WorldWideScience

Sample records for blue copper protein

  1. Cloning and expression analysis of a blue copper- binding protein ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... Full Length Research Paper. Cloning and expression analysis of a blue copper- binding protein gene from Dasypyrum Villosum. Huagang He1*, Shanying Zhu1, Wenbing Wang1, Tongde Bie2 and Peidu Chen3. 1Jiangsu University. Zhenjiang 212013, P. R. China. 2Yangzhou Academy of Agricultural ...

  2. Functionally specified protein signatures distinctive for each of the different blue copper proteins

    Directory of Open Access Journals (Sweden)

    Anishetty Sharmila

    2004-09-01

    Full Text Available Abstract Background Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands. Results Sequences that share such conserved motifs are crucial to the structure or function of the protein and this could provide a signature of family membership. The blue copper proteins chosen for the study were plantacyanin, plastocyanin, cucumber basic protein, stellacyanin, dicyanin, umecyanin, uclacyanin, cusacyanin, rusticyanin, sulfocyanin, halocyanin, azurin, pseudoazurin, amicyanin and nitrite reductase which were identified in both eukaryotes and prokaryotes. ClustalW analysis of the protein sequences of each of the blue copper proteins was the basis for designing protein signatures or peptides. The protein signatures and peptides identified in this study were designed involving the active site region involving the amino acids

  3. Determination of the Electron Self-Exchange Rates of Blue Copper Proteins by Super-WEFT NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ma, Lixin; Philipp, Else Astrid; Led, Jens J.

    2001-01-01

    Anabaena variabilis plastocyanin, blue copper proteins, electron self-exchange rates, electron transfer, super-WEFT NMR......Anabaena variabilis plastocyanin, blue copper proteins, electron self-exchange rates, electron transfer, super-WEFT NMR...

  4. Preferred sites and pathways for electron transfer in blue copper proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1988-01-01

    of where and how electrons are transferred to and from the copper-ion have been investigated. One experimental approach developed in order to pursue these problems is that of reductively labeling several representative, yet structurally distinct blue single copper proteins; azurin, plastocyanin......, and stellacyanin with chromium ions. In all three cases, a substitution inert Cr(III)-adduct is formed when the oxidized protein is reduced by Cr(II)ag ions. In azurin, Cr(III) binds to the Glu-91 carboxylate approximately 10 A from the copper center. In both plastocyanin and stellacyanin the Cr(III) label is most...... probably also coordinated to carboxylate groups, present in plastocyanin, and in stellacyanin 12 A and 6 A, respectively, from the copper center. The salient feature emerging from examination of the three copper proteins is that a pi-facilitated electron transfer (E.T.) pathway may be operative; in azurin...

  5. Resonance Raman spectroscopy of amicyanin, a blue copper protein from Paracoccus denitrificans

    International Nuclear Information System (INIS)

    Sharma, K.D.; Loehr, T.M.; Sanders-Loehr, J.; Husain, M.; Davidson, V.L.

    1988-01-01

    The copper binding site of amicyanin from Paracoccus denitrificans has been examined by resonance Raman spectroscopy. The pattern of vibrational modes is clearly similar to those of the blue copper proteins azurin and plastocyanin. Intense resonance-enhanced peaks are observed at 377, 392, and 430 cm-1 as well as weaker overtones and combination bands in the high frequency region. Most of the peaks below 500 cm-1 shift 0.5-1.5 cm-1 to lower energy when the protein is exposed to D 2 O. Based on the pattern of conserved amino acids, the axial type EPR spectrum, and the resonance Raman spectrum, it is proposed that the copper binding site in amicyanin contains a Cu(II) ion in a distorted trigonal planar geometry with one cysteine and two histidine ligands and an axial methionine ligand at a considerably longer distance. Furthermore, the presence of multiple intense Raman peaks in the 400 cm-1 region which are sensitive to deuterium substitution leads to the conclusion that the Cu-S stretch is coupled with internal ligand vibrational modes and that the sulfur of the cysteine ligand is likely to be hydrogen-bonded to the polypeptide backbone

  6. Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, James P. [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (United Kingdom); Foord, John S. [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (United Kingdom)]. E-mail: john.foord@chem.ox.ac.uk

    2005-05-05

    Boron-doped diamond (BDD) is a promising electrode material for use in the spectro-electrochemical study of redox proteins and, in this investigation, cyclic voltammetry was used to obtain quasi-reversible electrochemical responses from two blue copper proteins, parsley plastocyanin and azurin from Pseudomonas aeruginosa. No voltammetry was observed at the virgin electrodes, but signals were observed if the electrodes were anodised, or abraded with alumina, prior to use. Plastocyanin, which has a considerable overall negative charge and a surface acidic patch which is important in forming a productive electron transfer complex with its redox partners, gave a faradaic signal at pre-treated BDD only in the presence of neomycin, a positively charged polyamine. The voltammetry of azurin, which has a small overall charge and no surface acidic patch, was obtained identically in the presence and absence of neomycin. Investigations were also carried out into the voltammetry of two site-directed mutants of azurin, M64E azurin and M44K azurin, each of which introduce a charge into the protein's surface hydrophobic patch. The oxidizing and cleaning effects of the BDD electrode pre-treatments were studied electrochemically using two inorganic probe ions, Fe(China){sub 6} {sup 3-} and Ru(NH{sub 3}){sub 6} {sup 3+}, and by X-ray photoelectron spectroscopy (XPS). All of the electrochemical results are discussed in relation to the electrostatic and hydrophobic contributions to the protein/diamond electrochemical interaction.

  7. Preferred sites and pathways for electron transfer in blue copper proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1988-01-01

    probably also coordinated to carboxylate groups, present in plastocyanin, and in stellacyanin 12 A and 6 A, respectively, from the copper center. The salient feature emerging from examination of the three copper proteins is that a pi-facilitated electron transfer (E.T.) pathway may be operative; in azurin......, E.T. proceeds via an extended imidazole ring system, and in plastocyanin and stellacyanin via a weakly coupled pi-system. Therefore, a case emerges for suggesting that this is the common feature of the long-distance intramolecular E.T. in this class of metalloproteins. These pathways are most...... probably a regulatory alternative to the E.T. site recognized at the exposed, "Northern" imidazole coordinated to copper in all these proteins....

  8. Determination of the electron self-exchange rates of blue copper proteins by super-WEFT NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma Lixin; Philipp, Else; Led, Jens J. [University of Copenhagen, H.C. Orsted Institute, Department of Chemistry (Denmark)

    2001-03-15

    An NMR approach for determining the electron self-exchange (ESE) rate constants in blue copper proteins is presented. The approach uses the paramagnetic relaxation enhancement of resonances in 1D {sup 1}H super-WEFT spectra of partly oxidized (paramagnetic) proteins. These spectra allow a more precise determination of the relevant paramagnetic linebroadenings than conventional 1D {sup 1}H spectra and, thus, permit a more detailed investigation of the applicability of the linebroadenings for determining the electron exchange rates. The approach was used to estimate the ESE rate constant of plastocyanin from Anabaena variabilis. It was found that, although the rate constant can be determined accurately from a series of resonances, precise but erroneous constants are obtained from the resonances of the copper-bound residues, unless a narrow splitting of these resonances caused by the presence of two conformations is taken into account. As demonstrated here, this complication can be overcome by a correct analysis of the paramagnetic broadening of the combined double signals. Because of the high resolution and specific sensitivity of the approach it should be generally applicable to estimate electron transfer rates, k, if the paramagnetic relaxation enhancement R{sub 2p} of the resonances can be determined, and the conditions k<<>k>>R{sub 2p} are fulfilled, {delta}{omega}{sub p} being the frequency separation between corresponding diamagnetic and paramagnetic sites.

  9. Hydrogen bonding of sulfur ligands in blue copper and iron-sulfur proteins: detection by resonance raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mino, Y.; Loehr, T.M.; Wada, K.; Matsubara, H.; Sanders-Loehr, J.

    1987-12-15

    The resonance Raman spectrum of the blue copper protein azurin from Alcaligenes denitrificans exhibits nine vibrational modes between 330 and 460 cm/sup -1/, seven of which shift 0.4-3.0 cm/sup -1/ to lower energy after incubation of the protein in D/sub 2/O. These deuterium-dependent shifts have been previously ascribed to exchangeable protons on imidazole ligands or to exchangeable protons on amide groups which are hydrogen bonded to the cysteine thiolate ligands (a feature common to all blue copper proteins of known structure). In order to distinguish between these two possibilities, a systematic investigation of Fe/sub 2/S/sub 2/(Cys)/sub 4/-containing proteins was undertaken. Extensive hydrogen bonding between sulfur ligands and the polypeptide backbone had been observed in the crystal structure of ferredoxin from Spirulina platensis. The resonance Raman spectrum of this protein is typical of a chloroplast-type ferredoxin and exhibits deuterium-dependent shifts of -0.3 to -0.5 cm/sup -1/ in the Fe-S modes at 283, 367, and 394 cm/sup -1/ and -0.6 to -0.8 cm/sup -1/ in the Fe-S modes at 328 and 341 cm/sup -1/. Considerably greater deuterium sensitivity is observed in the Raman spectra of spinach ferredoxin and bovine adrenodoxin, particularly for the symmetric stretching vibration of the Fe/sub 2/S/sub 2/ moiety at approx. 390 cm/sup -1/. This feature decreases of 9.8 and 1.1 cm/sup -1/, respectively, for the two oxidized proteins in D/sub 2/O and by 1.8 cm/sup -1/ for reduced adrenodoxin in D/sub 2/O. These results suggest that the bridging sulfido groups may be more extensively hydrogen bonded in spinach ferredoxin and adrenodoxin than in S. platensis ferredoxin, with a further increase in hydrogen-bond strength in the reduced form of adrenodoxin.

  10. Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Andersen, Jens Enevold Thaulov

    2001-01-01

    or monolayers. In this orientation mode azurin molecules on Au(111) are oriented with the redox center (copper atom) facing the electrode surface. This is opposite to the orientation of azurin on bare gold which is via a surface disulfide group such as recently reported. Scanning tunneling microscopy (STM......) with molecular resolution reveals that both well-ordered alkanethiol and protein adlayers are present. Adsorbed azurin molecules exhibit high stability and retain electron transfer (ET) function. Long-range interfacial ET between azurin and Au(111) across variable-length alkanethiol bridges was systematically...

  11. Cloning and expression analysis of a blue copperbinding protein ...

    African Journals Online (AJOL)

    Adifferentially expressed fragment EST145 was isolated by suppression subtractive hybridization (SSH) method. Using EST145 as the probe, a blue copper-binding protein gene designated as DvBCB was screened from Dasypyrum villosum cDNA Library. The DvBCB gene was 845 bp in length with an open reading frame ...

  12. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  13. Copper delivery to chloroplast proteins and its regulation

    Directory of Open Access Journals (Sweden)

    Guadalupe eAguirre

    2016-01-01

    Full Text Available Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase,¬ but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field.

  14. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B

    1999-01-01

    spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...... is cooperative, with Hill coefficients of 1.5 and 4, respectively. The apparent affinities are described by K(0.5), determined to be 65 microM and 19 microM for constructs containing two and six domains, respectively. Our data reveal a unique regulation of Menkes protein upon a change in copper(I) concentration...

  15. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of native and type-2-copper-depleted Vietnamese-lacquer-tree and Japanese-lacquer-tree laccases.

    Science.gov (United States)

    O'Neill, P; Fielden, E M; Morpurgo, L; Agostinelli, E

    1984-01-01

    The interactions of one-electron reduced metronidazole (ArNO2.-) and O2.- with native and Type-2-copper-depleted Vietnamese- and Japanese-lacquer-tree laccases were studied in aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. On reaction with ArNO2.-, in the absence of O2, the holo- and the Type-2-copper-depleted proteins accept, with reduction of Type 1 copper, 2 and 1 reducing equivalents respectively. On reaction with O2.- of both holo- and Type-2-copper-depleted Vietnamese-lacquer-tree laccase, almost complete reduction of Type 1 copper was observed and, after completion of the reaction, some (less than 20%) reoxidation of Type 1 copper occurs. Reduction of Type 1 copper of the laccases by these one-electron donors occurs via a bimolecular step; however, the rate of reduction of Vietnamese-lacquer-tree laccase is over 10 times that of Japanese-lacquer-tree laccase. It is inferred that electrons enter the protein via Type 1 copper with, in the case of the holoprotein, subsequent rapid intramolecular transfer of 1 reducing equivalent within the protein. Furthermore it is suggested that intra-molecular electron transfer to Type 3 copper atoms is slow and, in the case of Type-2-copper-depleted protein, may not occur. This slow process may partially account for the variation of the catalytic activities of 'blue' oxidases. PMID:6089764

  16. Adsorption of blue copper on a natural and electrochemically treated bentonite

    Science.gov (United States)

    Hajjaji, M.; Mountassir, Y.; Benyaich, A.

    2016-03-01

    Kinetics and equilibrium studies of the adsorption of blue copper on a natural (NC) and electrochemically treated (EMC) bentonite, taken in different experimental conditions, were carried out. Changes of the dye uptake versus operating factors were evaluated using response surface methodology (RSM). The kinetics at 5-50 °C and pH model and the maximum uptake was around 21 mg/g. In the case of EMC, the Freundlich equation was rather fitting. Dye adsorption on both sorbents was a non-spontaneous process (2 adsorption and was the most influential factor in the case of EMC. For NC, the clay dose was rather the most important parameter.

  17. Catalytic degradation of methylene blue by biosynthesised copper nanoflowers usingF. benghalensisleaf extract.

    Science.gov (United States)

    Agarwal, Meenakshi; Singh Bhadwal, Akhshay; Kumar, Nishant; Shrivastav, Archana; Raj Shrivastav, Braj; Pratap Singh, Manoj; Zafar, Fahmina; Mani Tripathi, Ravi

    2016-10-01

    This study reports the unprecedented, novel and eco-friendly method for the synthesis of three-dimensional (3D) copper nanostructure having flower like morphology using leaf extract of Ficus benghalensis . The catalytic activity of copper nanoflowers (CuNFs) was investigated against methylene blue (MB) used as a modal dye pollutant. Scanning electron micrograph evidently designated 3D appearance of nanoflowers within a size range from 250 nm to 2.5 μm. Energy-dispersive X-ray spectra showed the presence of copper elements in the nanoflowers. Fourier-transform infrared spectra clearly demonstrated the presence of biomolecules which is responsible for the synthesis of CuNFs. The catalytic activity of the synthesised CuNFs was monitored by ultraviolet-visible spectroscopy. The MB was degraded by 72% in 85 min on addition of CuNFs and the rate constant ( k ) was found to be 0.77 × 10 -3 s -1 . This method adapted for synthesis of CuNFs offers a valuable contribution in the area of nanomaterial synthesis and in water research by suggesting a sustainable and an alternative route for removal of toxic solvents and waste materials.

  18. The Methylococcus capsulatus (Bath secreted protein, MopE*, binds both reduced and oxidized copper.

    Directory of Open Access Journals (Sweden)

    Thomas Ve

    Full Text Available Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES, and Electron Paramagnetic Resonance (EPR studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II at two weaker binding sites. Both Cu(II binding sites have properties typical of non-blue type II Cu (II centres, and the strongest of the two Cu(II sites is characterised by a relative high hyperfine coupling of copper (A(|| =20 mT. Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s for Cu(II ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I and low Cu(II affinity properties.

  19. Effects of Dietary Copper and Zinc Supplementation on Growth Performance, Tissue Mineral Retention, Antioxidant Status, and Fur Quality in Growing-Furring Blue Foxes (Alopex lagopus).

    Science.gov (United States)

    Liu, Zhi; Wu, Xuezhuang; Zhang, Tietao; Guo, Jungang; Gao, Xiuhua; Yang, Fuhe; Xing, Xiumei

    2015-12-01

    A 4×2 factorial experiment with four supplemental levels of copper (0, 20, 40, or 60 mg copper per kg dry matter) from copper sulfate and two supplemental levels of zinc (40 or 200 mg zinc per kg dry matter) from zinc sulfate was conducted to investigate the effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes. One hundred and twenty healthy 15-week-old male blue foxes were randomly allocated to eight dietary treatments with 15 replicates per treatment for a 70-day trial from mid-September to pelting in December. The average daily gain and feed conversion ratio were increased with copper supplementation in the first 35 days as well as the overall period (P0.10) and feed intake (P>0.10) but improved feed conversion (Peffects on the digestibility of other nutrients. Fecal copper was increased with both copper (Pdietary zinc addition (Pdietary treatments (P>0.05). However, the level of copper in the liver was increased with copper supplementation (PDietary zinc addition tended to increase the activity of alkaline phosphatase (P=0.07). The activities of copper-zinc superoxide dismutase and catalase tended to increase by copper (P=0.08) and zinc addition (P=0.05). Moreover, a copper×zinc interaction was observed for catalase in the experiment (Pdietary copper and zinc levels (Pdietary copper and zinc supplementation can improve growth by increasing feed intake and improving fat digestibility. Additionally, copper and zinc can enhance the antioxidant capacity of blue foxes. This study also indicates that additional zinc up to 200 mg/kg did not exert significant adverse effects on the copper metabolism of growing-furring blue foxes.

  20. Development of a generic approach to native metalloproteomics: application to the quantitative identification of soluble copper proteins in Escherichia coli.

    Science.gov (United States)

    Sevcenco, Ana-Maria; Krijger, Gerard C; Pinkse, Martijn W H; Verhaert, Peter D E M; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2009-05-01

    A combination of techniques to separate and quantify the native proteins associated with a particular transition metal ion from a cellular system has been developed. The procedure involves four steps: (1) labeling of the target proteins with a suitable short-lived radioisotope (suitable isotopes are (64)Cu, (67)Cu, (187)W, (99)Mo, (69)Zn, (56)Mn, (65)Ni); (2) separation of intact soluble holoproteins using native isoelectric focusing combined with blue native polyacrylamide gel electrophoresis into native-native 2D gel electrophoresis; (3) spot visualization and quantification using autoradiography; and (4) protein identification with tandem mass spectrometry. The method was applied to the identification of copper proteins from a soluble protein extract of wild-type Escherichia coli K12 using the radioisotope (64)Cu. The E. coli protein CueO, which has previously been only identified as a multicopper oxidase following homologous overexpression, was now directly detected as a copper protein against a wild-type background at an expression level of 0.007% of total soluble protein. The retention of the radioisotope by the copper proteins throughout the separation process corroborates the method to be genuinely native. The procedure developed here can be applied to cells of any origin, and to any metal having suitable radioisotopes. The finding that the periplasmic protein CueO is the only major form of soluble protein bound copper in E. coli strengthens the view that the bacterial periplasm contains only a few periplasmic copper proteins, and that the cytosol is devoid of copper proteins.

  1. Simultaneous Platinum and Copper Ion Attachment to a Human Copper Chaperone Protein

    Science.gov (United States)

    Hodak, Miroslav; Cvitkovic, John; Yu, Corey; Dmitriev, Oleg; Kaminski, George; Bernholc, Jerry

    2015-03-01

    Cisplatin is a potent anti-cancer drug based on a platinum ion. However, its effectiveness is decreased by cellular resistance, which involves cisplatin attaching to copper transport proteins. One of such proteins is Atox1, where cisplatin attaches to the copper binding site. Surprisingly, it was shown that both cisplatin and copper can attach to Atox1 at the same time. To study this double metal ion attachment, we use the KS/FD DFT method, which combines Kohn-Sham DFT with frozen-density DFT to achieve efficient quantum-mechanical description of explicit solvent. Calculations have so far investigated copper ion attachment to CXXC motifs present in Atox1. The addition of the platinum ion and the competition between the two metals is currently being studied. These calculations start from a molecular mechanics (MM) structural model, in which glutathione groups provide additional ligands to the Pt ion. Our goals are to identify possible Cu-Pt structures and to determine whether copper/platinum attachment is competitive, independent, or cooperative. Results will be compared to the 1H, N1 5 -HSQC NMR experiments, in which binding of copper and cisplatin to Atox1 produces distinct secondary chemical shift signatures, allowing for kinetic studies of simultaneous metal binding.

  2. Placenta Copper Transport Proteins in Preeclampsia

    Science.gov (United States)

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  3. Protein requirements for Blue-fronted Amazon (Amazona aestiva) growth.

    Science.gov (United States)

    Carciofi, A C; Sanfilippo, L F; de-Oliveira, L D; do Amaral, P P; Prada, F

    2008-06-01

    The objective of this study was to evaluate the protein requirements for hand-rearing Blue-fronted Amazon parrots (Amazona aestiva). Forty hatchlings were fed semi-purified diets containing one of four (as-fed basis) protein levels: 13%, 18%, 23% and 28%. The experiment was carried out in a randomized block design with the initial weight of the nestling as the blocking factor and 10 parrots per protein level. Regression analysis was used to determine relationships between protein level and biometric measurements. The data indicated that 13% crude protein supported nestling growth with 18% being the minimum tested level required for maximum development. The optimal protein concentration for maximum weight gain was 24.4% (p = 0.08; r(2) = 0.25), tail length 23.7% (p = 0.09; r(2) = 0.19), wing length 23.0% (p = 0.07; r(2) = 0.17), tarsus length 21.3% (p = 0.06; r(2) = 0.10) and tarsus width 21.4% (p = 0.07; r(2) = 0.09). Tarsus measurements were larger in males (p < 0.05), indicating that sex must be considered when studying developing psittacines. These results were obtained using a highly digestible protein and a diet with moderate metabolizable energy levels.

  4. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    Science.gov (United States)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  5. Determinants of the relative reduction potentials of type-1 copper sites in proteins.

    Science.gov (United States)

    Li, Hui; Webb, Simon P; Ivanic, Joseph; Jensen, Jan H

    2004-06-30

    The relative Cu(2+)/Cu(+) reduction potentials of six type-1 copper sites (cucumber stellacyanin, P. aeruginosa azurin, poplar plastocyanin, C. cinereus laccase, T. ferrooxidans rusticyanin, and human ceruloplasmin), which lie in a reduction potential range from 260 mV to over 1000 mV, have been studied by quantum mechanical calculations. The range and relative orderings of the reduction potentials are reproduced very well compared to experimental values. The study suggests that the main structural determinants of the relative reduction potentials of the blue copper sites are located within 6 A of the Cu atoms. Further analysis suggests that the reduction potential differences of type-1 copper sites are caused by axial ligand interactions, hydrogen bonding to the S(Cys), and protein constraint on the inner sphere ligand orientations. The low reduction potential of cucumber stellacyanin is due mainly to a glutamine ligand at the axial position, rather than a methionine or a hydrophobic residue as in the other proteins. A stronger interaction with a backbone carbonyl group is a prime contributor to the lower reduction potential of P. aeruginosa azurin as compared to poplar plastocyanin, whereas the reverse is true for C. cinereus laccase and T. ferrooxidans rusticyanin. The lack of an axial methonine ligand also contributes significantly to the increased reduction potentials of C. cinereus laccase and human ceruloplasmin. However, in the case of C. cinereus laccase, this increase is attenuated by the presence of only one amide NH hydrogen bond to the S(Cys) rather than two in the other proteins. In human ceruloplasmin the reduction potential is further increased by the structural distortion of the equatorial ligand orientation.

  6. Dimethylformamide interferes with Coomassie dye staining of proteins on blue native gel electrophoresis.

    Science.gov (United States)

    Raghupathy, V; Oommen, Anna; Ramachandran, Anup

    2014-06-15

    Blue native gel electrophoresis (BN-PAGE) is used extensively for characterization of mitochondrial respiratory complexes and uses the binding of Coomassie brilliant blue G-250 to visualize proteins. Oxidative modification of sulfhydryl groups of such proteins can be evaluated by labeling with iodoacetamide conjugated to biotin (BIAM) and detected with streptavidin peroxidase on Western blots following BN-PAGE. However, dissolving BIAM in dimethylformamide, a recommended solvent, reduces Coomassie blue G staining to proteins during BN-PAGE. This interference is prevented by dissolving BIAM in dimethyl sulfoxide. Precautions in the use of the dye for protein staining subsequent to BIAM labeling are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. COPPER FRACTIONATION IN PROTEINS FROM PLASMA, MUSCLE AND LIVER OF NILE TILAPIA

    OpenAIRE

    Neves, RCF; Lima, PM; Baldassini, WA; Santos, FA; Moraes, PM; Castro, GR; Padilha, PM

    2012-01-01

    COPPER FRACTIONATION IN PROTEINS FROM PLASMA, MUSCLE AND LIVER OF NILE TILAPIA. Copper fractionation in plasma, muscle and liver of Nile tilapia was performed after protein separation by 2D-PAGE. SR XRF analysis indicated the presence of copper in three protein spots of plasma, and in two protein spots of muscle and liver, respectively. Copper ions were found to be distributed mostly in proteins that had a molar mass of less than 54 kDa and greater than 13 kat and a pI in the 5.3-9.3 range. T...

  8. Serum Copper and Plasma Protein Status in Normal Pregnancy

    Directory of Open Access Journals (Sweden)

    Nushrat Noor, Nasim Jahan, Nayma Sultana

    2012-12-01

    Full Text Available AbstractBackground: Gradual alteration of serum copper and some plasma protein levels may occur with advancement of pregnancy, which is associated with increased maternal and infant morbidity and mortality.Objective: To observe serum copper and plasma protein levels in normal pregnant women of different trimesters in order to find out their nutritional status.Methods: This cross sectional study was carried out in the Department of Physiology, Sir Salimullah Medical College (SSMC, Dhaka, between 1st January 2010 and December 2010. Ninety normal pregnant women of different trimesters with age 20-30 years were included in the study group. They were selected from Out Patient Department of Obstetrics and Gynaecology, SSMC. Age matched 30 non-pregnant women were taken as control. Serum copper level was measured by Spectrophotometric method, serum total protein and albumin levels were estimated by standard method. Statistical analysis was done by one way ANOVA, Bonferroni and Pearson’s correlation coefficient test as applicable.Results: Serum Cu levels were significantly higher in all trimesters of pregnant women compared to control. Again, this value was significantly higher in 3rd trimester than that of in 1st and 2nd trimester and also in 2nd trimester than that of in 1st trimester. In addition, mean serum total protein level was significantly lower in 3rd trimester than control but no statistically significant difference was observed among different trimesters. Again, mean serum albumin level was significantly lower in 2nd and 3rd trimester than 1st trimester and control. In addition, serum Cu concentration showed significant positive correlation with different trimesters of gestation.Conclusion: This study reveals that hypercupremia along with hypoproteinemia occur in pregnant women from 1st to 3rd trimester of gestation. This gradual alteration of micro and macronutrients become more profound with advancement of pregnancy.

  9. Determination of proteins by a reverse biuret method combined with the copper-bathocuproine chelate reaction.

    Science.gov (United States)

    Matsushita, M; Irino, T; Komoda, T; Sakagishi, Y

    1993-07-16

    A method of protein determination has been developed which combines the biuret reaction and the copper(I)-bathocuproine chelate reaction. Protein in the specimen forms a Cu(2+)-protein chelate complex (biuret reaction) during the first step. Excess Cu2+ is reduced to Cu+ by ascrobic acid, allowing the Cu+ to form a Cu(+)-bathocuproine chelate complex during the second step. The amount of Cu(+)-bathocuproine chelate complex formed is inversely proportional to the protein concentration. The sensitivity (epsilon = 1.4 x 10(6) 1.mol-1.cm-1 against human albumin) of this method was higher than that of the original Lowry (9.8 x 10(5)), pyrogallol red (1.0 x 10(6)) and commercially available Coomassie Brilliant Blue G.250 methods (6.7 x 10(5)). The color intensities of human gamma-globulin, human globulin (fractions IV-1 and IV-4), bovine albumin, egg albumin and horse gamma-globulin against human albumin (100%) ranged from 92 to 101%. The results obtained with the present method (y) correlated well with those determined by the biuret method (r = 0.998, y = 0.98 chi - 0.002, x = 1.31, y = 1.29 g/l) in 30 diluted sera. These results confirm that this assay is similar in sensitivity to the original Lowry method, is rapid and has similar reactivity to each of the various proteins in biological fluids.

  10. Influence of dietary copper concentrations on growth performance, serum lipid profiles, antioxidant defenses, and fur quality in growing-furring male blue foxes (Vulpes lagopus).

    Science.gov (United States)

    Liu, Z; Wu, X; Zhang, T; Cui, H; Guo, J; Guo, Q; Gao, X; Yang, F

    2016-03-01

    A 75-d experiment was conducted to evaluate the influence of dietary Cu concentrations on growth performance, serum lipid profiles, antioxidant defenses, and fur quality in growing-furring male blue foxes. Seventy-five male blue foxes (5.78 ± 0.09 kg BW) were selected and randomly allocated to 1 of the following 5 dietary treatments: 1) control (basal diet without supplemental Cu; 7.78 mg Cu/kg), 2) 12.22 mg/kg supplemental Cu (Cu20), 3) 32.22 mg/kg supplemental Cu, 4) 72.22 mg/kg supplemental Cu (Cu80), and 5) 152.22 mg/kg supplemental Cu (Cu160). A dry feed that consisted of animal meals, soybean meal, extruded corn, and soybean oil was used as the basal diet and Cu was supplemented as reagent grade CuSO∙5HO. The results showed that Cu supplementation increased the ADG ( 0.10). Additionally, Cu supplementation linearly increased the concentration of fecal Cu, liver Cu, serum total protein, and albumin ( < 0.01). Foxes in the Cu160 group had higher serum Cu concentration than those in the control and Cu20 groups ( < 0.05). The concentration of serum cholesterol decreased with dietary Cu supplementation ( < 0.05). Serum high-density lipoprotein, on the contrary, tended to increase with Cu supplementation ( = 0.09). Copper supplementation increased the activity of glutathione peroxidase ( < 0.05) and tended to increase the activity of serum ceruloplasmin ( = 0.07). For fur quality, skin length in the Cu80 group was greater than that in the control and Cu20 groups. In addition, hair color tended to deepen with the increasing of dietary Cu concentrations ( = 0.08). In conclusion, this study demonstrates that Cu supplementation can promote growth and increase fat digestibility and fur length. Additionally, dietary Cu supplementation can enhance antioxidant capacity and reduce serum cholesterol in growing-furring blue foxes.

  11. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    Science.gov (United States)

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  12. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    Science.gov (United States)

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  13. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory.

    Science.gov (United States)

    Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P

    2017-11-02

    Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Development of a copper-substituted, Prussian blue-impregnated, nonwoven cartridge filter to rapidly measure radiocesium concentration in seawater

    International Nuclear Information System (INIS)

    Yasutaka, Tetsuo; Takahashi, Akira; Kawamoto, Tohru; Miyazu, Susumu; Kondo, Yoshihiko; Tsuji, Hideki; Arita, Koichi; Hayashi, Seiji; Aoyama, Michio

    2016-01-01

    This paper presents a cartridge filter incorporating a nonwoven fabric impregnated with Prussian blue copper analog (Cu-CF) to effectively concentrate and quantify radiocesium dissolved in seawater. The recovery ratio of the Cu-CF was >95% in laboratory experiments at a flow rate of 0.5 L min -1 through the filter and >93% in field experiments. Test measurements of 137 Cs concentrations in seawater using Cu-CF agreed with the results obtained by using a conventional coprecipitation method that employed ammonium phosphomolybdate (within the counting error of the detector). The proposed method can shorten the preconcentration and pretreatment times for radiocesium, to just 40 min in 20 L of seawater, which is much faster than the ∼1 week required by traditional ammonium phosphomolybdate methods. (author)

  15. Oligomeric state of membrane transport proteins analyzed with blue native electrophoresis and analytical ultracentrifugation

    NARCIS (Netherlands)

    Heuberger, E.H M L; Veenhoff, L.M.; Duurkens, R.H.T.; Friesen, R.H.E.; Poolman, B.

    2002-01-01

    Blue native electrophoresis is used widely for the analysis of non-dissociated protein complexes with respect to composition, oligomeric state and molecular mass. However, the effects of detergent or dye binding on the mass and stability of the integral membrane proteins have not been studied. By

  16. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae.

    Science.gov (United States)

    Lee, Sidae; Lim, Wendell A; Thorn, Kurt S

    2013-01-01

    Fluorescent protein fusions are a powerful tool to monitor the localization and trafficking of proteins. Such studies are particularly easy to carry out in the budding yeast Saccharomyces cerevisiae due to the ease with which tags can be introduced into the genome by homologous recombination. However, the available yeast tagging plasmids have not kept pace with the development of new and improved fluorescent proteins. Here, we have constructed yeast optimized versions of 19 different fluorescent proteins and tested them for use as fusion tags in yeast. These include two blue, seven green, and seven red fluorescent proteins, which we have assessed for brightness, photostability and perturbation of tagged proteins. We find that EGFP remains the best performing green fluorescent protein, that TagRFP-T and mRuby2 outperform mCherry as red fluorescent proteins, and that mTagBFP2 can be used as a blue fluorescent protein tag. Together, the new tagging vectors we have constructed provide improved blue and red fluorescent proteins for yeast tagging and three color imaging.

  17. A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening.

    Science.gov (United States)

    Hayashi, Maki; Inoue, Shin-Ichiro; Ueno, Yoshihisa; Kinoshita, Toshinori

    2017-03-30

    Stomata in the plant epidermis open in response to blue light and affect photosynthesis and plant growth by regulating CO 2 uptake and transpiration. In stomatal guard cells under blue light, plasma membrane H + -ATPase is phosphorylated and activated via blue light-receptor phototropins and a signaling mediator BLUS1, and H + -ATPase activation drives stomatal opening. However, details of the signaling between phototropins and H + -ATPase remain largely unknown. In this study, through a screening of specific inhibitors for the blue light-dependent H + -ATPase phosphorylation in guard cells, we identified a Raf-like protein kinase, BLUE LIGHT-DEPENDENT H + -ATPASE PHOSPHORYLATION (BHP). Guard cells in the bhp mutant showed impairments of stomatal opening and H + -ATPase phosphorylation in response to blue light. BHP is abundantly expressed in the cytosol of guard cells and interacts with BLUS1 both in vitro and in vivo. Based on these results, BHP is a novel signaling mediator in blue light-dependent stomatal opening, likely downstream of BLUS1.

  18. A Molecular Mechanism for Copper Transportation to Tyrosinase That Is Assisted by a Metallochaperone, Caddie Protein*

    Science.gov (United States)

    Matoba, Yasuyuki; Bando, Naohiko; Oda, Kosuke; Noda, Masafumi; Higashikawa, Fumiko; Kumagai, Takanori; Sugiyama, Masanori

    2011-01-01

    The Cu(II)-soaked crystal structure of tyrosinase that is present in a complex with a protein, designated “caddie,” which we previously determined, possesses two copper ions at its catalytic center. We had identified two copper-binding sites in the caddie protein and speculated that copper bound to caddie may be transported to the tyrosinase catalytic center. In our present study, at a 1.16–1.58 Å resolution, we determined the crystal structures of tyrosinase complexed with caddie prepared by altering the soaking time of the copper ion and the structures of tyrosinase complexed with different caddie mutants that display little or no capacity to activate tyrosinase. Based on these structures, we propose a molecular mechanism by which two copper ions are transported to the tyrosinase catalytic center with the assistance of caddie acting as a metallochaperone. PMID:21730070

  19. Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Caires, Cynthia S A; Leal, Cassia R B; Ramos, Carlos A N; Bogo, Danielle; Lima, Alessandra R; Arruda, Eduardo J; Oliveira, Samuel L; Caires, Anderson R L; Nascimento, Valter A

    2017-07-01

    The use of eosin methylene blue according to Giemsa as photosensitizer is presented for the first time in this paper. The present study evaluated the potential application of chlorophyllin sodium copper salt (CuChlNa) and eosin methylene blue according to Giemsa (EMB) as antimicrobial photosensitizers (aPS) for photodynamic inactivation (PDI) of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. The experiments were performed using S. aureus stain ATCC 25923 and E. coli ATCC 25922 in which five aPS concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 μM for S. aureus and 0.0, 5.0, 10.0, 20.0, 40.0, and 50.0 μM for E. coli) were prepared and added in 2 mL of a saline solution containing the bacterial inoculum. After aPS incubation, the samples were divided into two groups, one kept in the dark and another submitted to the illumination. Then, the bacterial inactivation was determined 18 h after the incubation at 37 °C by counting the colony-forming units (CFU). The results revealed that both EMB and CuChlNa can be used as aPS for the photoinactivation of S. aureus, while only EMB was able to photoinactivate E. coli. Nevertheless, a more complex experimental setup was needed for photoinactivation of E. coli. The data showed that EMB and CuChlNa presented similar photoinactivation effects on S. aureus, in which bacterial growth was completely inhibited at photosensitizer (PS) concentrations over 5 μM, when samples were previously incubated for 30 min and irradiated by a light dose of 30 J cm -2 as a result of an illumination of 1 h at 8.3 mW cm -2 by using a red light at 625 nm with a 1 cm beam diameter and output power of 6.5 mW. In the case of E. coli, bacterial growth was completely inhibited only when combining a PS incubation period of 120 min with concentrations over 20 μM.

  20. Food choice by Blue-gray Tanagers in relation to protein content.

    Science.gov (United States)

    Bosque, Carlos; Calchi, Rosanna

    2003-06-01

    We tested discriminatory ability and food choice in relation to protein content of the diet in wild-caught Blue-gray Tanagers (Thraupis episcopus), a generalist tropical frugivorous bird. In two sets of experiments we offered to five individual birds in pair-wise choice trials two nearly iso-caloric experimental diets differing in their protein content only. Protein contents of the experimental diets were 4.6 vs. 1.4% in the first experiment and 3.2 and 1.5% (dry matter basis) in the second experiment. Response varied among individual tanagers, but 6 of the 10 birds showed a clear preference for the food highest in protein. Two individuals displayed a strong positional preference. When testing each treatment group, birds ate daily significantly more of the food that had higher protein content. We conclude that Blue-gray Tanagers prefer richer nitrogen foods. Our results also demonstrate that Blue-gray Tanagers have remarkable discriminatory abilities, they reacted to differences in protein content as small as 0.09% fresh matter. We show for the first time discriminatory ability and preference of wild frugivorous birds for foods richer in protein under controlled conditions. Our findings support the hypothesis that frugivorous birds can act as selective agents for fruit pulp composition.

  1. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Parkin, Edward, E-mail: e.parkin@lancaster.ac.uk

    2014-10-31

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  2. X-ray absorption spectroscopic studies of the blue copper site: Metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin

    International Nuclear Information System (INIS)

    Shadle, S.E.; Penner-Hahn, J.E.; Schugar, H.J.; Hedman, B.; Hodgson, K.O.; Solomon, E.I.

    1993-01-01

    X-ray absorption spectra for the oxidized blue copper protein plastocyanin and several Cu(II) model complexes have been measured at both the Cu K-edge and the ligand K-edges (Cl and S) in order to elucidate the source of the small parallel hyperfine splitting in the EPR spectra of blue copper centers. Assignment and analysis of a feature in the Cu K-edge X-ray absorption spectrum at ∼8,987 eV as the Cu 1s → 4p + ligand-to-metal charge-transfer shakedown transition has allowed for quantitation of 4p mixing into the ground-state wave function as reflected in the 1s →3d (+4p) intensity at ∼8,979 eV. The results show that distorted tetrahedral (D 2d )CuCl 4 2- is characterized by z mixing, while plastocyanin has only Cu 4p xy mixing. Thus, the small parallel hyperfine splitting in the EPR spectra of D 2d CuCl 4 2- and of oxidized plastocyanin cannot be explained by 12% 4p z mixing into the 3d x 2 -y 2 orbital as had been previously postulated. Data collected at the Cl K-edge for CuCl 4 2- show that the intensity of the ligand pre-edge feature at ∼2,820 eV reflects the degree of covalency between the metal half-occupied orbital and the ligands. The data show that D 2d CuCl 4 2- is not unusually covalent. The source of the small parallel splitting in the EPR of D 2d CuCl 4 2- is discussed. Experiments at the S K-edge (∼2,470 eV) show that plastocyanin is characterized by a highly covalent Cu-S(cysteine) bond relative to the cupric-thiolate model complex [Cu(tet b)(o-SC 6 H 4 CO 2 )]·H 2 O. The XAS results demonstrate that the small parallel hyperfine splitting in the EPR spectra of blue copper sites reflects the high degree of covalency of the copper-thiolate bond. 34 refs., 12 figs., 3 tabs

  3. Acute toxicity, accumulation and tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different salinities: in vivo and in vitro studies.

    Science.gov (United States)

    Martins, Camila De Martinez Gaspar; Barcarolli, Indianara Fernanda; de Menezes, Eliana Jaime; Giacomin, Marina Mussoi; Wood, Chris M; Bianchini, Adalto

    2011-01-17

    In vivo and in vitro studies were performed to evaluate acute toxicity, organ-specific distribution, and tissue accumulation of copper in Callinectes sapidus acclimated to two different experimental salinities (2 and 30 ppt). Blue crabs were quite tolerant to copper. Acute dissolved copper toxicity (96-h LC(50) and its corresponding 95% confident interval) was higher at salinity 2 ppt (5.3 (3.50-8.05) μM Cu) than at 30 ppt (53.0 (27.39-102.52) μM Cu). The difference between salinities can be completely explained based on the water chemistry because it disappeared when 96-h LC(50) values were expressed as the free Cu(2+) ion (3.1 (1.93-4.95) μM free Cu at 2 ppt versus 5.6 (2.33-13.37) μM free Cu at 30 ppt) or the Cu(2+) activity (1.4 (0.88-2.26) μM Cu activity at 2 ppt versus 1.7 (0.71-4.07) μM Cu activity at 30 ppt). The relationships between gill Cu burden and % mortality were very similar at 2 and 30 ppt, in accord with the Biotic Ligand Model. In vivo experiments showed that copper concentration in the hemolymph is not dependent on metal concentration in the surrounding medium at either experimental salinity. They also showed that copper flux into the gills is higher than into other tissues analyzed, and that anterior and posterior gills are similarly important sites of copper accumulation at both experimental salinities. In vitro experiments with isolated-perfused gills showed that there is a positive relationship between copper accumulation in this tissue and the metal concentration in the incubation media for both anterior and posterior gills. A similar result was observed at both low and high salinities. Furthermore, in vitro experiments showed that copper accumulation in posterior gills is also positively and strongly dependent on the incubation time with copper. Gill copper accumulation occurred at a lower rate in the first 2h of metal exposure, increasing markedly after this "steady-state" period. This finding was corroborated by a significant

  4. Combined gel filtration, biuret/copper method compared with an immunochemical method for urinary protein measurement.

    Science.gov (United States)

    Peele, J D; Gadsden, R H; Loadholt, C B

    1977-01-01

    We compared an immunochemical method specific for plasma proteins with a chemical method, in which interfering substances are separated by gel filtration and "total" urinary protein is determined by the biuret reaction followed by reaction of protein-bound copper with diethyldithiocarbamate after a second gel filtration to remove nonprotein-bound copper. More than 250 24-h urine samples were analyzed by each method. There was linear agreement and a correlation of 0.96 between the two methods, but urinary protein values determined by the immunochemical method, especially for patients with multiple myeloma, were lower than by the chemical method.

  5. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  6. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes.

    NARCIS (Netherlands)

    Wessels, H.C.T.; Vogel, R.O.; Heuvel, L.P.W.J. van den; Smeitink, J.A.M.; Rodenburg, R.J.T.; Nijtmans, L.G.J.; Farhoud, M.H.

    2009-01-01

    Two-dimensional blue native/SDS-PAGE is widely applied to investigate native protein-protein interactions, particularly those within membrane multi-protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we

  7. Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex.

    Science.gov (United States)

    Zhu, Ben-Zhan; Mao, Li; Fan, Rui-Mei; Zhu, Jun-Ge; Zhang, Ying-Nan; Wang, Jing; Kalyanaraman, Balaraman; Frei, Balz

    2011-01-14

    Ergothioneine (2-mercaptohistidine trimethylbetaine) is a naturally occurring amino acid analogue found in up to millimolar concentrations in several tissues and biological fluids. However, the biological functions of ergothioneine remain incompletely understood. In this study, we investigated the role of ergothioneine in copper-induced oxidative damage to DNA and protein, using two copper-containing systems: Cu(II) with ascorbate and Cu(II) with H(2)O(2) [0.1 mM Cu(II), 1 mM ascorbate, and 1 mM H(2)O(2)]. Oxidative damage to DNA and bovine serum albumin was measured as strand breakage and protein carbonyl formation, respectively. Ergothioneine (0.1-1.0 mM) provided strong, dose-dependent protection against oxidation of DNA and protein in both copper-containing systems. In contrast, only limited protection was observed with the purported hydroxyl radical scavengers, dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Ergothioneine also significantly inhibited copper-catalyzed oxidation of ascorbate and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous copper, but not cupric copper, as demonstrated by UV-visible and low-temperature electron spin resonance techniques. We conclude that ergothioneine is a potent, natural sulfur-containing antioxidant that prevents copper-dependent oxidative damage to biological macromolecules by forming a redox-inactive ergothioneine-copper complex.

  8. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.

    Science.gov (United States)

    Molina, Rosana S; Tran, Tam M; Campbell, Robert E; Lambert, Gerard G; Salih, Anya; Shaner, Nathan C; Hughes, Thomas E; Drobizhev, Mikhail

    2017-06-15

    Fluorescent proteins (FPs) are indispensable markers for two-photon imaging of live tissue, especially in the brains of small model organisms. The quantity of physiologically relevant data collected, however, is limited by heat-induced damage of the tissue due to the high intensities of the excitation laser. We seek to minimize this damage by developing FPs with improved brightness. Among FPs with the same chromophore structure, the spectral properties can vary widely due to differences in the local protein environment. Using a physical model that describes the spectra of FPs containing the anionic green FP (GFP) chromophore, we predict that those that are blue-shifted in one-photon absorption will have stronger peak two-photon absorption cross sections. Following this prediction, we present 12 blue-shifted GFP homologues and demonstrate that they are up to 2.5 times brighter than the commonly used enhanced GFP (EGFP).

  9. Replacement of fish meal protein by surimi by-product protein in the diet of blue gourami Trichogaster trichopterus fingerlings.

    Science.gov (United States)

    Mohanta, K N; Subramanian, S; Korikanthimath, V S

    2013-02-01

    Based on the nutrient requirement of Trichogaster trichopterus, a fish meal-based basal diet with 350 g/kg diet crude protein and 16.7 MJ/kg energy was formulated, in which the fish meal protein was replaced by surimi by-product protein at 0.0 (control), 12.5, 25, 50, 75 and 100% levels. The formulated diets were fed ad libitum to T. trichopterus fingerlings (4.80 ± 0.03 g) in triplicate groups for 45 days in a closed water system. Eighteen fibre-reinforced plastic tanks with 200 l of water were used for rearing the fish. Weight gain, specific growth rate, feed/gain ratio, protein efficiency ratio, nutrient retention and digestibility (protein and energy) of fish were not affected (p > 0.05) up to 50% fish meal protein replacement level by surimi by-product protein. While whole-body protein content of fish was marginally decreased, the lipid content was increased with increase in surumi by-product incorporation level in the diet. The study results suggest that the fish meal protein, which is scarce and costly nowadays, could be replaced up to 50% by surimi by-product protein in the diet of blue gourami without hampering the growth and nutrient utilization of fish. © 2011 Blackwell Verlag GmbH.

  10. Prussian blue analogue copper hexacyanoferrate : Synthesis, structure characterization and its applications as battery electrode and CO2 adsorbent

    OpenAIRE

    Ojwang, Dickson Odhiambo

    2017-01-01

    Prussian blue (PB) and Prussian blue analogues (PBAs) are compounds with potential applications in a large variety of fields such as gas storage, poison antidotes, electrochromism, electrochemistry and molecular magnets. The compounds are easy to synthesize, cheap, environmentally friendly and have been pursued for both fundamental research and industrial purposes. Despite the multifunctionality of PB and PBAs, they have complicated compositions, which are largely dependent on the synthesis m...

  11. Neutron activation analysis of AD 1660-1930 European copper-coloured blue glass trade beads from Ontario, Canada

    International Nuclear Information System (INIS)

    Kenyon, I.; Hancock, R.G.V.; Aufreiter, S.

    1995-01-01

    Blue glass trade beads from well-dated late seventeenth- to early twentieth-century sites and collections have been analysed non-destructively by instrumental neutron activation analysis. The beads display enough variations in their elemental contents to allow us to characterize the different chemistries. The implication of these results is that similar chemical analyses of blue beads from undated archaeological sites may be used to help date the sites, since each bead chemistry has a specific earliest period. (author)

  12. Relative and combined effects of ethanol and protein deficiency on bone manganese and copper.

    Science.gov (United States)

    González-Pérez, José M; González-Reimers, Emilio; DeLaVega-Prieto, María José; Durán-Castellón, María del Carmen; Viña-Rodríguez, José; Galindo-Martín, Luis; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco

    2012-06-01

    Both manganese and copper may affect bone synthesis. Bone content of both metals can be altered in alcoholics, although controversy exists regarding this matter. To analyse the relative and combined effects of ethanol and a low protein diet on bone copper and manganese, and their relationships with bone structure and metabolism, including trabecular bone mass (TBM), osteoid area (OA), osteocalcin (OCN), insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH), urinary hydroxyproline (uHP) and vitamin D. Adult male Sprague-Dawley rats were divided into four groups. The control rats received a 18% protein-containing diet; a second group, an isocaloric, 2% protein-containing diet; a third one, an isocaloric, 36% ethanol-containing diet and a fourth, an isocaloric diet containing 2% protein and 36% ethanol. After sacrifice, TBM and OA were histomorphometrically assessed; bone and serum manganese and copper were determined by atomic absorption spectrophotometry, and serum OCN, IGF-1, PTH, uHP and vitamin D by radioimmunoassay. Ethanol-fed rats showed decreased TBM and bone manganese. Significant relationships existed between bone manganese and TBM, serum IGF-1 and OCN. Ethanol leads to a decrease in bone manganese, related to decreased bone mass and bone synthesis. No alterations were found in bone copper.

  13. Identification and Antithrombotic Activity of Peptides from Blue Mussel (Mytilus edulis Protein

    Directory of Open Access Journals (Sweden)

    Meiling Qiao

    2018-01-01

    Full Text Available The blue mussel (Mytilus edulis reportedly contains many bioactive components of nutritional value. Water-, salt- and acid-soluble M. edulis protein fractions were obtained and the proteins were trypsinized. The resultant peptides were analyzed by ultra-performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS. 387 unique peptides were identified that matched 81 precursor proteins. Molecular mass distributions of the proteins and peptides were analyzed by sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE. The differences between the three protein samples were studied by Venn diagram of peptide and protein compositions. Toxicity, allergic and antithrombotic activity of peptides was predicted using database website and molecular docking respectively. The antithrombotic activity of enzymatic hydrolysate from water-, salt- and acid-soluble M. edulis protein were 40.17%, 85.74%, 82.00% at 5 mg/mL, respectively. Active mechanism of antithrombotic peptide (ELEDSLDSER was also research about amino acid binding sites and interaction, simultaneously.

  14. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faaizah; Pickup, John C., E-mail: john.pickup@kcl.ac.uk

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  15. Multicolor imaging of bacterial nucleoid and division proteins with blue, orange and near-infrared fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Fabai eWu

    2015-06-01

    Full Text Available Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong demand for multi-color imaging. Despite the increasingly large collection of fluorescent-protein variants engineered to date, only a few of these were successfully applied in bacteria. Here, we explore the performance of recently engineered variants with the blue (TagBFP, orange (TagRFP-T, mKO2 and far-red (mKate2 spectral colors by tagging HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process. We find that, these fluorescent proteins outperformed previous versions in terms of brightness and photostability at their respective spectral range, both when expressed as cytosolic label and when fused to native proteins. As this indicates that their folding is sufficiently fast, these proteins thus successfully expand the applicable spectra for multi-color imaging in bacteria. A near-infrared protein (eqFP670 is found to be the most red-shifted protein applicable to bacteria so far, with brightness and photostability that are advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple advantages, we also report the alarming observation that TagBFP directly interacts with TagRFP-T, causing interference of localization patterns between their fusion proteins. Our application of diverse fluorescent proteins for endogenous tagging provides guidelines for future engineering of fluorescent fusions in bacteria, specifically: 1 The performance of newly developed fluorescent proteins should be quantified in vivo for their introduction into bacteria; 2 spectral crosstalk and inter-variant interactions between fluorescent proteins should be carefully examined for multi-color imaging; and 3 successful genomic fusion to the 5’-end of a gene strongly depends on the translational read-through of the inserted coding sequence.

  16. Analyzing import intermediates of mitochondrial proteins by blue native gel electrophoresis.

    Science.gov (United States)

    Waizenegger, Thomas; Rapaport, Doron

    2007-01-01

    Blue native gel electrophoresis (BNGE) is a powerful tool for analyzing native protein complexes from biological membranes as well as water-soluble proteins. It can be used for determining relative molecular masses of protein complexes and their subunit composition and for the detection of subcomplexes. We describe the analysis by BNGE of in vitro import reactions composed of radiolabeled precursor proteins and isolated mitochondria. Such an analysis is a powerful tool to follow import intermediates and to study assembly of protein complexes. Analysis of import reactions by BNGE provides information on the molecular mass of the complex with which the imported precursor is associated. In addition, components of such a complex can be identified by incubating the mitochondrial lysate with either soluble antibodies or antibodies coupled to protein A matrix. The binding of soluble antibodies to specific complexes results in an observed shift in their apparent molecular mass (antibody shift). Alternatively, addition of matrix-bound antibodies followed by removal of the matrix from the mixture will result in depletion of the specific complex from the mitochondrial lysate (antibody depletion). The experimental details of these techniques are described.

  17. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile); Cerpa, Waldo [Centro de Envejecimiento y Regeneracion (CARE), Centro de Regulacion Celular y Patologia ' Joaquin V. Luco' (CRCP), MIFAB, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago (Chile); Cambiazo, Veronica [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile); Millenium Nucleus CGC, Universidad de Chile (Chile); Inestrosa, Nibaldo C. [Centro de Envejecimiento y Regeneracion (CARE), Centro de Regulacion Celular y Patologia ' Joaquin V. Luco' (CRCP), MIFAB, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago (Chile); Gonzalez, Mauricio, E-mail: mgonzale@inta.cl [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile)

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  18. Immunohistochemical Profile of MYC Protein in Pediatric Small Round Blue Cell Tumors.

    Science.gov (United States)

    Chisholm, Karen M; Krishnan, Chandra; Heerema-McKenney, Amy; Natkunam, Yasodha

    2017-06-01

    Deregulation of MYC oncoprotein in cancers can result from multiple oncogenic mechanisms. Although MYC translocations define Burkitt lymphoma and MYC protein expression is a poor prognostic factor in undifferentiated neuroblastomas, the distribution of MYC protein (c-MYC) across other pediatric small round blue cell tumors (SRBCT) has not been well characterized. We undertook this study to assess MYC protein expression in a large cohort of pediatric lymphomas, sarcomas, and other SRBCT. Tissue microarrays containing 302 SRBCT were successfully evaluated by immunohistochemistry using anti-MYC clone Y69, with nuclear positivity scored as 0%, 1%-25%, 26%-50%, 51%-75%, or 76%-100%. MYC protein staining of >50% of lesional cells was identified in 60% of Burkitt lymphomas, 50% of B lymphoblastic lymphomas, 33% of T lymphoblastic lymphomas, 31% of rhabdomyosarcomas, 33% of Ewing sarcomas, and 25% of soft tissue sarcomas, not otherwise specified. Only 14% of neuroblastomas showed >50% staining, and of these, if known, MYCN was not amplified. No cases of Wilms tumor, synovial sarcoma, or desmoplastic small round cell tumor had >50% staining. Recurrences and metastases often had the same percentage of MYC staining (15/30). In conclusion, MYC protein exhibited variable expression across and within pediatric SRBCT subtypes. Overall, these findings provide a baseline for MYC expression in pediatric SRBCT and suggest that there may be multiple mechanisms of MYC upregulation in these different neoplasms.

  19. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    -free BSA. Concomitant with Trp loss, the antioxidant alpha-tocopherol is consumed with subsequent extensive lipid peroxidation. Further changes to the protein, including the copper-ion-dependent 3.5-fold increase in 3,4-dihydroxyphenylalanine and the copper-ion-independent 3-5-fold increase in o...

  20. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  1. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Science.gov (United States)

    Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla

    2012-01-01

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  2. Involvement of protein kinase D in expression and trafficking of ATP7B (copper ATPase).

    Science.gov (United States)

    Pilankatta, Rajendra; Lewis, David; Inesi, Giuseppe

    2011-03-04

    ATP7B is a P-type ATPase involved in copper transport and homeostasis. In experiments with microsomes isolated from COS-1 cells or HepG2 hepatocytes sustaining ATP7B heterologous expression, we found that ATP7B utilization of ATP includes autophosphorylation of an aspartyl residue serving as ATPase catalytic intermediate as well as phosphorylation of serine residues by protein kinase D (PKD). The latter was abolished by specific PKD inhibition with CID755673. The presence of PKD protein in the microsomal fraction was demonstrated by Western blotting. PKD is a serine/threonine kinase that associates with the trans-Golgi network, regulating fission of transport carriers destined to the cell surface. Parallel studies on cultured cells showed that nascent WT ATP7B transits to the Golgi complex where it undergoes serine phosphorylation by PKD. Misfolded ATP7B protein (especially if subjected to deletions) underwent proteasome-mediated degradation, which provides effective quality control. Inhibition of proteasome-mediated degradation with MG132 yielded additional, but nonfunctional protein. On the other hand, serine phosphorylation protected WT ATP7B from degradation. Protection was enhanced by PKD activation with phorbol esters and limited by PKD inhibition with CID75673. As a final step, phosphorylated ATP7B was transferred from the Golgi complex to cytosolic trafficking vesicles. Phosphorylation and trafficking were completely prevented by mutations of critical copper binding sites, demonstrating copper dependence of both PKD-assisted phosphorylation and trafficking. ATP7B trafficking was markedly reduced by the Ser-478/481/1121/1453 to Ala mutation. We conclude that PKD plays a key role in copper-dependent serine phosphorylation, permitting high levels of ATP7B protein expression and trafficking.

  3. Methylene blue induces macroautophagy through 5' adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation.

    Science.gov (United States)

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling.

  4. Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation

    Science.gov (United States)

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling. PMID:23653592

  5. Changing blue fluorescent protein to green fluorescent protein using chemical RNA editing as a novel strategy in genetic restoration.

    Science.gov (United States)

    Vu, Luyen T; Nguyen, Thanh T K; Alam, Shafiul; Sakamoto, Takashi; Fujimoto, Kenzo; Suzuki, Hitoshi; Tsukahara, Toshifumi

    2015-11-01

    Using the transition from cytosine of BFP (blue fluorescent protein) gene to uridine of GFP (green fluorescent protein) gene at position 199 as a model, we successfully controlled photochemical RNA editing to effect site-directed deamination of cytidine (C) to uridine (U). Oligodeoxynucleotides (ODNs) containing 5'-carboxyvinyl-2'-deoxyuridine ((CV) U) were used for reversible photoligation, and single-stranded 100-nt BFP DNA and in vitro-transcribed full-length BFP mRNA were the targets. Photo-cross-linking with the responsive ODNs was performed using UV (366 nm) irradiation, which was followed by heat treatment, and the cross-linked nucleotide was cleaved through photosplitting (UV, 312 nm). The products were analyzed using restriction fragment length polymorphism (RFLP) and fluorescence measurements. Western blotting and fluorescence-analysis results revealed that in vitro-translated proteins were synthesized from mRNAs after site-directed RNA editing. We detected substantial amounts of the target-base-substituted fragment using RFLP and observed highly reproducible spectra of the transition-GFP signal using fluorescence spectroscopy, which indicated protein stability. ODNc restored approximately 10% of the C-to-U transition. Thus, we successfully used non-enzymatic site-directed deamination for genetic restoration in vitro. In the near future, in vivo studies that include cultured cells and model animals will be conducted to treat genetic disorders. © 2015 John Wiley & Sons A/S.

  6. The Effect of Dry Yeast Fermentation on Chemical Composition and Protein Characteristics of Blue Lupin Seeds

    Directory of Open Access Journals (Sweden)

    Paulina Borowczyk

    2016-01-01

    Full Text Available The eff ect of 24-hour fermentation of lupin seeds by different yeast strains on their chemical composition was determined. After fermentation, the mass fraction of proteins increased and their in vitro digestibility and biological activity significantly improved. The amino acid profi le of fermented products was similar to that of raw lupin seeds. The significant reduction in the mass fraction of oligosaccharides and phytate, but not of alkaloids was found. The pH level of fermented products decreased as a consequence of the increase of lactic and propionic acid mass fractions. The most favourable changes in the Chemical composition of blue lupin seeds were obtained in fermentation with Saccharomyces cerevisiae baker’s yeast and Fermivin 7013 strain.

  7. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  8. Photochemical Reactions of the LOV and LOV-Linker Domains of the Blue Light Sensor Protein YtvA

    NARCIS (Netherlands)

    Choi, S.; Nakasone, Y.; Hellingwerf, K.J.; Terazima, M.

    2016-01-01

    YtvA is a blue light sensor protein composed of an N-terminal LOV (light-oxygen-voltage) domain, a linker helix, and the C-terminal sulfate transporter and anti-sigma factor antagonist domain. YtvA is believed to act as a positive regulator for light and salt stress responses by regulating the

  9. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  10. Electronic structure of the perturbed blue copper site in nitrite reductase: Spectroscopic properties, bonding, and implications for the entatic/rack state

    Energy Technology Data Exchange (ETDEWEB)

    LaCroix, L.B.; Shadle, S.E.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. [Stanford Univ., CA (United States); Wang, Y.; Averill, B.A. [Univ. of Virginia, Charlottesville, VA (United States)

    1996-08-21

    Low-temperature optical absorption, circular dichroism, magnetic circular dichroism, and sulfur K-edge X-ray absorption spectra have been measured for the green `blue` copper center (type 1) in Achromobacter cycloclastes nitrite reductase. Combined with density functional calculations, the results of these spectroscopies have been used to define the extremely `perturbed` electronic structure of this site relative to that of the prototypical `classic` site found in plastocyanin. Experimentally calibrated density functional calculations have been further used to determine the specific geometric distortions which generate the perturbed electronic structure. These studies indicate that the principal electronic structure changes in nitrite reductase, relative to plastocyanin, are a rotation of the Cu d{sub x(2)-y(2)} half-filled, highest occupied molecular orbital (HOMO) and an increase in the ligand field strength at the Cu center. These changes in Cu-ligand interactions result in the redistribution of absorption intensity in the charge transfer and ligand field transitions. Additionally, the new S(Met)-Cu interaction accounts for the unexpectedly high sulfur covalency in the HOMO. The increase in ligand field strength shifts all the d {yields} d transitions in nitrite reductase to nearly 1000 cm{sup -1} higher energy than their counterparts in plastocyanin, which accounts for the EPR spectral differences between the type 1 sites in these complexes. 97 refs., 7 figs., 3 tabs.

  11. The lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Otoikhian, Adenike [Oregon Health & Sciences University; Barry, Amanda N. [Los Alamos National Laboratory; Mayfield, Mary [Oregon Health & Science University; Nilges, Mark [Illinois EPR Center; Huang, Yiping [Johns Hopkins University; Lutsenko, Svetlana [Johns Hopkins University; Blackburn, Ninian [Oregon Health & Science University

    2012-05-14

    Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper translocating ATPase (ATP7A or ATP7B) but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1, 15N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased towards 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met while at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.

  12. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

    Science.gov (United States)

    Holtkotte, Xu; Ponnu, Jathish; Ahmad, Margaret; Hoecker, Ute

    2017-10-01

    Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.

  13. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development

    International Nuclear Information System (INIS)

    Lin ChenTao; Ahmad, M.; Cashmore, A.R.

    1996-01-01

    Cryptochrome 1 (CRY1) is a flavin-type blue type receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth. (author)

  14. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B)

    Science.gov (United States)

    Cater, Michael A.; La fontaine, Sharon; Mercer, Julian F. B.

    2006-01-01

    The Wilson protein (ATP7B) is a copper-translocating P-type ATPase that mediates the excretion of excess copper from hep-atocytes into bile. Excess copper causes the protein to traffic from the TGN (trans-Golgi network) to subapical vesicles. Using site-directed mutagenesis, mutations known or predicted to abrogate catalytic activity (copper translocation) were introduced into ATP7B and the effect of these mutations on the intracellular traf-ficking of the protein was investigated. Mutation of the critical aspartic acid residue in the phosphorylation domain (DKTGTIT) blocked copper-induced redistribution of ATP7B from the TGN, whereas mutation of the phosphatase domain [TGE (Thr-Gly-Glu)] trapped ATP7B at cytosolic vesicular compartments. Our findings demonstrate that ATP7B trafficking is regulated with its copper-translocation cycle, with cytosolic vesicular localization associated with the acyl-phosphate intermediate. In addition, mut-ation of the six N-terminal metal-binding sites and/or the trans-membrane CPC (Cys-Pro-Cys) motif did not suppress the consti-tutive vesicular localization of the ATP7B phosphatase domain mutant. These results suggested that copper co-ordination by these sites is not essential for trafficking. Importantly, copper-chelation studies with these mutants clearly demonstrated a requirement for copper in ATP7B trafficking, suggesting the presence of an additional copper-binding site(s) within the protein. The results presented in this report significantly advance our understanding of the regulatory mechanism that links copper-translocation activity with copper-induced intracellular trafficking of ATP7B, which is central to hepatic and hence systemic copper homoeostasis. PMID:16939419

  15. Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC

    International Nuclear Information System (INIS)

    Li Jixi; Ji Chaoneng; Chen Jinzhong; Yang Zhenxing; Wang Yijing; Fei, Xiangwei; Zheng Mei; Gu Xing; Wen Ge; Xie Yi; Mao Yumin

    2005-01-01

    Copper is an essential heavy metal trace element that plays important roles in cell physiology. The Cut family was associated with the copper homeostasis and involved in several important metabolisms, such as uptake, storage, delivery, and efflux of copper. In this study, a novel Cut family cDNA was isolated from the human fetal brain library, which encodes a 273 amino acid protein with a molecular mass of about 29.3 kDa and a calculated pI of 8.17. It was named hCutC (human copper transporter protein CutC). The ORF of hCutC gene was cloned into pQE30 vector and expressed in Escherichia coli M15. The secreted hCutC protein was purified to a homogenicity of 95% by using the Ni-NTA affinity chromatography. RT-PCR analysis showed that the hCutC gene expressed extensively in human tissues. Subcellular location analysis of hCutC-EGFP fusion protein revealed that hCutC was distributed to cytoplasm of COS-7 cells, and both cytoplasm and nucleus of AD293 cells. The results suggest that hCutC may be one shuttle protein and play important roles in intracellular copper trafficking

  16. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    -courses of lipid and protein oxidation during copper-ion-mediated oxidation of low-density lipoprotein. We show that there is an early, lipid-mediated loss of 40-50% of the Trp residues of the apoB100 protein. There is no comparable loss over an identical period during the copper-ion-mediated oxidation of lipid......Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...... moieties of low-density lipoprotein is of particular interest due to its potential role in the unregulated uptake of lipids and cholesterol by macrophages; this may contribute to the initial stage of foam cell formation in atherosclerosis. In the study reported here, we examined the comparative time...

  17. Mycobacterium tuberculosis copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer.

    Science.gov (United States)

    Nowicka, Urszula; Hoffman, Morgan; Randles, Leah; Shi, Xiaoshan; Khavrutskii, Lyuba; Stefanisko, Karen; Tarasova, Nadya I; Darwin, K Heran; Walters, Kylie J

    2016-02-01

    Multiple genes in Mycobacterium tuberculosis (Mtb) are regulated by copper including socAB (small orf induced by copper A and B), which is induced by copper and repressed by RicR (regulated in copper repressor). socA and socB encode hypothetical proteins of 61 and 54 amino acids, respectively. Here, we use biophysical and computational methods to evaluate the SocB structure. We find that SocB lacks evidence for secondary structure, with no thermal cooperative unfolding event, according to circular dichroism measurements. 2D NMR spectra similarly exhibit hallmarks of a disordered structural state, which is also supported by analyzing SocB diffusion. Altogether, these findings suggest that by itself SocB is intrinsically disordered. Interestingly, SocB interacts with a synthetic phospholipid bilayer and becomes helical, which suggests that it may be membrane-associated. © 2015 Wiley Periodicals, Inc.

  18. [Copper level and metallothionein-like Cu-binding protein in cultured skin fibroblasts from patients with Menkes' disease and Wilson's disease].

    Science.gov (United States)

    Sato, M; Hayashi, A; Ito, H; Tojo, M; Arima, M

    1984-11-01

    Copper concentration, intracellular copper distribution, and inducibility of metallothionein-like metal-binding protein (MLP) by copper or cadmium addition to culture medium were compared among three types of skin fibroblasts derived from patients with Menkes' disease and Wilson's disease, both exhibiting genetic defects of copper metabolism, and from normal subjects (control). Skin fibroblasts were cultivated in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and antibiotics in 5% CO2 at 37 degrees C. Cells were harvested with rubber-policeman, washed twice with phosphate-buffered saline, pH 7.2, suspended in deionized water, and homogenized. The homogenate from each cell type was used to determine the concentration of copper by atomic absorption spectrophotometry employing graphite-rod atomizer after lyophilization, ashing in HNO3, and coprecipitation with zirconium. Intracellular copper concentration was elevated in Menkes' cells (420 ng Cu/mg of protein) and Wilson's cells (217 ng Cu/mg of protein) than in control cells (90.0 ng Cu/mg of protein), although one of four Wilson's strains showed normal copper level (70.5 ng Cu/mg of protein). Cytosol copper concentration was 5.8-fold higher in Menkes' cells but only 1.3-fold in Wilson's cells than in control cells, and cytosol copper accounted for only 35% of total intracellular copper in Wilson's cells as compared with 68% and 52% in Menkes' and control cells, respectively. These suggest that accumulated copper in each cell type is differently distributed within cells; in Menkes' cells exclusively into cytosol, but in Wilson's cells into particulates rather than cytosol. Elution profiles from Sephadex G-75 columns indicated that most of copper had bound to MLP in Menkes' cells, though no Cu-MLP was detectable in Wilson's or control cells under these experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Effect of copper on the characterization of proteins in the Spiny lobster, Panulirus homarus homarus (Linnaeus,1758

    Directory of Open Access Journals (Sweden)

    Maharajan Athisuyambulingam

    2014-07-01

    Full Text Available Copper is most toxic metal in marine organisms. Characterization of protein occurring in the metabolically active tissues of muscle (MU, hepatopancreas (HP and gills (GL of the spiny lobster, Panulirus homarus homarus on exposure to two sub-lethal doses (9.55 and 19.1 µg/l of copper were studied for 28 days of exposure (DoE. The electrophoretic pattern of muscle, hepatopancreas and gill proteins revealed 12, 8 and 8 slow moving bands (control. The number of bands decreased to 8 and 7, 6 and 5, 6 and 4 after 7 days of exposure to 9.55 µg/l and 19.1 µg/l concentrations of copper, respectively. After 28 days, the protein bands decreased to 7 and 6, 5 and 4, 4 and 4 at 9.55 µg/l and 19.1 µg/l concentrations of copper, respectively. Present study to indicate that to avoid the Cupro-Nickel coil in lobster holding centers in chiller plants used for cooling of water was found to be responsible for the mortality of lobsters during live transportation.

  20. A new affinity-HPLC packing for protein separation: Cibacron blue attached uniform porous poly(HEMA-co-EDM) beads.

    Science.gov (United States)

    Unsal, Ender; Durdu, Aysun; Elmas, Begum; Tuncel, Murvet; Tuncel, Ali

    2005-11-01

    In this study, a new affinity high-performance liquid chromatography (HPLC) stationary phase suitable for protein separation was synthesized. In the first stage of the synthesis, uniform porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(HEMA-co-EDM), beads 6.2 mum in size were obtained. Homogeneous distribution of hydroxyl groups in the bead interior was confirmed by confocal laser scanning microscopy. The plain poly(HEMA-co-EDM) particles gave very low non-specific protein adsorption with albumin. The selected dye ligand Cibacron blue F3G-A (CB F3G-A) was covalently linked onto the beads via hydroxyl groups. In the batch experiments, albumin adsorption up to 60 mg BSA/g particles was obtained with the CB F3G-A carrying poly(HEMA-co-EDM) beads. The affinity-HPLC of selected proteins (albumin and lysozyme) was investigated in a 25 mm x 4.0-mm inner diameter column packed with CB F3G-A carrying beads and both proteins were successfully resolved. By a single injection, 200 mug of protein was loaded and quantitatively eluted from the column. The protein recovery increased with increasing flow rate and salt concentration of the elution buffer and decreased with the increasing protein feed concentration. During the albumin elution, theoretical plate numbers up to 30,000 plates/m were achieved by increasing the salt concentration.

  1. The Copper Metabolism MURR1 domain protein 1 (COMMD1 modulates the aggregation of misfolded protein species in a client-specific manner.

    Directory of Open Access Journals (Sweden)

    Willianne I M Vonk

    Full Text Available The Copper Metabolism MURR1 domain protein 1 (COMMD1 is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α. Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1 and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS, cause misfolding and aggregation of the mutant SOD1 (mSOD1 protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson's disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington's disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.

  2. Quantitative densitometry of proteins stained with coomassie blue using a Hewlett Packard scanjet scanner and Scanplot software.

    Science.gov (United States)

    Vincent, S G; Cunningham, P R; Stephens, N L; Halayko, A J; Fisher, J T

    1997-01-01

    In the present study we evaluated the performance of a software/scanner system that employed the Hewlett Packard (HP) ScanJet Plus and Scanplot Software for densitometric quantification of protein loads stained with Coomassie Brilliant Blue following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Gels with bovine serum albumin (BSA) standards, ranging from 0.125 to 10 micrograms, were scanned using reflectance densitometry with 127 microns step size in both the x and y directions and a resolution of 200 dots per inch. Densitometric volume was calculated for each protein band from scanner output in the tagged image file format (TIFF) by a customized software package, Scanplot V. 4.05 (Cunningham Engineering). Protein loads between 0.125 and 10.0 micrograms vs. volume were fit by a second-order regression: Volume = -0.58 x protein load2 + 16.82 x protein load + 7.87 (r = 0.991, p < 0.01). The same gels were scanned and quantified using a transmittance laser densitometer; densitometric volumes measured by both systems were highly correlated (r2 = 0.981, p < 0.01). Additional gels of BSA, smooth muscle myosin heavy chain (myosin), and actin displayed linear relationships between protein loads up to 4.0 micrograms and densitometric volume reflecting unique dye binding properties. We conclude that accurate and reproducible quantitative densitometry of SDS-PAGE can be performed using the HP ScanJet Plus scanner and Scanplot software.

  3. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  4. The effect of occupational lead exposure on blood levels of zinc, iron, copper, selenium and related proteins.

    Science.gov (United States)

    Kasperczyk, Aleksandra; Prokopowicz, Adam; Dobrakowski, Michał; Pawlas, Natalia; Kasperczyk, Sławomir

    2012-12-01

    The study objective was to evaluate the effect of occupational lead exposure on blood concentrations of zinc, iron, copper, selenium and proteins related to them, such as transferrin, caeruloplasmin and haptoglobin. The examined group consisted of 192 healthy male employees of zinc-lead works. By the degree of lead exposure, the exposed group was subdivided into three subgroups. The control group was composed of 73 healthy male administrative workers. The markers of lead exposure (blood levels of lead and zinc protoporphyrin) were significantly elevated in the exposed group compared with the control group. Additionally, concentrations of copper and caeruloplasmin were raised. The significant increase in haptoglobin level was observed only in the low exposure group. Selenium levels were significantly decreased, whereas iron, zinc and transferrin levels were unchanged in the exposed group compared with the control group. There were positive correlations between the lead toxicity parameters and the copper and caeruloplasmin levels. In conclusion, the effect of occupational exposure to lead on the metabolism of trace metals appears to be limited. However, significant associations between lead exposure and levels of copper and selenium were shown. Changed levels of positive acute-phase proteins, such as caeruloplasmin and haptoglobin, were also observed.

  5. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  6. Novel insights in the molecular pathogenesis of human copper homeostasis disorders through studies of protein-protein interactions

    NARCIS (Netherlands)

    Bie, P. de

    2007-01-01

    Copper is an essential element for living organisms, yet it is very toxic when present in amounts exceeding cellular needs. Delicate mechanisms have evolved to ensure proper copper homeostasis is maintained for the organism, as well as at a cellular level, and perturbations in these mechanisms give

  7. Transcriptomics as a tool to dissect copper homeostasis and COMMD protein function

    NARCIS (Netherlands)

    Müller, P.A.J.

    2008-01-01

    Gene expression profiling offers the possibility to objectively screen the complete genome for variations in gene expression in many different organisms in various defined environments. In the present work we aimed to gain novel insights in copper metabolism and in the function of COMMD (copper

  8. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus).

    Science.gov (United States)

    del Cerro, Sara; Merino, Santiago; Martínez-de la Puente, Josué; Lobato, Elisa; Ruiz-de-Castañeda, Rafael; Rivero-de Aguilar, Juan; Martínez, Javier; Morales, Judith; Tomás, Gustavo; Moreno, Juan

    2010-04-01

    Carotenoids are molecules that birds are not able to synthesize and therefore, must be acquired through their diet. These pigments, besides their function of giving birds red and yellow colouration when deposited in feathers, seem to act as immune-stimulators and antioxidants in the organism. Hence, only the healthiest individuals would be able to express carotenoid-based ornaments to a larger extent without compromising the physiological functions of carotenoids. Various studies have reported that birds infected by parasites are paler than those uninfected, but, to our knowledge, none of them has assessed the possible effect of multiple infections by blood parasites on plumage colour. By comparing the yellow colour in the breast plumage of blue tits, Cyanistes caeruleus, between birds infected by different numbers of blood parasite genera, we found that those birds infected by more than one genus were paler than those parasitized just by one. In addition, we examined the potential role of carotenoid-based plumage colour of blue tits as a long-term indicator of other parameters of health status, such as body condition and immunoglobulin and heat shock protein (HSP) levels. Our results indicate that more brightly coloured birds had lower HSP70 levels than paler birds, but we did not find any significant association between colour and body condition or immunoglobulin levels. In addition, we found a positive significant association between Haemoproteus density of infection and HSP60 levels. Overall, these results support the role of carotenoid-based colours as indicators of health status in blue tits and show detrimental effects of parasitism on this character.

  9. A new carboxyl-copper-organic framework and its excellent selective absorbability for proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Linyan [Department of Chemistry, Nankai University, Tianjin 300071 (China); Xin, Liangliang [School of Science, Tianjin University, Tianjin 300072 (China); Gu, Wen; Tian, Jinlei [Department of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin 300071 (China); Liao, Shengyun; Du, Peiyao; Tong, Yuzhang; Zhang, Yanping; Lv, Rui; Wang, Jingyao [Department of Chemistry, Nankai University, Tianjin 300071 (China); Liu, Xin, E-mail: liuxin64@nankai.edu.cn [Department of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin 300071 (China)

    2014-10-15

    .4. At the same time, XPS spectra were also investigated to verify the results. - Highlights: • A rare carboxyl-copper-organic framework has been hydrothermally synthesized. • An xfe-4-Fddd, (4{sup 2}.6.8{sup 3}) topology in 1 is created. • BSA was significantly less adsorbed onto the carboxylic acid-rich surface than lysozyme. • XPS spectra were also investigated to verify the results of protein adsorption.

  10. Spectrophotometric total protein assay with copper(II)-neocuproine reagent in alkaline medium.

    Science.gov (United States)

    Sözgen, Kevser; Cekic, Sema Demirci; Tütem, Esma; Apak, Resat

    2006-02-28

    Total protein assay was made using copper(II)-neocuproine (Nc) reagent in alkaline medium (with the help of a hydroxide-carbonate-tartarate solution) after 30min incubation at 40 degrees C. The absorbance of the reduction product, Cu(I)-Nc complex, was recorded at 450nm against a reagent blank. The absorptivity of the developed method for bovine serum albumin (BSA) was 0.023lmg(-1)cm(-1), greater than that of Lowry assay (0.0098), and much greater than that of Cu(II)-bicinchoninic acid (BCA) assay (0.00077). The linear range of the developed method (8-100mgl(-1) BSA) was as wide as that of Lowry, and much wider than that of BCA (200-1000mgl(-1) BSA) assay. The sensitivity of the method was greater than those of Cu-based assays (biuret, Lowry, and BCA) with a LOD of 1mgl(-1) BSA. The within-run and between-run precisions as RSD were 0.73 and 1.01%, respectively. The selectivity of the proposed method for protein was much higher than those of dye-binding and Lowry assays: Most common interferents to other protein assays such as tris, ethanolamine, deoxycholate, CsCl, citrate, and triton X-100 were tolerated at 100-fold concentrations in the analysis of 10mgl(-1) BSA, while the tolerance limits for other interferents, e.g., (NH(4))(2)SO(4) and acetylsalicylic acid (50-fold), SDS (25-fold), and glycerol (20-fold) were at acceptable levels. The redox reaction of Cu(II)-Nc as an outer-sphere electron transfer agent with the peptide bond and with four amino acid residues (cystine, cysteine, tryptophan, and tyrosine) was kinetically more favourable than that of Cu(II) alone in the biuret assay. Since the reduction product of Cu(II) with protein, i.e., Cu(I), was coordinatively saturated with Nc in the stable Cu(Nc)(2)(+) chelate, re-oxidation of the formed Cu(I) with Fenton-like reactions was not possible, thereby preventing a loss of chromophore. After conventional protein extraction, precipitation, and redissolution procedures, the protein contents of the minced meat

  11. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate.

    Science.gov (United States)

    Vasina, Daria V; Pavlov, Andrey R; Koroleva, Olga V

    2016-06-13

    Fungi are organisms with the highest natural capacity to degrade lignocellulose substrates, which is enabled by complex systems of extracellular enzymes, whose expression and secretion depend on the characteristics of substrates and the environment. This study reports a secretome analysis for white-rot basidiomycete Trametes hirsuta cultivated on a synthetic media and a lignocellulose substrate. We demonstrate that T. hirsuta st. 072 produces multiple extracellular ligninolytic, cellulolytic, hemicellulolytic, peroxide generating, and proteolytic enzymes, as well as cerato-platanins. In contrast to other white rot species described earlier, which mostly secreted glucanases and mannosidases in response to the presence of the lignocellulose substrate, T. hirsuta expressed a spectrum of extracellular cellulolytic enzymes containing predominantly cellobiases and xylanases. As proteomic analysis could not detect lignin peroxidase (LiP) among the secreted lignin degrading enzymes, we attributed the observed extracellular LiP - like activity to the expressed versatile peroxidase (VP). An accessory enzyme, glyoxal oxidase, was found among the proteins secreted in the media during submerged cultivation of T. hirsuta both in the presence and in the absence of copper. However, aryl-alcohol oxidase (AAO) was not identified, despite the presence of AAO enzymatic activity secreted by the fungus. The spectra of the expressed enzymes dramatically changed depending on the growth conditions. Transfer from submerged cultivation to surface cultivation with the lignocellulose substrate switched off expression of exo-β-1,3-glucanase and α-amylase and turned on secretion of endo-β-1,3-glucanase and a range of glycosidases. In addition, an aspartic peptidase started being expressed instead of family S53 protease. For the first time, we report production of cerato-platanin proteins by Trametes species. The secretion of cerato-platanins was observed only in response to contact with

  12. From Green to Blue: Site-Directed Mutagenesis of the Green Fluorescent Protein to Teach Protein Structure-Function Relationships

    Science.gov (United States)

    Giron, Maria D.; Salto, Rafael

    2011-01-01

    Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…

  13. EFFECTS OF HIGHER LEVELS OF CHROMIUM AND COPPER ON SOME HAEMATOLOGICAL PARAMETERS AND SERUM PROTEINS IN BROILERS

    Directory of Open Access Journals (Sweden)

    M. Tariq Javed, F, Ahmad. N, Z, Rafique1 and M, Bashir

    2003-01-01

    Full Text Available Effects of higher levels of chromium alone and in combination with copper were investigated in broiler chicks divided into seven equal groups viz. A, B, C, D, E, F and G. Group G served as control receiving no treatment. Groups A, B and F received chromium chloride at the rate of 2 g/kg and nicotinic acid 150 mg/kg feed while C, D and F received chromium chloride 8 g/kg and nicotinic acid 150mg/kg. Broilers of groups A and C received copper sulfate at the rate of 200 mg/kg while groups Band D 400 mg/kg feed. Haematological parameters studied revealed non-significant difference between treatment groups and control in haemoglobin concentration and total erythrocyte counts. However, only at 4th week, lower PCV was observed in birds fed higher levels of chromium chloride alone. Increase in TLC was observed in birds fed low chromium alone or' with low levels of copper. Results of serum proteins including total protein, albumin and globulin during first three weeks showed significantly or relatively lower values in treatment groups than control. Serum globulins generally revealed non-significant difference between treatment groups and control.

  14. Hidden photoinduced reactivity of the blue fluorescent protein mKalama1

    DEFF Research Database (Denmark)

    Vegh, Russell B.; Bloch, Dmitry A.; Bommarius, Andreas S.

    2015-01-01

    Understanding the photoinduced dynamics of fluorescent proteins is essential for their applications in bioimaging. Despite numerous studies on the ultrafast dynamics, the delayed response of these proteins, which often results in population of kinetically trapped dark states of various origins...... absorption signal has a complex nature and spans the whole microsecond-to-second time scale. The mechanisms underlying the relaxation kinetics are disclosed based on the X-ray structural analysis of mKalama1 and the high-level electronic structure calculations of proposed intermediates in the photocycle. We...... of the chromophore radical cation to bulk solvent through a novel water-mediated proton-wire pathway. Our findings open up new perspectives on the dynamics of fluorescent proteins as tracked by its optical transient absorption in the time domain extending up to seconds....

  15. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis).

    Science.gov (United States)

    Saarman, Norah P; Kober, Kord M; Simison, W Brian; Pogson, Grant H

    2017-10-01

    Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage

  16. A molecular movie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds

    NARCIS (Netherlands)

    Ren, Zhaochun; Perman, B; Srajer, V; Teng, T Y; Pradervand, C; Bourgeois, Dominique; Schotte, Friedrich; Ursby, T; Kort, R; Wulff, Michael; Moffat, K.

    2001-01-01

    The photocycle of the bacterial blue-light photoreceptor, photoactive yellow protein, was stimulated by illumination of single crystals by a 7 ns laser pulse. The molecular events were recorded at high resolution by time-resolved X-ray Laue diffraction as they evolved in real time, from 1 ns to

  17. Photodynamics of blue-light-regulated phosphodiesterase BlrP1 protein from Klebsiella pneumoniae and its photoreceptor BLUF domain

    Science.gov (United States)

    Tyagi, A.; Penzkofer, A.; Griese, J.; Schlichting, I.; Kirienko, Natalia V.; Gomelsky, Mark

    2008-12-01

    The BlrP1 protein from the enteric bacterium Klebsiella pneumoniae consists of a BLUF and an EAL domain and may activate c-di-GMP phosphodiesterase by blue-light. The full-length protein, BlrP1, and its BLUF domain, BlrP1_BLUF, are characterized by optical absorption and emission spectroscopy. The cofactor FAD in its oxidized redox state (FAD ox) is brought from the dark-adapted receptor state to the 10-nm red-shifted putative signalling state by violet light exposure. The recovery to the receptor state occurs with a time constant of about 1 min. The quantum yield of signalling state formation is about 0.17 for BlrP1_BLUF and about 0.08 for BlrP1. The fluorescence efficiency of the FAD ox cofactor is small due to photo-induced reductive electron transfer. Prolonged light exposure converts FAD ox in the signalling state to the fully reduced hydroquinone form FAD redH - and causes low-efficient chromophore release with subsequent photo-degradation. The photo-cycle and photo-reduction dynamics in the receptor state and in the signalling state are discussed.

  18. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  19. [Sensitive method for continuous detection of peptides and proteins using the biuret reaction and a copper-Sephadex reactor (author's transl)].

    Science.gov (United States)

    Later, R; Quincy, C

    1979-06-01

    We describe a detection method relying both on the copper displacement from a Sephadex gel by peptides and proteins, and on the subsequent colorimetric determination of the complexed copper. The system described is fully automated and it permits a continuous analysis of column effluents. The choice of cuprizone as a detecting reagent for copper, enables one to bring the detection limit down to 200 ng for albumin and 60 ng for alanylglycylglycin. The specificity of the method is the same as the biuret reaction. Some examples of the possible applications are given.

  20. Increased type I collagen content and DNA binding activity of a single-stranded, cytosine-rich sequence in the high-salt buffer protein extract of the copper-deficient rat heart.

    Science.gov (United States)

    Zeng, Huawei; Saari, Jack T

    2004-11-01

    Dietary copper (Cu) deficiency not only causes a hypertrophic cardiomyopathy but also increases cancer risk in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue. Male Sprague-Dawley rats were fed diets that were either a Cu-adequate diet (6.0 microg Cu/g diet, n = 6) or a Cu-deficient diet (0.3 microg Cu/g diet, n = 6) for 5 weeks. The high-salt buffer (HSB) protein extract from heart tissue of Cu-deficient, but not Cu-adequate rats showed a 132 kDa protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This protein band stained pink with Coomassie Blue, suggesting the presence of collagens or other proline-rich proteins. Dot immunoblotting demonstrated that total type I collagen was increased by 110% in HSB protein extract from Cu-deficient, relative to Cu-adequate, rats. Liquid chromatography with mass spectrometry analysis indicated that the 132 kDa protein band contained a collagen alpha (I) chain precursor as well as a leucine-rich protein 130 (LRP130) in HSB protein extract from Cu-deficient but not Cu-adequate rats. A gel shift assay showed that HSB protein extract from Cu-deficient rats bound to a single-stranded cytosine-rich DNA with higher affinity than the extract of Cu-adequate rats, similar to reports of an increase in LRP130 single-stranded DNA binding activity in several types of tumor cells. Collectively, these results not only suggest an additional feature of altered collagen metabolism with Cu deficiency but also demonstrate for the first time an increase in single-stranded cytosine-rich DNA binding in Cu-deficient rat heart.

  1. One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting in Escherichia coli.

    Science.gov (United States)

    Drees, Steffen L; Klinkert, Birgit; Helling, Stefan; Beyer, Dominik F; Marcus, Katrin; Narberhaus, Franz; Lübben, Mathias

    2017-11-01

    Programmed ribosomal frameshifting (PRF) is a translational anomaly causing the ribosome to shift into an alternative reading frame. PRFs are common in viral genomes, using a single nucleotide sequence to code for two proteins in overlapping frames. In bacteria and eukaryota, PRFs are less frequent. We report on a PRF in the copper detoxification system of Escherichia coli where a metallochaperone is generated out of the first 69 amino acids and a C-terminal out-of-frame glycine of the gene copA. copA besides codes for the P 1B -ATPase CopA, a membrane-integral protein and principal interaction target of the chaperone. To enhance the production of the frameshift-generated cytosolic copper binding protein a truncated transcript is produced from the monocistronic copA gene. This shorter transcript is essential for producing sufficient amounts of the chaperone to support the membrane pump. The findings close the gap in our understanding of the molecular physiology of cytoplasmic copper transport in E. coli, revealing that a chaperone-like entity is required for full functionality of the P 1B -ATPase copper pump. We, moreover, demonstrate that the primary transcriptional response to copper results in formation of the small transcript and concurrently, the metallochaperone plays a key role in resistance against copper shock. © 2017 John Wiley & Sons Ltd.

  2. Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein.

    Science.gov (United States)

    Balogh, Ria K; Gyurcsik, Béla; Hunyadi-Gulyás, Éva; Christensen, Hans E M; Jancsó, Attila

    2016-07-01

    Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity. A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Copper resistance determinants in bacteria.

    Science.gov (United States)

    Brown, N L; Rouch, D A; Lee, B T

    1992-01-01

    Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.

  4. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress.

    Science.gov (United States)

    Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini

    2016-08-01

    To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. GmPLP1, a PAS/LOV protein, functions as a possible new type of blue light photoreceptor in soybean.

    Science.gov (United States)

    Li, Yongguang; Zhang, Yanzheng; Li, Mengting; Luo, Qiulan; Mallano, Ali Inayat; Jing, Ya; Zhang, Yuhang; Zhao, Lin; Li, Wenbin

    2018-03-01

    Light is one of the most important environmental factors for the growth and development of plants. To adapt to changes in day length, the photoreception and transmission of the light signals in plants mainly depend on the various light receptor proteins. The PAS/LOV protein (PLP) has a PAS domain in the N-terminal and LOV domain in the C-terminal and has been confirmed as a new type of blue light receptor in Arabidopsis thaliana. However, the role of its counterpart in soybean remains largely unclear. In this study, the expression pattern of the GmPLP1 under different light qualities was determined by real-time RT-PCR analysis using the cultivar 'DongNong 42', a photosensitive soybean cultivar, suggesting that GmPLP1 was affected by the circadian clock and was a dark-induced gene. Moreover, the mRNA abundance increased significantly under blue light. Further analysis revealed that overexpression of GmPLP1 displayed the inhibition of hypocotyl elongation under blue light, and the expression of CRY1, CRY2, CKL3, CKL4, BIT1, and HY5 were simultaneously increased in GmPLP1-transgenic Arabidopsis, suggesting that the shortened hypocotyl was associated with the up-regulation of these genes. Taken together, our results suggest that GmPLP1, which is a new possible type of blue light photoreceptor in soybean, plays an important role in the blue light signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. $^{111m}$Cd- and $^{199m}$Hg-derivatives of blue oxidases

    CERN Multimedia

    2002-01-01

    The rack-induced bonding concept (H.B.Gray & B.G.~Malmstroem, Comments Inorg. Chem, 2, 203, 1983) postulates that the bound metal ion in metalloproteins is forced to adopt a coordination geometry determined by the rigid peptide conformation of the protein. Alternatively, the metal ion could create its own favoured coordination geometry in a soft peptide conformation. In order to decide who is slave or master the changes of coordination and rigidity of metal sites in blue copper proteins due to metal and ligand exchange were studied by $^{111m}$Cd and $^{199m}$Hg $\\gamma$-$\\gamma$-perturbed angular correlation (PAC). To get a better understanding of the so called " Type 1 Copper Site " of the blue oxidases laccase (LAC) and ascorbate oxidase (AO) we concentrated our investigations on the small blue copper proteins azurin and plastocyanin. \\\\ \\\\In azurin~(Az), the metal ligand methionine 121~(M121) was replaced by several amino acids, e.g. asparagine~(N), glutamic acid~(E), via site directed mutagenesis. Di...

  7. Blue lesions.

    Science.gov (United States)

    Longo, Caterina; Scope, Alon; Lallas, Aimilios; Zalaudek, Iris; Moscarella, Elvira; Gardini, Stefano; Argenziano, Giuseppe; Pellacani, Giovanni

    2013-10-01

    Blue color is found in a wide range of malignant and benign melanocytic and nonmelanocytic lesions and in lesions that result from penetration of exogenous materials, such as radiation or amalgam tattoo or traumatic penetration of particles. Discriminating between different diagnostic entities that display blue color relies on careful patient examination and lesion assessment. Dermoscopically, the extent, distribution, and patterns created by blue color can help diagnose lesions with specificity and differentiate between benign and malignant entities. This article provides an overview of the main diagnoses whereby blue color can be found, providing simple management rules for these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Ways and means of coping with uncertainties of the relationship of the genetic blue print to protein structure and function in the cell

    Directory of Open Access Journals (Sweden)

    Helmreich Ernst JM

    2010-09-01

    Full Text Available Abstract As one of the disciplines of systems biology, proteomics is central to enabling the elucidation of protein function within the cell; furthermore, the question of how to deduce protein structure and function from the genetic readout has gained new significance. This problem is of particular relevance for proteins engaged in cell signalling. In dealing with this question, I shall critically comment on the reliability and predictability of transmission and translation of the genetic blue print into the phenotype, the protein. Based on this information, I will then evaluate the intentions and goals of today's proteomics and gene-networking and appraise their chances of success. Some of the themes commented on in this publication are explored in greater detail with particular emphasis on the historical roots of concepts and techniques in my forthcoming book, published in German: Von Molekülen zu Zellen. 100 Jahre experimentelle Biologie. Betrachtungen eines Biochemikers.

  9. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein.

    Science.gov (United States)

    McDonald, Alex; Pushie, M Jake; Millhauser, Glenn L; George, Graham N

    2013-11-07

    Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu(2+) interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu(2+) binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [Cu(II) (Ac-HGGGW-NH2)(-2H)] but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu(2+) bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu(2+) with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu(2+) occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear two-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented, and EXAFS curve fitting of the photoreduced species

  10. Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit

    Directory of Open Access Journals (Sweden)

    David W. Marsan

    2018-03-01

    Full Text Available The cyanobacterium Aphanizomenon flos-aquae (AFA, from Upper-Klamath Lake, Oregon, are used to produce blue-green algal (BGA dietary supplements. The periodic co-occurrence of hepatotoxin-producing contaminant species prompted the Oregon Health Division to establish a limit of 1 μg/g microcystin (MC for products sold in Oregon in 1997. At the federal level, the current good manufacturing practice (CGMP regulations for dietary supplements require manufacturers establish a specification, and test, for limits on contaminants that may adulterate finished products. Despite this, several previous international surveys reported MC in BGA supplements in excess of 1 μg/g. The objectives of this study were (1 identify a reliable, easy to use test kit for the detection of MC in dried BGA materials and (2 use this kit to assess the occurrence of MC contamination in AFA-BGA dietary supplements in the U.S. A commercial protein phosphatase inhibition assay (PPIA, based on the enzyme PP2A, was found to have acceptable relative enzyme inhibition and accuracy for the majority of MC variants tested, including those most commonly identified in commercial samples, making the kit fit for purpose. Using the PPIA kit, 51% (26 of 51 distinct AFA-BGA products had MC ≥0.25 μg/g (the detection limit of the kit, 10 products had MC concentrations between 0.5 and 1.0 μg/g, and 4 products exceeded the limit (1.1–2.8 μg/g. LC-MS/MS confirmed PPIA results ≥0.5 μg/g and determined that MC-LA and MC-LR were the main congeners present. PPIA is a reliable method for the detection of MC contamination in dried BGA dietary supplements produced in the U.S. While the majority of AFA-BGA products contained ≥0.25 μg/g MC, most were at or below 1.0 μg/g, suggesting that manufacturers have adopted this level as a specification in these products; however, variability in recommended serving sizes prevented further analysis of consumer exposure based on the concentrations of MC

  11. Effects of parental effort on blood stress protein HSP60 and immunoglobulins in female blue tits: a brood size manipulation experiment.

    Science.gov (United States)

    Merino, Santiago; Moreno, Juan; Tomás, Gustavo; Martínez, Javier; Morales, Judith; Martínez-de la Puente, Josué; Osorno, José Luis

    2006-09-01

    1. Physiological stress in animals may impose a limit for investment in current reproduction in the wild. A brood manipulation experiment was conducted in a population of blue tits Cyanistes caeruleus to study the effect of parental effort on changes in two types of proteins related with stress: the blood stress protein HSP60 and the plasma immunoglobulins. 2. Levels of HSP60 were reduced across the experiment for females attending reduced broods, and females attending enlarged broods experienced a reduction of immunoglobulin levels. Moreover, the overall changes in the levels of both proteins were positively related. 3. By controlling for the change in immunoglobulin levels we found an increase in HSP60 for females in the enlarged treatment, presumably to offset deleterious effects derived from increased effort. 4. Maternal effort was able to partially compensate for the effect of treatment as nestlings did not differ in mass and levels of immunoglobulins and HSP60 among treatments. 5. Physiological stress as reflected in stress and immunoglobulin proteins may limit maternal effort in breeding blue tits.

  12. Cytochrome b561, copper, β-cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1.

    Science.gov (United States)

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2017-11-15

    Ascorbate-induced release of heparan sulfate from S-nitrosylated heparan sulfate proteoglycan glypican-1 takes place in endosomes. Heparan sulfate penetrates the membrane and is transported to the nucleus. This process is dependent on copper and on expression and processing of the amyloid precursor protein. It remains unclear how exogenously supplied ascorbate can generate HS-anMan in endosomes and how passage through the membrane is facilitated. Here we have examined wild-type, Alzheimer Tg2576 and amyloid precursor protein (-/-) mouse fibroblasts and human fetal and Niemann-Pick C1 fibroblasts by using deconvolution immunofluorescence microscopy, siRNA technology and [S 35 ]sulfate-labeling, vesicle isolation and gel chromatography. We found that ascorbate-induced release of heparan sulfate was dependent on expression of endosomal cytochrome b561. Formation and nuclear transport of heparan sulfate was suppressed by inhibition of β-processing of the amyloid precursor protein and formation was restored by copper (I) ions. Membrane penetration was not dependent on amyloid beta channel formation. Inhibition of endosomal exit resulted in accumulation of heparan sulfate in vesicles that exposed the C-terminal of the amyloid precursor protein externally. Endosome-to-nucleus transport was also dependent on expression of the Niemann-Pick C1 protein. We propose that ascorbate is taken up from the medium and is oxidized by cytochrome b561 which, in turn, reduces copper (II) to copper (I) present in the N-terminal, β-cleaved domain of the amyloid precursor protein. Re-oxidation of copper (I) is coupled to reductive, deaminative release of heparan sulfate from glypican-1. Passage through the membrane may be facilitated by the C-terminal, β-cleaved fragment of the amyloid precursor protein and the Niemann-Pick C1 protein. Copyright © 2017. Published by Elsevier Inc.

  13. Joint Toxicity of Arsenic, Copper and Glyphosate on Behavior, Reproduction and Heat Shock Protein Response in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yunbiao; Ezemaduka, Anastasia N; Li, Zhuheng; Chen, Zhanyan; Song, Chuantao

    2017-04-01

    The soil nematode Caenorhabditis elegans was used in 24-h acute exposures to arsenic (As), copper (Cu) and glyphosate (GPS) and to mixtures of As/Cu and As/GPS to investigate the effects of mixture exposures in the worms. A synergistic type of interaction was observed for acute toxicity with the As/Cu and As/GPS mixtures. Sublethal 24-h exposures of 1/1000, 1/100 and 1/10 of the LC50 concentrations for As, Cu and GPS individually and for As/Cu and As/GPS mixtures were conducted to observe responses in locomotory behavior (head thrashing), reproduction, and heat shock protein expression. Head thrash frequency and reproduction exhibited concentration dependent decreases in both individual and combined exposures to the tested chemical stressors, and showed synergistic interactions even at micromolar concentrations. Furthermore, the HSP70 protein level was significantly increased following exposure to individual and combined chemical stressors in wild-type C. elegans. Our findings establish for the first time the effects of exposure to As/GPS and As/Cu mixtures in C. elegans.

  14. Blue native protein electrophoresis for studies of mouse polyomavirus morphogenesis and interactions between the major capsid protein VP1 and cellular proteins

    Czech Academy of Sciences Publication Activity Database

    Horníková, L.; Man, Petr; Forstová, J.

    2011-01-01

    Roč. 178, 1-2 (2011), s. 229-234 ISSN 0166-0934 R&D Projects: GA MŠk LC545 Institutional research plan: CEZ:AV0Z50200510 Keywords : BN-PAGE * Mouse polyomavirus * VP1 protein Subject RIV: CE - Biochemistry Impact factor: 2.011, year: 2011

  15. Natural Blue Food Colour

    DEFF Research Database (Denmark)

    Roda-Serrat, Maria Cinta

    In recent years, there has been a growing tendency to avoid the use of artificial colorants and additives in food products, especially after some studies linked their consumption with behavioural changes in children. However, the incorporation of colorants from natural origin remains a challenge...... for food technologists, as these are typically less vivid and less stable than their synthetic alternatives. Regarding blue colorants, phycocyanins from cyanobacteria are currently in the spotlight as promising new natural blue colorants. Phycocyanins are proteins which blue colour results from...... the presence of the chromophore phycocyanobilin (PCB), a covalently attached linear tetrapyrrole. The applications of phycocyanins as food colorants are however limited, as they show poor stability in certain conditions of pH, light and temperature. Cleavage of PCB from the protein followed by careful product...

  16. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Science.gov (United States)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  17. Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein

    Science.gov (United States)

    Blundell, Katie L. I. M.; Wilson, Michael T.; Svistunenko, Dimitri A.; Vijgenboom, Erik; Worrall, Jonathan A. R.

    2013-01-01

    Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (ScoSl) and present a series of experiments that firmly establish a role for ScoSl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δsco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δsco mutant are restored to wild-type levels and are thus independent of ScoSl. A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that ScoSl has at least two targets in S. lividans. We establish that one ScoSl target is the dinuclear CuA domain of CcO and it is the cupric form of ScoSl that is functionally active. The mechanism of cupric ion capture by ScoSl has been investigated, and an important role for a conserved His residue is identified. PMID:23345541

  18. Cloning, crystallization and preliminary X-ray studies of XC2981 from Xanthomonas campestris, a putative CutA1 protein involved in copper-ion homeostasis

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Chin, Ko-Hsin; Gao, Fei Philip; Lyu, Ping-Chiang; Shr, Hui-Lin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-01-01

    A probable copper-ion tolerance protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. Divalent metal ions play key roles in all living organisms, serving as cofactors for many proteins involved in a variety of electron-transfer activities. However, copper ions are highly toxic when an excessive amount is accumulated in a cell. CutA1 is a protein found in all kingdoms of life that is believed to participate in copper-ion tolerance in Escherichia coli, although its specific function remains unknown. Several crystal structures of multimeric CutA1 with different rotation angles and degrees of interaction between trimer interfaces have been reported. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC2981, a possible CutA1 protein present in the plant pathogen Xanthomonas campestris, are reported. The XC2981 crystals diffracted to a resolution of 2.6 Å. They are cubic and belong to space group I23, with unit-cell parameters a = b = c = 130.73 Å

  19. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    Science.gov (United States)

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus

  20. Gelation of edible blue-green algae protein isolate (Spirulina platensis Strain Pacifica): thermal transitions, rheological properties, and molecular forces involved.

    Science.gov (United States)

    Chronakis, I S

    2001-02-01

    Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and

  1. Removal of copper(II) using deacetylated konjac glucomannan conjugated soy protein isolate.

    Science.gov (United States)

    Liu, Feng; Zou, Hailiang; Peng, Jianbing; Hu, Jinwen; Liu, Hongbo; Chen, Yanwu; Lu, Fenghui

    2016-05-01

    In this study, an environmentally friendly biosorbent deacetylated konjac glucomannan conjugated soy protein isolate (abbreviated as DKGM-C-SPI) was prepared for Cu(2+) ions removal from aqueous solution. Scanning electron microscopy, Fourier transform infrared spectroscopy and zeta potential analysis revealed successful conjugation of soy protein isolate (SPI) onto deacetylated konjac glucomannan (DKGM) matrix. A comparative adsorption performance of DKGM-C-SPI and DKGM was tested to remove Cu(2+) ions from aqueous solution. DKGM-C-SPI showed the desired adsorption performance for Cu(2+) ions. The adsorption equilibrium of DKGM-C-SPI was achieved within 30 min. The adsorption behavior of DKGM-C-SPI followed a pseudo-second-order reaction model. The maximum Cu(2+) ion adsorption capacities obtained from the Langmuir isotherms fit were shown to be 62.50 mg g(-1) for DKGM-C-SPI and 12.23 mg g(-1) for DKGM. This impressive increase about 5 times in Cu(2+) ion adsorption capacity is attributed to the strong Cu(2+) ion chelating ability of the soy protein isolate (SPI) on the DKGM matrix. These results confirm that the DKGM-C-SPI biosorbent has a potential for Cu(2+) ion extraction from wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells

    OpenAIRE

    Parr-Sturgess, Catherine A.; Tinker, Claire L.; Hart, Claire A.; Brown, Michael D.; Clarke, Noel W.; Parkin, Edward T.

    2012-01-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at t...

  3. Dispensability of the major coat protein of oat blue dwarf virus in genome replication: Substitution of the open reading frame with the enhanced green fluorescent protein gene

    Science.gov (United States)

    Oat blue dwarf virus (OBDV) is a representative marafivirus that infects monocots and a limited number of dicot species and is vectored propagatively by the leafhopper Macrosteles fascifrons.Recently, we reported the generation of clone pOBDV-2r, the first clone of a marafivirus from which infectiou...

  4. Protein complexes in the archaeon Methanothermobacter thermautotrophicus analyzed by blue native/SDS-PAGE and mass spectrometry.

    NARCIS (Netherlands)

    Farhoud, M.H.; Wessels, H.C.T.; Steenbakkers, P.J.M.; Mattijssen, S.; Wevers, R.A.; Engelen, B.G.M. van; Jetten, M.S.M.; Smeitink, J.A.M.; Heuvel, L.P.W.J. van den; Keltjens, J.T.M.

    2005-01-01

    Methanothermobacter thermautotrophicus is a thermophilic archaeon that produces methane as the end product of its primary metabolism. The biochemistry of methane formation has been extensively studied and is catalyzed by individual enzymes and proteins that are organized in protein complexes.

  5. A novel non-blue laccase from Bacillus amyloliquefaciens: secretory expression and characterization.

    Science.gov (United States)

    Chen, Biao; Xu, Wen-Qi; Pan, Xin-Ru; Lu, Lei

    2015-05-01

    Laccases are copper-containing enzymes which possess a promising potential in many industrial and environmental applications. Here we describe the cloning, extracellular expression and characterization of a novel non-blue laccase from Bacillus amyloliquefaciens in Pichia pastoris. The recombinant enzyme was secreted into the culture supernatant with high activity. It lacks the absorption band at 610 nm typical for blue laccases. However, electron paramagnetic resonance (EPR) spectrum proved the existence of type 1 copper center that was not detectable in the UV-visible spectrum. Metal content analysis revealed that the enzyme contains two copper ions, one iron ion and one zinc ion per protein molecular, suggesting that it is a novel non-blue laccase. The pH and temperature optima of the recombinant laccase were 6.6 and 60°C, respectively, and it was stable at pH 9.0 for 10 days. The enzyme activity was slightly activated by NaCl with concentration up to 200 mM. The purified laccase showed high efficiency in decolorizing reactive black 5 and indigo carmine, achieving more than 93% decolorization after 1h. The extreme robustness of the recombinant B. amyloliquefaciens laccase offers several advantages over most fungal laccases in various industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    Science.gov (United States)

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines. © 2015 Wiley Periodicals, Inc.

  7. Performance characteristics, plasma lipids and copper residue in ...

    African Journals Online (AJOL)

    Copper proteinate) and inorganic (Copper sulphate) Cu source on growth performance, plasma lipids and copper residue in organs and tissues of cockerel chickens. 240 day-old commercial Black-Harco cockerel chicks were randomly distributed to ...

  8. Essential role of copper in the activity and regular periodicity of a recombinant, tumor-associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ENOX2).

    Science.gov (United States)

    Tang, Xiaoyu; Chueh, P-J; Jiang, Ziying; Layman, Sara; Martin, Berdine; Kim, Chinpal; Morré, Dorothy M; Morré, D James

    2010-10-01

    ECTO-NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit time-keeping and prion-like properties. A bacterially expressed truncated recombinant 46 kDa ENOX2 with full ENOX2 activity bound ca 2 moles copper and 2 moles of zinc per mole of protein. Unfolding of the protein in trifluoroacetic acid in the presence of the copper chelator bathocuproine resulted in reversible loss of both enzymatic activities and of a characteristic pattern in the Amide I to Amide II ratios determined by FTIR with restoration by added copper. The H546-V-H together with His 562 form one copper binding site and H582 represents a second copper site as determined from site-directed mutagenesis. Bound copper emerges as having an essential role in ENOX2 both for enzymatic activity and for the structural changes that underly the periodic alternations in activity that define the time-keeping cycle of the protein.

  9. In Situ STM and AFM of the Copper Protein Pseudomonas Aeruginosa Azurin

    DEFF Research Database (Denmark)

    Friis, Esben P.; Andersen, Jens Enevold Thaulov; Madsen, L.L.

    1997-01-01

    Scanning tunnel (STM) and atomic force microscopy (AFM) in the in situ mode under potentiostatic control have opened new perspectives for mapping the two-dimensional organization of surface adsorbates in aqueous solution. In situ STM and AFM, however, also raise recognized problems. In the context...... exponentially with increasing distance with a decay constant of 0.4–0.5 Å−1. In comparison in situ AFM shows structures laterally convoluted with the tip while the vertical extension is in the same range as the structural size of azurin. The results are of interest in relation to electron tunnel mechanisms...... of redox metalloproteins and in technological contexts such as electrochemical biosensors, microbial corrosion and broadly for protein adsorption from biological liquids....

  10. Detection of copper ions in drinking water using the competitive adsorption of proteins.

    Science.gov (United States)

    Wang, Ran; Wang, Wei; Ren, Hao; Chae, Junseok

    2014-07-15

    Heavy metal ions, i.e., Cu(2+), are harmful to the environment and our health. In order to detect them, and circumvent or alleviate the weaknesses of existing detecting technologies, we contrive a unique Surface Plasmon Resonance (SPR) biosensor combined with competitive adsorption of proteins, termed the Vroman effect. This approach adopts native proteins (albumin) as bio-receptors that interact with Cu(2+) to be denatured. Denaturation disrupts the conformation of albumin so that it weakens its affinity to adsorb on the sensing surface. Through the competitive adsorption between the denatured albumins and the native ones, the displacement occurs adjacent to the sensing surface, and this process is real-time monitored by SPR, a surface-sensitive label-free biosensor. The affinities of native albumin is significantly higher than that of denatured albumin, demonstrated by measured KD of native and denatured albumin to gold surafce, 5.8±0.2×10(-5) M and 5.4±0.1×10(-4) M, respectively. Using our biosensor, Cu(2+) with concentration down to 0.1mg/L is detected in PBS, tap water, deionized water, and bottled water. The SPR biosensor is characterized for 5 different heavy metal ions, Cu(2+), Fe(3+), Mn(2+), Pb(2+), and Hg(2+), most common heavy metal ions found in tap water. At the maximum contaminant level (MCL) suggested by the United States Environmental Protection Agency (EPA), the SPR biosensor produces 13.5±0.4, 1.5±0.4, 0, 0, and 0 mDeg, respectively, suggesting the biosensor may be used to detect Cu(2+) in tap water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fluorescence-based determination of the copper concentration in drinking water

    Science.gov (United States)

    Hötzer, Benjamin; Scheu, Timo; Jung, Gregor; Castritius, Stefan

    2013-05-01

    Copper is a heavy metal, which is used in heat and electrical conductors and in a multitude of alloys in the technical context. Moreover, it is a trace element that is essential for the life of organisms but can cause toxic effects in elevated concentrations. Maximum limits in water and beverages exist. Here, the decrease of the fluorescence lifetime of green fluorescent protein (GFP) by Förster resonance energy transfer is used to measure the copper ion concentration in drinking water. Therefore, a system is developed that is based on a GFP sample in a predefined concentration. The GFP mutant can be excited with blue light. For binding of copper ions, a His-tag is included in the GFP. After measuring the fluorescence lifetime of pure GFP, the copper determination of the sample is performed by lifetime measurement. Therefore, the lifetime can be assigned to the copper concentration of the GFP-doped drinking water sample. In summary, a method for the quantification of copper ions based on changes of the fluorescence lifetime of GFP is developed, and the measurement of the copper concentration in water samples is performed.

  12. Blue gods, blue oil, and blue people.

    Science.gov (United States)

    Fairbanks, V F

    1994-09-01

    Studies of the composition of coal tar, which began in Prussia in 1834, profoundly affected the economies of Germany, Great Britain, India, and the rest of the world, as well as medicine and surgery. Such effects include the collapse of the profits of the British indigo monopoly, the growth in economic power of Germany based on coal tar chemistry, and an economic crisis in India that led to more humane tax laws and, ultimately, the independence of India and the end of the British Empire. Additional consequences were the development of antiseptic surgery and the synthesis of a wide variety of useful drugs that have eradicated infections and alleviated pain. Many of these drugs, particularly the commonly used analgesics, sulfonamides, sulfones, and local anesthetics, are derivatives of aniline, originally called "blue oil" or "kyanol." Some of these aniline derivatives, however, have also caused aplastic anemia, agranulocytosis, and methemoglobinemia (that is, "blue people"). Exposure to aniline drugs, particularly when two or three aniline drugs are taken concurrently, seems to be the commonest cause of methemoglobinemia today.

  13. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L. Varieties with Different Cu Tolerances.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05 and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33, pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33, regulation of gene transcription (spots 8 and 34, amino acid synthesis (spots 8 and 34, protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35, cell wall synthesis (spot 14, molecular signaling (spot 3, and salt stress (spots 7, 9 and 27; together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play

  14. On the mechanism of non-radiative decay of blue fluorescent protein chromophore: New insight from the excited-state molecular dynamics simulations and potential energy calculations

    Science.gov (United States)

    Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang

    2017-11-01

    A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.

  15. Disulfiram/copper-disulfiram Damages Multiple Protein Degradation and Turnover Pathways and Cytotoxicity is Enhanced by Metformin in Oesophageal Squamous Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Jivan, Rupal; Damelin, Leonard Howard; Birkhead, Monica; Rousseau, Amanda Louise; Veale, Robin Bruce; Mavri-Damelin, Demetra

    2015-10-01

    Disulfiram (DSF), used since the 1950s in the treatment of alcoholism, is reductively activated to diethyldithiocarbamate and both compounds are thiol-reactive and readily complex copper. More recently DSF and copper-DSF (Cu-DSF) have been found to exhibit potent anticancer activity. We have previously shown that the anti-diabetic drug metformin is anti-proliferative and induces an intracellular reducing environment in oesophageal squamous cell carcinoma (OSCC) cell lines. Based on these observations, we investigated the effects of Cu-DSF and DSF, with and without metformin, in this present study. We found that Cu-DSF and DSF caused considerable cytotoxicity across a panel of OSCC cells, and metformin significantly enhanced the effects of DSF. Elevated copper transport contributes to DSF and metformin-DSF-induced cytotoxicity since the cell-impermeable copper chelator, bathocuproinedisulfonic acid, partially reversed the cytotoxic effects of these drugs, and interestingly, metformin-treated OSCC cells contained higher intracellular copper levels. Furthermore, DSF may target cancer cells preferentially due to their high dependence on protein degradation/turnover pathways, and we found that metformin further enhances the role of DSF as a proteasome inhibitor. We hypothesized that the lysosome could be an additional, novel, target of DSF. Indeed, this acid-labile compound decreased lysosomal acidification, and DSF-metformin co-treatment interfered with the progression of autophagy in these cells. In summary, this is the first such report identifying the lysosome as a target of DSF and based on the considerable cytotoxic effects of DSF either alone or in the presence of metformin, in vitro, and we propose these as novel potential chemotherapeutic approaches for OSCC. © 2015 Wiley Periodicals, Inc.

  16. Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes.

    Directory of Open Access Journals (Sweden)

    Svetlana Brim

    Full Text Available Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc, which result from the conformational conversion of physiological prion proteins (PrPC. PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC-Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays.

  17. Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes

    Science.gov (United States)

    Brim, Svetlana; Groschup, Martin H.; Kuczius, Thorsten

    2016-01-01

    Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC–Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays. PMID:27093554

  18. A novel copper(II) coordination at His186 in full-length murine prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yasuko [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Hiraoka, Wakako [Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan); Igarashi, Manabu; Ito, Kimihito [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Shimoyama, Yuhei [Soft-Matter Physics Laboratory, Graduate School of Emergent Science, Muroran Institute of Technology, Muroran 050-8585 (Japan); Horiuchi, Motohiro [Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Inagaki, Fuyuhiko [Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  19. OsHAL3, a Blue Light-Responsive Protein, Interacts with the Floral Regulator Hd1 to Activate Flowering in Rice.

    Science.gov (United States)

    Su, Lei; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2016-02-01

    In flowering plants, photoperiodic flowering is controlled by a complicated network. Light is one of the most important environmental stimuli that control the timing of the transition from vegetative growth to reproductive development. Several photoreceptors, including PHYA, PHYB, CRY2, and FKF1 in Arabidopsis and their homologs (OsPHYA, OsPHYB, OsPHYC, and OsCRY2) in rice, have been identified to be related to flowering. Our previous study suggests that OsHAL3, a flavin mononucleotide-binding protein, may function as a blue-light sensor. Here, we report the identification of OsHAL3 as a positive regulator of flowering in rice. OsHAL3 overexpression lines exhibited an early flowering phenotype, whereas downregulation of OsHAL3 expression by RNA interference delayed flowering under an inductive photoperiod (short-day conditions). The change in flowering time was not accompanied by altered Hd1 expression but rather by reduced accumulation of Hd3a and MADS14 transcripts. OsHAL3 and Hd1 colocalized in the nucleus and physically interacted in vivo under the dark, whereas their interaction was inhibited by white or blue light. Moreover, OsHAL3 directly bound to the promoter of Hd3a, especially before dawn. We conclude that OsHAL3, a novel light-responsive protein, plays an essential role in photoperiodic control of flowering time in rice, which is probably mediated by forming a complex with Hd1. Our findings open up new perspectives on the photoperiodic flowering pathway. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  20. PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases.

    Science.gov (United States)

    Hoffman, P D; Batschauer, A; Hays, J B

    1996-11-27

    A cDNA from Arabidopsis thaliana similar to microbial photolyase genes, and designated AT-PHH1, was isolated using a photolyase-like cDNA from Sinapsis alba (SA-PHR1) as a probe. Multiple isolations yielded only PHH1 cDNAs, and a few blue-light-receptor CRY1 (HY4) cDNAs (also similar to microbial photolyase genes), suggesting the absence of any other highly similar Arabidopsis genes. The AT-PHH1 and SA-PHR1 cDNA sequences predict 89% identity at the protein level, except for an AT-PHH1 C-terminal extension (111 amino acids), also not seen in microbial photolyases. AT-PHH1 and CRY1 show less similarity (54% p4erein identity), including respective C-terminal extensions that are themselves mostly dissimilar. Analysis of fifteen AT-PHH1 genomic isolates reveals a single gene, with three introns in the coding sequence and one in the 5'-untranslated leader. Full-length AT-PHH1, and both AT-PHH1 and AT-PHH1 delta C-513 (truncated to be approximately the size of microbial photolyase genes) cDNAs, were overexpressed, respectively, in yeast and Escherichia coli mutants hypersensitive to ultraviolet light. The absence of significant effects on resistance suggests either that any putative AT-PHH1 DNA repair activity requires cofactors/chromophores not present in yeast or E. coli, or that AT-PHH1 encodes a blue-light/ultraviolet-A receptor rather than a DNA repair protein.

  1. GC-MS identification of proteins in wall painting samples: a fast clean-up procedure to remove copper-based pigment interferences.

    Science.gov (United States)

    Gautier, Gwénaëlle; Colombini, Maria Perla

    2007-08-15

    A new approach was explored to purify proteins in a multi-step procedure for the characterisation of proteinaceous materials (casein, animal glue, and egg) in artwork samples by gas chromatography-mass spectrometry. High concentrations of inorganic salts, such as azurite, have been found to impair the determination of protein via amino acid analysis. The effect of varying concentrations of copper-based pigments on the quantification of amino acids was evaluated through the analysis of replica paintings prepared with the three types of proteinaceous materials. Glycine, aspartic and glutamic acids are the amino acids most affected by the presence of copper salts. In the case of high concentration of salts, this interference hampers the correct identification of the proteins. To eliminate the inorganic salts, a C18 pipette tip was used to clean-up the ammonia extracts before the acidic hydrolysis step. The clean-up procedure allows us to prevent the influence of the inorganic salts and thus allows correct protein identification, though the quantitative recovery of proteinaceous material is quite low. The effectiveness of the optimised procedure was evaluated by analysing samples from two Italian wall paintings from the 13th and the 14th centuries. Without the clean-up it would not have been possible to detect the presence of a mixture of egg and animal glue in one case, and that of egg in the other one.

  2. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2 enhances tolerance to cadmium and copper stresses.

    Directory of Open Access Journals (Sweden)

    Yulin Tang

    Full Text Available The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd(2+, Co(2+, Ni(2+, Zn(2+ and Cu(2+ but not hard metal ions (Ca(2+ and Mg(2+ in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu(2+ or Cd(2+ stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd(2+ and copper (Cu(2+ tolerance to plants by helping plants to sequester Cd(2+ or Cu(2+ in the root and reduce the amount of heavy metals transported to the shoots.

  3. Presenilin promotes dietary copper uptake.

    Directory of Open Access Journals (Sweden)

    Adam Southon

    Full Text Available Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1. Copper dyshomeostasis has been implicated in Alzheimer's disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer's disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake.

  4. In vivo incorporation of copper into the iron-exchangeable and manganese-exchangeable superoxide dismutase from Propionibacterium shermanii. Amino acid sequence and identity of the protein moieties.

    Science.gov (United States)

    Meier, B; Sehn, A P; Schininà, M E; Barra, D

    1994-01-15

    Propionibacterium shermanii, an aerotolerant anaerobe, produces an iron-containing or a manganese-containing superoxide dismutase, depending on the metal supplied in the culture medium [Meier, B., Barra, D., Bossa, F., Calabrese, L. & Rotilio, G. (1982) J. Biol. Chem. 257, 13977-13980]. In this study, we demonstrate in vivo incorporation of copper into an active superoxide-dismutase protein when iron and manganese are absent from the growth medium. Superoxide dismutases containing either iron, manganese or copper were isolated from P. shermanii, their complete amino acid sequences were determined and the identity of their protein moieties was established. The polypeptide chain is made up of 201 amino acid residues, corresponding to a molecular mass of 22.6 kDa. From sedimentation equilibrium experiments, the native protein shows a molecular mass of approximately 86 kDa and therefore consists of four identical subunits. The primary structure was compared with the structure of other Fe-superoxide dismutases and Mn-superoxide dismutases, in particular those possessing a strict metal cofactor specificity.

  5. Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness

    NARCIS (Netherlands)

    D'Alba, Liliana; Shawkey, Matthew D.; Korsten, Peter; Vedder, Oscar; Kingma, Sjouke A.; Komdeur, Jan; Beissinger, Steven R.; Alba, Liliana D’; Graves, J.

    Female birds can influence offspring fitness by varying the relative quantities of egg components they deposit within and between clutches. Antimicrobial proteins (lysozyme, ovotransferrin, and avidin) are significant components of the avian albumen and likely aid in defense of embryos from

  6. Chemical composition and standardized ileal digestibility of protein and amino acids from blue mussel, starfish, and fish silage in pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jens Vinther; Petersen, Jens Kjerulf; Tørring, Ditte Bruunshøj

    2015-01-01

    fish silage from farmed salmon was also included in theexperiment. The standardized ileal digestibility (SID) of crude protein (CP) and amino acids(AA) was evaluated in a Latin square design with pigs (initial weight 39.3 kg) fitted with asimple T-cannula in the terminal ileum. Diets contained 131...

  7. Posthuman blues

    CERN Document Server

    Tonnies, Mac

    2013-01-01

    Posthuman Blues, Vol. I is first volume of the edited version of the popular weblog maintained by author Mac Tonnies from 2003 until his tragic death in 2009. Tonnies' blog was a pastiche of his original fiction, reflections on his day-to-day life, trenchant observations of current events, and thoughts on an eclectic range of material he culled from the Internet. What resulted was a remarkably broad portrait of a thoughtful man and the complex times in which he lived, rendered with intellige...

  8. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  9. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Science.gov (United States)

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  10. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Directory of Open Access Journals (Sweden)

    Magali Roger

    Full Text Available Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  11. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M

    1992-01-01

    An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To fu...

  12. Thermodynamic Studies of Cu(I) and Other d10 Metal Ions Binding to Proteins in the Copper Homeostasis Pathway and the Organomercurial Detoxification Pathway

    Science.gov (United States)

    Stevenson, Michael James

    Copper(I) is the predominant oxidation state of this essential metal in living cells due to reducing intracellular conditions. Because of deleterious copper-mediated Fenton chemistry, intracellular copper trafficking pathways involve strict regulation by metallochaperone proteins. Previous studies of the 68-residue metallochaperone, HAH1, have shown that it coordinates Cu(I) with two cysteines for transport from Ctr1 in the cell membrane to ATPases in the Golgi network. Using isothermal titration calorimetry (ITC), and methods to suppress oxidation and disproportionation of Cu(I), the thermodynamics of Cu(I), as well as other metal ions, binding to HAH1 have been accurately quantified. During the course of this study, the Cu(I) binding thermodynamics with the stabilizing ligand hexamethyltrien were determined in order to accurately quantify the Cu(I) binding thermodynamics with proteins, and revealed an unexpected Cu(I) coordination chemistry with this ligand. In addition, HAH1 binding the Cu(I) analogue Ag(I), the abundant cellular metal ion Zn(II), and the thiophilic toxic metal ion Hg(II), have been quantified. The binding thermodynamics of these metal ions were also determined in the presence of glutathione to more accurately model physiological conditions. HAH1 has a high affinity for Cu(I), which is both enthalpically and entropically favorable. It has a substantially lower affinity for Zn(II), which is entropically favored, suggesting that Zn(II) is not able to compete with Cu(I) for HAH1 in vivo. However, HAH1 has an exceptionally high affinity for Hg(II), with its larger thiophilicity, and it will displace Cu(I). Mercury(II) and particularly organomercurial compounds are very toxic, yet proteins from the bacterial mer operon provide resistance to this toxicity. In particular, the organomercurial lyase MerB, whose only known structural homologue is a putative copper metallochaperone, is responsible for cleavage of the carbon-mercury bond of MeHg(II) and

  13. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    . As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak...... hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  14. [Blue blood: structure and evolution of hemocyanin].

    Science.gov (United States)

    Linzen, B

    1989-05-01

    Hemocyanins are the oxygen-transporting proteins in arthropods and molluscs, the oxygen is bound by two copper atoms. Spectroscopic studies on the active site show similarities to the active site of a further group of copper-containing proteins, the tyrosinases. Arthropodan and molluscan hemocyanins form high-molecular aggregates which are markedly different in size and quaternary structure. There is only one tertiary structure of an arthropodan hemocyanin available, but from comparison of all amino acid sequences known so far from arthropodan hemocyanins, a common tertiary structure for all arthropodan hemocyanins can be deduced. Again, sequence comparison allows the construction of an evolutionary tree for some oxygen-binding copper proteins.

  15. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  16. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    ABSTRACT: A Schiff base was prepared from the reaction of 2 - amino - 3 – methylbutanoic acid and 2, 4 - pentanedione. The reaction of the prepared Schiff base with ethanolic solution of copper (II) chloride formed diaquo bis( N – 2 – amino – 3 - methylbutyl - 2, 4 - pentanedionato) copper (II) complex. The Schiff base is ...

  17. Human Thyroid Cancer-1 (TC-1 is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

    Directory of Open Access Journals (Sweden)

    Natalie K. Jones

    2015-07-01

    Full Text Available The human Thyroid Cancer-1 (hTC-1 protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

  18. Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling[C][W

    Science.gov (United States)

    Tan, Shu-Tang; Dai, Cheng; Liu, Hong-Tao; Xue, Hong-Wei

    2013-01-01

    Casein kinase1 (CK1) plays crucial roles in regulating growth and development via phosphorylating various substrates throughout the eukaryote kingdom. Blue light is crucial for normal growth of both plants and animals, and blue light receptor cryptochrome2 (CRY2) undergoes blue light–dependent phosphorylation and degradation in planta. To study the function of plant CK1s, systematic genetic analysis showed that deficiency of two paralogous Arabidopsis thaliana CK1s, CK1.3 and CK1.4, caused shortened hypocotyls, especially under blue light, while overexpression of either CK1.3 or CK1.4 resulted in the insensitive response to blue light and delayed flowering under long-day conditions. CK1.3 or CK1.4 act dependently on CRY2, and overexpression of CK1.3 or CK1.4 significantly suppresses the hypersensitive response to blue light by CRY2 overexpression. Biochemical studies showed that CK1.3 and CK1.4 directly phosphorylate CRY2 at Ser-587 and Thr-603 in vitro and negatively regulate CRY2 stability in planta, which are stimulated by blue light, further confirming the crucial roles of CK1.3 and CK1.4 in blue light responses through phosphorylating CRY2. Interestingly, expression of CK1.3 and CK1.4 is stimulated by blue light and feedback regulated by CRY2-mediated signaling. These results provide direct evidence for CRY2 phosphorylation and informative clues on the mechanisms of CRY2-mediated light responses. PMID:23897926

  19. Surface plasmon effect in nanocrystalline copper/DLC composite ...

    Indian Academy of Sciences (India)

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in ...

  20. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Daphnia magna. Environ. Technol. Lett. 5 109-120. ROBERT W (1984) The toxicity and bioaccumulation of cadmium and copper as affected by humic acid. Aquat. Toxicol. 5 267-274. WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper and cadmium on blue green alga Anacystis nidulans. Environ. Pollut.

  1. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  2. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  3. Serum copper and ceruloplasmin levels and urinary copper excretion in thermal injury.

    Science.gov (United States)

    Boosalis, M G; McCall, J T; Solem, L D; Ahrenholz, D H; McClain, C J

    1986-12-01

    Conflicting reports regarding copper status in thermal injury patients have been published. We determined serial serum-copper and serum-ceruloplasmin levels and 24-h urinary excretion of copper in 23 patients with second- and third-degree thermal burns. Throughout hospitalization, mean serum-copper concentration was significantly depressed; lowest levels were found in patients with greater than 40% total body surface area burns. Serum ceruloplasmin was also depressed, an unexpected finding because this protein is a positive acute-phase reactant poststress. Mean urinary excretion of copper was elevated, reaching 2.5 times the upper limit of normal 2 wk postburn. Depressed serum-copper levels paralleled the serum-ceruloplasmin levels rather than the increased urinary-copper losses. Further studies are required to determine the mechanism(s) of this altered copper metabolism and whether physiological or biochemical evidence of copper deficiency accompanies the observed hypocupremia.

  4. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    Science.gov (United States)

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  5. [Anaphylaxis to blue dyes].

    Science.gov (United States)

    Langner-Viviani, F; Chappuis, S; Bergmann, M M; Ribi, C

    2014-04-16

    In medicine, vital blue dyes are mainly used for the evaluation of sentinel lymph nodes in oncologic surgery. Perioperative anaphylaxis to blue dyes is a rare but significant complication. Allergic reactions to blue dyes are supposedly IgE-mediated and mainly caused by triarylmethanes (patent blue and isosulfane blue) and less frequently by methylene blue. These substances usually do not feature on the anesthesia record and should not be omitted from the list of suspects having caused the perioperative reaction, in the same manner as latex and chlorhexidine. The diagnosis of hypersensitivity to vital blue dyes can be established by skin test. We illustrate this topic with three clinical cases.

  6. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  7. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  8. Development of a generic approach to metalloproteomics; application to the quantitative identification of soluble copper proteins in Escherichia coli

    NARCIS (Netherlands)

    Sevcenco, A.M.; Krijger, G.; Pinkse, M.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2009-01-01

    A combination of techniques to separate and quantify the native proteins associated with a particular transition metal ion from a cellular system has been developed. The procedure involves four steps: (1) labeling of the target proteins with a suitable short-lived radioisotope (suitable isotopes are

  9. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Li Weijun

    2011-01-01

    Full Text Available Abstract Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins, which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane

  10. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin.

    Science.gov (United States)

    Zheng, Jianhua; Wei, Candong; Zhao, Lina; Liu, Liguo; Leng, Wenchuan; Li, Weijun; Jin, Qi

    2011-01-18

    Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. In this

  11. New achievements on biological aspects of copper complexes Casiopeínas®: interaction with DNA and proteins and anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Becco, Lorena; Rodríguez, Alejandra; Bravo, María Elena; Prieto, María José; Ruiz-Azuara, Lena; Garat, Beatriz; Moreno, Virtudes; Gambino, Dinorah

    2012-04-01

    The mixed-chelate copper(II) complexes Casiopeínas® have been tested in several models in vitro and in vivo, showing promising antitumoral results. However, their mechanism of action remains to be defined. Trying to get a deeper insight into their molecular mode of action, further analyses, including gel electrophoresis, atomic force microscopy and circular dichroism were carried out to study their interaction with DNA and some cytoskeleton proteins. Our results revealed that the interaction of Casiopeínas triggers DNA cleavage by a free radical mechanism. The tested complexes showed a differential response to reducing and scavenger agents. Differences on target preference were also evident using double stranded oligonucleotides as sequence competitors. Surprisingly, distamycin A, a minor groove binder, enhanced the Casiopeínas' action on DNA. On the other hand, the tested Casiopeínas produce strong changes in protein structure of tubulin, integrin and fibronectin. All together these results suggest a multiple mode of action for these metal-based drugs. In addition, since it has been proposed that antitumor drugs efficiently interacting with DNA could also show activity against Trypanosoma cruzi, etiologic agent of Chagas disease, we evaluated the activity of these compounds on this protozoan parasite. The tested complexes showed in vitro anti-T. cruzi activity similar to the anti-trypanosomal reference drug Nifurtimox. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein

    DEFF Research Database (Denmark)

    Balogh, Ria K.; Gyurcsik, Béla; Hunyadi-Gulyás, Éva

    2016-01-01

    . A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes......Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity......, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without...

  13. Evidence that translation reinitiation leads to a partially functional Menkes protein containing two copper-binding sites

    DEFF Research Database (Denmark)

    Paulsen, Marianne; Lund, Connie; Akram, Zarqa

    2006-01-01

    -dependent trafficking of the major part of endogenous and recombinant ATP7A(Delta ex3+ex4) proteins were similar to the wild-type ATP7A protein. Furthermore, the ATP7A(Delta ex3+ex4) cDNA was able to rescue a yeast strain lacking the homologous gene, CCC2. In summary, we propose that reinitiation of the NMD...

  14. Three-dimensional organization of three-domain copper oxidases: A review

    International Nuclear Information System (INIS)

    Zhukhlistova, N. E.; Zhukova, Yu. N.; Lyashenko, A. V.; Zaitsev, V. N.; Mikhailov, A. M.

    2008-01-01

    'Blue' copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms

  15. Blue cures blue but be cautious

    Directory of Open Access Journals (Sweden)

    Pranav Sikka

    2011-01-01

    Full Text Available Methemoglobinemia is a disorder characterized by the presence of >1% methemoglobin (metHb in the blood. Spontaneous formation of methemoglobin is normally counteracted by protective enzyme systems, for example, nicotinamide adenine dinucleotide phosphate (NADPH methemoglobin reductase. Methemoglobinemia is treated with supplemental oxygen and methylene blue (1-2 mg/kg administered slow intravenously, which acts by providing an artificial electron acceptor for NADPH methemoglobin reductase. But known or suspected glucose-6-phosphate dehydrogenase (G6PD deficiency is a relative contraindication to the use of methylene blue because G6PD is the key enzyme in the formation of NADPH through pentose phosphate pathway and G6PD-deficient individuals generate insufficient NADPH to efficiently reduce methylene blue to leukomethylene blue, which is necessary for the activation of the NADPH-dependent methemoglobin reductase system. So, we should be careful using methylene blue in methemoglobinemia patient before G6PD levels.

  16. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    Science.gov (United States)

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  17. Blue-Green Algae

    Science.gov (United States)

    ... people with hepatitis C or hepatitis B. HIV/AIDS. Research on the effects of blue-green algae in people with HIV/AIDS has been inconsistent. Some early research shows that taking 5 grams of blue-green ...

  18. Visual detection of copper(II) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles.

    Science.gov (United States)

    Lee, Yen-Fei; Deng, Ting-Wei; Chiu, Wei-Jane; Wei, Tsao-Yen; Roy, Prathik; Huang, Chih-Ching

    2012-04-21

    We have developed a simple, low-cost, paper-based probe for the selective colorimetric detection of copper ions (Cu(2+)) in aqueous solutions. The bovine serum albumin (BSA)-modified 13.3-nm Au nanoparticle (BSA-Au NP) probe was designed to detect Cu(2+) ions using lead ions (Pb(2+)) and 2-mercaptoethanol (2-ME) as leaching agents in a glycine-NaOH (pH 12.0) solution. In addition, a nitrocellulose membrane (NCM) was used to trap the BSA-Au NPs, leading to the preparation of a nanocomposite film consisting of a BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs probe operates on the principle that Cu deposition on the surface of the BSA-Au NPs inhibits their leaching ability, which is accelerated by Pb(2+) ions in the presence of 2-ME. Under optimal solution conditions (5 mM glycine-NaOH (pH 12.0), Pb(2+) (50 μM), and 2-ME (1.0 M)), the Pb(2+)/2-ME-BSA-Au NPs/NCM enabled the detection of Cu(2+) at nanomolar concentrations in aqueous solutions by the naked eye with high selectivity (at least 100-fold over other metal ions). In addition, this cost-effective probe allowed for the rapid and simple determination of Cu(2+) ions in not only natural water samples but also in a complex biological sample (in this case, blood sample).

  19. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways.

    Science.gov (United States)

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M; Zavala-Flores, Laura; Reyes-Reyes, Elsa M; Seravalli, Javier; Stanciu, Lia A; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2015-09-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Transcriptional response of the mussel Mytilus galloprovincialis (Lam. following exposure to heat stress and copper.

    Directory of Open Access Journals (Sweden)

    Alessandro Negri

    Full Text Available Global warming is a major factor that may affect biological organization, especially in marine ecosystems and in coastal areas that are particularly subject to anthropogenic pollution. We evaluated the effects of simultaneous changes in temperature and copper concentrations on lysosomal membrane stability (N-acetyl-hexosaminidase activity and malondialdehyde accumulation (MDA in the gill of the blue mussel Mytilus galloprovincialis (Lam.. Temperature and copper exerted additive effects on lysosomal membrane stability, exacerbating the toxic effects of metal cations present in non-physiological concentrations. Mussel lysosomal membrane stability is known to be positively related to scope for growth, indicating possible effects of increasing temperature on mussel populations in metal-polluted areas. To clarify the molecular response to environmental stressors, we used a cDNA microarray with 1,673 sequences to measure the relative transcript abundances in the gills of mussels exposed to copper (40 µg/L and a temperature gradient (16°C, 20°C, and 24°C. In animals exposed only to heat stress, hierarchical clustering of the microarray data revealed three main clusters, which were largely dominated by down-regulation of translation-related differentially expressed genes, drastic up-regulation of protein folding related genes, and genes involved in chitin metabolism. The response of mussels exposed to copper at 24°C was characterized by an opposite pattern of the genes involved in translation, most of which were up-regulated, as well as the down-regulation of genes encoding heat shock proteins and "microtubule-based movement" proteins. Our data provide novel information on the transcriptomic modulations in mussels facing temperature increases and high copper concentrations; these data highlight the risk of marine life exposed to toxic chemicals in the presence of temperature increases due to climate change.

  1. COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter binding protein-like 7

    Science.gov (United States)

    Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma me...

  2. Evaluation of DNA/Protein interactions and cytotoxic studies of copper(II) complexes incorporated with N, N donor ligands and terpyridine ligand.

    Science.gov (United States)

    Tummalapalli, Kiran; C S, Vasavi; Munusami, Punnagai; Pathak, Madhvesh; M M, Balamurali

    2017-02-01

    A series of four new copper(II) heteroleptic complexes, [Cu(2‴-pytpy) (L)] (NO 3 ) 2 ·2H 2 O (1-4), where 2‴-pytpy=4'-(2'''-Pyridyl)-2, 2':6', 2''-terpyridine, L=bipyridyl (bpy), 1, 10 phenanthroline(phen), dipyridoquinoxaline(dpq) and dipyridophenazine (dppz) were synthesized and characterized by spectroscopic techniques. Further, the molecular structure of the complex (2) was confirmed by single crystal X-ray diffraction technique and the data revealed a penta coordinated, distorted square-pyramidal geometry with triclinic system. The interactions of four complexes with calf thymus DNA and bovine serum albumin (BSA) were investigated by electronic absorption, fluorescence and circular dichroism spectroscopy techniques. Spectral studies substantiated an intercalative binding mode of metal complexes with ct-DNA. Significant binding interactions of the complexes with protein have been further revealed from fluorescence studies. Furthermore, all the four complexes show potential cytotoxicity towards the human liver carcinoma cell line (HepG-2). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [The effect of blue light on human retinal pigment epithelium cells α1D subunit protein expression and vascular endothelial growth factor and basic fibroblast growth factor secretion in vitro].

    Science.gov (United States)

    Li, Haihui; Cai, Shanjun; Gong, Xin; Wu, Zhipeng; Lyn, Jianping; Su, Gang; Xie, Bing

    2014-11-01

    To investigate the effect of blue light on human retinal pigment epithelium (RPE) α1D subunit protein expression and its relationship with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) secretion in vitro. The fourth generation cultured human RPE cells in vitro were randomly divided into 4 groups, group A (control), group B (exposure to blue light), group C (exposure to blue light+nifedipine), group D [exposure to blue light+(-)Bay K8644]. Cells were exposed to blue light (2 000 ± 500) lx for 6 hours, and cells culture completed 24 hours later. VEGF and bFGF concentration were assayed by enzyme linked immunosorbent assay (ELISA). Real-time polymerase chain reaction was used to analysis L-type calcium channel α1D subunit mRNA expression. Western blot was used to examine the protein expression of L-type calcium channel α1D subunit. Analysis of variance was used to compare the difference of α1D subunit mRNA and protein expression, VEGF and bFGF concentration between groups. Correlation analysis was used to show the relationship between α1D subunit protein expression and concentration of VEGF and bFGF. (1) There is significant statistically difference in the population mean of VEGF and bFGF concentration in four groups (F = 99.441, 21.310, P = 0.000,0.000) . VEGF and bFGF concentration in group B (3 281.51 ± 251.73, 1 346.81 ± 62.27) and group D (3 808.01 ± 94.01, 1 485.82 ± 108.97) was higher than it was in group A (2 401.09 ± 228.07, 1 232.42 ± 65.41) , which was statistically different (P = 0.000, 0.000, 0.019, 0.000). And it was higher in group D (3 808.01 ± 94.01, 1 485.82 ± 108.97) compared with group B (3 281.51 ± 251.73, 1 346.81 ± 62.27) (P = 0.000, 0.006). While, it was lower in group C (1 927.28 ± 143.11, 1 149.39 ± 62.99) than it was in group B (3 281.51 ± 251.73, 1 346.81 ± 62.27) (P = 0.000, 0.000) . (2) The mean of mRNA expression of α1D subunit between four groups was statistically significant (F

  4. Effect of aqueous media on the copper-ion-mediated phototoxicity of CuO nanoparticles toward green fluorescent protein-expressing Escherichia coli.

    Science.gov (United States)

    Shang, Enxiang; Li, Yang; Niu, Junfeng; Guo, Huiyuan; Zhou, Yijing; Liu, Han; Zhang, Xinqi

    2015-12-01

    Quantitative comparison of different aqueous media on the phototoxicity of copper oxide nanoparticles (CuO NPs) is crucial for understanding their ecological effects. In this study, the phototoxicity of CuO NPs toward the green fluorescent protein-expressing Escherichia coli (GFP-E. coli) under UV irradiation (365 nm) was investigated in Luria-Bertani medium (LB), NaCl solution, deionized water (DI) and phosphate-buffered saline (PBS). The phototoxicity of CuO NPs toward GFP-E. coli decreased in the order of DI>NaCl>PBS>LB because of different released concentrations of Cu(2+). The 3h released Cu(2+) concentrations by 10mg/L CuO NPs in DI water, NaCl solution, LB medium, and PBS were 1946.3 ± 75.6, 1242.5 ± 47.6, 1023.4 ± 41.2, and 1162.1 ± 41.9 μg/L, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to CuO NPs demonstrated that the released Cu(2+) resulted in fragmentation of bacterial cell walls, leakage of intracellular components, and finally death of bacteria in four media after UV light irradiation. In each medium, the bacterial mortality rate logarithmically increased with the releasing concentrations of Cu(2+) by CuO NPs (R(2)>0.90) exposed to 3h UV light. This study highlights the importance of taking into consideration of water chemistry when the phototoxicity of CuO NPs is assessed in nanotoxicity research. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study.

    Science.gov (United States)

    Thiex, Nancy J; Manson, Harold; Andersson, Shirley; Persson, Jan-Ake

    2002-01-01

    A collaborative study was conducted to evaluate the repeatability and reproducibility of an extension of AOAC Official Method 991.20, Nitrogen (Crude) in Milk, to animal feed, forage (plant tissue), grain, and oilseed materials. Test portions are digested in an aluminum block at 420 degrees C in sulfuric acid with potassium sulfate and a copper catalyst. Digests are cooled and diluted, and concentrated sodium hydroxide is added to neutralize the acid and make the digest basic; the liberated ammonia is distilled by using steam distillation. The liberated ammonia is trapped in a weak boric acid solution and titrated with a stronger standardized acid, hydrochloric acid; colorimetric endpoint detection is used. Fourteen blind samples were sent to 13 collaborators in the United States, Denmark, Sweden, Germany, and the United Kingdom. Recoveries of nitrogen from lysine, tryptophan, and acetanilide were 86.8, 98.8, and 100.1%, respectively. The within-laboratory relative standard deviation (RSDr, repeatability) ranged from 0.40 to 2.38% for crude protein. The among-laboratories (including within-) relative standard deviation (RSD(R), reproducibility) ranged from 0.44 to 2.38%. It is recommended that the method be adopted First Action by AOAC INTERNATIONAL. A lower concentration (1% H3BO3) of trapping solution was compared with the concentration specified in the original protocol (4% H3BO3) and was found comparable for use in an automatic titration system in which titration begins automatically as soon as distillation starts. The Study Directors recommend that 1% H3BO3 as an optional alternative to 4% boric acid trapping solution be allowed for automatic titrators that titrate throughout the distillation.

  6. Blue Ocean Thinking

    Science.gov (United States)

    Orem, Donna

    2016-01-01

    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  7. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    Science.gov (United States)

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to

  8. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Williams, Caitlin L; Neu, Heather M; Gilbreath, Jeremy J; Michel, Sarah L J; Zurawski, Daniel V; Merrell, D Scott

    2016-10-15

    Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options

  9. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase

    DEFF Research Database (Denmark)

    Gromov, I; Marchesini, A; Farver, O

    1999-01-01

    Azide binding to the blue copper oxidases laccase and ascorbate oxidase (AO) was investigated by electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. As the laccase : azide molar ratio decreases from 1:1 to 1:7, the intensity of the type 2 (T2...... characteristics was found in the AO : azide (1:7) sample. The g azide binding disrupts the anti-ferromagnetic coupling of the type 3 (T3) Cu(II) pair. Analysis of the position of the g ... of the protein molecules, and in the remaining part a different azide binding mode is observed. The 130 K EPR spectra of AO and laccase with azide (1:7) exhibit, in addition to an unperturbed T2 Cu(II) signal, new features in the g parallel region that are attributed to a perturbed T2 in protein molecules where...

  10. Blue ocean strategy.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  11. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  12. Thermodynamically stable blue phases.

    Science.gov (United States)

    Castles, F; Morris, S M; Terentjev, E M; Coles, H J

    2010-04-16

    We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric "bimesogenic" and "bent-core" materials, and predicts how this range may be increased further.

  13. Mononuclear copper(II) complexes with 3,5-substituted-4-salicylidene-amino-3,5-dimethyl-1,2,4-triazole: synthesis, structure and potent inhibition of protein tyrosine phosphatases.

    Science.gov (United States)

    Ma, Ling; Lu, Liping; Zhu, Miaoli; Wang, Qingming; Li, Ying; Xing, Shu; Fu, Xueqi; Gao, Zengqiang; Dong, Yuhui

    2011-06-28

    Six copper complexes of Schiff base ligands containing 3,5-substituted-4-salicylideneamino-3,5-dimethyl-1,2,4-triazole have been synthesized and well characterized. The structures of complexes 1 and 2 were determined by X-ray crystal analysis. Fluorescence and potentiometric study indicated that in the physiological pH range, one ligand was dissociated from the complexes to form 1:1 mononucleus copper complexes. The complexes potently inhibit protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) and Src homology phosphatase 1 (SHP-1) with 3-4 fold selectivity against PTP1B over TCPTP and PTP-MEG2, and 3-9 fold over SHP-1, but display almost no inhibition against Src homology phosphatase 2 (SHP-2). Complex 1 inhibits PTP1B with a competitive model with K(i) of 30 nM. Substitution with small groups at the phenyl of the ligand does not obviously influence the inhibitory ability of the complexes. This journal is © The Royal Society of Chemistry 2011

  14. Copper in plants

    OpenAIRE

    Yruela, Inmaculada

    2005-01-01

    Copper is an essential metal for normal plant growth and development, although it is also potentially toxic. Copper participates in numerous physiological processes and is an essential cofactor for many metalloproteins, however, problems arise when excess copper is present in cells. Excess copper inhibits plant growth and impairs important cellular processes (i.e., photosynthetic electron transport). Since copper is both an essential cofactor and a toxic element, involving a complex network o...

  15. Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Brandelli, Adriano; Lambais, Mácio R; Camargo, Flávio A O

    2011-11-01

    Environmental copper contamination is a serious human health problem. Copper reductase is produced by microorganisms to facilitate copper uptake by ATPases into the cells increasing copper biosorption. This study assessed the reduction of Cu(II) by cell-free extracts of a highly copper-resistant bacterium, Pseudomonas sp. strain NA, isolated from vineyard soil contaminated with copper. Both intact cells and cell-free extract of Pseudomonas sp. strain NA displayed substantial reduction of Cu(II). Intact cells reduced more then 80 mg L(-1) of Cu(II) from medium amended with 200 mg L(-1) of copper after 24 h of incubation. Cell-free extract of the isolate reduced more than 65% of the Cu(II) at initial copper concentration of 200 mg L(-1) after 24 h. Soluble protein production was high at 72 h of incubation at 100 mg L(-1) of copper, with more then 60 μg L(-1) of total soluble protein in cell-free extract recorded. Cu(II) reduction by isolate NA was increased when copper concentration increased for both intact cells and cell-free extract. Results indicate that Pseudomonas sp. strain NA produces copper reductase enzyme as the key mechanism of copper biotransformation.

  16. Electrochemical and morphological characterisation of polyphenazine films on copper

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia-Caridade, Carla; Romeiro, Andreia; Brett, Christopher M.A., E-mail: cbrett@ci.uc.pt

    2013-11-15

    The morphology of films of the phenazine polymers poly(neutral red) (PNR), poly(brilliant cresyl blue) (PBCB), poly(Nile blue A) (PNB) and poly(safranine T) (PST), formed by potential cycling electropolymerisation on copper electrodes, in order to reduce the corrosion rate of copper, has been examined by scanning electron microscopy (SEM). The copper surface was initially partially passivated in sodium oxalate, hydrogen carbonate or salicylate solution, in order to inhibit copper dissolution at potentials where phenazine monomer oxidation occurs, and to induce better polymer film adhesion. SEM images were also taken of partially passivated copper in order to throw light on the different morphology and anti-corrosive behaviour of the polyphenazine films. Analysis of the morphology of the polymer-coated copper with best anti-corrosive behaviour after 72 h immersion in 0.1 M KCl, Cu/hydrogen carbonate/PNB, showed that the surface is completely covered by closely packed crystals. By contrast, images of PST films on copper partially passivated in oxalate solution, that had the least protective behaviour, showed large amounts of insoluble corrosion products after only 4 h immersion in 0.1 M KCl.

  17. Blue Ribbon Panel Report

    Science.gov (United States)

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  18. New York Blue

    Data.gov (United States)

    Federal Laboratory Consortium — New York Blue is used cooperatively by the Laboratory and Stony Brook University as part of the New York Center for Computation Sciences. Ranked as the 28th fastest...

  19. Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?*

    Science.gov (United States)

    Darwin, K. Heran

    2015-01-01

    Several independent studies have recently converged upon the conclusion that the human bacterial pathogen Mycobacterium tuberculosis encounters copper during infections. At least three independently regulated pathways respond to excess copper and are required for the full virulence of M. tuberculosis in animals. In this review, I will discuss the functions of the best-characterized copper-responsive proteins in M. tuberculosis, the potential sources of copper during an infection, and remaining questions about the interface between copper and tuberculosis. PMID:26055711

  20. Three-dimensional organization of three-domain copper oxidases: A review

    Science.gov (United States)

    Zhukhlistova, N. E.; Zhukova, Yu. N.; Lyashenko, A. V.; Zaĭtsev, V. N.; Mikhaĭlov, A. M.

    2008-01-01

    “Blue” copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.

  1. [The changes of processes of free radical oxidation of lipids and proteins, antioxidant defence in rats with hypofunction of the thyroid gland in conditions of iodine and copper deficiency].

    Science.gov (United States)

    Voronych-Semchenko, N M; Huranych, T V

    2014-01-01

    Thyroid status, copper balance, correlation of processes of peroxide oxidation of lipids (POL), proteins (POP), antioxidant defence (AOD) were examined in experiments on rats with hypofunction of thyroid gland under iodine monodeficit (HTGI) and combined iodine and copper deficit (HTGI+Cu). It was determined that a combined deficit of microelements is accompanied by a distribution of copper content between different tissues (increase in red blood cell mass and cerebrum, decrease in myocardium), essential changes of indexes of hypotalamo-hypophysis-thyroid axis, oxygen-dependent metabolism, antiradical defense, exacerbating the effects of negative influence of each of them on organism. It was established that HTGI+Cu causes a suppression of oxygen-dependent processes. In thyroid gland, it is shown a decrease of content of dyenic conjugates (DC) by 69,70% , of TBA-reacting products (TBA-RP) by 47,72% in diencephalon, the volume of modified proteins (VMP) - by 37,10-98,98% in the tissues of diencephalons. The results obtained let us to suggest a pivotal role ofmicroelement dysbalance and metabolic mechanisms in pathogenesis of cardiological pathology under thyroid dysfunction. The development of HTGI +Cu exhausts the resources of AOD: decreases the activity of catalase (on 47,05%), superoxide dismutase (on 33,13%), ceruloplasmine (on 33,93%) and saturation of transferrin with iron (on 56,76%) against the background of selective rise in the activity of glu-tationreductase (in 2,8 time) in comparison with the control data. The long-term disturbances ofantyoxidative defence can be the reason of manifestation of oxygendependent processes and the development of pathological changes in separate physiological systems of organism.

  2. [Effect of copper deficiency on iron metabolism in rats].

    Science.gov (United States)

    Wang, Kebo; Wang, Chaoxu; Liu, Baosheng; Jiang, Shan

    2010-07-01

    To study the effect of copper deficiency on the nutritional status of iron, the expression of hepcidin mRNA and transferrin receptor mRNA in rats. Forty eight clean male SD rats were randomly divided into four groups according to body weight; and there were 12 rats in each group. The groups are normal iron and copper control group (group I), normal iron and copper deficiency group (group II), normal iron and copper slightly deficient group (group III), both iron and copper slightly deficient group (group IV). Serum, liver and spleen of rats were collected by the end of 8th week. Serum copper, serum iron, hemoglobin, serum transferrin receptor, serum ferritin, liver iron and liver copper, spleen iron and spleen copper were determined. The expression of liver transferring receptor mRNA and hepcidin mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR) method. Compared with the controls, the contents of serum iron and serum ferritin decreased (P copper deficiency. The expression of transferrin receptor mRNA in liver increased but the expression of hepcidin mRNA in liver decreased significantly under copper deficiency (P copper deficiency through influencing the absorption, storage and transportation of iron. Under the condition of copper deficiency, the expression of hepcidin mRNA in liver was lowered and the expression of transferrin receptor mRNA was enhanced through the way of iron response element-iron regulatory protein (IRE-IRP) to regulate iron metabolism.

  3. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2.

    Science.gov (United States)

    Palma, Margarida; Dias, Paulo Jorge; Roque, Filipa de Canaveira; Luzia, Laura; Guerreiro, Joana Fernandes; Sá-Correia, Isabel

    2017-01-13

    The food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown. In this study it is demonstrated that ZbHaa1 is a ScHaa1 functional homologue by rescuing the acetic acid susceptibility phenotype of S. cerevisiae haa1Δ. The disruption of ZbHAA1 in Z. bailii IST302 and the expression of an extra ZbHAA1 copy confirmed ZbHAA1 as a determinant of acetic acid tolerance. ZbHaa1 was found to be required for acetic acid stress-induced transcriptional activation of Z. bailii genes homologous to ScHaa1-target genes. An evolutionary analysis of the Haa1 homologues identified in 28 Saccharomycetaceae species genome sequences, including Z bailii, was carried out using phylogenetic and gene neighbourhood approaches. Consistent with previous studies, this analysis revealed a group containing pre-whole genome duplication species Haa1/Cup2 single orthologues, including ZbHaa1, and two groups containing either Haa1 or Cup2 orthologues from post-whole genome duplication species. S. cerevisiae Cup2 (alias Ace1) is a transcription factor involved in response and tolerance to copper stress. Taken together, these observations led us to hypothesize and demonstrate that ZbHaa1 is also involved in copper-induced transcriptional regulation and copper tolerance. The transcription factor ZbHaa1 is required for adaptive response and tolerance to both acetic acid and copper stresses. The subfunctionalization of the single ancestral Haa1/Cup2 orthologue that originated Haa1 and Cup2 paralogues after whole genome duplication is proposed.

  4. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  5. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  6. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  7. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-05-31

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread.

  8. A Blue Lagoon Function

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2007-01-01

    We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$.......We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$....

  9. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  10. The "Blue Banana" Revisited

    NARCIS (Netherlands)

    Faludi, A.K.F.

    2015-01-01

    This essay is about the “Blue Banana”. Banana is the name given subsequently by others to a Dorsale européenne (European backbone) identified empirically by Roger Brunet. In a background study to the Communication of the European Commission ‘Europe 2000’, Klaus Kunzmann and Michael Wegener put

  11. The Blue Baby Syndrome

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. The Blue Baby Syndrome - Nitrate Poisoning in Humans. Deepanjan Majumdar. General Article Volume 8 Issue 10 October 2003 pp 20-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Activation of chick tendon lysyl oxidase in response to dietary copper.

    Science.gov (United States)

    Rucker, R B; Rucker, B R; Mitchell, A E; Cui, C T; Clegg, M; Kosonen, T; Uriu-Adams, J Y; Tchaparian, E H; Fishman, M; Keen, C L

    1999-12-01

    Lysyl oxidase (EC 1.4.3.13), a cuproenzyme, can account for 10-30% of the copper present in connective tissue. Herein, we assess the extent to which tissue copper concentrations and lysyl oxidase activity are related because the functional activity of lysyl oxidase and the copper content of chick tendon are both related to dietary copper intake. Chicks (1-d old) were fed diets (basal copper concentration, 0.4 microg/g diet) to which copper was added from 0 to 16 microg/g diet. Liver and plasma copper levels tended to normalize in chickens that consumed from 1 to 4 microg copper/g of diet, whereas tendon copper concentrations suggested an unusual accumulation of copper in chickens that consumed 16 microg copper/g diet. The molecular weight of lysyl oxidase was also estimated using matrix-assisted laser desorption ionization/time-of-flight/mass spectrometry (MALDI/TOF/MS). A novel aspect of these measurements was estimation of protein mass directly from the surface of chick tendons and aortae. Whether copper deficiency (0 added copper) or copper supplementation (16 microg copper/g of diet) caused changes in the molecular weight of protein(s) in tendon corresponding to lysyl oxidase was addressed. The average molecular weight of the peak corresponding to lysyl oxidase in tendon and aorta from copper-deficient birds was 28,386 Da +/- 86, whereas the average molecular weight of corresponding protein in tendon from copper-supplemented birds was 28,639 Da +/- 122. We propose that the shift in molecular weight is due in part to copper binding and the formation of lysyl tyrosyl quinone, the cofactor at the active site of lysyl oxidase.

  13. A novel Schiff base derived from the gabapentin drug and copper (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity.

    Science.gov (United States)

    Shokohi-Pour, Zahra; Chiniforoshan, Hossein; Momtazi-Borojeni, Amir Abbas; Notash, Behrouz

    2016-09-01

    A novel Schiff base [C20H23NO3], has been prepared and characterized using FT-IR, UV-vis, (1)H NMR spectroscopy, elemental analysis and X-ray crystallography. A copper (II) complex [Cu(C20H22NO3)2]·H2O has also been synthesized and characterized. The new ligand and complex thus obtained were investigated by their interaction with calf thymus DNA and BSA using electronic absorption spectroscopy, fluorescence spectroscopy, and thermal denaturation. The intrinsic binding constants Kb of the ligand and Cu (II) complex, with CT-DNA obtained from UV-vis absorption studies were 1.53×10(4)M(-1) and 3.71×10(5)M(-1), respectively. Moreover the addition of the two compounds to CT-DNA (1:2) led to an increase of the melting temperature of DNA up to around 2.61°C for the ligand and 3.99°C for the Cu (II) complex. The ligand and Cu (II) complex bind to CT-DNA via a partial intercalative, as shown by the experimental data. In addition, the albumin interactions of the two compounds were studied by fluorescence quenching spectra, the results indicating that the binding mechanism is a static quenching process. The in vitro cytotoxicity of the two compounds on three different cancer cell lines was evaluated by MTT assay. The results showed that the copper complex exerted enhanced cytotoxicity compared with the Schiff base ligand; thereby, this complex clearly implies a positive synergistic effect. Furthermore, the copper complex showed a high, selective, and dose-dependent cytotoxicity against cancer cell lines. Copyright © 2016. Published by Elsevier B.V.

  14. Synthesis and crystal structure of binuclear copper(II) complex bridged by N-(2-hydroxyphenyl)-N'-[3-(diethylamino)propyl]oxamide: in vitro anticancer activity and reactivity toward DNA and protein.

    Science.gov (United States)

    Gao, Yang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-08-01

    A new oxamido-bridged bicopper(II) complex, [Cu2(pdpox)(bpy)(CH3OH)](ClO4), where H3pdpox and bpy stand for N-(2-hydroxyphenyl)-N'-[3-(diethylamino)propyl]oxamide and 2,2'-bipyridine, respectively, has been synthesized and characterized by elemental analyses, molar conductivity measurements, infrared and electronic spectra studies, and X-ray single crystal diffraction. In the crystal structure, the pdpox(3-) ligand bridges two copper(II) ions as cisoid conformation. The inner copper(II) ion has a {N3O} square-planar coordination geometry, while the exo- one is in a {N2O3} square-pyramidal environment. There are two sets of interpenetrating two-dimensional hydrogen bonding networks parallel to the planes (2 1 0) and (21¯0), respectively, to form a three-dimensional supramolecular structure. The bicopper(II) complex exhibits cytotoxic activity against the SMMC7721 and A549 cell lines. The reactivity toward herring sperm DNA and bovine serum albumin revealed that the bicopper(II) complex can interact with the DNA by intercalation mode, and the complex binds to protein BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. © 2013 Wiley Periodicals, Inc.

  15. Mechanisms of copper ion mediated Huntington's disease progression.

    Directory of Open Access Journals (Sweden)

    Jonathan H Fox

    2007-03-01

    Full Text Available Huntington's disease (HD is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH, because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu(2+in vitro in a 1:1 copper:protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.

  16. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy

    Directory of Open Access Journals (Sweden)

    Shashank Masaldan

    2018-06-01

    Full Text Available Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation. The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc. and metabolic disorders (e.g. diabetes. We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF, human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1, diminished levels of copper-transporting ATPase 1 (Atp7a (copper export and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH, superoxide dismutase 1 (SOD1 and glutaredoxin 1 (Grx1. The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mobr MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Keywords: Senescence, Copper, Ageing, Homeostasis, Autophagy

  17. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand.

    Science.gov (United States)

    Nguyen, Michel; Bijani, Christian; Martins, Nathalie; Meunier, Bernard; Robert, Anne

    2015-11-16

    The oxidative stress that arises from the catalytic reduction of dioxygen by Cu(II/I)-loaded amyloids is the major pathway for neuron death that occurs in Alzheimer's disease. In this work, we show that bis-8(aminoquinoline) ligands, copper(II) specific chelators, are able to catalytically extract Cu(II) from Cu-Aβ1-16 and then completely release Cu(I) in the presence of glutathione to provide a Cu(I)-glutathione complex, a biological intermediate that is able to deliver copper to apo forms of copper-protein complexes. These data demonstrate that bis-8(aminoquinolines) can perform the transfer of copper ions from the pathological Cu-amyloid complexes to regular copper-protein complexes. These copper-specific ligands assist GSH to recycle Cu(I) in an AD brain and consequently slow down oxidative damage that is due to copper dysregulation in Alzheimer's disease. Under the same conditions, we have shown that the copper complex of PBT2, a mono(8-hydroxyquinoline) previously used as a drug candidate, does not efficiently release copper in the presence of GSH. In addition, we report that GSH itself was unable to fully abstract copper ions from Cu-β-amyloid complexes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Zona pellucida glycoprotein 3 (pZP3) and integrin β2 (ITGB2) mRNA and protein expression in porcine oocytes after single and double exposure to brilliant cresyl blue test.

    Science.gov (United States)

    Kempisty, B; Jackowska, M; Piotrowska, H; Antosik, P; Woźna, M; Bukowska, D; Brüssow, K P; Jaśkowski, J M

    2011-05-01

    Brilliant cresyl blues (BCB) staining test is a useful tool in assessing the competence of cumulus-oocyte-complexes (COCs) in several mammalian species. It is mostly used to select gametes after they are recovered from the ovary or before and after IVM to isolate those oocytes that reach developmental competency. However, there is evidence that double exposure to BCB test may lead to impaired fertilization or even have a toxic effect on cells. The aim of the present study was to investigate the expression pattern of sperm-egg interaction molecules in oocytes after single and double exposure to BCB test. Follicles were dissected from porcine ovaries after slaughter and aspirated COCs were cultured in standard porcine IVM culture medium (TCM 199) for 44 h. The BCB test was applied to COCs before and after IVM. In developmentally competent oocytes, assessed by determining the activity of glucose-6-phosphate dehydrogenase (G6PDH; BCB test), real-time quantitative PCR reaction methods, western blot and confocal microscopy analysis were applied to determine the transcript levels of porcine zona pellucida glycoprotein 3 (pZP3), and integrin beta 2 (ITGB2), as well as the levels of pZP3 and ITGB2 proteins. In the control group, assessment of the expression of the investigated genes was performed before and after IVM without BCB test. We observed a significantly higher level of pZP3 mRNA in oocytes after single exposure to BCB test compared to control before and after IVM (P BCB test as compared to control before and after IVM (P BCB as compared to control both before and after IVM (P BCB test. In both cases we detected specific cytoplasmic localization of both proteins. The ITGB2 protein has zona pellucida and membrane localization in control oocytes before IVM. After IVM and after single exposure to BCB, ITGB2 was also strongly detected in the cytoplasm. In both cases, after double exposure to BCB both proteins were detected only partially in the cytoplasm. Our results

  19. A facile, sensitive, and rapid spectrophotometric method for copper(II) ion detection in aqueous media using polyethyleneimine

    OpenAIRE

    Wen, Ting; Qu, Fei; Li, Nian Bing; Luo, Hong Qun

    2013-01-01

    In this work, we developed a facile, sensitive, and rapid spectrophotometric method for copper(II) ion detection in aqueous media using polyethyleneimine. Polyethyleneimine is a cationic polymer that has no absorption in the wavelength range of 250–800 nm. When trace amounts of copper(II) ion was added to the colorless polyethyleneimine solution, copper(II) ion could react with the amino groups of the polyethyleneimine to form a dark blue cuprammonium complex whose absorption spectrum exhibit...

  20. [Blue light and eye health].

    Science.gov (United States)

    Zou, Leilei; Dai, Jinhui

    2015-01-01

    Blue light, with the wavelength between 400 nm and 500 nm, has caused public concern because of the injury to the retinal cells. Meanwhile, it is important in circadian rhythm regulation, scotopic vision and ocular growth. Is the blue light safe? Should it be eliminated from the daily life? Here we review the effect and safety of the blue light.

  1. Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2.

    Science.gov (United States)

    Huffman, D L; O'Halloran, T V

    2000-06-23

    The Atx1 metallochaperone protein is a cytoplasmic Cu(I) receptor that functions in intracellular copper trafficking pathways in plants, microbes, and humans. A key physiological partner of the Saccharomyces cerevisiae Atx1 is Ccc2, a cation transporting P-type ATPase located in secretory vesicles. Here, we show that Atx1 donates its metal ion cargo to the first N-terminal Atx1-like domain of Ccc2 in a direct and reversible manner. The thermodynamic gradient for metal transfer is shallow (K(exchange) = 1.4 +/- 0.2), establishing that vectorial delivery of copper by Atx1 is not based on a higher copper affinity of the target domain. Instead, Atx1 allows rapid metal transfer to its partner. This equilibrium is unaffected by a 50-fold excess of the Cu(I) competitor, glutathione, indicating that Atx1 also protects Cu(I) from nonspecific reactions. Mechanistically, we propose that a low activation barrier for transfer between partners results from complementary electrostatic forces that ultimately orient the metal-binding loops of Atx1 and Ccc2 for formation of copper-bridged intermediates. These thermodynamic and kinetic considerations suggest that copper trafficking proteins overcome the extraordinary copper chelation capacity of the eukaryotic cytoplasm by catalyzing the rate of copper transfer between physiological partners. In this sense, metallochaperones work like enzymes, carefully tailoring energetic barriers along specific reaction pathways but not others.

  2. Effects of methionine chelate- or yeast proteinate-based supplement of copper, iron, manganese and zinc on broiler growth performance, their distribution in the tibia and excretion into the environment.

    Science.gov (United States)

    Singh, Abhay Kumar; Ghosh, Tapan Kumar; Haldar, Sudipto

    2015-04-01

    A straight-run flock of 1-day-old Cobb 400 chicks (n = 432) was distributed into four treatment groups (9 replicate pens in each group, 12 birds in a pen) for a 38-day feeding trial evaluating the effects of a methionine chelate (Met-TM)- or a yeast proteinate (Yeast-TM)-based supplement of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on growth performance, bone criteria and some metabolic indices in commercial broiler chickens. The diets were either not supplemented with any trace elements at all (negative control, NC) or supplemented with an inorganic (sulphate) trace element premix (inorganic TM (ITM), 1 g/kg feed), the Met-TM (1 g/kg feed) and the Yeast-TM (0.5 g/kg feed). Body weight, feed conversion ratio and dressed meat yield at 38 days were better in the Yeast-TM-supplemented group as compared with the NC, ITM and Met-TM groups (p broilers with methionine chelates or yeast proteinate forms of Cu, Fe, Mn and Zn improved body weight and feed conversion ratio (FCR) and markedly reduced excretion of the said trace elements. The study revealed that it may be possible to improve broiler performance and reduce excretion of critical trace elements into the environment by complete replacement of inorganic trace minerals from their dietary regime and replacing the same with methionine chelate or yeast proteinate forms.

  3. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity.

    Science.gov (United States)

    Lian, Wen-Jing; Wang, Xin-Tian; Xie, Cheng-Zhi; Tian, He; Song, Xue-Qing; Pan, He-Ting; Qiao, Xin; Xu, Jing-Yuan

    2016-05-31

    Four novel mononuclear Schiff base copper(ii) complexes, namely, [Cu(L)(OAc)]·H2O (), [Cu(HL)(C2O4)(EtOH)]·EtOH (), [Cu(L)(Bza)] () and [Cu(L)(Sal)] () (HL = 1-(((2-((2-hydroxypropyl)amino)ethyl)imino)methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid), were synthesized and characterized by X-ray crystallography, elemental analysis and infrared spectroscopy. Single-crystal diffraction analysis revealed that all the complexes were mononuclear molecules, in which the Schiff base ligand exhibited different coordination modes and conformations. The N-HO and O-HO inter- and intramolecular hydrogen bonding interactions linked these molecules into multidimensional networks. Their interactions with calf thymus DNA (CT-DNA) were investigated by UV-visible and fluorescence spectrometry, as well as by viscosity measurements. The magnitude of the Kapp values of the four complexes was 10(5), indicating a moderate intercalative binding mode between the complexes and DNA. Electrophoresis results showed that all these complexes induced double strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. In addition, the fluorescence spectrum of human serum albumin (HSA) with the complexes suggested that the quenching mechanism of HSA by the complexes was a static process. Moreover, the antiproliferative activity of the four complexes against HeLa (human cervical carcinoma) and HepG-2 (human liver hepatocellular carcinoma) cells evaluated by colorimetric cell proliferation assay and clonogenic assay revealed that all four complexes had improved cytotoxicity against cancer cells. Inspiringly, complex , with salicylic acid as the auxiliary ligand, displayed a stronger anticancer activity, suggesting that a synergistic effect of the Schiff base complex and the nonsteroidal anti-inflammatory drug may be involved in the cell killing process. The biological features of mixed-ligand copper(ii) Schiff base complexes and how acetic auxiliary

  4. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis.

    OpenAIRE

    Ooi, C E; Rabinovich, E; Dancis, A; Bonifacino, J S; Klausner, R D

    1996-01-01

    The cell surface protein repertoire needs to be regulated in response to changes in the extracellular environment. In this study, we investigate protein turnover of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p, in response to a change in extra-cellular copper levels. As Ctr1p mediates high affinity uptake of copper into the cell, modulation of its expression is expected to be involved in copper homeostasis. We demonstrate that Ctr1p is a stable protein when cells are ...

  5. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    to the distance and nature of the microenvironment separating the reactants) thermodynamic driving force and the configurational changes required upon reaction. Several of these aspects are addressed in this review, which is based primarily on recent work performed by the authors on model systems of blue copper...

  6. Circular dichroism spectroscopy of fluorescent proteins

    NARCIS (Netherlands)

    Visser, N.V.; Hink, M.A.; Borst, J.W.; Krogt, van der G.N.M.; Visser, A.J.W.G.

    2002-01-01

    Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein: blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red

  7. Role of copper in the process of spermatogenesis

    Directory of Open Access Journals (Sweden)

    Mateusz Ogórek

    2017-08-01

    Full Text Available Copper (Cu is an essential trace element required for the normal development of living organisms. Due to its redox potential, copper is a cofactor in many enzymes responsible for important processes in cells. Copper deficiency has a significant influence on the reduction or the total eradication of copper-dependent enzymes in the body, thereby inhibiting cell life processes. On the other hand, copper is a very reactive element and in its free state, it can trigger the production of large amounts of free radicals, which will consequently lead to the damage of proteins and DNA. Because of those reasons, living organisms have developed precise mechanisms regulating the concentration of copper in cells. Copper also plays a very important role in male fertility. It is an essential element for the production of male gametes. The significant role of copper is also described in the processes of cell division – mitotic and meiotic. Copper-dependent enzymes such as ceruloplasmin, superoxide dismutase SOD1 and SOD3, group of metallothionein and cytochrome c oxidase are present at all stages of gametogenesis as well as in the somatic cells of the testis and in the somatic cells of epididymis. Substantial amounts of copper can also be found in liquids associated with sperm in the epididymis and prostate. Copper also affects the integral androgen distribution in terms of fertility on the line hypothalamic-pituitary-testis. Both copper increase and deficiency leads to a significant reduction in male fertility, which spans the entire spectrum of abnormalities at the sperm level, male gonad, production of hormones and distribution of micronutrients such as zinc and iron. Nowadays, the effects of copper on gametes production have become more important and are connected with the increasing levels of pollution with heavy metals in environment.

  8. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Jonathon eTelianidis

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  9. Blue ocean leadership.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2014-05-01

    Ten years ago, two INSEAD professors broke ground by introducing "blue ocean strategy," a new model for discovering uncontested markets that are ripe for growth. In this article, they apply their concepts and tools to what is perhaps the greatest challenge of leadership: closing the gulf between the potential and the realized talent and energy of employees. Research indicates that this gulf is vast: According to Gallup, 70% of workers are disengaged from their jobs. If companies could find a way to convert them into engaged employees, the results could be transformative. The trouble is, managers lack a clear understanding of what changes they could make to bring out the best in everyone. Here, Kim and Mauborgne offer a solution to that problem: a systematic approach to uncovering, at each level of the organization, which leadership acts and activities will inspire employees to give their all, and a process for getting managers throughout the company to start doing them. Blue ocean leadership works because the managers' "customers"-that is, the people managers oversee and report to-are involved in identifying what's effective and what isn't. Moreover, the approach doesn't require leaders to alter who they are, just to undertake a different set of tasks. And that kind of change is much easier to implement and track than changes to values and mind-sets.

  10. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  11. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    Science.gov (United States)

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  12. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    Science.gov (United States)

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  13. Biochemical characterization of P-type copper ATPases

    Science.gov (United States)

    Inesi, Giuseppe; Pilankatta, Rajendra; Tadini-Buoninsegni, Francesco

    2014-01-01

    Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper. PMID:25242165

  14. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  15. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  16. Blue phases as photonic crystals

    Science.gov (United States)

    Bohley, Christian; Scharf, Toralf

    2003-12-01

    The Liquid Crystalline Blue Phases (LC BPs) and their diffraction patterns were investigated experimentally and theoretically. We stabilized Blue Phases and measured their diffraction pattern for different wavelengths of monochromatic light with the help of a conoscopic setup of a polarization microscope. Moreover, the diffraction patterns were calculated with the help of a 4x4 matrix method which allows amplitude and phase investigations.

  17. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen|info:eu-repo/dai/nl/412424428; Fieten, Hille|info:eu-repo/dai/nl/314112596

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  18. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  19. Acute Copper Sulfate Poisoning: Case Report and Review of Literature

    Directory of Open Access Journals (Sweden)

    Mahesh Chand Meena

    2014-09-01

    Full Text Available Background: Copper sulfate ingestion is a relatively popular method for committing suicide in Indian subcontinent. It causes a high mortality rate, and so a growing concern has been raised to identify the severe alarming signs suggestive of poor prognosis and to improve treatment approaches. Case report: A 22-year-old unmarried man working as a painter was found unconscious at his friend residence. The patient developed hypotension, hemorrhagic gastroenteritis with hematemesis and melena, renal and hepatic failure, severe metabolic acidosis and intravascular hemolysis during admission at hospital. His signs were refractory to treatment with fluid replacement therapy, vasoactive drugs, antiemetic drugs, ranitidine, furosemide, methylene blue and 2,3 dimercaptopropane-1-sulphonate. He died six hours post-admission. In post-mortem examinations, there were multiple sub-pleural and sub-epicardial hemorrhages and the gastrointestinal mucosa was congested, hemorrhagic, and greenish blue in color. The liver, on histological examination, showed sub-massive hepatic necrosis. On toxicological analyses, copper sulfate was detected in preserved viscera and results for other heavy metals were negative. Conclusion: Hypotension, cyanosis, uremia and jaundice can be considered as signs of poor prognosis in copper sulfate poisoning. Copper sulfate ingestion is life-threatening due to its deleterious effects on the upper GI, kidneys, liver and blood. Having no time to waste, aggressive treatments should be immediately instituted and signs of poor prognosis should be kept in mind.

  20. Crystal structures of E. coli laccase CueO at different copper concentrations

    International Nuclear Information System (INIS)

    Li Xu; Wei Zhiyi; Zhang Min; Peng Xiaohui; Yu Guangzhe; Teng Maikun; Gong Weimin

    2007-01-01

    CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra α-helix from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper

  1. Phototunable Magnetism in Copper Octacyanomolybdate

    Directory of Open Access Journals (Sweden)

    Jun Ohara

    2014-01-01

    Full Text Available We introduce copper molybdenum cyanides of general formula Cu2[Mo(CN8]·nH2O, which can serve as optofunctional magnetic devices. Their ground states generally stay paramagnetic down to temperatures of the K order but exhibit a spontaneous magnetization upon photoirradiation usually below a few tens of K. To interest us still further, such a ferromagnetic stateinduced by blue-laser irradiation is demagnetized step by step through further application of red or near-infrared laser pulses. We solve this intriguing photomagnetism. The ground-state properties are fully revealed by means of a group-theoretical technique. Taking account of experimental observations, we simulate applying pump laser pulses to a likely ground state and successfully reproduce both the magnetization and demagnetization dynamics. We monitor the photorelaxation process through angle-resolved photoemission spectroscopy. Electrons are fully itinerant in any of the photoinduced steady states, forming a striking contrast to the initial equilibrium state of atomic aspect. The fully demagnetized final steady state looks completely different from the initial paramagnetism but bears good analogy to one of the possible ground states available with the Coulomb repulsion on Cu sites suppressed.

  2. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based Detection of Global Pathogen-host AMPylation on Self-assembled Human Protein Microarrays*

    Science.gov (United States)

    Yu, Xiaobo; Woolery, Andrew R.; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C.; Orth, Kim; LaBaer, Joshua

    2014-01-01

    AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. PMID:25073739

  3. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based detection of global pathogen-host AMPylation on self-assembled human protein microarrays.

    Science.gov (United States)

    Yu, Xiaobo; Woolery, Andrew R; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C; Orth, Kim; LaBaer, Joshua

    2014-11-01

    AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase

    DEFF Research Database (Denmark)

    Gromov, I; Marchesini, A; Farver, O

    1999-01-01

    Azide binding to the blue copper oxidases laccase and ascorbate oxidase (AO) was investigated by electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. As the laccase : azide molar ratio decreases from 1:1 to 1:7, the intensity of the type 2 (T2...... that the distance between the dipolar coupled Cu(II) pair is shorter in laccase than in AO. The proximity of T2 Cu(II) to the S = 1 Cu(II) pair enhances its relaxation rate, reducing its signal intensity relative to that of native protein. The disruption of the T3 anti-ferromagnetic coupling occurs only in part...... of the protein molecules, and in the remaining part a different azide binding mode is observed. The 130 K EPR spectra of AO and laccase with azide (1:7) exhibit, in addition to an unperturbed T2 Cu(II) signal, new features in the g parallel region that are attributed to a perturbed T2 in protein molecules where...

  5. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  6. Sliding Friction of Copper

    National Research Council Canada - National Science Library

    Liu, Tung

    1963-01-01

    .... With less clean surfaces, the coefficient of friction obtained was about 0.4. Since the degree of cleanliness cannot be controlled quantitatively, the friction - load curve of sliding copper pairs in air exhibits a bifurcation characteristic...

  7. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  8. Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?

    Science.gov (United States)

    Darwin, K Heran

    2015-07-31

    Several independent studies have recently converged upon the conclusion that the human bacterial pathogen Mycobacterium tuberculosis encounters copper during infections. At least three independently regulated pathways respond to excess copper and are required for the full virulence of M. tuberculosis in animals. In this review, I will discuss the functions of the best-characterized copper-responsive proteins in M. tuberculosis, the potential sources of copper during an infection, and remaining questions about the interface between copper and tuberculosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Blue moons and Martian sunsets.

    Science.gov (United States)

    Ehlers, Kurt; Chakrabarty, Rajan; Moosmüller, Hans

    2014-03-20

    The familiar yellow or orange disks of the moon and sun, especially when they are low in the sky, and brilliant red sunsets are a result of the selective extinction (scattering plus absorption) of blue light by atmospheric gas molecules and small aerosols, a phenomenon explainable using the Rayleigh scattering approximation. On rare occasions, dust or smoke aerosols can cause the extinction of red light to exceed that for blue, resulting in the disks of the sun and moon to appear as blue. Unlike Earth, the atmosphere of Mars is dominated by micron-size dust aerosols, and the sky during sunset takes on a bluish glow. Here we investigate the role of dust aerosols in the blue Martian sunsets and the occasional blue moons and suns on Earth. We use the Mie theory and the Debye series to calculate the wavelength-dependent optical properties of dust aerosols most commonly found on Mars. Our findings show that while wavelength selective extinction can cause the sun's disk to appear blue, the color of the glow surrounding the sun as observed from Mars is due to the dominance of near-forward scattering of blue light by dust particles and cannot be explained by a simple, Rayleigh-like selective extinction explanation.

  10. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  11. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

    Science.gov (United States)

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-02-07

    Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching

  12. Biochemical characterization of the human copper transporter Ctr1.

    Science.gov (United States)

    Lee, Jaekwon; Peña, Maria Marjorette O; Nose, Yasuhiro; Thiele, Dennis J

    2002-02-08

    The trace metal copper is an essential cofactor for a number of biological processes including mitochondrial oxidative phosphorylation, free radical detoxification, neurotransmitter synthesis and maturation, and iron metabolism. Consequently, copper transport at the cell surface and the delivery of copper to intracellular proteins are critical events in normal physiology. Little is known about the molecules and biochemical mechanisms responsible for copper uptake at the plasma membrane in mammals. Here, we demonstrate that human Ctr1 (hCtr1) is a component of the copper transport machinery at the plasma membrane. hCtr1 transports copper with high affinity in a time-dependent and saturable manner and is metal-specific. hCtr1-mediated (64)Cu transport is an energy-independent process and is stimulated by extracellular acidic pH and high K(+) concentrations. hCtr1 exists as a homomultimer at the plasma membrane in mammalian cells. This is the first report on the biochemical characterization of the human copper transporter hCtr1, which is important for understanding mechanisms for mammalian copper transport at the plasma membrane.

  13. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-03-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  14. Cadmium versus copper toxicity: Insights from an integrated dissection of protein synthesis pathway in the digestive glands of mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Pytharopoulou, S.; Kournoutou, G.G. [Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras (Greece); Leotsinidis, M. [Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras (Greece); Georgiou, C.D. [Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, 26504 Patras (Greece); Kalpaxis, D.L., E-mail: dimkal@med.upatras.gr [Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras (Greece)

    2013-09-15

    Highlights: • Cu{sup 2+}-exposure of mussels results in genotoxicity, without affecting MTs production. •Cd{sup 2+}-exposure of mussels causes low genotoxicity, but induces MTs production. • Both metals induce oxidative stress in mussels, with Cd being the strongest inducer. • Translation is suppressed by both metals, mainly at the initiation and elongation steps. • MTs abrogate translational defects caused by Cd{sup 2+}, by trapping the toxic metal. -- Abstract: The main purpose of this study was to investigate the impact of metal-mediated stress on the protein-synthesis pathway in mussels. To this end, mussels (Mytilus galloprovincialis) underwent a 15 days exposure to 100 μg/L Cu{sup 2+} or Cd{sup 2+}. Both metals, in particular Cd{sup 2+}, accumulated in mussel digestive glands and generated a specific status of oxidative-stress. Exposure of mussels to each metal resulted in 40% decrease of the tRNA-aminoacylation efficiency, at the end of exposure. Cu{sup 2+} also caused a progressive loss in the capability of 40S-ribosomal subunits to form 48S pre-initiation complex, which reached 34% of the control at the end of exposure. Other steps of translation underwent less pronounced, but measurable damages. Mussels exposed to Cd{sup 2+} for 5 days presented a similar pattern of translational dysfunctions in digestive glands, but during the following days of exposure the ribosomal efficiency was gradually restored. Meanwhile, metallothionein levels significantly increased, suggesting that upon Cd{sup 2+}-mediated stress the protein-synthesizing activity was reorganized both quantitatively and qualitatively. Conclusively, Cd{sup 2+} and Cu{sup 2+} affect translation at several levels. However, the pattern of translational responses differs, largely depending on the capability of each metal to affect cytotoxic pathways in the tissues, such as induction of antioxidant defense and specific repair mechanisms.

  15. Photometry of faint blue stars

    International Nuclear Information System (INIS)

    Kilkenny, D.; Hill, P.W.; Brown, A.

    1977-01-01

    Photometry on the uvby system is given for 61 faint blue stars. The stars are classified by means of the Stromgren indices, using criteria described in a previous paper (Kilkenny and Hill (1975)). (author)

  16. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  17. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    Science.gov (United States)

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  18. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    Science.gov (United States)

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  19. Mechanisms of Copper Ion Mediated Huntington's Disease Progression

    OpenAIRE

    Fox, Jonathan H.; Kama, Jibrin A.; Lieberman, Gregory; Chopra, Raman; Dorsey, Kate; Chopra, Vanita; Volitakis, Irene; Cherny, Robert A.; Bush, Ashley I.; Hersch, Steven

    2007-01-01

    Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgeni...

  20. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper(II) complexes of the antibacterial drug nalidixic acid.

    Science.gov (United States)

    Loganathan, Rangasamy; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Muruganantham, Amsaveni; Ghosh, Swapan K; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2017-09-01

    The water soluble mixed ligand complexes [Cu(nal)(diimine)(H 2 O)](ClO 4 ) 1-4, where H(nal) is nalidixic acid and diimine is 2,2'-bipyridine (1), 1,10-phenanthroline (2), 5,6-dimethyl-1,10-phenanthroline (3), and 3,4,7,8-tetramethyl-1,10-phenanthroline (4), have been isolated. The coordination geometry around Cu(II) in 1 and that in the Density Functional Theory optimized structures of 1-4 has been assessed as square pyramidal. The trend in DNA binding constants (K b ) determined using absorption spectral titration (K b : 1, 0.79±0.1base pair. In contrast, 3 and 4 are involved in intimate hydrophobic interaction with DNA through the methyl substituents on phen ring, which is supported by viscosity and protein binding studies. DNA docking studies imply that 4 is involved preferentially in DNA major groove binding while 1-3 in minor groove binding and that all the complexes, upon removing the axially coordinated water molecule, bind in the major groove. Interestingly, 3 and 4 display prominent double-strand DNA cleavage while 1 and 2 effect only single-strand DNA cleavage in the absence of an activator. The complexes 3 and 4 show cytotoxicity higher than 1 and 2 against human breast cancer cell lines (MCF-7). The complex 4 induces apoptotic mode of cell death in cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody.

    Science.gov (United States)

    Paterson, Brett M; Alt, Karen; Jeffery, Charmaine M; Price, Roger I; Jagdale, Shweta; Rigby, Sheena; Williams, Charlotte C; Peter, Karlheinz; Hagemeyer, Christoph E; Donnelly, Paul S

    2014-06-10

    The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  3. Electrical conduction in composites containing copper core-copper ...

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  4. [Acute blue urticaria following subcutaneous injection of patent blue dye].

    Science.gov (United States)

    Hamelin, A; Vial-Dupuy, A; Lebrun-Vignes, B; Francès, C; Soria, A; Barete, S

    2015-11-01

    Patent blue (PB) is a lymphatic vessel dye commonly used in France for sentinel lymph node detection in breast cancer, and less frequently in melanoma, and which may induce hypersensitivity reactions. We report a case of acute blue urticaria occurring within minutes of PB injection. Ten minutes after PB injection for sentinel lymph node detection during breast cancer surgery, a 49-year-old woman developed generalised acute blue urticaria and eyelid angioedema without bronchospasm or haemodynamic disturbance, but requiring discontinuation of surgery. Skin testing using PB and the anaesthetics given were run 6 weeks after the episode and confirmed PB allergy. PB was formally contra-indicated. Immediate hypersensitivity reactions to PB have been reported for between 0.24 and 2.2% of procedures. Such reactions are on occasion severe, chiefly involving anaphylactic shock. Two mechanisms are probably associated: non-specific histamine release and/or an IgE-mediated mechanism. Skin tests are helpful in confirming the diagnosis of PB allergy. Blue acute urticaria is one of the clinical manifestations of immediate hypersensitivity reactions to patent blue dye. Skin tests must be performed 6 weeks after the reaction in order to confirm the diagnosis and formally contra-indicate this substance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase.

    Science.gov (United States)

    Sinha, Tanur; Ahmaruzzaman, M

    2015-12-01

    The present work reports the utilization of a common household waste material (fish scales of Labeo rohita) for the synthesis of copper nanoparticles. The method so developed was found to be green, environment-friendly, and economic. The fish scale extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates, and solvents. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of nanoparticles have also been presented. The synthesized copper nanoparticles formed were predominantly spherical in nature with an average size of nanoparticles in the range of 25-37 nm. The copper nanoparticles showed characteristic Bragg's reflection planes of fcc which was supported by both selected area electron diffraction and X-ray diffraction pattern and showed surface plasmon resonance at 580 nm. Moreover, the energy dispersive spectroscopy pattern also revealed the presence of only elemental copper in the copper nanoparticles. The prepared nanoparticles were used for the remediation of a carcinogenic and noxious textile dye, Methylene blue, from aqueous solution. Approximately, 96 % degradation of Methylene blue dye was observed within 135 min using copper nanoparticles. The probable mechanism for the degradation of the dye has been presented, and the degraded intermediates have been identified using the liquid chromatography-mass spectroscopy technique. The high efficiency of nanoparticles as photocatalysts has opened a promising application for the removal of hazardous dye from industrial effluents contributing indirectly to environmental cleanup process.

  6. How the ``Blues'' reveals the intimacy of music and physics

    Science.gov (United States)

    Gibson, J. Murray

    2013-03-01

    Little do most people know when they hear blues piano - and you'll hear some live in this talk - that physics permeates the style, as it does all of music. Why should you care? By deconstructing blues piano the intimacy of physics, mathematics and music will be revealed in its glory.[1] The exercise says something about how the brains of the music composer and of the listener must be intimately linked to the physical principles of acoustics. And it provides a great vehicle to explain physical phenomena to non-scientists - everything from quantum mechanics to protein structure.

  7. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  8. Proteomic and physiological responses of Kineococcus radiotolerans to copper.

    Directory of Open Access Journals (Sweden)

    Christopher E Bagwell

    Full Text Available Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II concentrations (0-1.5 mM in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II concentration in the growth medium (R(2=0.7. Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration.

  9. Proteomic and physiological responses of Kineococcus radiotolerans to copper.

    Science.gov (United States)

    Bagwell, Christopher E; Hixson, Kim K; Milliken, Charles E; Lopez-Ferrer, Daniel; Weitz, Karl K

    2010-08-26

    Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0-1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R(2)=0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration.

  10. Brazing copper to dispersion-strengthened copper

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, D.G.; Allen, D.; Lee, R.

    1996-08-01

    The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail that has been possible to date. The beam is produced by using third-generation insertion devices in a 7 GeV electron/positron storage ring that is 1100 meters in circumference. The heat load from these intense high power devices is very high and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm{sup 2}. Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop{reg_sign}, a dispersion strengthened copper, is the desired material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  11. Using Xas And Sxrf to Study Copper in Wilson Disease at the Molecular And Tissue Level

    Energy Technology Data Exchange (ETDEWEB)

    Ralle, M.; Blackburn, N.J.; Lutsenko, S.

    2009-06-05

    Wilson disease (WD) is a genetic disorder of copper metabolism associated with severe hepatic, neurological, and psychiatric abnormalities. In WD, the billiary copper excretion is impaired and copper accumulates in tissues, particularly in the liver and the brain. The affected gene, ATP7B, encodes the copper transporting ATPase, Wilson disease protein (WNDP). WNDP has six copper binding sites in the N-terminal portion of the molecule. Each site includes the conserved amino acid sequence MXCXXC, and binds 1 Cu(I) through its 2 cysteine residues. We performed X-ray absorption studies at the Cu K{sub {alpha}}-edge on the recombinant N-terminal domain of WNDP (N-WNDP). Copper was bound to N-WNDP either in vivo or in vitro in the presence of different reducing agents. We found that in N-WNDP copper is predominantly coordinated in a linear fashion by two cysteines, with the appearance of a Cu-Cu interaction when all metal binding sites are filled. Increasing amounts of reducing agents containing sulfide or phosphine groups led to binding of the exogenous ligands to copper thereby increasing the coordination number of copper from two to three. To better understand the role of copper in WD, we utilized livers of the 6-weeks-old Atp7b-/- mice (an animal model for WD) in which the copper concentration was 10--20-fold higher compared to that of the control mice. The distribution of copper in hepatocytes was evaluated by synchrotron based X-ray fluorescence microprobe (SXRF). We demonstrate that we can prepare liver slices that retain copper and can detect copper with subcellular resolution. On the same sections {mu}-XANES (spot size: 5 micron) was used to determine the oxidation state of copper.

  12. Using XAS and SXRF to Study Copper in Wilson Disease at the Molecular and Tissue Level

    Science.gov (United States)

    Ralle, Martina; Blackburn, Ninian J.; Lutsenko, Svetlana

    2007-02-01

    Wilson disease (WD) is a genetic disorder of copper metabolism associated with severe hepatic, neurological, and psychiatric abnormalities. In WD, the billiary copper excretion is impaired and copper accumulates in tissues, particularly in the liver and the brain. The affected gene, ATP7B, encodes the copper transporting ATPase, Wilson disease protein (WNDP). WNDP has six copper binding sites in the N-terminal portion of the molecule. Each site includes the conserved amino acid sequence MXCXXC, and binds 1 Cu(I) through its 2 cysteine residues. We performed X-ray absorption studies at the Cu Kα-edge on the recombinant N-terminal domain of WNDP (N-WNDP). Copper was bound to N-WNDP either in vivo or in vitro in the presence of different reducing agents. We found that in N-WNDP copper is predominantly coordinated in a linear fashion by two cysteines, with the appearance of a Cu-Cu interaction when all metal binding sites are filled. Increasing amounts of reducing agents containing sulfide or phosphine groups led to binding of the exogenous ligands to copper thereby increasing the coordination number of copper from two to three. To better understand the role of copper in WD, we utilized livers of the 6-weeks-old Atp7b-/- mice (an animal model for WD) in which the copper concentration was 10-20-fold higher compared to that of the control mice. The distribution of copper in hepatocytes was evaluated by synchrotron based X-ray fluorescence microprobe (SXRF). We demonstrate that we can prepare liver slices that retain copper and can detect copper with subcellular resolution. On the same sections μ-XANES (spot size: 5 micron) was used to determine the oxidation state of copper.

  13. The Effect of Orthophosphate as a Copper Corrosion Inhibitor in High Alkalinity Drinking Water Systems

    Science.gov (United States)

    2007-03-01

    in the near future. 7 2.2. Human Health Concerns In the human body, copper is a component of proteins that perform a range of functions...Studies have shown that on average, daily copper intake is 3200 μg. Copper comes from foods such as shellfish, meat, eggs, vegetables , nuts...dehydration synthesis, have a tendency to hydrolyze to orthophosphate in the presence of water, therefore altering their corrosion control mechanism (Cantor

  14. Effects of copper-plasma deposition on weathering properties of wood surfaces

    Science.gov (United States)

    Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.

    2016-03-01

    Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.

  15. Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry.

    Science.gov (United States)

    Blomfield, J; Macmahon, R A

    1969-03-01

    The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion x 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0.1 ml of sample, and the free copper of plasma with 0.5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined.

  16. Blue-emitting laser diodes

    Science.gov (United States)

    Nakano, K.; Ishibashi, A.

    This paper reviews the recent results of blue-emitting laser diodes. These devices are based on ZnMgSSe alloy II-VI semiconductors. Recently we have achieved room temperature continuous-wave operation of ZnMgSSe blue lasers for the first time. ZnMgSSe alloys offer a wide range of band-gap energy from 2.8 to 4.5 eV, while maintaining lattice matching to GaAs substrates. These characteristics make ZnMgSSe suitable for cladding layers of blue lasers. In this article, the feasibilities of ZnMgSSe will be reviewed. The laser structures and characteristics will be also mentioned.

  17. Coping with copper

    DEFF Research Database (Denmark)

    Nunes, Ines Marques; Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel

    2016-01-01

    Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure...

  18. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    characterization of several imidazolate-bridged binuclear copper(II) complexes have been reported 1–17. ... of the desired complex formed were collected, washed with ethanol and dried in vacuo at room temperature. .... 16. Sigel H (ed.) 1981 Metal ions in biological system (New York: Marcel Dekker) vol 13, p. 259. 17.

  19. Role of copper in photochemical damage to hair.

    Science.gov (United States)

    Marsh, J M; Iveson, R; Flagler, M J; Davis, M G; Newland, A B; Greis, K D; Sun, Y; Chaudhary, T; Aistrup, E R

    2014-02-01

    The objective of this work was to identify whether low levels of redox metals such as copper will accelerate damage to hair on exposure to UV irradiation and whether this damage can be prevented. The methods used were proteomics to measure the protein damage via protein loss after different periods of exposure and mass spectroscopy methods to identify specific marker peptides that are specifically created by this type of damage. In this work, we have developed new insights into the mechanism of UV damage using these proteomic methods. A marker fragment in the hair protein loss extract was identified (m/z = 1279) that is unique to UV exposure and increases with time of UV exposure. We have also identified for the first time in hair the role of exogenous copper in increasing UV damage both in terms of total protein degradation and also increased formation of the marker fragment and proposed a mechanism of action. It has been demonstrated that shampoo treatment containing a chelant such as N,N'-ethylenediamine disuccinic acid (EDDS) reduced copper accumulation in hair. This work provides evidence for the role of copper in UV-induced damage to hair and strategies to reduce copper levels in hair using a chelant such as EDDS. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Digestibilidade e retenção de nitrogênio de alimentos para papagaios verdadeiros (Amazona aestiva Digestibility and protein retention of foods for blue-fronted parrot (Amazona aestiva

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo do Prado Saad

    2007-10-01

    nitrogênio para papagaios.Were used 34 blue fronted parrot, distributed in blocks with 17 treatments (T1 - reference diet, T2 - sunflower seed, T3 - oat, T4 - egg yolk, T5 - integral egg, T6 - egg white, T7 - wheat germen, T8 - wheat bran, T9 - triturated corn, T10 - jellied corn, T11 - sunflower bran, T12 - yeast, T13 - citric pulp, T14 - papaya, T15 - banana, T16 - soy bran, T17 - extruded soy during three periods, totaling six repetitions (102 experimental units. For foods evaluation the substitution methodology was used. They were appraised the digestibility coefficients of the dry matter (DM and organic matter (OM and the protein retention of the evaluated foods. Were compared the treatments two to 17. The treatment 1 (reference diet it was just used for the substitution calculations, not being part of the statistical analyses. The averages were compared by the test Scott-Knott. The obtained results allowed to conclude that: 1 - foods as the jellied corn, the egg yolk and the sunflower seed, as well as the oat, integral egg, triturated corn, papaya and banana, they possess high DM and OM digestibility for parrots, could be considered as good choice options for the composition of a complete diet; 2 - foods as the citric pulp and the sunflower bran presented low apparent and true digestibility of the DM and OM and they should be used in low levels and with moderation in the formulation of rations for these birds; 3 - the true nitrogen retention was positive for all the birds, what suggests that the same ones can be depositing still tissues, however, due to the high variation coefficient, this measured it seems not to be adapted to express the real nitrogen retention coefficient for parrots.

  1. Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance

    DEFF Research Database (Denmark)

    Chi, Qijin; Farver, O; Ulstrup, Jens

    2005-01-01

    A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi...... on the redox potential. Maximum resonance appears around the equilibrium redox potential of azurin with an on/off current ratio of approximate to 9. Simulation analyses, based on a two-step interfacial ET model for the scanning tunneling microscopy redox process, were performed and provide quantitative...

  2. Blue light emitting thiogallate phosphor

    Science.gov (United States)

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  3. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  4. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  5. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    with increased biofouling resistance. The goal of this project was to develop low-biofouling nanofiltration cellulose acetate (CA) membranes through functionalization with metal chelating ligands charged with biocidal metal ions, i.e. copper ions. To this end, glycidyl methacrylate (GMA), an epoxy, was used to attach a chelating agent, iminodiacetic acid (IDA) to facilitate the charging of copper to the membrane surface. Both CA and CA-GMA membranes were cast using the phase-inversion method. The CA-GMA membranes were then charged with copper ions to make them low biofouling. Pore size distribution analysis of CA and copper charged membranes were conducted using various molecular weights of polyethylene glycol (PEG). CA and copper-charged membranes were characterized using Fourier Transform Infrared (FTIR), contact angle to measure hydrophilicity changes, and using scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy EDS to monitor copper leaching. Permeation experiments were conducted with distilled (DI) water, protein solutions, and synthetic brackish water containing microorganisms. The DI water permeation of the copper-charged membranes was initially lower than the CA membranes. The membranes were then subjected to bovine serum albumin (BSA) and lipase filtration. The copper-charged membranes showed higher pure water flux values for both proteins as compared to CA membranes. The rejection of BSA and lipase was the same for both the copper charged and CA membranes. The filtration with the synthetic brackish water showed that copper-charged membranes had higher flux values as compared to CA membranes, and biofouling analysis showed more bacteria on the CA membranes as compared to copper-charged membranes. Therefore, the copper-charged membranes made here have shown a potential to be used as low-biofouling membranes in the future.

  6. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    Science.gov (United States)

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Copper uptake across rainbow trout gills: mechanisms of apical entry

    DEFF Research Database (Denmark)

    Grosell, Martin Hautopp; Wood, C. M.

    2002-01-01

    Copper, Homeostasis, sodium uptake, copper/sodium interactions, gill, rainbow trout, Oncorhynchus mykiss......Copper, Homeostasis, sodium uptake, copper/sodium interactions, gill, rainbow trout, Oncorhynchus mykiss...

  8. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    Energy Technology Data Exchange (ETDEWEB)

    Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2016-09-10

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  9. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    International Nuclear Information System (INIS)

    Oe, Shinji; Miyagawa, Koichiro; Honma, Yuichi; Harada, Masaru

    2016-01-01

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  10. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms

    Science.gov (United States)

    Liu, Hongtao; Wang, Qin; Liu, Yawen; Zhao, Xiaoying; Imaizumi, Takato; Somers, David E.; Tobin, Elaine M.; Lin, Chentao

    2013-01-01

    Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix–loop–helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light–oxygen–voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms. PMID:24101505

  11. Synthesis of novel heterobimetallic copper(I) hydrazone Schiff base complexes: a comparative study on the effect of heterocyclic hydrazides towards interaction with DNA/protein, free radical scavenging and cytotoxicity.

    Science.gov (United States)

    Sathyadevi, Palanisamy; Krishnamoorthy, Paramasivam; Butorac, Rachel R; Cowley, Alan H; Dharmaraj, Nallasamy

    2012-05-01

    Two new copper(I) hydrazone complexes have been synthesised from bivalent copper precursor [CuCl(2)(PPh(3))(2)] and ferrocene containing bidentate hydrazone ligands HL(1) (1) or HL(2) (2). Based on the elemental analyses and spectroscopic data, the complexes are best formulated as [CuL(1)(PPh(3))(2)] (3) and [CuL(2)(PPh(3))(2)] (4) of the monovalent copper ion. Solid state structures of ligand 2 and its corresponding complex 4 were also determined. The DNA/albumin interactions of all the synthesised compounds were investigated using absorption, emission and synchronous fluorescence studies. Further, antioxidant properties of all the compounds have also been checked against ABTS, O(2)(-) and OH radicals. Additionally, the in vitro cytotoxic activity of compounds 1-4 was assessed using tumour (HeLa, A431) and non-tumour (NIH 3T3) cell lines.

  12. The Blue Revolution in Asia

    DEFF Research Database (Denmark)

    Ponte, Stefano; Kelling, Ingrid; Jespersen, Karen Sau

    2014-01-01

    In this article, we examine the upgrading trajectories of selected aquaculture value chains in four Asian countries and the links between upgrading and three factors of value chain governance: coordination mechanisms; types of drivers; and domestic regulation. We find instances of improving produ...... of upgrading the "blue revolution" in Asia...

  13. Blue Ocean vs. Five Forces

    NARCIS (Netherlands)

    A.E. Burke (Andrew); A.J. van Stel (André); A.R. Thurik (Roy)

    2010-01-01

    textabstractThe article reports on the authors' research in the Netherlands which focused on a profit model in Dutch retail stores and a so-called blue-ocean approach which requires a new market that attracts consumers and increases profits. Topics include the competitive strategy approach to

  14. Mobilizing investors for blue growth

    NARCIS (Netherlands)

    Burg, van den Sander W.K.; Stuiver, Marian; Bolman, Bas C.; Wijnen, Roland; Selnes, Trond; Dalton, Gordon

    2017-01-01

    The European Union's Blue Growth Strategy is a long term strategy to support sustainable growth in the marine and maritime sectors, aiming to contribute to innovation and economic growth (European Commission, 2012). The EU sees the financial sector as a key partner to bring about transition to

  15. Nobel Prize for blue LEDs

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2015-01-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations. (paper)

  16. Nobel Prize for blue LEDs

    Science.gov (United States)

    Kraftmakher, Yaakov

    2015-05-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  17. The Type 3 copper site is intact but labile in Type 2-depleted laccase

    DEFF Research Database (Denmark)

    Frank, P; Farver, O; Pecht, I

    1983-01-01

    We report results of experiments designed to characterize the Type 1 and Type 3 copper sites in Rhus laccase depleted of Type 2 copper (T2D). Use of the Lowry method for determining protein concentration yielded the value 5620 +/- 570 M-1 cm-1 for the extinction of the 615-nm absorption band of t...

  18. Blue light does not impair wound healing in vitro.

    Science.gov (United States)

    Masson-Meyers, Daniela Santos; Bumah, Violet Vakunseh; Enwemeka, Chukuka Samuel

    2016-07-01

    Irradiation with red or near infrared light promotes tissue repair, while treatment with blue light is known to be antimicrobial. Consequently, it is thought that infected wounds could benefit more from combined blue and red/infrared light therapy; but there is a concern that blue light may slow healing. We investigated the effect of blue 470nm light on wound healing, in terms of wound closure, total protein and collagen synthesis, growth factor and cytokines expression, in an in vitro scratch wound model. Human dermal fibroblasts were cultured for 48h until confluent. Then a linear scratch wound was created and irradiated with 3, 5, 10 or 55J/cm(2). Control plates were not irradiated. Following 24h of incubation, cells were fixed and stained for migration and fluorescence analyses and the supernatant collected for quantification of total protein, hydroxyproline, bFGF, IL-6 and IL-10. The results showed that wound closure was similar for groups treated with 3, 5 and 10J/cm(2), with a slight improvement with the 5J/cm(2) dose, and slower closure with 55J/cm(2) pblue light at low fluence does not impair in vitro wound healing. The significant decrease in IL-6 suggests that 470nm light is anti-inflammatory. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multilevel cycle of anthropogenic copper.

    Science.gov (United States)

    Graedel, T E; van Beers, D; Bertram, M; Fuse, K; Gordon, R B; Gritsinin, A; Kapur, A; Klee, R J; Lifset, R J; Memon, L; Rechberger, H; Spatari, S; Vexler, D

    2004-02-15

    A comprehensive contemporary cycle for stocks and flows of copper is characterized and presented, incorporating information on extraction, processing, fabrication and manufacturing, use, discard, recycling, final disposal, and dissipation. The analysis is performed on an annual basis, ca. 1994, at three discrete governmental unit levels--56 countries or country groups that together comprise essentially all global anthropogenic copper stocks and flows, nine world regions, and the planet as a whole. Cycles for all of these are presented and discussed, and a "best estimate" global copper cycle is constructed to resolve aggregation discrepancies. Among the most interesting results are (1) transformation rates and recycling rates in apparently similar national economies differ by factors of two or more (country level); (2) the discard flows that have the greatest potential for copper recycling are those with low magnitude flows but high copper concentrations--electronics, electrical equipment, and vehicles (regional level); (3) worldwide, about 53% of the copper that was discarded in various forms was recovered and reused or recycled (global level); (4) the highest rate of transfer of discarded copper to repositories is into landfills, but the annual amount of copper deposited in mine tailings is nearly as high (global level); and (5) nearly 30% of copper mining occurred merely to replace copper that was discarded. The results provide a framework for similar studies of other anthropogenic resource cycles as well as a basis for supplementary studies in resource stocks, industrial resource utilization, waste management, industrial economics, and environmental impacts.

  20. Effects of trypan blue on the action of adrenergic agonists in the guinea-pig isolated atrium.

    Science.gov (United States)

    Mahmoudian, M; Ziai, S A

    1998-01-01

    It has been reported that trypan blue, a diazo dye with polyamphipathic structure, can inhibit the coupling of receptors to G-proteins. The present study was carried out to investigate the effect of trypan blue on the actions of adrenoceptor agonists in the guinea-pig atrium. Trypan blue (10 and 100 microM) antagonized the positive inotropic effects of isoprenaline and dobutamine by shifting their concentration-response curves to the right. With the selective beta 2-adrenoceptor agonist, salbutamol, there was a reduction of response in the presence of trypan blue. Therefore, we concluded that trypan blue diminish the response to beta-adrenoceptor agonists possibly via decoupling receptors from Gs. Trypan blue and similar agents, due to their unique mode of action, can be used as tools for the investigation of the mechanism of receptor-G protein coupling in the whole tissue preparation.

  1. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    that the imidazolate-bridged complex is stable over the pH-range 7⋅15–10⋅0. .... copper(II) complex. The observed room temperature magnetic moments are around. 1⋅79 BM, in agreement with a one-spin (S = 1/2) system. 3.2 EPR studies .... (SK) thanks the Council of Scientific & Industrial Research, New Delhi for an.

  2. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Cl..Cu.. interactions but restricted ..Cu..N N..Cu interacations. Supramolecular isomers of Br and I are reported for the first time in this paper. [Cu2I(pdz)X2]. Figure S18. Self assembly of the simultaneous presence of tecton {Cu(sol)3X} and {Cu(pdz)(sol)2X} result in [Cu2I(pdz)X2]. 1. Table S3. Copper Pyrimidine based MOFs ...

  3. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    Science.gov (United States)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte; Petersen, Jens Kjerulf

    2018-02-01

    Farming of suspended mussels is important for generating high protein food and animal feed or for removing nutrients in eutrophic systems. However, the harvested mussels must not be severely contaminated by pollutants posing a potential health risk for the consumers. The present study estimated the bioaccumulation of cadmium, copper, nickel, lead and zinc in suspended blue mussels (Mytilus edulis L.) in the Limfjorden, Denmark, based on observations and modelling. Modelling was used to assess the suitability of suspended blue mussels as animal feed and food products at sea water metal concentrations corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards (EQS) defined in the WFD priority substance daughter directives. Observations showed that suspended mussels were healthy with respect to metal pollution and generally less polluted than benthic mussels due to the smaller contact with the contaminated sediment. The model results showed that the WFD targets for Cd, Ni and Pb are not protective with respect to marine mussel production and probably should be reduced for marine waters. Climate changes may increase the metal contamination of mussels, but not to any critical level at the relatively unpolluted study sites. In conclusion, WFD targets should be revised to assure that the corresponding body burdens of metals in mussels are below the safety limits according to the EU Directives and the Norwegian classification for animal feed and food production.

  4. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  5. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Science.gov (United States)

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in

  6. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Directory of Open Access Journals (Sweden)

    Hille Fieten

    2016-01-01

    Full Text Available The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional

  7. Application of INEPT 109Ag and 15N NMR spectroscopy for the study of metal-ligand interaction of silver analogues of Copper(I) model compounds

    NARCIS (Netherlands)

    Koten, G. van; Stein, G.C. van; Brevard, C.

    1983-01-01

    Because of the presence of copper (in its reduced state) at active sites in protein it has become very important to study copper(I) model complexes by spectroscopic techniques.We now report that if copper(I) in model complexes can be substituted by silver(I) with retention of the structural features

  8. Uso do Blue Rayon para extração/concentração de compostos policíclicos em amostras ambientais

    Directory of Open Access Journals (Sweden)

    Kummrow Fábio

    2006-01-01

    Full Text Available This is a review about the use of Blue rayon in the extraction and concentration of environmental contaminants in the aquatic environment. Blue rayon is an adsorbent composed of fibers covalently linked with copper phthalocyanine trisulphonate that has the ability to selectively adsorb polycyclic compounds. Blue rayon can be used in situ, in columns or in flasks. This method showed to be efficient in the extraction of important classes of environmental contaminants like the polycyclic aromatic hydrocarbons (PAHs, aromatic amines and phenylbenzotriazoles (PBTAs and can be an important tool in monitoring studies for the evaluation of water quality.

  9. Neutron activation analysis of sixteenth- and seventeenth-century European blue glass trade beads from the eastern Great Lakes area of North America

    International Nuclear Information System (INIS)

    Hancock, R.G.V.; Chafe, A.; Kenyon, I.

    1994-01-01

    Sixteenth- and seventeenth-century European blue glass trade beads from aboriginal sites in the eastern Great Lakes area of North America have been analysed non-destructively using low neutron dose instrumental neutron activation analysis, so that the beads could be returned to their keepers. Dark blue (cobalt-coloured) beads are readily separable from turquoise (copper-coloured) beads. Differences in the chemistries of the turquoise blue beads appear to be useful in separating glass beads from the two centuries. Low calcium, sixteenth-century turquoise beads tend to disintegrate by a leaching of the alkali metals. (Author)

  10. 21 CFR 133.106 - Blue cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Blue cheese. 133.106 Section 133.106 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set...

  11. Uptake and distribution of copper sulfate and its effect on the respiration rate of the hemocyanin-producing freshwater snail Lymnaea natalensis

    Energy Technology Data Exchange (ETDEWEB)

    Wolmarans, C.T.; Yssel, E.

    1988-08-01

    Copper sulfate was one of the earliest compounds suggested as a molluscicide and although several new compounds have since been developed, copper sulfate is still widely used against freshwater snail intermediate hosts of trematode parasites causing bilharzia. However, the toxic effect that copper sulfate may have on these species has not yet been investigated adequately. This incomplete picture of the action of copper sulfate on freshwater snails is further complicated by the fact that some of these snail species have hemocyanin (a protein containing copper) as respiration pigment. Because of the existence of a copper metabolic pathway, these species may handle external copper differently from those species with hemoglobin as respiration pigment. In the present study, the uptake of external copper in the form of copper sulfate, as well as the effect of this ion on respiration rate, was investigated in Lymnaea natalensis, the intermediate host of Fasciola gigantica. This snail possesses hemocyanin as respiratory pigment.

  12. [Incorporation of Copper Ions into T2/T3 Centers of Two-Domain Laccases].

    Science.gov (United States)

    Gabdulkhakov, A G; Kostareva, O S; Kolyadenko, I A; Mikhaylina, A O; Trubitsina, L I; Tishchenko, S V

    2018-01-01

    Laccase belongs to the family of copper-containing oxidases. A study was made of the mechanism that sustains the incorporation of copper ions into the T2/T3 centers of recombinant two-domain laccase Streptomyces griseoflavus Ac-993. The occupancy of the T3 center by copper ions was found to increase with an increasing copper content in the culture medium and after dialysis of the protein preparation against a copper sulfate-containing buffer. The T2 center was filled only when overproducer strain cells were grown at a higher copper concentration in the medium. Two-domain laccases were assumed to possess a channel that serves to deliver copper ions to the T3 center during the formation of the three-dimensional laccase conformation and dialysis of the protein preparation. A narrower channel leads to the T2 center in two-domain laccases compared with three-domain ones, rendering the center less accessible for copper atoms. The incorporation of copper ions into the T2 center of two-domain laccases is likely to occur in the course of their biosynthesis or the formation of a functional trimer.

  13. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...

  14. Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue

    International Nuclear Information System (INIS)

    Xu Yuehua; Liang Dahui; Liu Manle; Liu Dingzhong

    2008-01-01

    A series of copper-deposited titania were prepared by photoreduction method under irradiation with a 125-W high-pressure mercury lamp. From XPS and AES results, the deposited-copper formed Ti-O-Cu bond on the surface of TiO 2 , and the Cu species on the surface of copper-deposited TiO 2 can be identified as Cu(I). The photocatalytic degradation activity of methylene blue for the Cu 2 O-TiO 2 series increased with increasing Cu 2 O-deposited content, and then decreased. The highest photocatalytic degradation activity of methylene blue was obtained for 0.16% Cu 2 O-TiO 2 . When copper-deposited content reached to 0.32%, the photocatalytic activity was lower than that of pure TiO 2 . It is shown that Cu 2 O on the surface of TiO 2 can trap electrons from the TiO 2 conduction band, and the electrons trapped on the Cu 2 O-TiO 2 site are subsequently transferred to the surrounding adsorbed O 2 , thereby avoiding electron-hole recombination, and enhancing the photocatalytic activity. Excess copper loading may screen the photocatalyst from the UV source, so the photocatalytic activity diminishes with increasing Cu 2 O

  15. Neurokinin B and serum albumin limit copper binding to mammalian gonadotropin releasing hormone.

    Science.gov (United States)

    Gul, Ahmad Samir; Tran, Kevin K; Jones, Christopher E

    2018-02-26

    Gonadotropin releasing hormone (GnRH) triggers secretion of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary gland. GnRH is able to bind copper, and both in vitro and in vivo studies have suggested that the copper-GnRH complex is more potent at triggering gonadotropin release than GnRH alone. However, it remains unclear whether copper-GnRH is the active species in vivo. To explore this we have estimated the GnRH-copper affinity and have examined whether GnRH remains copper-bound in the presence of serum albumin and the neuropeptide neurokinin B, both copper-binding proteins that GnRH will encounter in vivo. We show that GnRH has a copper dissociation constant of ∼0.9 × 10 -9  M, however serum albumin and neurokinin B can extract metal from the copper-GnRH complex. It is therefore unlikely that a copper-GnRH complex will survive transit through the pituitary portal circulation and that any effect of copper must occur outside the bloodstream in the absence of neurokinin B. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Copper deprivation modulates CTR1 and CUP1 expression and enhances cisplatin cytotoxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kommuguri, Upendra Nadh; Bodiga, Sreedhar; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2012-01-01

    Saccharomyces cerevisiae has been established as a model system for cancer studies, due to the widely conserved family of genes involved in cell cycle progression, proliferation and apoptosis. In the current study, we sought to determine whether copper deprivation modulates sensitivity of yeast to cisplatin. Yeast cultures grown in low copper medium and exposed to bathocuproiene disulfate (BCS) resulted in significant reduction of intracellular copper. We report here that low copper medium rendered BY4741 hypersensitive to cisplatin (CDDP). Yeast grown in low copper medium exhibited ∼2.0 fold enhanced cytotoxicity in survival and colony-forming ability, compared to copper adequate control cells grown in YPD. The effect of copper restriction on CDDP sensitivity appeared to be associated with the up regulation of CTR1, facilitating enhanced uptake and accumulation of CDDP. Also, CDDP further lowered copper deprivation-induced changes in CUP1 metallothionein levels, SOD activity and GSH levels. These changes were associated with increased protein oxidation and lipid peroxidation induced by CDDP. These results thus suggest that cisplatin cytotoxicity is potentiated under low copper conditions due to enhanced uptake and accumulation of cisplatin and also in part due to lowered antioxidant defense and increased oxidative stress imposed by copper deprivation. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. 75 FR 65525 - Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division of...

    Science.gov (United States)

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,327] Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division of Wellpoint, Inc., Green Bay, WI; Notice... former workers of Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division...

  18. Bioaccumulation of copper ions by Escherichia coli expressing vanabin genes from the vanadium-rich ascidian Ascidia sydneiensis samea.

    Science.gov (United States)

    Ueki, Tatsuya; Sakamoto, Yasuhisa; Yamaguchi, Nobuo; Michibata, Hitoshi

    2003-11-01

    The genes encoding two vanadium-binding proteins, vanabin1 and vanabin2, from a vanadium-rich ascidian, Ascidia sydneiensis samea, were recently identified and cloned (T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori, and H. Michibata, Biochim. Biophys. Acta 1626:43-50, 2003). The vanabins were found to bind vanadium(IV), and an excess of copper(II) ions inhibited the binding of vanadium(IV) to the vanabins in vitro. In this study, we constructed Escherichia coli strains that expressed vanabin1 or vanabin2 fused to maltose-binding protein (MBP) in the periplasmic space. We found that both strains accumulated about twenty times more copper(II) ions than the control BL21 strain, while no significant accumulation of vanadium was observed. The strains expressing either MBP-vanabin1 or MBP-vanabin2 absorbed approximately 70% of the copper ions in the medium to which 10 micro M copper (II) ions were initially added. The MBP-vanabin1 and MBP-vanabin2 protein expressed in the periplasm bound to copper ions at a copper:protein molar ratio of 8:1 and 5:1, respectively, but MBP did not bind to copper ions. These data showed that the metal-binding proteins vanabin1 and vanabin2 bound copper ions directly and enhanced the bioaccumulation of copper ions by E. coli.

  19. Jet-printed copper metallization

    Science.gov (United States)

    Hong, Cheong Min

    Macroelectronics is a technology for making electronic circuits over very large areas at low cost. Flat panel displays, sensor arrays, and thin film solar cells are examples of macroelectronics. Crucial to the success of this new technology is the development of inexpensive electronic processes, materials, and devices. Direct printing techniques, which eliminate processing steps and save device and process materials, are the key to high volume and high throughput manufacturing. Copper metallization has been receiving increasing attention in both microelectronics and macroelectronics. Copper has high conductivity, density, melting point, heat capacity, and thermal conductivity. However, copper is also hard to dry etch. For these reasons we have developed and demonstrated a directly printed copper source/drain metallization technique and applied it to the fabrication of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). The maximum process temperature of 200°C is compatible with conventional active matrix liquid crystal display (AMLCD) technology. In this dissertation, we show the process of depositing copper films by jet printing. We discuss the preparation and the properties of the copper precursor material used in the jet printing. We survey the conversion process from copper precursor to copper under varying processing conditions. The resulting copper film is probed for its physical, electrical, and mechanical properties. To demonstrate the feasibility of the jet printing technique, we print copper source/drain contacts for a-Si:H TFTs. The photolithography-free TFT fabrication process uses the printed xerographic toner technique developed earlier in this laboratory. We show that functional TFTs can be made with printed copper source and drain contacts. The jet printing of copper contacts represents a further step toward an all-printed thin film transistor technology.

  20. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    Science.gov (United States)

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  1. The Physics of the Blues

    Science.gov (United States)

    Gibson, J. Murray

    2009-03-01

    In looking at the commonalities between music and science, one sees that the musician's palette is based on the principles of physics. The pitch of a musical note is determined by the frequency of the sound wave. The scales that musicians use to create and play music can be viewed as a set of rules. What makes music interesting is how musicians develop those rules and create ambiguity with them. I will discuss the evolution of western musical scales in this context. As a particular example, ``Blue'' notes are very harmonic notes that are missing from the equal temperament scale. The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting. Live keyboard demonstrations will be used. Beyond any redeeming entertainment value the talk will emphasize the serious connections between science and art in music. Nevertheless tips will be accepted.

  2. Thermoluminescence (TL) of Egyptian Blue

    Energy Technology Data Exchange (ETDEWEB)

    Schvoerer, M.; Delavergne, M.-C.; Chapoulie, R.

    1988-01-01

    Egyptian Blue is a synthesized crystalline pictorial pigment with formula CaCuSi/sub 4/O/sub 10/. It has been used in Egypt and Mesopotamia from the 3rd millenium B.C. A preliminary experiment on a recently synthesized sample showed that this pigment is thermoluminescent after ..beta.. irradiation (/sup 90/Sr). As the signal intensity grows linearly with the administered dose within the temperature range commonly used in TL dating, we have been looking for this phenomenon from archaeological pigments. It was encountered with two samples found in excavation. From its intensity and stability we concluded that Egyptian Blue can be dated using TL. This first and positive result encouraged us to extend the method to other types of mineral pigments synthesized by early man, and to suggest that it may be used for direct dating of ancient murals.

  3. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  4. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  5. Galaxies on the Blue Edge

    OpenAIRE

    Cabanela, J. E.; Dickey, J. M.

    2002-01-01

    We have successfully constructed a catalog of HI-rich galaxies selected from the Minnesota Automated Plate Scanner Catalog of the Palomar Observatory Sky Survey (POSS I) based solely on optical criteria. We identify HI-rich candidates by selecting the bluest galaxies at a given apparent magnitude, those galaxies on the "blue edge" of POSS I color-magnitude parameter space. Subsequent 21-cm observations on the upgraded Arecibo 305m dish detected over 50% of the observed candidates. The detecte...

  6. Blue light regulated shade avoidance.

    Science.gov (United States)

    Keuskamp, Diederik H; Keller, Mercedes M; Ballaré, Carlos L; Pierik, Ronald

    2012-04-01

    Most plants grow in dense vegetation with the risk of being out-competed by neighboring plants. These neighbors can be detected not only through the depletion in light quantity that they cause, but also through the change in light quality, which plants perceive using specific photoreceptors. Both the reduction of the red:far-red ratio and the depletion of blue light are signals that induce a set of phenotypic traits, such as shoot elongation and leaf hyponasty, which increase the likelihood of light capture in dense plant stands. This set of phenotypic responses are part of the so called shade avoidance syndrome (SAS). This addendum discusses recent findings on the regulation of the SAS of Arabidopsis thaliana upon blue light depletion. Keller et al. and Keuskamp et al. show that the low blue light attenuation induced shade avoidance response of seedling and rosette-stage A. thaliana plants differ in their hormonal regulation. These studies also show there is a regulatory overlap with the R:FR-regulated SAS.

  7. Single and Combined Exposure to Zinc- and Copper-Containing Welding Fumes Lead to Asymptomatic Systemic Inflammation.

    Science.gov (United States)

    Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter

    2016-02-01

    Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.

  8. Anti-cytomegalovirus activity of the anthraquinone atanyl blue PRL.

    Science.gov (United States)

    Alam, Zohaib; Al-Mahdi, Zainab; Zhu, Yali; McKee, Zachary; Parris, Deborah S; Parikh, Hardik I; Kellogg, Glen E; Kuchta, Alison; McVoy, Michael A

    2015-02-01

    Human cytomegalovirus (CMV) causes significant disease in immunocompromised patients and serious birth defects if acquired in utero. Available CMV antivirals target the viral DNA polymerase, have significant toxicities, and suffer from resistance. New drugs targeting different pathways would be beneficial. The anthraquinone emodin is proposed to inhibit herpes simplex virus by blocking the viral nuclease. Emodin and related anthraquinones are also reported to inhibit CMV. In the present study, emodin reduced CMV infectious yield with an EC50 of 4.9μM but was cytotoxic at concentrations only twofold higher. Related anthraquinones acid blue 40 and alizarin violet R inhibited CMV at only high concentrations (238-265μM) that were also cytotoxic. However, atanyl blue PRL inhibited infectious yield of CMV with an EC50 of 6.3μM, significantly below its 50% cytotoxic concentration of 216μM. Atanyl blue PRL reduced CMV infectivity and inhibited spread. When added up to 1h after infection, it dramatically reduced CMV immediate early protein expression and blocked viral DNA synthesis. However, it had no antiviral activity when added 24h after infection. Interestingly, atanyl blue PRL inhibited nuclease activities of purified CMV UL98 protein with IC50 of 4.5 and 9.3μM. These results indicate that atanyl blue PRL targets very early post-entry events in CMV replication and suggest it may act through inhibition of UL98, making it a novel CMV inhibitor. This compound may provide valuable insights into molecular events that occur at the earliest times post-infection and serve as a lead structure for antiviral development. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Department of Chemistry, Jinan University, Guangzhou (China); Zhang, Yikai [Institute of Hematology, Jinan University, Guangzhou (China); Zheng, Shanyuan [School of Life Sciences, The Chinese University of Hong Kong, Hong Kong (China); Weng, Zeping; Ma, Jun [First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Yangqiu [Institute of Hematology, Jinan University, Guangzhou (China); First Affiliated Hospital, Jinan University, Guangzhou (China); Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 (China); Xie, Xinyuan [Department of Chemistry, Jinan University, Guangzhou (China); Zheng, Wenjie, E-mail: tzhwj@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou (China)

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  10. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-01-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  11. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  12. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    International Nuclear Information System (INIS)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  13. Activation of dioxygen by copper metalloproteins and insights from model complexes.

    Science.gov (United States)

    Quist, David A; Diaz, Daniel E; Liu, Jeffrey J; Karlin, Kenneth D

    2017-04-01

    Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O 2 -activation in copper proteins are addressed.

  14. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  15. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  16. Effect of trypan blue on the action of acetylcholine, histamine and salbutamol in the isolated guinea-pig ileum.

    Science.gov (United States)

    Mahmoudian, M; Damankeshideh, M

    1996-07-01

    It has been reported that trypan blue, a diazo dye with polyamphipatic structure, can inhibit the coupling of receptors to G-proteins. This inhibition of G-protein coupling has been investigated in isolated guinea-pig ileum. It was found that trypan blue could elicit a slight but dose-dependent contractile response in isolated guinea-pig ileum (4.5% of maximum contractile response induced by acetylcholine). While trypan blue potentiated the effect of histamine and shifted its dose-response curve to the left, it did not affect the contractile effects of acetylcholine. Furthermore, the relaxation which has been induced by salbutamol, a beta 2 agonist, was inhibited by trypan blue. It is concluded that trypan blue, as shown in biochemical studies, act selectively and can uncouple Gs-protein from beta 1 receptors. However, the effect of trypan blue on the whole tissue preparation depends on the type of G-protein involved and post G-protein processes which are stimulated after receptor activation. Trypan blue and similar agents could provide useful tools for further investigations of the mechanism of receptor-G protein coupling in the whole tissue preparation.

  17. Melanocytes Sense Blue Light and Regulate Pigmentation through Opsin-3.

    Science.gov (United States)

    Regazzetti, Claire; Sormani, Laura; Debayle, Delphine; Bernerd, Françoise; Tulic, Meri K; De Donatis, Gian Marco; Chignon-Sicard, Bérengère; Rocchi, Stéphane; Passeron, Thierry

    2018-01-01

    The shorter wavelengths of the visible light spectrum have been recently reported to induce a long-lasting hyperpigmentation but only in melano-competent individuals. Here, we provide evidence showing that OPN3 is the key sensor in melanocytes responsible for hyperpigmentation induced by the shorter wavelengths of visible light. The melanogenesis induced through OPN3 is calcium dependent and further activates CAMKII followed by CREB, extracellular signal-regulated kinase, and p38, leading to the phosphorylation of MITF and ultimately to the increase of the melanogenesis enzymes: tyrosinase and dopachrome tautomerase. Furthermore, blue light induces the formation of a protein complex that we showed to be formed by tyrosinase and dopachrome tautomerase. This multimeric tyrosinase/tyrosinase-related protein complex is mainly formed in dark-skinned melanocytes and induces a sustained tyrosinase activity, thus explaining the long-lasting hyperpigmentation that is observed only in skin type III and higher after blue light irradiation. OPN3 thus functions as the sensor for visible light pigmentation. OPN3 and the multimeric tyrosinase/tyrosinase-related protein complex induced after its activation appear as new potential targets for regulating melanogenesis but also to protect dark skins against blue light in physiological conditions and in pigmentary disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Inactivation of norovirus on dry copper alloy surfaces.

    Directory of Open Access Journals (Sweden)

    Sarah L Warnes

    Full Text Available Noroviruses (family Caliciviridae are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS determined that Cu(II and especially Cu(I ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked, which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen.

  19. Inactivation of Norovirus on Dry Copper Alloy Surfaces

    Science.gov (United States)

    Warnes, Sarah L.; Keevil, C. William

    2013-01-01

    Noroviruses (family Caliciviridae) are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS) determined that Cu(II) and especially Cu(I) ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen. PMID:24040380

  20. FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases

    Science.gov (United States)

    Juárez-Hernández, J.; Zavala-Soto, M. E.; Bibbins-Martínez, M.; Delgado-Macuil, R.; Díaz-Godinez, G.; Rojas-López, M.

    2008-04-01

    We have used FTIR with attenuated total reflectance (ATR) technique to analyze the decolourization process of Remazol Blue dye (RB19) caused by the oxidative activity of laccase enzyme. It is known that laccases catalyze the oxidation of a large range of phenolic compounds and aromatic amines carrying out one-electron oxidations, although also radicals could be formed which undergo subsequent nonenzymatic reactions. The enzyme laccase is a copper-containing polyphenol oxidase (EC 1.10.3.2) which has been tested as a potential alternative in detoxification of environmental pollutants such as dyes present in wastewaters generated for the textile industry. In order to ensure degradation or avoid formation of toxic compounds it is important to establish the mechanism by which laccase oxidizes dyes. In this research individual ATR-FTIR spectra have been recorded for several reaction times between 0 to 236 hours, and the temporal dependence of the reaction was analyzed through the relative diminution of the intensity of the infrared band at 1127 cm-1 (associated to C-N vibration), with respect to the intensity of the band at 1104 cm-1 (associated to S = O) from sulphoxide group. Decolourization process of this dye by laccase could be attributed to its accessibility on the secondary amino group, which is a potential point of attack of laccases, abstracting the hydrogen atom. This decolourization process of remazol blue dye by laccase enzyme might in a future replace the traditionally high chemical, energy and water consuming textile operations.

  1. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Our study showed the effect of Cu on Atriplex halimus grown in hydroponics conditions. The aim of this work was to investigate some enzymatic systems response of this plant to copper stress. Analysis was carried on enzymatic profiles, protein tenor and chlorophyll content of A. halimus leaves. Two.

  2. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Our study showed the effect of Cu on Atriplex halimus grown in hydroponics conditions. The aim of this work was to investigate some enzymatic systems response of this plant to copper stress. Analysis was carried on enzymatic profiles, protein tenor and chlorophyll content of A. halimus leaves. Two months after sowing, ...

  3. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles

    Directory of Open Access Journals (Sweden)

    Solairaj Dhananasekaran

    2016-01-01

    Full Text Available Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB, Bromophenol Blue (BPB and Coomassie Brilliant Blue (CBB by α-chitin nanoparticles (CNP prepared from Penaeus monodon (Fabricius, 1798 shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R2 values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes and pseudo second order kinetics (R2 values were 0.996, 0.999 and 0.996 for MB, BPB and CBB more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents.

  4. Chromophore Deprotonation State Alters the Optical Properties of Blue Chromoprotein.

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chiang

    Full Text Available Chromoproteins (CPs have unique colors and can be used in biological applications. In this work, a novel blue CP with a maximum absorption peak (λmax at 608 nm was identified from the carpet anemone Stichodactyla gigantea (sgBP. In vivo expression of sgBP in zebrafish would change the appearance of the fishes to have a blue color, indicating the potential biomarker function. To enhance the color properties, the crystal structure of sgBP at 2.25 Å resolution was determined to allow structure-based protein engineering. Among the mutations conducted in the Gln-Tyr-Gly chromophore and chromophore environment, a S157C mutation shifted the λmax to 604 nm with an extinction coefficient (ε of 58,029 M-1·cm-1 and darkened the blue color expression. The S157C mutation in the sgBP chromophore environment could affect the color expression by altering the deprotonation state of the phenolic group in the chromophore. Our results provide a structural basis for the blue color enhancement of the biomarker development.

  5. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  6. Copper (II) complexes with aroylhydrazones

    Indian Academy of Sciences (India)

    Copper(II) complexes with aroylhydrazones ... The coordination chemistry of copper(II) with tridentate aroylhydrazones is briefly discussed in this article. ... EPR spectroscopy and variable temperature magnetic susceptibility measurements have been used to reveal the nature of the coordination geometry and magnetic ...

  7. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi...

  8. 700 W blue fiber-coupled diode-laser emitting at 450 nm

    Science.gov (United States)

    Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.

    2018-02-01

    A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.

  9. Phenoloxidase activity in humoral plasma, hemocyanin and hemocyanin separated proteins of the giant freshwater prawn Macrobrachium rosenbergii.

    Science.gov (United States)

    Mullaivanam Ramasamy, Sivakumar; Denis, Maghil; Sivakumar, Shanthi; Munusamy, Arumugam

    2017-09-01

    Hemocyanin is a copper containing protein and its role in the immune function of phenoloxidase (PO) activity was investigated in the giant freshwater prawn Macrobrachium rosenbergii. Hemocyanin, sedimented by ultracentrifugation from the plasma appeared on polyacrylamide gel electrophoresis (PAGE 7%) on Coomassie Brilliant Blue and bathocuproine sulfonic acid stain as four copper containing proteins of molecular masses 50, 60, 114 and 325kDa. Accordingly, on diethylaminoethyl-cellulose anion exchange column hemocyanin separated into four proteins designated as MrHc1, MrHc2, MrHc3 and MrHc4 with electrophoretically (PAGE) determined molecular masses of 60, 114, 50 and 325kDa respectively. The reduction of proteins in sodium dodecyl sulphate (SDS)-PAGE revealed that MrHc1 and 3 were monomeric for 60and 50kDa respectively, MrHc2 dimeric of 56 and 58kDa subunits and MrHc4 appeared with three subunits of 74, 76 and 78kDa. The PO activity was determined in plasma, hemocyanin and the four separated hemocyanin proteins in vitro using L-3,4-dihydroxyphenylalanine (L-DOPA) at pH7.5, 25°C and appeared elicited by exogenous activators such as trypsin, SDS, cell wall components of bacteria and polysaccharide laminarin. This study clearly demonstrated hemocyanin as the major copper containing protein in the plasma of M. rosenbergii with potent PO activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang

    2012-12-12

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of TOPO-capped Nanocrystals of Copper Sulphide from a ...

    African Journals Online (AJOL)

    Nearly mono-dispersed TOPO-capped copper sulphide nanocrystals of ca. 4.5 nm (diameter) have been synthesized from [Cu(S2CNMe(nHex))2]. The absorption spectrum of the (Cu2S) nanoparticles shows a large blue shift (2.09 eV) in relation to bulk Cu2S (1022 nm, 1.21 eV). The PL gives a broad spectrum with an ...

  12. Blue breath holding is benign.

    Science.gov (United States)

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life threatening event' deserve immense understanding and help, and it behoves investigators to exercise extreme care and self criticism in the presentation of new knowledge which may bear upon their management and their morale. PMID:2001115

  13. Synergistic Effects of Copper Sites on Apparent Stability of Multicopper Oxidase, Fet3p

    Directory of Open Access Journals (Sweden)

    Erik Sedlák

    2018-01-01

    Full Text Available Saccharomyces cerevisiae Fet3p is a multicopper oxidase that contains three cupredoxin-like domains and four copper ions located in three distinct metal sites (T1 in domain 3; T2 and the binuclear T3 at the interface between domains 1 and 3. To probe the role of the copper sites in Fet3p thermodynamic stability, we performed urea-induced unfolding experiments with holo-, apo- and three partially-metallated (T1, T2 and T1/T2 sites depleted of copper forms of Fet3p. Using a combination of spectroscopic probes (circular dichroism, fluorescence intensity and maximum, 8-anilinonaphthalene-1-sulfonic acid (ANS emission, oxidase activity and blue color, we reveal that all forms of Fet3p unfold in a four-state reaction with two partially-folded intermediates. Using phase diagrams, it emerged that Fet3p with all copper sites filled had a significantly higher stability as compared to the combined contributions of the individual copper sites. Hence, there is long-range inter-domain communication between distal copper sites that contribute to overall Fet3p stability.

  14. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning.

    Science.gov (United States)

    Airey, P; Verran, J

    2007-11-01

    It has been suggested that antibacterial copper could be used in place of stainless steel to help reduce the occurrence of hospital-acquired infections. The antibacterial activity of copper has been clearly demonstrated when using cell suspensions held in prolonged contact with copper or copper alloys. The aim of this study was to evaluate the antimicrobial properties of copper in comparison with stainless steel in a generally dry environment. Three stainless steels of varying surface finish and polished copper were soiled with Staphylococcus aureus suspended in a protein-based organic soil (bovine serum album), dried rapidly, and then incubated for 24 h. Surfaces were then wiped clean using a standardised wiping procedure with two cleaning agents recommended by UK National Health Service guidelines. This soiling/cleaning procedure was carried out daily over five days. After each cleaning cycle the amount of residual soil and live cells was assessed using direct epifluorescence microscopy. All materials were easily cleaned after the first soiling episode but a build-up of cells and soil was observed on the copper surfaces after several cleaning/wiping cycles. Stainless steel remained highly cleanable. Accumulation of material on copper is presumably due to the high reactivity of copper, resulting in surface conditioning. This phenomenon will affect subsequent cleaning, aesthetic properties and possibly antibacterial performance. It is important to select the appropriate cleaning/disinfecting protocols for selected surfaces.

  15. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases.

    Science.gov (United States)

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-09-16

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    Science.gov (United States)

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  17. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.

    Science.gov (United States)

    Zhou, Yang; Jiang, Youchun; Kang, Y James

    2008-07-01

    Previous studies have shown that dietary copper supplementation reversed heart hypertrophy induced by pressure overload in a mouse model. The present study was undertaken to understand the cellular basis of copper-induced regression of cardiac hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine (PE) at a final concentration of 100 microM in cultures for 48 h to induce cellular hypertrophy. The hypertrophied cardiomyocytes were exposed to copper sulfate at a final concentration of 5 microM in cultures for additional 24 h. This copper treatment reduced the size of the hypertrophied cardiomyocytes, as measured by flow cytometry, protein content in cells, cell volume and cardiomyocyte hypertrophy markers including beta-myosin heavy chain protein, skeletal alpha-actin, and atrial natriuretic peptide. Cell cycle analysis and cell sorting of p-histone-3 labeled cardiomyocytes indicated that cell division was not involved in the copper-induced regression of cardiomyocyte hypertrophy. Copper also inhibited PE-induced apoptosis, determined by a TUNEL assay. Because copper stimulates vascular endothelial growth factor (VEGF) production through activation of hypoxia-inducible transcription factor, an anti-VEGF antibody at a final concentration of 2 ng/ml in cultures was used and shown to blunt copper-induced regression of cell hypertrophy. Conversely, VEGF alone at a final concentration of 0.2 microg/ml reversed cell hypertrophy as the same as copper did. This study demonstrates that both copper and VEGF reduce the size of hypertrophied cardiomyocytes, and copper regression of cardiac hypertrophy is VEGF-dependent.

  18. Sublethal concentrations of waterborne copper induce cellular stress and cell death in zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Pedro P Hernandez

    2011-01-01

    Full Text Available Copper is an essential ion that forms part of the active sites of many proteins. At the same time, an excess of this metal produces free radicals that are toxic for cells and organisms. Fish have been used extensively to study the effects of metals, including copper, present in food or the environment. It has been shown that different metals induce different adaptive responses in adult fish. However, until now, scant information has been available about the responses that are induced by waterborne copper during early life stages of fish. Here, acute toxicity tests and LC50 curves have been generated for zebrafish larvae exposed to dissolved copper sulphate at different concentrations and for different treatment times. We determined that the larvae incorporate and accumulate copper present in the medium in a concentration-dependent manner, resulting in changes in gene expression. Using a transgenic fish line that expresses enhanced green fluorescent protein (EGFP under the hsp70 promoter, we monitored tissue-specific stress responses to waterborne copper by following expression of the reporter. Furthermore, TUNEL assays revealed which tissues are more susceptible to cell death after exposure to copper. Our results establish a framework for the analysis of whole-organism management of excess external copper in developing aquatic animals.

  19. The involvement of vimentin in copper-induced regression of cardiomyocyte hypertrophy.

    Science.gov (United States)

    Li, Rui; Bourcy, Katherine; Wang, Tao; Sun, Miao; Kang, Y James

    2015-09-01

    Dietary copper supplementation reverses the pressure overload-induced cardiac hypertrophy. Activation of vascular endothelial growth factor receptor-1 (VEGFR-1) and cyclic guanosine monophosphate (cGMP)-dependent protein kinase-1 (PKG-1) is required for the regression. The present study was undertaken to determine the link between VEGFR-1 and PKG-1 in copper regression of cardiomyocyte hypertrophy. Human cardiac myocytes (HCM) or primary cultures of neonatal rat cardiomyocytes were exposed to phenylephrine (PE) at a final concentration of 100 μM for 48 h to induce cell hypertrophy. Copper sulfite was added to cultures of hypertrophic cardiomyocytes at a final concentration of 5 μM elemental copper and incubated for 24 h to reverse cell hypertrophy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified a 56 kDa copper-binding protein, vimentin, which was co-immunoprecipitated with VEGFR-1 and PKG-1. Copper supplementation increased vimentin levels and enhanced PKG-1 activity. Gene silencing using siRNA targeting vimentin prevented copper-induced elevation of vimentin, depressed the activity of PKG-1, and blocked the copper-induced regression of cardiomyocyte hypertrophy. This study demonstrates that vimentin is critically involved in the VEGFR-1 mediated activation of the PKG-1 signaling pathway, leading to regression of cardiomyocyte hypertrophy.

  20. The Clp protease system is required for copper ion-dependent turnover of the PAA2/HMA8 copper transporter in chloroplasts.

    Science.gov (United States)

    Tapken, Wiebke; Kim, Jitae; Nishimura, Kenji; van Wijk, Klaas J; Pilon, Marinus

    2015-01-01

    The distribution of essential metal ions over subcellular compartments for use as cofactors requires control of membrane transporters. PAA2/HMA8 is a copper-transporting P1B -type ATPase in the thylakoid membrane, required for the maturation of plastocyanin. When copper is highly available to the plant this transporter is degraded, which implies the action of a protease. In order to identify the proteolytic machinery responsible for PAA2/HMA8 turnover in Arabidopsis, mutant lines defective in five different chloroplast protease systems were analyzed. Plants defective in the chloroplast caseinolytic protease (Clp) system were specifically impaired in PAA2/HMA8 protein turnover on media containing elevated copper concentrations. However, the abundance of a core Clp component was not directly affected by copper. Furthermore, the expression and activity of both cytosolic and chloroplast-localized superoxide dismutases (SODs), which are known to be dependent on copper, were not altered in the clp mutants, indicating that the loss of PAA2/HMA8 turnover in these lines was not caused by a lack of stromal copper. The results suggest that copper excess in the stroma triggers selection of the thylakoid-localized PAA2 transporter for degradation by the Clp protease, but not several other chloroplast proteases, and support a novel role for this proteolytic system in cellular copper homeostasis. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase.

    Science.gov (United States)

    Liu, Jingxuan; Sitaram, Anand; Burd, Christopher G

    2007-10-01

    The Saccharomyces cerevisiae high-affinity copper transporter, Ctr1p, mediates cellular uptake of Cu(I). We report that when copper (50 microm CuSO(4)) is added to the growth medium of copper-starved cells, Ctr1p is rapidly internalized by endocytosis, delivered to the lumen of the lysosome-like vacuole and slowly degraded by vacuolar proteases. Through analysis of the trafficking and degradation of Ctr1p mutants, two lysine residues in the C-terminal cytoplasmic tail of Ctr1p, Lys340 and Lys345, were found to be critical for copper-dependent endocytosis and degradation. In response to copper addition, Ctr1p was found to be ubiquitylated and a mutation in the Rsp5 ubiquitin ligase largely abolished ubiquitylation, endocytosis and degradation. In a strain lacking the Rsp5p accessory factors Bul1p and Bul2p, endocytosis and degradation of Ctr1p-green fluorescent protein were substantially diminished. Surprisingly, a Ctr1p mutant that lacks Lys340 and Lys345 was still ubiquitylated in a copper-dependent manner, indicating that ubiquitylation of Ctr1p on other sites is insufficient to drive copper-dependent endocytosis and degradation. This study demonstrates that copper regulates turnover of Ctr1p by stimulating Rsp5p-dependent endocytosis and degradation of Ctr1p in the vacuole.

  2. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  3. The role of insufficient copper in lipid synthesis and fatty-liver disease.

    Science.gov (United States)

    Morrell, Austin; Tallino, Savannah; Yu, Lei; Burkhead, Jason L

    2017-04-01

    The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  4. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures.

    Science.gov (United States)

    Sun, Minglei; Chou, Jyh-Pin; Yu, Jin; Tang, Wencheng

    2017-07-05

    Blue phosphorene (BlueP) is a graphene-like phosphorus nanosheet which was synthesized very recently for the first time [Nano Lett., 2016, 16, 4903-4908]. The combination of electronic properties of two different two-dimensional materials in an ultrathin van der Waals (vdW) vertical heterostructure has been proved to be an effective approach to the design of novel electronic and optoelectronic devices. Therefore, we used density functional theory to investigate the structural and electronic properties of two BlueP-based heterostructures - BlueP/graphene (BlueP/G) and BlueP/graphene-like gallium nitride (BlueP/g-GaN). Our results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure. Moreover, by applying a perpendicular electric field, it is possible to tune the position of the Dirac cone of G with respect to the band edge of BlueP, resulting in the ability to control the Schottky barrier height. For the BlueP/g-GaN vdW heterostructure, BlueP forms an interface with g-GaN with a type-II band alignment, which is a promising feature for unipolar electronic device applications. Furthermore, we discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.

  5. Synthesis and structural studies of copper sulfide nanocrystals

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper(II dithiocarbamate single molecule precursors. The optical studies of the as-prepared copper sulfide nanoparticles were carried out using UV–Visible and photoluminescence spectroscopy. The absorption spectra show absorption band edges at 287 nm and exhibit considerable blue shift that could be ascribed to the quantum confinement effects as a result of the small crystallite sizes of the nanoparticles and the photoluminescence spectra show emission curves that are red shifted with respect to the absorption band edges. The structural studies were carried out using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The XRD patterns revealed the formation of hexagonal structure of covellite CuS with estimated crystallite sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microsphere on the surfaces and EDS spectra confirmed the presence of CuS nanoparticles. Keywords: CuS, Dithiocarbamate, Nanoparticles, Electron microscopy, AFM

  6. EARLY DOWNHOME BLUES IN AMERICAN CULTURE

    OpenAIRE

    Muhni, Djuhertati Imam

    2012-01-01

    People's traditional music and the way people behave when performing it are symbolic expressions of broad cultural pattern and social organization . In other words music is a part of men's learned heritage . Hence this study is about music in a given culture, specifically blues in American culture . Allen Trachtenberg stated that blues songs are inheritance from the American past for negotiating black people's lives as Americans . In the experience of blues the African-Americans find themselv...

  7. The Red-Blue Transportation Problem

    OpenAIRE

    Vancroonenburg, Wim; Della Croce, Federico; Goossens, Dries; Spieksma, Frits

    2014-01-01

    This paper considers the Red-Blue Transportation Problem (Red-Blue TP), a generalization of the transportation problem where supply nodes are partitioned into two sets and so-called exclusionary constraints are imposed. We encountered a special case of this problem in a hospital context, where patients need to be assigned to rooms. We establish the problem's complexity, and we compare two integer programming formulations. Furthermore, a maximization variant of Red-Blue TP is presented, for...

  8. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  9. Chemical Structure of TiO2 Nanotube Photocatalysts Promoted by Copper and Iron

    Directory of Open Access Journals (Sweden)

    Chang-Yu Liao

    2013-01-01

    Full Text Available TiO2 nanotubes (TNTs promoted by copper (5% (Cu-TNT and iron (5% (Fe-TNT were prepared for visible-light photocatalysis. By X-ray absorption near edge structure (XANES spectroscopy, it is found that the enhanced photocatalytic degradation of methylene blue (MB on Cu-TNT and Fe-TNT is associated with the predominant surface photoactive sites A2 ((Ti=OO4. By extended X-ray absorption fine structure (EXAFS spectroscopy, the dispersed copper and iron also cause increases in the Ti–O and Ti–(O–Ti bond distances by 0.01-0.02 and 0.04-0.05 Å, respectively. The decreased Ti–O bonding energy may lead to an increase of photoexcited electron transport. The copper- or-iron promoted TNT can thus enhance photocatalytic degradation of MB under the visible-light radiation.

  10. Variable blue straggler stars in NGC 5466

    International Nuclear Information System (INIS)

    Harris, H.C.; Mateo, M.; Olszewski, E.W.; Nemec, J.M.

    1990-01-01

    Nine variable blue stragglers have been found in the globular cluster NGC 5466. The six dwarf Cepheids in this cluster coexist in the instability strip with other nonvariable stars. The three eclipsing binaries are among the hottest of the blue stragglers. The hypothesis is discussed that all blue stragglers in this cluster have undergone mass transfer in close binaries. Under this hypothesis, rotation and spin-down play important roles in controlling the evolution of blue stragglers in old clusters and in affecting some of their observational properties. 14 refs

  11. Morphological responses of wheat to blue light

    Science.gov (United States)

    Barnes, C.; Bugbee, B.

    1992-01-01

    Blue light significantly increased tillering in wheat (Triticum aestivum L.) plants grown at the same photosynthetic photon flux (PPF). Plants were grown under two levels of blue light (400-500 nm) in a controlled environment with continuous irradiation. Plants received either 50 micromoles m-2 s-1 of blue light or 2 micromoles m-2 s-1 blue light from filtered metal halide lamps at a total irradiance of 200 micromoles m-2 s-1 PPF (400-700 nm). Plants tillered an average of 25% more under the higher level of blue light. Blue light also caused a small, but consistent, increase in main culm development, measured as Haun stage. Leaf length was reduced by higher levels of blue light, while plant dry-mass was not significantly affected by blue light. Applying the principle of equivalent light action, the results suggest that tillering and leaf elongation are mediated by the blue-UV light receptor(s) because phytochrome photoequilibrium for each treatment were nearly identical.

  12. Why Blue-Collar Blacks Help Less

    OpenAIRE

    Smith, Sandra Susan; Young, Kara Alexis

    2013-01-01

    Why are blue-collar blacks less likely to help jobseekers than jobholders from other ethnoracial groups or even than more affluent blacks? Drawing from in-depth, semi-structured interviews with 97 black and Latino workers at one large, public sector employer, we find that blue-collar black workers both helped less proactively and rejected more requests for assistance than did blue-collar Latino and white-collar black workers. We attribute blue-collar blacks’ more passive engagement to their...

  13. The presence of an insulin-like androgenic gland factor (IAG) and insulin-like peptide binding protein (ILPBP) in the ovary of the blue crab, Callinectes sapidus and their roles in ovarian development.

    Science.gov (United States)

    Huang, Xiaoshuai; Ye, Haihui; Chung, J Sook

    2017-08-01

    Insulin-like androgenic gland factor (IAG) that is produced by the male androgenic gland (AG), plays a role in sexual differentiation and maintenance of male secondary sex characteristics in decapod crustaceans. With an earlier finding of IAG expression in a female Callinectes sapidus ovary, we aimed to examine a putative role of IAG during the ovarian development of this species. To this end, the full-length cDNA sequence of the ovarian CasIAG (termed CasIAG-ova) has been isolated. The predicted mature peptide sequence of CasIAG-ova is identical to that of the IAG from the AG, except in their signal peptide regions. The CasIAG-ova contains an alternative initiation codon (UUG) as the start codon, which suggests that the translational regulation of CasIAG-ova may differ from that of the IAG from AG. To define the function of CasIAG-ova, the expressions of CasIAG-ova as well as its putative binding protein, insulin-like peptide binding protein (ILPBP), are measured in the ovaries at various developmental stages obtained from different seasons. Season affects both CasIAG and ILPBP expression in the ovary. Overall, summer females at earlier ovarian stages contain high levels of CasIAG and ILPBP than spring or fall females. These findings indicate that CasIAG-ova and CasILPBP may be involved in the ovarian development. When comparing the levels of CasIAG and CasILPBP in the ovary, the latter are much higher (∼10-10000 fold) than the former. Expression patterns of CasILPBP differ from those of CasIAG-ova during ovarian development and by season, suggesting that ILPBP may have an additional role in ovarian development rather than a function of a putative binding protein of IAG. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  15. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  16. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  17. Control of biofouling on titanium condenser tubes with the use of electroless copper plating

    International Nuclear Information System (INIS)

    Anandkumar, B.; George, R.P.; Kamachi Mudali, U.; Ramachandran, D.

    2015-01-01

    In sea water environments titanium condenser tubes face serious issues of biofouling and biomineralization. Electroless plating of nanocopper film is attempted inside the tubes for the control of biofilm formation. Using advanced techniques like AFM, SEM, and XPS, electroless copper plated flat Ti specimens were characterized. Examination of Cu coated Ti surfaces using AFM and SEM showed more reduction in the microroughness compared to anodized Ti surface. Cu 2p 3/2 peak in XPS spectral analysis showed the shift in binding energy inferring the reduction of the hydroxide to metallic copper. Tubular specimens were exposed to sea water up to three months and withdrawn at monthly intervals to evaluate antibacterial activity and long term stability of the coating. Total viable counts and epifluorescence microscopy analyses showed two orders decrease in bacterial counts on copper coated Ti specimens when compared to as polished control Ti specimens. Molecular biology techniques like DGGE and protein expression analysis system were done to get insight into the community diversity and copper tolerance of microorganisms. DGGE gel bands clearly showed the difference in the bacterial diversity inferring from the 16S rRNA gene fragments (V3 regions). Protein analysis showed distinct protein spots appearing in electroless copper coated Ti biofilm protein samples in addition to protein spots common to both the biofilms of Cu coated and as polished Ti. The results indicated copper accumulating proteins in copper resistant bacterial species of biofilm. Reduced microroughness of the surface and toxic copper ions resulted in good biofouling control even after three months exposure to sea water. (author)

  18. Modulation of lysyl oxidase by dietary copper in rats.

    Science.gov (United States)

    Rucker, R B; Romero-Chapman, N; Wong, T; Lee, J; Steinberg, F M; McGee, C; Clegg, M S; Reiser, K; Kosonen, T; Uriu-Hare, J Y; Murphy, J; Keen, C L

    1996-01-01

    Lysyl oxidase levels were estimated in rat tissues using an enzyme-linked immunosorption assay (ELISA) and a functional assay standardized against known amounts of purified lysyl oxidase. High concentrations of lysyl oxidase (> or = 150 micrograms/g of tissue or packed cells) were detected in connective tissues, such as tendon and skin. Values for aorta, kidney, lung and liver ranged from 30 to 150 micrograms/g of tissue; values for skeletal muscle and diaphragm were tendon (r2 > 0.9). When egg white-based experimental diets containing 2 or 10 micrograms/g added copper were fed to weanling rats, values for skin lysyl oxidase functional activity in the group fed 2 micrograms/g added copper were one-third to one-half the values for skin lysyl oxidase functional activity in rats fed 10 micrograms/g copper. This reduction in lysyl oxidase activity, however, had minimal effect on indices of collagen maturation in rat skin, e.g., collagen solubility in neutral salt and dilute acid or the levels of acid stable cross-links. Moreover, copper deficiency did not influence the steady-state levels of lysyl oxidase specific mRNA in rat skin or the apparent amounts of lysyl oxidase in rat skin as determined by ELISA. These observations underscore that the concentration of lysyl oxidase is relatively high in dense corrective tissues, and although decreasing dietary copper influences functional activity, there is little apparent effect on the production of lysyl oxidase protein.

  19. Differential sexual survival of Drosophila melanogaster on copper sulfate.

    Science.gov (United States)

    Balinski, Michael A; Woodruff, Ronny C

    2017-04-01

    Based on studies of the influence of X-chromosomes on the viability of Drosophila melanogaster exposed to cadmium, and on the role of X-linked genes on copper homeostasis, we examined the effect of copper sulfate (CuSO 4 ) on offspring viability using three independent, inbred D. melanogaster crosses (ensuring identical autosomes for males and females within each cross). Each cross was performed with attached X-chromosome females and males with a single X-chromosome. As female D. melanogaster have less metallothionein RNA expression than males, we predicted fewer female offspring than male offspring in crosses exposed to CuSO 4 , even though females have two copies of X-chromosome genes, possibly resulting in overdominant heterozygosity. In two of three crosses, CuSO 4 caused significantly higher numbers of male offspring compared to female offspring. We hypothesized that these gender-based viability differences to copper exposure are caused by X-chromosome ploidy and X-linked genetic variation affecting metallothionein expression. Observed differential offspring viability responses among crosses to copper exposure also showed that different genetic backgrounds (autosomal and/or X-chromosome) can result in significant differences in heavy metal and metallothionein regulation. These results suggest that the effect of copper on offspring viability depends on both genetic background and gender, as both factors can affect the regulation of metallothionein proteins as well as homeostasis of biologically necessary heavy metals.

  20. Prehistory of the Little Blue River Valley, Western Missouri: Archaeological Investigations at Blue Springs Lake.

    Science.gov (United States)

    1989-01-01

    Lake project. The report discusses the geomorphology and vegetation of the Little Blue River valley, Late Quaternary bioclimatic change in Western...54 Aquatic Communities ............................... 58 IV. LATE QUATERNARY BIOCLIMATIC CHANGE IN WESTERN MISSOURI by Rolfe D...City District is presently constructing Blue Springs Lake on the East Fork of the Little Blue River in Jackson County, Missouri. The location of the

  1. Physicochemical, Thermal, and Sensory Properties of Blue Corn (Zea Mays L.).

    Science.gov (United States)

    Mutlu, Ceren; Arslan-Tontul, Sultan; Candal, Cihadiye; Kilic, Ozlem; Erbas, Mustafa

    2018-01-01

    The aim of this study was to investigate some physicochemical and sensory properties of blue corn cultivated in Turkey. The length and width of the cob with kernels, hectoliter, and 1000-kernel weight of blue corn were measured as 7.66, 2.02 mm, 84.40 kg/100 L, and 44.27 g, respectively. The gelatinization onset, peak, and end temperatures were measured as 61.12 °C, 64.35 °C, and 75.65 °C, respectively. The water activity, moisture content, total protein, lipid, and crude fiber contents of the blue corn sample were detected as 0.44, 9.39%, 13.13%, 4.30%, and 2.68%, respectively. Total starch and resistant starch contents of blue corn were determined as 63.94% and 8.89%, respectively. Also, total monomeric anthocyanin content and antioxidant capacity of blue corn were detected as 915.43 mg CGE/kg and 7.99 μmol TE/g, respectively. Additionally, the major fatty acids detected in blue corn samples were palmitic, stearic, oleic, and linoleic acids. Blue corn can be utilized in the production of enjoyable and healthier snacks, such as popcorn and chips, because of its color and high phenolic, anthocyanin, and fiber contents. © 2017 Institute of Food Technologists®.

  2. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    Science.gov (United States)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  3. Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Juan Antonio Castillo-Gonzalez

    2017-01-01

    Full Text Available Parkinson’s disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS and autophagy-lysosomal pathway (ALS are altered in Parkinson’s disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson’s disease, will be analyzed in detail in this review.

  4. Copper transfer from Cu-Aβ to human serum albumin inhibits aggregation, radical production and reduces Aβ toxicity

    DEFF Research Database (Denmark)

    Perrone, Lorena; Mothes, Emmanuelle; Vignes, Maeva

    2010-01-01

    Amyloid-β peptides (Aβ) and the protein human serum albumin (HSA) interact in vivo. They are both localised in the blood plasma and in the cerebrospinal fluid. Among other functions, HSA is involved in the transport of the essential metal copper. Complexes between Aβ and copper ions have been...

  5. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  6. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about...

  7. Blue rubber bleb nevus syndrome

    Directory of Open Access Journals (Sweden)

    Rodrigues Daleth

    2000-01-01

    Full Text Available The blue rubber nevus syndrome consists of multiple venous malformations in the skin and gastrointestinal tract associated with intestinal hemorrhage and iron deficiency anemia. Other organs may be involved. The causes of this syndrome are unknown. Its most common presentation is in the form of sporadic cases, but dominant autosomal inheritance has been described. It is a condition that affects both sexes equally, and its occurrence is rare in the black race. We present a case of this syndrome diagnosed in a 11-year-old patient. He had severe anemia and a venous swelling on the trunk. Similar lesions were found in the stomach, bowel, and on his foot. We emphasize the main clinical aspects: intestine, eyes, nasopharynx, parotids, lungs, liver, spleen, heart, brain, pleura, peritoneum, pericardium, skeletal muscles, bladder, and penis lesions, systemic complications that may occur to these patients which are thrombosis and calcification, as well as consumptive coagulopathy and thrombocytopenia that may occur within the nevi.

  8. Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture.

    Science.gov (United States)

    Kang, Wei; Bao, Jianguo; Zheng, Jin; Hu, Hongqin; Du, Jiangkun

    2015-05-01

    The subcellular localization and chemical forms of copper in castor (Ricinus communis L.) seedlings grown in hydroponic nutrient solution were identified by chemical extraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The wild castor seeds were harvested from an abandoned copper mine in Tonglu Mountain, Daye City of Hubei Province, China. The results revealed that (1) the seedlings grew naturally in MS liquid medium with 40.00 mg kg(-1) CuSO4, in which the seedling growth rate and biomass index were 0.14 and 1.23, respectively, which were the highest values among all the treatments. The copper content in castor seedlings increased along with elevated CuSO4 concentration in the medium, reaching a maximum value of 16 570.12 mg kg(-1)(DW) when exposed to 60.00 mg L(-1) CuSO4, where 91.31% of the copper was accumulated in roots. (2) The copper existed in various chemical forms in the roots of the castor seedlings. Copper of 67.66% was extracted from the components of cell walls, such as exchangeable acidic polar compounds, cellulose and lignin, protein and pectin, and less concentrated in cell cytoplasm and nuclei. (3) Furthermore, the root cell walls were thickened when the castor seedlings exposed to CuSO4, with a large amount of high-density electron bodies, attached to the thickened cell walls. In the cell walls, most copper was bound to the carboxyl (-COOH) and hydroxyl (-OH) groups of acidic polar compounds, cellulose, hemicellulose, and polysaccharides. The conclusion showed that castor exhibited a strong tolerance to copper, the copper were accumulated mainly in the root cell, the root cell walls of castor were the major location of patience and detoxification in copper stress.

  9. Copper atomic-scale transistors

    Directory of Open Access Journals (Sweden)

    Fangqing Xie

    2017-03-01

    Full Text Available We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4 in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate. The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (Ubias influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G0 (G0 = 2e2/h; with e being the electron charge, and h being Planck’s constant or 2G0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  10. The copper deposits of Michigan

    Science.gov (United States)

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  11. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  12. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  13. Blue enhanced light sources: opportunities and risks

    Science.gov (United States)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  14. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  15. Blue jay attacks and consumes cedar waxwing

    Science.gov (United States)

    Daniel Saenz; Joshua B. Pierce

    2009-01-01

    Blue Jays (Cyanocitta cristata) are known to be common predators on bird nests (Wilcove 1985, Picman and Schriml 1994). In addition to predation on eggs and nestlings, Blue Jays occasionally prey on fledgling and adult birds (Johnson and Johnson 1976, Dubowy 1985). A majority of reports involve predation on House Sparrows (Passer domesticus) and other small birds (...

  16. A facile, sensitive, and rapid spectrophotometric method for copper(II ion detection in aqueous media using polyethyleneimine

    Directory of Open Access Journals (Sweden)

    Ting Wen

    2017-05-01

    Full Text Available In this work, we developed a facile, sensitive, and rapid spectrophotometric method for copper(II ion detection in aqueous media using polyethyleneimine. Polyethyleneimine is a cationic polymer that has no absorption in the wavelength range of 250–800 nm. When trace amounts of copper(II ion was added to the colorless polyethyleneimine solution, copper(II ion could react with the amino groups of the polyethyleneimine to form a dark blue cuprammonium complex whose absorption spectrum exhibited two absorption peaks at 275 and 630 nm, respectively. The effects of parameters such as polyethyleneimine concentration, pH, temperature, reaction time, and the most suitable medium for the reaction were investigated. A linear relationship (R2 = 0.9997 between absorbance and the concentration of copper(II ion was found at the maximum absorption peak of 275 nm in the concentration range of 2–400 μM. The detection limit for copper(II ion was 566 nM. The response of polyethyleneimine toward different metal ions was investigated, and polyethyleneimine displayed a high selectivity for the copper(II ion among the metal ions examined. This biocompatible and sensitive sensor may find applications in copper(II ion detection in environmental and biological processes.

  17. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

    2013-08-15

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 μg L{sup −1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

  18. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  19. Stress Reaction in Outer Segments of Photoreceptors after Blue Light Irradiation

    Science.gov (United States)

    Ader, Marius; Brunssen, Coy; Bramke, Silvia; Morawietz, Henning; Funk, Richard H. W.

    2013-01-01

    The retina is prone to oxidative stress from many factors which are also involved in the pathogenesis of degenerative diseases. In this study, we used the application of blue light as a physiological stress factor. The aim of this study was to identify the major source of intracellular ROS that mediates blue light-induced detrimental effects on cells which may lead to cytotoxicity. We hypothesized that outer segments are the major source of blue light induced ROS generation. In photoreceptors, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes and the recently found respiratory chain complexes may represent a major source for reactive oxygen species (ROS), beside mitochondria and chromophores. Therefore, we investigated this hypothesis and analysed the exact localization of the ROS source in photoreceptors in an organotypic culture system for mouse retinas. Whole eyeball cultures were irradiated with visible blue light (405 nm) with an output power of 1 mW/cm2. Blue light impingement lead to an increase of ROS production (detected by H2DCFDA in live retinal explants), which was particularly strong in the photoreceptor outer segments. Nox-2 and Nox-4 proteins are sources of ROS in blue light irradiated photoreceptors; the Nox inhibitor apocynin decreased ROS stimulated by blue light. Concomitantly, enzyme SOD-1, a member of the antioxidant defense system, indicator molecules of protein oxidation (CML) and lipid oxidation (MDA and 4-HNE) were also increased in the outer segments. Interestingly, outer segments showed a mitochondrial-like membrane potential which was demonstrated using two dyes (JC-1 and TMRE) normally exclusively associated with mitochondria. As in mitochondria, these dyes indicated a decrease of the membrane potential in hypoxic states or cell stress situations. The present study demonstrates that ROS generation and oxidative stress occurs directly in the outer segments of photoreceptors after blue light irradiation. PMID

  20. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    Science.gov (United States)

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  1. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  2. Zinc Supplementation Overcomes Effects of Copper on Zinc Status, Carbohydrate Metabolism and Some Enzyme Activities in Diabetic and Nondiabetic Rats.

    Science.gov (United States)

    Derouiche, Samir; Kechrid, Zine

    2016-08-01

    The aim of this study was to investigate the effect of zinc supplementation on zinc status, carbohydrate metabolism and some enzyme activities in rats with alloxan-induced diabetes that were fed high-copper feed. Male albino Wistar rats were randomly divided into 6 groups (n=10). The first and fourth groups were nondiabetic and diabetic controls. The second, third, fifth and sixth groups were copper, copper + zinc, diabetes + copper and diabetes + copper + zinc groups, respectively. Diabetes in the fourth, fifth and sixth groups was induced by alloxan. Copper (30 mg/kg feed) as CuSO4 5H2O and zinc (231 mg/kg feed) as ZnSO4 7H2O were added to the feed of the animals in the copper and zinc groups for 21 days. Copper supplementation caused a significant decrease in body weight gain, serum zinc, tissue zinc, serum protein concentrations, alkaline phosphatase, lactic dehydrogenase and amylase activities. In contrast, it led to an augmentation in creatinine, uric acid and transaminases activities in rats with and without diabetes. Zinc supplementation in the feed for animals given copper ensured a partial correction of the previous parameters. The study demonstrated the beneficial effects of zinc treatment in copper-induced metabolic disturbance in diabetic and nondiabetic rats. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  3. Sub-cellular damage by copper in the cnidarian Zoanthus robustus.

    Science.gov (United States)

    Grant, A; Trompf, K; Seung, D; Nivison-Smith, L; Bowcock, H; Kresse, H; Holmes, S; Radford, J; Morrow, P

    2010-09-01

    Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 microg Cu L(-1)). A decrease in net photosynthesis was observed only at the highest copper concentration (156 microg Cu L(-1)). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Saitoh, Yoshimoto; Izumitsu, Kosuke; Morita, Atsushi; Tanaka, Chihiro

    2010-07-01

    Copper is an essential trace element that serves as a cofactor for numerous enzymes. In eukaryotes, copper-transporting ATPases deliver copper to various copper-containing proteins in the trans-golgi network. This study identified a copper-transporting ATPase gene BcCcc2 in a fungus pathogenic to plants, Botrytis cinerea. We investigated the biological roles of BcCCC2 by generating null mutants for BcCcc2. Melanization, conidiation and the formation of sclerotia were severely affected in DeltaBcCcc2 mutants. Moreover, a pathogenicity assay using tomato leaves and carnation petals revealed the mutants to be nonpathogenic. Further analysis indicated that they formed fewer appressoria and infection cushions than the wild-type. These structures were aberrant in morphology and in many cases had a significantly reduced ability to penetrate the plant epidermis. An assay also indicated that DeltaBcCcc2 mutants were defective in infection through wounds. BcCCC2 is necessary not only for penetrating a host but also for fungal growth within plant tissues. Our results also imply that B. cinerea requires copper-containing proteins for infection that are inactive in the absence of the copper-transporting ATPase BcCCC2.

  5. Carnitine supplementation modulates high dietary copper-induced oxidative toxicity and reduced performance in laying hens.

    Science.gov (United States)

    Güçlü, Berrin Kocaoğlu; Kara, Kanber; Çakır, Latife; Çetin, Ebru; Kanbur, Murat

    2011-12-01

    This experiment was conducted to evaluate the effects of L-carnitine on performance, egg quality and certain biochemical parameters in laying hens fed a diet containing high levels of copper proteinate. Forty-eight 42-week-old laying hens were divided into four groups with four replicates. The laying hens were fed with a basal diet (control) or the basal diet supplemented with either 400 mg carnitine (Car)/kg diet, 800 mg copper proteinate (CuP)/kg diet or 400 mg carnitine + 800 mg copper (Car+CuP)/kg diet, for 6 weeks. Supplemental CuP decreased feed consumption (p alkaline phosphatase (p effects of high dietary copper on performance and lipid peroxidation in hens.

  6. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  7. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  8. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  9. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  10. Phytotoxicity of methylene blue to rice seedlings

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2015-07-01

    Full Text Available Methylene blue is widely used in various industrial branches. Due to insufficient treatment, its occurrence in wastewater is frequently detected, which may result in serious environment problems to aquatic organisms. Hydroponic experiments were conducted with rice seedlings (Oryza sativa L. cv. XZX 45 exposed to methylene blue to determine the effective concentration using relative growth rate and water use efficiency as response endpoints. Results showed that acute toxicity of methylene blue to rice seedlings was evident. Although a linear decrease in relative growth rate and water use efficiency was observed in rice seedlings with increasing methylene blue concentrations, relative growth rate of rice seedlings was more sensitive to change of methylene blue than water use efficiency. Using non-linear regression, EC-48 h values for 10%, 20% and 50% inhibition of the relative growth rate were estimated to be 1.54, 3.22 and 10.13 mg MB/L for rice seedlings exposed to methylene blue, respectively, while smaller EC were obtained for 96 h exposure. In conclusion, the toxic response of young rice seedlings to methylene blue is obvious and inhibitory effects are highly dependent on response endpoints and the duration of exposure period.

  11. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  12. Copper Deficiency Induced Emphysema Is Associated with Focal Adhesion Kinase Inactivation

    OpenAIRE

    Mizuno, Shiro; Yasuo, Masanori; Bogaard, Harm J.; Kraskauskas, Donatas; Alhussaini, Aysar; Gomez-Arroyo, Jose; Farkas, Daniela; Farkas, Laszlo; Voelkel, Norbert F.

    2012-01-01

    Background Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1?) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK). Methodology To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveola...

  13. Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Ability from Kurthia huakuii LAM0618T.

    Directory of Open Access Journals (Sweden)

    Xiang Guo

    Full Text Available Laccases are green biocatalysts that possess attractive advantages for the treatment of resistant environmental pollutants and dye effluents. A putative laccase-like gene, laclK, encoding a protein of 29.3 kDa and belonging to the Cu-oxidase_4 superfamily, was cloned and overexpressed in Escherichia coli. The purified recombinant protein LaclK (LaclK was able to oxidize typical laccase substrates such as 2,6-dimethoxyphenol and l-dopamine. The characteristic adsorption maximums of typical laccases at 330 nm and 610 nm were not detected for LaclK. Cu2+ was essential for substrate oxidation, but the ratio of copper atoms/molecule of LaclK was determined to only be 1:1. Notably, the optimal temperature of LaclK was 85°C with 2,6-dimethoxyphenol as substrates, and the half-life approximately 3 days at 80°C. Furthermore, 10% (v/v organic solvents (methanol, ethanol, isopropyl alcohol, butyl alcohol, Triton x-100 or dimethyl sulfoxide could promote enzymatic activity. LaclK exhibited wide-spectrum decolorization ability towards triphenylmethane dyes, azo dyes and aromatic dyes, decolorizing 92% and 94% of Victoria Blue B (25 μM and Ethyl Violet (25 μM, respectively, at a concentration of 60 U/L after 1 h of incubation at 60°C. Overall, we characterized a novel thermostable and organic solvent-tolerant copper-containing polyphenol oxidase possessing dye-decolorizing ability. These unusual properties make LaclK an alternative for industrial applications, particularly processes that require high-temperature conditions.

  14. Infiltrating giant cellular blue naevus.

    Science.gov (United States)

    Bittencourt, A L; Monteiro, D A; De Pretto, O J

    2007-01-01

    Cellular blue naevi (CBN) measure 1-2 cm in diameter and affect the dermis, occasionally extending into the subcutaneous fat. The case of a 14-year-old boy with a giant CBN (GCBN) involving the right half of the face, the jugal mucosa and the lower eyelid with a tumour that had infiltrated the bone and the maxillary and ethmoidal sinuses is reported. Biopsies were taken from the skin, jugal mucosa and maxillary sinus. The following markers were used in the immunohistochemical evaluation: CD34, CD56, HMB-45, anti-S100, A-103, Melan A and MIB-1. The biopsy specimens showed a biphasic pattern affecting the lower dermis, subcutaneous fat, skeletal muscle, bone, jugal mucosa and maxillary sinus, but there was no histological evidence of malignancy. The tumour cells were CD34-, CD56-, HMB45+, anti-S100+ and A-103+. Melan A was focally expressed. No positive MIB-1 cells were identified. The present case shows that GCBN may infiltrate deeply, with no evidence of malignancy.

  15. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-02-24

    Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.

  16. [Effects of copper and zinc cations bound by gamma-globulin fraction in Staphylococcus aureus culture].

    Science.gov (United States)

    Cheknev, S B; Vostrova, E I; Piskovskaia, L S; Vostrov, A V

    2014-01-01

    AIM. Evaluation of Staphylococcus aureus culture growth dynamics in the presence of gamma-globulin: metal-complexes formed with copper and zinc cations as well as cations of metals used in isolation during the first 24 hours of exposition. . Samples of human gamma-globulin metal-complexes with copper or zinc cations at a final concentration of 0.5 microg/ml were introduced into S. aureus bacteria suspensions containing approximately 10(3) CFU/ml. Suspension at the volume of 5.0 ml was incubated at 37 degrees C for 24 hours with sampling and CFU calculation in the culture at various exposure periods. An accepted micromethod for determination of viability of bacteria was used. The protein transformed by copper cation binding realizes bacteriostatic activity in the logarithmic growth phase of S. aureus culture from 3.0 to 6.0 hours of incubation. Free copper cations inhibit bacterial reproduction at a higher degree than the metal-complex. The protein transformed by zinc cation binding realizes bacteriostatic activity at 1.5 hours of S. aureus incubation. Free zinc cations do not have bacteriostatic effect against S. aureus. Proteins of the gamma-globulin fraction in the range of physiological concentrations forming metal-complexes with copper and zinc cations may be factors that have cytostatic effect against S. aureus bacteria. Zinc cations realize bacteriostatic activity only in gamma-gloulin bound state whereas copper cations--also in the free state.

  17. Pseudoazurin from Sinorhizobium meliloti as an electron donor to copper-containing nitrite reductase: influence of the redox partner on the reduction potentials of the enzyme copper centers.

    Science.gov (United States)

    Ferroni, Félix M; Marangon, Jacopo; Neuman, Nicolás I; Cristaldi, Julio C; Brambilla, Silvina M; Guerrero, Sergio A; Rivas, María G; Rizzi, Alberto C; Brondino, Carlos D

    2014-08-01

    Pseudoazurin (Paz) is the physiological electron donor to copper-containing nitrite reductase (Nir), which catalyzes the reduction of NO2 (-) to NO. The Nir reaction mechanism involves the reduction of the type 1 (T1) copper electron transfer center by the external physiological electron donor, intramolecular electron transfer from the T1 copper center to the T2 copper center, and nitrite reduction at the type 2 (T2) copper catalytic center. We report the cloning, expression, and characterization of Paz from Sinorhizobium meliloti 2011 (SmPaz), the ability of SmPaz to act as an electron donor partner of S. meliloti 2011 Nir (SmNir), and the redox properties of the metal centers involved in the electron transfer chain. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis together with UV-vis and EPR spectroscopies revealed that as-purified SmPaz is a mononuclear copper-containing protein that has a T1 copper site in a highly distorted tetrahedral geometry. The SmPaz/SmNir interaction investigated electrochemically showed that SmPaz serves as an efficient electron donor to SmNir. The formal reduction potentials of the T1 copper center in SmPaz and the T1 and T2 copper centers in SmNir, evaluated by cyclic voltammetry and by UV-vis- and EPR-mediated potentiometric titrations, are against an efficient Paz T1 center to Nir T1 center to Nir T2 center electron transfer. EPR experiments proved that as a result of the SmPaz/SmNir interaction in the presence of nitrite, the order of the reduction potentials of SmNir reversed, in line with T1 center to T2 center electron transfer being thermodynamically more favorable.

  18. Cloning and molecular characterization of a copper chaperone gene ...

    African Journals Online (AJOL)

    The cDNA encoding a copper chaperone, designated as HbCCH1, was isolated from Hevea brasiliensis. HbCC1 was 589 bp long containing a 261 bp open reading frame encoding a putative protein of 86 amino acids, flanked by a 103 bp 5'UTR and a 225 bp 3'UTR. The predicted molecular mass of HbCCH1 was 9.2 kDa, ...

  19. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  20. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    Science.gov (United States)

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  1. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    cyanide- plating bath for copper has been developed using alkaline trisodium citrate and triethanolamine solutions5. The present investigation presents cyclic voltammetric studies on the electrochemical behaviour of alkaline copper complexes, ...

  2. Testing Corrosion Inhibitors for the Conservation of Archaeological Copper and Copper Alloys

    Directory of Open Access Journals (Sweden)

    Robert B. Faltermeier

    1997-11-01

    Full Text Available This is a synopsis of the Ph.D. research undertaken at the Institute of Archaeology, University College London. The aim was to evaluate corrosion inhibitors for use in the conservation of copper and copper alloy archaeological artefacts. The objective of this work was to acquire an insight into the performance of copper corrosion inhibitors, when applied to archaeological copper.

  3. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  4. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  5. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  6. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Joaquin Giner-Lamia

    Full Text Available Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM and toxic concentrations (3 µM in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.

  7. ANTIVIRAL ACTIVITY OF COPPER(IICHLORIDE DIHYDRATE AGAINST DENGUE VIRUS TYPE-2 IN VERO CELL

    Directory of Open Access Journals (Sweden)

    Teguh Hari Sucipto

    2017-04-01

    Full Text Available Infection of dengue virus (DENV was number of globally significant emerging pathogen. Antiviral dengue therapies ar importantly needed to control emerging dengue. Dengue virus (DENV is mosquito-borne arboviruses responsible for causing acute systemic diseases and grievous health conditions in humans. To date, there is no clinically approved dengue vaccine or antiviral for humans, even though there have been great efforts towards this end. Copper and copper compounds have more effective in inactivation viruses, likes an influenza virus and human immunodeficiency virus (HIV. Purpose in this project was investigated of Copper(IIchloride Dihydrate antiviral compound were further tested for inhibitory effect on the replication of DENV-2 in cell culture. DENV replication was measures by Enzyme linked Immunosorbent Assay (ELISA with selectivity index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for compound. The maximal inhibitory concentration (IC50 of Copper(IIchloride Dihydrate against dengue virus type-2 was 0.13 μg/ml. The cytotoxic concentration (CC50 of compound against Vero cell was 5.03 μg/ml. The SI values for Copper(IIchloride Dihydrate 38.69. Result of this study suggest that Copper(IIchloride Dihydrate demonstated significant anti-DENV-2 inhibitory activities and not toxic in the Vero cells. Copper mechanisms play an important role in the prevention of copper toxicity, exposure to excessive levels of copper can result in a number of adverse health effects, as a result increased reactive oxygen species and oxidative damage to lipid, DNA, and proteins have been observed in human cell culture models or clinical syndromes of severe copper deficiency and inhibition was attributed to released cupric ions which react with cysteine residues on the surface of the protease.

  8. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs.

    Science.gov (United States)

    Howell, Stephen B; Safaei, Roohangiz; Larson, Christopher A; Sailor, Michael J

    2010-06-01

    Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs exhibit reduced drug accumulation. The major copper influx transporter, copper transporter 1 (CTR1), has now been shown to control the tumor cell accumulation and cytotoxic effect of cisplatin, carboplatin, and oxaliplatin. There is a good correlation between change in CTR1 expression and acquired cisplatin resistance among ovarian cancer cell lines, and genetic knockout of CTR1 renders cells resistant to cisplatin in vivo. The expression of CTR1 is regulated at the transcriptional level by copper via Sp1 and at the post-translational level by the proteosome. Copper and cisplatin both trigger the down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation and requires the copper chaperone antioxidant protein 1 (ATOX1). The cisplatin-induced degradation of CTR1 can be blocked with the proteosome inhibitor bortezomib, and this increases the cellular uptake and the cytotoxicity of cisplatin in a synergistic manner. Copper and platinum(II) have similar sulfur binding characteristics, and the presence of stacked rings of methionines and cysteines in the CTR1 trimer suggest a mechanism by which CTR1 selectively transports copper and the platinum-containing drugs via sequential transchelation reactions similar to the manner in which copper is passed from ATOX1 to the copper efflux transporters.

  9. Methylene Blue: The Long and Winding Road From Stain to Brain: Part 2.

    Science.gov (United States)

    Howland, Robert H

    2016-10-01

    Methylene blue was the first synthetic drug ever used in medicine, having been used to treat clinical pain syndromes, malaria, and psychotic disorders more than one century ago. Methylene blue is a cationic thiazine dye with redox-cycling properties and a selective affinity for the nervous system. This drug also inhibits the activity of monoamine oxidase, nitric oxide synthase, and guanylyl cyclase, as well as tau protein aggregation; increases the release of neurotransmitters, such as serotonin and norepinephrine; reduces amyloid-beta levels; and increases cholinergic transmission. The action of methylene blue on multiple cellular and molecular targets justifies its investigation in various neuropsychiatric disorders. Investigations of methylene blue were instrumental in the serendipitous development of phenothiazine antipsychotic drugs. Although chlorpromazine is heralded as the first antipsychotic drug used in psychiatry, methylene blue is a phenothiazine drug that had been used to treat psychotic patients half a century earlier. It has also been studied in bipolar disorder and deserves further investigation for the treatment of unipolar and bipolar disorders. More recently, methylene blue has been the subject of preclinical and clinical investigations for cognitive dysfunction, dementia, and other neurodegenerative disorders. [Journal of Psychosocial Nursing and Mental Health Services, 54(10), 21-26.]. Copyright 2016, SLACK Incorporated.

  10. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  11. Random lasing in blue phase liquid crystals.

    Science.gov (United States)

    Chen, Chun-Wei; Jau, Hung-Chang; Wang, Chun-Ta; Lee, Chun-Hong; Khoo, I C; Lin, Tsung-Hsien

    2012-10-08

    Random lasing actions have been observed in optically isotropic pure blue-phase and polymer-stabilized blue-phase liquid crystals containing laser dyes. Scattering, interferences and recurrent multiple scatterings arising from disordered platelet texture as well as index mismatch between polymer and mesogen in these materials provide the optical feedbacks for lasing action. In polymer stabilized blue-phase liquid crystals, coherent random lasing could occur in the ordered blue phase with an extended temperature interval as well as in the isotropic liquid state. The dependence of lasing wavelength range, mode characteristics, excitation threshold and other pertinent properties on temperature and detailed make-up of the crystals platelets were obtained. Specifically, lasing wavelengths and mode-stability were found to be determined by platelet size, which can be set by controlling the cooling rate; lasing thresholds and emission spectrum are highly dependent on, and therefore can be tuned by temperature.

  12. SUPPLEMENTARY INFORMATION Protonation of Patented Blue V ...

    Indian Academy of Sciences (India)

    XTreme.ws

    SUPPLEMENTARY INFORMATION. Protonation of Patented Blue V in aqueous solutions: Theoretical and experimental studies. KATERYNA BEVZIUKa, ALEXANDER CHEBOTAREVa, MAKSYM FIZERb,. ANASTASIIA KLOCHKOVAa, KONSTANTIN PLIUTAa and DENYS SNIGURa*. aDepartment of Analytical Chemistry, ...

  13. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  14. Substantial Research Secures the Blue Future for our Blue Plant

    Directory of Open Access Journals (Sweden)

    Moustafa Abdel Maksoud

    2016-06-01

    Full Text Available Earth, the blue planet, is our home, and seas and oceans cover more than 70% of its surface. As the earth’s population rapidly increases and available resources decrease, seas and oceans can play a key role in assuring the long-term survival of humankind. Renewable maritime energy has huge potential to provide a considerable part of the earth’s population with decarbonised electricity generation systems. Renewable maritime energy is very flexible and can be harvested above the water’s free surface by using offshore wind turbines, on the water’s surface by using wave energy converters or below the water’s surface by using current or tidal turbines. The supposed conflict between environmental protection measures and economic interests is neither viable nor reasonable. Renewable maritime energy can be the motor for considerable substantial economic growth for many maritime regions and therefore for society at large. The fastest growing sector of renewable maritime energy is offshore wind. The annual report of the European Wind Energy Association from the year 2015 confirms the growing relevance of the offshore wind industry. In 2015, the total installed and grid-connected capacity of wind power was 12,800 MW in the EU and 6,013.4 MW in Germany. 38% of the 2015 annual installation in Germany was offshore, accounting for a capacity of 2,282.4 MW. However, there are a limited number of available installation sites in shallow water, meaning that there is an urgent need to develop new offshore structures for water depths greater than 50m. The persistent trend towards deeper waters has encouraged the offshore wind industry to look for floating wind turbine structures and larger turbines. Floating wind turbine technologies are at an early stage of development and many technical and economic challenges will still need to be faced. Nonetheless, intensive research activities and the employment of advanced technologies are the key factors in

  15. Advanced hair damage model from ultra-violet radiation in the presence of copper.

    Science.gov (United States)

    Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L

    2015-10-01

    Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and

  16. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  17. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...

  18. Blue Flag: a Symbol of Environmental Protection

    Directory of Open Access Journals (Sweden)

    Ioan Petroman

    2010-10-01

    Full Text Available Blue Flag is a high standard symbol of environmental protection and it is awarded to the beaches and agreement ports by the Foundation of Education for the Environment. The beaches having been awarded this distinction warrant particular protection for their visitors, which is a particular point of tourism attractiveness: the result, they are preferred by tourists and, therefore, by tour operators selling tourism packages for the littoral. In 2009, Romanian beaches were not awarded any Blue Flags.

  19. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  20. Joining of alumina via copper/niobium/copper interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  1. Structure transitions between copper-sulphate and copper-chloride ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Structure transitions between copper UPD adlayers on Au(111)–(1 × 1) in sulfuric acid and chloride containing electrolyte were investigated by in situ scanning tunnelling microscopy. We demon- strate that co-adsorbed sulphate ions in the (√3 × √3)R30° UPD adlayer are replaced by chloride ions and,.

  2. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia.

    Science.gov (United States)

    Lin, Zhi-Hang; Wang, Si-Yuan; Chen, Li-Li; Zhuang, Jia-Yuan; Ke, Qing-Feng; Xiao, Dan-Rui; Lin, Wen-Ping

    2017-01-01

    The spinal cord injury (SCI) is a detrimental neurological disease involving the primary mechanical injury and secondary inflammatory damage. Curtailing the detrimental neuroinflammation would be beneficial for spinal cord function recovery. Microglia reside in the spinal cord and actively participate in the onset, progression and perhaps resolution of post-SCI neuroinflammation. In the current study, we tested the effects of methylene blue on microglia both in vitro and in a rat SCI model. We found that methylene blue inhibited the protein levels of IL-1β and IL-18 rather than their mRNA levels in activated microglia. Further investigation indicated that methylene blue deceased the activation of NLRP3 inflammasome and NLRC4 inflammasome in microglia in vitro . Moreover, in the rat SCI model, the similar effect of methylene blue on post-SCI microglia was also observed, except that the activation of NLRC4 inflammasome was not seen. The inhibition of microglia NLRP3 inflammasome was associated with down-regulation of intracellular reactive oxygen species (ROS). The administration of methylene blue mitigated the overall post-SCI neuroinflammation, demonstrated by decreased pro-inflammatory cytokine production and leukocyte infiltrates. Consequently, the neuronal apoptosis was partially inhibited and the hind limb locomotor function was ameliorated by methylene blue treatment. Our research highlights the role of methylene blue in inhibiting post-SCI neuroinflammation, and suggests that methylene blue might be used for SCI therapy.

  3. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  4. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Tina eSkjørringe

    2012-09-01

    Full Text Available Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers i.e. the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCB have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain-iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1 is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1 and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters

  6. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004.

    Science.gov (United States)

    Brown, N L; Barrett, S R; Camakaris, J; Lee, B T; Rouch, D A

    1995-09-01

    The copper-resistance determinant (pco) of Escherichia coli plasmid pRJ1004 was cloned and sequenced. Tn1000 transposon mutagenesis identified four complementation groups, mutations in any of which eliminated copper resistance. DNA sequence analysis showed that the four complementation groups contained six open reading frames, designated pco-ABCDRS. The protein product sequences derived from the nucleotide sequence show close homology between this copper-resistance system and the cop system of a plasmid pPT23D of Pseudomonas syringae pv. tomato. The PcoR and PcoS protein sequences show homology to the family of two-component sensor/responder phosphokinase regulatory systems. A seventh reading frame (pcoE) was identified from DNA sequence data, and lies downstream of a copper-regulated promoter. Transport assays with 64Cu(II) showed that the resistant cells containing the plasmid had reduced copper accumulation during the log phase of growth, while increased accumulation had previously been observed during stationary phase. Chromosomal mutants defective in cellular copper management were obtained and characterized. In two of these mutants pco resistance was rendered totally inactive, whilst in another two mutants pco complemented the defective genes. These data indicate that plasmid-borne copper resistance in E. coli is linked with chromosomal systems for copper management.

  7. The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids.

    Science.gov (United States)

    Nguyen, Michel; Rechignat, Lionel; Robert, Anne; Meunier, Bernard

    2015-02-01

    The accumulation of redox-active metal ions, in particular copper, in amyloid plaques is considered to the cause of the intensive oxidation damage to the brain of patients with Alzheimers disease (AD). Drug candidates based on a bis(8-aminoquinoline) tetradentate ligand are able to efficiently extract Cu(2+) from copper-loaded amyloids (Cu-Aβ). Contrarily, in the presence of a bidentate hydroxyquinoline, such as clioquinol, the copper is not released from Aβ, but remains sequestrated within a Aβ-Cu-clioquinol ternary complex that has been characterized by mass spectrometry. Facile extraction of copper(II) at a low amyloid/ligand ratio is essential for the re-introduction of copper in regular metal circulation in the brain. As, upon reduction, the Cu(+) is easily released from the bis(8-aminoquinoline) ligand unable to accommodate Cu(I), it should be taken by proteins with an affinity for copper. So, the tetradentate bis(8-aminoquinoline) described here might act as a regulator of copper homeostasis.

  8. Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation.

    Directory of Open Access Journals (Sweden)

    Shiro Mizuno

    Full Text Available Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α dependent vascular endothelial growth factor (VEGF expression, and is also required for the activity of lysyl oxidase (LOX to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis via inactivation of focal adhesion kinase (FAK.To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT or FAK small interfering RNA (siRNA.Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim.These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.

  9. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the photovOltaic effect was successfully ...

  10. A tri-copper(II) complex displaying DNA-cleaving properties and antiproliferative activity against cancer cells.

    Science.gov (United States)

    Suntharalingam, Kogularamanan; Hunt, Douglas J; Duarte, Alexandra A; White, Andrew J P; Mann, David J; Vilar, Ramon

    2012-11-19

    A new disubstituted terpyridine ligand and the corresponding tri-copper(II) complex have been prepared and characterised. The binding affinity and binding mode of this tri-copper complex (as well as the previously reported mono- and di-copper analogues) towards duplex DNA were determined by using UV/Vis spectroscopic titrations and fluorescent indicator displacement (FID) assays. These studies showed the three complexes to bind moderately (in the order of 10(4)  M(-1)) to duplex DNA (ct-DNA and a 26-mer sequence). Furthermore, the number of copper centres and the nature of the substituents were found to play a significant role in defining the binding mode (intercalative or groove binding). The nuclease potential of the three complexes was investigated by using circular plasmid DNA as a substrate and analysing the products by agarose-gel electrophoresis. The cleaving activity was found to be dependent on the number of copper centres present (cleaving potency was in the order: tri-copper>di-copper>mono-copper). Interestingly, the tri-copper complex was able to cleave DNA without the need of external co-reductants. As this complex displayed the most promising nuclease properties, cell-based studies were carried out to establish if there was a direct link between DNA cleavage and cellular toxicity. The tri-copper complex displayed high cytotoxicity against four cancer cell lines. Of particular interest was that it displayed high cytotoxicity against the cisplatin-resistant MOLT-4 leukaemia cell line. Cellular uptake studies showed that the tri-copper complex was able to enter the cell and more importantly localise in the nucleus. Immunoblotting analysis (used to monitor changes in protein levels related to the DNA damage response pathway) and DNA-flow cytometric studies suggested that this tri-copper(II) complex is able to induce cellular DNA damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  12. Chronic copper toxicity in a dairy herd

    OpenAIRE

    Perrin, David J.; Schiefer, H. Bruno; Blakley, Barry R.

    1990-01-01

    The addition of excessive copper to a commercially prepared dairy ration caused chronic copper toxicity in a dairy herd. A formulation error by a feed company resulted in copper levels of 800 to 1,000 mg/kg in the “as fed concentrate,” amounting to about 400-500 mg copper/kg of the whole ration. Five animals died with typical signs of acute copper toxicity, including intravascular hemolysis and methemoglobinemia. A further 39 cows died on the farm from a combination of debilitation and second...

  13. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells.

    Science.gov (United States)

    Harne, Shrikant; Sharma, Ashwinikumar; Dhaygude, Mayur; Joglekar, Shreeram; Kodam, Kisan; Hudlikar, Manish

    2012-06-15

    This paper accounts for novel, low-cost, eco-friendly route for rapid biosynthesis of copper nanoparticles. Cysteine proteases present in the latex of Calotropis procera L. were used to fabricate copper nanoparticles from copper acetate. Copper nanoparticles were initially characterized by transmission electron microscopy (TEM) and X-ray diffraction technique (XRD). Transmission electron microscopy (TEM) was used to estimate the size and shape of nanoparticles. The average size of copper nanoparticles was found to be 15 ± 1.7 nm. Energy dispersive analysis of X-rays (EDAX) showed distinct peaks of copper. Fourier transform infrared spectroscopy (FTIR) was performed to confirm capping behavior of the latex proteins that contributed to long term stability of copper nanoparticles (6 months) in aqueous medium. Copper nanoparticles synthesized by above method were monodisperse type. Cytotoxicity studies of latex stabilized copper nanoparticles were carried out on HeLa, A549 and BHK21 cell lines by MTT dye conversion assay. HeLa, A549 and BHK21 cells showed excellent viability even at 120 μM concentration of copper nanoparticles. This shows that copper nanoparticles synthesized by above method hold excellent biocompatibility. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Comparison of Alcian Blue, Trypan Blue, and Toluidine Blue for Visualization of the Primo Vascular System Floating in Lymph Ducts

    Directory of Open Access Journals (Sweden)

    Da-Un Kim

    2015-01-01

    Full Text Available The primo vascular system (PVS, floating in lymph ducts, was too transparent to be observed by using a stereomicroscope. It was only detectable with the aid of staining dyes, for instance, Alcian blue, which was injected into the lymph nodes. Some dyes were absorbed preferentially by the PVS than the lymph wall. It remains a standing problem to know what dyes are absorbed better by the PVS than the lymph walls. Such information would be useful to unravel the biochemical properties of the PVS that are badly in need for obtaining large amount of PVS specimens. In the current work we tried two other familiar dyes which were used in PVS research before. We found that Trypan blue and toluidine blue did not visualize the PVS. Trypan blue was cleared by the natural washing. Toluidine blue did not stain the PVS, but it did leave stained spots in the lymph wall and its surrounding tissues, and it leaked out of the lymph wall to stain surrounding connective tissues. These completely different behaviors of the three dyes were found for the first time in the current work and provide valuable information to elucidate the mechanism through which some special dyes stained the PVS preferentially compared to the lymphatic wall.

  15. Homocysteine & its metabolite homocysteine-thiolactone & deficiency of copper in patients with age related macular degeneration - A pilot study.

    Science.gov (United States)

    Bharathselvi, Muthuvel; Biswas, Sayantan; Raman, Rajiv; Selvi, Radhakrishnan; Coral, Karunakaran; Narayanansamy, Angayarkanni; Ramakrishnan, Sivaramakrishnan; Sulochana, Konerirajapuram N

    2016-06-01

    Age related macular degeneration (ARMD) is a leading cause of blindness, particularly in persons above 60 yr of age. Homocysteine is implicated in many ocular diseases including ARMD. This study was undertaken to assess the status and relationship between plasma homocysteine, homocysteine - thiolactone, homocysteinylated protein and copper levels in patients with ARMD. A total of 16 patients with ARMD and 16 age-matched controls were recruited for the study. Plasma glutathione, homocysteine, homocysteine - thiolactone and extent of homocysteine conjugation with proteins, copper and thiobarbituric acid reactive substances were measured. Homocysteine levels were elevated with increase in homocysteine-thiolactone, thiobarbituric acid reactive substances and a decrease of glutathione. The levels of homocysteinylated protein were elevated in ARMD. The elevated homocysteine, homocysteine-thiolactone correlated with the decrease in copper level. Elevated homocysteine and its metabolite homocysteine-thiolactone and decreased levels of copper may play an important role in the pathogenesis of ARMD.

  16. Controlling Copper Electrochemical Deposition (ECD)

    Science.gov (United States)

    West, Michael; McDonald, Robert; Anderson, Marc; Kingston, Skip; Mui, Rudy

    2003-09-01

    The implementation of copper processing in semiconductor manufacturing has resulted in major process development and manufacturing challenges. A fundamental understanding of the copper plating processes used in manufacturing has been limited by the lack of in-line methods for direct measurement and control of process chemistry. Plating bath chemistry adjustments and change-out frequencies are currently determined using a combination of indirect electrochemical monitoring techniques, off-line analyses of wafer metrology and analytical lab measurements. There have been a number of industry reports of major process startup delays, yield management problems and reliability issues as a result of these difficulties. A new in-process mass spectrometry (IPMS) approach enables automated, real-time measurement of both the inorganic components and organic additives in the copper electroplating chemistry as they change during production. The tool is not only capable of real time direct quantification of the copper, chloride, pH, and organic additives in the plating bath, but can also monitor additive breakdown byproducts as they occur during the production process. These breakdown products, as well as changes in the original bath constituent composition can be expected to have a major impact on process performance. We are now in the process of measuring longer term plating bath stability and chemistry changes in prototype applications in semiconductor fab manufacturing environments. The first results demonstrate improved process understanding and the potential for greatly improved process control. We will discuss the technical challenges that were successfully addressed in developing the IPMS capability for application to the copper plating process and the initial process data subsequently obtained.

  17. Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Nguyen, Michel; Robert, Anne; Sournia-Saquet, Alix; Vendier, Laure; Meunier, Bernard

    2014-05-26

    The non-controlled redox-active metal ions, especially copper, in the brain of patients with Alzheimer disease (AD) should be considered at the origin of the intense oxidative damage in the AD brain. Several bis(8-aminoquinoline) ligands, such as 1 and PA1637, are able to chelate Cu(2+) with high affinity, and are specific chelators of copper with respect to iron and zinc. They are able to efficiently extract Cu(2+) from a metal-loaded amyloid. In addition, these tetradentate ligands are specific for the chelation of Cu(2+) compared with Cu(+). Consequently, the copper ion is easily released from the bis(8-aminoquinoline) ligand under reductive conditions, and can be trapped again by a protein having some affinity for copper such as human serum albumin (HSA) proteins. In addition, the copper is not efficiently released from [Cu(CQ)2] in reductive conditions. The catalytic production of H2O2 by [Cu(2+)-Aβ(1-28)]/ascorbate is inhibited in vitro by the bis(8-aminoquinoline) 1, suggesting that 1 should be able to play a protective role against oxidative damages induced by copper-loaded amyloids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Variations on the "Blue-Bottle" Demonstration Using Food Items That Contain FD&C Blue #1

    Science.gov (United States)

    Staiger, Felicia A.; Peterson, Joshua P.; Campbell, Dean J.

    2015-01-01

    Erioglaucine dye (FD&C Blue #1) can be used instead of methylene blue in the classic "blue-bottle" demonstration. Food items containing FD&C Blue #1 and reducing species such as sugars can therefore be used at the heart of this demonstration, which simply requires the addition of strong base such as sodium hydroxide lye.

  19. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  20. Optimization of the enzymatic hydrolysis of Blue shark skin.

    Science.gov (United States)

    Rodríguez-Díaz, Julio C; Kurozawa, Louise E; Netto, Flavia M; Hubinger, Miriam D

    2011-09-01

    Enzymatic hydrolysis of Blue shark skin using Protamex™ was evaluated seeking optimal process conditions. The influence of temperature (45 to 65 °C), pH (6.8 to 8), and enzyme/substrate ratio (E/S; 1% to 5%) on the responses of degree of hydrolysis and protein recovery were determined and process optimization was performed looking for maximum value of the responses. Optimum conditions were established (T = 51 °C, E/S = 4%, and pH = 7.1) and model validation was accomplished by triplicate. Under these conditions protein hydrolysates were prepared and characterized by their amino acid composition, peptide size distribution, and antioxidant capacity by ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays. A degree of hydrolysis of 19.3% and protein recovery of 90.3% were obtained at optimal conditions. Chemical score indicated that the hydrolysate supplies minimal essential amino acid requirements for adults. Molecular weight of peptides on the hydrolysate was below 6.5 kDa. Enzymatic hydrolysis process was efficient for recovery of low molecular weight peptides with important nutritional content and antioxidant activity (FRAP = 12 μmol eq. in FeSO(4).7H(2)O/g of protein, TEAC = 225.3 μmol eq. in trolox/g of protein). © 2011 Institute of Food Technologists®

  1. "Blue-Collar Blues" uurib töösuhteid uutes oludes / Janar Ala

    Index Scriptorium Estoniae

    Ala, Janar, 1979-

    2009-01-01

    Tööproblemaatikat käsitlev näitus "Blue-Collar Blues" Tallinna Kunstihoones ja Tallinna Kunstihoone galeriis 31. jaanuarini 2010, kuraator Anders Härm. Lähemalt belgia-mehhiko kunstniku Francis Alys'e videost, austria kunstniku Oliver Ressleri ning venetsueela-saksa politoloogi Dario Azzelini videost "Viis tehast. Tööliste kontroll Venezuelas"

  2. Studies on the optical absorption of copper-dopped myoglobin: conformational changes

    International Nuclear Information System (INIS)

    Lamy, M.T.M.

    1976-03-01

    Optical absorption changes in the visible and near U.V. spectrum of myoglobin molecules are observed when copper ions are added to the macromolecule. The heme optical transitions are investigated through a theoretical simulation of the optical absorption spectrum. A study of the absorption band in the region of 700 nm associated with the copper - myoglobin complexes indicated the existence of two kinds of metal-protein complexes: one associated with the six or eitht first added copper ions and the other related with the higher concentrations. Conformational changes caused by thermal treatment are studied in myoglobin water solutions and solutions containing copper ions. The phenomenon named pre-denaturation is observed through the optical absorption at 245 nm. It is shown that interactions between myoglobin molecules occur in the pre-denaturation phenomenon. (Author) [pt

  3. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2017-01-01

    Full Text Available Copper sulfate-induced premature senescence (CuSO4-SIPS consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan.

  4. Variations of serum copper values in pregnancy

    Directory of Open Access Journals (Sweden)

    Vukelić Jelka

    2012-01-01

    Full Text Available Introduction. Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. Objective. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathological pregnancies and if this is of some importance. Methods. A total of 2170 plasma samples for copper analyses were made in the following groups: healthy non-pregnant women; healthy pregnant women from the 5th-40th gestational week, during the first delivery stage and during the first three postpartum weeks, in pregnant women with habitual abortion, imminent abortion, abortion in progress, missed abortion (9th-24th weeks, missed labour and premature rupture of membranes (29th-40th weeks. Levels of serum copper were determined by colorimetric technique of bathocuproin with disulphate as a chromogen. Results. Serum copper values in non-pregnant women range from 11.6-25.8 μmol/L. In healthy pregnant women, there is a constant trend of the increase of serum copper. The mean serum copper values revealed three significant peaks at the 22nd, 27th and 35th gestational week. Serum copper values in the patients with some pathological pregnancies in relation to the serum copper values of the healthy pregnant women were significantly lower. Conclusion. Serum copper values can be used as an indicator of some pathological pregnancies.

  5. The effect of various copper sources on the trace elements profile in the hair, plasma and faeces and copper activity in the organism of horses

    Directory of Open Access Journals (Sweden)

    Petra Jančíková

    2012-01-01

    Full Text Available In our experiment with 20 mares (3.6–19.8 years old divided into 3 groups we evaluated the effect of supplementation with various sources of copper on the trace elements profile in the hair, blood plasma and faeces and copper activity in the organism of horses. The horses were stabled in box stalls (similar dimension with feeding pump, with the access to a paddock or walker. All mares received the same basic feed ration that was supplemented with various form of copper (Cu in the organic form – proteinate - Bioplex Cu vs. Cu in the inorganic form – CuSO4.5H2O in amount of 120 mg per day for the mares in experimental groups. The contents of trace elements in hair and faeces were established using the atomic absorption spectrometry; in the plasma using direct colorimetric determination.Significant difference between mares receiving copper in organic and inorganic form (P The mares receiving Bioplex-Cu excreted lower amount of copper in the faeces. These had well-balanced levels of Cu in the plasma and deposited less Cu in the hair than the mares with addition of copper sulphate. In our experiment, it seems to be better available copper in the organic form than in the inorganic form for the organism of horses.Nevertheless, interpretation of these results is very difficult. Evaluation the impact of various sources of copper on the elements profile; assessed using skin derivates, plasma or other parameters should be subjected to further observation.

  6. Dyes adsorption blue vegetable and blue watercolor by natural zeolites modified with surfactants

    International Nuclear Information System (INIS)

    Jardon S, C. C.; Olguin G, M. T.; Diaz N, M. C.

    2009-01-01

    In this work was carried out the dyes removal blue vegetable and blue watercolor of aqueous solutions, to 20 C, at different times and using a zeolite mineral of Parral (Chihuahua, Mexico) modified with hexadecyl trimethyl ammonium bromide or dodecyl trimethyl ammonium bromide. The zeolite was characterized before and after of its adaptation with NaCl and later with HDTMABr and DTMABr. For the materials characterization were used the scanning electron microscopy of high vacuum; elementary microanalysis by X-ray spectroscopy of dispersed energy and X-ray diffraction techniques. It was found that the surfactant type absorbed in the zeolite material influences on the adsorption process of the blue dye. Likewise, the chemical structure between the vegetable blue dye and the blue watercolor, determines the efficiency of the color removal of the water, by the zeolites modified with the surfactants. (Author)

  7. Natural polymers supported copper nanoparticles for pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Haider, Sajjad [Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia); Kamal, Tahseen, E-mail: tkkhan@kau.edu.sa [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Omer, Muhammad [Institute of Chemical Sciences, University of Swat, Odigram, Swat, 19130, Khyber Pakhtunkhwa (Pakistan); Haider, Adnan [Department of Nano, Medical and Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749 (Korea, Republic of); Khan, Farman Ullah; Asiri, Abdullah M. [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2016-11-30

    Highlights: • Chitosan (CS) coating layer was applied on the surface of cellulose microfibers mat (CMM). • The CS coating layer was used to uptake the Copper (Cu) ions which were converted to nanoparticles. • The Cu/CS-CMM was demonstrated as catalyst in nitrophenols and cresyl blue reductions. • The rate constants for 2-nitrophenol, 4-nitrophenol and cresyl blue were 1.2 × 10{sup −3} s{sup −1}, 2.1 × 10{sup −3} s {sup −1} and, 1.3 × 10{sup −3} s{sup −1}, respectively. • The used catalyst was easily recovered by just pulling the strip from solutions. - Abstract: In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu{sup 2+} ions from an aqueous solution of CuSO{sub 4}, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH{sub 4}) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h{sup −1}, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10{sup −3} s{sup −1}, 2.1 × 10{sup −3} s{sup −1} and, 1.3 × 10{sup −3} s{sup −1}, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  8. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  9. Effects of copper on reserve mobilization in embryo of Phaseolus vulgaris L.

    Science.gov (United States)

    Karmous, Inès; Bellani, Lorenza M; Chaoui, Abdelilah; El Ferjani, Ezzedine; Muccifora, Simonetta

    2015-07-01

    The present research reports a biochemical and micro-submicroscopic analysis of copper effect on reserve mobilization during germination of Phaseolus vulgaris L. var. soisson nain hatif seeds. Dry embryonic cells are rich in protein bodies and little starch grains. In Cu-treated embryos copper inhibited 50% of albumin and globulin mobilization after 72 h imbibition. The severe alterations in treated embryo cells, observed by electron microscope, were probably the cause of the inability to utilize the amino acids freed by protein mobilization and so possibly the cause of the inhibition of P. vulgaris embryonic axis elongation.

  10. Fast, Cell-compatible Click Chemistry with Copper-chelating Azides for Biomolecular Labeling**

    Science.gov (United States)

    Uttamapinant, Chayasith; Tangpeerachaikul, Anupong; Grecian, Scott; Clarke, Scott; Singh, Upinder; Slade, Peter; Gee, Kyle R.; Ting, Alice. Y.

    2012-01-01

    We report that azides capable of copper-chelation undergo much faster “Click chemistry” (copper-accelerated azide-alkyne cycloaddition, or CuAAC) than nonchelating azides under a variety of biocompatible conditions. This kinetic enhancement allowed us to perform site-specific protein labeling on the surface of living cells with only 10–40 µM CuI/II and much higher signal than could be obtained using the best previously-reported live-cell compatible CuAAC labeling conditions. Detection sensitivity was also increased for CuAAC detection of alkyne-modified proteins and RNA labeled by metabolic feeding. PMID:22555882

  11. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    Science.gov (United States)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  12. The effects of copper on blood and biochemical parameters of rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Dethloff, G.M.; Schlenk, D.; Khan, S.; Bailey, H.C.

    1999-01-01

    Metals are released into aquatic systems from many sources, often at sublethal concentrations. The effects of sublethal concentrations of metals on fish are not entirely understood. The objective of this study was to determine the hematological and biochemical effects of a range of copper concentrations (6.4, 16.0, 26.9 ??g Cu/L) on rainbow trout (Oncorhynchus mykiss) over a prolonged period of time. Trout were exposed to copper, and, at intervals of 3, 7, 14, and 21 days, selected parameters were evaluated. Hemoglobin, hematocrit, plasma glucose, and plasma cortisol levels were elevated in trout exposed to 26.9 ??g Cu/L at day 3 and then returned to levels comparable to control fish. Plasma protein and lactate levels were not significantly altered in trout from any copper treatment. Hepatic copper concentration and hepatic metallothionein mRNA expression were consistently elevated in trout exposed to 26.9 ??g Cu/L. Both of these parameters stabilized by day 3, with only hepatic copper concentration showing a further increase at day 21. Hepatic copper concentration and hepatic metallothionein mRNA expression appear to be robust indicators of copper exposure. Most blood-based parameters evaluated appear to be associated with a transitory, nonspecific stress response. The return of elevated hematological and biochemical parameters to control levels after 3 days and thestabilization of hepatic metallothionein mRNA expression and copper concentration over a similar time period suggested acclimation to dissolved copper at 26.9 ??g/L. Further analysis of the data on blood-based parameters indicated that certain parameters (hemoglobin, hematocrit, plasma glucose, plasma cortisol) may be useful in field monitoring.

  13. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets

    Directory of Open Access Journals (Sweden)

    Shao-Feng Mei

    Full Text Available The current study aimed to investigate the effects of different levels of copper sulfate on the growth performance and cecal ecosystem in newly weaned piglets. One hundred piglets weaned at 28±2 d were randomly allocated to 4 treatments with 5 replicates of 5 piglets each. Piglets received for 28 d the base diet with i no addition (control or with copper addition (from copper sulfate at ii 100, iii 175, and iv 250 mg/kg–1. On day 21, twenty piglets were randomly selected (one from each replicate to slaughter and investigate the population and diversity of cecal microorganisms. The results showed that the diets containing 175 and 250 mg/kg–1 copper improved the average daily gain (ADG by 51% and 60% and decreased the feed to gain ratio (F/G by 21% and 16%, respectively. Adding 175 or 250 mg/kg–1 copper improved crude protein, ether extract, calcium and phosphorus digestibility. Viable counts of Enterobacteriaceae and Lactobacilli in cecum tended to be reduced, while the concentrations of cecal volatile fatty acids (VFA were increased in pigs fed diet supplemented as copper level increased. Polymerase chain reaction (PCR results showed that adding 175 or 250 mg/kg–1 copper reduced the lactobacilli in cecum. Denaturing gradient gel electrophoresis (DGGE maps showed that band numbers and intensity of cecal bacterial 16S rDNA decreased as the copper levels increased. The results suggested that the effects of high dietary copper on microflora and their activities and metabolic products might contribute to the intestinal health and result in improved growth performance.

  14. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets

    Directory of Open Access Journals (Sweden)

    Dai-Wen Chen

    2010-11-01

    Full Text Available The current study aimed to investigate the effects of different levels of copper sulfate on the growth performance and cecal ecosystem in newly weaned piglets. One hundred piglets weaned at 28±2 d were randomly allocated to 4 treatments with 5 replicates of 5 piglets each. Piglets received for 28 d the base diet with i no addition (control or with copper addition (from copper sulfate at ii 100, iii 175, and iv 250 mg/kg-1. On day 21, twenty piglets were randomly selected (one from each replicate to slaughter and investigate the population and diversity of cecal microorganisms. The results showed that the diets containing 175 and 250 mg/kg-1 copper improved the average daily gain (ADG by 51% and 60% and decreased the feed to gain ratio (F/G by 21% and 16%, respectively. Adding 175 or 250 mg/kg-1 copper improved crude protein, ether extract, calcium and phosphorus digestibility. Viable counts of Enterobacteriaceae and Lactobacilli in cecum tended to be reduced, while the concentrations of cecal volatile fatty acids (VFA were increased in pigs fed diet supplemented as copper level increased. Polymerase chain reaction (PCR results showed that adding 175 or 250 mg/kg-1 copper reduced the lactobacilli in cecum. Denaturing gradient gel electrophoresis (DGGE maps showed that band numbers and intensity of cecal bacterial 16S rDNA decreased as the copper levels increased. The results suggested that the effects of high dietary copper on microflora and their activities and metabolic products might contribute to the intestinal health and result in improved growth performance.

  15. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  16. Ammonia leaching of copper smelter dust and precipitation as copper sulphide

    International Nuclear Information System (INIS)

    Morales, A.; Hevia, J. F.; Cifuentes, G.

    2009-01-01

    The effect of ammonia on the leaching of copper smelter dust and copper precipitation from these solutions as sulphide using sulfur and sulfur dioxide was studied. The precipitation was done in ammoniacal media because this solution produced more satisfactory results at room temperature that a sulphuric media. A solid was precipitated containing 60 % of copper of the dust smelter. The other waste generated contained around 80 % of the arsenic of the original copper smelter dust. Based on the preliminary results obtained in this work it will propose a procedure for the recovery of copper as sulphide from copper smelter dust with parallel confinement of arsenic. (Author) 14 refs.

  17. The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases.

    Science.gov (United States)

    Liu, Qing; Wang, Qin; Liu, Bin; Wang, Wei; Wang, Xu; Park, Joon; Yang, Zhenming; Du, Xinglin; Bian, Mingdi; Lin, Chentao

    2016-10-01

    Cryptochromes are blue light receptors regulated by light-dependent ubiquitination and degradation in both plant and animal lineages. The Arabidopsis genome encodes two cryptochromes, CRY1 and CRY2, of which CRY2 undergoes blue light-dependent ubiquitination and 26S proteasome-dependent degradation. The molecular mechanism regulating blue light-dependent proteolysis of CRY2 is still not fully understood. We found that the F-box proteins ZEITLUPE (ZTL) and Lov Kelch Protein2 (LKP2), which mediate blue light suppression of degradation of the CRY2 signaling partner CIB1, are not required for the blue light-dependent CRY2 degradation. We further showed that the previously reported function of the COP1-SPA1 protein complex in blue light-dependent CRY2 degradation is more likely to be attributable to its cullin 4 (CUL4)-based E3 ubiquitin ligase activity than its activity as the cryptochrome signaling partner. However, the blue light-dependent CRY2 degradation is only partially impaired in the cul4 mutant, the cop1-5 null mutant and the spa1234 quadruple mutant, suggesting a possible involvement of additional E3 ubiquitin ligases in the regulation of CRY2. Consistent with this hypothesis, we demonstrated that the blue light-dependent CRY2 degradation is significantly impaired in the temperature-sensitive cul1 mutant allele (axr6-3), especially under the non-permissive temperature. Based on these and other results presented, we propose that photoexcited CRY2 undergoes Lys48-linked polyubiquitination catalyzed by the CUL4- and CUL1-based E3 ubiquitin ligases. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Environment of copper in Pseudomonas aeruginosa azurin probed by binding of exogenous ligands to Met121X (X = Gly, Ala, Val, Leu, or Asp) mutants.

    Science.gov (United States)

    Bonander, N; Karlsson, B G; Vänngård, T

    1996-02-20

    The binding of small exogenous ligands to mutants of the blue copper protein azurin from Pseudomonas aeruginosa, altered in the axial position, Met121X (X = Gly, Ala, Val, Leu, or Asp), has been studied with optical and electron paramagnetic resonance (EPR) spectroscopy. The results show that small molecules can enter the pocket left by the side chain of Met121. For azide, the dissociation constants are Leu > Val > Ala, reflecting the increasing space available. The Gly and Asp mutants bind azide less strongly than the Ala mutant, due to competition with water (Gly) and the polar side chain (Asp). Similar trends are found for thiocyanate. Cyanide binds equally well to the Ala and Val mutants. A number of other small potential ligands were tried. Alcohols do not affect room-temperature optical spectra, but at low temperatures, the EPR spectrum is stellacyanin-like, indicative of a weak axial interaction. Ligands binding with a carboxyl group or nitrogen (e.g. acetate or azide) convert the metal center to a form intermediate between regular types 1 and 2, presumably by pulling the copper ion out of the trigonal plane formed by Cys(S) and two His(N). Cyanide interacts strongly as shown by the hyperfine coupling to the 13C nucleus. With increasing strength of the axial interaction, the two major bands in the visible region (600 and 400-500 nm) shift in parallel to higher energy, and at the same time, the strength of the latter transition increases at the expense of the former. This demonstrates that these transitions have a common origin, namely S-to-Cu charge transfer transition.

  19. Teknologi penyamakan kulit wet blue buaya

    Directory of Open Access Journals (Sweden)

    Bambang Oetojo

    1992-08-01

    Full Text Available For this study it was used 12 pieces of grain salted crocodile skin of 11 up to 14 inch width. All of the crocodile skin were process up to pickling with the same way. Furthermore pickled crocodile skins were process up to pickling with the same way. Furthermore pickled crocodile skins and was done twice. The wet blue output from the research was visual investigated for the coulor using staning scale method. For comparition it was used pickled crocodile skins. Statistical analysis pints out that there is unsignify difference (P<0.05 the influence of the used of basic chrome sulphate to the colour of wet blue crocodile skins. Practical meaning of the research is, for tanning of crocodile skins to the wet blue, it is used 1.5% basic chromium sulphate.

  20. Intraoral blue (Jadassohn-Tieche) nevus.

    Science.gov (United States)

    Hasse, C D; Zoutendam, G L; Gombas, O F

    1978-05-01

    Blue nevus of the oral mucosa is a distinctly uncommon clincial entity. Careful review of the literature yielded thirty-one previously reported cases. The present article reports the occurrence of a blue nevus of the hard palate in a 58-year-old man. It is of interest since it is the smallest (1 by 1 mm.) intraoral blue nevus to be reported. A clinicopathologic study of the previous thirty-one cases and of our case suggests that this lesion has no age or sex predilection. The most common site of occurrence was the hard palate. There appears to be no tendency toward recurrence. A brief review of the historical background, clinical features, theories of possible origin, and differential diagnosis is presented. Excisional biopsy of localized areas of oral pibmentation, together with histopathologic study, is indicated to rule out melanoma.

  1. Copper-cadmium interaction in mice: effects of copper status on retention and distribution of cadmium after cadmium exposure

    International Nuclear Information System (INIS)

    Bourcier, D.R.

    1982-01-01

    The role of increased dietary copper in altering the accumulation of cadmium and other metals in tissues, was investigated. Female Swiss-Webster mice were pretreated with cadmium or copper in drinking water for three weeks prior to cadmium exposure for an additional nine weeks, with sub groups from each dose level receiving Cu additions to the Cd supplemented water. In Cd pretreated animals, a significant decrease was observed in Cd concentrations in liver and kidney when Cu was added to Cd in drinking water. Cadmium levels in soluble protein fractions of liver of animals administered 5 ppm Cd were approximately three fold greater than that for the same Cd dose when Cu was added. The same was the case for the metallothionein-like protein fraction (MTP) of the liver cytosol. In copper pretreated animals similar trends were noted in that brain, spleen, liver (but not kidney) Cd levels were decreased in animals receiving Cu additions to the Cd dose. Increased binding of Cd to the MTP fraction was observed after both in vivo and in vitro exposure of intestinal mucosal cells to cadmium

  2. The complete mitochondrial genome of the Blue-face angelfish, Pomacanthus xanthometapon (Perciformes: Pomacanthidae).

    Science.gov (United States)

    Shen, Kang-Ning; Loh, Kar-Hoe; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-11-01

    In this study, the complete mitogenome sequence of the Blue-face angelfish, Pomacanthus xanthometapon (Perciformes: Pomacanthidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,533 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Blue-face angelfish is 28.7% for A, 28.9% for C, 15.9% for G, 26.6% for T and show 84% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Blue-face angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.

  3. Canine Models for Copper Homeostasis Disorders

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2016-02-01

    Full Text Available Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  4. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  5. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  6. Remediation of chromium and copper on water hyacinth (E. crassipes shoot powder

    Directory of Open Access Journals (Sweden)

    M. Sarkar

    2017-06-01

    Full Text Available Tannery effluent characterization and removal efficiency of Chromium (Cr and Copper (Cu on water hyacinth has been observed by filtration process. The effluent was contaminated by deep blue color, acidic pH, higher value of total dissolve solid (TDS, electrical conductivity (EC, chemical oxygen demand (COD and lower value of dissolve oxygen (DO. After filtration, the effluent shows that the permissible limit of investigated metals. Adsorbent capacity of water hyacinth shoot powder for Cr and Cu ion was found to be 99.98% and 99.96% for standard solution (SS and 98.83% and 99.59% for tannery effluent (TE, respectively.

  7. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption.

    Science.gov (United States)

    Andreazza, R; Pieniz, S; Okeke, B C; Camargo, F A O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09'53.92″S and 51°31'39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29'43.48″S and 53'32'37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L(-1) in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  8. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  9. Copper downregulates neprilysin activity through modulation of neprilysin degradation.

    Science.gov (United States)

    Li, Mi; Sun, Miao; Liu, Yi; Yu, Jia; Yang, Huan; Fan, Dongsheng; Chui, Dehua

    2010-01-01

    Copper plays a central role in conserved processes such as respiration, and in highly specialized processes, such as protein modification. The metalloprotease neprilysin (NEP) degrades a variety of bioactive peptides and is involved in many physiological processes. However, very little is known about the regulation of NEP activity. In the current study, we focused on the effect of Cu2+ on the enzymatic activity and protein stability of NEP. Using mouse neuroblastoma N2a cells, we found that the enzymatic activity of NEP was decreased by treatment with Cu2+ in a dose- and time-dependent manner. In our investigation of the mechanism by which Cu2+ downregulates NEP enzyme activity, we found that treatment with Cu2+ caused a decrease in the level of NEP as determined by Western blot analysis. Quantitative analysis of NEP mRNA with RT-PCR excluded the possibility that Cu2+ downregulates NEP protein at the gene transcription level. Moreover, specific proteasome inhibitors, MG132 and lactacystin, blocked the turnover of NEP, whereas inhibitors of lysosome had no significant effect, suggesting that Cu2+-induced degradation of NEP is via a proteasome pathway. Taken together, our data suggest that copper downregulates NEP activity through modulation of NEP protein degradation.

  10. Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus

    International Nuclear Information System (INIS)

    Mitra, Soham; Keswani, Tarun; Ghosh, Nabanita; Goswami, Suranjana; Datta, Anuradha; Das, Salomie; Maity, Subhajit; Bhattacharyya, Arindam

    2013-01-01

    Highlights: ► Copper-induced ROS generation and mitochondrial trans-membrane potential changes result in different consequences in spleen and thymus. ► Inflammation appeared in both the spleen and thymus after to copper treatment. ► Apoptosis in the spleen appears to follow a p53-independent pathway. ► Apoptosis in the thymus appears to follow a p53-dependent intrinsic and extrinsic pathway. ► In both the spleen and thymus, the CD4+ T cell population decreased and CD8+ T cell population increased after copper treatment. - Abstract: Inorganic copper, such as that in drinking water and copper supplements, largely bypasses the liver and enters the free copper pool of the blood directly and that promote immunosuppression. Nevertheless, the signaling pathways underlying copper-induced immune cell death remains largely unclear. According to our previous in vivo report, to evaluate the further details of the apoptotic mechanism, we have investigated how copper regulates apoptotic pathways in spleen and thymus. We have analyzed different protein expression by western blotting and immunohistochemistry and mRNA expression by RT-PCR and gel electrophoresis. We also have measured mitochondrial trans-membrane potential, ROS and CD4 + and CD8 + population by flow cytometry. Sub lethal doses of copper in spleen and thymus of in vivo Swiss albino mice promote different apoptotic pathways. In case of spleen, ROS generation and mitochondrial trans-membrane potential changes promotes intrinsic pathway of apoptosis that was p53 independent, ultimately leads to decrease in CD4 + T cell population and increase in CD8 + T cell population. However in case of thymus, ROS generation and mitochondrial trans-membrane potential changes lead to death receptor that regulate extrinsic and intrinsic pathways of apoptosis and the apoptotic mechanism which was p53 dependent. Due to copper treatment, thymic CD4 + T cell population decreased and CD8 + T cell population was increased or

  11. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  12. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  13. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete

    DEFF Research Database (Denmark)

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noële Croteau

    2016-01-01

    the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically...... enriched 65Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences...... in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations...

  14. Electronics scrap processing at Brixlegg copper works

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenboeck, F.J.; Sauer, E.; Woebking, H.; Woerz, H.

    1985-11-01

    The valuable metals - in particular precious metals, copper, zinc, and tin - that are included in electronics scraps are recovered in the secondary copper works of Brixlegg in the form of commercial intermediate products or in the form of pure metals. The refinery line is as follows: shaft furnace, converter, anode furnace, electrolytic copper refinery and slime plants for precious metal recovery from anode slimes. (orig.).

  15. Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.

    Science.gov (United States)

    Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P

    2018-01-01

    Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.

  16. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important parameter, while glucose (99%), sucrose (97%) and mannitol (98%) were the best carbon sources for the decolorization. Decolorization was effective in an acidic environment (pH 3).

  17. Geographical Study of American Blues Culture

    Science.gov (United States)

    Strait, John B.

    2010-01-01

    Music is not often utilized in teaching geography, despite the fact that many scholars orient their research around analyzing both the historical and spatial dimensions of musical expression. This article reports on the use of a teaching module that utilizes blues culture as a lens to understand the geographical history of the United States. The…

  18. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  19. Blue whales respond to anthropogenic noise.

    Directory of Open Access Journals (Sweden)

    Mariana L Melcón

    Full Text Available Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood.

  20. Prussian Blue Analogues of Reduced Dimensionality

    NARCIS (Netherlands)

    Gengler, Regis Y. N.; Toma, Luminita M.; Pardo, Emilio; Lloret, Francesc; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Gournis, Dimitrios; Rudolf, Petra

    2012-01-01

    Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While