigated by remote and in situ measurements, using the broad range of instrumentation and sampling equipment on board the Electra aircraft. It was found that these layers strongly influenced the chemical and optical characteristics of the atmosphere over the eastern Amazon Basin. Relative to the regional background, the concentrations of CO, CO2, O3, and NO were significantly elevated in the plumes and haze layers, with the NO/CO ratio in fresh plumes much higher than in the aged haze layers. The haze aerosol was composed predominantly of organic material, NH4, K(+), NO3(-), SO4(2-), and organic anions (formate, acetate, and oxalate).

  8. Enhanced photo-, sono- and sonophotocatalysis of methylene blue via SnO2 nanoparticle supported on nanographene platelets (NGP)

    Science.gov (United States)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-07-01

    In our previous study, we have reported the catalytic (photo- and sono-) performance of SnO2 nanoparticles in methylene blue (MB) removal from aqueous solution. In this study, SnO2/nanographene platelets (NGP) composites were fabricated by depositing SnO2 nanoparticle onto nanographene platelets surface to develop photo-, sono-, and sonophotocatalysts, SnO2 nanoparticle, and SnO2/NGP composites were successfully synthesized using the sol-gel and coprecipitation method, respectively. The nanographene platelets (NGP) content was varied from 5, 10, and 15 weight percentages (wt.%). The optical properties and thermal stability of the samples were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Thermal Gravimetric Analysis (TGA). The catalytic ability of the samples was investigated using photo-, sono-, and sonophoto degradation of MB which was observed when nanographene platelets (NGP) were added into SnO2 nanocomposite. The photo-, sono- and sonophotocatalytic activities of SnO2/NGP composites on dyes were analyzed by measuring the change in absorbance of dyes under UV-spectrophotometer. The degradation of the organic dyes has been calculated by monitoring the degradation in concentration of the dyes before and after irradiation of UV light, ultrasound, and both of them respectively. The influence of other parameters such as catalyst dosage, pH, and scavenger have also been investigated. The results showed that SnO2/NGP composite with 10 weight percent (wt.%) has better catalytic performance than pure SnO2 nanoparticle. The reusability tests have also been done to ensure the stability of the used catalysts.

  9. Haze and health impacts in ASEAN countries: a systematic review.

    Science.gov (United States)

    Ramakreshnan, Logaraj; Aghamohammadi, Nasrin; Fong, Chng Saun; Bulgiba, Awang; Zaki, Rafdzah Ahmad; Wong, Li Ping; Sulaiman, Nik Meriam

    2018-01-01

    Seasonal haze episodes and the associated inimical health impacts have become a regular crisis among the ASEAN countries. Even though many emerging experimental and epidemiological studies have documented the plausible health effects of the predominating toxic pollutants of haze, the consistency among the reported findings by these studies is poorly understood. By addressing such gap, this review aimed to critically highlight the evidence of physical and psychological health impacts of haze from the available literature in ASEAN countries. Systematic literature survey from six electronic databases across the environmental and medical disciplines was performed, and 20 peer-reviewed studies out of 384 retrieved articles were selected. The evidence pertaining to the health impacts of haze based on field survey, laboratory tests, modelling and time-series analysis were extracted for expert judgement. In specific, no generalization can be made on the reported physical symptoms as no specific symptoms recorded in all the reviewed studies except for throat discomfort. Consistent evidence was found for the increase in respiratory morbidity, especially for asthma, whilst the children and the elderly are deemed to be the vulnerable groups of the haze-induced respiratory ailments. A consensual conclusion on the association between the cardiovascular morbidity and haze is unfeasible as the available studies are scanty and geographically limited albeit of some reported increased cases. A number of modelling and simulation studies demonstrated elevating respiratory mortality rates due to seasonal haze exposures over the years. Besides, evidence on cancer risk is inconsistent where industrial and vehicular emissions are also expected to play more notable roles than mere haze exposure. There are insufficient regional studies to examine the association between the mental health and haze. Limited toxicological studies in ASEAN countries often impede a comprehensive understanding of

  10. The link between aggression and hazing in the military team

    Directory of Open Access Journals (Sweden)

    Berchatova J.V.

    2017-01-01

    Full Text Available the paper deals with the problem of aggressive behavior in the military team and studies its relationship with the hazing development. A detailed definition of the concept of “aggression” is given in this article. The author shows an empirical study of the problem of occurrence of hazing in the military collective and the results of the study data, using Psychometric Expert program.

  11. Regional Haze Evolved from Peat Fires - an Overview

    Science.gov (United States)

    Hu, Yuqi; Rein, Guillermo

    2016-04-01

    This work provides an overview of haze episodes, their cause, emissions and health effects found in the scientific literature. Peatlands, the terrestrial ecosystems resulting from the accumulation of partially decayed vegetation, become susceptible to smouldering fires because of natural droughts or anthropogenic-induced drainages. Once ignited, smouldering peat fires persistently consume large amounts of soil carbon in a flameless form. It is estimated that the average annual carbon gas emissions (mainly CO2 and CO) from peat fires are equivalent to 15% of manmade emissions, representing influential perturbation of global carbon circle. In addition to carbon emissions, smouldering peat fires emit substantial quantities of heterogeneous smoke, which is responsible for haze phenomena, has not yet been fully studied. Peat-fire-derived smoke is characterized by high concentration of particulate matter (PM), ranging from nano-scale ultrafine fraction (PM1, particle diameter Indonesia haze episode while 20 million people suffered from respiratory problems in Indonesia alone. Fine PM fraction generated from peat fires could penetrate into lower respiratory tracks and exacerbate respiratory diseases including chronic bronchitis, emphysema and asthma. Epidemiological studies show that direct exposure to haze pollution is associated with decreased pulmonary function and increased morbidity and mortality among individuals with pre-existent cardiovascular diseases. Reported cases of acute respiratory infection increased 3.8 times during the 1997 Indonesia haze episode (1,446,120 cases in total with 527 haze-related deaths). Collectively, peat fire and the resultant haze considerably affect the local society in many aspects, and more thorough research need to be carried out for further haze mitigation and governance. Corresponding author: Dr. Guillermo Rein: g.rein@imperial.ac.uk

  12. The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s

    Science.gov (United States)

    Yin, Zhicong; Wang, Huijun

    2018-04-01

    The haze pollution in December has become increasingly serious over recent decades and imposes damage on society, ecosystems, and human health. In addition to anthropogenic emissions, climate change and variability were conducive to haze in China. In this study, the relationship between the snow cover over eastern Europe and western Siberia (SCES) and the number of haze days in December in central North China was analyzed. This relationship significantly strengthened after the mid-1990s, which is attributed to the effective connections between the SCES and the Eurasian atmospheric circulations. During 1998-2016, the SCES significantly influenced the soil moisture and land surface radiation, and then the combined underlying drivers of enhanced soil moisture and radiative cooling moved the the East Asia jet stream northward and induced anomalous, anti-cyclonic circulation over central North China. Modulated by such atmospheric circulations, the local lower boundary layer, the decreased surface wind, and the more humid air were conducive to the worsening dispersion conditions and frequent haze occurrences. In contrast, from 1979 to 1997, the linkage between the SCES and soil moisture was negligible. Furthermore, the correlated radiative cooling was distributed narrowly and far from the key area of snow cover. The associated atmospheric circulations with the SCES were not significantly linked with the ventilation conditions over central North China. Consequently, the relationship between the SCES and the number of hazy days in central North China was insignificant before the mid-1990s but has strengthened and has become significant since then.

  13. The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2018-04-01

    Full Text Available The haze pollution in December has become increasingly serious over recent decades and imposes damage on society, ecosystems, and human health. In addition to anthropogenic emissions, climate change and variability were conducive to haze in China. In this study, the relationship between the snow cover over eastern Europe and western Siberia (SCES and the number of haze days in December in central North China was analyzed. This relationship significantly strengthened after the mid-1990s, which is attributed to the effective connections between the SCES and the Eurasian atmospheric circulations. During 1998–2016, the SCES significantly influenced the soil moisture and land surface radiation, and then the combined underlying drivers of enhanced soil moisture and radiative cooling moved the the East Asia jet stream northward and induced anomalous, anti-cyclonic circulation over central North China. Modulated by such atmospheric circulations, the local lower boundary layer, the decreased surface wind, and the more humid air were conducive to the worsening dispersion conditions and frequent haze occurrences. In contrast, from 1979 to 1997, the linkage between the SCES and soil moisture was negligible. Furthermore, the correlated radiative cooling was distributed narrowly and far from the key area of snow cover. The associated atmospheric circulations with the SCES were not significantly linked with the ventilation conditions over central North China. Consequently, the relationship between the SCES and the number of hazy days in central North China was insignificant before the mid-1990s but has strengthened and has become significant since then.

  14. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Photochemistry and Haze Observations

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh; Momary, Thomas W.; Wilson, Eric; CIRS, ISS, UVIS, VIMS

    2017-10-01

    After 13 years of observing Saturn, Cassini would have ended nearly a half Saturnian year. During this epoch, the ring shadow has moved from covering much of the northern hemisphere to covering a large swath southern hemisphere. The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn’s axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds. This effect magnifies the effect due to axial tilt alone and acts to turn off photochemistry and haze generation. This effect is seen in both the presence of a bluish Rayleigh-scattering atmosphere in 2004 in the northern hemisphere and color change to blue in the northern hemisphere.Previous work examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. We report on the impact of the oscillating ring shadow, in addition to variation due to axial tilt, on photolysis and production rates of hydrocarbons and phosphine in Saturn’s stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. We assess their impact on a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini’s CIRS, UVIS, and VIMS datasets that provide an estimate of the evolving haze content. In particular, we will examine how the region inside Saturn’s famous hexagonal jet stream changes over time from a relatively clear atmosphere to a hazy one. We also explore how the hexagon acts like a barrier to transport, isolating Saturn’s north polar region from outside influences of photochemically-generated molecules and haze.The research described in this paper was

  15. Combination of oocyte and zygote selection by brilliant cresyl blue (BCB) test enhanced prediction of developmental potential to the blastocyst in cattle.

    Science.gov (United States)

    Mirshamsi, S M; Karamishabankareh, H; Ahmadi-Hamedani, M; Soltani, L; Hajarian, H; Abdolmohammadi, A R

    2013-01-30

    The cumulus oocyte complexes (COCs) were obtained from local abattoir. After aspiration, the COCs were allotted into four treatments to evaluation of brilliant cresyl blue (BCB) test. Control treatment (C): oocytes were cultured directly (without exposure to BCB) after recovery in in vitro production (IVP) process. Oocyte treatment (OBCB): immediately after aspiration, COCs were incubated in modified Dulbecco's phosphate-buffered saline (mDPBS) supplemented with 26μM of BCB for 90min and classified into two classes: oocytes with blue cytoplasm coloration (OBCB+: more competent oocytes) and oocytes without blue cytoplasm coloration (OBCB-: low competent oocytes). Directly after classification, the oocytes were maintained undisrupted in the IVP process. Zygote treatment (ZBCB): After oocyte collection, maturation and fertilization, zygotes were stained with BCB for 10min and categorized into three ways, according to whether they were highly stained (ZBCB++: low competent zygotes), moderately stained (ZBCB+: moderate competent zygotes) and unstained (ZBCB-: more competent zygotes). Directly after classification, the zygotes were maintained undisrupted in the culture process. Oocyte and zygote treatments (OBCB/ZBCB): COCs were stained with BCB after recovery and classified into two classes (OBCB+ and OBCB-). After fertilization, the zygotes produced from OBCB+ and OBCB- oocytes were further stained with BCB for 10min and categorized six ways (OBCB+/ZBCB++, OBCB+/ZBCB+, OBCB+/ZBCB-, OBCB-/ZBCB++, OBCB-/ZBCB+ and OBCB-/ZBCB-). Directly after classification, the zygotes were maintained undisrupted in the culture process. The selection rate produced from OBCB treatment (OBCB+; 54.3%) was greater (PBCB test (OBCB+/ZBCB-: 28.8%) was less (PBCB test (ZBCB-: 44.3%or OBCB+: 54.3%). The percentage of blastocyst production from OBCB+ oocytes (35.7%) and ZBCB- zygotes (36.6%) were greater (P0.05) in the percentages of blastocyst production between OBCB+ oocytes (35.7%) and ZBCB

  16. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia

    Science.gov (United States)

    Ahmed, Manan; Guo, Xinxin; Zhao, Xing-Min

    2016-09-01

    Trace metal species and surface active agent (surfactant) emitted into the atmosphere from natural and anthropogenic source can cause various health related and environmental problems. Limited data exists for determinations of atmospheric particulate matter particularly trace metals and surfactant concentration in Malaysia during biomass burning haze episode. We used simple and validated effective methodology for the determination of trace metals and surfactant in atmospheric particulate matter (TSP & PM2.5) collected during the biomass burning haze episode in Kampar, Malaysia from end of August to October 2015. Colorimetric method of analysis was undertaken to determine the concentration of anionic surfactant as methylene blue active substance (MBAS) and cationic surfactant as disulphine blue active substance (DBAS) using a UV-Visible spectrophotometer. Particulate samples were also analyzed for trace metals with inductive coupled plasma mass spectrometer (ICP-MS) followed by extraction from glass microfiber filters with close vessel microwave acid digestion. The result showed that the concentrations of surfactant in both samples (TSP & PM2.5) were dominated by MBAS (0.147-4.626 mmol/m3) rather than DBAS (0.111-0.671 mmol/m3) and higher than the other researcher found. Iron (147.31-1381.19 μg/m3) was recorded leading trace metal in PM followed by Al, Zn, Pb, Cd, Cr and others. During the haze period the highest mass concentration of TSP 313.34 μg/m3 and 191.07 μg/m3 for PM2.5 were recorded. Furthermore, the backward air trajectories from Kampar in north of peninsular Malaysia confirmed that nearly all the winds paths originate from Sumatera and Kalimantan, Indonesia.

  17. [Characteristics and sources of particulate polycyclic aromatic hydrocarbons (PAHs) during haze period in Guangzhou].

    Science.gov (United States)

    Duan, Jing-Chun; Tan, Ji-Hua; Sheng, Guo-Ying; Fu, Jia-Mo

    2009-06-15

    PM10 (particulates matter with aerodynamic diameter Guangzhou city between March 2002 and June 2003. Polycyclic aromatic hydrocarbons (PAHs) were studied during haze and non-haze periods in both summer and winter. PAHs pollution was serious in haze period compared with that in non-haze period, especially in winter. Compared with non-haze period, Phe, Ant, Flu, Pyr, BaA, Chr, IcdP, DahA and BghiP were more abundant in haze period in summer, and BaF, BeP, BaP, Pery, IcdP, DahA and BghiP were more abundant in haze period in winter. The BEQ values were 3.5 ng x m(-3), 3.35 ng x m(-3), 1.43 ng x m(-3) and 13.0 ng x m(-3) in non-haze in summer, in haze in summer, in non-haze in winter and in haze in winter, respectively. The BEQ values in non-haze in summer, in haze in summer and in non-haze in winter in Guangzhou (average: 2.76 ng x m(-3)) were relatively low in Chinese cities, and comparable with oversea cities. However, the BEQ value in haze in winter was relatively high in Chinese cities. It indicated that haze in winter would impair human health seriously. The diagnostic ratios suggested gasoline and diesel vehicle emission were main sources of PAHs in summer, and diesel vehicle and coal combustion emission were main sources of PAHs in winter; PAHs may come from both local sources and long-range transportation in non-haze in winter.

  18. WMAP haze: Directly observing dark matter?

    International Nuclear Information System (INIS)

    Forbes, Michael McNeil; Zhitnitsky, Ariel R.

    2008-01-01

    In this paper, we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 13 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 11 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with - and could entirely explain - the so-called 'WMAP haze': a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (WMAP). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.

  19. Posthuman blues

    CERN Document Server

    Tonnies, Mac

    2013-01-01

    Posthuman Blues, Vol. I is first volume of the edited version of the popular weblog maintained by author Mac Tonnies from 2003 until his tragic death in 2009. Tonnies' blog was a pastiche of his original fiction, reflections on his day-to-day life, trenchant observations of current events, and thoughts on an eclectic range of material he culled from the Internet. What resulted was a remarkably broad portrait of a thoughtful man and the complex times in which he lived, rendered with intellige...

  20. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Directory of Open Access Journals (Sweden)

    S. L. Tian

    2016-01-01

    Full Text Available Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65–1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43–0.65 µm, sulfate and nitrate, which have a size range of 0.65–1.1 µm, calcium, which has a size range of 5.8–9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1–9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8

  1. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2016-01-01

    Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65-1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43-0.65 µm, sulfate and nitrate, which have a size range of 0.65-1.1 µm, calcium, which has a size range of 5.8-9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1-9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8 % for coarse particles), coal combustion (17

  2. Laboratory Simulations on Haze Formation in Cool Exoplanet Atmospheres

    Science.gov (United States)

    He, Chao; Horst, Sarah; Lewis, Nikole; Yu, Xinting; McGuiggan, Patricia; Moses, Julianne I.

    2017-10-01

    The Kepler mission has shown that the most abundant types of planets are super-Earths and mini-Neptunes among ~3500 confirmed exoplanets, and these types of exoplanets are expected to exhibit a wide variety of atmospheric compositions. Recent transit spectra have demonstrated that clouds and/or hazes could play a significant role in these planetary atmospheres (Deming et al. 2013, Knutson et al. 2014, Kreidberg et al. 2014, Pont, et al. 2013). However, very little laboratory work has been done to understand the formation of haze over a broad range of atmospheric compositions. Here we conducted a series of laboratory simulations to investigate haze formation in a range of planetary atmospheres using our newly built Planetary HAZE Research (PHAZER) chamber (He et al. 2017). We ran experimental simulations for nine different atmospheres: three temperatures (300 K, 400 K, and 600 K) and three metallicities (100, 1000, and 10000 times solar metallicity) using AC glow discharge as an energy source to irradiate gas mixtures. We found that haze particles are formed in all nine experiments, but the haze production rates are dramatically different for different cases. We investigated the particle sizes of the haze particles deposited on quartz discs using atomic force microscopy (AFM). The AFM images show that the particle size varies from 30 nm to 200 nm. The haze particles are more uniform for 100x solar metallicity experiments (30 nm to 40 nm) while the particles sizes for 1000x and 10000x solar metallicity experiments have wider distributions (30 nm to 200 nm). The particle size affects the scattering of light, and thus the temperature structure of planetary atmospheres. The haze production rates and particle size distributions obtained here can serve as critical inputs to atmospheric physical and chemical tools to understand the exoplanetary atmospheres and help guide future TESS and JWST observations of super-Earths and mini-Neptunes.Ref:Deming, D., et al. 2013, Ap

  3. Butterfly wing colors : glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Giraldo, Marco A.; Leertouwer, Hein L.

    2010-01-01

    The wings of the swordtail butterfly Graphium sarpedon nipponum contain the bile pigment sarpedobilin, which causes blue/green colored wing patches. Locally the bile pigment is combined with the strongly blue-absorbing carotenoid lutein, resulting in green wing patches and thus improving camouflage.

  4. The impact of haze on the adolescent's acute respiratory disease: A single institution study

    Directory of Open Access Journals (Sweden)

    Wan Fairos Wan Yaacob

    2016-05-01

    Conclusions: Student with haze effect documented much higher symptoms during haze especially female students. Symptoms such as headache, wheezing and mucus were noted among the normal secondary school children in Kota Bharu.

  5. Labor and Population Program: The Dangers of Smoke Haze. Mortality in Malaysia from Indonesian Forest Fires

    National Research Council Canada - National Science Library

    2002-01-01

    .... All told, about 70 million people lived in areas affected by the smoke haze. An important research and policy concern is whether the smoke haze caused by the forest fires had significant health or mortality...

  6. Synthesis and Characterization of Ag-Ag2O/TiO2@polypyrrole Heterojunction for Enhanced Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-05-01

    Full Text Available Hybrid multi-functional nanomaterials comprising two or more disparate materials have become a powerful approach to obtain advanced materials for environmental remediation applications. In this work, an Ag-Ag2O/TiO2@polypyrrole (Ag/TiO2@PPy heterojunction has been synthesized by assembling a self-stabilized Ag-Ag2O (p type semiconductor (denoted as Ag and polypyrrole (π-conjugated polymer on the surface of rutile TiO2 (n type. Ag/TiO2@PPy was synthesized through simultaneous oxidation of pyrrole monomers and reduction of AgNO3 in an aqueous solution containing well-dispersed TiO2 particles. Thus synthesized Ag/TiO2@PPy was characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and UV-Vis diffuse reflectance spectroscopy (UV-vis DSR. The photocatalytic activity of synthesized heterojunction was investigated for the decomposition of methylene blue (MB dye under UV and visible light irradiation. The results revealed that π-conjugated p-n heterojunction formed in the case of Ag/TiO2@PPy significantly enhanced the photodecomposition of MB compared to the p-n type Ag/TiO2 and TiO2@PPy (n-π heterojunctions. A synergistic effect between Ag-Ag2O and PPy leads to higher photostability and a better electron/hole separation leads to an enhanced photocatalytic activity of Ag/TiO2@PPy under both UV and visible light irradiations.

  7. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor.

    Science.gov (United States)

    Yang, Yukun; Cao, Yaoyu; Wang, Xiaomin; Fang, Guozhen; Wang, Shuo

    2015-02-15

    In this work, we presented a three-dimensional (3D) molecularly imprinted electrochemical sensor (MIECS) with novel strategy for ultrasensitive and specific quantification of metolcarb based on prussian blue (PB) mediated amplification combined with signal enhancement of ordered mesoporous carbon. The molecularly imprinted polymers were synthesized by electrochemically induced redox polymerization of para aminobenzoic acid (p-ABA) in the presence of template metolcarb. Ordered mesoporous carbon material (CMK-3) was introduced to enhance the electrochemical response by improving the structure of the modified electrodes and facilitating charge transfer processes of PB which was used as an inherent electrochemical active probe. The modification process for the working electrodes of the MIECS was characterized by scanning electron microscope (SEM) and cyclic voltammetry (CV), and several important parameters controlling the performance of the MIECS were investigated and optimized in detail. The MIECS with 3D structure had the advantages of ease of preparation, high porous surface structure, speedy response, ultrasensitivity, selectivity, reliable stability, good reproducibility and repeatability. Under the optimal conditions, the MIECS offered an excellent current response for metolcarb in the linear response range of 5.0 × 10(-10)-1.0 × 10(-4) mol L(-1) and the limit of detection (LOD) was calculated to be 9.3 × 10 (-11)mol L(-1) (S/N = 3). The proposed MIECS has been successfully applied for the determination of metolcarb in real samples with satisfactory recoveries. Furthermore, the construction route of this ultrasensitive 3D MIECS may provide a guideline for the determination of non-electroactive analytes in environmental control and food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation.

    Science.gov (United States)

    Han, Deming; Wang, Zhen; Cheng, Jinping; Wang, Qian; Chen, Xiaojia; Wang, Heling

    2017-08-01

    To better understand the characterization and secondary organic aerosol (SOA) formation of volatile organic compounds (VOCs) during non-haze and haze days, ambient VOCs were continuously measured by a vehicle-mounted online thermal desorption system coupled with a gas chromatography-mass spectrometry (TD-GC/MS) system in Shanghai, China. The average concentrations of VOCs in haze episodes (193.2 μg m -3 ) were almost 50% higher than in non-haze periods (130.8 μg m -3 ). VOC concentrations exhibited a bi-modal pattern in the morning and evening rush hour periods on both non-haze and haze days. The ratios of toluene to benzene (T/B) and m,p-xylene to ethylbenzene (X/E) indicated that VOCs were aged air mass transported from nearby areas. The estimated SOA yields were 12.6 ± 5.3 and 16.7 ± 6.7 μg m -3 for non-haze and haze days, respectively, accounting for 9.6 and 8.7% of the corresponding PM 2.5 concentrations, which were slightly underestimated. VOCs-sensitivity (VOCs-S) based on a PM 2.5 -dependent model was used to investigate the variation between VOCs and PM 2.5 concentrations in the morning rush hour. It was found that VOCs were more sensitive to PM 2.5 on clean days than during periods of heavy particulate pollution. VOCs-sensitivity was significantly correlated with the ratio of specific PM 2.5 to background PM 2.5 , with a simulated equation of y = 0.84x -0.62 (r 2  = 0.93, p < 0.001). Our findings suggest that strategies to mitigate VOC emissions and further alleviate haze episodes in Shanghai based on reducing gasoline vehicle-related sources would be very efficient.

  9. HAZE AT OCCATOR CRATER ON DWARF PLANET CERES

    Energy Technology Data Exchange (ETDEWEB)

    Thangjam, G.; Hoffmann, M.; Nathues, A.; Platz, T. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen (Germany); Li, J.-Y., E-mail: thangjam@mps.mpg.de, E-mail: hoffmann@mps.mpg.de, E-mail: nathues@mps.mpg.de, E-mail: platz@mps.mpg.de, E-mail: jyli@psi.edu [Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719-2395 (United States)

    2016-12-20

    A diurnal varying haze layer at the bright spots of Occator on dwarf planet Ceres has been reported from images of the Dawn Framing Camera. This finding is supported by ground-based observations revealing diurnal albedo changes at Occator’s longitude. In the present work, we further investigate the previously reported haze phenomenon in more detail using additional Framing Camera images. We demonstrate that the light scattering behavior at the central floor of Occator is different compared to a typical cerean surface and is likely inconsistent with a pure solid surface scatterer. The identified deviation is best explained by an additional component to the scattered light of the surface, i.e., a haze layer. Our results support the water vapor detection by Herschel observations though the existence of a tenuous cerean exosphere is not yet confirmed.

  10. A Case of High School Hazing: Applying Restorative Justice to Promote Organizational Learning

    Science.gov (United States)

    DeWitt, Douglas M.; DeWitt, Lori J.

    2012-01-01

    While collegiate fraternity and sorority hazing are well documented problems that receive prominent attention, hazing at the high school level is also a serious issue. Across the nation, media headlines offer a continual reminder that high school hazing is not a phenomenon of the past. As high school principals seek ways to discourage and…

  11. Preventing Hazing: How Parents, Teachers, and Coaches Can Stop the Violence, Harassment, and Humiliation

    Science.gov (United States)

    Lipkins, Susan

    2006-01-01

    Written with clarity and passion, "Preventing Hazing" uncovers the deep roots of hazing, how and why it permeates schools, colleges, and communities, and what parents, teachers, and coaches can do to prevent it. The author shows how to recognize the warning signs, what to do if a student has been involved in a hazing (either as a victim,…

  12. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  13. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    Science.gov (United States)

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  14. Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences.

    Science.gov (United States)

    Salazar, P; Martín, M; O'Neill, R D; Roche, R; González-Mora, J L

    2012-04-01

    We report here for the first time a comparison of the beneficial effects of different cationic surfactants - cetyl trimethyl ammonium bromide (CTAB), benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) - for the electrochemical synthesis of Prussian Blue (PB) films, using cyclic voltammetry (CV), on screen-printed carbon electrodes (SPCEs). Their electrochemical properties were investigated, paying special attention to parameters such as the amount of PB deposited, film thickness, charge transfer rate, permeability, reversibility, stability and sensitivity to hydrogen peroxide detection. All surfactant-enhanced PB-modified SPCEs displayed a significant improvement in their electrochemical properties compared with PB-modified SPCEs formed in the absence of surfactants. Surfactant-modified electrodes displayed a consistently higher PB surface concentration value of 2.1±0.4×10(-8) mol cm(-2) (mean±SD, n=3) indicating that PB deposition efficiency was improved 2-3 fold. K(+) and Na(+) permeability properties of the films were also studied, as were kinetic parameters, such as the surface electron transfer rate constant (k(s)) and the transfer coefficient (α). The hydrogen peroxide sensitivity of surfactant-modified PB films generated by 10 electro-deposition CV cycles gave values of 0.63 A M(-1) cm(-2), which is higher than those reported previously for SPCEs by other authors. Finally, the first lactate microbiosensor described in the literature based on BZT-modified PB-coated carbon fiber electrodes is presented. Its very small cross-section (~10 μm diameter) makes it particularly suitable for neuroscience studies in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hongsingthong, Aswin, E-mail: aswin.hongsingthong@nectec.or.th [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Konagai, Makoto [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, NE-15, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2013-06-30

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF{sub 4}) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass.

  16. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures.

    Science.gov (United States)

    Sun, Minglei; Chou, Jyh-Pin; Yu, Jin; Tang, Wencheng

    2017-07-05

    Blue phosphorene (BlueP) is a graphene-like phosphorus nanosheet which was synthesized very recently for the first time [Nano Lett., 2016, 16, 4903-4908]. The combination of electronic properties of two different two-dimensional materials in an ultrathin van der Waals (vdW) vertical heterostructure has been proved to be an effective approach to the design of novel electronic and optoelectronic devices. Therefore, we used density functional theory to investigate the structural and electronic properties of two BlueP-based heterostructures - BlueP/graphene (BlueP/G) and BlueP/graphene-like gallium nitride (BlueP/g-GaN). Our results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure. Moreover, by applying a perpendicular electric field, it is possible to tune the position of the Dirac cone of G with respect to the band edge of BlueP, resulting in the ability to control the Schottky barrier height. For the BlueP/g-GaN vdW heterostructure, BlueP forms an interface with g-GaN with a type-II band alignment, which is a promising feature for unipolar electronic device applications. Furthermore, we discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.

  17. Hazing in orientation programmes in boys-only secondary schools

    Directory of Open Access Journals (Sweden)

    C Huysamer

    2013-01-01

    Full Text Available Hazing, associated with initiation, aims at taking newcomers from novice status to a status of functional and acknowledged members of a new group. However, the process is often dangerous, injurious, and usually secretive. Hazing may occur as an unauthorised component of institutionally sanctioned orientation programmes commonly held for new students at educational institutions at the beginning of the academic year. This study focuses on the occurrence of hazing elements in orientation programmes (OP for Grade 8 boys primarily run by Grade 12 learners in boys-only secondary schools in South Africa. A cross-sectional survey was conducted by administering a researcher-designed questionnaire to a non-probabilistic sample of 296 Grade 12 learners enrolled at three boys-only secondary schools in Johannesburg. The computer assisted analysis strategy included frequency distributions, exploratory factor analysis, and analysis of variance. Findings indicated that respondents generally agreed with regard to the structure, aims, and behaviours common to orientation programmes. Respondents strongly disagreed about the occurrence of physical and sexual abuse and activities aimed at discomfort in the OP; however, respondents showed ambivalence about the occurrence of certain activities, which may deteriorate into hazing. Prior experience of an orientation programme when in Grade 8; length of enrolment in the school, and boarder status affected respondents' perceptions of certain aspects of orientation programmes.

  18. An International Haze-Monitoring Network for Students.

    Science.gov (United States)

    Mims, Forrest M.

    1999-01-01

    Describes the haze-monitoring program that was added to the protocols of the Global Learning and Observations to Benefit the Environment (GLOBE) Program. Finds that sun photometry provides a convenient means for allowing students to perform hands-on science while learning about various topics in history, electronics, algebra, statistics, graphing,…

  19. Ice haze, snow, and the Mars water cycle

    Science.gov (United States)

    Kahn, Ralph

    1990-01-01

    Light curves and extinction profiles derived from Martian limb observations are used to constrain the atmospheric temperature structure in regions of the atmosphere with thin haze and to analyze the haze particle properties and atmospheric eddy mixing. Temperature between 170 and 190 K are obtained for three cases at levels in the atmosphere ranging from 20 to 50 km. Eddy diffusion coefficients around 100,000 sq cm/s, typical of a nonconvecting atmosphere, are derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than three orders of magnitude with season and local conditions. The derived particle size parameter varies systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time is always about one Martian day. Ice hazes provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars.

  20. Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta, China

    Science.gov (United States)

    Hu, Rui; Wang, Honglei; Yin, Yan; Chen, Kui; Zhu, Bin; Zhang, Zefeng; Kang, Hui; Shen, Lijuan

    2018-04-01

    The mixing state of aerosol particles were investigated using a single particle aerosol mass spectrometer (SPAMS) during a regional fog-haze episode in the Yangtze River Delta (YRD) on 16-28 Dec., 2015. The aerosols were analyzed and clustered into 12 classes: aged elemental carbon (Aged-EC), internally mixed organics and elemental carbon (ECOC), organic carbon (OC), Biomass, Amine, Ammonium, Na-K, V-rich, Pb-rich, Cu-rich, Fe-rich and Dust. Results showed that particles in short-term rainfalls mixed with more nitrate and oxidized organics, while they mixed with more ammonium and sulfate in long-term rainfall. Due to anthropogenic activities, stronger winds and solar radiation, the particle counts increased and the size ranges of particles broadened in haze. Carbonaceous particles and Na-K mixed with enhanced secondary species during haze, and obviously were more acidic, especially for the ones with a size range of 0.6-1.2 μm. For local and long-range transported pollution, OC had distinct size distributions while the changes of ECOC were uniform. The secondary formation of ECOC contributed significantly in local pollution and affected much smaller particles (as small as 0.5 μm) in long-range transported pollution. And long-range transported pollution was more helpful for the growth of OC. Particles mixed with more chloride and nitrate/sulfate in local/long-range transported pollution.

  1. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel

    Science.gov (United States)

    Moon, Hyunjin; Won, Phillip; Lee, Jinhwan; Ko, Seung Hwan

    2016-07-01

    Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network. Moreover, we confirm that analyzed chemical roles can easily be applied to different AgNW synthesis methods, and that they have a direct impact on the nanowire shape. Consequently, the lengths of the wires are increased up to 200 μm and the diameters of the wires are decreased up to 45 nm. Using these results, we fabricate highly transparent (96%) conductors (100 Ω/sq) with low-haze (2%) without any annealing process. This electrode shows enhanced clarity compared to previous results due to the decreased diffusive transmittance and scattering. In addition, a flexible touchscreen using a AgNW network is demonstrated to show the performance of modified AgNWs.

  2. [Anaphylaxis to blue dyes].

    Science.gov (United States)

    Langner-Viviani, F; Chappuis, S; Bergmann, M M; Ribi, C

    2014-04-16

    In medicine, vital blue dyes are mainly used for the evaluation of sentinel lymph nodes in oncologic surgery. Perioperative anaphylaxis to blue dyes is a rare but significant complication. Allergic reactions to blue dyes are supposedly IgE-mediated and mainly caused by triarylmethanes (patent blue and isosulfane blue) and less frequently by methylene blue. These substances usually do not feature on the anesthesia record and should not be omitted from the list of suspects having caused the perioperative reaction, in the same manner as latex and chlorhexidine. The diagnosis of hypersensitivity to vital blue dyes can be established by skin test. We illustrate this topic with three clinical cases.

  3. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain

    Directory of Open Access Journals (Sweden)

    W. J. Li

    2011-11-01

    Full Text Available The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on the regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l. from 19 to 28 April, 2010, when the air masses were advected from the east (phase-I: 19–21 April, from the south (phase-II: 22–25 April, and from the northwest (phase-III: 26–28 April. Individual aerosol particles were identified with transmission electron microscopy (TEM, new particle formation (NPF and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a high percentage of particles were sulfur-rich (47–49%. In phase-III, the haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were dominant (43%. NPF followed by particle growth during daytime was more pronounced on hazy than on clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10–22 nm in the morning to 56–96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. However, the presence of fine anthropogenic particles (e.g., soot, metal, and fly ash embedded within S-rich particles indicates that they could weaken NPF and enhance particle growth through condensation and coagulation. Abundant mineral particles in phase-III likely suppressed the NPF processes because they supplied sufficient area on which acidic gases or acids condensed.

  4. Dispensability of the major coat protein of oat blue dwarf virus in genome replication: Substitution of the open reading frame with the enhanced green fluorescent protein gene

    Science.gov (United States)

    Oat blue dwarf virus (OBDV) is a representative marafivirus that infects monocots and a limited number of dicot species and is vectored propagatively by the leafhopper Macrosteles fascifrons.Recently, we reported the generation of clone pOBDV-2r, the first clone of a marafivirus from which infectiou...

  5. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    Science.gov (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  6. Roles of grape thaumatin-like protein and chitinase in white wine haze formation.

    Science.gov (United States)

    Marangon, Matteo; Van Sluyter, Steven C; Neilson, Karlie A; Chan, Cherrine; Haynes, Paul A; Waters, Elizabeth J; Falconer, Robert J

    2011-01-26

    Grape chitinase was found to be the primary cause of heat-induced haze formation in white wines. Chitinase was the dominant protein in a haze induced by treating Sauvignon blanc wine at 30 °C for 22 h. In artificial wines and real wines, chitinase concentration was directly correlated to the turbidity of heat-induced haze formation (50 °C for 3 h). Sulfate was confirmed to have a role in haze formation, likely by converting soluble aggregates into larger visible haze particles. Thaumatin-like protein was detected in the insoluble fraction by SDS-PAGE analysis but had no measurable impact on turbidity. Differential scanning calorimetry demonstrated that the complex mixture of molecules in wine plays a role in thermal instability of wine proteins and contributes additional complexity to the wine haze phenomenon.

  7. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    backside light from the bulb back toward the bowl. The center of the bowl has a clear aperture cut through it, allowing the eye an unobstructed...AFRL-RH-FS-TR-2017-0022 Light Scatter in Optical Materials: Advanced Haze Modeling Michael A. Guevara William R. Brockmeier Thomas K. Kuyk...other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. Qualified

  8. Microfiltration of high concentration black tea streams for haze removal using polymeric membranes

    OpenAIRE

    Argyle, Iain .S.; Bird, Michael R.

    2015-01-01

    Black tea used for ready-to-drink beverages suffers from an inherent haze problem affecting the appeal of products in terms of colour and appearance; the effect also diminishes health-giving properties. Microfiltration of black tea streams up to 10.0 wt.% has been carried out in an attempt to remove this haze as a replacement to current alkali solubilisation methods which can damage the product. The three commercial polysulphone membranes tested show superior haze removal in tea when filtered...

  9. Blue cures blue but be cautious

    Directory of Open Access Journals (Sweden)

    Pranav Sikka

    2011-01-01

    Full Text Available Methemoglobinemia is a disorder characterized by the presence of >1% methemoglobin (metHb in the blood. Spontaneous formation of methemoglobin is normally counteracted by protective enzyme systems, for example, nicotinamide adenine dinucleotide phosphate (NADPH methemoglobin reductase. Methemoglobinemia is treated with supplemental oxygen and methylene blue (1-2 mg/kg administered slow intravenously, which acts by providing an artificial electron acceptor for NADPH methemoglobin reductase. But known or suspected glucose-6-phosphate dehydrogenase (G6PD deficiency is a relative contraindication to the use of methylene blue because G6PD is the key enzyme in the formation of NADPH through pentose phosphate pathway and G6PD-deficient individuals generate insufficient NADPH to efficiently reduce methylene blue to leukomethylene blue, which is necessary for the activation of the NADPH-dependent methemoglobin reductase system. So, we should be careful using methylene blue in methemoglobinemia patient before G6PD levels.

  10. Electric Field Induce Blue Shift and Intensity Enhancement in 2D Exciplex Organic Light Emitting Diodes; Controlling Electron-Hole Separation.

    Science.gov (United States)

    Al Attar, Hameed A; Monkman, Andy P

    2016-09-01

    A simple but novel method is designed to study the characteristics of the exciplex state pinned at a donor-acceptor abrupt interface and the effect an external electric field has on these excited states. The reverse Onsager process, where the field induces blue-shifted emission and increases the efficiency of the exciplex emission as the e-h separation reduces, is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rain, winds and haze during the Huygens probe's descent to Titan's surface

    Science.gov (United States)

    Tomasko, M.G.; Archinal, B.; Becker, T.; Bezard, B.; Bushroe, M.; Combes, M.; Cook, D.; Coustenis, A.; De Bergh, C.; Dafoe, L.E.; Doose, L.; Doute, S.; Eibl, A.; Engel, S.; Gliem, F.; Grieger, B.; Holso, K.; Howington-Kraus, E.; Karkoschka, E.; Keller, H.U.; Kirk, R.; Kramm, R.; Kuppers, M.; Lanagan, P.; Lellouch, E.; Lemmon, M.; Lunine, J.; McFarlane, E.; Moores, J.; Prout, G.M.; Rizk, B.; Rosiek, M.; Rueffer, P.; Schroder, S.E.; Schmitt, B.; See, C.; Smith, P.; Soderblom, L.; Thomas, N.; West, R.

    2005-01-01

    The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent. ?? 2005 Nature Publishing Group.

  12. Blue-Green Algae

    Science.gov (United States)

    ... people with hepatitis C or hepatitis B. HIV/AIDS. Research on the effects of blue-green algae in people with HIV/AIDS has been inconsistent. Some early research shows that taking 5 grams of blue-green ...

  13. Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days

    Directory of Open Access Journals (Sweden)

    Dong eYan

    2016-04-01

    Full Text Available Abstract: To assess the diversity and composition of airborne fungi associated with particulate matter in Beijing, China, a total of 81 PM samples were collected, which derived from PM2.5, PM10 fractions and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1,633 operational taxonomic units were observed. Of these, 1,102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Capnodiales (27.95%, Pleosporales (26.8%, Eurotiales (10.64%, and Hypocreales (9.09%. The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R=0.175, p=0.001 and air quality levels (R=0.076, p=0.006 significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p<0.01, NO2 (p<0.01, PM10 (p<0.01, SO2 (p<0.01, CO (p<0.01, and relative humidity (p<0.05 were significant factors that determine airborne fungal community composition. The results suggest diverse airborne fungal communities are associated with particulate matters, and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  14. Elucidating Particle Acidity during North China Winter Haze Events

    Science.gov (United States)

    Song, S.; Gao, M.; Sun, Y.; Li, M.; Wang, S.; Wang, Y.; Xu, W.; Zhu, L.; Munger, W.; McElroy, M. B.

    2017-12-01

    A characteristic feature of North China winter haze pollution is the rapid formation of sulfate. An accurate prediction of particle acidity, or pH, is critical for evaluating the contributions of various aqueous and heterogeneous sulfate production mechanisms (e.g. the reactions involving reactive nitrogen and transition metal ions), and is also important for evaluating the toxicity of atmospheric particles. However, particle acidity during winter haze periods is poorly constrained, and estimates in several recent studies display significant discrepancies, ranging from moderately acidic (pH 4) to neutral (pH 7). In this study, we calculate fine particle pH for several haze episodes during the 2014/2015 winter, using several methods including phase partitioning of ammonia, ion balance, and multiple thermodynamic equilibrium models. Hourly gaseous and particle composition measurements were taken at an urban site in Beijing. We find that the discrepancies in the calculated pH for recent studies are largely due to their differences in assumed methodology. The ion balance method and the reverse modes of thermodynamic models (using only aerosol phase compositions as input) are not suitable for calculating pH in this atmospheric environment. We also find, for the first time, that hydroxymethanesulfonate (HMS), formed from complexation of sulfite and bisulfite with formaldehyde in the aqueous phase, can serve as a tracer of particle pH during winter haze events. Here the concentrations of HMS are quantified using measurement data from an Aerodyne high-resolution aerosol mass spectrometer. HMS is found to contribute a few percent to particle mass during winter haze episodes. The presence of HMS is also identified with data from a single particle aerosol mass spectrometer. Since it may be incorrectly identified as sulfate during the typical chemical composition analysis of fine particles (e.g. ion chromatography), the existence of HMS could explain a significant fraction of

  15. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  16. What have we learned from HaChi (HAZE IN CHINA) project?

    Science.gov (United States)

    Zhao, Chunsheng; Wiedensohler, Alfred

    2016-04-01

    HaChi (Haze in China) project, a joint research between Chinese NSFC and German DFG, focuses on investigating the aerosol hygroscopic properties in the North China Plain and their relationships to aerosol optics, radiation, cloud physics and ozone photochemistry. As we know, Eastern China has suffered from severe pollution caused by large concentrations of aerosol particles resulting from emissions from fossil fuel and biomass burning, transportation and some other combustion sources. Low visibility events are frequently encountered and mainly accompanied with haze as a result of either high aerosol loading or the strong hygroscopic growth of the aerosol particles. Especially at relative humidities between 90 and 99%, the aerosol particles grow exponentially. The hygroscopic behaviors at relative humidities close to 100% are also strongly linked to the particles ability to grow into cloud droplets at supersaturation. In my talk, I will present an overview of the up to date results from a serial of intensive and comprehensive field campaigns conducted at the sites of Wuqing and Xianghe, China, between 2009 and 2014. The measurements of the ambient aerosol hygroscopic properties at high RH between 90 and 98.5% are reported first. These in situ field measurements of atmospheric aerosol are unique with respect to their high RH range and especially of importance to better understand the widespread anthropogenic haze over the North China Plain. Then I will introduce the methods for calculating of aerosol hygroscopicity and their parameterization schemes derived from size-segregated chemical composition and the light scattering enhancement factor measurements in the North China Plain. A new method was proposed to retrieve the ratio of the externally mixed light absorbing carbon mass to the total mass of light absorbing carbon. A new parameterization scheme of light extinction for low visibilities on hazy days is proposed based on visibility, relative humidity, aerosol

  17. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai

    Directory of Open Access Journals (Sweden)

    K. Huang

    2012-01-01

    Full Text Available An intensive aerosol and gases campaign was performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and the formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite and lidar observations. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD (aerosol optical depths and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca contributing 76.8% to TSP. The relatively low Ca/Al ratio of 0.75 along with the air mass backward trajectory analysis suggested the dust source was from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO and from ground measurement (CO, particulate K+, OC, and EC were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5% during the secondary

  18. Typical Types and Formation Mechanisms of Haze in an Eastern Asia Megacity, Shanghai

    Science.gov (United States)

    Huang, K.; Zhuang, G.; Lin, Y.; Fu, J. S.; Wang, Q.; Liu, T.; Zhang, R.; Jiang, Y.; Deng, C.; Fu, Q.; hide

    2012-01-01

    An intensive aerosol and gases campaign was performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and the formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite and lidar observations. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD (aerosol optical depths) and low Angstrom exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca contributing 76.8% to TSP. The relatively low Ca/Al ratio of 0.75 along with the air mass backward trajectory analysis suggested the dust source was from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5%) during the secondary inorganic and biomass burning episodes, while thick dust layer distributed at altitudes

  19. Impact of Sulfur Hazes on the Reflected Light Spectra of Giant Exoplanets

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Zahnle, Kevin; Robinson, Tyler D.; Lewis, Nikole K.

    2017-01-01

    Recent work has shown that photochemical hazes composed of elemental sulfur and its allotropes may arise in the atmospheres of warm and temperate giant exoplanets due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum using a suite of established radiative-convective, cloud, and albedo models, and how this may impact future direct imaging missions, such as WFIRST. For Jupiter-massed planets, photochemical destruction of H2S results in the production of ~1 ppmv of S8 between 100 and 0.1 mbar. The S8 mixing ratio is largely independent of the stellar UV flux, vertical mixing rates, and atmospheric temperature for expected ranges of those values, such that the S8 haze mass is dependent only on the S8 supersaturation, controlled by the local temperature. Nominal haze masses are found to drastically alter a planet's geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ~0.7 due to its purely scattering nature. Strong absorption by the haze shortward of 0.4 μm results in albedos Jupiter-like planets. For this reason colors are unlikely to provide definitive identification of warm Jupiter-like planets. The albedo change due to a sulfur haze is largely independent of the location of the haze in the atmosphere, but is a strong function of the haze optical depth as controlled by its column number density and mean particle size, though the absorption feature at short wavelengths remains robust. Detection of such a haze by future direct imaging missions like WFIRST is possible, though discriminating between a sulfur haze and any other reflective material, such as water ice, will require observations shortward of 0.4 μm, which is currently beyond WFIRST's grasp.

  20. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China

    Science.gov (United States)

    Li, Yanpeng; Fu, Honglei; Wang, Wei; Liu, Jun; Meng, Qinglong; Wang, Wenke

    2015-12-01

    In recent years, haze pollution has become one of the most critical environmental issues in Xi'an, China, with particular matter (PM) being one of the top pollutants. As an important fraction of PM, bioaerosols may have adverse effects on air quality and human health. In this study, to better understand the characteristics of such biological aerosols, airborne microbial samples were collected by using an Andersen six-stage sampler in Xi'an from October 8th to 22nd, 2014. The concentration, size distribution and genera of airborne viable bacteria and fungi were comparably investigated during the haze days and non-haze days. Correlations of bioaerosol levels with meteorological parameters and PM concentrations were also examined. The results showed that the daily average concentrations of airborne viable bacteria and fungi during the haze days, 1102.4-1736.5 and 1466.2-1703.9 CFU/m3, respectively, were not only much higher than those during the non-haze days, but also exceeded the recommended permissible limit values. Comparing to size distributions during the non-haze days, slightly different patterns for bacterial aerosols and similar single-peak distribution pattern for fungal aerosols were observed during the haze days. Moreover, more allergic and infectious genera (e.g. Neisseria, Aspergillus, and Paecilomyces) in bioaerosols were identified during the haze days than during non-haze days. The present results reveal that bioaerosols may have more significant effects on public health and urban air quality during the haze days than during non-haze days.

  1. Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study

    Directory of Open Access Journals (Sweden)

    X. Long

    2016-08-01

    Full Text Available With the provincial statistical data and crop field burning (CFB activities captured by Moderate Resolution Imaging Spectroradiometer (MODIS, we extracted a detailed CFB emission inventory in the North China Plain (NCP. The WRF-CHEM model was applied to investigate the impact of CFB on air pollution during the period from 6 to 12 October 2014, corresponding to a heavy haze incident with high concentrations of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm. The WRF-CHEM model generally performed well in simulating the surface species concentrations of PM2.5, O3 and NO2 compared to the observations; in addition, it reasonably reproduced the observed temporal variations of wind speed, wind direction and planetary boundary layer height (PBLH. It was found that the CFB that occurred in southern NCP (SNCP had a significant effect on PM2.5 concentrations locally, causing a maximum of 34 % PM2.5 increase. Under continuous southerly wind conditions, the CFB pollution plume went through a long-range transport to northern NCP (NNCP; with several mega cities, including Beijing, the capital city of China, where few CFBs occurred, resulting in a maximum of 32 % PM2.5 increase. As a result, the heavy haze in Beijing was enhanced by the CFB, which occurred in SNCP. Mountains also play significant roles in enhancing the PM2.5 pollution in NNCP through the blocking effect. The mountains blocked and redirected the airflows, causing the pollutant accumulations along the foothills of mountains. This study suggests that the prohibition of CFB should be strict not only in or around Beijing, but also on the ulterior crop growth areas of SNCP. PM2.5 emissions in SNCP should be significantly limited in order to reduce the occurrences of heavy haze events in the NNCP region.

  2. The efficiency enhancement of single-layer solution-processed blue phosphorescent organic light emitting diodes by hole injection layer modification

    International Nuclear Information System (INIS)

    Yeoh, K H; Talik, N A; Whitcher, T J; Ng, C Y B; Woon, K L

    2014-01-01

    Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) PEDOT : PSS is extensively used as a hole injection layer (HIL) in solution-processed organic light emitting diodes (OLEDs). The high work function of a HIL is crucial in improving OLED efficiency. The work function of PEDOT : PSS is usually around 5.1–5.3 eV. By adding perfluorinated ionomer (PFI), the work function of PEDOT : PSS has been reported to reach as high as 5.95 eV. We investigated the effects of PFI-modified PEDOT : PSS in a single-layer solution-processed blue phosphorescent OLED (PHOLED). We observed that high concentrations of a PFI in PEDOT : PSS has detrimental effects on the device efficiency due to the low conductivity of the PFI. Using this approach, blue PHOLEDs with efficiencies of 9.4 lm W −1 (18.2 cd A −1 ) and 7.9 lm W −1 (20.4 cd A −1 ) at 100 cd m −2 and 1000 cd m −2 , respectively, were demonstrated. (paper)

  3. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai

    Science.gov (United States)

    Huang, K.; Zhuang, G.; Lin, Y.; Fu, J. S.; Wang, Q.; Liu, T.; Zhang, R.; Jiang, Y.; Deng, C.; Fu, Q.; Hsu, N. C.; Cao, B.

    2012-01-01

    An intensive aerosol and gases campaign was performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and the formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite and lidar observations. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD (aerosol optical depths) and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca contributing 76.8% to TSP. The relatively low Ca/Al ratio of 0.75 along with the air mass backward trajectory analysis suggested the dust source was from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio air quality improvement in megacities in China.

  4. Evaluation of Topical Cyclosporine in Preventing the Development of Corneal Haze after Photorefractive Keratectomy

    Science.gov (United States)

    2014-05-13

    often preferred over mitomycin C for the prevention of post-surgical haze. Steroids prevent haze by a different mechanism : they inhibit...have been examined, including NSAIDS , 5,7,8 anti-VEGF and anti TNF-α compounds 9 , nicergoline and β-glucan, 10 and IL1-ra. 11 Many refractive

  5. Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation

    International Nuclear Information System (INIS)

    Othman, Jamal; Sahani, Mazrura; Mahmud, Mastura; Sheikh Ahmad, Md Khadzir

    2014-01-01

    This study assessed the economic value of health impacts of transboundary smoke haze pollution in Kuala Lumpur and adjacent areas in the state of Selangor, Malaysia. Daily inpatient data from 2005, 2006, 2008, and 2009 for 14 haze-related illnesses were collected from four hospitals. On average, there were 19 hazy days each year during which the air pollution levels were within the Lower Moderate to Hazardous categories. No seasonal variation in inpatient cases was observed. A smoke haze occurrence was associated with an increase in inpatient cases by 2.4 per 10,000 populations each year, representing an increase of 31 percent from normal days. The average annual economic loss due to the inpatient health impact of haze was valued at MYR273,000 ($91,000 USD). - Highlights: • Transboundary smoke haze is an annual phenomenon in Malaysia. • No evidence of seasonal factors in smoke haze related inpatient cases. • Inpatient rates during a haze event increased by 31% relative to normal days. • Annual economic loss due to inpatient health impact of haze valued at $91,000. • Present value of economic loss estimated at $1.1 million to $1.7 million. - Inpatient rates soared by 31% while economic loss valued at USD91,000 annually

  6. 77 FR 30932 - Approval and Promulgation of Air Quality Implementation Plans; Massachusetts; Regional Haze

    Science.gov (United States)

    2012-05-24

    ... the contributing States in order to develop coordinated emissions management strategies. See 40 CFR 51...-State Air Pollution Rule to Regional Haze Requirements II. What are the requirements for the Regional... Retrofit Technology (BART) E. Long-Term Strategy (LTS) F. Coordinating Regional Haze and Reasonably...

  7. Indonesia's Fires and Haze : The Cost of Catastrophe (mise à jour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Indonesia's Fires and Haze : The Cost of Catastrophe (mise à jour en 2006). Couverture du livre Indonesia's Fires and Haze : The Cost of Catastrophe (mise à jour. Directeur(s):. David Glover et Timothy Jessup. Maison(s) d'édition: ISEAS, CRDI. 1 janvier 1999. ISBN : 9812300066. 160 pages. e-ISBN : 1552503321.

  8. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers

    Science.gov (United States)

    Kimura, Shigeya; Yoshida, Hisashi; Uesugi, Kenjiro; Ito, Toshihide; Okada, Aoi; Nunoue, Shinya

    2016-09-01

    We have grown blue light-emitting diodes (LEDs) having InGaN/GaN multi-quantum wells (MQWs) with thin AlyGa1-yN (0 transmission electron microscopy observations and three-dimensional atom probe analysis that 1-nm-thick interlayers with an AlN mole fraction of less than y = 0.3 were continuously formed between GaN barriers and InGaN wells, and that the AlN mole fraction up to y = 0.15 could be consistently controlled. The external quantum efficiency of the blue LED was enhanced in the low-current-density region (≤45 A/cm2) but reduced in the high-current-density region by the insertion of the thin Al0.15Ga0.85N interlayers in the MQWs. We also found that reductions in both forward voltage and wavelength shift with current were achieved by inserting the interlayers even though the inserted AlGaN layers had potential higher than that of the GaN barriers. The obtained peak wall-plug efficiency was 83% at room temperature. We suggest that the enhanced electroluminescence (EL) performance was caused by the introduction of polarization-induced hole carriers in the InGaN wells on the side adjacent to the thin AlGaN/InGaN interface and efficient electron carrier transport through multiple wells. This model is supported by temperature-dependent EL properties and band-diagram simulations. We also found that inserting the interlayers brought about a reduction in the Shockley-Read-Hall nonradiative recombination component, corresponding to the shrinkage of V-defects. This is another conceivable reason for the observed performance enhancement.

  9. Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China.

    Science.gov (United States)

    Zhang, Jian; Liu, Lei; Wang, Yuanyuan; Ren, Yong; Wang, Xin; Shi, Zongbo; Zhang, Daizhou; Che, Huizheng; Zhao, Hujia; Liu, Yanfei; Niu, Hongya; Chen, Jianmin; Zhang, Xiaoye; Lingaswamy, A P; Wang, Zifa; Li, Weijun

    2017-12-01

    The characteristics of aerosol particles have been poorly evaluated even though haze episodes frequently occur in winter in Northeast China. OC/EC analysis, ion chromatography, and transmission electron microscopy (TEM) were used to investigate the organic carbon (OC) and elemental carbon (EC), and soluble ions in PM 2.5 and the mixing state of individual particles during a severe wintertime haze episode in Northeast China. The organic matter (OM), NH 4 + , SO 4 2- , and NO 3 - concentrations in PM 2.5 were 89.5 μg/m 3 , 24.2 μg/m 3 , 28.1 μg/m 3 , and 32.8 μg/m 3 on the haze days, respectively. TEM observations further showed that over 80% of the haze particles contained primary organic aerosols (POAs). Based on a comparison of the data obtained during the haze formation, we generate the following synthetic model of the process: (1) Stable synoptic meteorological conditions drove the haze formation. (2) The early stage of haze formation (light or moderate haze) was mainly caused by the enrichment of POAs from coal burning for household heating and cooking. (3) High levels of secondary organic aerosols (SOAs), sulfates, and nitrates formation via heterogeneous reactions together with POAs accumulation promoted to the evolution from light or moderate to severe haze. Compared to the severe haze episodes over the North China Plain, the PM 2.5 in Northeast China analyzed in the present study contained similar sulfate, higher SOA, and lower nitrate contents. Our results suggest that most of the POAs and secondary particles were likely related to emissions from coal-burning residential stoves in rural outskirts and small boilers in urban areas. The inefficient burning of coal for household heating and cooking should be monitored during wintertime in Northeast China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Under an Orange Sky: The Many Implications of Organic Haze for Earthlike Planets

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric; Schwieterman, Edward W.; Charnay, Benjamin; Claire, Mark; Hebrard, Eric

    2015-11-01

    Geochemical evidence suggests Archean Earth was intermittently enshrouded in an organic haze resulting from methane photolysis. Hazy exoplanets may be common, and hazes can significantly impact the environment of habitable planets. Earth is frequently studied as an analog for habitable exoplanets, and Archean Earth is the most alien planet we have geochemical data for. We have used 1D photochemical-climate and radiative transfer simulations to examine the climate, surface radiation environment, and spectra of Archean Earth with fractal hydrocarbon haze. We find that haze would have strongly impacted Earth’s climate, lowering the planetary surface temperature by 20-30 K. However, this cooling can be countered by concentrations of greenhouses gases consistent with geochemical constraints. For example, an atmosphere with 2% CO2, 0.37% CH4 and a self-consistent hydrocarbon haze has a globally averaged surface temperature of 274 K, which GCM models have shown is consistent with a large open ocean fraction (Charnay et al 2013). The cooling from haze means that there exists a “hazy habitable zone” closer to the star than the traditional habitable zone boundaries. Our results suggest that the hazy habitable zone can extend to the distance of Venus. An organic haze produces strong, remotely detectable spectral features, especially at wavelengths DNA, and it is blocked by ozone in the modern atmosphere. Organic hazes may therefore benefit surface biospheres on Earth and similar exoplanets. Finally, assuming geochemical constraints on the Archean atmospheric composition, we show that abiotic levels of methane flux to the atmosphere are insufficient to form an organic haze. For Earthlike exoplanets, organic haze may therefore be a novel type of spectral biosignature.

  11. The Effects of Anthropogenic Heat Release on Urban Meteorology and Implication for Haze Pollution in the Beijing-Tianjin-Hebei Region

    Directory of Open Access Journals (Sweden)

    Ruiting Liu

    2016-01-01

    Full Text Available In this study, the effect of anthropogenic heat release (AHR on meteorological variables and atmospheric diffusion capability and implication for haze pollution in the Beijing-Tianjin-Hebei region in January 2013 were investigated by using Weather Research and Forecasting (WRF model with an urban canopy model (UCM and an AHR scheme. The comparison with observation demonstrated the WRF/UCM model taking AHR into account apparently improved meteorological prediction, especially for surface air temperature at 2 m (T2. The model also exhibited a better performance for planetary boundary layer (PBL height. This study revealed that AHR from cities exerted a significant impact on meteorology by generally increasing surface air temperature and wind speed, decreasing relative humidity, and elevating PBL height and near surface turbulent kinetic energy (TKE, which could consequently reduce surface pollutant concentration and mitigate haze pollution by enhancing atmospheric instability and turbulent mixing and reducing aerosol hygroscopic growth.

  12. Self-reduction process and enhanced blue emission in SrAl{sub 2}Si{sub 2}O{sub 8}: Eu, Tb via electron transfer from Tb{sup 3+} to Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwei; Wang, Lili; Li, Minhong; Ran, Weiguang; Deng, Zhihan; Houzong, Ruizhi; Shi, Jinsheng [Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, Shandong, (China)

    2017-06-15

    Eu, Tb co-doped SrAl{sub 2}Si{sub 2}O{sub 8} luminescent materials were synthesized via a high-temperature solid-state reaction. Excitation spectra of SrAl{sub 2}Si{sub 2}O{sub 8}: Eu{sup 2+} gives two broad excitation bands maximizing at 270 and 330 nm, resulting from splitting Eu{sup 2+} energy levels in octahedral crystal field. Eu single doped SrAl{sub 2}Si{sub 2}O{sub 8} luminescent material exhibits two emission bands at about 406 and 616 nm. Intensity of the blue emission from Eu{sup 2+} is always strong, compared with that of the red emission band of Eu{sup 3+}. Reduction from Eu{sup 3+} to Eu{sup 2+} can be explained with the model of charge compensation. Blue emission in SrAl{sub 2}Si{sub 2}O{sub 8}: xEu was strengthened after incorporation of Tb, which can be explained by electron transfer from Tb{sup 3+} to Eu{sup 3+} (Tb{sup 3+} + Eu{sup 3+} → Tb{sup 4+} + Eu{sup 2+}). Under 230 nm excitation, intensity of Tb{sup 3+} emission was nearly unchanged and that of Eu{sup 2+} was increased, obviously due to the delivery of more electrons to Eu{sup 3+}. The strongest emission of Eu{sup 2+} in 0.09Eu/0.06Tb co-doped SrAl{sub 2}Si{sub 2}O{sub 8} and excited at 270 and 330 nm was remarkably enhanced by about four times compared to that of 0.15Eu Single doped SrAl{sub 2}Si{sub 2}O{sub 8}. All of the results indicate that SrAl{sub 2}Si{sub 2}O{sub 8}:xEu, yTb are potential blue emitting luminescent materials for UV-LEDs. More importantly, this research may provide a new perspective in designing broad band blue luminescent materials. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Southern African Haze During the SAFARI 2000 Field Campaign

    Science.gov (United States)

    Susott, R. A.; Hao, W. M.; Baker, S. P.; Piketh, S.

    2001-12-01

    We have conducted extensive airborne experiments to measure the chemical composition of Southern African haze from September 12 to September 24, 2001. Ten missions were flown on the South Africa Weather Bureau's Aerocommander 690-A between 15 degrees S and 25 degrees S from the east coast of Mozambique to Etosha Pan in Namibia. More than 200 canister samples were collected and analyzed for carbon dioxide, carbon monoxide, hydrogen, and methane concentrations. The samples were collected from smoke plumes close to active fires, regional haze mixtures primarily containing aged smoke from distant fires, vertical profiles above NASA Aeronet automatic sun photometer sites, and background air near the plumes, above the boundary layer and off the eastern coast. A real-time instrument system was also used to measure carbon dioxide concentrations and aerosol light scattering with a nephelometer. We will present emission ratios, combustion efficiencies, and emission factors of carbon dioxide, carbon monoxide, and methane for the biomass smoke in arid savannas over this region of Africa. These results will be compared with the results from previous missions over the moist savannas of Zambia.

  14. Persistent sulfate formation from London Fog to Chinese haze.

    Science.gov (United States)

    Wang, Gehui; Zhang, Renyi; Gomez, Mario E; Yang, Lingxiao; Levy Zamora, Misti; Hu, Min; Lin, Yun; Peng, Jianfei; Guo, Song; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Wang, Yuesi; Gao, Jian; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Tian, Pengfei; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zeng, Limin; Shao, Min; Wang, Weigang; Huang, Yao; Wang, Yuan; Zhu, Yujiao; Li, Yixin; Hu, Jiaxi; Pan, Bowen; Cai, Li; Cheng, Yuting; Ji, Yuemeng; Zhang, Fang; Rosenfeld, Daniel; Liss, Peter S; Duce, Robert A; Kolb, Charles E; Molina, Mario J

    2016-11-29

    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO 2 by NO 2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH 3 neutralization or under cloud conditions. Under polluted environments, this SO 2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH 3 and NO 2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

  15. Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, K.; Marley, M. S.; Morley, C. V.; Moses, J. I.

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If they form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the regions where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically thick clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  16. Impact of regional haze towards air quality in Malaysia: A review

    Science.gov (United States)

    Latif, Mohd Talib; Othman, Murnira; Idris, Nurfathehah; Juneng, Liew; Abdullah, Ahmad Makmom; Hamzah, Wan Portia; Khan, Md Firoz; Nik Sulaiman, Nik Meriam; Jewaratnam, Jegalakshimi; Aghamohammadi, Nasrin; Sahani, Mazrura; Xiang, Chung Jing; Ahamad, Fatimah; Amil, Norhaniza; Darus, Mashitah; Varkkey, Helena; Tangang, Fredolin; Jaafar, Abu Bakar

    2018-03-01

    Haze is a common phenomenon afflicting Southeast Asia (SEA), including Malaysia, and has occurred almost every year within the last few decades. Haze is associated with high level of air pollutants; it reduces visibility and affects human health in the affected SEA countries. This manuscript aims to review the potential origin, chemical compositions, impacts and mitigation strategies of haze in Malaysia. "Slash and burn" agricultural activities, deforestation and oil palm plantations on peat areas, particularly in Sumatra and Kalimantan, Indonesia were identified as the contributing factors to high intensity combustions that results in transboundary haze in Malaysia. During the southwest monsoon (June to September), the equatorial SEA region experiences a dry season and thus an elevated number of fire events. The prevailing southerly and south-westerly winds allow the cross-boundary transportation of pollutants from the burning areas in Sumatra and Kalimantan in Indonesia, to Peninsular Malaysia and Malaysian Borneo, respectively. The dry periods caused by the El Niño - Southern Oscillation (ENSO) prolong the duration of poor air quality. The size range of particulate matter (PM) in haze samples indicates that haze is dominated by fine particles. Secondary inorganic aerosols (SIA, such as SO42- and NH4+) and organic substances (such as levoglucosan, LG) were the main composition of PM during haze episodes. Local vehicular emissions and industrial activities also contribute to the amount of pollutants and can introduce toxic material such as polyaromatic hydrocarbons (PAHs). Haze episodes have contributed to increasing hospital visits for treatments related to chronic obstructive pulmonary diseases, upper respiratory infections, asthma and rhinitis. Respiratory mortality increased 19% due to haze episodes. Children and senior citizens are more likely to suffer the health impacts of haze. The inpatient cost alone from haze episodes was estimated at around USD 91

  17. Model elucidating the sources and formation mechanisms of severe haze pollution over Northeast mega-city cluster in China.

    Science.gov (United States)

    Yang, Ting; Gbaguidi, Alex; Yan, Pingzhong; Zhang, Wending; Zhu, Lili; Yao, Xuefeng; Wang, Zifa; Chen, Hui

    2017-11-01

    Recent studies on regional haze pollution over China come up in general with strong variability of main causes of heavy polluted episodes, in linkage with local specificities, sources and pollution characteristics. This paper therefore aims at elucidating the main specific sources and formation mechanisms of observed strong haze pollution episodes over 1-15 November 2015 in Northeast region considered as one of biggest megacity clusters in China. The Northeast China mega-city cluster, including Heilong Jiang, Jilin and Liaoning provinces, is adjacent to Russia in the north, Mongolian at the west, North Korea at east, and representing key geographical location in the regional and transnational air pollution issues in China due to the presence of heavy industries and intense economic activities. The present study, based on air quality monitoring, remote sensing satellite data and sensitivity experiments carried on the Nested Air Quality Prediction Modeling System (NAQPMS), quantitatively assesses the impact of meteorological conditions and potential contributions from regional chemical transport, intensive energy combustion, illegal emission and biomass burning emissions to PM 2.5 concentration variation. The results indicate strong inversion occurrence at lower atmosphere with weak near-surface wind speed and high relative humidity, leading to PM 2.5 concentration increase of about 30-50%. Intensive energy combustion (plausibly for heating activities) and illegal emission also significantly enhance the overall PM 2.5 accumulation by 100-200 μg m -3 (60-70% increase), against 75-100 μg m -3 from the biomass burning under the northeast-southwest transport pathway, corresponding to a contribution of 10-20% to PM 2.5 concentration increase. Obviously, stagnant meteorological conditions, energy combustion, illegal emission and biomass burning are main drivers of strong haze formation and spatial distribution over Northeast China megacity cluster. In clear, much

  18. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  19. Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes

    Science.gov (United States)

    He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; hide

    2018-01-01

    UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).

  20. Enhanced 40 and 80 Gb/s wavelength conversion using a rectangular shaped optical filter for both red and blue spectral slicing.

    Science.gov (United States)

    Raz, O; Herrera, J; Dorren, H J S

    2009-02-02

    By using a tunable filter with tunability of both bandwidth and wavelength and a very sharp filter roll-off, considerable improvement of all optical Wavelength Conversion, based on Cross Gain and Phase Modulation effects in a Semiconductor Optical Amplifier and spectral slicing, is shown. At 40 Gb/s slicing of blue spectral components is shown to result in a small penalty of 0.7 dB, with a minimal eye broadening, and at 80 Gb/s the low demonstrated 0.5 dB penalty is a dramatic improvement over previously reported wavelength converters using the same principal. Additionally, we give for the first time quantitative results for the case of red spectral slicing at 40 Gb/s which we found to have only 0.5 dB penalty and a narrower time response, as anticipated by previously published theoretical papers. Numerical simulations for the dependence of the eye opening on the filter characteristics highlight the importance of the combination of a sharp filter roll-off and a broad passband.

  1. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.

    2017-05-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range.

  2. Facile synthesis of Bi2MoO6/ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue

    Science.gov (United States)

    Liu, Yue; Yang, Zhao-Hui; Song, Pei-Pei; Xu, Rui; Wang, Hui

    2018-02-01

    In this paper, visible-light-driven Bi2MoO6/ZnSnO3 (BMZ) hybrid photocatalysts were successful fabricated by a combined solvothermal (160 °C, 6 h) and annealing steps (450 °C, 1 h). Systematical characterization methods including X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherms (BET), photoluminescence (PL) spectroscopy and ultraviolet-visible diffuse reflection spectroscopy (DRS) were implemented to further analyze the obtained hybrids. The photocatalytic properties were investigated against degrading methylene blue (MB) under visible light irradiation. Obviously, BMZ hybrid photocatalysts displayed better photocatalytic performance compared with the bare Bi2MoO6 and ZnSnO3. Particularly, the highest photocatalytic activity was obtained by the 5-BMZ composite with the degradation efficiency of approximate 95%, which was up to 1.27 times and 7.31 times higher in comparison with pure Bi2MoO6 and ZnSnO3, respectively. The superior photocatalytic performances may be derived from the formation of heterojunction and presence of active species including rad O2- and h+. Finally, a possible photocatalytic mechanism for improved photocatalytic activity was proposed.

  3. Blue Ocean Thinking

    Science.gov (United States)

    Orem, Donna

    2016-01-01

    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  4. Dark matter implications of the WMAP-Planck Haze

    International Nuclear Information System (INIS)

    Egorov, Andrey E.; Pierpaoli, Elena; Gaskins, Jennifer M.; Pietrobon, Davide

    2016-01-01

    Gamma rays and microwave observations of the Galactic Center and surrounding areas indicate the presence of anomalous emission, whose origin remains ambiguous. The possibility of dark matter annihilation explaining both signals through prompt emission at gamma rays and secondary emission at microwave frequencies from interactions of high-energy electrons produced in annihilation with the Galactic magnetic fields has attracted much interest in recent years. We investigate the dark matter interpretation of the Galactic Center gamma-ray excess by searching for the associated synchrotron emission in the WMAP and Planck microwave data. Considering various magnetic field and cosmic-ray propagation models, we predict the synchrotron emission due to dark matter annihilation in our Galaxy, and compare it with the WMAP and Planck data at 23–70 GHz. In addition to standard microwave foregrounds, we separately model the microwave counterpart to the Fermi Bubbles and the signal due to dark matter annihilation, and use component separation techniques to extract the signal associated with each template from the total emission. We confirm the presence of the Haze at the level of ≈7% of the total sky intensity at 23 GHz in our chosen region of interest, with a harder spectrum (I ∼ ν −0.8 ) than the synchrotron from regular cosmic-ray electrons. The data do not show a strong preference towards fitting the Haze by either the Bubbles or dark matter emission only. Inclusion of both components provides a better fit with a dark matter contribution to the Haze emission of ≈20% at 23 GHz, however, due to significant uncertainties in foreground modeling, we do not consider this a clear detection of a dark matter signal. We set robust upper limits on the annihilation cross section by ignoring foregrounds, and also report best-fit dark matter annihilation parameters obtained from a complete template analysis. We conclude that the WMAP and Planck data are consistent with a dark

  5. Climatology of the meteorological factors associated with haze events over northern China and their potential response to the Quasi-Biannual Oscillation

    Science.gov (United States)

    Liang, Ju; Tang, Yaoguo

    2017-10-01

    An upswing in haze weather during autumn and winter has been observed over North and Northeast China in recent years, imposing adverse impacts upon local socioeconomic development and human health. However, such an increase in the occurrence of haze events and its association with natural climate variability and climate change are not well understood. To investigate the climatology of the meteorological factors associated with haze events and their natural variability, this study uses a meteorological pollution index called PLAM (Parameter Linking Air-quality to Meteorological conditions) and ERA-Interim reanalysis data. The results suggest that high PLAM values tend to occur over southern parts of northern China, implying the weather conditions over this area are favorable for the occurrence of haze weather. For the period 1979-2014, the regional mean PLAM shows an overall increase across Beijing, Tianjin, and Hebei Province, and parts of Shanxi Province. Also, a periodicity of 28-34 months is found in the temporal variation of PLAM, which implies a potential association of PLAM with the stratospheric Quasi-Biannual Oscillation (QBO). By using the QBO index during the autumn and winter seasons in the preceding year, an increase in PLAM is found for the westerly phases of the QBO, relative to the easterly phases. An upper-tropospheric warming is also found in the westerly phases, which can induce a stable stratification that favors the increase in PLAM across the midlatitudes. The modulations of large-scale environmental factors, including moist static stability, vertical velocity, and temperature advection, also act to enhance PLAM in the westerly phases. However, the baroclinic term of moist potential vorticity at 700 hPa tends to decrease over the south, and an increase in low-level ascent is found over the north. These factors can reduce PLAM and possibly limit the statistical significance of the increased PLAM in the westerly phases of the QBO.

  6. Tropospheric haze and colors of the clear twilight sky.

    Science.gov (United States)

    Lee, Raymond L; Mollner, Duncan C

    2017-07-01

    At the earth's surface, clear-sky colors during civil twilights depend on the combined spectral effects of molecular scattering, extinction by tropospheric aerosols, and absorption by ozone. Molecular scattering alone cannot produce the most vivid twilight colors near the solar horizon, for which aerosol scattering and absorption are also required. However, less well known are haze aerosols' effects on twilight sky colors at larger scattering angles, including near the antisolar horizon. To analyze this range of colors, we compare 3D Monte Carlo simulations of skylight spectra with hyperspectral measurements of clear twilight skies over a wide range of aerosol optical depths. Our combined measurements and simulations indicate that (a) the purest antisolar twilight colors would occur in a purely molecular, multiple-scattering atmosphere, whereas (b) the most vivid solar-sky colors require at least some turbidity. Taken together, these results suggest that multiple scattering plays an important role in determining the redness of the antitwilight arch.

  7. Do Photochemical Hazes Cloud the Atmosphere of 51 Eri b?

    Science.gov (United States)

    Marley, Mark; Zahnle, Kevin; Moses, Julianne; Morley, Caroline

    2015-12-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the ~ 2MJ planet 51 Eri b. This ~20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet’s mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. In the atmosphere of an object as cool as 700 K the global silicate and iron clouds would be expected to be found well below the photosphere, although strong vertical mixing in the low gravity atmosphere is a possibility. Instead, clouds of Na2S, as have been detected in brown dwarf atmospheres, are a likely source of particle opacity. As a third explanation we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. We also have explored whether photochemical products can alter the equilibrium temperature profile of the atmosphere. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet’s effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  8. Blue ocean strategy.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  9. Thermodynamically stable blue phases.

    Science.gov (United States)

    Castles, F; Morris, S M; Terentjev, E M; Coles, H J

    2010-04-16

    We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric "bimesogenic" and "bent-core" materials, and predicts how this range may be increased further.

  10. Marrying the mussel inspired chemistry and Kabachnik-Fields reaction for preparation of SiO2 polymer composites and enhancement removal of methylene blue

    Science.gov (United States)

    Huang, Qiang; Liu, Meiying; Chen, Junyu; Wan, Qing; Tian, Jianwen; Huang, Long; Jiang, Ruming; Deng, Fengjie; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    The removal of organic dyes using functionalization SiO2 composites (denoted as SiO2-PDA-CSH) were prepared via a facile method that combined with mussel inspired chemistry and Kabachnik-Fields (KF) reaction. The size and surface morphology, chemical structure, thermal stability, surface charging property, and elemental composition were evaluated by means of transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), zeta potential, and X-ray photoelectron spectroscopy (XPS), respectively. The results demonstrated that the organic functional groups can be successfully introduced onto the surface of SiO2 microspheres through the combination of mussel inspired chemistry and KF reaction. The removal of cationic dye methylene blue (MB) by the raw SiO2 and SiO2-PDA-CSH composites was examined and compared using a series of batch adsorption experiments. The results suggested that SiO2-PDA-CSH composites had a 3-fold increase in the adsorption capacity towards MB than that of pure SiO2 microspheres and the adsorption process was dependent on the solution pH. According to the adsorption kinetics, the adsorption of MB onto SiO2-PDA-CSH composites was well described by pseudo-second-order kinetic model. The equilibrium data were fitted with Langmuir and Freundlich isotherm models with R2 = 0.9981 and R2 = 0.9982, respectively. The maximum adsorption capacity from Langmuir isotherm was found to be 688.85 mg/g. The adsorption thermodynamics was also investigated in detailed. The parameters revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism might be the synergistic action of physical adsorption of SiO2-PDA-CSH particles and electrostatic interaction between the MB and functional groups on the surface of SiO2-PDA-CSH composites, including sulfydryl, amino, aromatic moieties, and phosphate groups. Taken together, we developed a novel and facile strategy for the

  11. A New Perspective on Formation of Haze-Fog: The Fuzzy Cognitive Map and Its Approaches to Data Mining

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2017-02-01

    Full Text Available Haze-fog has seriously hindered the sustainable development of the ecological environment and caused great harm to the physical and mental health of residents in China. Therefore, it is important to probe the formation of haze-fog for its early warning and prevention. The formation of haze-fog is, in fact, a fuzzy nonlinear process. The formation of haze-fog is such a complex process that it is difficult to simulate its dynamic evolution using traditional methods, mainly because of the lack of their consideration of the nonlinear relationships. It is, therefore, essential to explore new perspectives on the formation of haze-fog. In this work, previous research on haze-fog formation is summarized first. Second, a new perspective is proposed on the application of fuzzy cognitive map to the formation of haze-fog. Third, a data mining method based on the genetic algorithm is used to discover the causality values of a fuzzy cognitive map (FCM for hazefog formation. Finally, simulation results are obtained through an experiment using the fuzzy cognitive map and its data mining method for the formation of haze-fog. The validity of this approach is determined by definition of a simple rule and the Kappa values. Thus, this research not only provides a new idea using FCM modeling the formation of haze-fog, but also uses an effective method of FCM for solving the nonlinear dynamics of the haze-fog formation.

  12. Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins.

    Directory of Open Access Journals (Sweden)

    Matteo Marangon

    Full Text Available Grape thaumatin-like proteins (TLPs play roles in plant-pathogen interactions and can cause protein haze in white wine unless removed prior to bottling. Different isoforms of TLPs have different hazing potential and aggregation behavior. Here we present the elucidation of the molecular structures of three grape TLPs that display different hazing potential. The three TLPs have very similar structures despite belonging to two different classes (F2/4JRU is a thaumatin-like protein while I/4L5H and H2/4MBT are VVTL1, and having different unfolding temperatures (56 vs. 62°C, with protein F2/4JRU being heat unstable and forming haze, while I/4L5H does not. These differences in properties are attributable to the conformation of a single loop and the amino acid composition of its flanking regions.

  13. Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Cai, Wenju; Yang, Yang

    2018-02-01

    Severe haze pollution in eastern China has caused substantial health impacts and economic loss. Conducive atmospheric conditions are important to affect occurrence of severe haze events, and circulation changes induced by future global climate warming are projected to increase the frequency of such events. However, a potential contribution of an anthropogenic influence to recent most severe haze (December 2015 and January 2013) over eastern China remains unclear. Here we show that the anthropogenic influence, which is estimated by using large ensemble runs with a climate model forced with and without anthropogenic forcings, has already increased the probability of the atmospheric patterns conducive to severe haze by at least 45% in January 2013 and 27% in December 2015, respectively. We further confirm that simulated atmospheric circulation pattern changes induced by anthropogenic influence are driven mainly by increased greenhouse gas emissions. Our results suggest that more strict reductions in pollutant emissions are needed under future anthropogenic warming.

  14. Transboundary smoke haze pollution in Malaysia: inpatient health impacts and economic valuation.

    Science.gov (United States)

    Othman, Jamal; Sahani, Mazrura; Mahmud, Mastura; Ahmad, Md Khadzir Sheikh

    2014-06-01

    This study assessed the economic value of health impacts of transboundary smoke haze pollution in Kuala Lumpur and adjacent areas in the state of Selangor, Malaysia. Daily inpatient data from 2005, 2006, 2008, and 2009 for 14 haze-related illnesses were collected from four hospitals. On average, there were 19 hazy days each year during which the air pollution levels were within the Lower Moderate to Hazardous categories. No seasonal variation in inpatient cases was observed. A smoke haze occurrence was associated with an increase in inpatient cases by 2.4 per 10,000 populations each year, representing an increase of 31 percent from normal days. The average annual economic loss due to the inpatient health impact of haze was valued at MYR273,000 ($91,000 USD). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Structure of Haze Forming Proteins in White Wines: Vitis vinifera Thaumatin-Like Proteins

    Science.gov (United States)

    Marangon, Matteo; Van Sluyter, Steven C.; Waters, Elizabeth J.; Menz, Robert I.

    2014-01-01

    Grape thaumatin-like proteins (TLPs) play roles in plant-pathogen interactions and can cause protein haze in white wine unless removed prior to bottling. Different isoforms of TLPs have different hazing potential and aggregation behavior. Here we present the elucidation of the molecular structures of three grape TLPs that display different hazing potential. The three TLPs have very similar structures despite belonging to two different classes (F2/4JRU is a thaumatin-like protein while I/4L5H and H2/4MBT are VVTL1), and having different unfolding temperatures (56 vs. 62°C), with protein F2/4JRU being heat unstable and forming haze, while I/4L5H does not. These differences in properties are attributable to the conformation of a single loop and the amino acid composition of its flanking regions. PMID:25463627

  16. Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods

    Science.gov (United States)

    Cheng, Chunlei; Wang, Gehui; Zhou, Bianhong; Meng, Jingjing; Li, Jianjun; Cao, Junji; Xiao, Shun

    2013-12-01

    PM10 aerosols from Xi'an, a mega city of China in winter and summer, 2009 were measured for secondary organic aerosols (SOA) (i.e., dicarboxylic acids (DCA), keto-carboxylic acids, and α-dicarbonyls), water-soluble organic (WSOC) and inorganic carbon (WSIC), elemental carbon (EC) and organic carbon (OC). Molecular compositions of SOA on haze and clean days in both seasons were compared to investigate their sources and formation mechanisms. DCA in the samples were 1843 ± 810 ng m-3 in winter and 1259 ± 781 ng m-3 in summer, respectively, which is similar and even higher than those measured in 2003. Oxalic acid (C2, 1162 ± 570 ng m-3 in winter and 1907 ± 707 ng m-3 in summer) is the predominant species of DCA, followed by t-phthalic (tPh) in winter and phthalic (Ph) in summer. Such a molecular composition is different from those in other Asian cities where succinic acid (C4) or malonic acid (C3) is the second highest species, which is mostly due to significant emissions from household combustion of coal and open burning of waste material in Xi'an. Mass ratios of C2/diacids, diacids/WSOC, WSOC/OC and individual diacid-C/WSOC are higher on the haze days than on the clean days in both seasons, suggesting an enhanced SOA production under the haze condition. We also found that the haze samples are acidic while the clean samples are almost neutral. Such a difference in particle acidity is consistent with the enhanced SOA production, because acid-catalysis is an important aqueous-phase formation pathway of SOA. Gly/mGly mass ratio showed higher values on haze days than on clean day in both seasons. We comprehensively investigated the ratio in literature and found a consistent pattern. Based on our observation results and those documented data we proposed for the first time that concentration ratio of Gly/mGly can be taken as an indicator of aerosol ageing.

  17. The Shift from Acceptance to Prevention: Hazing Behaviors in the U.S. Military

    Science.gov (United States)

    2016-10-31

    they could be made to crawl through the leftover breakfast food, they could kiss the “royal baby’s belly” which is often covered in grease, and...investigated the prevalence of hazing among sororities and fraternities. They examined the distinct differences between men and women as well as...than women reported (Parks et al., 2015). The way in which this study analyzed the influence of race on engagement in hazing behaviors was through

  18. Blue Ribbon Panel Report

    Science.gov (United States)

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  19. New York Blue

    Data.gov (United States)

    Federal Laboratory Consortium — New York Blue is used cooperatively by the Laboratory and Stony Brook University as part of the New York Center for Computation Sciences. Ranked as the 28th fastest...

  20. Numerical simulations of the effects of regional topography on haze pollution in Beijing.

    Science.gov (United States)

    Zhang, Ziyin; Xu, Xiangde; Qiao, Lin; Gong, Daoyi; Kim, Seong-Joong; Wang, Yinjun; Mao, Rui

    2018-04-03

    In addition to weather conditions and pollutant emissions, the degree to which topography influences the occurrence and development of haze pollution in downtown Beijing and the mechanisms that may be involved remain open questions. A series of atmospheric chemistry simulations are executed by using the online-coupled Weather Research and Forecasting with Chemistry (WRF-Chem) model for November-December 2015 with different hypothetical topographic height scenarios. The simulation results show that topography exerts an important influence on haze pollution in downtown Beijing, particularly the typical development of haze pollution. A possible mechanism that underlies the response of haze pollution to topography is that the mountains that surround Beijing tend to produce anomalous southerly winds, high relative humidity, low boundary layer heights, and sinking motion over most of Beijing. These conditions favor the formation and development of haze pollution in downtown Beijing. Furthermore, the reduction percentage in PM 2.5 concentrations due to reduced terrain height in the southerly wind (S) mode is almost three times larger than that in the northerly wind (N) mode. In the context of the regional topography, the simple S and N modes represent useful indicators for haze prediction in Beijing to some extent, especially over medium to long time scales.

  1. Reactive Nitrogen Chemistry in Aerosol Water as a Source of Sulfate during Haze Events in China

    Science.gov (United States)

    Su, H.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Zhang, Q.; Gao, M.; He, K.; Carmichael, G. R.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Fine particle pollution associated with winter haze threatens the health of over 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations up to 300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models relying on sulfate production mechanisms that require photochemical oxidants, cannot predict these high levels due to the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content leading to faster sulfate production and more severe haze pollution. Reference: Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

  2. Understanding the recent trend of haze pollution in eastern China: roles of climate change

    Directory of Open Access Journals (Sweden)

    H.-J. Wang

    2016-04-01

    Full Text Available In this paper, the variation and trend of haze pollution in eastern China for winter of 1960–2012 were analyzed. With the overall increasing number of winter haze days in this period, the 5 decades were divided into three sub-periods based on the changes of winter haze days (WHD in central North China (30–40° N and eastern South China (south of 30° N for east of 109° E mainland China. Results show that WHD kept gradually increasing during 1960–1979, remained stable overall during 1980–1999, and increased fast during 2000–2012. The author identified the major climate forcing factors besides total energy consumption. Among all the possible climate factors, variability of the autumn Arctic sea ice extent, local precipitation and surface wind during winter is most influential to the haze pollution change. The joint effect of fast increase of total energy consumption, rapid decline of Arctic sea ice extent and reduced precipitation and surface winds intensified the haze pollution in central North China after 2000. There is a similar conclusion for haze pollution in eastern South China after 2000, with the precipitation effect being smaller and spatially inconsistent.

  3. Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters

    Directory of Open Access Journals (Sweden)

    M. Marus

    2018-03-01

    Full Text Available The effect of the diameter of randomly arranged silver nanowires on the optical haze of silver nanowire transparent conductive films was studied. Proposed simulation model behaved similarly with the experimental results, and was used to theoretically study the optical haze of silver nanowires with diameters in the broad range from 30 nm and above. Our results show that a thickening of silver nanowires from 30 to 100 nm results in the increase of the optical haze up to 8 times, while from 100 to 500 nm the optical haze increases only up to 1.38. Moreover, silver nanowires with diameter of 500 nm possess up to 5% lower optical haze and 5% higher transmittance than 100 nm thick silver nanowires for the same 10-100 Ohm/sq sheet resistance range. Further thickening of AgNWs can match the low haze of 30 nm thick AgNWs, but at higher transmittance. The results obtained from this work allow deeper analysis of the silver nanowire transparent conductive films from the perspective of the diameter of nanowires for various optoelectronic devices.

  4. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies

    Science.gov (United States)

    Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei

    2018-03-01

    Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.

  5. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia

    Science.gov (United States)

    Lin, Yuan; Wijedasa, Lahiru S.; Chisholm, Ryan A.

    2017-02-01

    Haze pollution over the past four decades in Southeast Asia is mainly a result of forest and peatland fires in Indonesia. The economic impacts of haze include adverse health effects and disruption to transport and tourism. Previous studies have used a variety of approaches to assess the economic impacts of haze and the forest fires more generally. But no study has used contingent valuation to assess non-market impacts of haze on individuals. Here we apply contingent valuation to estimate impacts of haze on Singapore, one of most severely affected countries. We used a double-bounded dichotomous-choice survey design and the Kaplan-Meier-Turnbull method to infer the distribution of Singaporeans’ willingness to pay (WTP) for haze mitigation. Our estimate of mean individual WTP was 0.97% of annual income (n = 390). To calculate total national WTP, we stratified by income, the demographic variable most strongly related to individual WTP. The total WTP estimate was 643.5 million per year (95% CI [527.7 million, 765.0 million]). This estimate is comparable in magnitude to previously estimated impacts of Indonesia’s fires and also to the estimated costs of peatland protection and restoration. We recommend that our results be incorporated into future cost-benefit analyses of the fires and mitigation strategies.

  6. The characteristics of atmospheric phthalates in Shanghai: A haze case study and human exposure assessment

    Science.gov (United States)

    Li, Yingjie; Wang, Jiahui; Ren, Bainian; Wang, Hongli; Qiao, Liping; Zhu, Jiping; Li, Li

    2018-04-01

    While phthalates in indoor environments are extensively studied, reports on phthalates in outdoor air, particularly their associations with haze weather events are rare. Phthalates, especially dimethyl phthalate, are known to react with criteria air pollutants contributing to the formation of secondary organic aerosols. This study investigated phthalates levels in the atmosphere in Shanghai with a focus on their associations with different air quality weather events. The air quality during the study period was classified into three levels: non-haze, light pollution and moderate pollution. Phthalates levels were found to be lower in non-haze weather events (236 ng/m3) and higher in moderate pollution weather events (up to 700 ng/m3). Meteorological factors of relative humidity and wind speed had an inverse relationship with phthalates levels. Particulate matter had a positive correlation with phthalates levels. Hydroxyl radical initiated photo-reaction of dimethyl phthalate was evident by its inverse relationship with total atmospheric oxidant (O3 + NO2), indicating that dimethyl phthalate could be one of the precursors of secondary organic aerosol causing haze weather events. Daily intake of phthalates through exposure to outdoor air is estimated to be relatively minor; children intake remains higher on a body weight basis. This is the first study demonstrating the relationship of phthalates and different air quality conditions in haze weather events. The knowledge contributes to our understanding on the cause of haze weather events in China and elsewhere.

  7. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin [State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China); Lan, Ding [National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080 (China)

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  8. Source contributions of fine particulate matter during one winter haze episodes in Xi'an, China

    Science.gov (United States)

    Yang, X.; Wu, Q.

    2017-12-01

    Long-term exposure to high levels of fine particulate matter (PM2.5) is found to be associated with adverse effects on human health, ecological environment and climate change. Identification the major source regions of fine particulate matter are essential to proposing proper joint prevention and control strategies for heavy haze mitigation. In this work, the Comprehensive Air Quality Model with extensions (CAMx) together with the Particulate Source Apportionment Technology (PSAT) and the Weather Research and Forecast Model (WRF), have been applied to analyze the major source regions of PM2.5 in Xi'an during the heavy haze episodes in winter (29, December, 2016 - 5 January 2017), and the framework of the model system is shown in Fig. 1. Firstly, according to the model evaluation of the daily PM2.5 concentrations for the two months, the model has well performance, and the fraction of predictions within a factor of 2 of the observations (FAC2) is 84%, while the correlation coefficient (R) is 0.80 in Xi'an. By using the PSAT in CAMx model, a detailed source region contribution matrix is derived for all points within the Xi'an region and its six surrounding areas, and long-range regional transport. The results show that the local emission in Xi'an is the mainly sources at downtown area, which contributing 72.9% as shown in Fig.2, and the contribution rate of transportations between adjacent areas depends on wind direction. Meanwhile, three different suburban areas selected for detailed analysis in fine particles sources. Comparing to downtown area, the sources of suburban areas are more multiply, and the transportations make the contribution 40%-82%. In the suburban areas, regional inflows play an important role in the fine particles concentrations, indicating a strong need for regional joint emission control efforts. The results enhance the quantitative understanding of the PM2.5 source regions and provide a basis for policymaking to advance the control of pollution

  9. [Chemical Characteristics of Particulate Matters and Trajectory Influence on Air Quality in Shanghai During the Heavy Haze Episode in December, 2013].

    Science.gov (United States)

    Zhou, Min; Qiao, Li-ping; Zhu, Shu-hui; Li, Li; Lou, Sheng-rong; Wang, Hong-li; Tao, Shi-kang; Huang, Cheng; Chen, Chang-hong

    2016-04-15

    Intensive haze shrouded central and eastern parts of China in Dec. 2013. In this study, the mass concentrations of gaseous and particulate pollutants, and also the chemical compositions of fine particulate matters were obtained based on in-situ measurement in Shanghai urban area. The characteristics of PM2.5 were investigated during different pollution episodes, including dust, haze, fog-haze and long-rang transport episodes. The results showed that pollution was most serious during the fog-haze episode, during which the maximum daily mass concentrations of PM10 and PM2.5 reached 536 microg x m(-3) and 411 microg x m(-3), respectively. During the fog-haze episode, the ratio of PM2.5 to PM10 was over 76.7%, suggesting that high humidity enhanced the secondary formation of NO3-, SO4(2-) and NH4+ in PM2.5. Highest concentration of Ca2+ in PM2.5 occurred during the dust episode and the proportion of primary components in PM2.5 increased obviously. Highest concentration of SO2- was observed in PM25 during the long-range transport episode, with a fast growth rate. Meanwhile, the trajectories reaching Shanghai urban area and cluster analysis during different pollution episodes were simulated by HYSPLIT model. Combined with observation data of PM2.5 in Shanghai urban area, chemical characteristics of PM2.5 in different clusters and potential source apportionment of various pollution episodes were also studied in this study. The result revealed that the air trajectories could be grouped into six clusters based on their spatial similarities. Among these clusters, cluster6 which moved fast was associated with clean air. Cluster2 and cluster3 originating from Mongolia region had strong correlations to dust pollution, along with low PM2.5/PM10 ratio and high concentration of Ca2+ in PM2.5. Compared with other clusters, cluster5 and cluster4 with slow moving speed were more favorable for reactions between particulate species and formation of secondary pollutants during transport

  10. Singapore Haze in June 2013: Consequences of Land-Use Change, Fires, and Anomalous Meteorology for Air Quality in Equatorial Asia

    Science.gov (United States)

    Koplitz, S.; Mickley, L. J.; Jacob, D. J.; Kim, P. S.; DeFries, R. S.; Marlier, M. E.; Schwartz, J.; Buonocore, J.; Myers, S. S.

    2014-12-01

    Much of Equatorial Asia is currently undergoing extensive burning from agricultural fires and rapid land-use conversion to oil palm plantations, with substantial consequences for air quality and health. In June 2013, Singapore experienced severe smoke levels, with surface particulate matter concentrations greater than ten times average. Unlike past haze events in Singapore (e.g. September 1997 and October 2006), the June 2013 pollution event occurred during El Nino-neutral conditions. Using a combination of observations and chemical transport modeling, we examine relationships between sea surface temperatures, wind fields, fire patterns, and aerosol optical depth during the June 2013 haze event. We find reasonable agreement between satellite measurements of aerosol optical depth (AOD) from the MODIS and MISR instruments and in-situ measurements from the AERONET stations across Equatorial Asia for 2005-2010 (MODIS R2 = 0.39, bias = -1.6%; MISR R2 = 0.27, bias = -42%). However, AOD observations fail to capture the Singapore pollution event of June 2013. Simulations with the GEOS-Chem model suggest that anomalously high dust concentrations during June 2013 may have impaired the ability of MODIS to monitor the haze over Singapore. In contrast, we show that the OMI Aerosol Index can effectively capture these smoke events and may be used to monitor future haze episodes in Equatorial Asia. We find that the June 2013 haze in Singapore may be attributed to anomalously strong westerlies carrying smoke from Riau Province in Indonesia. These westerlies, 5 m s-1 faster than the 2005-2010 mean June winds, are consistent with the phase of the Madden-Julian Oscillation (MJO) crossing the Maritime Continent at that time. These westerlies may have been further enhanced by a negative phase of the Indian Ocean Dipole (IOD), an east-west gradient in sea surface temperature anomalies across the Indian Ocean, with cold sea surface temperature anomalies (-3 C°) off the Arabian coast and

  11. Hydroxymethane sulfonate as a possible explanation for observed high levels of particulate sulfur during severe winter haze episodes in Beijing, China.

    Science.gov (United States)

    Moch, J.; Jacob, D.; Mickley, L. J.; Cheng, Y.; Li, M.; Munger, J. W.; Wang, Y.

    2017-12-01

    Observed PM2.5 during severe winter haze in Beijing, China, may reach levels as high as 880 μg m-3, with sulfur compounds contributing significantly to PM2.5 composition. Such sulfur has been traditionally assumed to be sulfate, even though models fail to generate such large sulfate enhancements under cold and hazy conditions. We show that particulate sulfur in wintertime Beijing possibly occurs as an S(IV)-HCHO adduct, hydroxymethane sulfonate (HMS), formed by reaction of aqueous-phase HCHO and S(IV) in cloud droplets. We use a 1-D chemistry model extending from the surface through the boundary layer to examine the potential role of HMS during the Beijing haze events of December 2011 and January 2013. Observed and assimilated meteorological fields including cloud liquid water were applied to the model, and we test the sensitivity of HMS formation to cloud pH and ambient SO2 and HCHO. Surface observations from the two haze events show excess ammonium in the aerosol, indicating cloud pH may be relatively high. Model results show that once cloud pH exceeds 4.5, HMS can accumulate rapidly, reaching a few hundred μg m-3 in a few hours. The timing of HMS formation is controlled by the presence of cloud liquid water, with eddy driven diffusion bringing HMS to the surface. The magnitude of HMS peaks is limited by the supply of HCHO. HMS episodes in the model end gradually over 1-3 days as fresh air is entrained into the boundary layer; in observations these episodes typically end when increasing wind speeds destabilize the boundary layer and disperses pollution. We find that consideration of HMS as a source of particulate sulfur significantly improves model match with observations. For example, assuming cloud pH of 5 and average surface SO2 and HCHO levels of 50 ppb and 5.5 ppb, we calculate mean HMS as 43.8 μg m-3 in January 2013, within 7 μg m-3 of observed particulate sulfur. Our 1-D model also captures the timing and magnitude of peak particulate sulfur in January

  12. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis.

    Science.gov (United States)

    Greenstein, Steven A; Fry, Kristen L; Bhatt, Jalpa; Hersh, Peter S

    2010-12-01

    To determine the natural history of collagen crosslinking (CXL)-associated corneal haze measured by Scheimpflug imagery and slitlamp biomicroscopy in patients with keratoconus or ectasia after laser in situ keratomileusis. Cornea and refractive surgery subpecialty practice, United States. Prospective randomized controlled clinical trial. The treatment group received ultraviolet-A/riboflavin CXL therapy. The control group received riboflavin alone without epithelial debridement. To objectively measure CXL-associated corneal haze, corneal densitometry using Scheimpflug imagery was measured and the changes in haze were analyzed over time. A similar analysis was performed using clinician-determined slitlamp haze. Correlation of CXL-associated corneal haze with postoperative outcomes was analyzed. The mean preoperative corneal densitometry was 14.9 ± 1.93 (SD) (Pentacam Scheimpflug densitometry units). Densitometry peaked at 1 month (mean 23.4 ± 4.40; Pectasia group (16.1 ± 2.41; P = .15). The postoperative course of slitlamp haze was similar to objective densitometry measurements. Increased haze, measured by densitometry, did not correlate with postoperative clinical outcomes. The time course of corneal haze after CXL was objectively quantified; it was greatest at 1 month, plateaued at 3 months, and was significantly decreased between 3 months and 12 months. Changes in haze did not correlate with postoperative clinical outcomes. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution.

    Science.gov (United States)

    Zhang, Y W; Zhang, X Y; Zhang, Y M; Shen, X J; Sun, J Y; Ma, Q L; Yu, X M; Zhu, J L; Zhang, L; Che, H C

    2015-12-15

    Since the winter season of 2013, a number of persistent haze-fog events have occurred in central-eastern China. Continuous measurements of the chemical and physical properties of PM1 at a regional background station in the Yangtze River Delta area of China from 16 Nov. to 18 Dec., 2013 revealed several haze-fog events, among which a heavy haze-fog event occurred between 6 Dec. and 8 Dec. The mean concentration of PM1 was 212μgm(-3) in the heavy haze-fog period, which was about 10 times higher than on clean days and featured a peak mass concentration that reached 298μgm(-3). Organics were the largest contributor to the dramatic rise of PM1 on heavy haze-fog days (average mass concentration of 86μgm(-3)), followed by nitrate (58μgm(-3)), sulfate (35μgm(-3)), ammonium (29μgm(-3)), and chloride (4.0μgm(-3)). Nitrate exhibited the largest increase (~20 factors), associated with a significant increase in NOx. This was mainly attributable to increased coal combustion emissions, relative to motor vehicle emissions, and was caused by short-distance pollutant transport within surrounding areas. Low-volatility oxidized organic aerosols (OA) (LV-OOA) and biomass-burning OA (BBOA) also increased sharply on heavy haze-fog days, exhibiting an enhanced oxidation capacity of the atmosphere and increased emissions from biomass burning. The strengthening of the oxidation capacity during the heavy pollution episode, along with lower solar radiation, was probably due to increased biomass burning, which were important precursors of O3. The prevailing meteorological conditions, including low wind and high relative humidity, and short distance transported gaseous and particulate matter surrounding of the sampling site, coincided with the increased pollutant concentrations mainly from biomass-burning mentioned above to cause the persistent haze-fog event in the YRD area. Copyright © 2015. Published by Elsevier B.V.

  14. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation.

    Science.gov (United States)

    Kumar, Sumeet; Ojha, Animesh K; Walkenfort, Bernd

    2016-06-01

    Cadmium oxide (CdO) nanoparticles (NPs), reduced graphene oxide (rGO) and rGO-CdO nanocomposites have been synthesized using one step hydrothermal method. The structural and optical properties of CdO NPs, rGO, and rGO-CdO nanocomposites were investigated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (RS), ultraviolet-visible spectroscopy (UV-Vis.) and photoluminescence (PL) spectroscopy techniques. The rGO has a sharp 2D peak compared to GO. The sharp nature of 2D band may be due to the larger contribution from single layer sheet. The photocatalytic activity of the synthesized samples has been investigated under UV irradiation. The results of photocatalytic measurements revealed that ~80% of MB dye is degraded by adding the rGO-CdO nanocomposites as photocatalysts into the dye solution. The decrease in the intensity of emission peaks indicates that the photogenerated charge carriers have been transferred from CdO NPs to rGO sheets, which causes to increase the density of O2(-) and OH radicals in the dye solution. The CdO nanoparticles gown on the rGO sheets showed enhanced ferromagnetism (FM) at room temperature, which may be attributed to the short range magnetic interaction of magnetic moments of CdO NPs and spin units present on the rGO sheets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characteristics of aerosol pollution during heavy haze events in Suzhou, China

    Science.gov (United States)

    Tian, M.; Wang, H. B.; Chen, Y.; Yang, F. M.; Zhang, X. H.; Zou, Q.; Zhang, R. Q.; Ma, Y. L.; He, K. B.

    2015-11-01

    A comprehensive measurement was carried out to analyze the heavy haze events in Suzhou in January 2013 when extremely severe haze pollution occurred in many cities in China especially in the East. Hourly concentrations of PM2.5, chemical composition (including water-soluble inorganic ions, OC, and EC), and gas-phase precursors were obtained via on-line monitoring system. Based on these data, detailed aerosol composition, light extinction and gas-phase precursors were analyzed to understand the characteristics of the haze events, moreover, the formation mechanism of nitrate and sulfate in PM2.5 and the regional sources deduced from trajectory and PSCF were discussed to explore the origin of the heavy aerosol pollution. The results showed that frequent haze events were occurred on January 2013 and the concentrations of PM2.5 often exceeded 150 μg m-3 during the haze occurrence, with a maximum concentration of 324 μg m-3 on 14 January 2013. Unfavorable weather conditions (high RH, and low rainfall, wind speed and atmospheric pressure), high concentration of secondary aerosol species (including SO42-, NO3-, NH4+, and SOC) and precursors were observed during the haze events. Additionally, OM, (NH4)2SO4, NH4NO3 were demonstrated to be the major contributors to the visibility impairment but the share differed from haze events. This study also found that the high concentration of sulfate might be explained by the heterogeneous reactions in the aqueous surface layer of pre-existing particles or in cloud processes while nitrate might be mainly formed through homogeneous gas-phase reactions. The results of trajectory clustering and the PSCF method manifested that aerosol pollutions in the studied areas were mainly affected by local activities and surrounding sources transported from nearby cities.

  16. Identification of two key genes controlling chill haze stability of beer in barley (Hordeum vulgare L).

    Science.gov (United States)

    Ye, Lingzhen; Huang, Yuqing; Dai, Fei; Ning, Huajiang; Li, Chengdao; Zhou, Meixue; Zhang, Guoping

    2015-06-11

    In bright beer, haze formation is a serious quality problem, degrading beer quality and reducing its shelf life. The quality of barley (Hordeum vulgare L) malt, as the main raw material for beer brewing, largely affects the colloidal stability of beer. In this study, the genetic mechanism of the factors affecting beer haze stability in barley was studied. Quantitative trait loci (QTL) analysis of alcohol chill haze (ACH) in beer was carried out using a Franklin/Yerong double haploid (DH) population. One QTL, named as qACH, was detected for ACH, and it was located on the position of about 108 cM in chromosome 4H and can explain about 20 % of the phenotypic variation. Two key haze active proteins, BATI-CMb and BATI-CMd were identified by proteomics analysis. Bioinformatics analysis showed that BATI-CMb and BATI-CMd had the same position as qACH in the chromosome. It may be deduced that BATI-CMb and BATI-CMd are candidate genes for qACH, controlling colloidal stability of beer. Polymorphism comparison between Yerong and Franklin in the nucleotide and amino acid sequence of BATI-CMb and BATI-CMd detected the corresponding gene specific markers, which could be used in marker-assisted selection for malt barley breeding. We identified a novel QTL, qACH controlling chill haze of beer, and two key haze active proteins, BATI-CMb and BATI-CMd. And further analysis showed that BATI-CMb and BATI-CMd might be the candidate genes associated with beer chill haze.

  17. Elemental composition in source identification of brown haze in Auckland, New Zealand

    Science.gov (United States)

    Senaratne, Inoka; Shooter, David

    A brown haze, which builds up over Auckland, New Zealand under calm and cold weather conditions, causes public concern. This study identifies the major sources of this brown haze using variations in the elemental composition of airborne particulate matter between those collected during brown haze days, and normal days in the year 2001. Airborne particulate matter was collected in a site in southeast Auckland, using a versatile air pollution sampler (VAPS) and a PM 10 hi-volume sampler. The elemental composition of the samples, collected using the hi-volume sampler, was quantitatively determined for 14 elements using ICP/MS. The elemental composition of the coarse and fine fractions of the particulate matter collected using the VAPS, was quantitatively determined using ion beam analysis for 16 elements. Elemental carbon was quantitatively determined by a light reflection/transmission technique. For source determination, the VAPS was found to be more useful that the hi-volume sampler. Enrichment factors (EF) for each element of the PM 10 samples were calculated to identify the sources. Further, principal component factor analysis with Varimax rotation was performed using some selected elements in the coarse and fine fractions of particulate samples collected using the VAPS to identify major sources of PM 10 in Auckland. The analysis yielded six significant sources: sea spray, suspended soil/road dust, fine soil, domestic emissions, diesel, and petrol emissions. EF values for brown haze samples revealed that diesel emissions were the major sources responsible for the build-up of brown haze. Coal combustion emissions were also found to contributed, but to a lesser extent. Furthermore, source apportionment using absolute principal component analysis on brown haze and normal days confirmed that accumulation of diesel emissions contributed most to the appearance of brown haze and coal combustion emissions to a lesser extent.

  18. Natural Blue Food Colour

    DEFF Research Database (Denmark)

    Roda-Serrat, Maria Cinta

    In recent years, there has been a growing tendency to avoid the use of artificial colorants and additives in food products, especially after some studies linked their consumption with behavioural changes in children. However, the incorporation of colorants from natural origin remains a challenge...... for food technologists, as these are typically less vivid and less stable than their synthetic alternatives. Regarding blue colorants, phycocyanins from cyanobacteria are currently in the spotlight as promising new natural blue colorants. Phycocyanins are proteins which blue colour results from...... the presence of the chromophore phycocyanobilin (PCB), a covalently attached linear tetrapyrrole. The applications of phycocyanins as food colorants are however limited, as they show poor stability in certain conditions of pH, light and temperature. Cleavage of PCB from the protein followed by careful product...

  19. [Spatial distribution characteristics of NMHCs during winter haze in Beijing].

    Science.gov (United States)

    Duan, Jing-Chun; Peng, Yan-Chun; Tan, Ji-Hua; Hao, Ji-Ming; Chai, Fa-He

    2013-12-01

    NMHCs and NOx samples were simultaneously collected and analyzed in six urban and suburban representative sampling sites (Sihuan, Tian'anmen, Pinguoyuan, Fatou, Beijing Airport and Miyun) during a typical haze period in winter 2005, Beijing. The concentrations of NMHCs during the sampling period in descending order were: Sihuan (1101.29 microg x m(-3)) > Fatou (692.40 microg x m(-3)) >Tian'anmen (653.28 microg x m(-3)) >Pinguoyuan (370.27 microg x m(-3)) > Beijing Airport (350.36 microg x m(-3)) > Miyun (199.97 microg x m(-3)). Atmospheric benzene pollution in Beijing was rather serious. The ratio of NMHCs/NOx ranged from 2.1 to 6.3, indicating that the peak ozone concentrations in urban Beijing were controlled by VOCs during the sampling period. Analysis of propylene equivalent concentration and ozone formation potential showed that the NMHCs reactivity descended in the order of Sihuan > Fatou > Tian'anmen > Pinguoyuan > Beijing Airport > Miyun. B/T values (0.52 to 0.76) indicated that besides motor vehicle emission, coal combustion and other emission sources were also the sources of NHMCs in Beijing in winter. The spatial variations of isoprene in Beijing indicated that the contribution of anthropogenic sources to isoprene increased and the emissions by biogenic sources decreased in winter. The spatial variations of propane and butane indicated that LPG emissions existed in the urban region of Beijing.

  20. Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies

    Science.gov (United States)

    Wangkhem, Ranjoy; Yaba, Takhe; Shanta Singh, N.; Ningthoujam, R. S.

    2018-03-01

    CaMoO4:Eu3+ (3 at. %)/Bi3+ (x at. %) nanophosphors were synthesized hydrothermally. All the samples can be excited by 280, 320, 393, and 464 nm (blue) wavelengths for generation of red color emission. Enhancement in 5D0 → 7F2 (615 nm) emission (f-f transition) of Eu3+ is observed when Bi3+ is incorporated in CaMoO4:Eu3+. This is due to the efficient energy transfer from Bi3+ to Eu3+ ions. Introduction of Bi3+ in the system does not lead to the change of emission wavelength of Eu3+. However, Bi3+ incorporation in the system induces a shift in Mo-O charge transfer band absorption from 295 to 270 nm. This may be due to the increase in electronegativity between Mo and O bond in the presence of Bi3+ leading to change in crystal field environment of Mo6+ in MoO42-. At the optimal concentration of Bi3+, an enhancement in emission by a factor of ˜10 and 4.2 in the respective excitation at 393 (7F0 → 5L6) and 464 nm (7F0 → 5D2) is observed. The energy transfer efficiency from Bi3+ to Eu3+ increases from 75% to 96%. The energy transfer is observed to occur mainly via dipole-dipole interactions. Maximum quantum yield value of 55% is observed from annealed CaMoO4:Eu3+ (3 at. %) when sensitized with Bi3+ (15 at. %) under 464 nm excitation. From Commission International de I'Eclairage chromaticity coordinates, the color (red) saturation is observed to be nearly 100%.

  1. A Blue Lagoon Function

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2007-01-01

    We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$.......We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$....

  2. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions

    Science.gov (United States)

    Wu, Fangjun; Li, Xin; Liu, Wei; Zhang, Shuting

    2017-05-01

    In the present research work, the ternary indirect all-solid-state Z-scheme nanoheterojunctions, graphitic-C3N4/reduced graphene oxide/anatase TiO2 (g-C3N4-RGO-TiO2) with highly enhanced photocatalytic performance were successfully prepared via a simple liquid-precipitation strategy. The photocatalytic activities of indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions were evaluated by the degradation of methylene blue (MB). The results showed that the introduction of RGO as an interfacial mediator into direct Z-scheme g-C3N4-TiO2 nanocomposites can remarkably enhance their photocatalytic activities. The as-obtained indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions, with the optimal loading amount of 10 wt% RGO, exhibited the highest rate towards the photocatalytic degradation of MB under simulated solar light irradiation. The degradation kinetics of MB can be described by the apparent first-order kinetics model. The highest degradation rate constant of 0.0137 min-1 is about 4.7 and 3.2 times greater than those of the pure g-C3N4 (0.0029 min-1) and direct Z-scheme g-C3N4-TiO2 (0.0043 min-1), respectively. An indirect all-solid-state Z-scheme charge-separation mechanism was proposed based on the photoluminescence spectra and the trapping experiment procedure of the photo-generated active species. It was believed that the indirect all-solid-state Z-scheme charge separation mechanism in g-C3N4-RGO-TiO2 nanoheterojunctions could lead to the promoted charge separation and transfer, improved oxygen-reduction capacity of electrons in g-C3N4 and the formation of hydroxyl radicals driven by the holes in TiO2, respectively, thus achieving the highly enhanced photocatalytic degradation performance. This work might provide new insights and understanding on the graphene as electron mediators to design highly efficient all-solid-state Z-scheme nanoheterojunctions with enhanced visible-light driven photoactivity for various photocatalytic

  3. A case-crossover analysis of forest fire haze events and mortality in Malaysia

    Science.gov (United States)

    Sahani, Mazrura; Zainon, Nurul Ashikin; Wan Mahiyuddin, Wan Rozita; Latif, Mohd Talib; Hod, Rozita; Khan, Md Firoz; Tahir, Norhayati Mohd; Chan, Chang-Chuan

    2014-10-01

    The Southeast Asian (SEA) haze events due to forest fires are recurrent and affect Malaysia, particularly the Klang Valley region. The aim of this study is to examine the risk of haze days due to biomass burning in Southeast Asia on daily mortality in the Klang Valley region between 2000 and 2007. We used a case-crossover study design to model the effect of haze based on PM10 concentration to the daily mortality. The time-stratified control sampling approach was used, adjusted for particulate matter (PM10) concentrations, time trends and meteorological influences. Based on time series analysis of PM10 and backward trajectory analysis, haze days were defined when daily PM10 concentration exceeded 100 μg/m3. The results showed a total of 88 haze days were identified in the Klang Valley region during the study period. A total of 126,822 cases of death were recorded for natural mortality where respiratory mortality represented 8.56% (N = 10,854). Haze events were found to be significantly associated with natural and respiratory mortality at various lags. For natural mortality, haze events at lagged 2 showed significant association with children less than 14 years old (Odd Ratio (OR) = 1.41; 95% Confidence Interval (CI) = 1.01-1.99). Respiratory mortality was significantly associated with haze events for all ages at lagged 0 (OR = 1.19; 95% CI = 1.02-1.40). Age-and-gender-specific analysis showed an incremental risk of respiratory mortality among all males and elderly males above 60 years old at lagged 0 (OR = 1.34; 95% CI = 1.09-1.64 and OR = 1.41; 95% CI = 1.09-1.84 respectively). Adult females aged 15-59 years old were found to be at highest risk of respiratory mortality at lagged 5 (OR = 1.66; 95% CI = 1.03-1.99). This study clearly indicates that exposure to haze events showed immediate and delayed effects on mortality.

  4. Haze and cloud structure of Saturn's North Pole and Hexagon Wave from Cassini/ISS imaging

    Science.gov (United States)

    Sanz-Requena, J. F.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; Antuñano, A.; Irwin, Patrick G. J.

    2018-05-01

    In this paper we present a study of the vertical haze and cloud structure in the upper two bars of Saturn's Northern Polar atmosphere using the Imaging Science Subsystem (ISS) instrument onboard the Cassini spacecraft. We focus on the characterization of latitudes from 53° to 90° N. The observations were taken during June 2013 with five different filters (VIO, BL1, MT2, CB2 and MT3) covering spectral range from the 420 nm to 890 nm (in a deep methane absorption band). Absolute reflectivity measurements of seven selected regions at all wavelengths and several illumination and observation geometries are compared with the values produced by a radiative transfer model. The changes in reflectivity at these latitudes are mostly attributed to changes in the tropospheric haze. This includes the haze base height (from 600 ± 200 mbar at the lowest latitudes to 1000 ± 300 mbar in the pole), its particle number density (from 20 ± 2 particles/cm3 to 2 ± 0.5 particles/cm3 at the haze base) and its scale height (from 18 ± 0.1 km to 50 ± 0.1 km). We also report variability in the retrieved particle size distribution and refractive indices. We find that the Hexagonal Wave dichotomizes the studied stratospheric and tropospheric hazes between the outer, equatorward regions and the inner, Polar Regions. This suggests that the wave or the jet isolates the particle distribution at least at tropospheric levels.

  5. UV–Vis Light-induced Aging of Titan’s Haze and Ice

    Science.gov (United States)

    Couturier-Tamburelli, Isabelle; Piétri, Nathalie; Le Letty, Vincent; Chiavassa, Thierry; Gudipati, Murthy

    2018-01-01

    The study of the photochemical aging of aerosols is an important tool for understanding Titan’s stratosphere/troposphere composition and evolution, particularly the haze. Laboratory simulations of the photoreactivity of the haze aerosol analogs provide insight into the photochemical evolution of Titan’s atmosphere at and below the haze layers. Here we use experimental simulations to investigate the evolution of the laboratory analogs of these organic aerosols under ultraviolet (UV)–visible (Vis) photons, which make it through the haze layers during their sedimentation process. We present experimental results for the aging of Titan’s aerosol analogs obtained from two dominant nitrogen-containing organics, HC3N and HCN, under simulated Titan atmospheric conditions (photons and temperature). We report that volatile nitriles condensed on haze particles could be incorporated through photochemistry and provide one such sink mechanism for nitrile compounds. We provide laboratory evidence that the organic aerosols could photochemically evolve during their sedimentation through Titan’s atmosphere.

  6. Modeling Exoplanetary Haze and Cloud Effects for Transmission Spectroscopy in the TRAPPIST-1 System

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah M.; Lewis, Nikole K.; Batalha, Natasha E.; de Wit, Julien

    2018-01-01

    We present theoretical transmission spectra of the planets TRAPPIST-1d, e, f, and g using a version of the CaltecH Inverse ModEling and Retrieval Algorithms (CHIMERA) atmospheric modeling code. We use particle size, aerosol production rates, and aerosol composition inputs from recent laboratory experiments relevant for the TRAPPIST-1 system to constrain cloud and haze behavior and their effects on transmission spectra. We explore these cloud and haze cases for a variety of theoretical atmospheric compositions including hydrogen-, nitrogen-, and carbon dioxide-dominated atmospheres. Then, we demonstrate the feasibility of physically-motivated, laboratory-supported clouds and hazes to obscure spectral features at wavelengths and resolutions relevant to instruments on the Hubble Space Telescope and the upcoming James Webb Space Telescope. Lastly, with laboratory based constraints of haze production rates for terrestrial exoplanets, we constrain possible bulk atmospheric compositions of the TRAPPIST-1 planets based on current observations. We show that continued collection of optical data, beyond the supported wavelength range of the James Webb Telescope, is necessary to explore the full effect of hazes for transmission spectra of exoplanetary atmospheres like the TRAPPIST-1 system.

  7. Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell

    Science.gov (United States)

    Vincent, Premkumar; Song, Dong-Seok; Kwon, Hyeok Bin; Kim, Do-Kyung; Jung, Ji-Hoon; Kwon, Jin-Hyuk; Choe, Eunji; Kim, Young-Rae; Kim, Hyeok; Bae, Jin-Hyuk

    2018-02-01

    In this study, we executed optical simulations to compute the optimum power conversion efficiency (PCE) of a-Si:H/organic photovoltaic (OPV) hybrid tandem solar cell. The maximum ideal short circuit current density (Jsc,max) of the tandem solar cell is initially obtained by optimizing the thickness of the active layer of the OPV subcell for varying thickness of the a-Si:H bottom subcell. To investigate the effect of Haze parameter on the ideal short-circuit current density (Jsc,ideal) of the solar cells, we have varied the haze ratio for the TCO electrode of the a-Si:H subcell in the tandem structure. The haze ratio was obtained for various root mean square (RMS) roughness of the TCO of the front cell. The effect of haze ratio on the Jsc,ideal on the tandem structured solar cell was studied, and the highest Jsc,ideal was obtained at a haze of 55.5% when the thickness of the OPV subcell was 150 nm and that of the a-Si:H subcell was 500 nm.

  8. Theory and Simulation of Exoplanetary Atmospheric Haze: Giant Spectral Line Broadening

    Science.gov (United States)

    Sadeghpour, Hossein; Felfeli, Zineb; Kharchenko, Vasili; Babb, James; Vrinceanu, Daniel

    2018-01-01

    Prominent spectral features in observed transmission spectra of exoplanets are obscured. Atmospheric haze is the leading candidate for the flattening of spectral transmission of expolanetray occultation, but also for solar system planets, Earth and cometary atmospheres. Such spectra which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad absorption where strong absorption lines from sodium or potassium and water are predicted to exist. In this work, we develop a detailed atomistic theoretical model, taking into account interaction between an atomic or molecular radiator with dust and haze particulates. Our model considers a realistic structure of haze particulates from small seed particles up to sub-micron irregularly shaped aggregates. This theory of interaction between haze and radiator particles allows to consider nearly all realistic structure, size and chemical composition of haze particulates. The computed shift and broadening of emission spectra will include both quasi-static (mean field) and collisional (pressure) shift and broadening. Our spectral calculations will be verified with available laboratory experimental data on spectra of alkali atoms in liquid droplet, solid ice, dust and dense gaseous environments. The simplicity, elegance and generality of the proposed model makes it amenable to a broad community of users in astrophysics and chemistry. The verified models can be used for analysis of emission and absorption spectra of alkali atoms from exoplanets, solar system planets, satellites and comets.

  9. A Long-Term Prediction Model of Beijing Haze Episodes Using Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Xiaoping Yang

    2016-01-01

    Full Text Available The rapid industrial development has led to the intermittent outbreak of pm2.5 or haze in developing countries, which has brought about great environmental issues, especially in big cities such as Beijing and New Delhi. We investigated the factors and mechanisms of haze change and present a long-term prediction model of Beijing haze episodes using time series analysis. We construct a dynamic structural measurement model of daily haze increment and reduce the model to a vector autoregressive model. Typical case studies on 886 continuous days indicate that our model performs very well on next day’s Air Quality Index (AQI prediction, and in severely polluted cases (AQI ≥ 300 the accuracy rate of AQI prediction even reaches up to 87.8%. The experiment of one-week prediction shows that our model has excellent sensitivity when a sudden haze burst or dissipation happens, which results in good long-term stability on the accuracy of the next 3–7 days’ AQI prediction.

  10. The Characteristics of Atmospheric Phthalates in Shanghai: a Haze Case Study

    Science.gov (United States)

    Li, Y.; Wang, J.; Ren, B.; Wang, H.; Qiao, L.; Zhu, J.; Li, L.

    2017-12-01

    While phthalates in indoor environments are extensively studied, reports on phthalates in outdoor air, particularly their associations with haze events are rare. Phthalates, especially dimethyl phthalate, are known to react with criteria air pollutants contributing to the formation of secondary organic aerosols. This study investigated phthalates levels in outdoor air in Shanghai with a focus on their associations with different air quality conditions. The air quality during the study period was classified into three levels: non-haze, light pollution and moderate pollution based on the Air Quality Index. Phthalates levels were found to be lower in non haze (236 ng/m3) and higher in moderate pollution weather (up to 700 ng/m3). Meteorological factors of relative humidity and wind speed had an inverse relationship with phthalates levels. Airborne particulate matter had a positive correlation with phthalates levels. Hydroxyl radical initiated photo-reaction of dimethyl phthalate was observed through its inverse relationship with total atmospheric oxidant (O3 + NO2), indicating that dimethyl phthalate could be one of the precursors of secondary organic aerosol causing haze. This is the first study demonstrating the relationship of phthalates and different air quality conditions. The knowledge contributes to our understanding on the cause of haze events in China and elsewhere.

  11. The "Blue Banana" Revisited

    NARCIS (Netherlands)

    Faludi, A.K.F.

    2015-01-01

    This essay is about the “Blue Banana”. Banana is the name given subsequently by others to a Dorsale européenne (European backbone) identified empirically by Roger Brunet. In a background study to the Communication of the European Commission ‘Europe 2000’, Klaus Kunzmann and Michael Wegener put

  12. The Blue Baby Syndrome

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. The Blue Baby Syndrome - Nitrate Poisoning in Humans. Deepanjan Majumdar. General Article Volume 8 Issue 10 October 2003 pp 20-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in October 2014

    Science.gov (United States)

    Chen, D.; Liu, Z.; Fast, J. D.; Ban, J.

    2017-12-01

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions. As the parameterizations of those heterogeneous reactions are not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory were likely important factors contributing to those peak PM2.5 concentrations.

  14. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions

    Science.gov (United States)

    Zheng, Guangjie; Su, Hang; zhang, qiang; cheng, yafang; he, kebin

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, we performed a model-assisted analysis of the hourly observation data of PM2.5 and its major chemical compositions. The synthetic analysis shows that, (1) the severe winter haze was driven by stable synoptic meteorological conditions over northeastern China, and not by an abrupt increase in anthropogenic emissions. (2) Secondary species, including organics, sulfate, nitrate, and ammonium, were the major constituents of PM2.5 during this period. (3) Due to the dimming effect of high loading of aerosol particles, gaseous oxidant concentrations decreased significantly, suggesting a reduced production of secondary aerosols through gas phase reactions. Surprisingly, the observational data reveals an enhanced production rate of secondary aerosols, suggesting an important contribution from other formation pathways, most likely heterogeneous reactions. These reactions appeared to be more efficient in producing secondary inorganics aerosols than organic aerosols resulting in a strongly elevated fraction of inorganics during heavily polluted periods. (4) Moreover, we found that high aerosol concentration was a regional phenomenon. The accumulation process of aerosol particles occurred successively from southeast cities to Beijing. The apparent sharp increase in PM2.5 concentration of up to several hundred μg m-3 per hour recorded in Beijing represented rapid recovery from an interruption to the continuous pollution accumulation over the region, rather than purely local chemical production. This suggests that regional transport of pollutants played an important role during these severe pollution events.

  15. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Liu, Zhiquan; Fast, Jerome D.; Ban, Junmei

    2016-08-30

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous reactions. As the parameterizations of those reactions is not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory

  16. Potential climatic impact of organic haze on early Earth.

    Science.gov (United States)

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  17. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fangjun [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Li, Xin [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Institute of New Energy and New Materials, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642 (China); Liu, Wei, E-mail: wlscau@163.com [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Zhang, Shuting [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China)

    2017-05-31

    Highlights: • The indirect Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} photocatalysts were successfully fabricated. • A 3.2-fold activity enhancement was achieved by inserting RGO into g-C{sub 3}N{sub 4}- TiO{sub 2}. • The indirect Z-scheme mechanism was verified by PL spectra and radical trapping. • The multi-functional roles of RGO in enhancing photodegradation were revealed. - Abstract: In the present research work, the ternary indirect all-solid-state Z-scheme nanoheterojunctions, graphitic-C{sub 3}N{sub 4}/reduced graphene oxide/anatase TiO{sub 2} (g-C{sub 3}N{sub 4}-RGO-TiO{sub 2}) with highly enhanced photocatalytic performance were successfully prepared via a simple liquid-precipitation strategy. The photocatalytic activities of indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions were evaluated by the degradation of methylene blue (MB). The results showed that the introduction of RGO as an interfacial mediator into direct Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} nanocomposites can remarkably enhance their photocatalytic activities. The as-obtained indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions, with the optimal loading amount of 10 wt% RGO, exhibited the highest rate towards the photocatalytic degradation of MB under simulated solar light irradiation. The degradation kinetics of MB can be described by the apparent first-order kinetics model. The highest degradation rate constant of 0.0137 min{sup −1} is about 4.7 and 3.2 times greater than those of the pure g-C{sub 3}N{sub 4} (0.0029 min{sup −1}) and direct Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} (0.0043 min{sup −1}), respectively. An indirect all-solid-state Z-scheme charge-separation mechanism was proposed based on the photoluminescence spectra and the trapping experiment procedure of the photo-generated active species. It was believed that the indirect all-solid-state Z-scheme charge separation mechanism in g-C{sub 3}N

  18. A possible pathway for rapid growth of sulfate during haze days in China

    Science.gov (United States)

    Li, Guohui; Bei, Naifang; Cao, Junji; Huang, Rujin; Wu, Jiarui; Feng, Tian; Wang, Yichen; Liu, Suixin; Zhang, Qiang; Tie, Xuexi; Molina, Luisa T.

    2017-03-01

    Rapid industrialization and urbanization have caused frequent occurrence of haze in China during wintertime in recent years. The sulfate aerosol is one of the most important components of fine particles (PM2. 5) in the atmosphere, contributing significantly to the haze formation. However, the heterogeneous formation mechanism of sulfate remains poorly characterized. The relationships of the observed sulfate with PM2. 5, iron, and relative humidity in Xi'an, China have been employed to evaluate the mechanism and to develop a parameterization of the sulfate heterogeneous formation involving aerosol water for incorporation into atmospheric chemical transport models. Model simulations with the proposed parameterization can successfully reproduce the observed sulfate rapid growth and diurnal variations in Xi'an and Beijing, China. Reasonable representation of sulfate heterogeneous formation in chemical transport models considerably improves the PM2. 5 simulations, providing the underlying basis for better understanding the haze formation and supporting the design and implementation of emission control strategies.

  19. Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze

    Science.gov (United States)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1971-01-01

    Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.

  20. What Causes Haze Pollution? An Empirical Study of PM2.5 Concentrations in Chinese Cities

    Directory of Open Access Journals (Sweden)

    Jiannan Wu

    2016-01-01

    Full Text Available In recent years, many areas of China have suffered from serious haze pollution, which greatly affects human health and daily life. It is of policy importance to understand the factors that influence the spatial concentration of PM2.5. Based on data from 74 cities with PM2.5 monitoring stations in 2013 and 2014, this study presents the overall haze situation in China and explores the determinants of PM2.5 using a random-effects model, as well as a set of OLS regressions. The results indicate that PM2.5 is significantly correlated with the industrial proportion, the number of motor vehicles, and household gas consumption, while public financial expenditure on energy saving and environmental protection does not show statistically significant effects. The analysis implies that China should adjust its economic structure and optimizes environmental governance to effectively respond to haze pollution.

  1. [Blue light and eye health].

    Science.gov (United States)

    Zou, Leilei; Dai, Jinhui

    2015-01-01

    Blue light, with the wavelength between 400 nm and 500 nm, has caused public concern because of the injury to the retinal cells. Meanwhile, it is important in circadian rhythm regulation, scotopic vision and ocular growth. Is the blue light safe? Should it be eliminated from the daily life? Here we review the effect and safety of the blue light.

  2. Severe haze episodes and seriously polluted fog water in Ji'nan, China.

    Science.gov (United States)

    Wang, Xinfeng; Chen, Jianmin; Sun, Jianfeng; Li, Weijun; Yang, Lingxiao; Wen, Liang; Wang, Wenxing; Wang, Xinming; Collett, Jeffrey L; Shi, Yang; Zhang, Qingzhu; Hu, Jingtian; Yao, Lan; Zhu, Yanhong; Sui, Xiao; Sun, Xiaomin; Mellouki, Abdelwahid

    2014-09-15

    Haze episodes often hit urban cities in China recently. Here, we present several continuous haze episodes with extremely high PM2.5 levels that occurred over several weeks in early 2013 and extended across most parts of the northern and eastern China-far exceeding the Beijing-Tianjin-Hebei region. Particularly, the haze episode covered ~1 million km(2) on January 14, 2013 and the daily averaged PM2.5 concentration exceeded 360 μg m(-3) in Ji'nan. The observed maximum hourly PM2.5 concentration in urban Ji'nan reached 701 μg m(-3) at 7:00 am (local time) in January 30. During these haze episodes, several fog events happened and the concurrent fog water was found to be seriously polluted. For the fog water collected in Ji'nan from 10:00 pm in January 14 to 11:00 am in January 15, sulfate, nitrate, and ammonium were the major ions with concentrations of 1.54 × 10(6), 8.98 × 10(5), and 1.75 × 10(6) μeq L(-1), respectively, leading to a low in-situ pH of 3.30. The sulfate content in the fog sample was more than 544 times as high as those observed in other areas. With examination of the simultaneously observed data on PM2.5 and its chemical composition, the fog played a role in scavenging and removing fine particles from the atmosphere during haze episodes and thus was seriously contaminated. However, the effect was not sufficient to obviously cleanse air pollution and block haze episodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The effects of surface roughness on low haze ultrathin nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kanniah, Vinod [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Tru Vue, Inc. 9400 West, 55th St, McCook, IL 60525 (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Druffel, Thad [Vision Dynamics LLC, 1950 Production Court, Louisville, KY 40299 (United States); Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States)

    2013-07-31

    Control of surface roughness in optical applications can have a large impact on haze. This work compares surface roughness and haze for self-assembled experimental surface structures as well as simulated surface structures for ultrathin nanocomposite films. Ultrathin nanocomposite films were synthesized from an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles as the dispersed phase. An in-house spin coating deposition technique was used to make thin nanocomposite films on hydrophilic (glass) and hydrophobic (polycarbonate) substrates. Manipulating the size ratios of the silica nanoparticle mixtures generated multimodal height distributions, varied the average surface roughness (σ) and changed lateral height–height correlations (a). For the simulated surfaces, roughness was estimated from their morphologies, and haze was calculated using simplified Rayleigh scattering theory. Experimental data for haze and morphologies of nanocomposite films corresponded well to these properties for simulated tipped pyramid surfaces. A correlation based on simple Rayleigh scattering theory described our experimental data well, but the exponent on the parameter, σ/λ (λ is the wavelength of incident light), does not have the expected value of 2. A scalar scattering model and a prior Monte Carlo simulation estimated haze values similar to those of our experimental samples. - Highlights: • Bidisperse nanoparticle mixtures created structured surfaces on thin films. • Monodisperse discrete phases created unimodal structure distributions. • Bidisperse discrete phases created multimodal structure distributions. • Multimodal structures had maximum heights ≤ 1.5 D{sub large} over our variable range. • Simplified Rayleigh scattering theory linked roughness to haze and contact angle.

  4. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism.

    OpenAIRE

    Quiñones, M A; Lu, Z; Zeiger, E

    1996-01-01

    Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced th...

  5. Protein haze formation in wines revisited. The stabilising effect of organic acids

    OpenAIRE

    Batista, L.; Monteiro, L.; Loureiro, V.; Teixeira, A.R.; Ferreira, R.B.

    2010-01-01

    The effect on the wine protein haze potential of five organic acids commonly encountered in wines (L(+)- tartaric, L( )-malic, citric, succinic and gluconic acids) was assessed. All five acids, tested at 20 mM, reduced dramatically the haze potential of proteins, either in wine or dissolved in water, throughout the range of pH values typical of wines (i.e., from 2.8 through 3.8). Subtle differences among the acid effects did not correlate with the number of their carboxyl groups, ...

  6. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    Science.gov (United States)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze

  7. Methylene blue promotes quiescence of rat neural progenitor cells

    Directory of Open Access Journals (Sweden)

    LUOKUN eXIE

    2014-10-01

    Full Text Available Neural stem cell-based treatment holds a new therapeutic opportunity for neurodegenerative disorders. Here, we investigated the effect of methylene blue on proliferation and differentiation of rat neural progenitor cells (NPCs both in vitro and in vivo. We found that methylene blue inhibited proliferation and promoted quiescence of NPCs in vitro without affecting committed neuronal differentiation. Consistently, intracerebroventricular infusion of methylene blue significantly inhibited neural progenitor cell proliferation at the subventricular zone (SVZ. Methylene blue inhibited mTOR signaling along with down-regulation of cyclins in NPCs in vitro and in vivo. In summary, our study indicates that methylene blue may delay NPC senescence through enhancing NPCs quiescence.

  8. Need for Quantitative Measurement Methods for Posterior Uveitis: Comparison of Dual FA/ICGA Angiography, EDI-OCT Choroidal Thickness and SUN Vitreous Haze Evaluation in Stromal Choroiditis.

    Science.gov (United States)

    Fabro, Filippo; Herbort, Carl P

    2018-04-01

    Quantitative methods for posterior uveitis are necessary for precise appraisal and follow-up of inflammation in practice and in clinical trials. The aim of this study was to assess fluorescein angiography (FA), indocanine green angiography (ICGA), and enhanced depth imaging optical coherence tomography choroidal thickness (EDI-OCT CT) in two stromal choroiditis entities, birdshot retinochoroiditis (BRC), and Vogt-Koyanagi-Harada disease (VKH), as well as to determine (1) disease patterns, (2) respective response to therapy, and (3) their potential utility in clinical trials in comparison to vitreous haze, the present standard outcome used in clinical trials. This retrospective study included newly diagnosed patients with BRC and VKH, seen at the Centre for Ophthalmic Specialized Care, Lausanne, Switzerland. Angiographic signs were quantified using an established dual FA/ICGA scoring system for uveitis at presentation and on follow-up. FA/ICGA score ratios were compared between diseases to determine disease patterns. EDI-OCT CT was determined using a spectral domain instrument. Vitreous haze was determined using the SUN (Standardization of Uveitis Nomenclature) method. Among 1872 uveitis patients seen from 1995 to 2016, 8 newly diagnosed BRC patients (16 eyes) and 6 newly diagnosed VKH patients (12 eyes) had sufficient data for study inclusion. Patients with BRC and VKH at initial onset had mean FA scores of 16.1 ± 7.0 vs. 4.6 ± 2.1 (p measurement of inflammation at onset and upon follow-up. EDI-OCT CT responded to therapy in both diseases but was found to be of limited use in this early/subacute disease phase because it lacked sensitivity to detect subclinical recurrences and was therefore only useful for long-term follow-up. Vitreous haze was low in both entities and thus useless as an inflammatory parameter. Georg Thieme Verlag KG Stuttgart · New York.

  9. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    Science.gov (United States)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  10. Effect of onion extract on corneal haze suppression after air assisted lamellar keratectomy

    Science.gov (United States)

    KIM, Soohyun; PARK, Young Woo; LEE, Euiri; PARK, Sang Wan; PARK, Sungwon; NOH, Hyunwoo; KIM, Jong Whi; SEONG, Je Kyung; SEO, Kangmoon

    2015-01-01

    This study evaluated the effect of onion extract on corneal haze suppression after applying the air assisted lamellar keratectomy. The air assisted lamellar keratectomy was performed on 24 canine eyes. They were treated with an artificial tear (group C), prednisolone acetate (group P), onion extract (group O) and TGF-β1 (group T) three times per day from 7 to 28 days after the surgery. Corneal haze occurred on the all eyes and was observed beginning 7 days after the surgery. The haze was significantly decreased in groups P and O from day 14 compared with the group C using the clinical (group P; P=0.021, group O; P=0.037) and objective evaluation method (group P; P=0.021, group O; P=0.039). In contrast, it was significantly increased in group T from day 14 compared with group C based on the clinical (P=0.002) and objective evaluation method (P<0.001). Subsequently, these eyes were enucleated after euthanasia, and immunohistochemistry with α-SMA antibodies was done. The total green intensity for α-SMA was significantly more expressed in group T and significantly less expressed in groups P and O than in group C. Onion extract could have potential as a therapeutic in preventing corneal haze development by suppressing the differentiation of fibroblasts into myofibroblasts. PMID:26607134

  11. Crossing the Line: Rites of Passage, Team Aspects, and Ambiguity of Hazing

    Science.gov (United States)

    Waldron, Jennifer J.; Kowalski, Christopher L.

    2009-01-01

    Framed within the psychosocial context of the sport ethic and social-approval goal orientation, 10 female and 11 male current collegiate or former high school athletes participated in individual interviews about their hazing experiences. Data analysis resulted in seven lower order themes and two higher order themes. The higher order theme of the…

  12. 76 FR 52604 - Approval and Promulgation of Implementation Plans; State of Kansas Regional Haze State...

    Science.gov (United States)

    2011-08-23

    ... light extinction. \\3\\ Deciview means a measurement of visibility impairment. A deciview is a haze index... future and remedy any existing anthropogenic impairment of visibility in mandatory Class I areas caused... Submittal. DATES: Written comments must be received via the methods given in the Instructions for Comment...

  13. Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy

    Science.gov (United States)

    Pan, Yuepeng; Wang, Yuesi; Zhang, Junke; Liu, Zirui; Wang, Lili; Tian, Shili; Tang, Guiqian; Gao, Wenkang; Ji, Dongsheng; Song, Tao; Wang, Yonghong

    2016-09-01

    Nitrate salts represent a major component of fine mode aerosols, which play an important role in air pollution worldwide. Based on on-line and off-line aerosol measurements in urban Beijing for both clean and haze conditions, we demonstrate that the absolute and relative concentrations of nitrate increased with visibility degradation (relative humidity), whereas the variations of organics tracked the patterns of mixing-layer height and temperature. We propose that the increase in the relative contribution of nitrate to PM1 observed during the early stages of haze pollution was due to new particle formation, whereas the nitrate formed in PM1-2.5 during the latter stages was due to heterogeneous formation and hygroscopic growth. The increasing trend of nitrate (and also sulfate and ammonium) but decreasing trends of organics during haze development, together with the increase of the NO2/SO2 molar ratio with increasing proximity to downtown Beijing and with visibility degradation, provide further evidence that controlling NOx emissions should be a priority for improving air quality in mega cities. Additional large-scale investigation is required to adequately characterize the regional features of NOx-induced haze pollution in China. Such studies may provide insight into the formation of critical nuclei or the subsequent growth of freshly nucleated particles and advance our understanding of the role of nitrate in new particle formation.

  14. 77 FR 27626 - Approval and Promulgation of Implementation Plans; Commonwealth of Kentucky; Regional Haze State...

    Science.gov (United States)

    2012-05-11

    ... section 553(b)(3)(B) of the Administrative Procedure Act (APA) which, upon finding ``good cause... related to the regional haze SIP revisions. EPA also finds that there is good cause under APA section 553...(d)(3) of the APA allows an effective date less than 30 days after publication ``as otherwise...

  15. Modeling study of the 2010 regional haze event in the North China Plain

    Directory of Open Access Journals (Sweden)

    M. Gao

    2016-02-01

    Full Text Available The online coupled Weather Research and Forecasting-Chemistry (WRF-Chem model was applied to simulate a haze event that happened in January 2010 in the North China Plain (NCP, and was validated against various types of measurements. The evaluations indicate that WRF-Chem provides reliable simulations for the 2010 haze event in the NCP. This haze event was mainly caused by high emissions of air pollutants in the NCP and stable weather conditions in winter. Secondary inorganic aerosols also played an important role and cloud chemistry had important contributions. Air pollutants outside Beijing contributed about 64.5 % to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, relative humidity (RH and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn. In Shijiazhuang, Planetary Boundary Layer (PBL decreased about 278.2 m and PM2.5 increased more than 20 µg m−3 due to aerosol feedback. It was also shown that black carbon (BC absorption has significant impacts on meteorology and air quality changes, indicating more attention should be paid to BC from both air pollution control and climate change perspectives.

  16. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  17. Indonesia's Fires and Haze: The Cost of Catastrophe (with a 2006 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    From September to November of 1997, raging fires in Indonesia pumped enough smoke into the air to blanket the entire region in haze, reaching as far north as southern Thailand and the Philippines, with Malaysia and Singapore being particularly affected. An area the size of Costa Rica was completely devastated.

  18. 77 FR 11914 - Approval and Promulgation of Air Quality Implementation Plans; Vermont; Regional Haze

    Science.gov (United States)

    2012-02-28

    ... the contributing States in order to develop coordinated emissions management strategies. See 40 CFR 51... hours, by appointment at the Air Pollution Control Division, Agency of Natural Resources, Building 3...) E. Long-Term Strategy (LTS) F. Coordinating Regional Haze and Reasonably Attributable Visibility...

  19. 78 FR 8273 - Approval of Air Quality Implementation Plans; Navajo Nation; Regional Haze Requirements for...

    Science.gov (United States)

    2013-02-05

    ... Reclamation (Reclamation)--24.3 percent, Salt River Project (SRP), which also acts as the facility operator.... Relationship of Air Pollutants to Visibility Impairment Emissions of NO X contribute to the formation of... haze formation and visibility impairment is described in greater detail in a comprehensive study by...

  20. The Link between Knowledge, Attitudes and Practices in Relation to Atmospheric Haze Pollution in Peninsular Malaysia.

    Directory of Open Access Journals (Sweden)

    Laura De Pretto

    Full Text Available Transboundary haze episodes caused by seasonal forest fires have become a recurrent phenomenon in Southeast Asia, with serious environmental, economic, and public health implications. Here we present a cross-sectional survey conducted among people in Kuala Lumpur and surrounds to assess the links between knowledge, attitudes, and practices in relation to the transboundary haze episodes. Of 305 respondents, 125 were amateur athletes participating in a duathlon event and the remainder were surveyed in an inner-city shopping mall. Across the whole sample, people who possessed more factual information about the haze phenomenon showed significantly higher levels of concern. Duathletes were more knowledgeable than non-duathletes and also more concerned about the negative effects of haze, especially on health. For all people who regularly practice outdoor sports (including people interviewed at the shopping mall, higher levels of knowledge and concerned attitudes translated into a greater likelihood of engaging in protective practices, such as cancelling their outdoor training sessions, while those with greater knowledge were more likely to check the relevant air pollution index on a daily basis. Our results indicate that the provision of accurate and timely information about air quality to residents will translate into beneficial practices, at least among particularly exposed individuals, such as amateur athletes who regularly practice outdoor sports.

  1. Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments.

    Science.gov (United States)

    Gazzola, Diana; Van Sluyter, Steven C; Curioni, Andrea; Waters, Elizabeth J; Marangon, Matteo

    2012-10-24

    Residual proteins in finished wines can aggregate to form haze. To obtain insights into the mechanism of protein haze formation, a reconstitution approach was used to study the heat-induced aggregation behavior of purified wine proteins. A chitinase, four thaumatin-like protein (TLP) isoforms, phenolics, and polysaccharides were isolated from a Chardonnay wine. The same wine was stripped of these compounds and used as a base to reconstitute each of the proteins alone or in combination with the isolated phenolics and/or polysaccharides. After a heating and cooling cycle (70 °C for 1 h and 25 °C for 15 h), the size and concentration of the aggregates formed were measured by scanning ion occlusion sensing (SIOS), a technique to detect and quantify nanoparticles. The chitinase was the protein most prone to aggregate and the one that formed the largest particles; phenolics and polysaccharides did not have a significant impact on its aggregation behavior. TLP isoforms varied in susceptibility to haze formation and in interactions with polysaccharides and phenolics. The work establishes SIOS as a useful method for studying wine haze.

  2. 77 FR 14603 - Approval and Promulgation of Implementation Plans; Arkansas; Regional Haze State Implementation...

    Science.gov (United States)

    2012-03-12

    ...; determination of Uniform Rate of Progress (URP); reasonable progress goal (RPG) consultation and long term...) RPG consultation and LTS consultation; (5) coordination of regional haze and reasonably attributable... baseline and natural visibility conditions; (3) determination of the URP; (4) RPG consultation and LTS...

  3. Filtration, haze and foam characteristics of fermented wort mediated by yeast strain.

    Science.gov (United States)

    Douglas, P; Meneses, F J; Jiranek, V

    2006-01-01

    To investigate the influence of the choice of yeast strain on the haze, shelf life, filterability and foam quality characteristics of fermented products. Twelve strains were used to ferment a chemically defined wort and hopped ale or stout wort. Fermented products were assessed for foam using the Rudin apparatus, and filterability and haze characteristics using the European Brewing Convention methods, to reveal differences in these parameters as a consequence of the choice of yeast strain and growth medium. Under the conditions used, the choice of strain of Saccharomyces cerevisiae effecting the primary fermentation has an impact on all of the parameters investigated, most notably when the fermentation medium is devoid of macromolecular material. The filtration of fermented products has a large cost implication for many brewers and wine makers, and the haze of the resulting filtrate is a key quality criterion. Also of importance to the quality of beer and some wines is the foaming and head retention of these beverages. The foam characteristics, filterability and potential for haze formation in a fermented product have long been known to be dependant on the raw materials used, as well as other production parameters. The choice of Saccharomyces cerevisiae strain used to ferment has itself been shown here to influence these parameters.

  4. Aspartic Acid Protease from Botrytis cinerea Removes Haze-Forming Proteins during White Winemaking

    NARCIS (Netherlands)

    Sluyter, Van S.C.; Warnock, N.I.; Schmidt, S.; Anderson, P.; Kan, van J.A.L.; Bacic, A.; Waters, E.J.

    2013-01-01

    White wines suffer from heat-induced protein hazes during transport and storage unless the proteins are removed prior to bottling. Bentonite fining is by far the most commonly used method, but it is inefficient and creates several other process challenges. An alternative to bentonite is the

  5. 77 FR 66929 - Approval and Promulgation of Implementation Plans; State of Idaho; Regional Haze State...

    Science.gov (United States)

    2012-11-08

    ... the CAA in 1990 to focus attention on the problem of regional haze. See CAA section 169B. EPA... recently applied for a construction permit to make improvements at one of the sulfuric acid units at the... Residue Burning Comment: Three commenters, SAFE, SOS NW, and the Shoshone-Bannock Tribes Air Quality...

  6. Wireless real-time haze monitoring device | Ya'acob | Journal of ...

    African Journals Online (AJOL)

    controller to control the transmission process of measured data taken via wireless data network to the MySQL database. The reading, which is real-time reading and more accurate compared to pollutant PM10, can provide haze awareness and guidance to people to plan their activities. Keywords: PSI; PM10; PM2.5; ...

  7. 77 FR 71111 - Approval and Promulgation of Air Quality Implementation Plans; State of Florida; Regional Haze...

    Science.gov (United States)

    2012-11-29

    ... the State of Florida on April 13, 2012, to the EPA for parallel processing. Florida submitted this... submitted by the State of Florida on April 13, 2012, to the EPA for parallel processing. Florida re... Promulgation of Air Quality Implementation Plans; State of Florida; Regional Haze State Implementation Plan...

  8. Large-scale weather dynamics during the 2015 haze event in Singapore

    Science.gov (United States)

    Djamil, Yudha; Lee, Wen-Chien; Tien Dat, Pham; Kuwata, Mikinori

    2017-04-01

    The 2015 haze event in South East Asia is widely considered as a period of the worst air quality in the region in more than a decade. The source of the haze was from forest and peatland fire in Sumatra and Kalimantan Islands, Indonesia. The fires were mostly came from the practice of forest clearance known as slash and burn, to be converted to palm oil plantation. Such practice of clearance although occurs seasonally but at 2015 it became worst by the impact of strong El Nino. The long period of dryer atmosphere over the region due to El Nino makes the fire easier to ignite, spread and difficult to stop. The biomass emission from the forest and peatland fire caused large-scale haze pollution problem in both Islands and further spread into the neighboring countries such as Singapore and Malaysia. In Singapore, for about two months (September-October, 2015) the air quality was in the unhealthy level. Such unfortunate condition caused some socioeconomic losses such as school closure, cancellation of outdoor events, health issues and many more with total losses estimated as S700 million. The unhealthy level of Singapore's air quality is based on the increasing pollutant standard index (PSI>120) due to the haze arrival, it even reached a hazardous level (PSI= 300) for several days. PSI is a metric of air quality in Singapore that aggregate six pollutants (SO2, PM10, PM2.5, NO2, CO and O3). In this study, we focused on PSI variability in weekly-biweekly time scales (periodicity < 30 days) since it is the least understood compare to their diurnal and seasonal scales. We have identified three dominant time scales of PSI ( 5, 10 and 20 days) using Wavelet method and investigated their large-scale atmospheric structures. The PSI associated large-scale column moisture horizontal structures over the Indo-Pacific basin are dominated by easterly propagating gyres in synoptic (macro) scale for the 5 days ( 10 and 20 days) time scales. The propagating gyres manifest as cyclical

  9. Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China

    Science.gov (United States)

    Tan, Jihua; Guo, Songjun; Ma, Yongliang; Duan, Jingchun; Cheng, Yuan; He, Kebin; Yang, Fumo

    2011-10-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in PM 2.5 and TSP were measured in Guangzhou during a typical haze episode. This episode included NH (non-haze, 3 days), HFN (haze when air masses from north and northeast, 6 days) and HFS (haze when air masses from south, 4 days). The air quality in HFN was much worse than that in NH and HFS. The total average concentrations of PAHs in PM 2.5 were 13.25 ng m -3, 59.82 ng m -3 and 13.09 ng m -3 in NH, HFN and HFS, respectively. It indicated PAH pollution had been substantially aggravated by HFN. PAHs(5 + 6) were the most abundant compounds in HFN and HFS, which accounted for 55-75% of total concentration of PAHs, while PAHs(3 + 4) were the most abundant compounds in NH, which accounted for 54-67% of total concentration of PAHs. TEF (Toxic Equivalency Factors)-adjusted concentrations of 13 particulate PAHs were very high in HFN, indicating high health risks to humans for PAH exposure in HFN. The characteristic ratios of PAHs indicated coal combustion and traffic emission were the major contributors to PAHs in HFN and HFS. The concentrations of particulate PAHs in haze episode were strongly affected by wind speed and wind direction. PAHs in NH could be from long-range transport with high north wind speed, while local emission could be the main contributor of particle-associated PAHs in HFN. The transport speed of air masses was found to play an important role on PAH concentrations.

  10. Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations

    Science.gov (United States)

    Han, Zhenyu; Zhou, Botao; Xu, Ying; Wu, Jia; Shi, Ying

    2017-08-01

    Based on the dynamic downscaling by the regional climate model RegCM4 from three CMIP5 global models under the historical and the RCP4.5 simulations, this article evaluated the performance of the RegCM4 downscaling simulations on the air environment carrying capacity (AEC) and weak ventilation days (WVDs) in China, which are applied to measure haze pollution potential. Their changes during the middle and the end of the 21st century were also projected. The evaluations show that the RegCM4 downscaling simulations can generally capture the observed features of the AEC and WVD distributions over the period 1986-2005. The projections indicate that the annual AEC tends to decrease and the annual WVDs tend to increase over almost the whole country except central China, concurrent with greater change by the late 21st century than by the middle of the 21st century. It suggests that annual haze pollution potential would be enlarged under the RCP4.5 scenario compared to the present. For seasonal change in the four main economic zones of China, it is projected consistently that there would be a higher probability of haze pollution risk over the Beijing-Tianjin-Hebei (BTH) region and the Yangtze River Delta (YRD) region in winter and over the Pearl River Delta (PRD) region in spring and summer in the context of the warming scenario. Over Northeast China (NEC), future climate change might reduce the AEC or increase the WVDs throughout the whole year, which favours the occurrence of haze pollution and thus the haze pollution risk would be aggravated. The relative contribution of different components related to the AEC change further indicates that changes in the boundary layer depth and the wind speed play leading roles in the AEC change over the BTH and NEC regions. In addition to those two factors, the precipitation change also exerts important impacts on the AEC change over the YRD and PRD zones.

  11. Characteristics of aerosol pollution during heavy haze events in Suzhou, China

    Directory of Open Access Journals (Sweden)

    M. Tian

    2016-06-01

    Full Text Available Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC, and elemental carbon (EC and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less frequently exceeded 150 µg m−3 on hazy days, with the maximum reaching 324 µg m−3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH, and low rainfall, wind speed, and atmospheric pressure were conducive to haze formation. High concentrations of secondary aerosol species (including SO42−, NO3−, NH4+, and SOC and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM, (NH42SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.

  12. Impact Test Analysis of the Aging Property of Power Plant Running Silicone Rubber Insulators in the Fog and Haze Days

    Directory of Open Access Journals (Sweden)

    Liu He

    2016-01-01

    Full Text Available The current fog and haze days are increasingly serious. The pollution level in various regions of our country is increasing. With all kinds of dust and acid gas pollution in the fog and haze weather, the polluted surface of the silicone rubber insulators is slowly and evenly damp aging in the open operation. Here, the aging degree of the silicone rubber insulators which ran for different years under actual fog and haze environment has been analyzed, such as surface topography, hydrophilic/hydrophobic, thermal performance, mechanical properties and so on.

  13. Blue ocean leadership.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2014-05-01

    Ten years ago, two INSEAD professors broke ground by introducing "blue ocean strategy," a new model for discovering uncontested markets that are ripe for growth. In this article, they apply their concepts and tools to what is perhaps the greatest challenge of leadership: closing the gulf between the potential and the realized talent and energy of employees. Research indicates that this gulf is vast: According to Gallup, 70% of workers are disengaged from their jobs. If companies could find a way to convert them into engaged employees, the results could be transformative. The trouble is, managers lack a clear understanding of what changes they could make to bring out the best in everyone. Here, Kim and Mauborgne offer a solution to that problem: a systematic approach to uncovering, at each level of the organization, which leadership acts and activities will inspire employees to give their all, and a process for getting managers throughout the company to start doing them. Blue ocean leadership works because the managers' "customers"-that is, the people managers oversee and report to-are involved in identifying what's effective and what isn't. Moreover, the approach doesn't require leaders to alter who they are, just to undertake a different set of tasks. And that kind of change is much easier to implement and track than changes to values and mind-sets.

  14. Effects of blue light and caffeine on mood.

    Science.gov (United States)

    Ekström, Johan G; Beaven, C Martyn

    2014-09-01

    Both short wavelength (blue) light and caffeine have been studied for their mood enhancing effects on humans. The ability of blue light to increase alertness, mood and cognitive function via non-image forming neuropathways has been suggested as a non-pharmacological countermeasure for depression across a range of occupational settings. This experimental study compared blue light and caffeine and aimed to test the effects of blue light/placebo (BLU), white light/240-mg caffeine (CAF), blue light/240-mg caffeine (BCAF) and white light/placebo (PLA), on mood. A randomised, controlled, crossover design study was used, in a convenience population of 20 healthy volunteers. The participants rated their mood on the Swedish Core Affect Scales (SCAS) prior to and after each experimental condition to assess the dimensions of valence and activation. There was a significant main effect of light (p = 0.009), and the combination of blue light and caffeine had clear positive effects on core effects (ES, ranging from 0.41 to 1.20) and global mood (ES, 0.61 ± 0.53). The benefits of the combination of blue light and caffeine should be further investigated across a range of applications due to the observed effects on the dimensions of arousal, valence and pleasant activation.

  15. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  16. Research on the Spatial-Temporal Distribution Pattern of the Network Attention of Fog and Haze in China

    Science.gov (United States)

    Weng, Lingyan; Han, Xugao

    2018-01-01

    Understanding the spatial-temporal distribution pattern of fog and haze is the base to deal with them by adjusting measures to local conditions. Taking 31 provinces in China mainland as the research areas, this paper collected data from Baidu index on the network attention of fog and haze in relevant areas from 2011 to 2016, and conducted an analysis of their spatial-temporal distribution pattern by using autocorrelation analysis. The results show that the network attention of fog and haze has an overall spatial distribution pattern of “higher in the eastern and central, lower in the western China”. There are regional differences in different provinces in terms of network attention. Network attention of fog and haze indicates an obvious geographical agglomeration phenomenon, which is a gradual enlargement of the agglomeration area of higher value with a slight shrinking of those lower value agglomeration areas.

  17. Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics

    Science.gov (United States)

    He, Xiang; Zhao, Heng; Wang, Gang; Zhou, Peifan; Ma, Ping

    2016-08-01

    Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage, which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics. In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities. Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.

  18. Sulfur MIF, Organic Haze, and the Gaia Hypothesis in the Archean

    Science.gov (United States)

    Domagal-Goldman, S.; James, K. F.

    2006-05-01

    The presence of mass-independent fractionation (MIF) of sulfur isotopes in Archean sedimentary rocks provides evidence for a low-O2 atmosphere prior to 2.4 Ga. Recent data suggest that S-MIF vanished transiently between ~3.2 Ga and 2.8 Ga. The absence of S-MIF after 2.4 Ga is commonly attributed to the rise of O2 in the atmosphere, as the presence of free O2 would have oxidized all sulfur species, thereby erasing any MIF created by atmospheric photochemistry. However, if free O2 did not appear in the atmosphere until 2.4 Ga, then why did S-MIF disappear transiently much earlier? Could S-MIF have been eliminated from the rock record without the presence of free atmospheric O2? We used a 1-dimensional photochemical model to demonstrate how this might have happened. Increasing the CH4/CO2 ratio in the model atmosphere results in the formation of organic haze. If the haze was sufficiently thick, it would have blocked out much of the solar UV radiation shortward of 220 nm that dissociates SO2 and SO, and thereby causes MIF. The haze should also have caused anti-greenhouse cooling and may have triggered the (putative) 2.8-Ga glaciations. Speculatively, an increase in CH4 at 3.0 Ga could have been caused by the evolution of methanogens, while a CH4 decrease at 2.7 Ga could correspond to the evolution of cyanobacteria. The presence of an optically thin organic haze between 2.4 and 2.7 Ga may explain the larger S-MIF values seen at this time, as compared to the early Archean. If such an organic haze existed, it could have resulted in a biologically-mediated negative feedback loop that stabilized the Archean climate. This feedback loop would have operated as follows: an increase in the biological CH4 flux would have led to an increase in haze thickness and a stronger anti-greenhouse effect, cooling the surface. The surface cooling would have caused a reduction of methanogen productivity, thus offsetting the original increase in the CH4 flux. Such stabilizing feedbacks

  19. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China.

    Science.gov (United States)

    Zhang, Qiang; Quan, Jiannong; Tie, Xuexi; Li, Xia; Liu, Quan; Gao, Yang; Zhao, Delong

    2015-01-01

    The causes of haze formation in Beijing, China were analyzed based on a comprehensive measurement, including PBL (planetary boundary layer), aerosol composition and concentrations, and several important meteorological parameters such as visibility, RH (relative humidity), and wind speed/direction. The measurement was conducted in an urban location from Nov. 16, 2012 to Jan. 15, 2013. During the period, the visibility varied from >20 km to less than a kilometer, with a minimum visibility of 667 m, causing 16 haze occurrences. During the haze occurrences, the wind speeds were less than 1m/s, and the concentrations of PM2.5 (particle matter with radius less than 2.5 μm) were often exceeded 200 μg/m(3). The correlation between PM2.5 concentration and visibility under different RH values shows that visibility was exponentially decreased with the increase of PM2.5 concentrations when RH was less than 80%. However, when RH was higher than 80%, the relationship was no longer to follow the exponentially decreasing trend, and the visibility maintained in very low values, even with low PM2.5 concentrations. Under this condition, the hygroscopic growth of particles played important roles, and a large amount of water vapor acted as particle matter (PM) for the reduction of visibility. The variations of meteorological parameters (RH, PBL heights, and WS (wind speed)), chemical species in gas-phase (CO, O3, SO2, and NOx), and gas-phase to particle-phase conversions under different visibility ranges were analyzed. The results show that from high visibility (>20 km) to low visibility (<2 km), the averaged PBL decreased from 1.24 km to 0.53 km; wind speeds reduced from 1m/s to 0.5m/s; and CO increased from 0.5 ppmv to 4.0 ppmv, suggesting that weaker transport/diffusion caused the haze occurrences. This study also found that the formation of SPM (secondary particle matter) was accelerated in the haze events. The conversions between SO2 and SO4 as well as NOx to NO3(-) increased

  20. Blue phases as photonic crystals

    Science.gov (United States)

    Bohley, Christian; Scharf, Toralf

    2003-12-01

    The Liquid Crystalline Blue Phases (LC BPs) and their diffraction patterns were investigated experimentally and theoretically. We stabilized Blue Phases and measured their diffraction pattern for different wavelengths of monochromatic light with the help of a conoscopic setup of a polarization microscope. Moreover, the diffraction patterns were calculated with the help of a 4x4 matrix method which allows amplitude and phase investigations.

  1. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions: INCREASE IN WINTER HAZE IN EASTERN CHINA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liao, Hong [School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing China; Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing China; Lou, Sijia [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-11-05

    The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005, with concentrations averaged over eastern China increasing from 16.1 μg m-3 in 1985 to 38.4 μg m-3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m-3 decade-1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m-3 decade-1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s-1 decade-1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.

  2. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  3. CORRECTION OF ATMOSPHERIC HAZE IN RESOURCESAT-1 LISS-4 MX DATA FOR URBAN ANALYSIS: AN IMPROVED DARK OBJECT SUBTRACTION APPROACH

    Directory of Open Access Journals (Sweden)

    S. Mustak

    2013-09-01

    Full Text Available The correction of atmospheric effects is very essential because visible bands of shorter wavelength are highly affected by atmospheric scattering especially of Rayleigh scattering. The objectives of the paper is to find out the haze values present in the all spectral bands and to correct the haze values for urban analysis. In this paper, Improved Dark Object Subtraction method of P. Chavez (1988 is applied for the correction of atmospheric haze in the Resoucesat-1 LISS-4 multispectral satellite image. Dark object Subtraction is a very simple image-based method of atmospheric haze which assumes that there are at least a few pixels within an image which should be black (% reflectance and such black reflectance termed as dark object which are clear water body and shadows whose DN values zero (0 or Close to zero in the image. Simple Dark Object Subtraction method is a first order atmospheric correction but Improved Dark Object Subtraction method which tends to correct the Haze in terms of atmospheric scattering and path radiance based on the power law of relative scattering effect of atmosphere. The haze values extracted using Simple Dark Object Subtraction method for Green band (Band2, Red band (Band3 and NIR band (band4 are 40, 34 and 18 but the haze values extracted using Improved Dark Object Subtraction method are 40, 18.02 and 11.80 for aforesaid bands. Here it is concluded that the haze values extracted by Improved Dark Object Subtraction method provides more realistic results than Simple Dark Object Subtraction method.

  4. Tourists’ Perception of Haze Pollution and the Potential Impacts on Travel: Reshaping the Features of Tourism Seasonality in Beijing, China

    Directory of Open Access Journals (Sweden)

    Aiping Zhang

    2015-02-01

    Full Text Available Haze pollution has worsened and has received close attention by news agencies in the past two years. This type of environmental pollution might have a great effect on tourism image and the entire tourism industry of a destination. This study aimed to reveal the potential impacts of haze pollution on the tourism industry. Based on a case study in Beijing using questionnaires for potential tourists, awareness of haze pollution, impacts of haze pollution on travel and attitudes toward the impacts were discussed. The results indicated that haze pollution has a considerable potential impact on travel, and there are distinct differences among travel elements and tourism market segments. Due to its impacts, haze pollution could be taken into account in tourists’ decision-making processes, causing a portion of potential tourists to cancel tourism plans. As a result, tourist arrivals to similar destinations could decrease by a small margin, but the most significant impact could be on the temporal distribution of tourist arrivals, namely tourism seasonality, due to tourists’ “avoiding” psychology.

  5. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China

    Science.gov (United States)

    Li, L.; Liu, S.

    2017-12-01

    Based on detailed data from Chengdu Plain (CP) from 6 January to 16 January 2015 , two typical haze episodes were analyzed to clarify the haze formation mechanism in winter. Weather conditions, chemical compositions, secondary pollutant transformation, optical properties of aerosols, the potential source contribution function (PSCF) and source apportionment were studied. The planetary boundary layer (PBL) height decreased distinctly during the haze episodes and restrained air pollutant vertical dispersion. As the haze worsened, the value of PBL × PM2.5 increased notably. The [NO3-]/[SO42-] ratio was 0.61, 0.76 and 0.88 during a non-haze period, episode 1 and episode 2, respectively, indicating that the mobile source of the air pollution is increasingly predominant in Chengdu. Water vapor also played a vital role in the formation of haze by accelerating the chemical transformation of secondary pollutants, leading to the hygroscopic growth of aerosols. The PSCF and backward trajectories of the air masses indicated that the pollution mainly came from the south. The secondary inorganic aerosols, vehicle emissions, coal combustion, biomass burning, industry, and dust contributed 34.1%, 24.1%, 12.7%, 12.3%, 7.6%, and 7.2% to PM2.5 masses in episode 1 and 28.9%, 23.1%, 9.4%, 9.5%, 20.3% and 7.5% in episode 2.

  6. Simulations of sulfate–nitrate–ammonium (SNA aerosols during the extreme haze events over northern China in October 2014

    Directory of Open Access Journals (Sweden)

    D. Chen

    2016-08-01

    Full Text Available Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 µg m−3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 µg m−3, but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions. As the parameterizations of those heterogeneous reactions are not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied, which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory were likely important factors contributing to those peak PM2

  7. Rationale for Haze Formation after Carboxymethyl Cellulose (CMC) Addition to Red Wine.

    Science.gov (United States)

    Sommer, Stephan; Dickescheid, Christian; Harbertson, James F; Fischer, Ulrich; Cohen, Seth D

    2016-09-14

    The aim of this study was to identify the source of haze formation in red wine after the addition of carboxymethyl cellulose (CMC) and to characterize the dynamics of precipitation. Ninety commercial wines representing eight grape varieties were collected, tested with two commercial CMC products, and analyzed for susceptibility to haze formation. Seventy-four of these wines showed a precipitation within 14 days independent of the CMC product used. The precipitates of four representative samples were further analyzed for elemental composition (CHNS analysis) and solubility under different conditions to determine the nature of the solids. All of the precipitates were composed of approximately 50% proteins and 50% CMC and polyphenols. It was determined that the interactions between CMC and bovine serum albumin are pH dependent in wine-like model solution. Furthermore, it was found that the color loss associated with CMC additions required the presence of proteins and cannot be observed with CMC and anthocyanins alone.

  8. Trans-Boundary Haze Pollution in Southeast Asia: Sustainability through Plural Environmental Governance

    Directory of Open Access Journals (Sweden)

    Md Saidul Islam

    2016-05-01

    Full Text Available Recurrent haze in Southeast Asian countries including Singapore is largely attributable to rampant forest fires in Indonesia due to, for example, extensive slash-and-burn (S & B culture. Drawing on the “treadmill of production” and environmental governance approach, we examine causes and consequences of this culture. We found that, despite some perceived benefits, its environmental consequences include deforestation, soil erosion and degradation, global warming, threats to biodiversity, and trans-boundary haze pollution, while the societal consequences comprise regional tension, health risks, economic and productivity losses, as well as food insecurity. We propose sustainability through a plural coexistence framework of governance for targeting S & B that incorporates strategies of incentives, education and community resource management.

  9. Planck Intermediate Results. IX. Detection of the Galactic haze with Planck

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    , and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum...... is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|......Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre...

  10. 'Blue Whale Challenge': A Game or Crime?

    Science.gov (United States)

    Mukhra, Richa; Baryah, Neha; Krishan, Kewal; Kanchan, Tanuj

    2017-11-11

    A bewildering range of games are emerging every other day with newer elements of fun and entertainment to woo youngsters. Games are meant to reduce stress and enhance the cognitive development of children as well as adults. Teenagers are always curious to indulge in newer games; and e-gaming is one such platform providing an easy access and quicker means of entertainment. The particular game challenge which has taken the world by storm is the dangerous "Blue Whale Challenge" often involving vulnerable teenagers. The Blue Whale Challenge is neither an application nor internet based game but the users get a link through social media chat groups to enter this "deadly" challenge game. This probably is the only game where the participant has to end his/her life to complete the game. The innocent teenagers are being targeted based on their depressed psychology and are coercively isolated from their social milieux on the pretext of keeping the challenges confidential. To add to the woes, no option is offered to quit the challenge even if the contender is unable to complete the challenge. Blue Whale Challenge in its sheer form could be seen as an illegal, unethical and inhumane endeavor in our present society. The present communication discusses the severe effects of the game on teenagers, the ethical concerns involved and the preventive measures necessary to curb it.

  11. Perceptions of Hazing and Bullying among U.S. Military Service Members

    Science.gov (United States)

    2016-10-18

    Institute (DEOMI) Organizational Climate Survey (DEOCS), perceptions of hazing and bullying among SMs of all branches of the U.S. Armed Forces (except...bullying behaviors perceived by SMs. Using the Defense Management Equal Opportunity Institute (DEOMI) Organizational Climate Survey (DEOCS), perceptions...personnel management , Perception ( Psychology ) , surveys , demography , education , indicators , active duty , leadership , sexual orientation , discrimination , minority groups 44 Logan Young (321)494-1584 Reset

  12. Prospects for detecting dark matter with GLAST in light of the WMAP haze.

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, D.; Zaharijas, G.; Finkbeiner, D. P.; Dobler, G.; High Energy Physics; FNAL; Harvard-Smithsonian Center for Astrophysics

    2008-02-01

    Observations by the Wilkinson Microwave Anisotropy Probe (WMAP) experiment have identified an excess of microwave emission from the center of the Milky Way. It has previously been shown that this 'WMAP haze' could be synchrotron emission from relativistic electrons and positrons produced in the annihilations of dark matter particles. In particular, the intensity, spectrum, and angular distribution of the WMAP haze is consistent with an electroweak scale dark matter particle (such as a supersymmetric neutralino or Kaluza-Klein dark matter in models with universal extra dimensions) annihilating with a cross section on the order of sigma {nu} {approx} 3 x 10{sup -26} cm{sup 3}/s and distributed with a cusped halo profile. No further exotic astrophysical or annihilation boost factors are required. If dark matter annihilations are in fact responsible for the observed haze, then other annihilation products will also be produced, including gamma rays. In this article, we study the prospects for the GLAST satellite to detect gamma rays from dark matter annihilations in the Galactic Center region in this scenario. We find that by studying only the inner 0.1{sup o} around the Galactic Center, GLAST will be able to detect dark matter annihilating to heavy quarks, gauge bosons, or tau leptons over astrophysical backgrounds with 5sigma (3sigma) significance if they are lighter than approximately 320-500 GeV (500-750 GeV). If the angular window is broadened to study the dark matter halo profile's angular extension (while simultaneously reducing the astrophysical backgrounds), weakly interacting, massive particles (WIMPs) as heavy as several TeV can be identified by GLAST with high significance. Only if the dark matter particles annihilate mostly to electrons or muons will GLAST be unable to identify the gamma ray spectrum associated with the WMAP haze.

  13. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    KAUST Repository

    Xu, Xuezhu

    2016-06-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq-1) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays. © 2016 The Royal Society of Chemistry.

  14. Lucifer's Planet: Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated atmosphere of 51 Eri b (2016arXiv160407388Z). The intended focus was to have been on carbon and organic hazes, but sulfur photochemistry turns out to be interesting and possibly more important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form abundantly, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically significant clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we discuss is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  15. Connective tissue growth factor is not necessary for haze formation in excimer laser wounded mouse corneas.

    Directory of Open Access Journals (Sweden)

    Xiaodi Feng

    Full Text Available We sought to determine if connective tissue growth factor (CTGF is necessary for the formation of corneal haze after corneal injury. Mice with post-natal, tamoxifen-induced, knockout of CTGF were subjected to excimer laser phototherapeutic keratectomy (PTK and the corneas were allowed to heal. The extent of scaring was observed in non-induced mice, heterozygotes, and full homozygous knockout mice and quantified by macrophotography. The eyes from these mice were collected after euthanization for re-genotyping to control for possible Cre-mosaicism. Primary corneal fibroblasts from CTGF knockout corneas were established in a gel plug assay. The plug was removed, simulating an injury, and the rate of hole closure and the capacity for these cells to form light reflecting cells in response to CTGF and platelet-derived growth factor B (PDGF-B were tested and compared to wild-type cells. We found that independent of genotype, each group of mice was still capable of forming light reflecting haze in the cornea after laser ablation (p = 0.40. Results from the gel plug closure rate in primary cell cultures of knockout cells were not statistically different from serum starved wild-type cells, independent of treatment. Compared to the serum starved wild-type cells, stimulation with PDGF-BB significantly increased the KO cell culture's light reflection (p = 0.03. Most interestingly, both reflective cultures were positive for α-SMA, but the cellular morphology and levels of α-SMA were distinct and not in proportion to the light reflection seen. This new work demonstrates that corneas without CTGF can still form sub-epithelial haze, and that the light reflecting phenotype can be reproduced in culture. These data support the possibilities of growth factor redundancy and that multiple pro-haze pathways exist.

  16. Blue moons and Martian sunsets.

    Science.gov (United States)

    Ehlers, Kurt; Chakrabarty, Rajan; Moosmüller, Hans

    2014-03-20

    The familiar yellow or orange disks of the moon and sun, especially when they are low in the sky, and brilliant red sunsets are a result of the selective extinction (scattering plus absorption) of blue light by atmospheric gas molecules and small aerosols, a phenomenon explainable using the Rayleigh scattering approximation. On rare occasions, dust or smoke aerosols can cause the extinction of red light to exceed that for blue, resulting in the disks of the sun and moon to appear as blue. Unlike Earth, the atmosphere of Mars is dominated by micron-size dust aerosols, and the sky during sunset takes on a bluish glow. Here we investigate the role of dust aerosols in the blue Martian sunsets and the occasional blue moons and suns on Earth. We use the Mie theory and the Debye series to calculate the wavelength-dependent optical properties of dust aerosols most commonly found on Mars. Our findings show that while wavelength selective extinction can cause the sun's disk to appear blue, the color of the glow surrounding the sun as observed from Mars is due to the dominance of near-forward scattering of blue light by dust particles and cannot be explained by a simple, Rayleigh-like selective extinction explanation.

  17. Haze heats Pluto’s atmosphere yet explains its cold temperature

    Science.gov (United States)

    Zhang, Xi; Strobel, Darrell F.; Imanaka, Hiroshi

    2017-11-01

    Pluto’s atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto’s thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto’s temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto’s atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought—a brightness that could be detected by future telescopes.

  18. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution

    Science.gov (United States)

    Dewi Ayu Kusumaningtyas, Sheila; Aldrian, Edvin

    2016-07-01

    Forest and land fires in Riau province of Sumatera increase along with the rapid deforestation, land clearing, and are induced by dry climate. Forest and land fires, which occur routinely every year, cause trans-boundary air pollution up to Singapore. Economic losses were felt by Indonesia and Singapore as the affected country thus creates tensions among neighboring countries. A high concentration of aerosols are emitted from fire which degrade the local air quality and reduce visibility. This study aimed to analyze the impact of the June 2013 smoke haze event on the environment and air quality both in Riau and Singapore as well as to characterize the aerosol properties in Singapore during the fire period. Air quality parameters combine with aerosols from Aerosol Robotic Network (AERONET) data and some environmental parameters, i.e. rainfall, visibility, and hotspot numbers are investigated. There are significant relationships between aerosol and environmental parameters both in Riau and Singapore. From Hysplit modeling and a day lag correlation, smoke haze in Singapore is traced back to fire locations in Riau province after propagated one day. Aerosol characterization through aerosol optical depth (AOD), Ångstrom parameter and particle size distribution indicate the presence of fine aerosols in a great number in Singapore, which is characteristic of biomass burning aerosols. Fire and smoke haze even impaired economic activity both in Riau and Singapore, thus leaving some accounted economic losses as reported by some agencies.

  19. Regional contribution to PM1 pollution during winter haze in Yangtze River Delta, China.

    Science.gov (United States)

    Tang, Lili; Yu, Hongxia; Ding, Aijun; Zhang, Yunjiang; Qin, Wei; Wang, Zhuang; Chen, Wentai; Hua, Yan; Yang, Xiaoxiao

    2016-01-15

    To quantify regional sources contributing to submicron particulate matter (PM1) pollution in haze episodes, on-line measurements combining two modeling methods, namely, positive matrix factorization (PMF) and backward Lagrangian particle dispersion modeling (LPDM), were conducted for the period of one month in urban Nanjing, a city located in the western part of Yangtze River Delta (YRD) region of China. Several multi-day haze episodes were observed in December 2013. Long-range transport of biomass burning from the southwestern YRD region largely contributed to PM1 pollution with more than 25% of total organics mass in a lasting heavy haze. The LPDM analysis indicates that regional transport is a main source contributing to secondary low-volatility production. The high-potential source regions of secondary low-volatility production are mainly located in areas to the northeast of the city. High aerosol pollution was mainly contributed by regional transport associated with northeastern air masses. Such regional transport on average accounts for 46% of total NR-PM1 with sulfate and aged low-volatility organics being the largest fractions (>65%). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Predicting the Occurrence of Haze Events in Southeast Asia using Machine Learning Algorithms

    Science.gov (United States)

    Lee, H. H.; Chulakadabba, A.; Tonks, A.; Yang, Z.; Wang, C.

    2017-12-01

    Severe local- and regional-scale air pollution episodes typically originate from 1) high emissions of air pollutants, 2) poor dispersion conditions, and 3) trans-boundary pollutant transport. Biomass burning activities have become more frequent in Southeast Asia, especially in Sumatra, Borneo, and the mainland Southeast. Trans-boundary transport of biomass burning aerosols often lead to air quality problems in the region. Furthermore, particulate pollutants from human activities besides biomass burning also play an important role in the air quality of Southeast Asia. Singapore, for example, has a dynamic industrial sector including chemical, electric and metallurgic industries, and is the region's major petroleum-refining center. In addition, natural gas and oil power plants, waste incinerators, active port traffic, and a major regional airport further complicate Singapore's air quality issues. In this study, we compare five Machine Learning algorithms: k-Nearest Neighbors, Linear Support Vector Machine, Decision Tree, Random Forest and Artificial Neural Network, to identify haze patterns and determine variable importance. The algorithms were trained using local atmospheric data (i.e. months, atmospheric conditions, wind direction and relative humidity) from three observation stations in Singapore (Changi, Seletar and Paya Labar). We find that the algorithms reveal the associations in data within and between the stations, and provide in-depth interpretation of the haze sources. The algorithms also allow us to predict the probability of haze episodes in Singapore and to determine the correlation between this probability and atmospheric conditions.

  1. Evaluation of the Components Released by Wine Yeast Strains on Protein Haze Formation in White Wine

    Directory of Open Access Journals (Sweden)

    Ellen Cristine Giese

    2016-12-01

    Full Text Available Cultures of 23 indigenous yeast strains (22 Saccharomyces cerevisiae and a non-Saccharomyces, Torulaspora delbrueckii, isolated from fermentation tanks at wineries in Castilla-La Mancha (Spain, and were performed under winemaking conditions using a synthetic must. Polysaccharide analysis and turbidity assays were conducted so as to observe the capacity of the released mannoproteins against protein haze formation in white wine, and 3 strains (2 Saccharomyces cerevisiae and T. delbrueckii were chosen for further experiments. The action of a commercial b-glucanolytic enzyme preparation (Lallzyme BETA®, and a β-(1→3-glucanase preparation from Trichoderma harzianum Rifai were evaluated to release polysaccharides from the different yeast strains’ cell walls. Protection against protein haze formation was strain dependent, and only two strains (Sc2 and Sc4 presented >50% stabilization in comparison to controls. Addition of β-glucanases did not increase the concentrations of polysaccharides in the fermentation musts; however, a significant increase of polymeric mannose (mannoproteins was detected using an enzymatic assay following total acid hydrolysis of the soluble polysaccharides. Enzymatic treatment presented positive effects and decreased protein haze formation in white wine. DOI http://dx.doi.org/10.17807/orbital.v8i6.869

  2. On the latitudinal distribution of Titan's haze at the Voyager epoch

    Science.gov (United States)

    Negrao, A.; Roos-Serote, M.; Rannou, P.; Rages, K.; McKay, C.

    2002-09-01

    In this work, we re-analyse a total of 10 high phase angle images of Titan (2 from Voyager 1 and 8 from Voyager 2). The images were acquired in different filters of the Voyager Imaging Sub System in 1980 - 1981. We apply a model, developed and used by Rannou etal. (1997) and Cabane etal. (1992), that calculates the vertical (1-D) distribution of haze particles and the I/F radial profiles as a function of a series of parameters. Two of these parameters, the haze particle production rate (P) and imaginary refractive index (xk), are used to obtain fits to the observed I/F profiles at different latitudes. Differerent from previous studies is that we consider all filters simultaneously, in an attempt to better fix the parameter values. We also include the filter response functions, not considered previously. The results show that P does not change significantly as a function of latitude, eventhough somewhat lower values are found at high northern latitudes. xk seems to increase towards southern latitudes. We will compare our results with GCM runs, that can give the haze distribution at the epoch of the observations. Work financed by portuguese Foundation for Science and Tecnology (FCT), contract ESO/PRO/40157/2000

  3. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China

    International Nuclear Information System (INIS)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM 2.5 was collected in Nanjing, China, during a severe haze–fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM 2.5 concentration was 3.4 times higher during haze–fog (96–518 μg/m 3 ) than non-haze fog periods (49–142 μg/m 3 ). Nearly all elements showed significantly higher concentrations during haze–fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10 −6 , whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals. - Highlights: • PM 2.5 concentration was 3.4 times higher during haze-fog than non-haze fog days. • Nearly all metals had higher contents during haze-fog than non-haze fog days. • Zn, As, Pb, Cd, Mo and Cu had high bioavailability and enrichment level in PM 2.5 . • Highly bioavailable fractions of elements were associated with high temperatures. • Health risk was assessed combined with metal forms in haze-fog and non-haze fog days. - Fractionation of airborne particulate-bound metals and its contribution to health risks during haze-fog and non-haze fog periods were studied from a typical megacity of Southeast China.

  4. Uso de la mitomicina C en la prevención del haze corneal Use of mitomycin-C in prevention of corneal haze

    Directory of Open Access Journals (Sweden)

    Oslay Mijail Tirado Martínez

    2011-06-01

    Full Text Available OBJETIVOS: Evaluar resultados visuales y aparición de haze en pacientes sometidos a LASEK con Mitomicina C intraoperatoria. MÉTODOS: Se realizó un estudio longitudinal prospectivo, tipo serie de casos, en el servicio de cirugía refractiva del Instituto Cubano de Oftalmología "Ramón Pando Ferrer", con pacientes operados entre septiembre y diciembre de 2008, y seguimiento por 12 meses. La muestra fue de 92 ojos con miopía o astigmatismo miópico. Se analizó la agudeza visual mejor corregida y sin corrección, así como la refracción manifiesta pre y posoperatoria. Se cuantificó el haze corneal y se determinaron los índices de efectividad, seguridad, predictibilidad y estabilidad. Se utilizaron técnicas de estadísticas descriptivas para el análisis de los resultados. RESULTADOS: La edad promedio fue 30,11 ± 7,00 años. El sexo femenino representó el 58,82 %. La mejor agudeza visual sin corrección media preoperatoria fue 0,12 ± 0,07 y la mejor agudeza visual corregida media fue 0,89 ± 0,15. Al año de operados, la mejor agudeza visual sin corrección y la mejor corregida fueron 0,9 ± 0,01 (R: 0,5 a 1,0. El haze corneal grado 1 apareció en dos ojos (2,17 %. El índice de efectividad fue 1,01; el índice de seguridad: 1,02; el índice de predictibilidad: 90,22 % de los ojos en±0,50 dioptrías. Hubo estabilidad de la refracción después del tercer mes posoperatorio. CONCLUSIONES: Hubo mejoría de agudeza visual sin corrección en posoperatorio con mantenimiento de agudeza visual mejor corregida preoperatoria. La aparición del haze corneal fue mínima. Los índices de efectividad, seguridad, predictibilidad y estabilidad mostraron valores similares a estándares internacionales.OBJECTIVES: To assess the visual results and the appearance of haze in patients underwent LASEK with intraoperative mitomycin-c. METHODS: A prospective and longitudinal and cases series type was conducted in the service of refractive surgery of the "Ram

  5. Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique

    Directory of Open Access Journals (Sweden)

    H. Geng

    2011-02-01

    Full Text Available A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA, called low-Z particle EPMA, was used to analyse individual aerosol particles collected in Incheon, Korea on 13–18 October 2008 (a typical haze episode occurred from 15 to 18 October. Overall 3600 individual particles in PM2.5-10 and PM1.0-2.5 fractions from 12 aerosol samples collected on haze and non-haze days were analysed. The analysed particles were classified, based on their X-ray spectral data together with their secondary electron images. The major particle types included organic carbon (OC, elemental carbon (EC, sea-salt, mineral dust (such as aluminosilicate, SiO2, CaCO3/CaMgCO3, etc., (NH42SO4/NH4HSO4-containing, K-containing, Fe-rich and fly ash particles. Their relative number abundance results showed that OC particles were significantly increased while sea-salts and mineral dust particles were significantly decreased (especially in PM1.0-2.5 fraction when haze occurred. For the other particle types (except Fe-rich particles in PM2.5-10 fraction, there were no significant differences in their relative abundances between haze and non-haze samples. On non-haze days, the nitrate-containing reacted sea-salt and mineral dust particles in PM1.0-2.5 fraction significantly outnumbered the sulfate-containing ones, whereas it was the reverse on haze days, implying that on haze days there were special sources or formation mechanisms for fine aerosol particles (≤2.5 μm in aerodynamic diameter. The emission of air pollutants from motor vehicles and stagnant meteorological conditions, such as low wind speed and high relative humidity, might be responsible for the elevated level of OC particles on haze days.

  6. Blue-green photoluminescence in MCM-41 mesoporous nanotubes

    International Nuclear Information System (INIS)

    Shen, J L; Lee, Y C; Lui, Y L; Cheng, P W; Cheng, C F

    2003-01-01

    Different photoluminescence (PL) techniques have been used to study the blue-green emission from siliceous MCM-41 nanotubes. It was found that the intensity of the blue-green PL is enhanced by rapid thermal annealing (RTA). This enhancement is explained by the generation of twofold-coordinated Si centres and non-bridging oxygen hole centres, in line with the surface properties of MCM-41. On the basis of the analysis of the PL following RTA, polarized PL, and PL excitation, we suggest that the triplet-to-singlet transition of twofold-coordinated silicon centres is responsible for the blue-green PL in MCM-41 nanotubes. (letter to the editor)

  7. The development of Haze Events observed by multi-satellite retrievals and Meteorological Analysis: A Case Study over Eastern China in December 2013

    Science.gov (United States)

    Zhang, Xiaoyu; Jiang, Binbin; Du, Yong; Yao, Lingling; Huang, Dasong

    2015-04-01

    With the rapid development of national economy and urbanization, the haze has been one of the environment disasters in eastern China. It is necessary that building a model of monitoring the haze for preventing and solving it in the future. In this study, NPP/AOT(550nm) >1and GOCI/AOT(555nm) >1 are adopted to dynamically monitor severe haze events in December 2013 over eastern China. Meanwhile, wind field data from CDAS-NCEP/DOE Reanalysis data and air temperature data from CDAS-NCEP/FNL are adopted to study the mechanism of the occurrence, migration and decay of the haze events. The haze event is composed of two consecutive cases. The first case occurred during 4-9 December is an exogenous haze for Yangtze River Delta, whereas the second case appeared during 11-15 December is an endogenous haze. This result shows:1) With the improved two-stream approximation model, GOCI is successful used to retrieve AOT with compared AERONET AOT, which demonstrates to be feasible in monitoring severe haze events. 2)Because of the large-scale observation capacity of NPP/AOT(550nm) product (×6km) and the high temporal resolution of GOCI/AOT(555nm), this study establishes a framework that detect the large-scale haze events using both data sets. 3)Weak wind speed of less than 5 m*s-1 is important for the development of the haze but the inversion is not a necessary condition for the haze. The strong cold air mass from the northern Siberia area and from East China Sea is the main force for the immigration, diffusion and decay of this haze event. 4)The air quality around Yangtze River Delta in winter is apt to suffer widely divergent influences including exogenous hazes carried by winter northwestward monsoon flows from northern Asia, and endogenous hazes induced by the rapid development of urbanization. The hit of multiple hazes over Yangtze River Delta lead to one of the most severe polluted regions of haze in China. Key words: NPP/AOT;GOCI/AOT; Haze;dynamic monitoring

  8. Enhancement of Cloud Cover and Suppression of Nocturnal Drizzle in Stratocumulus Polluted by Haze

    Science.gov (United States)

    Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ ship-track measurements that show no average change in cloud water relative to the surrounding clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. Our simulations also show that increases in cloud water from drizzle suppression (by increasing droplet concentrations) are favored at night or at extremely low droplet concentrations.

  9. Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations

    Directory of Open Access Journals (Sweden)

    Z. Han

    2017-08-01

    Full Text Available Based on the dynamic downscaling by the regional climate model RegCM4 from three CMIP5 global models under the historical and the RCP4.5 simulations, this article evaluated the performance of the RegCM4 downscaling simulations on the air environment carrying capacity (AEC and weak ventilation days (WVDs in China, which are applied to measure haze pollution potential. Their changes during the middle and the end of the 21st century were also projected. The evaluations show that the RegCM4 downscaling simulations can generally capture the observed features of the AEC and WVD distributions over the period 1986–2005. The projections indicate that the annual AEC tends to decrease and the annual WVDs tend to increase over almost the whole country except central China, concurrent with greater change by the late 21st century than by the middle of the 21st century. It suggests that annual haze pollution potential would be enlarged under the RCP4.5 scenario compared to the present. For seasonal change in the four main economic zones of China, it is projected consistently that there would be a higher probability of haze pollution risk over the Beijing–Tianjin–Hebei (BTH region and the Yangtze River Delta (YRD region in winter and over the Pearl River Delta (PRD region in spring and summer in the context of the warming scenario. Over Northeast China (NEC, future climate change might reduce the AEC or increase the WVDs throughout the whole year, which favours the occurrence of haze pollution and thus the haze pollution risk would be aggravated. The relative contribution of different components related to the AEC change further indicates that changes in the boundary layer depth and the wind speed play leading roles in the AEC change over the BTH and NEC regions. In addition to those two factors, the precipitation change also exerts important impacts on the AEC change over the YRD and PRD zones.

  10. Nested Source Apportionment of Secondary Inorganic Aerosol over Yangtze River Delta during Heavy Haze Episodes

    Science.gov (United States)

    Luo, L.; Cheng, Z.

    2017-12-01

    Secondary inorganic aerosols (SNA), i.e., sulfate, nitrate and ammonium, account for over 50% of fine particulate matter (PM2.5) during heavy haze episodes over Yangtze River Delta (YRD) region of China. Understanding the origin and transport of SNA is crucial for alleviating haze pollution over YRD. The long range transport from outer-YRD regions had significant influence on SNA during haze episodes over YRD, especially in winter. However, previous studies only using single domain for source analysis are limited on quantifying the local and transported sources in province scale altogether. In this study, the Integrated Source Apportionment Method (ISAM) based on the Weather Research and Forecasting and Community Multi-scale Air Quality (WRF-CMAQ) models was performed to two nested domains, one covering east of China and the other embracing YRD, for source apportionment of SNA in YRD during January, 2015. The results indicated that the outer-YRD transport mainly from upwind northwestern provinces, Shandong and Henan, was the dominant contributor accounting for 36.2% of sulfate during pollution episodes. For nitrate, inner-YRD and outer-YRD transport were the two evenly major regional sources, contributing 51.9% of nitrate during hazes. However, local accumulation was the first contributor accounting for 73.9% of ammonium. The long lifetime of formation process for sulfate and nitrate caused the conspicuous transport effect driven by wind when adjacent regions under severe pollution. Although the total effects of long and short distant transport played a major role for the level of sulfate and nitrate, the extent of contribution from local accumulation was similar with them even larger in province scale. Industry followed by power plant were two principal sources of sulfate for all three types of regional contribution. The main sectoral sources of nitrate were industry and transport for local accumulation while power plant besides them for inner-YRD and outer

  11. Projected Changes in Haze Pollution Potential in China: An Ensemble of Regional Climate Model Simulations

    Science.gov (United States)

    HAN, Z.; Zhou, B.; Xu, Y.; WU, J.; Shi, Y.

    2017-12-01

    Based on the dynamic downscaling by the regional climate model RegCM4 from three CMIP5 global models under the historical and the RCP4.5 simulations, this article evaluated the performance of the RegCM4 downscaling simulations on the air environment carrying capacity (AEC) and weak ventilation days (WVD) in China, which are applied to measure haze pollution potential. Their changes during the middle and the end of the 21st century were also projected. The evaluations show that the RegCM4 downscaling simulations can generally capture the observed features of the AEC and WVD distributions over the period 1986-2005. The projections indicate that the annual AEC tends to decrease and the annual WVD tends to increase almost over the whole country except central China, concurrent with greater change by the late of the 21st century than by the middle of the 21st century. It suggests that annual haze pollution potential would be enlarged under the RCP4.5 scenario as compared to the present. For seasonal change in the four main economic zones of China, it is projected consistently that there would be a higher probability of haze pollution risk over the Beijing-Tianjin-Hebei (BTH) region and the Yangtze River Delta (YRD) region in winter and over the Pearl River Delta (PRD) region in spring and summer in the context of the warming scenario. Over Northeast China (NEC), future climate change might reduce the AEC or increase the WVD throughout the whole year, which favors the occurrence of haze pollution and thus the haze pollution risk would be aggravated. Relative contribution of different components related to the AEC change further indicates that changes of the boundary layer depth and the wind speed play the leading roles in the AEC change over the BTH and NEC regions. In addition to those two factors, the precipitation change also exerts important impacts on the AEC change over the YRD and PRD zones.

  12. Photometry of faint blue stars

    International Nuclear Information System (INIS)

    Kilkenny, D.; Hill, P.W.; Brown, A.

    1977-01-01

    Photometry on the uvby system is given for 61 faint blue stars. The stars are classified by means of the Stromgren indices, using criteria described in a previous paper (Kilkenny and Hill (1975)). (author)

  13. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  14. Effect of post crosslinking haze on the repeatability of Scheimpflug-based and slit-scanning imaging devices

    Directory of Open Access Journals (Sweden)

    Rohit Shetty

    2017-01-01

    Full Text Available Purpose: The aim of this study was to analyze the effect of postcollagen crosslinking (CXL haze on the measurement and repeatability of pachymetry and mean keratometry (Km of four corneal topographers. Materials and Methods: Sixty eyes of sixty patients with progressive keratoconus who had undergone accelerated CXL (ACXL underwent imaging with a scanning slit imaging device (Orbscan II and three Scheimpflug imaging devices (Pentacam HR, Sirius, and Galilei. Post-ACXL haze was measured using the densitometry software on the Pentacam HR. Readings of the thinnest corneal thickness (TCT and Km from three scans of each device were analyzed. Effect of haze on the repeatability of TCT and Km measurements was evaluated using regression models. Repeatability was assessed by coefficient of variation. Results: Corneal densitometry in different zones affected the repeatability of TCT measurement of Orbscan (P < 0.05 significantly but not the repeatability of TCT with Pentacam HR and Sirius (P = 0.03 and 0.05, respectively. Km values were affected by haze when measured with the Pentacam HR (P < 0.05. The repeatability of Km readings for all devices was unaffected by haze. In the anterior 0–2 mm and 2–6 mm zone, TCT (P = 0.43 and 0.45, respectively, Km values (P = 0.4 and 0.6, respectively, repeatability of TCT (P = 0.1 in both zones, and Km (P = 0.5 and 0.1, respectively with Galilei were found to be the most reliable. Conclusion: Galilei measurements appear to be least affected by post-ACXL haze when compared with other devices. Hence, topography measurements in the presence of haze need to be interpreted with caution.

  15. Study of upper haze of Venus from Venus Express SPICAV-IR data

    Science.gov (United States)

    Luginin, Mikhail; Fedorova, Anna; Belyaev, Denis; Montmessin, Franck; Wilquet, Valerie; Korablev, Oleg; Bertaux, Jean-Loup; Carine Vandaele, Ann

    2017-04-01

    The upper haze of Venus located at 70-90 km is composed of submicron aerosol particles of H2SO4 (Esposito et al., 1983). Three channels of SPICAV/SOIR instrument onboard the VEX orbiter provided the occultation profiles in three spectral ranges that resulted in the discovery of the bimodal nature of the size distribution in the upper haze comprising a mode with a radius of 0.1-0.3 μm, and a coarser mode of radius 0.4-1.0 μm; while the presence of detached haze layers was also reported (Montmessin et al., 2008; Wilquet et al., 2009). Recently, results from 222 SPICAV-IR solar occultations observed from May 2006 to November 2014 were reported (Luginin et al., 2016). Microphysical properties of the mesospheric haze were derived from the vertical profiles of atmospheric extinction obtained at 10 near-IR wavelengths. Bimodal distribution of particles was found to be consistent with data for some orbits with mean radius for mode 1 reff1=0.12±0.03 μm and reff2=0.84±0.16 μm for mode 2. The radius for the single mode case was found to be Reff=0.54±0.25 μm, being 1.5 to 2 times smaller at polar region (60°N-90°N). In the bimodal case the number density profiles decreased smoothly for both modes, from 500 cm-3 at 75 km to 50 cm-3 at 90 km for mode 1, and from 1 cm-3 at 75 km to 0.1 cm-3 at 90 km for mode 2. In this paper, we pursue the study of the aerosols in the Venus' upper haze. Scale heights were retrieved from 43 number density profiles in unimodal case. The mean scale height is found to be 3.6 ± 0.7 km. Scale height is larger at polar region than at middle latitudes both on morning and evening terminators ( 5 km at 85°N vs 2 km at 70°N). Retrieved scale heights is consistent with a mean upward motion of 1 mm/s at 80 km and 1 cm/s at 90 km. In several occultations, detached haze layers at altitudes between 70 and 90 km were observed. The structures sometimes can be observed over consecutive orbits. In some instances, detached haze layers are shifted in

  16. Cation substitution induced blue-shift of optical band gap

    Indian Academy of Sciences (India)

    Cation substitution induced blue-shift of optical band gap in nanocrystalline Zn ( 1 − x ) Ca x O thin films deposited by sol–gel dip coating technique ... thin films giving 13.03% enhancement in theenergy gap value due to the electronic perturbation caused by cation substitution as well as deterioration in crystallinity.

  17. Haze Optical Properties from Long-Term Ground-Based Remote Sensing over Beijing and Xuzhou, China

    Directory of Open Access Journals (Sweden)

    Kai Qin

    2018-03-01

    Full Text Available Aerosol haze pollution has had a significant impact on both global climate and the regional air quality of Eastern China, which has a high proportion of high level pollution days. Statistical analyses of aerosol optical properties and direct radiative forcing at two AERONET sites (Beijing and Xuzhou were conducted from 2013 to 2016. Results indicate: (1 Haze pollution days accounted for 26% and 20% of days from 2013 to 2016 in Beijing and Xuzhou, respectively, with the highest proportions in winter; (2 The averaged aerosol optical depth (AOD at 550 nm on haze days were about 3.7 and 1.6 times greater than those on clean days in Beijing and Xuzhou, respectively. At both sites, the maximum AOD occurred in summer; (3 Hazes were dominated by fine particles at both sites. However, as compared to Xuzhou, Beijing had larger coarse mode AOD and higher percentage of small α. This data, together with an analysis of size distribution, suggests that the hazes in Beijing were more susceptible to coarse dust particles than Xuzhou; (4 During hazes in Beijing, the single scattering albedo (SSA is significantly higher when compared to clean conditions (0.874 vs. 0.843 in SSA440 nm, an increase much less evident in Xuzhou. The most noticeable differences in both SSA and the imaginary part of the complex refractive index between Beijing and Xuzhou were found in winter; (5 In Beijing, the haze radiative forcing produced an averaged cooling effect of −113.6 ± 63.7 W/m2 at the surface, whereas the averaged heating effect of 77.5 ± 49.7 W/m2 within the atmosphere was at least twice as strong as clean days. In Xuzhou, such a radiative forcing effect appeared to be much smaller and the difference between haze and clean days was insignificant. Derived from long-term observation, these findings are more significant for the improvement of our understanding of haze formation in China and the assessment of its impacts on radiative forcing of climate change than previous

  18. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter

    Directory of Open Access Journals (Sweden)

    Z. Li

    2013-10-01

    Full Text Available With the increase in economic development over the past thirty years, many large cities in eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used a CIMEL CE318 sun–sky radiometer to retrieve haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD, size distribution, complex refractive indices and aerosol fractions identified as black carbon (BC, brown carbon (BrC, mineral dust (DU, ammonium sulfate-like (AS components and aerosol water content (AW. The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable. Therefore, average heavy haze property parameters were drawn to present a research case for future studies. The average AOD is about 3.0 at 440 nm, and the Ångström exponent is 1.3 from 440 to 870 nm. The fine-mode AOD is 2.8 corresponding to a fine-mode fraction of 0.93. The coarse particles occupied a considerable volume fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse modes respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed spectral variation, with the value at 440 nm (about 0.013 higher than the other three wavelengths (about 0.008 at 675 nm. The aerosol composition retrieval results showed that volume fractions of BC, BrC, DU, AS and AW are 1, 2, 49, 15 and 33%, respectively, on average for

  19. [Acute blue urticaria following subcutaneous injection of patent blue dye].

    Science.gov (United States)

    Hamelin, A; Vial-Dupuy, A; Lebrun-Vignes, B; Francès, C; Soria, A; Barete, S

    2015-11-01

    Patent blue (PB) is a lymphatic vessel dye commonly used in France for sentinel lymph node detection in breast cancer, and less frequently in melanoma, and which may induce hypersensitivity reactions. We report a case of acute blue urticaria occurring within minutes of PB injection. Ten minutes after PB injection for sentinel lymph node detection during breast cancer surgery, a 49-year-old woman developed generalised acute blue urticaria and eyelid angioedema without bronchospasm or haemodynamic disturbance, but requiring discontinuation of surgery. Skin testing using PB and the anaesthetics given were run 6 weeks after the episode and confirmed PB allergy. PB was formally contra-indicated. Immediate hypersensitivity reactions to PB have been reported for between 0.24 and 2.2% of procedures. Such reactions are on occasion severe, chiefly involving anaphylactic shock. Two mechanisms are probably associated: non-specific histamine release and/or an IgE-mediated mechanism. Skin tests are helpful in confirming the diagnosis of PB allergy. Blue acute urticaria is one of the clinical manifestations of immediate hypersensitivity reactions to patent blue dye. Skin tests must be performed 6 weeks after the reaction in order to confirm the diagnosis and formally contra-indicate this substance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    Science.gov (United States)

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  1. Managing the Impact of Smoke Haze Disaster: Response of Civil Society Groups Towards Jambi Provincial Government Performance

    Directory of Open Access Journals (Sweden)

    Arfan

    2016-05-01

    Full Text Available Smoke haze from forest and land fires in Jambi in 2015 had led to various reactions. The low response from the provincial government led by an Acting Governor received various criticism and protests from civil society groups. This study examines the impact of 2015’ haze in Jambi and describes civil society groups’ responses toward the government “transition” of Jambi province performances regarding 2015 smoke haze. Through observation of the relation and activities of the two sides: government and civil society, and open-ended interview with a representative of civil society groups, the results showed that the barrier is the absence of a national disaster status. Acting Governor and Regional Working Unit (SKPD have a limitation in funding, equipment, and human resources to conduct fire fighting and are unresponsive in treating the haze victims. The persistence of civil society groups which work independently to helpvictims and encourage the government to be more responsive led to the issuance of Local Regulation on Forest and Land Fires. Finally, this study recommends the government of the Republic of Indonesia to formulate task and function certainty of the central government and Acting Governor in the handling of smoke haze under the condition without national disaster status.

  2. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans

    Science.gov (United States)

    Beaven, C. Martyn; Ekström, Johan

    2013-01-01

    The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention. PMID:24282477

  3. A comparison of blue light and caffeine effects on cognitive function and alertness in humans.

    Science.gov (United States)

    Beaven, C Martyn; Ekström, Johan

    2013-01-01

    The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.

  4. A comparison of blue light and caffeine effects on cognitive function and alertness in humans.

    Directory of Open Access Journals (Sweden)

    C Martyn Beaven

    Full Text Available The alerting effects of both caffeine and short wavelength (blue light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.

  5. An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States); Bean, Jacob L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Parmentier, Vivien, E-mail: kemptone@grinnell.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2017-08-20

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We propose a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the expectation that the two key types of aerosols—photochemically generated hazes and equilibrium condensate clouds—are expected to form and persist in different regions of a highly irradiated planet’s atmosphere. Haze can only be produced on the permanent daysides of tidally locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the nightside and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress–egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, using this diagnostic we find that observations with the James Webb Space Telescope and potentially with the Hubble Space Telescope should be able to distinguish between clouds and haze for currently known HIHJs.

  6. Forecasting the Occurrence of Severe Haze Events in Asia using Machine Learning Algorithms

    Science.gov (United States)

    Wang, C.

    2017-12-01

    Particulate pollution has become a serious environmental issue of many Asian countries in recent decades, threatening human health and frequently causing low visibility or haze days that interrupt from working, outdoor, and school activities to air, road, and sea transportation. To ultimately prevent such severe haze to occur requires many difficult tasks to be accomplished, dealing with trade and negotiation, emission control, energy consumption, transportation, land and plantation management, among other, of all involved countries or parties. Whereas, before these difficult measures could finally take place, it would be more practical to reduce the economic loss by developing skills to predict the occurrence of such events in reasonable accuracy so that effective mitigation or adaptation measures could be implemented ahead of time. The "traditional" numerical models developed based on fluid dynamics and explicit or parameterized representations of physiochemical processes can be certainly used for this task. However, the significant and sophisticated spatiotemporal variabilities associated with these events, the propagation of numerical or parameterization errors through model integration, and the computational demand all pose serious challenges to the practice of using these models to accomplish this interdisciplinary task. On the other hand, large quantity of meteorological, hydrological, atmospheric aerosol and composition, and surface visibility data from in-situ observation, reanalysis, or satellite retrievals, have become available to the community. These data might still not sufficient for evaluating and improving certain important aspects of the "traditional" models. Nevertheless, it is likely that these data can already support the effort to develop alternative "task-oriented" and computationally efficient forecasting skill using deep machine learning technique to avoid directly dealing with the sophisticated interplays across multiple process layers. I

  7. Bullying, hazing, and workplace harassment: the nexus in professional sports as exemplified by the first NFL Wells report.

    Science.gov (United States)

    Tofler, Ian R

    2016-12-01

    In the sporting context there is a significant nexus between adult workplace harassment and two other critical, developmentally related areas, that of child and adolescent bullying, and college hazing. These are all addressed, albeit obliquely and perhaps inadvertently, in the Miami Dolphins saga and the subsequent NFL Wells Report of 2013-2014. This is a significant document. It is even a brave, if politically expedient milestone. It evaluates the complex inter-personal and inter- and intra-systemic contributions within a sporting organization. Wells also elucidates a case where there is overlapping damage to individuals and systems as a result of malignant bullying, harassment, and hazing within overlapping systems. Constructive approaches to team building, and other positive alternatives to hazing may be the best place to initiate trust and verify institutional change at all these levels.

  8. Blue-emitting laser diodes

    Science.gov (United States)

    Nakano, K.; Ishibashi, A.

    This paper reviews the recent results of blue-emitting laser diodes. These devices are based on ZnMgSSe alloy II-VI semiconductors. Recently we have achieved room temperature continuous-wave operation of ZnMgSSe blue lasers for the first time. ZnMgSSe alloys offer a wide range of band-gap energy from 2.8 to 4.5 eV, while maintaining lattice matching to GaAs substrates. These characteristics make ZnMgSSe suitable for cladding layers of blue lasers. In this article, the feasibilities of ZnMgSSe will be reviewed. The laser structures and characteristics will be also mentioned.

  9. Aerosol properties in the upper haze of Venus from SPICAV IR data

    Science.gov (United States)

    Luginin, M.; Fedorova, A.; Belyaev, D.; Montmessin, F.; Wilquet, V.; Korablev, O.; Bertaux, J.-L.; Vandaele, A. C.

    2016-10-01

    SPICAV IR, a channel of the SPICAV/SOIR suite of instruments onboard Venus Express spacecraft measured spectra in nadir and solar occultation modes in the range of 0.65-1.7 μm. We report results from 222 solar occultations observed from May 2006 to November 2014. The vertical resolution of measurements varies from 1 to 25 km depending on the distance of the spacecraft to the limb of Venus. The vertical profiles of atmospheric extinction were obtained at 10 near-IR wavelengths in the altitude range from 70 to 95 km. This allowed us to derive microphysical properties of the mesospheric haze. The aerosol haze top is higher near the equator than near the pole. In the upper haze, the aerosol scale height is found to be 3.3 ± 0.7 km. Detached haze layers were detected at altitudes from 70 to 90 km. Particle size and number density profiles are retrieved from extinction coefficients using Mie scattering theory adopting H2SO4 refractive indices. Bimodal distribution of particles is consistent with data for some orbits with mean radius for mode 1 reff1 = 0.12 ± 0.03 μm and reff2 = 0.84 ± 0.16 μm for mode 2. Particle radii tend to cluster within occultation campaign and vary on the time scale of several months. The radius for the single mode case equals Reff = 0.54 ± 0.25 μm, and they are also 1.5-2 times smaller in the polar region (60°N-90°N) than in nonpolar regions (60°S-60°N). In bimodal case the number density profiles decrease smoothly for both modes, from ∼500 cm-3 at 75 km to ∼50 cm-3 at 90 km for mode 1, and from ∼1 cm-3 at 75 km to ∼0.1 cm-3 at 90 km for mode 2.

  10. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    International Nuclear Information System (INIS)

    Li, Weijun; Shi, Zongbo; Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing

    2013-01-01

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM 2.5 and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM 2.5 concentration reached 183 μg m −3 during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO 2 to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers/fireworks during the Chinese New

  11. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijun, E-mail: liweijun@sdu.edu.cn [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China); State Key of Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Shi, Zongbo [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China)

    2013-01-15

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM{sub 2.5} and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM{sub 2.5} concentration reached 183 μg m{sup −3} during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO{sub 2} to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers

  12. Automated Heuristic Defect Classification (AHDC) for haze-induced defect growth management and mask requalification

    Science.gov (United States)

    Munir, Saghir; Qidwai, Gul

    2012-03-01

    This article presents results from a heuristic automated defect classification algorithm for reticle inspection that mimics the classification rules. AHDC does not require CAD data, thus it can be rapidly deployed in a high volume production environment without the need for extensive design data management. To ensure classification consistency a software framework tracks every defect in repeated inspections. Through its various image based derived metrics it is shown that such a system manages and tracks repeated defects in applications such as haze induced defect growth.

  13. Persistent and Widespread Winter Haze & Fog over the Indo-Gangetic Plains: A climatological perspective from satellite observations

    Science.gov (United States)

    Gautam, R.

    2014-12-01

    Each year during winter season (December-January), dense fog engulfs the Indo-Gangetic Plains (IGP) in southern Asia, for more than a month, disrupting daily life of millions of people inhabiting the IGP. The widespread nature of the fog is frequently visible in satellite imagery, extending over a stretch of ~1500 km; that covers parts of Pakistan, northern India, Nepal and Bangladesh. Both, haze and fog are a tightly-coupled system over the IGP, during winter months, and have been a major environmental/climatic issue since the past several decades. Trends in poor visibility suggest a significant increase in worsening air quality and foggy days over the IGP. The persistent and widespread nature of the winter haze and fog is strongly influenced by the regional meteorology during wintertime, i.e. a stable boundary layer, low temperatures, high relative humidity and light winds. The valley-type topography of the IGP, adjacent to the towering Himalaya, and high concentrations of pollution aerosols, further favors the persistence of hazy/foggy conditions. A satellite-based observational portrayal will be presented, using various cloud, aerosol and radiation datasets, to characterize the widespread nature of winter haze and fog, based on a multi-sensor assessment from MODIS, CERES, AVHRR and CALIPSO datasets. More specifically, based on these observations, we will present results on: long-term trends/variability of winter haze and fog, vertical characterization of aerosol/fog/low-clouds, as well as assessment of the direct radiative effect of the region-wide haze/fog system. Results from this work are anticipated to shed light on the overall interactions within the highly persistent and tightly-coupled haze-fog phenomena. Additionally, against the backdrop of a changing climate scenario, possible linkages between the winter-time fog cover, regional meteorology and aerosol loading will also be discussed over the IGP.

  14. Characterization of rainwater chemical composition after a Southeast Asia haze event: insight of transboundary pollutant transport during the northeast monsoon.

    Science.gov (United States)

    Nadzir, Mohd Shahrul Mohd; Lin, Chin Yik; Khan, Md Firoz; Latif, Mohd Talib; Dominick, Doreena; Hamid, Haris Hafizal Abdul; Mohamad, Noorlin; Maulud, Khairul Nizam Abdul; Wahab, Muhammad Ikram Abdul; Kamaludin, Nurul Farahana; Lazim, Mohamad Azwani Shah Mat

    2017-06-01

    Open biomass burning in Peninsula Malaysia, Sumatra, and parts of the Indochinese region is a major source of transboundary haze pollution in the Southeast Asia. To study the influence of haze on rainwater chemistry, a short-term investigation was carried out during the occurrence of a severe haze episode from March to April 2014. Rainwater samples were collected after a prolonged drought and analyzed for heavy metals and major ion concentrations using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. The chemical composition and morphology of the solid particulates suspended in rainwater were examined using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The dataset was further interpreted using enrichment factors (EF), statistical analysis, and a back trajectory (BT) model to find the possible sources of the particulates and pollutants. The results show a drop in rainwater pH from near neutral (pH 6.54) to acidic (haze to non-haze transitional period, suggesting that the deposition rate of sulfate and nitrate in the atmosphere via the precipitation process was relatively lower compared to the mineral components. Zinc, nitrate, and calcium, which were the predominant elements in the first rainwater samples. Besides, the results of the SEM-EDS indicated that the zinc was possibly originated from anthropogenic activities which are consistent with the results obtained from EF. The BT model showed that pollutants transported from the mainland of Indo-China and the marine region in the South China Sea were responsible for the high pollution event in the study area. These findings can be useful in identifying contributions of pollutants from single or multiple sources in rainwater samples during haze episodes.

  15. Optical and radiative properties of aerosols during a severe haze episode over the North China Plain in December 2016

    Science.gov (United States)

    Zheng, Yu; Che, Huizheng; Yang, Leiku; Chen, Jing; Wang, Yaqiang; Xia, Xiangao; Zhao, Hujia; Wang, Hong; Wang, Deying; Gui, Ke; An, Linchang; Sun, Tianze; Yu, Jie; Kuang, Xiang; Li, Xin; Sun, Enwei; Zhao, Dapeng; Yang, Dongsen; Guo, Zengyuan; Zhao, Tianliang; Zhang, Xiaoye

    2017-12-01

    The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was 1.4 as the haze pollution developed. The Ångström exponent was > 0.80 for most of the study period. The daily single-scattering albedo was > 0.85 over all of the North China Plain on the most polluted days and was > 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05-0.21 and 0.01-0.43 μm3, respectively—that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01-0.11 in Beijing, 0.01-0.13 in Shijiazhuang, and 0.01-0.04 in Jiaozuo, and the average absorption Ångström exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from -23 to -227,-34 to -199, and -29 to -191 W m-2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from -4 to -98, -10 to -51, and -21 to -143 W m-2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribution from local emissions and pollutants transport from upstream areas were 190-450 and 100-410 μg m-3, respectively.

  16. Computational mask defect review for contamination and haze inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram; Wolf, Yulian; Shah, Pinkesh

    2013-09-01

    As optical lithography continues to extend into sub-0.35 k1 regime, mask defect inspection and subsequent review has become tremendously challenging, and indeed the largest component to mask manufacturing cost. The routine use of various resolution enhancement techniques (RET) have resulted in complex mask patterns, which together with the need to detect even smaller defects due to higher MEEFs, now requires an inspection engineer to use combination of inspection modes. This is achieved in 193nm AeraTM mask inspection systems wherein masks are not only inspected at their scanner equivalent aerial exposure conditions, but also at higher Numerical Aperture resolution, and special reflected-light, and single-die contamination modes, providing better coverage over all available patterns, and defect types. Once the required defects are detected by the inspection system, comprehensively reviewing and dispositioning each defect then becomes the Achilles heel of the overall mask inspection process. Traditionally, defects have been reviewed manually by an operator, which makes the process error-prone especially given the low-contrast in the convoluted aerial images. Such manual review also limits the quality and quantity of classifications in terms of the different types of characterization and number of defects that can practically be reviewed by a person. In some ways, such manual classification limits the capability of the inspection tool itself from being setup to detect smaller defects since it often results in many more defects that need to be then manually reviewed. Paper 8681-109 at SPIE Advanced Lithography 2013 discussed an innovative approach to actinic mask defect review using computational technology, and focused on Die-to-Die transmitted aerial and high-resolution inspections. In this approach, every defect is characterized in two different ways, viz., quantitatively in terms of its print impact on wafer, and qualitatively in terms of its nature and origin in

  17. Blue light emitting thiogallate phosphor

    Science.gov (United States)

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  18. Blue Guardian: open architecture intelligence, surveillance, and reconnaissance (ISR) demonstrations

    Science.gov (United States)

    Shirey, Russell G.; Borntrager, Luke A.; Soine, Andrew T.; Green, David M.

    2017-04-01

    The Air Force Research Laboratory (AFRL) - Sensors Directorate has developed the Blue Guardian program to demonstrate advanced sensing technology utilizing open architectures in operationally relevant environments. Blue Guardian has adopted the core concepts and principles of the Air Force Rapid Capabilities Office (AFRCO) Open Mission Systems (OMS) initiative to implement an open Intelligence, Surveillance and Reconnaissance (ISR) platform architecture. Using this new OMS standard provides a business case to reduce cost and program schedules for industry and the Department of Defense (DoD). Blue Guardian is an early adopting program of OMS and provides much needed science and technology improvements, development, testing, and implementation of OMS for ISR purposes. This paper presents results and lessons learned under the Blue Guardian Project Shepherd program which conducted Multi-INT operational demonstrations in the Joint Interagency Task Force - South (JIATF-S) and USSOUTHCOM area of operations in early 2016. Further, on-going research is discussed to enhance Blue Guardian Multi-INT ISR capabilities to support additional mission sets and platforms, including unmanned operations over line of sight (LOS) and beyond line of sight (BLOS) datalinks. An implementation of additional OMS message sets and services to support off-platform sensor command and control using OMS/UCI data structures and dissemination of sensor product data/metadata is explored. Lastly, the Blue Guardian team is working with the AgilePod program to use OMS in a full Government Data Rights Pod to rapidly swap these sensors to different aircraft. The union of the AgilePod (which uses SOSA compliant standards) and OMS technologies under Blue Guardian programs is discussed.

  19. Efficiency of enzymatic and other alternative clarification and fining treatments on turbidity and haze in cherry juice

    DEFF Research Database (Denmark)

    Meyer, Anne Boye Strunge; Köser, C.; Adler-Nissen, Jens

    2001-01-01

    function. Individual and interactive effects on turbidity and haze formation in precentrifuged and uncentrifuged cherry juice of treatments with pectinase, acid protease, bromelain, gallic acid, and gelatin-silica sol were investigated in a factorial experimental design with 32 different parameter...... cherry juice with Novozym 89L protease and co- addition of pectinase and gallic acid improved cherry juice clarity and diminished haze levels. None of the alternative treatments produced the unwieldy colloids notorious to gelatin- silica sol treatment. The data suggest that several alternative...

  20. Aerosol radiative effect in UV, VIS, NIR, and SW spectra under haze and high-humidity urban conditions

    Science.gov (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Wang, Lunche; Xia, Xiangao; Che, Huizheng; Hu, Bo; Liu, Boming

    2017-10-01

    Aerosol properties derived from sun-photometric observations at Wuhan during a haze period were analyzed and used as input in a radiative transfer model to calculate the aerosol radiative effect (ARE) in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. The results showed that the aerosol optical depth (AOD) at 440 nm increased from 0.32 under clear-air conditions to 0.85 during common haze and 1.39 during severe haze. An unusual inverse relationship was found between the Ångström exponent (AE) and AOD during the haze period at Wuhan. Under high-humidity conditions, the fine-mode median radius of aerosols increased from 0.113 μm to approximately 0.2-0.5 μm as a result of hygroscopic growth, which led to increases in the AOD and decreases in the AE simultaneously. These changes were responsible for the inverse relationship between AE and AOD at Wuhan. The surface ARE in the UV (AREUV), VIS (AREVIS), NIR (ARENIR), and SW (ARESW) spectra changed from -4.46, -25.37, -12.15, and -41.99 W/m2 under clear-air conditions to -9.48, -53.96, -29.81, and -93.25 W/m2 during common hazy days and -12.89, -80.16, -55.17, and -148.22 W/m2 during severe hazy days, respectively, and the percentages of AREUV, AREVIS, and ARENIR in ARESW changed from 11%, 61%, and 28%-9%, 54%, and 37%, respectively. Meanwhile, the ARE efficiencies (REE) in SW varied from -206.5 W/m2 under clear-air conditions to -152.94 W/m2 during the common haze period and -131.47 W/m2 during the severe haze period. The smallest decreasing rate of the REE in NIR was associated with the increase of ARENIR. The weakened REE values were related to the strong forward scattering and weak backward scattering of fine aerosol particles with increasing size resulting from hygroscopic growth, while the variation of the single scattering albedo showed less impact. Source region analysis by back trajectories and the concentration weighted trajectory (CWT) method showed that black carbon came

  1. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India

    Science.gov (United States)

    Mishra, Dhirendra; Goyal, P.; Upadhyay, Abhishek

    2015-02-01

    Delhi has been listed as the worst performer across the world with respect to the presence of alarmingly high level of haze episodes, exposing the residents here to a host of diseases including respiratory disease, chronic obstructive pulmonary disorder and lung cancer. This study aimed to analyze the haze episodes in a year and to develop the forecasting methodologies for it. The air pollutants, e.g., CO, O3, NO2, SO2, PM2.5 as well as meteorological parameters (pressure, temperature, wind speed, wind direction index, relative humidity, visibility, dew point temperature, etc.) have been used in the present study to analyze the haze episodes in Delhi urban area. The nature of these episodes, their possible causes, and their major features are discussed in terms of fine particulate matter (PM2.5) and relative humidity. The correlation matrix shows that temperature, pressure, wind speed, O3, and dew point temperature are the dominating variables for PM2.5 concentrations in Delhi. The hour-by-hour analysis of past data pattern at different monitoring stations suggest that the haze hours were occurred approximately 48% of the total observed hours in the year, 2012 over Delhi urban area. The haze hour forecasting models in terms of PM2.5 concentrations (more than 50 μg/m3) and relative humidity (less than 90%) have been developed through artificial intelligence based Neuro-Fuzzy (NF) techniques and compared with the other modeling techniques e.g., multiple linear regression (MLR), and artificial neural network (ANN). The haze hour's data for nine months, i.e. from January to September have been chosen for training and remaining three months, i.e., October to December in the year 2012 are chosen for validation of the developed models. The forecasted results are compared with the observed values with different statistical measures, e.g., correlation coefficients (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA). The performed

  2. Effects of blue light on pigment biosynthesis of Monascus.

    Science.gov (United States)

    Chen, Di; Xue, Chunmao; Chen, Mianhua; Wu, Shufen; Li, Zhenjing; Wang, Changlu

    2016-04-01

    The influence of different illumination levels of blue light on the growth and intracellular pigment yields of Monascus strain M9 was investigated. Compared with darkness, constant exposure to blue light of 100 lux reduced the yields of six pigments, namely, rubropunctatamine (RUM), monascorubramine (MOM), rubropunctatin (RUN), monascorubrin (MON), monascin (MS), and ankaflavin (AK). However, exposure to varying levels of blue light had different effects on pigment production. Exposure to 100 lux of blue light once for 30 min/day and to 100 lux of blue light once and twice for 15 min/day could enhance RUM, MOM, MS, and AK production and reduce RUN and MON compared with non-exposure. Exposure to 100 lux twice for 30 min/day and to 200 lux once for 45 min/day decreased the RUM, MOM, MS, and AK yields and increased the RUN and MON. Meanwhile, the expression levels of pigment biosynthetic genes were analyzed by real-time quantitative PCR. Results indicated that gene MpPKS5, mppR1, mppA, mppB, mmpC, mppD, MpFasA, MpFasB, and mppF were positively correlated with the yields of RUN and MON, whereas mppE and mppR2 were associated with RUM, MOM, MS, and AK production.

  3. Development of a Blue Emitting Calcium-Aluminate Phosphor.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available We report methodological advances that enhance the phosphorescence efficiency of a blue-emitting calcium aluminate phosphor (CaAl2O4: Eu2+, Nd3+. The investigation of long-persistence blue-emitting phosphors is highly desirable due to their promising applications, such as white LEDs; however, the development of highly efficient blue-emitting phosphors is still challenging. Here, we have quantitatively characterized the phosphorescence properties of the blue-emitting phosphor CaAl2O4:Eu2+, Nd3+ with various compositions and directly related these properties to the quality of its luminescence. We optimized the composition of the activator Eu2+ and the co-activator Nd3+, the doping conditions with alkaline earth metals, alkali metals, and Si to create crystallographic distortions and, finally, the flux conditions to find the best parameters for bright and persistent blue-emitting phosphors. Our research has identified several doping compositions with good to excellent performance, with which we have demonstrated bright and persistent phosphors with afterglow characteristics superior to those of conventional phosphors.

  4. The Blue Revolution in Asia

    DEFF Research Database (Denmark)

    Ponte, Stefano; Kelling, Ingrid; Jespersen, Karen Sau

    2014-01-01

    In this article, we examine the upgrading trajectories of selected aquaculture value chains in four Asian countries and the links between upgrading and three factors of value chain governance: coordination mechanisms; types of drivers; and domestic regulation. We find instances of improving produ...... of upgrading the "blue revolution" in Asia...

  5. Blue Ocean vs. Five Forces

    NARCIS (Netherlands)

    A.E. Burke (Andrew); A.J. van Stel (André); A.R. Thurik (Roy)

    2010-01-01

    textabstractThe article reports on the authors' research in the Netherlands which focused on a profit model in Dutch retail stores and a so-called blue-ocean approach which requires a new market that attracts consumers and increases profits. Topics include the competitive strategy approach to

  6. Mobilizing investors for blue growth

    NARCIS (Netherlands)

    Burg, van den Sander W.K.; Stuiver, Marian; Bolman, Bas C.; Wijnen, Roland; Selnes, Trond; Dalton, Gordon

    2017-01-01

    The European Union's Blue Growth Strategy is a long term strategy to support sustainable growth in the marine and maritime sectors, aiming to contribute to innovation and economic growth (European Commission, 2012). The EU sees the financial sector as a key partner to bring about transition to

  7. Nobel Prize for blue LEDs

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2015-01-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations. (paper)

  8. Nobel Prize for blue LEDs

    Science.gov (United States)

    Kraftmakher, Yaakov

    2015-05-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  9. Shape induced (spherical, sheets and rods) optical and magnetic properties of CdS nanostructures with enhanced photocatalytic activity for photodegradation of methylene blue dye under ultra-violet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Bilal; Kumar, Sachin; Kumar, Sumeet; Ojha, Animesh K., E-mail: animesh@mnnit.ac.in

    2016-09-15

    CdS nanostructures of different shapes such as, nanoparticles (NPs), nanosheets (NS) and nanorods (NRs) have been synthesized by one step chemical solvothermal method. The synthesized samples were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, UV–visible (UV-VIS) spectroscopy, Raman spectroscopy (RS) and vibrating sample magnetometer (VSM) techniques. The effect of shape on optical and magnetic properties of CdS nanostructures was studied. The optical band gap and emission spectra are found to be shape dependent. CdS NRs were found to have high saturation (Ms) magnetization than that of CdS NPs and NS. The role of shape on photocatalytic performance of CdS NPs, NS and NRs was investigated by monitoring the photodegradation of methylene blue (MB) dye under the UV irradiation of wavelength 365 nm. The lower recombination rate of electron-hole pairs and larger surface area as reactive facets for adsorption of MB dye molecules in CdS NS are mainly lead to the better photocatalytic performance of CdS NS compared to NPs and NRs. - Highlights: • Synthesis of CdS nanostructures with different shapes (spherical, rod and sheet) by easy and low cost solvothermal method. • Shape induced optical and magnetic properties of CdS nanostructures have been investigated. • The shapes of nanostructures play an important role for photocatalytic performance of CdS nanostructures.

  10. Seasonal prediction of winter haze days in the north central North China Plain

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2016-11-01

    Full Text Available Recently, the winter (December–February haze pollution over the north central North China Plain (NCP has become severe. By treating the year-to-year increment as the predictand, two new statistical schemes were established using the multiple linear regression (MLR and the generalized additive model (GAM. By analyzing the associated increment of atmospheric circulation, seven leading predictors were selected to predict the upcoming winter haze days over the NCP (WHDNCP. After cross validation, the root mean square error and explained variance of the MLR (GAM prediction model was 3.39 (3.38 and 53 % (54 %, respectively. For the final predicted WHDNCP, both of these models could capture the interannual and interdecadal trends and the extremums successfully. Independent prediction tests for 2014 and 2015 also confirmed the good predictive skill of the new schemes. The predicted bias of the MLR (GAM prediction model in 2014 and 2015 was 0.09 (−0.07 and −3.33 (−1.01, respectively. Compared to the MLR model, the GAM model had a higher predictive skill in reproducing the rapid and continuous increase of WHDNCP after 2010.

  11. Mariner 9 television limb observations of dust and ice hazes on Mars

    International Nuclear Information System (INIS)

    Anderson, E.; Leovy, C.

    1978-01-01

    Over 3000 Mariner 9 television reflectance profiles crossing the limb of Mars were analyzed statistically during the period from the decaying phase of a global dust storm (southern summer) until southern winter solstice. Most of the profiles were obtained during the first 100 days of the mission. The ''top'' of the dust, as defined by the inflection point in the reflectance profiles, decreased with time during the decay of the dust storm, but more rapidly in the higher latitudes of both hemispheres than in the tropics. The inflection point due to dust haze remained above 20 km in the tropics throughout the period. These variations support the hypothesis that the diurnal tide is the primary agent of vertical dust transport. Scale heights of the upper portion of the dust cloud were highest in the tropics early in the mission, decaying with time and/or depth in the atmosphere. If interpreted in terms of vertical eddy diffusion, the scale heights suggest diffusion coefficients of order 10 3 m 2 s - 1 in the 40--60 km height range. Distribution, color and polarization of higher limb hazes were also analyzed. These are interpreted as condensate layers associated with convective overshoot from the dusty lower atmosphere. A long internal gravity wave revealed by one of these layers is discussed

  12. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization.

    Science.gov (United States)

    Marangon, Matteo; Van Sluyter, Steven C; Robinson, Ella M C; Muhlack, Richard A; Holt, Helen E; Haynes, Paul A; Godden, Peter W; Smith, Paul A; Waters, Elizabeth J

    2012-12-01

    Bentonite is commonly used to remove grape proteins responsible for haze formation in white wines. Proteases potentially represent an alternative to bentonite, but so far none has shown satisfactory activity under winemaking conditions. A promising candidate is AGP, a mixture of Aspergillopepsins I and II.; a food grade, well characterized and inexpensive protease, active at wine pH and at high temperatures (60-80°C). AGP was added to two clarified grape juices with and without heat treatments (75°C, 1min) prior to fermentation. AGP showed some activity at fermentation temperatures (≈20% total protein reduction compared to control wine) and excellent activity when combined with juice heating (≈90% total protein reduction). The more heat stable grape proteins, i.e. those not contributing to wine hazing, were not affected by the treatments and therefore accounted for the remaining 10% of protein still in solution after the treatments. The main physicochemical parameters and sensorial characteristics of wines produced with AGP were not different from controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Evidence for a High Altitude Haze on an L/T Transition Brown Dwarf

    Science.gov (United States)

    Pena, Melania; Murphy, Caitlin; Radigan, Jacqueline; Doyle, Timothy

    2018-01-01

    We present overlapping Spitzer and HST (Wide Field Camera 3) observations of a variable T2 brown dwarf with an unremarkable near-infrared spectrum, yet unusual variability properties. The brown dwarf exhibits a flat variability spectrum from 1.1-1.7 microns, with an amplitude of ~5%, with no evidence of muted variations in the water absorption feature as seen for other L/T transition brown dwarfs. The absence of a water absorption feature suggests that a patchy, high-altitude haze, rather than a deeper cloud feature, may responsible. The amplitude of the overlapping 3.6 micron Spitzer variations is ~2.5%, and provides a lever-arm for constraining the particle size distribution of the haze. Using a Mie-Scattering model we determined that a lognormal distribution of sub-micron size grains can approximately reproduce the observed variations from 1.1-3.6 microns, without substantially impacting the overall NIR spectrum of our target. Our results suggest that there may be more than one type of cloud morphology that can contribute to variability at the L/T transition.

  14. Development of engineered yeast for biosorption of beer haze-active polyphenols.

    Science.gov (United States)

    Cejnar, Rudolf; Hložková, Kateřina; Jelínek, Lukáš; Kotrba, Pavel; Dostálek, Pavel

    2017-02-01

    Compared to most other alcoholic beverages, the shelf life of beer is much more limited due to its instability in the bottle. That instability is most likely to appear as turbidity (haze), even sedimentation, during storage. The haze in beer is mostly caused by colloidal particles formed by interactions between proteins and polyphenols within the beer. Therefore, beers are usually stabilized by removing at least one of these components. We developed and constructed a Saccharomyces cerevisiae strain with a proline-rich QPF peptide attached to the cell wall, using the C-terminal anchoring domain of α-agglutinin. The QPF peptide served to bind polyphenols during fermentation and, thus, to decrease their concentration. Strains displaying QPF were able to bind about twice as much catechin and epicatechin as a control strain displaying only the anchoring domain. All these experiments were done with model solutions. Depending on the concentration of yeast, uptake of polyphenols was 1.7-2.5 times higher. Similarly, the uptake of proanthocyanidins was increased by about 20 %. Since the modification of yeasts with QPF did not affect their fermentation performance under laboratory conditions, the display of QPF appears to be an approach to increase the stability of beer.

  15. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Radzi Bin Abas, M.; Rahman, Noorsaadah A.; Omar, Nasr Yousef M. J.; Maah, M. Jamil; Abu Samah, Azizan; Oros, Daniel R.; Otto, Angelika; Simoneit, Bernd R. T.

    The solvent-extractable compounds of urban airborne particulate matter were analyzed to determine the distributions of homologous and biomarker tracers. Samples were collected by high-volume air filtration during the haze episode of 1997 around the University of Malaya campus near Petaling Jaya, a suburb of Kuala Lumpur, Malaysia. These results show that the samples contain n-alkanes, n-alkan-2-ones, n-alkanols, methyl n-alkanoates, n-alkyl nitriles, n-alkanals, n-alkanoic acids, levoglucosan, PAHs, and UCM as the dominant components, with minor amounts of terpenoids, glyceryl esters and sterols, all derived from natural biogenic sources (vascular plant wax), from burning of biomass, and from anthropogenic utilization of fossil fuel products (lubricating oil, vehicle emissions, etc.). Some compositional differences are observed in the samples and greater atmospheric concentrations were found for almost all organic components in the samples collected near a roadway. The results interpreted in terms of major sources are due to local build-up of organic contaminants from vehicular emissions, smoke from biomass burning, and natural background as a result of the atmospheric stability during the haze episodes. The organic components transported in from areas outside the region, assuming all smoke components are external to the city, amount to about 30% of the total organic particle burden.

  16. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk.

    Science.gov (United States)

    Betha, Raghu; Behera, Sailesh N; Balasubramanian, Rajasekhar

    2014-04-15

    Recurring biomass burning-induced smoke haze is a serious regional air pollution problem in Southeast Asia (SEA). The June 2013 haze episode was one of the worst air pollution events in SEA. Size segregated particulate samples (2.5-1.0 μm; 1.0-0.5 μm; 0.5- 0.2 μm; and 60%) of the elements was present in oxidizable and residual fractions while the bioavailable (exchangeable) fraction accounted for up to 20% for most of the elements except K and Mn. Deposition of inhaled potentially toxic trace elements in various regions of the human respiratory system was estimated using a Multiple-Path Particle Dosimetry model. The particle depositions in the respiratory system tend to be more severe during hazy days than those during nonhazy days. A prolonged exposure to finer particles can thus cause adverse health outcomes during hazy days. Health risk estimates revealed that the excessive lifetime carcinogenic risk to individuals exposed to biomass burning-impacted aerosols (18 ± 1 × 10(-6)) increased significantly (P < 0.05) compared to those who exposed to urban air (12 ± 2 × 10(-6)).

  17. Haze and other aerosol components in late winter Arctic Alaska, 1986

    International Nuclear Information System (INIS)

    Shao-Meng Li; Winchester, J.W.

    1990-01-01

    Three coarse and five fine aerosol components of different elemental compositions were identified at Barrow, Alaska, from March 17 to April 21, 1986. In the coarse (> 2.5 μm), two components C-1 and C-2 had abundant Si, S, Cl, K, and Ca, but no Al, and together contained 85% of coarse S. Their compositions resembled expected products of carbonaceous fuel combustion, with Si being volatilized by carbon reduction and other metals volatilized perhaps as chloride salts. C-1, with high trace metal contents, might be from nonferrous smelting, whereas C-2, with high Fe, might be associated with conventional coal combustion. The third component C-3 was a dust aerosol rich in Al that contained high S but low Cl, suggesting saturation with H 2 SO 4 and therefore aged and regional aerosols perhaps typical of the late winter Arctic. In the fine ( 2 oxidation and condensation on fine Si-rich particles. The trace metal aerosol was always present and could have been generated from nonferrous smelters at lower latitudes. The results show that certain winter meteorological conditions favor pollutant transport from lower latitudes to the Arctic. But while haze is related to industrial pollutants, other nonpollution products are present in the winter Arctic and may be important constituents of haze

  18. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Chromophore Deprotonation State Alters the Optical Properties of Blue Chromoprotein.

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chiang

    Full Text Available Chromoproteins (CPs have unique colors and can be used in biological applications. In this work, a novel blue CP with a maximum absorption peak (λmax at 608 nm was identified from the carpet anemone Stichodactyla gigantea (sgBP. In vivo expression of sgBP in zebrafish would change the appearance of the fishes to have a blue color, indicating the potential biomarker function. To enhance the color properties, the crystal structure of sgBP at 2.25 Å resolution was determined to allow structure-based protein engineering. Among the mutations conducted in the Gln-Tyr-Gly chromophore and chromophore environment, a S157C mutation shifted the λmax to 604 nm with an extinction coefficient (ε of 58,029 M-1·cm-1 and darkened the blue color expression. The S157C mutation in the sgBP chromophore environment could affect the color expression by altering the deprotonation state of the phenolic group in the chromophore. Our results provide a structural basis for the blue color enhancement of the biomarker development.

  20. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  1. 77 FR 51915 - Approval and Promulgation of Air Quality Implementation Plans; State of New York; Regional Haze...

    Science.gov (United States)

    2012-08-28

    ... notice of data availability: ALCOA Massena Operations (ALCOA), Dynegy Northeast Generation, Inc. (Dynegy... but ensures that such authority is reasonably exercised. BART determinations are the responsibility of... designated as BART. See 40 CFR part 51 App. Y, section IV.D. The applicable regional haze regulations and EPA...

  2. Clustering of CO and CO2 concentration from Sumatra peat fire haze using HYSPLIT and K-means algorithm

    Science.gov (United States)

    Ni'am, M.; Sitanggang, I. S.; Nuryanto, D. E.

    2017-01-01

    Peat fires in Indonesia could have a negative impact for human life such as the emergence of haze. Therefore, this research aims to analyze concentration of CO and CO2 due to peat fires in Sumatra in 2015 using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and K-Means algorithm. The results of this study indicate that HYSPLIT can be used to obtain the concentration of CO and CO2 from the haze. Clustering using K-Means algorithm produces an average of the highest concentration of CO is 11.1471 μg/m3 and CO2 is 88.5882 μg/m3. Generally, pollutants have an average concentration of 0.0487 μg/m3 for CO and 0.3687 μg/m3 for CO2. The pollutant concentration is contained in 45 525 (95%) positions in haze trajectory and the haze spread starting from Riau to Nanggroe Aceh Darussalam.

  3. Haze production in the atmospheres of super-Earths and mini-Neptunes: Insight from PHAZER lab

    Science.gov (United States)

    Horst, Sarah; He, Chao; Kempton, Eliza; Moses, Julianne I.; Vuitton, Veronique; Lewis, Nikole

    2017-10-01

    Super-Earths and mini-Neptunes (~1.2-3 Earth radii) comprise a large fraction of planets in the universe and TESS (Transiting Exoplanet Survey Satellite) will increase the number that are amenable to atmospheric characterization with observatories like JWST (James Webb Space Telescope). These atmospheres should span a large range of temperature and atmospheric composition phase space, with no solar system analogues. Interpretation of current and future atmospheric observations of super-Earths and mini-Neptunes requires additional knowledge about atmospheric chemistry and photochemical haze production. We have experimentally investigated haze formation for H2, H2O, and CO2 dominated atmospheres (100x, 1000x, and 10000x solar metallicity) for a range of temperatures (300 K, 400 K, and 600 K) using the PHAZER (Planetary Haze Research) experiment at Johns Hopkins University. This is a necessary step in understanding which, if any, super-Earths and mini-Neptunes possess the conditions required for efficient production of photochemical haze in their atmospheres. We find that the production rates vary over a few orders of magnitudes with some higher than our nominal Titan experiments. We therefore expect that planets in this temperature and atmospheric composition phase space will exhibit a range of particle concentrations and some may be as hazy as Titan.

  4. 21 CFR 133.106 - Blue cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Blue cheese. 133.106 Section 133.106 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set...

  5. Automated Detection and Classification of Corneal Haze Using Optical Coherence Tomography in Patients With Keratoconus After Cross-Linking.

    Science.gov (United States)

    Dhaini, Ahmad R; Abdul Fattah, Maamoun; El-Oud, Sara Maria; Awwad, Shady T

    2018-03-13

    To evaluate a proposed technology for offering objective grading and mapping of corneal haze as detected by corneal spectral domain optical coherence tomography after corneal cross-linking. This was a retrospective study to evaluate corneal optical coherence tomography images performed on 44 eyes of 44 patients who underwent corneal cross-linking between January 2014 and May 2015, at the American University of Beirut Medical Center. Overall average brightness of the cornea was markedly increased from 43.4% (±6.0) at baseline to 50.2% (±4.4) at 1 month, 47.9% (±4.4) at 3 months, and 46.4% (±5.7) at 6 months with P <0.001, <0.001, and 0.005, respectively. In the anterior stroma, the average brightness significantly increased at 1, 3, and 6 months with values of 54.8% (±3.9), 52.5% (±5.2), and 49.7% (±6.9) with P <0.001, <0.001, and 0.003, respectively. In the mid stroma, the change was clinically significant at 1 and 3 months, whereas in the posterior stroma, it was only significant at 1 month compared with baseline (P = 0.003). Overall, haze was mostly present at 1 month after surgery in all regions, especially in the anterior (32.1%; ±19.2) and mid stromal regions (9.1%; ±18.8), P <0.001 and 0.001, respectively. In contrast, haze in the posterior stromal region peaks at 3 and 6 months after surgery. Anterior stromal haze was the greatest in intensity and area and it was present for a longer time span than mid and posterior stromal haze. At 12 months, the anterior stroma had still more haze intensity than preoperatively. This image-based software can provide objective and valuable quantitative measurements of corneal haze, which may impact clinical decision-making after different corneal surgeries.

  6. 75 FR 65525 - Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division of...

    Science.gov (United States)

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,327] Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division of Wellpoint, Inc., Green Bay, WI; Notice... former workers of Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division...

  7. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Cheng, Zhen; Wang, Shuxiao; Jiang, Jingkun; Fu, Qingyan; Chen, Changhong; Xu, Bingye; Yu, Jianqiao; Fu, Xiao; Hao, Jiming

    2013-01-01

    Haze pollution caused by heavy particulate matter (PM) loading brings significant damage in eastern China. Long-term monitoring from 1980 to 2011 and 1-year field measurement in 2011–2012 are used for investigating visibility variation and the impact of PM pollution for the Yangtze River Delta (YRD). It was found that visual range in the YRD endured a sharp reduction from 13.2 km to 10.5 km during 1980–2000. Average mass extinction efficiency (MEE) for inhalable PM (PM 10 ) is 2.25 m 2 /g in 2001–2011, and extinction coefficient due to PM 10 is 207 Mm −1 , accounting for 36.2% of total extinction coefficient. MEE of PM 2.5 and PM 2.5–10 are 4.08 m 2 /g and 0.58 m 2 /g, respectively. Extinction coefficient due to PM 2.5 and PM 2.5–10 is 198 Mm −1 (39.6%) and 20 Mm −1 (4.0%) in 2011–2012. Maximum daily concentration of PM 10 and PM 2.5 is estimated to be 63 μg/m 3 (RH: 73%) and 38 μg/m 3 (RH: 70%) to keep visual range above 10 km. Fine particulate matter is the key factor for haze pollution improvement in the YRD area. -- Highlights: •Long-term visual range variation and its causes in the Yangtze River Delta are analyzed. •Quantitative contribution of particulate matter to haze pollution is estimated. •Mass extinction efficiency of PM 10 , PM 2.5 , and PM 2.5–10 is estimated. -- The long-term variation of haze pollution in the YRD and its cause is investigated and the quantitative contribution of particulate matter to haze pollution is estimated

  8. The Physics of the Blues

    Science.gov (United States)

    Gibson, J. Murray

    2009-03-01

    In looking at the commonalities between music and science, one sees that the musician's palette is based on the principles of physics. The pitch of a musical note is determined by the frequency of the sound wave. The scales that musicians use to create and play music can be viewed as a set of rules. What makes music interesting is how musicians develop those rules and create ambiguity with them. I will discuss the evolution of western musical scales in this context. As a particular example, ``Blue'' notes are very harmonic notes that are missing from the equal temperament scale. The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting. Live keyboard demonstrations will be used. Beyond any redeeming entertainment value the talk will emphasize the serious connections between science and art in music. Nevertheless tips will be accepted.

  9. Thermoluminescence (TL) of Egyptian Blue

    Energy Technology Data Exchange (ETDEWEB)

    Schvoerer, M.; Delavergne, M.-C.; Chapoulie, R.

    1988-01-01

    Egyptian Blue is a synthesized crystalline pictorial pigment with formula CaCuSi/sub 4/O/sub 10/. It has been used in Egypt and Mesopotamia from the 3rd millenium B.C. A preliminary experiment on a recently synthesized sample showed that this pigment is thermoluminescent after ..beta.. irradiation (/sup 90/Sr). As the signal intensity grows linearly with the administered dose within the temperature range commonly used in TL dating, we have been looking for this phenomenon from archaeological pigments. It was encountered with two samples found in excavation. From its intensity and stability we concluded that Egyptian Blue can be dated using TL. This first and positive result encouraged us to extend the method to other types of mineral pigments synthesized by early man, and to suggest that it may be used for direct dating of ancient murals.

  10. Microscopia confocal cuantitativa del haze corneal y correlación con la ametropía a tratar en cirugía refractiva de superficie

    Directory of Open Access Journals (Sweden)

    Eduardo Rojas Alvarez

    2016-07-01

    Conclusiones: El grosor del haze corneal obtenido en pacientes intervenidos con excímer láser mediante la técnica LASEK es dependiente de la magnitud de la ametropía a tratar, y adquiere su mayor valor a los 3 meses de posoperatorio. La magnitud de la ametropía no es el único factor influyente en la aparición y grosor del haze. En córneas transparentes en el posoperatorio de LASEK siempre existe algún grado de haze corneal morfométrico.

  11. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  12. Galaxies on the Blue Edge

    OpenAIRE

    Cabanela, J. E.; Dickey, J. M.

    2002-01-01

    We have successfully constructed a catalog of HI-rich galaxies selected from the Minnesota Automated Plate Scanner Catalog of the Palomar Observatory Sky Survey (POSS I) based solely on optical criteria. We identify HI-rich candidates by selecting the bluest galaxies at a given apparent magnitude, those galaxies on the "blue edge" of POSS I color-magnitude parameter space. Subsequent 21-cm observations on the upgraded Arecibo 305m dish detected over 50% of the observed candidates. The detecte...

  13. Blue light regulated shade avoidance.

    Science.gov (United States)

    Keuskamp, Diederik H; Keller, Mercedes M; Ballaré, Carlos L; Pierik, Ronald

    2012-04-01

    Most plants grow in dense vegetation with the risk of being out-competed by neighboring plants. These neighbors can be detected not only through the depletion in light quantity that they cause, but also through the change in light quality, which plants perceive using specific photoreceptors. Both the reduction of the red:far-red ratio and the depletion of blue light are signals that induce a set of phenotypic traits, such as shoot elongation and leaf hyponasty, which increase the likelihood of light capture in dense plant stands. This set of phenotypic responses are part of the so called shade avoidance syndrome (SAS). This addendum discusses recent findings on the regulation of the SAS of Arabidopsis thaliana upon blue light depletion. Keller et al. and Keuskamp et al. show that the low blue light attenuation induced shade avoidance response of seedling and rosette-stage A. thaliana plants differ in their hormonal regulation. These studies also show there is a regulatory overlap with the R:FR-regulated SAS.

  14. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    Science.gov (United States)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  15. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  16. High secondary aerosol contribution to particulate pollution during haze events in China

    Science.gov (United States)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  17. The Blue Hook Populations of Massive Globular Clusters

    Science.gov (United States)

    Brown, Thomas

    2006-07-01

    Blue hook stars are a class of hot { 35,000 K} subluminous horizontal branch stars that have been recently discovered using HST ultraviolet images of the globular clusters omega Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium core flash on the white dwarf cooling curve. This "flash mixing" produces an enormous enhancement of the surface helium and carbon abundances, which suppresses the flux in the far ultraviolet. Although flash mixing is more likely to occur in stars that are born with high helium abundances, a high helium abundance, by itself, does not explain the presence of a blue hook population - flash mixing of the envelope is required. We propose ACS ultraviolet {SBC/F150LP and HRC/F250W} observations of the five additional globular clusters for which the presence of blue hook stars is suspected from longer wavelength observations. Like omega Cen and NGC 2808, these five targets are also among the most massive globular clusters, because less massive clusters show no evidence for blue hook stars. Because our targets span 1.5 dex in metallicity, we will be able to test our prediction that flash-mixing should be less drastic in metal-rich blue hook stars. In addition, our observations will test the hypothesis that blue hook stars only form in globular clusters massive enough to retain the helium-enriched ejecta from the first stellar generation. If this hypothesis is correct, then our observations will yield important constraints on the chemical evolution and early formation history in globular clusters, as well as the role of helium self-enrichment in producing blue horizontal branch morphologies and multiple main sequence turnoffs. Finally, our observations will provide new insight into the

  18. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles

    Directory of Open Access Journals (Sweden)

    Solairaj Dhananasekaran

    2016-01-01

    Full Text Available Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB, Bromophenol Blue (BPB and Coomassie Brilliant Blue (CBB by α-chitin nanoparticles (CNP prepared from Penaeus monodon (Fabricius, 1798 shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R2 values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes and pseudo second order kinetics (R2 values were 0.996, 0.999 and 0.996 for MB, BPB and CBB more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents.

  19. Exposure to blue light during lunch break: effects on autonomic arousal and behavioral alertness.

    Science.gov (United States)

    Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro

    2017-07-11

    Exposures to melanopsin-stimulating (melanopic) component-rich blue light enhance arousal level. We examined their effects in office workers. Eight healthy university office workers were exposed to blue and orange lights for 30 min during lunch break on different days. We compared the effects of light color on autonomic arousal level assessed by heart rate variability (HRV) and behavioral alertness by psychomotor vigilance tests (PVT). Heart rate was higher and high-frequency (HF, 0.150.45 Hz) power of HRV was lower during exposure to the blue light than to orange light. No significant difference with light color was observed, however, in any HRV indices during PVT or in PVT performance after light exposure. Exposure to blue light during lunch break, compared with that to orange light, enhances autonomic arousal during exposure, but has no sustained effect on autonomic arousal or behavioral alertness after exposure.

  20. Aircraft Observations into the Characteristics of Biomass Burning Instigated 'Regional Haze' Over the Amazon during the SAMBBA Campaign

    Science.gov (United States)

    Darbyshire, Eoghan

    2013-04-01

    E. J. N. Darbyshire, J. D. Allan, M. Flynn, W. T. Morgan, A. Hodgson, B. T. Johnson, J. M. Haywood, K. Longo, P. Artaxo and H. Coe Aerosols associated with large scale Biomass Burning (BB) impact upon weather and climate at global and regional scales. However, quantitative evaluation of these effects is impeded by i) a limited understanding of BB processes and ii) a lack of quantitative knowledge of precise BB aerosol physiochemical characteristics, thus resulting in large model uncertainties. One region where these uncertainties are especially manifest is the Amazon Basin (AzB). Intense and widespread burning results in high atmospheric loadings of BB aerosol, which over the course of the dry season develops into a so-called 'regional haze'. This cloaks the AzB in a complex and inhomogeneous mix of BB emissions, characterized by large Aerosol Optical Depths (>1), low visibility and poor air quality. This haze has a substantial impact on the radiation budget over the AzB through direct scattering/absorption and indirect cloud microphysics effects. In order to best constrain the model uncertainties, and given the scale of the AzB earth-atmosphere system, an intensive observation campaign by multiple international institutions was instigated in the South American Biomass Burning Analyses (SAMBBA) project. The findings reported here are from the SAMBBA aircraft campaign, conducted during the 2012 dry season using the large UK research aircraft (FAAM BAe-146). The dense (high AOD), persistent haze expected throughout the campaign was only present for the first five or so days, due to removal via washout/transportation associated with large storms. For the remaining period, a haze was present but much reduced in area and intensity (mostly AOD's Cerrado agricultural fires in Mato Grosso. Thus, the ten (of twenty) SAMMBA flights that encountered haze, sampled from a diversity of haze types. The haze was sampled using the standard instrumentation suite available onboard

  1. After Indonesia’s Ratification: The ASEAN Agreement on Transboundary Haze Pollution and Its Effectiveness As a Regional Environmental Governance Tool

    Directory of Open Access Journals (Sweden)

    Daniel Heilmann

    2015-01-01

    Full Text Available On 20 January 2015 Indonesia deposited its instrument of ratification for the ASEAN Agreement on Transboundary Haze Pollution with the ASEAN Secretariat, becoming the last ASEAN member state to join the treaty. Haze pollution poses a serious health threat to the people of Indonesia, Singapore and Malaysia, and for decades haze pollution has been a highly contentious issue among ASEAN member states. This article argues that Indonesia’s ratification will not be an immediate game changer. The mechanisms of the agreement are too weak to contribute much to a reduction of haze pollution in the region. The agreement is designed according to the ASEAN way: a non-binding approach that is based on the principles of state sovereignty and non-intervention. This makes it unlikely that the agreement itself will bring about change, even now that all ASEAN member states have ratified it.

  2. Blue breath holding is benign.

    Science.gov (United States)

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life threatening event' deserve immense understanding and help, and it behoves investigators to exercise extreme care and self criticism in the presentation of new knowledge which may bear upon their management and their morale. PMID:2001115

  3. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  4. Variations in the water vapor distribution and the associated effects on fog and haze events over Xi'an based on Raman lidar data and back trajectories.

    Science.gov (United States)

    Wang, Yufeng; Zhang, Jing; Fu, Qiang; Song, Yuehui; Di, Huige; Li, Bo; Hua, Dengxin

    2017-10-01

    A combination of more than two years of water vapor lidar data with back trajectory analysis using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model was used to study the long-range transport of air masses and the water vapor distribution characteristics and variations over Xi'an, China (34.233° N, 108.911° E), which is a typical city in Northwest China. High-quality profiles of the water vapor density were derived from a multifunction Raman lidar system built in Xi'an, and more than 2000 sets of profiles with >400 nighttime observations from October 2013 to July 2016 were collected and used for statistical and quantitative analyses. The vertical variations in the water vapor content were discussed. A mutation height of the water vapor exists at 2-4 km with a high occurrence rate of ∼60% during the autumn and winter seasons. This height reflects a distinct stratification in the water vapor content. Additionally, the atmospheric water vapor content was mainly concentrated in the lower troposphere, and the proportion of the water vapor content at 0.5-5 km accounted for 80%-90% of the total water vapor below 10 km. Obvious seasonal variations were observed, including large water vapor content during the spring and summer and small content during the autumn and winter. Combined with back trajectory analysis, the results showed that markedly different water vapor transport pathways contribute to seasonal variations in the water vapor content. South and southeast airflows dominated during the summer, with 30% of the 84 trajectories originating from these areas; however, the air masses during the winter originated from the north and local regions (64.3%) and from the northwest (27%). In addition, we discussed variations in the water vapor during fog and haze weather conditions during the winter. A considerable enhancement in the mean water vapor density at 0.5-3 km exhibited a clear positive correlation (correlation coefficient >0.8) with

  5. Effects of post-session administration of methylene blue on fear extinction and contextual memory in adults with claustrophobia

    NARCIS (Netherlands)

    Telch, M.J.; Bruchey, A.K.; Rosenfield, D.; Cobb, A.R.; Smits, J.A.J.; Pahl, S.; Gonzalez-Lima, F.

    2014-01-01

    Administering methylene blue, a memory-enhancing agent, after successful exposure therapy promoted the retention of fear extinction in claustrophobic patients, but clinicians should carefully consider what level of fear reduction was achieved in session to avoid harmful

  6. Effects of Post-Session Administration of Methylene Blue on Fear Extinction and Contextual Memory in Adults With Claustrophobia

    NARCIS (Netherlands)

    Telch, M.J.; Bruchey, A.K.; Rosenfield, D.; Cobb, A.R.; Smits, J.A.J.; Pahl, S.; Gonzalez-Lima, F.

    2014-01-01

    Administering methylene blue, a memory-enhancing agent, after successful exposure therapy promoted the retention of fear extinction in claustrophobic patients, but clinicians should carefully consider what level of fear reduction was achieved in session to avoid harmful

  7. EARLY DOWNHOME BLUES IN AMERICAN CULTURE

    OpenAIRE

    Muhni, Djuhertati Imam

    2012-01-01

    People's traditional music and the way people behave when performing it are symbolic expressions of broad cultural pattern and social organization . In other words music is a part of men's learned heritage . Hence this study is about music in a given culture, specifically blues in American culture . Allen Trachtenberg stated that blues songs are inheritance from the American past for negotiating black people's lives as Americans . In the experience of blues the African-Americans find themselv...

  8. The Red-Blue Transportation Problem

    OpenAIRE

    Vancroonenburg, Wim; Della Croce, Federico; Goossens, Dries; Spieksma, Frits

    2014-01-01

    This paper considers the Red-Blue Transportation Problem (Red-Blue TP), a generalization of the transportation problem where supply nodes are partitioned into two sets and so-called exclusionary constraints are imposed. We encountered a special case of this problem in a hospital context, where patients need to be assigned to rooms. We establish the problem's complexity, and we compare two integer programming formulations. Furthermore, a maximization variant of Red-Blue TP is presented, for...

  9. Measurement of fog and haze extinction characteristics and availability evaluation of free space optical link under the sea surface environment.

    Science.gov (United States)

    Wu, Xiaojun; Wang, Hongxing; Song, Bo

    2015-02-10

    Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.

  10. Implications of the regional haze rule on renewable and wind energy development on native American lands in the west

    International Nuclear Information System (INIS)

    Acker, T.L.; Auberle, W.M.; Duque, E.P.N.; Jeffery, W.D.; LaRoche, D.R.; Masayesva, V.; Smith, D.H.

    2003-01-01

    A study conducted at Northern Arizona University investigated the barriers and opportunities facing Native American tribes in the West when considering development of their renewable energy resources in order to reduce regional haze. This article summarizes some of the findings of that work with special attention to wind energy. Background information is presented concerning the Regional Haze Rule and the Western Regional Air Partnership, and some of the circumstances surrounding development of tribal energy resources. An assessment of tribal energy issues revealed that many Native American tribes are interested in developing their renewable resources. However, this development should occur within the context of maintaining and strengthening their cultural, social, economic and political integrity. Furthermore, it is shown that Native American lands possess an abundant wind resource. A list of potential actions in which tribes may participate prior to or during development of their wind or renewable resources is provided. (author)

  11. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

    Science.gov (United States)

    Pei, Lin; Yan, Zhongwei; Sun, Zhaobin; Miao, Shiguang; Yao, Yao

    2018-03-01

    Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE). While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM) system, which is then found to be associated with an anomalous warm, high-pressure system in the middle-lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900-2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.

  12. Variable blue straggler stars in NGC 5466

    International Nuclear Information System (INIS)

    Harris, H.C.; Mateo, M.; Olszewski, E.W.; Nemec, J.M.

    1990-01-01

    Nine variable blue stragglers have been found in the globular cluster NGC 5466. The six dwarf Cepheids in this cluster coexist in the instability strip with other nonvariable stars. The three eclipsing binaries are among the hottest of the blue stragglers. The hypothesis is discussed that all blue stragglers in this cluster have undergone mass transfer in close binaries. Under this hypothesis, rotation and spin-down play important roles in controlling the evolution of blue stragglers in old clusters and in affecting some of their observational properties. 14 refs

  13. Morphological responses of wheat to blue light

    Science.gov (United States)

    Barnes, C.; Bugbee, B.

    1992-01-01

    Blue light significantly increased tillering in wheat (Triticum aestivum L.) plants grown at the same photosynthetic photon flux (PPF). Plants were grown under two levels of blue light (400-500 nm) in a controlled environment with continuous irradiation. Plants received either 50 micromoles m-2 s-1 of blue light or 2 micromoles m-2 s-1 blue light from filtered metal halide lamps at a total irradiance of 200 micromoles m-2 s-1 PPF (400-700 nm). Plants tillered an average of 25% more under the higher level of blue light. Blue light also caused a small, but consistent, increase in main culm development, measured as Haun stage. Leaf length was reduced by higher levels of blue light, while plant dry-mass was not significantly affected by blue light. Applying the principle of equivalent light action, the results suggest that tillering and leaf elongation are mediated by the blue-UV light receptor(s) because phytochrome photoequilibrium for each treatment were nearly identical.

  14. Why Blue-Collar Blacks Help Less

    OpenAIRE

    Smith, Sandra Susan; Young, Kara Alexis

    2013-01-01

    Why are blue-collar blacks less likely to help jobseekers than jobholders from other ethnoracial groups or even than more affluent blacks? Drawing from in-depth, semi-structured interviews with 97 black and Latino workers at one large, public sector employer, we find that blue-collar black workers both helped less proactively and rejected more requests for assistance than did blue-collar Latino and white-collar black workers. We attribute blue-collar blacks’ more passive engagement to their...

  15. Characteristics of Turbulent Transfer during Episodes of Heavy Haze Pollution in Beijing in Winter 2016/17

    Science.gov (United States)

    Ren, Yan; Zheng, Shuwen; Wei, Wei; Wu, Bingui; Zhang, Hongsheng; Cai, Xuhui; Song, Yu

    2018-02-01

    We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University's atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/ L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /| θ *| was related to z/ L, roughly following a -1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a -2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.

  16. Spatial-temporal characteristics of haze and vertical distribution of aerosols over the Yangtze River Delta of China.

    Science.gov (United States)

    Cao, Yueqian; Zhang, Wu; Wang, Wenjing

    2018-04-01

    Variation of haze events occurred in the Yangtze River Delta (YRD) of China, the characteristics of meteorological elements and the vertical distribution of aerosols during haze episodes were analyzed by utilizing data of ground observation, radiosonde and CALIPSO. The results illustrate that the frequency of haze events between 1981 and 2010 peaked in winter but bottomed out in summer and decreased from north to south in the YRD region, reaching at the lowest point in "low frequency center" - Shanghai. When haze happened, the most seriously affected area was 2-4km above the ground and the concentrated range of total backscattering coefficient (TBC) that decreased with altitude was 0.8×10 -3 -2.5×10 -3 km -1 ·sr -1 . Particulate depolarization ratio (PDR) was less than 40% in a large part and 93% aerosols over the YRD area were regular particles, while the irregular ones concentrated on 2km above the surface and the irregularity rose up but the diversity diminished when altitude increased. Color ratio (CR) was lower than 1.2 mostly at all altitudes and distributed asymmetrically above the ground. Nearly 80% aerosols under 10km were fine particles (CR1.0) clustered at 2-4km. Large particles (CR>1.2) aggregated in lower troposphere massively yet relatively smaller ones gathered in middle and upper troposphere. In the YRD region, aerosols with more powerful capabilities were wider and less regular than the ones of Northwestern China. Copyright © 2017. Published by Elsevier B.V.

  17. Efficiency of enzymatic and other alternative clarification and fining treatments on turbidity and haze in cherry juice

    DEFF Research Database (Denmark)

    Meyer, Anne Boye Strunge; Köser, C.; Adler-Nissen, Jens

    2001-01-01

    Several alternative strategies were examined for improving conventional juice fining procedures for cherry juice clarification and fining in laboratory-scale experiments: Centrifugation of freshly pressed juice from 1000g to 35000g induced decreased turbidity according to a steep, negative power...... function. Individual and interactive effects on turbidity and haze formation in precentrifuged and uncentrifuged cherry juice of treatments with pectinase, acid protease, bromelain, gallic acid, and gelatin-silica sol were investigated in a factorial experimental design with 32 different parameter...

  18. The Use of Social Media Amid Government, Mass Media, and Non Government Organisations Responsibilities Due to Haze Disaster

    OpenAIRE

    Christantyawati, Nevrettia

    2017-01-01

     The haze disaster that have been devastating many regions in Indonesia from July to October 2015, was stated as national tragedy by the Government. As a consequence, there were many cases of public health deterioration.There were many efforts done to tackle this crisis due to provision of public information. In a contrary, there were also many angry public statements and dissatisfaction.This paper will scrutinize the content of using social media, particularly twitter, as various channels an...

  19. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  20. DOD and Coast Guard: Actions Needed to Increase Oversight and Management Information on Hazing Incidents Involving Servicemembers

    Science.gov (United States)

    2016-02-01

    of passage can instill esprit de corps and loyalty and are included in many traditions throughout DOD and the Coast Guard. However, at times these...policies also contain guidance, such as responsibilities for policy implementation and direction on avoiding hazing in service customs and traditions...of passage can be effective tools to instill esprit de corps and loyalty among servicemembers and are included in many traditions throughout the

  1. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning.

    Science.gov (United States)

    Kim Oanh, Nguyen Thi; Leelasakultum, Ketsiri

    2011-05-01

    This study investigated the main causes of haze episodes in the northwestern Thailand to provide early warning and prediction. In an absence of emission input data required for chemical transport modeling to predict the haze, the climatological approach in combination with statistical analysis was used. An automatic meteorological classification scheme was developed using regional meteorological station data of 8years (2001-2008) which classified the prevailing synoptic patterns over Northern Thailand into 4 patterns. Pattern 2, occurring with high frequency in March, was found to associate with the highest levels of 24h PM(10) in Chiangmai, the largest city in Northern Thailand. Typical features of this pattern were the dominance of thermal lows over India, Western China and Northern Thailand with hot, dry and stagnant air in Northern Thailand. March 2007, the month with the most severe haze episode in Chiangmai, was found to have a high frequency of occurrence of pattern 2 coupled with the highest emission intensities from biomass open burning. Backward trajectories showed that, on haze episode days, air masses passed over the region of dense biomass fire hotspots before arriving at Chiangmai. A stepwise regression model was developed to predict 24h PM(10) for days of meteorology pattern 2 using February-April data of 2007-2009 and tested with 2004-2010 data. The model performed satisfactorily for the model development dataset (R(2)=87%) and test dataset (R(2)=81%), which appeared to be superior over a simple persistence regression of 24h PM(10) (R(2)=76%). Our developed model had an accuracy over 90% for the categorical forecast of PM(10)>120μg/m(3). The episode warning procedure would identify synoptic pattern 2 and predict 24h PM(10) in Chiangmai 24h in advance. This approach would be applicable for air pollution episode management in other areas with complex terrain where similar conditions exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  3. An observational study of atmospheric ice nuclei number concentration during three fog-haze weather periods in Shenyang, northeastern China

    Science.gov (United States)

    Li, Liguang; Zhou, Deping; Wang, Yangfeng; Hong, Ye; Cui, Jin; Jiang, Peng

    2017-05-01

    Characteristics of ice nuclei (IN) number concentrations during three fog-haze weather periods from November 2010 to January 2012 in Shenyang were presented in this paper. A static diffusion chamber was used and sampling of IN aerosols was conducted using a membrane filter method. Sampling membrane filter processing conditions were unified in the activation temperature at - 15 °C under conditions of 20% ice supersaturation and 3% water supersaturation. The variations of natural IN number concentrations in different weather conditions were investigated. The relations between the meteorological factors and the IN number concentrations were analyzed, and relationships between pollutants and IN number concentrations were also studied. The results showed that mean IN number concentration were 38.68 L- 1 at - 20 °C in Shenyang, for all measurements. Mean IN number concentrations are higher during haze days (55.92 L- 1 at - 20 °C) and lower after rain. Of all meteorological factors, wind speed, boundary stability, and airflow direction appeared to influence IN number concentrations. IN number concentrations were positively correlated with particulate matters PM1, PM2.5, and PM10 during haze weather.

  4. [PM2.5 pollution and aerosol optical properties in fog and haze days during autumn and winter in Beijing area].

    Science.gov (United States)

    Zhao, Xiu-Juan; Pu, Wei-Wei; Meng, Wei; Ma, Zhi-Qiang; Dong, Fan; He, Di

    2013-02-01

    A study on the PM2.5 pollution and aerosol optical properties in haze-fog days was carried out from Sep. 1st to Dec. 7th, 2011 in Beijing area by using PM2.5 concentration, aerosol scattering coefficient (sigma sca) and absorption coefficient (sigma abs) measured under urban and rural environment. The effect of weather condition on the PM25 pollution and aerosol optical properties was discussed as well. The results showed that the PM2.5 concentration, sigma sca and sigma abs, were evidently higher in haze-fog days than those in non-haze-fog days. The average PM2.5 concentrations in haze-fog days with values of 97.6 microg m-3 and 64.4 microg.m-3 were as 3.3 and 4.8 times as those in non-haze-fog days at urban and rural stations, respectively. The higher PM2.5 concentration in urban area resulted in the more frequent fog and haze phenomena than that in rural area. The PM25 concentration, sigma sca, and sigma abs were significantly higher in urban area than that in rural area in mist days, while relatively close in mist-haze days. This difference suggested that the effect of regional transport of pollution was relatively evident in mist-haze days but weak in mist day. In fog days the sigma sca showed no evident difference between urban and rural area, and was the highest in all types of fog and haze weather. The scattering property of aerosol was the strongest in fog days. The different weather conditions resulted in various characteristics of spatial distribution of PM2.5 concentration, sigma sca and sigma abs, as well as the strength of PM2,5 pollution and aerosol extinction. The pollutants transported by the strong southwest wind above the boundary layer and subsided in the boundary layer companying with the local accumulation of pollutants due to the weak diffusion resulted in the most serious haze-fog episode with the strongest PM2.5 pollution and aerosol extinction.

  5. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment.

    Science.gov (United States)

    Qiao, Ting; Zhao, Mengfei; Xiu, Guangli; Yu, Jianzhen

    2016-07-01

    A year-long simultaneous observation of PM1 and PM2.5 were conducted at ECUST campus in Shanghai, the compositions were analyzed and compared. Results showed that PM2.5 was dominated by PM1 on clear days while the contribution of PM1-2.5 to PM2.5 increased on haze days, indicating that PM2.5 should be given priority to characterize or predict haze pollution. On haze days, accumulation of organic carbon (OC), elemental carbon (EC) and primary organic carbon (POC) in PM1-2.5 was faster than that in PM1. Humic-like substances carbon (Hulis-C) in both PM2.5 and PM1 formed faster than water soluble organic carbon (WSOC) on haze days, hence Hulis-C/WSOC increased with the intensification of haze pollution. In terms of water soluble ions, NO3(-)/SO4(2-) in PM1 increased with the aggravation of haze pollution, implying that mobile sources dominated on haze days, so is nitrogen oxidation ratio (NOR). Liquid water content (LWC) in both PM1 and PM2.5 had positive correlations with relative humidity (RH) but negative correlations with visibility, implying that hygroscopic growth might be a factor for visibility impairment, especially LWC in PM1. By comparison with multi-linear equations of LWC in PM1 and PM2.5, NO3(-) exerted a higher influence on hygroscopicity of PM1 than PM2.5, while RH, WSOC, SO4(2-) and NH4(+) had higher effects on PM2.5, especially WSOC. Source apportionment of PM2.5 was also investigated to provide reference for policy making. Cluster analysis by HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model showed that PM2.5 originated from marine aerosols, middle-scale transportation and large-scale transportation. Furthermore, PM2.5 on haze days was dominated by middle-scale transportation. In line with source apportionment by positive matrix factorization (PMF) model, PM2.5 was attributed to secondary inorganics, aged sea salt, combustion emissions, hygroscopic growth and secondary organics. Secondary formation was the principle source of

  6. Prehistory of the Little Blue River Valley, Western Missouri: Archaeological Investigations at Blue Springs Lake.

    Science.gov (United States)

    1989-01-01

    Lake project. The report discusses the geomorphology and vegetation of the Little Blue River valley, Late Quaternary bioclimatic change in Western...54 Aquatic Communities ............................... 58 IV. LATE QUATERNARY BIOCLIMATIC CHANGE IN WESTERN MISSOURI by Rolfe D...City District is presently constructing Blue Springs Lake on the East Fork of the Little Blue River in Jackson County, Missouri. The location of the

  7. Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition

    Science.gov (United States)

    Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.

    2018-02-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the

  8. Recommended metric for tracking visibility progress in the regional haze rule.

    Science.gov (United States)

    Gantt, Brett; Beaver, Melinda; Timin, Brian; Lorang, Phil

    2018-01-08

    For many Class I areas (national parks and wilderness areas with special air quality protections) in the western U.S., wildfire smoke and dust events can have a large impact on visibility. Currently, the Environmental Protection Agency's (EPA) 1999 Regional Haze Rule uses the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 years at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA as finalized a requirement to track visibility on the 20% most anthropogenically-impaired days rather than the haziest days. To support the implementation of this requirement, the EPA has also proposed (but not finalized) a specific recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a "delta deciview" approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea-salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000-2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the Northern Rockies and southwest U.S. Implications Changing the approach for tracking visibility in Regional Haze Rule would

  9. The O-(Al2) centre in topaz and its relation to the blue colour

    Science.gov (United States)

    da Silva, D. N.; Guedes, K. J.; Pinheiro, M. V. B.; Schweizer, S.; Spaeth, J.-M.; Krambrock, K.

    2005-01-01

    Colour-enhanced blue topaz is one of the most traded gemstones. Naturally very rare, mostly topaz is irradiated by neutrons, electrons, gamma radiation and combinations of them. The colour centre is still not identified. It was speculated that it is related to a Si dangling bond defect occupied by two electrons with spin S = 0. We investigated natural blue as well as colourless topaz from different regions in Brazil by electron paramagnetic resonance (EPR), optical absorption and Raman spectroscopy. The results are compared with neutron and gamma-irradiated blue topaz. By EPR two paramagnetic defects are identified in all samples: (i) the peroxy radical (O2-) measured at room temperature and (ii) an (O-) hole centre interacting with two equivalent Al neighbours measured at low temperature. Blue samples show an absorption band centred at 620 nm which is responsible for the blue colour. From our investigation we find that the O-(Al2) hole centre has nearly the same thermal stability as the optical absorption band. However, we cannot say whether it is responsible for the absorption band and the blue colour. We suggest that at least it plays a dominant role in the stabilization of the blue colour.

  10. [Research on degradation of methylene blue by coal bottom ash-microwave irradiation method].

    Science.gov (United States)

    Wu, Shi-Wei; Li, Na; Li, Guang-Zhe; Li, Guo-De

    2010-05-01

    Coal bottom ash is rich in metals and transition metals, and with microwave irradiation these metals can effectively degradate organic matter. Methylene blue degradation by coal bottom ash-microwave irradiation mainly through hydroxyl radicals to degrade organic matter, and metals and rare metals in bottom ash can be used as a catalyst for deep oxidation of organic matter, can reduce processing costs, and reduce environmental pollution. In the present paper the main parameters including the amount of coal bottom ash, H2O2 dosage and time of microwave irradiation were investigated. The UV-visible spectra of methylene blue were determined. The results show that: under coal bottom ash and H2O2 microwave condition the degeneration rate of methylene blue was almost 100%. The dosage of coal ash can accelerate the reaction process, speeding up the degradation of methylene blue. The increase of H2O2 may provide more * OH and speed up the reaction process, but when up to a certain amount, the influence is weakened. The lengthening of microwave time may enhance the reaction temperature, and urge the methylene blue to degrade completely. For 0.125 g x L(-1) of methylene blue, by adding 1.0 g coal bottom ash, 5 mL H2O2 and under mesotherm microwave temperature for 4 min, the methylene blue can be all degradated.

  11. Blue rubber bleb nevus syndrome

    Directory of Open Access Journals (Sweden)

    Rodrigues Daleth

    2000-01-01

    Full Text Available The blue rubber nevus syndrome consists of multiple venous malformations in the skin and gastrointestinal tract associated with intestinal hemorrhage and iron deficiency anemia. Other organs may be involved. The causes of this syndrome are unknown. Its most common presentation is in the form of sporadic cases, but dominant autosomal inheritance has been described. It is a condition that affects both sexes equally, and its occurrence is rare in the black race. We present a case of this syndrome diagnosed in a 11-year-old patient. He had severe anemia and a venous swelling on the trunk. Similar lesions were found in the stomach, bowel, and on his foot. We emphasize the main clinical aspects: intestine, eyes, nasopharynx, parotids, lungs, liver, spleen, heart, brain, pleura, peritoneum, pericardium, skeletal muscles, bladder, and penis lesions, systemic complications that may occur to these patients which are thrombosis and calcification, as well as consumptive coagulopathy and thrombocytopenia that may occur within the nevi.

  12. Effect of a combination of green and blue monochromatic light on broiler immune response.

    Science.gov (United States)

    Zhang, Ziqiang; Cao, Jing; Wang, Zixu; Dong, Yulan; Chen, Yaoxing

    2014-09-05

    Our previous study suggested that green light or blue light would enhance the broiler immune response; this study was conducted to evaluate whether a combination of green and blue monochromatic light would result in improved immune response. A total of 192 Arbor Acre male broilers were exposed to white light, red light, green light, and blue light from 0 to 26 days. From 27 to 49 days, half of the broilers in green light and blue light were switched to blue light (G-B) and green light (B-G), respectively. The levels of anti-Newcastle disease virus (NDV) and anti-bovine serum albumin (BSA) IgG in G-B group were elevated by 11.9-40.3% and 17.4-48.7%, respectively, compared to single monochromatic lights (Plight groups. However, the serum TNF-α concentration in the G-B group was reduced by 3.64-40.5% compared to other groups, and no significant difference was found between the G-B and B-G groups in any type of detection index at the end of the experiment. These results suggested that the combination of G-B and B-G monochromatic light could effectively enhance the antibody titer, the proliferation index of lymphocytes and alleviate the stress response in broilers. Therefore, the combination of green and blue monochromatic light can improve the immune function of broilers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  14. Blue jay attacks and consumes cedar waxwing

    Science.gov (United States)

    Daniel Saenz; Joshua B. Pierce

    2009-01-01

    Blue Jays (Cyanocitta cristata) are known to be common predators on bird nests (Wilcove 1985, Picman and Schriml 1994). In addition to predation on eggs and nestlings, Blue Jays occasionally prey on fledgling and adult birds (Johnson and Johnson 1976, Dubowy 1985). A majority of reports involve predation on House Sparrows (Passer domesticus) and other small birds (...

  15. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution.

    Science.gov (United States)

    Li, Hui; Ma, Yongliang; Duan, Fengkui; He, Kebin; Zhu, Lidan; Huang, Tao; Kimoto, Takashi; Ma, Xiaoxuan; Ma, Tao; Xu, Lili; Xu, Beiyao; Yang, Shuo; Ye, Siqi; Sun, Zhenli; An, Jiutao; Zhang, Zhaolu

    2017-10-01

    Heavy haze pollution occurs frequently in northern China, most critically in the Beijing-Tianjin-Hebei area (BTH). Zibo, an industrial city located in Shandong province, is often listed as one of the top ten most polluted cities in China, particularly in winter. However, no studies of haze in Zibo have been conducted, which limits the understanding of the source and formation of haze pollution in this area, as well as mutual effects with the BTH area. We carried out online and continuous integrated field observation of particulate matter in winter, from 11 to 25 January 2015. SO 4 2- , NO 3 - , and NH 4 + (SIA) and organics were the main constituents of PM 2.5 , contributing 59.4% and 33.6%, respectively. With the increasing severity of pollution, the contribution of SIA increased while that of organics decreased. Meteorological conditions play an important role in haze formation; high relative humidity (RH) and low wind speed increased both the accumulation of pollutants and the secondary transition from gas precursors (gas-particle phase partitioning). Since RH and the presence of O 3 can indicate heterogeneous and photochemistry processes, respectively, we carried out correlation analysis and linear regression to identify their relative importance to the three main secondary species (sulfate, nitrate, and secondary organic carbon (SOC)). We found that the impact of RH is in the order of SO 4 2-  > NO 3 -  > SOC, while the impact of O 3 is reversed, in the order of SOC > NO 3 -  > SO 4 2- , indicating different effect of these factors on the secondary formation of main species in winter. Cluster analysis of backward trajectories showed that, during the observation period, six directional sources of air masses were identified, and more than 90% came from highly industrialized areas, indicating that regional transport from industrialized areas aggravates the haze pollution in Zibo. Inter-regional joint prevention and control is necessary to prevent further

  16. Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity.

    Science.gov (United States)

    Höytö, Anne; Herrala, Mikko; Luukkonen, Jukka; Juutilainen, Jukka; Naarala, Jonne

    2017-06-01

    We tested the hypothesis that the effects of 50 Hz magnetic fields (MFs) on superoxide levels and genotoxicity depend on the presence of blue light. Human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 100 μT MF with or without non-phototoxic level of blue light for 24 h. We also studied whether these treatments alter responses to menadione, an agent that induces mitochondrial superoxide (O 2 • - ) production and DNA damage. Micronuclei, proliferation, viability, cytosolic and mitochondrial O 2 • - levels were assessed. MF (without blue light) increased cytosolic O 2 • - production and blue light suppressed this effect. Mitochondrial O 2 • - production was reduced by both MF and blue light, but these effects were not additive. Micronucleus frequency was not affected by blue light or MF alone, but blue light (significantly when combined with MF) enhanced menadione-induced micronuclei. The original simple hypothesis (blue light is needed for MF effects) was not supported, but interaction of MF and blue light was nevertheless observed. The results are consistent with MF effects on light-independent radical reactions.

  17. Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications

    Science.gov (United States)

    Zhang, Haijie; Chen, Shilu; Zhong, Jie; Zhang, Shaowen; Zhang, Yunhong; Zhang, Xiuhui; Li, Zesheng; Zeng, Xiao Cheng

    2018-03-01

    Sulfate is one of the most important components in the aerosol due to its key role in air pollution and global climate change. Recent work has suggested that reactive nitrogen chemistry in aqueous water can explain the missing source of sulfate in the aqueous water. Herein, we have mapped out the energy profile of the oxidization process of SO2 leading from NO2 and two feasible three-step mechanisms have been proposed. For the oxidation of HOSO2- and HSO3- by the dissolved NO2 in weakly acidic and neutral aerosol (pH ≤ 7), the main contribution to the missing sulfate production comes from the oxidation of HOSO2-. The whole process is a self-sustaining process. For the oxidation of SO32- in alkaline aerosol (pH > 7), the third step - decomposition step of H2O or hydrolysis of SO3 step which are two parallel processes are the rate-limiting steps. The present results are of avail to better understand the missing source of sulfate in the aerosol and hence may lead to better science-based solutions for resolving the severe haze problems in China.

  18. Ultra-Short-Term Forecast of Photovoltaic Output Power under Fog and Haze Weather

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-02-01

    Full Text Available Fog and haze (F-H weather has been occurring frequently in China since 2012, which affects the output power of photovoltaic (PV generation dramatically by directly weakening solar irradiance and aggravating dust deposition on PV panels. The ultra-short-term forecast method presented in this study would help to fully reflect the dual effects of F-H on PV output power. Aiming at the weakening effect on solar irradiance, estimation models of atmospheric aerosol optical depth (AOD based on particle matter (PM concentration were established with machine learning (ML method, and the total irradiance received by PV panels was calculated based on simplified REST2 model. Aiming at the aggravating effect on dust deposition on PV panels, sample set of “cumulative PM concentration—efficiency reduction” was constructed through special measurement experiments, then the efficiency reduction under certain dust deposition state was estimated with similar-day choosing method. Based on photoelectric conversion model, PM concentration prediction and weather forecast information, ultra-short-term forecast of PV output power was realized. Experimental results proved the validity and feasibility of the presented forecast method.

  19. The haze of the Amazon region observed by airborne lidar during SAMBBA

    Science.gov (United States)

    Marenco, Franco; Turnbull, Kate; Johnson, Ben; Haywood, Jim

    2013-04-01

    The South AMerican Biomass Burning Analysis (SAMBBA) campaign took place in Brazil in September and October 2012, involving the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. SAMBBA was aimed at investigating the properties of aerosols over South America during the dry season, when most of the deforestation and agricultural fires occur. Twenty research flights were carried out, and included the following aerosol measurements: physical, optical and chemical properties, as well as vertical distribution and mapping. Moreover, measurements of gas phase chemistry and fire radiative power were also carried out. This presentation focuses mainly on results obtained with the on-board lidar, putting them into context with data from other sources such as optical particle counters, dropsondes, and ground-based remote sensing. An optically thick haze layer was observed during most flights. This layer tended to be elevated, often at an altitude of 1-3 km, with multiple thinner layers all the way up to 7 km. This atmospheric structure is believed to be the result of the interaction between smoke injected in the boundary layer and deep convective clouds often formed in the afternoon hours, with the potential of lifting aerosols quite high into the free troposphere. Lidar observations also reveal smoke plumes originated from single fires, and allow to characterise them in terms of size and plume rise. Good cases of pyrocumulus are also revealed, rising some times from the ground up to altitudes of 6 km.

  20. The Optimal Dispatch of a Power System Containing Virtual Power Plants under Fog and Haze Weather

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2016-01-01

    Full Text Available With the growing influence of fog and haze (F-H weather and the rapid development of distributed energy resources (DERs and smart grids, the concept of the virtual power plant (VPP employed in this study would help to solve the dispatch problem caused by multiple DERs connected to the power grid. The effects of F-H weather on photovoltaic output forecast, load forecast and power system dispatch are discussed according to real case data. The wavelet neural network (WNN model was employed to predict photovoltaic output and load, considering F-H weather, based on the idea of “similar days of F-H”. The multi-objective optimal dispatch model of a power system adopted in this paper contains several VPPs and conventional power plants, under F-H weather, and the mixed integer linear programming (MILP and the Yalmip toolbox of MATLAB were adopted to solve the dispatch model. The analysis of the results from a case study proves the validity and feasibility of the model and the algorithms.

  1. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China

    Science.gov (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.

    2017-12-01

    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  2. Effects of post-session administration of methylene blue on fear extinction and contextual memory in adults with claustrophobia.

    Science.gov (United States)

    Telch, Michael J; Bruchey, Aleksandra K; Rosenfield, David; Cobb, Adam R; Smits, Jasper; Pahl, Sandra; Gonzalez-Lima, F

    2014-10-01

    Preclinical studies have shown that low-dose methylene blue increases mitochondrial cytochrome oxidase activity in the brain and improves memory retention after learning tasks, including fear extinction. The authors report on the first controlled experiment to examine the memory-enhancing effects of posttraining methylene blue administration on retention of fear extinction and contextual memory following fear extinction training. Adult participants displaying marked claustrophobic fear were randomly assigned to double-blind administration of 260 mg of methylene blue (N=23) or administration of placebo (N=19) immediately following six 5-minute extinction trials in an enclosed chamber. Retesting occurred 1 month later to assess fear renewal as indexed by peak fear during exposure to a nontraining chamber, with the prediction that the effects of methylene blue would vary as a function of fear reduction achieved during extinction training. Incidental contextual memory was assessed 1 and 30 days after training to assess the cognitive-enhancing effects of methylene blue independent of its effects on fear attenuation. Consistent with predictions, participants displaying low end fear posttraining showed significantly less fear at the 1-month follow-up if they received methylene blue posttraining compared with placebo. In contrast, participants displaying moderate to high levels of posttraining fear tended to fare worse at the follow-up if they received methylene blue posttraining. Methylene blue's enhancement of contextual memory was unrelated to initial or posttraining claustrophobic fear. Methylene blue enhances memory and the retention of fear extinction when administered after a successful exposure session but may have a deleterious effect on extinction when administered after an unsuccessful exposure session.

  3. Phytotoxicity of methylene blue to rice seedlings

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2015-07-01

    Full Text Available Methylene blue is widely used in various industrial branches. Due to insufficient treatment, its occurrence in wastewater is frequently detected, which may result in serious environment problems to aquatic organisms. Hydroponic experiments were conducted with rice seedlings (Oryza sativa L. cv. XZX 45 exposed to methylene blue to determine the effective concentration using relative growth rate and water use efficiency as response endpoints. Results showed that acute toxicity of methylene blue to rice seedlings was evident. Although a linear decrease in relative growth rate and water use efficiency was observed in rice seedlings with increasing methylene blue concentrations, relative growth rate of rice seedlings was more sensitive to change of methylene blue than water use efficiency. Using non-linear regression, EC-48 h values for 10%, 20% and 50% inhibition of the relative growth rate were estimated to be 1.54, 3.22 and 10.13 mg MB/L for rice seedlings exposed to methylene blue, respectively, while smaller EC were obtained for 96 h exposure. In conclusion, the toxic response of young rice seedlings to methylene blue is obvious and inhibitory effects are highly dependent on response endpoints and the duration of exposure period.

  4. Infiltrating giant cellular blue naevus.

    Science.gov (United States)

    Bittencourt, A L; Monteiro, D A; De Pretto, O J

    2007-01-01

    Cellular blue naevi (CBN) measure 1-2 cm in diameter and affect the dermis, occasionally extending into the subcutaneous fat. The case of a 14-year-old boy with a giant CBN (GCBN) involving the right half of the face, the jugal mucosa and the lower eyelid with a tumour that had infiltrated the bone and the maxillary and ethmoidal sinuses is reported. Biopsies were taken from the skin, jugal mucosa and maxillary sinus. The following markers were used in the immunohistochemical evaluation: CD34, CD56, HMB-45, anti-S100, A-103, Melan A and MIB-1. The biopsy specimens showed a biphasic pattern affecting the lower dermis, subcutaneous fat, skeletal muscle, bone, jugal mucosa and maxillary sinus, but there was no histological evidence of malignancy. The tumour cells were CD34-, CD56-, HMB45+, anti-S100+ and A-103+. Melan A was focally expressed. No positive MIB-1 cells were identified. The present case shows that GCBN may infiltrate deeply, with no evidence of malignancy.

  5. Intravenous methylene blue venography during laparoscopic paediatric varicocelectomy.

    Science.gov (United States)

    Keene, David J B; Cervellione, Raimondo M

    2014-02-01

    One of the challenges of varicocele surgery is to prevent hydrocele formation while still ensuring success. Methylene blue has been used to identify and preserve lymphatic vessels, and venography has been a standard component of sclerotherapy and percutaneous retrograde techniques. The authors have combined both approaches during laparoscopic varicocelectomy and report their experience. A prospective study was performed of adolescents with idiopathic varicocele and spontaneous venous reflux on Doppler ultrasound. A pampiniform plexus vein was cannulated via scrotal incision before creating the pneumoperitoneum. A mixture of methylene blue and Omnipaque™ was injected into the pampiniform plexus with fluoroscopic screening. Laparoscopic selective vein ligation was then performed using 5mm endoscopic clips or a bipolar vessel sealing device such as Plasmakinetic™ or Ligasure™. Venography was repeated to confirm complete ligation of the internal testicular veins. Patients were followed-up at 3, 6, and 9 months post-surgery with clinical examination and Doppler ultrasound. Data are presented as median (interquartile range). Twenty-four patients underwent laparoscopic selective vein ligation with venography and methylene blue injection. The median age was 14.7 (14.6-15.7) years. The recurrence rate was 12%. No patients developed a hydrocele. The length of surgery was 120 (100-126) minutes. Intra-operative intra-venous methylene blue injection and venography helps to identify venous duplications of the internal testicular veins and enhances the success rate of laparoscopic selective vein ligation. This approach prevents hydrocele formation but has a 12% recurrence rate, which appears to be higher than some techniques described in the literature. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Portland's blue bike lanes : improved safety through enhanced visibility

    Science.gov (United States)

    1999-07-01

    The City of Portland has over 100 miles of bicycle lanes; most were installed within the last decade. As a result of this and other factors, many more residents are riding bicycles for all types of trips. However, motorists are often unaware that the...

  7. Establishment of blue mussel beds to enhance fish habitats

    DEFF Research Database (Denmark)

    Kristensen, Louise Dahl; Stenberg, Claus; Støttrup, Josianne

    2015-01-01

    Human activity has impacted many coastal fjords causing degeneration of the structure and function of the fish habitats. In Nørrefjord, Denmark, local fishermen complained of declining fish catches which could be attributed to eutrophication and extraction of sediments over several decades. This ...... directly on hemp sacs hanging on long-lines was the most effective method. This new method is potentially a useful management tool to improve fish habitats...

  8. Blue or red? Exploring the effect of color on cognitive task performances.

    Science.gov (United States)

    Mehta, Ravi; Zhu, Rui Juliet

    2009-02-27

    Existing research reports inconsistent findings with regard to the effect of color on cognitive task performances. Some research suggests that blue or green leads to better performances than red; other studies record the opposite. Current work reconciles this discrepancy. We demonstrate that red (versus blue) color induces primarily an avoidance (versus approach) motivation (study 1, n = 69) and that red enhances performance on a detail-oriented task, whereas blue enhances performance on a creative task (studies 2 and 3, n = 208 and 118). Further, we replicate these results in the domains of product design (study 4, n = 42) and persuasive message evaluation (study 5, n = 161) and show that these effects occur outside of individuals' consciousness (study 6, n = 68). We also provide process evidence suggesting that the activation of alternative motivations mediates the effect of color on cognitive task performances.

  9. Characterization of typical metal particles during haze episodes in Shanghai, China.

    Science.gov (United States)

    Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin

    2017-08-01

    Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    Science.gov (United States)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  11. Sources of PM2.5 during Haze Episodes in Winter in Beijing

    Science.gov (United States)

    Zheng, Mei; Zhou, Tian; Zhao, Yanan; Yan, Caiqing; Li, Xiaoying; Yu, Jinting; Liu, Yue; Cai, Xuhui; Wang, Xuesong

    2017-04-01

    Beijing, the capital of China, has experienced several severe haze episodes (HEps) during November and December of 2016, with hourly average PM2.5 mass concentrations up to 400 μg/m3, which has attracted a great deal of attention for its formation mechanism and its effects on public health. In this study, a comprehensive field campaign, with several online instruments (e.g., TEOM, Xact, semi-continuous OC/EC analyzer, in-situ Gas and Aerosol Compositions Monitor (IGAC), and Aethalometer (AE-33)) for simultaneous high time resolution measurement of PM2.5 chemical compositions (e.g., PM2.5, metals, organic carbon, elemental carbon, water-soluble ions and gases, and black carbon), has been conducted during 7th November to 25rd December, 2016. The primary goal of this study is to investigate the sources of PM2.5 and the formation mechanism of different HEps. Our preliminary results indicated that chemical compositions and sources of PM2.5 differently varied during the HEps. Coal combustion and vehicle emission were two major sources of PM2.5 during this period. Two typical HEps, with hourly PM2.5 concentrations up to 200 μg/m3 and 400 μg/m3, respectively, were chosen for further studies. Correlations among different chemical species were analyzed, and positive matrix factorization (PMF) were performed for high time resolved PM2.5 source apportionment. Potential source regions of PM2.5 sources, as well as formation mechanism of HEps will be further discussed.

  12. Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou.

    Science.gov (United States)

    Zhang, Manwen; Zhang, Sukun; Feng, Guixian; Su, Hui; Zhu, Fengzhi; Ren, Mingzhong; Cai, Zongwei

    2017-04-01

    To identify the sources of PM 2.5 pollutants in work environments and determine whether the air quality inside an office was affected by a change in outdoor pollution status, concurrent indoor and outdoor measurements of PM 2.5 were conducted at five different office spaces in the urban center of Guangzhou on low pollution days (non-episode days, NEDs), and high pollution days (haze episode days, EDs). Indoor-outdoor relationships between the PM 2.5 mass and its chemical constituents, which included water-soluble ions, carbonaceous species, and metal elements, were investigated. A principle component analysis (PCA) was performed to further confirm the relationship between the indoor and outdoor PM 2.5 pollution. The results reveal that (1) Printing and ETS (Environmental tobacco smoking) were found to be important office PM 2.5 sources and associated with the enrichment of SO 4 2- , OC, EC and some toxic metals indoors; (2) On EDs, serious outdoor pollution and higher air exchange rate greatly affected all studied office environments, masking the original differences of the indoor characteristics (3) Fresh air system could efficiently filter out most of the outside pollutants on both NEDs and EDs. Overall, the results of our study suggest that improper human behavior is associated with the day-to-day generation of indoor PM 2.5 levels and sporadic outdoor pollution events can lead to poor indoor air quality in urban office environments. Moreover, fresh air system has been experimentally proved with data as an effective way to improve the air quality in office. Copyright © 2016. Published by Elsevier Inc.

  13. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China

    Science.gov (United States)

    Li, Weijun; Shao, Longyi

    2009-05-01

    Airborne aerosol collections were performed in urban areas of Beijing that were affected by regional brown haze episodes over northern China from 31 May to 12 June 2007. Morphologies, elemental compositions, and mixing states of 810 individual aerosol particles of different sizes were obtained by transmission electron microscopy coupled with energy-dispersive X-ray spectrometry. The phases of some particles were verified using selected-area electron diffraction. Aerosol particle types less than 10 μm in diameter include mineral, complex secondary (Ca-S, K-, and S-rich), organic, soot, fly ash, and metal (Fe-rich and Zn-bearing). Most soot, fly ash, and organic particles are less than 2 μm in diameter. Approximately 84% of the analyzed mineral particles have diameters between 2 and 10 μm, while 81% of the analyzed complex secondary and metal particles are much smaller, from 0.1 to 2 μm. Trajectory analysis with fire maps show that southerly air masses arriving at Beijing have been transported through many agricultural biomass burning sites and heavy industrial areas. Spherical fly ash and Fe-rich particles were from industrial emissions, and abundant K-rich and organic particles likely originated from field burning of crop residues. Abundant Zn-bearing particles are associated with industrial activities and local waste incinerators. On the basis of the detailed analysis of 443 analyzed aerosol particles, about 70% of these particles are internally mixed with two or more aerosol components from different sources. Most mineral particles are covered with visible coatings that contain N, O, Ca (or Mg), minor S, and Cl. K- and S-rich particles tend to be coagulated with fly ash, soot, metal, and fine-grained mineral particles. Organic materials internally mixed with K- and S-rich particles can be their inclusions and coatings.

  14. Updated emission inventories of power plants in simulating air quality during haze periods over East China

    Science.gov (United States)

    Zhang, Lei; Zhao, Tianliang; Gong, Sunling; Kong, Shaofei; Tang, Lili; Liu, Duanyang; Wang, Yongwei; Jin, Lianji; Shan, Yunpeng; Tan, Chenghao; Zhang, Yingjie; Guo, Xiaomei

    2018-02-01

    Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu Province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting model with Chemistry (WRF-Chem), two simulation experiments were executed to assess the atmospheric environment change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that power plant emissions of PM2.5, PM10, SO2, and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs (non-methane volatile organic compounds) were higher in UEIPP relative to those in MEIC, reflecting a large discrepancy in the power plant emissions over East China. In accordance with the changes in UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC, and CO. Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced. This was reflected by increased oxidizing agents, e.g., O3 and OH, thus directly strengthening the chemical production from SO2 and NOx to sulfate and nitrate, respectively, which offset the reduction of primary PM2.5 emissions especially on haze days. This study indicates the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with implications on air quality and environmental changes.

  15. Short-term aerosol radiative effects and their regional difference during heavy haze episodes in January 2013 in China

    Science.gov (United States)

    Cheng, Xinghong; Sun, Zhian; Li, Deping; Xu, Xiangde; Jia, Mengwei; Cheng, Siyang

    2017-09-01

    Short-term direct effects of aerosols on surface shortwave radiation and its regional difference during heavy haze episodes in January 2013 in China are investigated using the offline Weather Research and Forecasting (WRF) - the Community Multiscale Air Quality (CMAQ)- second Sun-Edward-Slingo radiative transfer (SES2) model system. The aerosol concentrations are first generated using the WRF-CMAQ model simulations and then corrected based on the observed concentrations of PM10 and PM2.5. The atmospheric profile data produced by the WRF model and the corrected aerosol concentrations are used as inputs to the SES2 model to calculate the global horizontal irradiance (GHI) and direct solar irradiance (DIR) at the surface for a period of heavy haze episodes in January 2013 in China. The effects of aerosol on the GHI and DIR at the surface are then analyzed. The modeled radiation is evaluated against the observations first and the results show some improvement due to the correction for the aerosol concentrations. The aerosol shortwave radiative effects are determined by the difference between the model calculations with and without the inclusion of aerosols. It is found that the short-term aerosol radiative impacts during heavy haze days are very large, range between 100 and 500 W m-2. The aerosol concentrations have a large spatial variation with the highest concentration occurring in the areas of Beijing-Tianjin-Hebei, which causes a large difference in the radiative effect nation wide. In addition to the total concentration, the aerosol vertical distributions s also vary from the north to south in China and this leads to a significant difference in radiative effect even when the PM10 concentration is similar at three regions.

  16. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids

    Science.gov (United States)

    Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar

    2016-01-01

    Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.

  17. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  18. Random lasing in blue phase liquid crystals.

    Science.gov (United States)

    Chen, Chun-Wei; Jau, Hung-Chang; Wang, Chun-Ta; Lee, Chun-Hong; Khoo, I C; Lin, Tsung-Hsien

    2012-10-08

    Random lasing actions have been observed in optically isotropic pure blue-phase and polymer-stabilized blue-phase liquid crystals containing laser dyes. Scattering, interferences and recurrent multiple scatterings arising from disordered platelet texture as well as index mismatch between polymer and mesogen in these materials provide the optical feedbacks for lasing action. In polymer stabilized blue-phase liquid crystals, coherent random lasing could occur in the ordered blue phase with an extended temperature interval as well as in the isotropic liquid state. The dependence of lasing wavelength range, mode characteristics, excitation threshold and other pertinent properties on temperature and detailed make-up of the crystals platelets were obtained. Specifically, lasing wavelengths and mode-stability were found to be determined by platelet size, which can be set by controlling the cooling rate; lasing thresholds and emission spectrum are highly dependent on, and therefore can be tuned by temperature.

  19. SUPPLEMENTARY INFORMATION Protonation of Patented Blue V ...

    Indian Academy of Sciences (India)

    XTreme.ws

    SUPPLEMENTARY INFORMATION. Protonation of Patented Blue V in aqueous solutions: Theoretical and experimental studies. KATERYNA BEVZIUKa, ALEXANDER CHEBOTAREVa, MAKSYM FIZERb,. ANASTASIIA KLOCHKOVAa, KONSTANTIN PLIUTAa and DENYS SNIGURa*. aDepartment of Analytical Chemistry, ...

  20. ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Afdi Yunaz, Ihsanul; Miyajima, Shinsuke; Konagai, Makoto

    2010-05-01

    We successfully increased the haze value of zinc oxide (ZnO) films fabricated using metal-organic chemical vapor deposition (MOCVD) by conducting glass-substrate etching before film deposition. It was found that with increasing the glass treatment time, the surface morphology of ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like multi texture. Further, the rms roughness and the haze value of the films increased remarkably. Using ZnO films with a high haze value as front transparent conductive oxide (TCO) films in hydrogenated microcrystalline silicon (µc-Si:H) solar cells, we improved the quantum efficiency of these cells particularly in the long-wavelength region.

  1. Substantial Research Secures the Blue Future for our Blue Plant

    Directory of Open Access Journals (Sweden)

    Moustafa Abdel Maksoud

    2016-06-01

    Full Text Available Earth, the blue planet, is our home, and seas and oceans cover more than 70% of its surface. As the earth’s population rapidly increases and available resources decrease, seas and oceans can play a key role in assuring the long-term survival of humankind. Renewable maritime energy has huge potential to provide a considerable part of the earth’s population with decarbonised electricity generation systems. Renewable maritime energy is very flexible and can be harvested above the water’s free surface by using offshore wind turbines, on the water’s surface by using wave energy converters or below the water’s surface by using current or tidal turbines. The supposed conflict between environmental protection measures and economic interests is neither viable nor reasonable. Renewable maritime energy can be the motor for considerable substantial economic growth for many maritime regions and therefore for society at large. The fastest growing sector of renewable maritime energy is offshore wind. The annual report of the European Wind Energy Association from the year 2015 confirms the growing relevance of the offshore wind industry. In 2015, the total installed and grid-connected capacity of wind power was 12,800 MW in the EU and 6,013.4 MW in Germany. 38% of the 2015 annual installation in Germany was offshore, accounting for a capacity of 2,282.4 MW. However, there are a limited number of available installation sites in shallow water, meaning that there is an urgent need to develop new offshore structures for water depths greater than 50m. The persistent trend towards deeper waters has encouraged the offshore wind industry to look for floating wind turbine structures and larger turbines. Floating wind turbine technologies are at an early stage of development and many technical and economic challenges will still need to be faced. Nonetheless, intensive research activities and the employment of advanced technologies are the key factors in

  2. Stomatal limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E.; Grivet, C.; Assmann, S.M.; Dietzer, G.F.; Hannegan, M.W.

    1985-02-01

    Leaves from Paphiopedilum sp. (Orchidaceae) having achlorophyllous stomata, show reduced levels of stomatal conductance when irradiated with red light, as compared with either the related, chlorophyllous genus Phragmipedium or with their response to blue light. These reduced levels of stomatal conductance, and the failure of isolated Paphiopedilum stomata to open under red irradiation indicates that the small stomatal response measured in the intact leaf under red light is indirect. The overall low levels of stomatal conductance observed in Paphiopedilum leaves under most growing conditions and their capacity to increase stomatal conductance in response to blue light suggested that growth and carbon gain in Paphiopedilum could be enhanced in a blue light-enriched environment. To test that hypothesis, plants of Paphiopedilum acmodontum were grown in controlled growth chambers under daylight fluorescent light, with or without blue light supplementation. Blue light enrichment resulted in significantly higher growth rates over a 3 to 4 week growing period, with all evidence indicating that the blue light effect was a stomatal response. Manipulations of stomatal properties aimed at long-term carbon gains could have agronomic applications.

  3. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers.

    Science.gov (United States)

    Abdo, Safaa E; El-Kassas, Seham; El-Nahas, Abeer F; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70 , HSP90 , HSF1 , and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.

  4. Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit.

    Science.gov (United States)

    Deng, Lili; Yuan, Ziyi; Xie, Jiao; Yao, Shixiang; Zeng, Kaifang

    2017-08-02

    Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.

  5. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...

  6. Blue Flag: a Symbol of Environmental Protection

    Directory of Open Access Journals (Sweden)

    Ioan Petroman

    2010-10-01

    Full Text Available Blue Flag is a high standard symbol of environmental protection and it is awarded to the beaches and agreement ports by the Foundation of Education for the Environment. The beaches having been awarded this distinction warrant particular protection for their visitors, which is a particular point of tourism attractiveness: the result, they are preferred by tourists and, therefore, by tour operators selling tourism packages for the littoral. In 2009, Romanian beaches were not awarded any Blue Flags.

  7. A Statistical Analysis of the Relationship between Brown Haze and Surface Air Pollution Levels on Respiratory Hospital Admissions in Auckland, New Zealand

    Directory of Open Access Journals (Sweden)

    Kim Natasha Dirks

    2017-11-01

    Full Text Available Eleven years of hospital admissions data for Auckland, New Zealand for respiratory conditions are analyzed using a Poisson regression modelling approach, incorporating a spline function to represent time, based on a detailed record of haze events and surface air pollution levels over an eleven-year period, taking into account the daily average temperature and humidity, the day of the week, holidays and trends over time. NO2 was the only pollutant to show a statistically significant increase (p = 0.009 on the day of the haze event for the general population. Ambient concentrations of CO, NO and NO2 were significantly associated with admissions with an 11-day lag period for the 0–14 year age group and a 5–7 day lag period for the 65+ year age group. A 3-day lag period was found for the 15–64 year age group for CO, NO and PM10. Finally, the incidence of brown haze was linked to significant increases in hospital admissions. A lag period of 5 days was recorded between haze and subsequent increases in admissions for the 0–14 year age group and the 65+ group and an 11-day lag for the 15–64 year age group. The results provide the first statistical link between Auckland brown haze events, surface air pollution and respiratory health. Medical institutions and practitioners could benefit from improved capacity to predict Auckland’s brown haze events in order prepare for the likely increases in respiratory admissions over the days ahead.

  8. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    blue-green algae produced toxins, microcystins, is enhanced by the presence of polyunsaturated fatty acids. Secondarily, it has been reported that unsaturated long- chain fatty acids are toxic to aquatic organisms and known to inhibit fish gill activities resulting into death of fish and other aquatic microorganisms when they.

  9. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell.

    Science.gov (United States)

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2017-06-01

    The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. On the multiday haze in the Asian continental outflow: the important role of synoptic conditions combined with regional and local sources

    Science.gov (United States)

    Seo, Jihoon; Kim, Jin Young; Youn, Daeok; Lee, Ji Yi; Kim, Hwajin; Lim, Yong Bin; Kim, Yumi; Cher Jin, Hyoun

    2017-08-01

    The air quality of the megacities in populated and industrialized regions like East Asia is affected by both local and regional emission sources. The combined effect of regional transport and local emissions on multiday haze was investigated through a synthetic analysis of PM2. 5 sampled at both an urban site in Seoul, South Korea and an upwind background site on Deokjeok Island over the Yellow Sea during a severe multiday haze episode in late February 2014. Inorganic components and carbonaceous species of daily PM2. 5 samples were measured, and gaseous pollutants, local meteorological factors, and synoptic meteorological conditions were also determined. A dominance of fine-mode particles (PM2. 5 / PM10 ˜ 0.8), a large secondary inorganic fraction (76 %), high OC / EC (> 7), and highly oxidized aerosols (oxygen-to-carbon ratio of ˜ 0.6 and organic-mass-to-carbon ratio of ˜ 1.9) under relatively warm, humid, and stagnant conditions characterize the multiday haze episode in Seoul; however, the early and late stages of the episode show different chemical compositions of PM2. 5. High concentrations of sulfate in both Seoul and the upwind background in the early stage suggest a significant regional influence on the onset of the multiday haze. At the same time, high concentrations of nitrate and organic compounds in Seoul, which are local and highly correlated with meteorological factors, suggest the contribution of local emissions and secondary formation under stagnant meteorological conditions to the haze. A slow eastward-moving high-pressure system from southern China to the East China Sea induces the regional transport of aerosols and potential gaseous precursors for secondary aerosols from the North China Plain in the early stage but provides stagnant conditions conducive to the accumulation and the local formation of aerosols in the late stage. A blocking ridge over Alaska that developed during the episode hinders the zonal propagation of synoptic-scale systems

  11. The Effect of Different Doses of Blue Light on the Biometric Traits and Photosynthesis of Dill Plants

    OpenAIRE

    Barbara FRĄSZCZAK

    2016-01-01

    The supplementation of blue light to red light enhanced plant growth compared with the use of red alone. The aim of the study was to determine the effect of different doses of blue light on the biometric traits and photosynthesis of dill plants. The plants were grown in pots in a growth chamber. They were grown in red light (100 μmol m-2 s-1) and blue light (from 10 to 50 μmol m-2 s-1) in five combinations. Light emitting diode modules were the source of light. The plants were evaluated every...

  12. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    Science.gov (United States)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local

  13. Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer.

    Science.gov (United States)

    Kim, Dong Hyun; Dudem, Bhaskar; Jung, Jae Woong; Yu, Jae Su

    2018-04-18

    Biomimetic microarchitectured polymer layers, such as inverted hemispherical architectured (IHSA)-polydimethylsiloxane (PDMS) and hemispherical architectured (HSA)-PDMS layers, were prepared by a simple and cost-effective soft-imprinting lithography method via a hexagonal close-packed polystyrene microsphere array/silicon mold. The IHSA-PDMS/glass possessed superior antireflection (AR) characteristics with the highest/lowest average transmittance/reflectance ( T avg / R avg ) values of approximately 89.2%/6.4% compared to the HSA-PDMS/glass, flat-PDMS/glass, and bare glass ( T avg / R avg ∼88.8%/7.5%, 87.5%/7.9%, and 87.3%/8.8%, respectively). In addition, the IHSA-PDMS/glass also exhibited a relatively strong light-scattering property with the higher average haze ratio ( H avg ) of ∼38% than those of the bare glass, flat-PDMS/glass, and HSA-PDMS/glass (i.e., H avg ≈ 1.1, 1.7, and 34.2%, respectively). At last, to demonstrate the practical feasibility under light control of the solar cells, the IHSA-PDMS was laminated onto the glass substrates of perovskite solar cells (PSCs) as an AR layer, and their device performances were explored. Consequently, the short-circuit current density of the PSCs integrated with the IHSA-PDMS AR layer was improved by ∼17% when compared with the device without AR layer, resulting in the power conversion efficiency (PCE) up to 19%. Therefore, the IHSA-PDMS is expected to be applied as an AR layer for solar cells to enhance their light absorption as well as the PCE.

  14. Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site.

    Science.gov (United States)

    Han, Bin; Zhang, Rui; Yang, Wen; Bai, Zhipeng; Ma, Zhiqiang; Zhang, Wenjie

    2016-02-15

    The heavy air pollution that occurred in Beijing in January of 2013 attracted intense attention around the world. During this period, we conducted highly time-resolved measurements of inorganic ions associated with PM2.5 at an urban site of Beijing, and investigated ion chemistry and potential sources. Hourly concentrations of Cl(-), NO3(-), SO4(2-), Na(+), NH4(+), K(+), Mg(2+), and Ca(2+) were measured. Peak concentrations of SO4(2-) and NO3(-) were observed on the 10th-15th, 21st-24th, and the 26th-30th during this monitoring campaign. The percentages of SO4(2-) and NH4(+) in total ion concentration increased with the enhancement of PM2.5 concentrations, indicating that high concentrations of SO4(2-) and NH4(+) may play important roles in the formation of haze episodes. The ratio of [NO3(-)]/[SO4(2-)] was calculated, revealing that the sources of SO4(2-) would contribute more to the formation of PM2.5 than mobile sources. Diurnal variations of SO4(2-), NO3(-), NH4(+) (SNA) exhibited a similar pattern, with high concentrations at night and low levels during the day, revealing that meteorological conditions, such as mixing layer height, relative humidity, were likely to be responsible for high levels of SNA at night. The roles of meteorological conditions were further discussed in the formation of secondary inorganic ions. Relative humidity and temperature played key roles and exhibited positive correlations with secondary inorganic ions. An aerosol inorganics simulation model showed that SNA existed mainly in the aqueous phase during the sampling period. Furthermore, potential sources were identified by applying positive matrix factorization model. Secondary nitrate, secondary sulfate, coal combustion and biomass burning, as well as fugitive dust, were considered to be major contributors to total ions. Copyright © 2015. Published by Elsevier B.V.

  15. Comparison of Alcian Blue, Trypan Blue, and Toluidine Blue for Visualization of the Primo Vascular System Floating in Lymph Ducts

    Directory of Open Access Journals (Sweden)

    Da-Un Kim

    2015-01-01

    Full Text Available The primo vascular system (PVS, floating in lymph ducts, was too transparent to be observed by using a stereomicroscope. It was only detectable with the aid of staining dyes, for instance, Alcian blue, which was injected into the lymph nodes. Some dyes were absorbed preferentially by the PVS than the lymph wall. It remains a standing problem to know what dyes are absorbed better by the PVS than the lymph walls. Such information would be useful to unravel the biochemical properties of the PVS that are badly in need for obtaining large amount of PVS specimens. In the current work we tried two other familiar dyes which were used in PVS research before. We found that Trypan blue and toluidine blue did not visualize the PVS. Trypan blue was cleared by the natural washing. Toluidine blue did not stain the PVS, but it did leave stained spots in the lymph wall and its surrounding tissues, and it leaked out of the lymph wall to stain surrounding connective tissues. These completely different behaviors of the three dyes were found for the first time in the current work and provide valuable information to elucidate the mechanism through which some special dyes stained the PVS preferentially compared to the lymphatic wall.

  16. Variations on the "Blue-Bottle" Demonstration Using Food Items That Contain FD&C Blue #1

    Science.gov (United States)

    Staiger, Felicia A.; Peterson, Joshua P.; Campbell, Dean J.

    2015-01-01

    Erioglaucine dye (FD&C Blue #1) can be used instead of methylene blue in the classic "blue-bottle" demonstration. Food items containing FD&C Blue #1 and reducing species such as sugars can therefore be used at the heart of this demonstration, which simply requires the addition of strong base such as sodium hydroxide lye.

  17. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  18. Metadata-assisted nonuniform atmospheric scattering model of image haze removal for medium-altitude unmanned aerial vehicle

    Science.gov (United States)

    Liu, Chunlei; Ding, Wenrui; Li, Hongguang; Li, Jiankun

    2017-09-01

    Haze removal is a nontrivial work for medium-altitude unmanned aerial vehicle (UAV) image processing because of the effects of light absorption and scattering. The challenges are attributed mainly to image distortion and detail blur during the long-distance and large-scale imaging process. In our work, a metadata-assisted nonuniform atmospheric scattering model is proposed to deal with the aforementioned problems of medium-altitude UAV. First, to better describe the real atmosphere, we propose a nonuniform atmospheric scattering model according to the aerosol distribution, which directly benefits the image distortion correction. Second, considering the characteristics of long-distance imaging, we calculate the depth map, which is an essential clue to modeling, on the basis of UAV metadata information. An accurate depth map reduces the color distortion compared with the depth of field obtained by other existing methods based on priors or assumptions. Furthermore, we use an adaptive median filter to address the problem of fuzzy details caused by the global airlight value. Experimental results on both real flight and synthetic images demonstrate that our proposed method outperforms four other existing haze removal methods.

  19. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze.

    Science.gov (United States)

    Jin, Rong; Zheng, Minghui; Yang, Hongbo; Yang, Lili; Wu, Xiaolin; Xu, Yang; Liu, Guorui

    2017-12-01

    Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (d ae ) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (d ae  gas-particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. "Blue-Collar Blues" uurib töösuhteid uutes oludes / Janar Ala

    Index Scriptorium Estoniae

    Ala, Janar, 1979-

    2009-01-01

    Tööproblemaatikat käsitlev näitus "Blue-Collar Blues" Tallinna Kunstihoones ja Tallinna Kunstihoone galeriis 31. jaanuarini 2010, kuraator Anders Härm. Lähemalt belgia-mehhiko kunstniku Francis Alys'e videost, austria kunstniku Oliver Ressleri ning venetsueela-saksa politoloogi Dario Azzelini videost "Viis tehast. Tööliste kontroll Venezuelas"

  1. Evaluation and application of multi-decadal visibility data for trend analysis of atmospheric haze

    Directory of Open Access Journals (Sweden)

    C. Li

    2016-03-01

    Full Text Available There are few multi-decadal observations of atmospheric aerosols worldwide. This study applies global hourly visibility (Vis observations at more than 3000 stations to investigate historical trends in atmospheric haze over 1945–1996 for the US, and over 1973–2013 for Europe and eastern Asia. A comprehensive data screening and processing framework is developed and applied to minimize uncertainties and construct monthly statistics of inverse visibility (1/Vis. This data processing includes removal of relatively clean cases with high uncertainty, and change point detection to identify and separate methodological discontinuities such as the introduction of instrumentation. Although the relation between 1/Vis and atmospheric extinction coefficient (bext varies across different stations, spatially coherent trends of the screened 1/Vis data exhibit consistency with the temporal evolution of collocated aerosol measurements, including the bext trend of −2.4 % yr−1 (95 % CI: −3.7, −1.1 % yr−1 vs. 1/Vis trend of −1.6 % yr−1 (95 % CI: −2.4, −0.8 % yr−1 over the US for 1989–1996, and the fine aerosol mass (PM2.5 trend of −5.8 % yr−1 (95 % CI: −7.8, −4.2 % yr−1 vs. 1/Vis trend of −3.4 % yr−1 (95 % CI: −4.4, −2.4 % yr−1 over Europe for 2006–2013. Regional 1/Vis and Emissions Database for Global Atmospheric Research (EDGAR sulfur dioxide (SO2 emissions are significantly correlated over the eastern US for 1970–1995 (r = 0.73, over Europe for 1973–2008 (r ∼ 0.9 and over China for 1973–2008 (r ∼ 0.9. Consistent "reversal points" from increasing to decreasing in SO2 emission data are also captured by the regional 1/Vis time series (e.g., late 1970s for the eastern US, early 1980s for western Europe, late 1980s for eastern Europe, and mid 2000s for China. The consistency of 1/Vis trends with other in situ measurements and emission data demonstrates promise in applying these quality assured 1/Vis data

  2. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-10-01

    Here, we present the latest results on the gas- and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to control how far in the chain of chemical reactions chemistry processes[1], by adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan.We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra[3] are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus

  3. Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes

    Science.gov (United States)

    Wu, Yunfei; Wang, Xiaojia; Tao, Jun; Huang, Rujin; Tian, Ping; Cao, Junji; Zhang, Leiming; Ho, Kin-Fai; Han, Zhiwei; Zhang, Renjian

    2017-06-01

    Black carbon (BC) has important impact on climate and environment due to its light absorption ability, which greatly depends on its physicochemical properties including morphology, size and mixing state. The size distribution of the refractory BC (rBC) was investigated in urban Beijing in the late winter of 2014, during which there were frequent haze events, through analysis of measurements obtained using a single-particle soot photometer (SP2). By assuming void-free rBC with a density of 1.8 g cm-3, the mass of the rBC showed an approximately lognormal distribution as a function of the volume-equivalent diameter (VED), with a peak diameter of 213 nm. Larger VED values of the rBC were observed during polluted periods than on clean days, implying an alteration in the rBC sources, as the size distribution of the rBC from a certain source was relative stable, and VED of an individual rBC varied little once it was emitted into the atmosphere. The potential source contribution function analysis showed that air masses from the south to east of the observation site brought higher rBC loadings with more thick coatings and larger core sizes. The mean VED of the rBC presented a significant linear correlation with the number fraction of thickly coated rBC, extrapolating to be ˜ 150 nm for the completely non-coated or thinly coated rBC. It was considered as the typical mean VED of the rBC from local traffic sources in this study. Local traffic was estimated to contribute 35 to 100 % of the hourly rBC mass concentration with a mean of 59 % during the campaign. Lower local traffic contributions were observed during polluted periods, suggesting increasing contributions from other sources (e.g., coal combustion and biomass burning) to the rBC. Thus, the heavy pollution in Beijing was greatly influenced by other sources in addition to the local traffic.

  4. On the influence of atmospheric super-saturation layer on China's heavy haze-fog events

    Science.gov (United States)

    Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang

    2017-12-01

    With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the

  5. Possible influence of atmospheric circulations on winter haze pollution in the Beijing–Tianjin–Hebei region, northern China

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2016-01-01

    Full Text Available Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter haze pollution (indicated by the mean visibility and number of hazy days in the Beijing–Tianjin–Hebei (BTH region during the period 1981 to 2015 and its relationship with the atmospheric circulations at middle–high latitude were analyzed in this study. The winter haze pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6 were defined from the key areas in sea level pressure (SLP, zonal and meridional winds at 850 hPa (U850, V850, geopotential height field at 500 hPa (H500, zonal wind at 200 hPa (U200, and air temperature at 200 hPa (T200, respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. In the raw (unfiltered correlations, the correlation coefficients between the six indices and the winter visibility (number of hazy days varied from 0.57 (0.47 to 0.76 (0.6 with an average of 0.65 (0.54; in the high-frequency ( < 10 years correlations, the coefficients varied from 0.62 (0.58 to 0.8 (0.69 with an average of 0.69 (0.64. The six circulation indices together can explain 77.7 % (78.7 % and 61.7 % (69.1 % variances of the winter visibility and the number of hazy days in the year-to-year (inter-annual variability, respectively. The increase in Ic (a comprehensive index derived from the six individual circulation indices can cause a shallowing of the East Asian trough at the middle troposphere and a weakening of the Siberian high-pressure field at sea level, and is then accompanied by a reduction (increase of horizontal advection and vertical convection (relative humidity in the lowest troposphere and a reduced boundary layer

  6. Dyes adsorption blue vegetable and blue watercolor by natural zeolites modified with surfactants

    International Nuclear Information System (INIS)

    Jardon S, C. C.; Olguin G, M. T.; Diaz N, M. C.

    2009-01-01

    In this work was carried out the dyes removal blue vegetable and blue watercolor of aqueous solutions, to 20 C, at different times and using a zeolite mineral of Parral (Chihuahua, Mexico) modified with hexadecyl trimethyl ammonium bromide or dodecyl trimethyl ammonium bromide. The zeolite was characterized before and after of its adaptation with NaCl and later with HDTMABr and DTMABr. For the materials characterization were used the scanning electron microscopy of high vacuum; elementary microanalysis by X-ray spectroscopy of dispersed energy and X-ray diffraction techniques. It was found that the surfactant type absorbed in the zeolite material influences on the adsorption process of the blue dye. Likewise, the chemical structure between the vegetable blue dye and the blue watercolor, determines the efficiency of the color removal of the water, by the zeolites modified with the surfactants. (Author)

  7. Laboratory Simulations of Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes: Particle Color and Size Distribution

    Science.gov (United States)

    He, Chao; Hörst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.-R.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Super-Earths and mini-Neptunes are the most abundant types of planets among the ∼3500 confirmed exoplanets, and are expected to exhibit a wide variety of atmospheric compositions. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. However, the compositions, size distributions, and optical properties of these particles in exoplanet atmospheres are poorly understood. Here, we present the results of experimental laboratory investigations of photochemical haze formation within a range of planetary atmospheric conditions, as well as observations of the color and size of produced haze particles. We find that atmospheric temperature and metallicity strongly affect particle color and size, thus altering the particles’ optical properties (e.g., absorptivity, scattering, etc.); on a larger scale, this affects the atmospheric and surface temperature of the exoplanets, and their potential habitability. Our results provide constraints on haze formation and particle properties that can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of super-Earths and mini-Neptunes with the Transiting Exoplanet Survey Satellite, the James Webb Space Telescope, and the Wide-Field Infrared Survey Telescope.

  8. Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its implications on haze pollution in urban Shanghai, China

    Science.gov (United States)

    Qiao, Ting; Zhao, Mengfei; Xiu, Guangli; Yu, Jianzhen

    2015-12-01

    A year-long PM1 samples were collected at ECUST campus from April 2013 to February 2014 in urban Shanghai, China. Annual PM1 was (49.8 ± 31.8) μgm-3, comprising of water soluble organic carbon (WSOC), humic-like substances-carbon (Hulis-C), total water soluble inorganic ions (WSIIs) and liquid water content (LWC). Corresponding values were (5.51 ± 3.72) μgm-3, (2.20 ± 1.71) μgm-3, (22.52 ± 15.22) μgm-3 and (19.0 ± 19.2) μgm-3, respectively. Seasonal variation of PM1 was winter > spring > autumn > summer, while WSOC, Hulis-C, total WSIIs and LWC were highest in winter, with insignificant differences between spring, summer and autumn. Hulis-C and WSOC in PM1 on the serious haze day were found to be 4.4 and 2.5 times higher than those on the clear days, implying that Hulis might be very important for haze pollution. Among total WSIIs, sulfate was more abundant than nitrate on clear days while nitrate eventually surpassed sulfate in haze episodes. LWC in aerosol was significantly negative correlated with visibility and had strong relationship with nitrate and sulfate. It should be noted that LWC is four times sensitive to nitrate than sulfate, hence higher nitrate on haze days in Shanghai might facilitate the hygroscopic growth of aerosol.

  9. Hazing Rites/Rights: Using Outdoor- and Adventure Education-Based Orientation to Effect Positive Change for First-Year Athletes

    Science.gov (United States)

    johnson, jay; Chin, Jessica W.

    2016-01-01

    This study is a qualitative examination of the experiences and impact of participating in an outdoor-based and adventure education-based orientation as an alternative to traditional forms of sport team initiation. Traditional forms of initiation for the participants in this study had included hazing ceremonies, whereby new team members were forced…

  10. Teknologi penyamakan kulit wet blue buaya

    Directory of Open Access Journals (Sweden)

    Bambang Oetojo

    1992-08-01

    Full Text Available For this study it was used 12 pieces of grain salted crocodile skin of 11 up to 14 inch width. All of the crocodile skin were process up to pickling with the same way. Furthermore pickled crocodile skins were process up to pickling with the same way. Furthermore pickled crocodile skins and was done twice. The wet blue output from the research was visual investigated for the coulor using staning scale method. For comparition it was used pickled crocodile skins. Statistical analysis pints out that there is unsignify difference (P<0.05 the influence of the used of basic chrome sulphate to the colour of wet blue crocodile skins. Practical meaning of the research is, for tanning of crocodile skins to the wet blue, it is used 1.5% basic chromium sulphate.

  11. Intraoral blue (Jadassohn-Tieche) nevus.

    Science.gov (United States)

    Hasse, C D; Zoutendam, G L; Gombas, O F

    1978-05-01

    Blue nevus of the oral mucosa is a distinctly uncommon clincial entity. Careful review of the literature yielded thirty-one previously reported cases. The present article reports the occurrence of a blue nevus of the hard palate in a 58-year-old man. It is of interest since it is the smallest (1 by 1 mm.) intraoral blue nevus to be reported. A clinicopathologic study of the previous thirty-one cases and of our case suggests that this lesion has no age or sex predilection. The most common site of occurrence was the hard palate. There appears to be no tendency toward recurrence. A brief review of the historical background, clinical features, theories of possible origin, and differential diagnosis is presented. Excisional biopsy of localized areas of oral pibmentation, together with histopathologic study, is indicated to rule out melanoma.

  12. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  13. Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells

    Science.gov (United States)

    Liu, Qingyang; Baumgartner, Jill; Zhang, Yuanxun; Schauer, James J.

    2016-02-01

    Air pollution is a leading risk factor for the disease burden in China and globally. Few epidemiologic studies have characterized the particulate matter (PM) components and sources that are most responsible for adverse health outcomes, particularly in developing countries. In January 2013, a severe haze event occurred over 25 days in urban Beijing, China. Ambient fine particulate matter (PM2.5) was collected at a central urban site in Beijing from January 16-31, 2013. We analyzed the samples for water soluble ions, metals, elemental carbon (EC), organic carbon (OC), and individual organic molecular markers including n-alkanes, hopanes, PAHs and sterols. Chemical components were used to quantify the source contributions to PM2.5 using the chemical mass balance (CMB) model by the conversion of the OC estimates combined with inorganic secondary components (e.g. NH4+, SO42-, NO3-). Water extracts of PM were exposed to lung epithelial cells, and supernatants recovered from cell cultures were assayed for the pro-inflammatory cytokines by a quantitative ELLSA method. Linear regression models were used to estimate the associations between PM sources and components with pro-inflammatory responses in lung epithelial cells following 24-hrs and 48-hrs of exposure. The largest contributors to PM2.5 during the monitoring period were inorganic secondary ions (53.2% and 54.0% on haze and non-haze days, respectively). Other organic matter (OM) contributed to a larger proportion of PM2.5 during haze days (16.9%) compared with non-haze days (12.9%), and coal combustion accounted for 10.9% and 8.7% on haze and non-haze days, respectively. We found PM2.5 mass and specific sources (e.g. coal combustion, traffic emission, dust, other OM, and inorganic secondary ions) were highly associated with inflammatory responses of lung epithelial cells. Our results showed greater responses in the exposure to 48-hr PM2.5 mass and its sources compared to 24-hr PM exposure, and that secondary and coal

  14. White-electroluminescent device with horizontally patterned blue/yellow phosphor-layer structure

    International Nuclear Information System (INIS)

    Won Park, Boo; Sik Choi, Nam; Won Park, Kwang; Mo Son, So; Kim, Jong Su; Kyun Shon, Pong

    2007-01-01

    White-electroluminescent (EL) devices with stripe-patterned and square-patterned phosphor-layer structures are fabricated through a screen printing method: electrode/BaTiO 3 insulator layer/patterned blue ZnS:Cu, Cl and yellow ZnS:Cu, Mn phosphor layer/ITO PET substrate. The luminous intensities of EL devices with stripe-patterned and square-patterned phosphor-layer structures are 33% and 23% higher than a conventional device with the phosphor-layer structure without any patterns using the phosphor blend. It can be explained in terms of the absorption of the emitted blue light of blue phosphor layer by the yellow-emitting phosphor layer. The EL device of our patterned phosphor-layer structure gives the possibility to enhance the luminance

  15. [Source Contribution Analysis of the Fine Particles in Shanghai During a Heavy Haze Episode in December, 2013 Based on the Particulate Matter Source Apportionment Technology].

    Science.gov (United States)

    Li, Li; An, Jing-yu; Yan, Ru-sha

    2015-10-01

    The haze pollution caused by high PM2.5 concentrations has become one of the major environmental issues restricting urban and regional sustainable development in China in recent years. Therefore, the diagnosis of the pollution sources of PM2.5 and its major components in a scientific and efficient way is of great significance both scientifically and theoretically. A rare heavy haze pollution event occurred in Shanghai and the surrounding Yangtze River Delta in early December, 2013, that the hourly PM2.5 concentration reached 640 μg x m(-3). In this study, we analyzed the three typical episodes that occurred in Shanghai during this period. The particulate matter source apportionment technology (PSAT) was applied to study the source contributions to PM2.5 and its major components. Results showed that NO3-(2.5) were mostly contributed by industrial boilers and kilns, transportation and power plants. Comparatively, most of the SO4(2-) 2.5 came from industry and transport sectors. During the three episodes including haze, foggy haze and transport, local emissions contributed 35.3%, 44.8%, 22.7%, while super-regional transport accounted for 42.0%, 41.1% and 59.8% to PM2.5, respectively. In the YRD modeling domain, fugitive dust, industrial processing, volatile source, industrial boilers and kilns and transport were the major contributors to high concentrations of PM2.5, with the average contributions of 25.1%, 14.9%, 15.8%, 13.7% and 15.9%, respectively. Results showed that the very heavy haze pollution is usually not caused by a single city, the regional joint pollution control is of great importance to relieve the pollution level.

  16. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China.

    Science.gov (United States)

    Cheng, Hairong; Gong, Wei; Wang, Zuwu; Zhang, Fan; Wang, Xinming; Lv, Xiaopu; Liu, Jia; Fu, Xiaoxin; Zhang, Gan

    2014-04-01

    In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km(2). In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PM1.0) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PM1.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhan. WSIIs (Na(+), NH4(+), K(+), Mg(2+), Ca(2+), Cl(-), NO3(-) and SO4(2-)) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Study on an air quality evaluation model for Beijing City under haze-fog pollution based on new ambient air quality standards.

    Science.gov (United States)

    Li, Li; Liu, Dong-Jun

    2014-08-28

    Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive evaluation model based on an entropy weighting method and nearest neighbor method was developed. The entropy weighting method was used to determine the weights of indicators, and the nearest neighbor method was utilized to evaluate the air quality levels. Then the comprehensive evaluation model was applied into the practical evaluation problems of air quality in Beijing to analyze the haze-fog pollution. Two simulation experiments were implemented in this study. One experiment included the indicator of PM2.5 and was carried out based on the new Ambient Air Quality Standards (GB 3095-2012); the other experiment excluded PM2.5 and was carried out based on the old Ambient Air Quality Standards (GB 3095-1996). Their results were compared, and the simulation results showed that PM2.5 was an important indicator for air quality and the evaluation results of the new Air Quality Standards were more scientific than the old ones. The haze-fog pollution situation in Beijing City was also analyzed based on these results, and the corresponding management measures were suggested.

  18. Indoor human exposure to size-fractionated aerosols during the 2015 Southeast Asian smoke haze and assessment of exposure mitigation strategies

    Science.gov (United States)

    Sharma, Ruchi; Balasubramanian, Rajasekhar

    2017-11-01

    The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72–157 μg m‑3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m‑3) several times over. The smoke haze episode not only affected ambient air quality, but also indoor air quality due to the migration of PM of different sizes from the outdoor to the indoor environment. Despite the frequent occurrence of smoke haze episodes over the years, their potential health impacts on indoor building occupants remain largely unknown in SEA due to the lack of systematic investigations and observational data. The current work was carried out in Singapore to assess human exposure to size-resolved PM during the 2015 smoke haze episode, and to evaluate the effectiveness of exposure mitigation measures in smoke-haze-impacted naturally ventilated indoor environments. The potential health risks associated with exposure to PM2.5 were assessed based on the concentrations of redox active particulate-bound trace elements, which are known to be harmful to human health, with and without exposure mitigation. Overall, it was observed that human health exposure to PM2.5 and its carcinogenic chemical components was reduced substantially by 62% (p < 0.05) while using an air cleaner. However, extremely small hazardous particles were only partially removed by the air cleaner and remain a matter of concern for public health.

  19. Multimodal Randomized Functional MR Imaging of the Effects of Methylene Blue in the Human Brain.

    Science.gov (United States)

    Rodriguez, Pavel; Zhou, Wei; Barrett, Douglas W; Altmeyer, Wilson; Gutierrez, Juan E; Li, Jinqi; Lancaster, Jack L; Gonzalez-Lima, Francisco; Duong, Timothy Q

    2016-11-01

    Purpose To investigate the sustained-attention and memory-enhancing neural correlates of the oral administration of methylene blue in the healthy human brain. Materials and Methods The institutional review board approved this prospective, HIPAA-compliant, randomized, double-blinded, placebo-controlled clinical trial, and all patients provided informed consent. Twenty-six subjects (age range, 22-62 years) were enrolled. Functional magnetic resonance (MR) imaging was performed with a psychomotor vigilance task (sustained attention) and delayed match-to-sample tasks (short-term memory) before and 1 hour after administration of low-dose methylene blue or a placebo. Cerebrovascular reactivity effects were also measured with the carbon dioxide challenge, in which a 2 × 2 repeated-measures analysis of variance was performed with a drug (methylene blue vs placebo) and time (before vs after administration of the drug) as factors to assess drug × time between group interactions. Multiple comparison correction was applied, with cluster-corrected P methylene blue increased response in the bilateral insular cortex during a psychomotor vigilance task (Z = 2.9-3.4, P = .01-.008) and functional MR imaging response during a short-term memory task involving the prefrontal, parietal, and occipital cortex (Z = 2.9-4.2, P = .03-.0003). Methylene blue was also associated with a 7% increase in correct responses during memory retrieval (P = .01). Conclusion Low-dose methylene blue can increase functional MR imaging activity during sustained attention and short-term memory tasks and enhance memory retrieval. © RSNA, 2016 Online supplemental material is available for this article.

  20. Control of downy mildew in greenhouse-grown cucumbers using blue photoselective polyethylene sheets

    International Nuclear Information System (INIS)

    Reuveni, R.; Raviv, M.

    1997-01-01

    Six types of polyethylene sheets with or without a blue pigment, having an absorption peak at the yellow part of the spectrum (580 nm), in combination with three levels of UV-B (280 to 320 nm) absorbance, were investigated for their effects on sporangial production and colonization of Pseudoperonospora cubensis on cucumbers in growth chambers. The effect of these photoselective sheets on the epidemiology of downy mildew in greenhouse-grown cucumbers has been investigated in several locations. The addition of the blue pigment to the films resulted in a significant inhibition of colonization and sporangial production of P. cubensis, whereas filtration of the UV spectrum enhanced the colonization but had no effect on the sporangial production. The appearance of the first symptom-bearing plants was delayed under the blue covers, and consequently, a significant reduction in the disease incidence of downy mildew was recorded under all blue sheets at each corresponding level of UV-B transmittance in five different field experiments through four seasons. Regardless of the differences in disease incidence, there were no significant differences among the yields that were obtained under the various sheets, probably due to the lower photosynthetically active radiation transmissivity of the blue films. The optimal features required for a desirable commercial sheet are discussed

  1. The properties of the first galaxies in the BlueTides simulation

    Science.gov (United States)

    Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Waters, Dacen

    2017-08-01

    We employ the very large cosmological hydrodynamical simulation BlueTides to investigate the predicted properties of the galaxy population during the epoch of reionization (z > 8). BlueTides has a resolution and volume ((400/h ≈ 577)3 cMpc3) providing a population of galaxies that is well matched to depth and area of current observational surveys targeting the high-redshift Universe. At z = 8, BlueTides includes almost 160 000 galaxies with stellar masses >108 M⊙. The population of galaxies predicted by BlueTides closely matches observational constraints on both the galaxy stellar mass function and far-UV (150 nm) luminosity function. Galaxies in BlueTides are characterized by rapidly increasing star formation histories. Specific star formation rates decrease with redshift though remain largely insensitive to stellar mass. As a result of the enhanced surface density of metals, more massive galaxies are predicted to have higher dust attenuation resulting in a significant steepening of the observed far-UV luminosity function at high luminosities. The contribution of active supermassive black holes (SMBHs) to the UV luminosities of galaxies with stellar masses 109-10 M⊙ is around 3 per cent on average. Approximately 25 per cent of galaxies with M* ≈ 1010 M⊙ are predicted to have active SMBHs that contribute >10 per cent of the total UV luminosity.

  2. The age and origin of carbon in fire aerosols during El Niño-induced haze events in Singapore

    Science.gov (United States)

    Wiggins, E. B.; Czimczik, C. I.; Santos, G. M.; Chen, Y.; Xu, X.; Randerson, J. T.

    2017-12-01

    During the onset of the 2015-2016 El Niño, fires in Indonesia and Malaysia created a massive regional haze event that severely degraded air quality in many urban centers and resulted in significant land-atmosphere CO2 emissions with average daily CO2 emissions of 11.2 Tg during September - October. Many lines of evidence indicate that peat fires are a dominant contributor to biomass burning emissions in the region. However, El Nino-induced drought is also known to increase deforestation fires and agricultural waste burning, and there are relatively few observational constraints that provide a quantitative partitioning of emissions among these fire types. Nor have there been regionally-integrated estimates of the age of carbon that is combusted in peatland fires. This information is critical for linking haze-related mortality with the anthropogenic build-up of atmospheric CO2. Measuring the age of carbon (14C content) in airborne particulate matter provides a mean to apportion how different fire types contribute to regional air pollution. Here we measured the 14C content of 39 particulate matter (PM2.5) samples collected in Singapore from September 2014 through October 2015, with the aim of assessing the age and origin of the haze-inducing carbonaceous aerosol. We found that the 14C content of the fire aerosols in Singapore was -59.8 ± 61.6‰, well below atmospheric background levels of 24 ± 3‰, and consistent with an age of 430 ± 520 years before present. Atmospheric transport modeling confirmed that fire emissions originating from Sumatra and Borneo were the dominant contributor to the elevated PM2.5 in Singapore. The 14C measurements provide independent confirmation that fire emissions in the region originate primarily from peat burning, and should be treated as a component of the net land use change flux that contributes to climate warming. Our analysis also highlights the dual benefits for air quality and climate mitigation of improving fire management

  3. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    Science.gov (United States)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  4. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  5. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002

    Directory of Open Access Journals (Sweden)

    N. Hock

    2008-02-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD in Southern Germany.

    Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5, organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5, and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins.

    Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m−3, arithmetic mean and standard deviation accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m−3. The relative proportions of non-refractory submicron particle components were: (23±39% ammonium nitrate, (27±23% ammonium sulfate, and (50±40% organics (OM1. OM1 was closely correlated with PM1 (r2=0.9 indicating a near-constant ratio of non-refractory organics and inorganics.

    The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA over hydrocarbon-like organic aerosol (HOA inferred from the AMS results (4:1, and also with the high abundance of proteins (~3% indicating a high proportion of primary biological material (~30% in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m−3 and EC (<1 μg m−3 in PM2.5