WorldWideScience

Sample records for bloom intracellular bacteria

  1. Intracellular Bacteria in Protozoa

    Science.gov (United States)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  2. Retrieved bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Basu, S.; Matondkar, S.G.P.; Furtado, I.

    ., 1999). Unlike the haloarchaea, which prefer a “salt-in” strategy to adjust intracellular osmotic balance in hypersaline environments, the marine halophilic/ halotolerant heterotrophic bacteria synthesize or accumulate organic compatible solutes... stations and bloom-patch (*DWK and *PRB) 16 CHIN. J. OCEANOL. LIMNOL., 31(1), 2013 Vol.31 translucent (2.63%). Following the generic keys from Bergey’s Manual of Determinative Biology (Holt et al., 1994; Reva et al., 2001), 20 bacterial isolates...

  3. Macrophage defense mechanisms against intracellular bacteria.

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  4. Algicidal bacteria in the sea and their impact on algal blooms.

    Science.gov (United States)

    Mayali, Xavier; Azam, Farooq

    2004-01-01

    Over the past two decades, many reports have revealed the existence of bacteria capable of killing phytoplankton. These algicidal bacteria sometimes increase in abundance concurrently with the decline of algal blooms, suggesting that they may affect algal bloom dynamics. Here, we synthesize the existing knowledge on algicidal bacteria interactions with marine eukaryotic microalgae. We discuss the effectiveness of the current methods to characterize the algicidal phenotype in an ecosystem context. We briefly consider the literature on the phylogenetic identification of algicidal bacteria, their interaction with their algal prey, the characterization of algicidal molecules, and the enumeration of algicidal bacteria during algal blooms. We conclude that, due to limitations of current methods, the evidence for algicidal bacteria causing algal bloom decline is circumstantial. New methods and an ecosystem approach are needed to test hypotheses on the impact of algicidal bacteria in algal bloom dynamics. This will require enlarging the scope of inquiry from its current focus on the potential utility of algicidal bacteria in the control of harmful algal blooms. We suggest conceptualizing bacterial algicidy within the general problem of bacterial regulation of algal community structure in the ocean. PMID:15134248

  5. Intracellular chemical gradients: morphing principle in bacteria

    Directory of Open Access Journals (Sweden)

    Endres Robert G

    2012-09-01

    Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.

  6. Intracellular pH of acid-tolerant ruminal bacteria.

    OpenAIRE

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells.

  7. Retreived bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea

    Institute of Scientific and Technical Information of China (English)

    BASU Subhajit; MATONDKAR SG Prabhu; FURTADO Irene

    2013-01-01

    In recent years,seasonal blooms of the dinoflagellate Noctiluca miliaris have appeared in the open-waters of the northern Arabian Sea (NAS).This study provides the first characterization of bacteria from a seasonal bloom of green Noctiluca ofNAS (20°N-17°N and 64°E-70°E),during the spring-inter-monsoon cruise ofSagar Sampada 253,in March 2007.Bacterial growth as assessed by most-probable number (MPN) and plate counts,revealed ‘variable-physiotypes' over a wide range of salinities (0%-25% w/v NaC1),pH levels (5-8.5),and organic nutrient strengths,in comparison to non-bloom waters.MPN indices of bacteria in surface waters of bloom stations *DWK and *PRB,corresponded to (3.08-4.41)× 103 cells/mL at 3.5%NaC1 (w/v),and (2.82-9.49)× 102 cells/mL at 25% (w/v) NaC1 in tryptone-yeast extract broth (TYE).Plate counts were (1.12-4) × 106 CFU/mL at 0% (w/v) NaCl,(1.28-3.9) × 106 CFU/mL at 3.5% (w/v) NaC1,and (0.4-7)× 104 CFU/mL at 25% NaC1 (w/v) on TYE.One-tenth-strength Zobell's gave (0.6-3.74)× 105 CFU/mL at pH 5 to (3.58-7.5)× 105 CFU/mL at pH 8.5.These bacteria were identified to the genera Bacillus,Cellulomonas,Staphylococcus,Planococcus,Dietzia,Virgibacillus,Micrococcus,Sporosarcinae,Leucobacter,and Halomonas.The identity of three strains (GUFBSS253N2,GUFBSS253N30,and GUFBSS253N84) was confirmed through 16S rDNA sequence homology as Bacillus cohnii,Bacillusflexus,and Bacillus cereus.The ~2-3-fold higher plate counts of culturable bacteria from the open-waters of the NAS indicate that these bacteria could critically determine the biogeochemical dynamics of the bloom and its milieu.The role of these bacteria in sustaining/terminating the bloom is under evaluation.

  8. Retreived bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea

    Science.gov (United States)

    Basu, Subhajit; Matondkar, S. G. Prabhu; Furtado, Irene

    2013-01-01

    In recent years, seasonal blooms of the dinoflagellate Noctiluca miliaris have appeared in the open-waters of the northern Arabian Sea (NAS). This study provides the first characterization of bacteria from a seasonal bloom of green Noctiluca of NAS (20°N-17°N and 64°E-70°E), during the spring-inter-monsoon cruise of Sagar Sampada 253, in March 2007. Bacterial growth as assessed by most-probable number (MPN) and plate counts, revealed `variable-physiotypes' over a wide range of salinities (0%-25% w/v NaCl), pH levels (5-8.5), and organic nutrient strengths, in comparison to non-bloom waters. MPN indices of bacteria in surface waters of bloom stations *DWK and *PRB, corresponded to (3.08-4.41)×103 cells/mL at 3.5% NaCl (w/v), and (2.82-9.49)×102 cells/mL at 25% (w/v) NaCl in tryptone-yeast extract broth (TYE). Plate counts were (1.12-4)×106 CFU/mL at 0% (w/v) NaCl, (1.28-3.9)×106 CFU/mL at 3.5% (w/v) NaCl, and (0.4-7)×104 CFU/mL at 25% NaCl (w/v) on TYE. One-tenth-strength Zobell's gave (0.6-3.74)×105 CFU/mL at pH 5 to (3.58-7.5)×105 CFU/mL at pH 8.5. These bacteria were identified to the genera Bacillus, Cellulomonas, Staphylococcus, Planococcus, Dietzia, Virgibacillus, Micrococcus, Sporosarcinae, Leucobacter, and Halomonas. The identity of three strains (GUFBSS253N2, GUFBSS253N30, and GUFBSS253N84) was confirmed through 16S rDNA sequence homology as Bacillus cohnii, Bacillus flexus, and Bacillus cereus. The ˜2-3-fold higher plate counts of culturable bacteria from the open-waters of the NAS indicate that these bacteria could critically determine the biogeochemical dynamics of the bloom and its milieu. The role of these bacteria in sustaining/terminating the bloom is under evaluation.

  9. Enumeration of bacteria from a Trichodesmium spp. bloom of the eastern Arabian Sea: Elucidation of their possible role in biogeochemistry

    Digital Repository Service at National Institute of Oceanography (India)

    Basu, S.; Matondkar, S.G.P.; Furtado, I.

    The carbon-flux via algal bloom events involves bacteria as an important mediator. The present study, carried out during the spring inter-monsoon month of April 2008 onboard CRV Sagar Manjusha-06 in the Eastern Arabian Sea, addresses the bloom...

  10. Investigating the presence of predatory bacteria on algal bloom samples using a T6SS gene marker.

    Science.gov (United States)

    Hendricks, J.; Sison-Mangus, M.; Mehic, S.; McMahon, E.

    2015-12-01

    Predation is considered to be a major driving force in evolution and ecology, which has been observed affecting individual organisms, communities, and entire ecosystems. The type VI secretion system (T6SS) is an intermembranal protein complex identified in certain bacteria, which appears to have evolved strictly as a mechanism of predation. The effects of bacteria on phytoplankton physiology are still understudied, however, studies have shown that the interactions between bacteria that inhabit the phycosphere of phytoplankton can possibly result in coevolution of native host and microbiota. It is unclear if bacteria can prey upon other bacteria to gain advantages during periods of high phytoplankton density. Here, we investigate the predatory interactions between bacteria and analyze environmental samples for the presence of predatory bacterial genes in an effort to understand bacteria-bacteria and phytoplankton interactions during algal blooms. DNA were extracted from bacterial samples collected weekly from size-fractionated samples using 3.0 um and 0.2 um membrane filters at the Santa Cruz wharf. PCR amplification and gel visualization for the presence of T6SS gene was carried out on bloom and non-bloom samples. Moreover, we carried out a lab- based experiment to observe bacteria-bacteria interaction that may hint for the presence of predatory behavior between bacterial taxa. We observed what appeared to be a predatory biofilm formation between certain bacterial species. These bacteria, however, did not contain the T6SS genes. On the contrary the T6SS gene was discovered in some of the bloom samples gathered from the Santa Cruz wharf. It is still unclear if the predatory mechanisms facilitate the abundance of certain groups of bacteria that contain the T6SS genes during algal blooms, but our evidence suggest that bacterial predation through T6SS mechanism is present during bloom events.

  11. Population dynamics of phytoplankton, heterotrophic bacteria, and viruses during the spring bloom in the western subarctic Pacific

    Science.gov (United States)

    Suzuki, Koji; Kuwata, Akira; Yoshie, Naoki; Shibata, Akira; Kawanobe, Kyoko; Saito, Hiroaki

    2011-05-01

    We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end

  12. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    Directory of Open Access Journals (Sweden)

    Ewa Jończyk-Matysiak

    2015-01-01

    Full Text Available Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired. Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients’ peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients’ phagocytes’ ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy.

  13. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  14. Antarctic deep-sea meiofauna and bacteria react to the deposition of particulate organic matter after a phytoplankton bloom

    Science.gov (United States)

    Veit-Köhler, Gritta; Guilini, Katja; Peeken, Ilka; Sachs, Oliver; Sauter, Eberhard J.; Würzberg, Laura

    2011-10-01

    During the RV Polarstern ANT XXIV-2 cruise to the Southern Ocean and the Weddell Sea in 2007/2008, sediment samples were taken during and after a phytoplankton bloom at 52°S 0°E. The station, located at 2960 m water depth, was sampled for the first time at the beginning of December 2007 and revisited at the end of January 2008. Fresh phytodetritus originating from the phytoplankton bloom first observed in the water column had reached the sea floor by the time of the second visit. Absolute abundances of bacteria and most major meiofauna taxa did not change between the two sampling dates. In the copepods, the second most abundant meiofauna taxon after the nematodes, the enhanced input of organic material did not lead to an observable increase of reproductive effort. However, significantly higher relative abundances of meiofauna could be observed at the sediment surface after the remains of the phytoplankton bloom reached the sea floor. Vertical shifts in meiofauna distribution between December and January may be related to changing pore-water oxygen concentration, total sediment fatty acid content, and pigment profiles measured during our study. Higher oxygen consumption after the phytoplankton bloom may have resulted from an enhanced respiratory activity of the living benthic component, as neither meiofauna nor bacteria reacted with an increase in individual numbers to the food input from the water column. Based on our results, we infer that low temperatures and ecological strategies are the underlying factors for the delayed response of benthic deep-sea copepods, in terms of egg and larval production, to the modified environmental situation.

  15. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    Science.gov (United States)

    Needham, David M; Fuhrman, Jed A

    2016-01-01

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates. PMID:27572439

  16. The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids.

    Directory of Open Access Journals (Sweden)

    Gaelle Boncompain

    Full Text Available Chlamydia trachomatis is an obligate intracellular pathogen responsible for loss of eyesight through trachoma and for millions of cases annually of sexually transmitted diseases. The bacteria develop within a membrane-bounded inclusion. They lack enzymes for several biosynthetic pathways, including those to make some phospholipids, and exploit their host to compensate. Three-dimensional fluorescence microscopy demonstrates that small organelles of the host, peroxisomes, are translocated into the Chlamydia inclusion and are found adjacent to the bacteria. In cells deficient for peroxisome biogenesis the bacteria are able to multiply and give rise to infectious progeny, demonstrating that peroxisomes are not essential for bacterial development in vitro. Mass spectrometry-based lipidomics reveal the presence in C. trachomatis of plasmalogens, ether phospholipids whose synthesis begins in peroxisomes and have never been described in aerobic bacteria before. Some of the bacterial plasmalogens are novel structures containing bacteria-specific odd-chain fatty acids; they are not made in uninfected cells nor in peroxisome-deficient cells. Their biosynthesis is thus accomplished by the metabolic collaboration of peroxisomes and bacteria.

  17. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization.

    Science.gov (United States)

    Schröder, D; Deppisch, H; Obermayer, M; Krohne, G; Stackebrandt, E; Hôlldobler, B; Goebel, W; Gross, R

    1996-08-01

    Intracellular endosymbiotic bacteria inherent to ants of the genus Camponotus were characterized. The bacteria were localized in bacteriocytes, which are specialized cells of both workers and queen ants; these cells are intercalated between epithelial cells of the midgut. The bacteriocytes show a different morphology from the normal epithelial cells and carry a large number of the rod-shaped Gram-negative bacteria free in the cytoplasm. The bacteria were never observed in the neighbouring epithelial cells, but they were found intracellularly in oocytes, strongly indicating a maternal transmission of the bacteria. The 16S DNA encoding rrs loci of the endosymbionts of four species of the genus Camponotus derived either from Germany (C. herculeanus and C. ligniperdus), North America (C. floridanus) or South America (C. rufipes) were cloned after polymerase chain reaction (PCR) amplification using oligonucleotides complementary to all so far known eubacterial rrs sequences. The DNA sequences of the rrs loci of the four endosymbionts were determined, and, using various genus- and species-specific oligonucleotides derived from variable regions in the rrs sequences, the identity of the bacteria present in the bacteriocytes and the ovarian cells was confirmed by PCR and in situ hybridization techniques. Comparison of the 16S DNA sequences with the available database showed the endosymbiotic bacteria to be members of the gamma-subclass of Proteobacteria. They formed a distinct taxonomic group, a sister taxon of the taxons defined by the tsetse fly and aphid endosymbionts. Within the gamma-subclass, the cluster of the ant, tsetse fly and aphid endosymbionts are placed adjacent to the family of Enterobacteriaceae. The evolutionary tree of the ant endosymbionts reflects the systematic classification and geographical distribution of their host insects, indicating an early co-evolution of the symbiotic partners and a vertical transmission of the bacteria. PMID:8866472

  18. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization.

    Science.gov (United States)

    Schröder, D; Deppisch, H; Obermayer, M; Krohne, G; Stackebrandt, E; Hôlldobler, B; Goebel, W; Gross, R

    1996-08-01

    Intracellular endosymbiotic bacteria inherent to ants of the genus Camponotus were characterized. The bacteria were localized in bacteriocytes, which are specialized cells of both workers and queen ants; these cells are intercalated between epithelial cells of the midgut. The bacteriocytes show a different morphology from the normal epithelial cells and carry a large number of the rod-shaped Gram-negative bacteria free in the cytoplasm. The bacteria were never observed in the neighbouring epithelial cells, but they were found intracellularly in oocytes, strongly indicating a maternal transmission of the bacteria. The 16S DNA encoding rrs loci of the endosymbionts of four species of the genus Camponotus derived either from Germany (C. herculeanus and C. ligniperdus), North America (C. floridanus) or South America (C. rufipes) were cloned after polymerase chain reaction (PCR) amplification using oligonucleotides complementary to all so far known eubacterial rrs sequences. The DNA sequences of the rrs loci of the four endosymbionts were determined, and, using various genus- and species-specific oligonucleotides derived from variable regions in the rrs sequences, the identity of the bacteria present in the bacteriocytes and the ovarian cells was confirmed by PCR and in situ hybridization techniques. Comparison of the 16S DNA sequences with the available database showed the endosymbiotic bacteria to be members of the gamma-subclass of Proteobacteria. They formed a distinct taxonomic group, a sister taxon of the taxons defined by the tsetse fly and aphid endosymbionts. Within the gamma-subclass, the cluster of the ant, tsetse fly and aphid endosymbionts are placed adjacent to the family of Enterobacteriaceae. The evolutionary tree of the ant endosymbionts reflects the systematic classification and geographical distribution of their host insects, indicating an early co-evolution of the symbiotic partners and a vertical transmission of the bacteria.

  19. Host factors and genetic susceptibility to infections due to intracellular bacteria and fastidious organisms.

    Science.gov (United States)

    Asner, S A; Morré, S A; Bochud, P-Y; Greub, G

    2014-12-01

    While genetic polymorphisms play a paramount role in tuberculosis (TB), less is known about their contribution to the severity of diseases caused by other intracellular bacteria and fastidious microorganisms. We searched electronic databases for observational studies reporting on host factors and genetic predisposition to infections caused by intracellular fastidious bacteria published up to 30 May 2014. The contribution of genetic polymorphisms was documented for TB. This includes genetic defects in the mononuclear phagocyte/T helper cell type 1 (Th1) pathway contributing to disseminated TB disease in children and genome-wide linkage analysis (GWAS) in reactivated pulmonary TB in adults. Similarly, experimental studies supported the role of host genetic factors in the clinical presentation of illnesses resulting from other fastidious intracellular bacteria. These include IL-6 -174G/C or low mannose-binding (MBL) polymorphisms, which are incriminated in chronic pulmonary conditions triggered by C. pneumoniae, type 2-like cytokine secretion polymorphisms, which are correlated with various clinical patterns of M. pneumoniae infections, and genetic variation in the NOD2 gene, which is an indicator of tubal pathology resulting from Chamydia trachomatis infections. Monocyte/macrophage migration and T lymphocyte recruitment defects are corroborated to ineffective granuloma formation observed among patients with chronic Q fever. Similar genetic polymorphisms have also been suggested for infections caused by T. whipplei although not confirmed yet. In conclusion, this review supports the paramount role of genetic factors in clinical presentations and severity of infections caused by intracellular fastidious bacteria. Genetic predisposition should be further explored through such as exome sequencing.

  20. Induction of Specific CD8+ T Cells against Intracellular Bacteria by CD8+ T-Cell-Oriented Immunization Approaches

    Directory of Open Access Journals (Sweden)

    Toshi Nagata

    2010-01-01

    Full Text Available For protection against intracellular bacteria such as Mycobacterium tuberculosis and Listeria monocytogenes, the cellular arm of adaptive immunity is necessary. A variety of immunization methods have been evaluated and are reported to induce specific CD8+ T cells against intracellular bacterial infection. Modified BCG vaccines have been examined to enhance CD8+ T-cell responses. Naked DNA vaccination is a promising strategy to induce CD8+ T cells. In addition to this strategy, live attenuated intracellular bacteria such as Shigella, Salmonella, and Listeria have been utilized as carriers of DNA vaccines in animal models. Vaccination with dendritic cells pulsed with antigenic peptides or the cells introduced antigen genes by virus vectors such as retroviruses is also a powerful strategy. Furthermore, vaccination with recombinant lentivirus has been attempted to induce specific CD8+ T cells. Combinations of these strategies (prime-boost immunization have been studied for the efficient induction of intracellular bacteria-specific CD8+ T cells.

  1. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria.

    Science.gov (United States)

    Navarrete, Jesica U; Borrok, David M; Viveros, Marian; Ellzey, Joanne T

    2011-02-01

    Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ(65)Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ(65)Cu(solution-solid) = δ(65)Cu(solution) - δ(65)Cu(solid)) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to -0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ(65)Cu(solution-solid) ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu

  2. The mutualistic side of Wolbachia-Isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria

    Directory of Open Access Journals (Sweden)

    Christine eBraquart-Varnier

    2015-12-01

    Full Text Available Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. However this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e. wVulC in P. dilatatus. Survival analyses showed that (i A. vulgare lines hosting their native Wolbachia (wVulC always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.

  3. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress?

    Science.gov (United States)

    Booth, I R; Higgins, C F

    1990-06-01

    Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration. PMID:1974769

  4. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria.

    Directory of Open Access Journals (Sweden)

    Quentin Leroy

    Full Text Available Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (pppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation.

  5. Accelerated microevolution in an outer membrane protein (OMP of the intracellular bacteria Wolbachia

    Directory of Open Access Journals (Sweden)

    Russell Jacob A

    2010-02-01

    Full Text Available Abstract Background Outer membrane proteins (OMPs of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods. Results Here we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs. A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times. Conclusions In OMPs of vertebrate pathogens, large recombination impact, positive

  6. Identification of intracellular bacteria in adenoid and tonsil tissue specimens: the efficiency of culture versus fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Stępińska, M; Olszewska-Sosińska, O; Lau-Dworak, M; Zielnik-Jurkiewicz, B; Trafny, E A

    2014-01-01

    Monocyte/macrophage cells from human nasopharyngeal lymphoid tissue can be a source of bacteria responsible for human chronic and recurrent upper respiratory tract infection. Detection and characterization of pathogens surviving intracellularly could be a key element in bacteriological diagnosis of the infections as well as in the study on interactions between bacteria and their host. The present study was undertaken to assess the possibility of isolation of viable bacteria from the cells expressing monocyte/macrophage marker CD14 in nasopharyngeal lymphoid tissue. Overall, 74 adenotonsillectomy specimens (adenoids and tonsils) from 37 children with adenoid hypertrophy and recurrent infections as well as 15 specimens from nine children with adenoid hypertrophy, which do not suffer from upper respiratory tract infections (the control group), were studied. The suitability of immunomagnetic separation for extraction of CD14(+) cells from lymphoid tissue and for further isolation of the intracellular pathogens has been shown. The coexistence of living pathogens including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes with the bacteria representing normal nasopharyngeal microbiota inside CD14(+) cells was demonstrated. Twenty-four strains of these pathogens from 32.4 % of the lysates of CD14(+) cells were isolated. Concurrently, the fluorescent in situ hybridization (FISH) with a universal EUB388, and the species-specific probes demonstrated twice more often the persistence of these bacterial species in the lysates of CD14(+) cells than conventional culture. Although the FISH technique appears to be more sensitive than traditional culture in the intracellular bacteria identification, the doubts on whether the bacteria are alive, and therefore, pathogenic would still exist without the strain cultivation.

  7. Abnormalities in the handling of intracellular bacteria in Crohn's disease: a link between infectious etiology and host genetic susceptibility.

    Science.gov (United States)

    Glasser, Anne-Lise; Darfeuille-Michaud, Arlette

    2008-01-01

    The etiology of Crohn's disease (CD) is still poorly understood, but recent advances have highlighted the importance of the innate immune system and the critical relationship between the gut flora and the intestinal mucosa. Several combinations of genetic factors predisposing to CD have been described, with the most significant replicable associations including genes for intracellular receptors of bacterial cell walls (NOD2/CARD15) and for bacterial clearance and antigen processing via autophagy (ATG16L1 and IRGM). One theoretical link between susceptibility genes NOD2/CARD15, ATG16L1, and IRGM is that CD is primarily induced by the presence of a dysfunctional immunological response to persistent infection by intracellular bacterial pathogens such as Mycobacterium avium subspecies paratuberculosis or adherent-invasive Escherichia coli, both first-rank candidates on the basis of host genetic susceptibility, which concerns impaired functions in the defense against intracellular bacteria. PMID:18726145

  8. pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes

    OpenAIRE

    Marquis, Hélène; Hager, Elizabeth J.

    2000-01-01

    Listeria monocytogenes grows in the cytosol of mammalian cells and spreads from cell to cell without exiting the intracellular milieu. During cell–cell spread, bacteria become transiently entrapped in double-membrane vacuoles. Escape from these vacuoles is mediated in part by a bacterial phospholipase C (PC-PLC), whose activation requires cleavage of an N-terminal peptide. PC-PLC activation occurs i...

  9. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  10. Inhibitory activity of the isoflavone biochanin a on intracellular bacteria of genus Chlamydia and initial development of a buccal formulation

    DEFF Research Database (Denmark)

    Hanski, Leena; Genina, Natalja; Uvell, Hanna;

    2014-01-01

    Chlamydia growth inhibitor among the studied isoflavones, with an IC50 = 12 µM on C. pneumoniae inclusion counts and 6.5 µM on infectious progeny production, both determined by immunofluorescent staining of infected epithelial cell cultures. Encouraged by the permeation of biochanin A across porcine buccal......Given the established role of Chlamydia spp. as causative agents of both acute and chronic diseases, search for new antimicrobial agents against these intracellular bacteria is required to promote human health. Isoflavones are naturally occurring phytoestrogens, antioxidants and efflux pump...

  11. Modulation of Stat-1 in Human Macrophages Infected with Different Species of Intracellular Pathogenic Bacteria

    Science.gov (United States)

    Dominici, Sabrina; Rinaldi, Laura; Cangiano, Alfonsina Mariarosaria; Brandi, Giorgio; Magnani, Mauro

    2016-01-01

    The infection of human macrophages by pathogenic bacteria induces different signaling pathways depending on the type of cellular receptors involved in the microorganism entry and on their mechanism(s) of survival and replication in the host cell. It was reported that Stat proteins play an important role in this process. In the present study, we investigate the changes in Stat-1 activation (phosphorylation in p-tyr701) after uptake of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative bacteria (Salmonella typhimurium and Legionella pneumophila) characterized by their varying abilities to enter, survive, and replicate in human macrophages. Comparing the results obtained with Gram-negative and Gram-positive bacteria, Stat-1 activation in macrophages does not seem to be related to LPS content. The p-tyr701Stat-1 expression levels were found to be independent of the internalized bacterial number and IFN-γ release. On the contrary, Jak/Stat-1 pathway activation only occurs when an active infection has been established in the host macrophage, and it is plausible that the differences in the expression levels of p-tyr701Stat-1 could be due to different survival mechanisms or to differences in bacteria life cycles within macrophages. PMID:27437406

  12. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo--Brazil).

    Science.gov (United States)

    Cuadrat, Rafael R C; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M R

    2016-02-01

    Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  13. Research progress on intracellular bacteria of the genus Wolbachia%细胞内共生菌Wolbachia研究进展

    Institute of Scientific and Technical Information of China (English)

    周丹; 朱颖; 李朋玲; 高琼; 朱昌亮

    2010-01-01

    Intracellular rickettsial bacteria of the genus Wolbachia are found in numerous invertebrates including insects and nematodes. In their insect hosts, Wolbachia often manipulate the reproductive mode of their hosts, causing cytoplasmic incompatibility(CI), parthenogenesis induction(PI), feminization of genetic,or male killing(MK). Many studies have determined that filarial pathogenesis were reliant on this endosymbiont for embryogenesis, growth and survival. Additional researches have also focused on determining the role of Wolbachia in horizontal gene transfer, antiviral responses, potential applications in pest and disease vector control,speciation and so on. This review summarized the significant advances in the study of Wolbachia. Future research directions of this interesting intracellular rickettsial bacteria are also discussed.%Wolbachia是一类广泛共生于节肢动物和线虫体内的立克次体,能够通过细胞质不亲和、孤雌生殖、雄性雌性化和杀雄等多种机制调控节肢动物的生殖行为,并在丝虫发育、生殖和致病过程中发挥重要作用.近年来的研究结果显示Wolbachia在水平基因转移、抗病毒作用、物种进化等方面亦具有重要价值.该文对Wolbachia近年研究成果进行综述,重点介绍其生物学特征、传播方式、对共生宿主的影响作用及其意义,初步探讨了其在媒介生物防治与相关疾病控制中的潜在价值.

  14. The Control of Microcystis spp. Bloom by Combining Indigenous Denitrifying Bacteria From Sutami Reservoir with Fimbristylis globulosa and Vetiveria zizanoides

    OpenAIRE

    Bayu Agung Prahardika; Catur Retnaningdyah; Suharjono

    2013-01-01

    The purpose of this research is to know the ability of polyculture macrophyte (Fimbristylis globulosa and Vetiveria zizanoides) and the combination of both with consortium of indigenous denitrifying bacteria from Sutami reservoir that was added by Microcystis spp. or not to reduce the concentration of nitrate, dissolved phosphate and the carrying capacity of Microcystis spp. The experiment was done in a medium filled up with Sutami reservoir water enriched with 16 ppm of nitrate and 0.4 ppm o...

  15. The Control of Microcystis spp. Bloom by Combining Indigenous Denitrifying Bacteria From Sutami Reservoir with Fimbristylis globulosa and Vetiveria zizanoides

    Directory of Open Access Journals (Sweden)

    Bayu Agung Prahardika

    2013-04-01

    Full Text Available The purpose of this research is to know the ability of polyculture macrophyte (Fimbristylis globulosa and Vetiveria zizanoides and the combination of both with consortium of indigenous denitrifying bacteria from Sutami reservoir that was added by Microcystis spp. or not to reduce the concentration of nitrate, dissolved phosphate and the carrying capacity of Microcystis spp. The experiment was done in a medium filled up with Sutami reservoir water enriched with 16 ppm of nitrate and 0.4 ppm of phosphate. The denitrifying bacteria used in this research were DR-14, DU-27-1, DU-30-1, DU-30-2, TA-8 and DU-27-4 isolated from Sutami reservoir. The treatments were incubated within 15 days. Microcystis spp. abundance was calculated every day, but the measurement of the concentration of nitrate and dissolved phosphate was done every six days. The results showed that both treatment and the combination of both macrophytes with a consortium of denitrifying indigenous bacteria were added or not either Microcystis able to reduce nitrate at 99% and 93-99% orthophosphoric. The combination of macrophytes with denitrifying indigenous bacterial consortium from Sutami reservoir was able to inhibit the carrying capacity of Microcystis spp. highest up to 47.87%. They could also significantly reduce the abundance of Microcystis from 107 cells/mL in earlier days of the treatment into 0.35x104 cells/mL after fifteen days of incubation.

  16. Dibenzocyclooctadiene lignans from Schisandra spp. selectively inhibit the growth of the intracellular bacteria Chlamydia pneumoniae and Chlamydia trachomatis.

    Science.gov (United States)

    Hakala, Elina; Hanski, Leena; Uvell, Hanna; Yrjönen, Teijo; Vuorela, Heikki; Elofsson, Mikael; Vuorela, Pia Maarit

    2015-10-01

    Lignans from Schisandra chinensis berries show various pharmacological activities, of which their antioxidative and cytoprotective properties are among the most studied ones. Here, the first report on antibacterial properties of six dibenzocyclooctadiene lignans found in Schisandra spp. is presented. The activity was shown on two related intracellular Gram-negative bacteria Chlamydia pneumoniae and Chlamydia trachomatis upon their infection in human epithelial cells. All six lignans inhibited C. pneumoniae inclusion formation and infectious progeny production. Schisandrin B inhibited C. pneumoniae inclusion formation even when administered 8 h post infection, indicating a target that occurs relatively late within the infection cycle. Upon infection, lignan-pretreated C. pneumoniae elementary bodies had impaired inclusion formation capacity. The presence and substitution pattern of methylenedioxy, methoxy and hydroxyl groups of the lignans had a profound impact on the antichlamydial activity. In addition our data suggest that the antichlamydial activity is not caused only by the antioxidative properties of the lignans. None of the compounds showed inhibition on seven other bacteria, suggesting a degree of selectivity of the antibacterial effect. Taken together, the data presented support a role of the studied lignans as interesting antichlamydial lead compounds.

  17. Phg1/TM9 proteins control intracellular killing of bacteria by determining cellular levels of the Kil1 sulfotransferase in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Marion Le Coadic

    Full Text Available Dictyostelium discoideum has largely been used to study phagocytosis and intracellular killing of bacteria. Previous studies have shown that Phg1A, Kil1 and Kil2 proteins are necessary for efficient intracellular killing of Klebsiella bacteria. Here we show that in phg1a KO cells, cellular levels of lysosomal glycosidases and lysozyme are decreased, and lysosomal pH is increased. Surprisingly, overexpression of Kil1 restores efficient killing in phg1a KO cells without correcting these lysosomal anomalies. Conversely, kil1 KO cells are defective for killing, but their enzymatic content and lysosomal pH are indistinguishable from WT cells. The killing defect of phg1a KO cells can be accounted for by the observation that in these cells the stability and the cellular amount of Kil1 are markedly reduced. Since Kil1 is the only sulfotransferase characterized in Dictyostelium, an (unidentified sulfated factor, defective in both phg1a and kil1 KO cells, may play a key role in intracellular killing of Klebsiella bacteria. In addition, Phg1B plays a redundant role with Phg1A in controlling cellular amounts of Kil1 and intracellular killing. Finally, cellular levels of Kil1 are unaffected in kil2 KO cells, and Kil1 overexpression does not correct the killing defect of kil2 KO cells, suggesting that Kil2 plays a distinct role in intracellular killing.

  18. Inhibitory activity of the isoflavone biochanin A on intracellular bacteria of genus Chlamydia and initial development of a buccal formulation.

    Directory of Open Access Journals (Sweden)

    Leena Hanski

    Full Text Available Given the established role of Chlamydia spp. as causative agents of both acute and chronic diseases, search for new antimicrobial agents against these intracellular bacteria is required to promote human health. Isoflavones are naturally occurring phytoestrogens, antioxidants and efflux pump inhibitors, but their therapeutic use is limited by poor water-solubility and intense first-pass metabolism. Here, we report on effects of isoflavones against C. pneumoniae and C. trachomatis and describe buccal permeability and initial formulation development for biochanin A. Biochanin A was the most potent Chlamydia growth inhibitor among the studied isoflavones, with an IC50 = 12 µM on C. pneumoniae inclusion counts and 6.5 µM on infectious progeny production, both determined by immunofluorescent staining of infected epithelial cell cultures. Encouraged by the permeation of biochanin A across porcine buccal mucosa without detectable metabolism, oromucosal film formulations were designed and prepared by a solvent casting method. The film formulations showed improved dissolution rate of biochanin A compared to powder or a physical mixture, presumably due to the solubilizing effect of hydrophilic additives and presence of biochanin A in amorphous state. In summary, biochanin A is a potent inhibitor of Chlamydia spp., and the in vitro dissolution results support the use of a buccal formulation to potentially improve its bioavailability in antichlamydial or other pharmaceutical applications.

  19. Electroporation-based delivery of cell-penetrating peptide conjugates of peptide nucleic acids for antisense inhibition of intracellular bacteria.

    Science.gov (United States)

    Ma, Sai; Schroeder, Betsy; Sun, Chen; Loufakis, Despina Nelie; Cao, Zhenning; Sriranganathan, Nammalwar; Lu, Chang

    2014-10-01

    Cell penetrating peptides (CPPs) have been used for a myriad of cellular delivery applications and were recently explored for delivery of antisense agents such as peptide nucleic acids (PNAs) for bacterial inhibition. Although these molecular systems (i.e. CPP-PNAs) have shown ability to inhibit growth of bacterial cultures in vitro, they show limited effectiveness in killing encapsulated intracellular bacteria in mammalian cells such as macrophages, presumably due to difficulty involved in the endosomal escape of the reagents. In this report, we show that electroporation delivery dramatically increases the bioavailability of CPP-PNAs to kill Salmonella enterica serovar Typhimurium LT2 inside macrophages. Electroporation delivers the molecules without involving endocytosis and greatly increases the antisense effect. The decrease in the average number of Salmonella per macrophage under a 1200 V cm(-1) and 5 ms pulse was a factor of 9 higher than that without electroporation (in an experiment with a multiplicity of infection of 2 : 1). Our results suggest that electroporation is an effective approach for a wide range of applications involving CPP-based delivery. The microfluidic format will allow convenient functional screening and testing of PNA-based reagents for antisense applications.

  20. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306

    Directory of Open Access Journals (Sweden)

    Vanessa R. Pegos

    2014-04-01

    Full Text Available Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri’s metabolism by 1H-NMR spectroscopy.

  1. Harmful algal blooms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.; PrabhaDevi; DeSouza, L.; Verlecar, X.N.; Naik, C.G.

    as harmful algal bloom. Bloom formation is a natural process and it enhances biological productivity, but turns worrisome when caused by toxic species, leading to massive fish mortalities and hazards to human health. Incidences of'red tide' are increasing...

  2. Gemfibrozil Inhibits Legionella pneumophila and Mycobacterium tuberculosis Enoyl Coenzyme A Reductases and Blocks Intracellular Growth of These Bacteria in Macrophages▿

    OpenAIRE

    Reich-Slotky, Ronit; Kabbash, Christina A.; Della-Latta, Phyllis; Blanchard, John S.; Feinmark, Steven J.; Freeman, Sherry; Kaplan, Gilla; Shuman, Howard A.; Silverstein, Samuel C.

    2009-01-01

    We report here that gemfibrozil (GFZ) inhibits axenic and intracellular growth of Legionella pneumophila and of 27 strains of wild-type and multidrug-resistant Mycobacterium tuberculosis in bacteriological medium and in human and mouse macrophages, respectively. At a concentration of 0.4 mM, GFZ completely inhibited L. pneumophila fatty acid synthesis, while at 0.12 mM it promoted cytoplasmic accumulation of polyhydroxybutyrate. To assess the mechanism(s) of these effects, we cloned an L. pne...

  3. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  4. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers

    Institute of Scientific and Technical Information of China (English)

    Edward C. Cocking; Philip J. Stone; Michael R. Davey

    2005-01-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems,and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intraceliularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers,we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus,with minimal or zero inputs.

  5. Algicidal activity against Skeletonema costatum by marine bacteria isolated from a high frequency harmful algal blooms area in southern Chinese coast.

    Science.gov (United States)

    Shi, Rongjun; Huang, Honghui; Qi, Zhanhui; Hu, Weian; Tian, Ziyang; Dai, Ming

    2013-01-01

    Four marine bacterial strains P1, P5, N5 and N21 were isolated from the surface water and sediment of Mirs Bay in southern Chinese coast using the liquid infection method with 48-well plates. These bacteria were all shown to have algicidal activities against Skeletonema costatum. Based on morphological observations, biochemical tests and homology comparisons by 16S rDNA sequences, the isolated strains P1, P5, N5 and N21 were identified as Halobacillus sp., Muricauda sp., Kangiella sp. and Roseivirga sp., respectively. Our results showed that bacterial strain P1 killed S. costatum by release of heat labile algicide, while strains P5, N5 and N21 killed them directly. The algicidal processes of four bacterial strains were different. Strains P1, N5 and N21 disrupted the chain structure and S. costatum appeared as single cells, in which the cellular components were aggregated and the individual cells were inflated and finally lysed, while strain P5 decomposed the algal chains directly. We also showed that the algicidal activities of the bacterial strains were concentration-dependent. More specifically, 10 % (v/v) of bacteria in algae showed the strongest algicidal activities, as all S. costatum cells were killed by strains N5 and N21 within 72 h and by strains P1 and P5 within 96 h. 5 % of bacteria in algae also showed significant algicidal activities, as all S. costatum were killed by strains N5, P5 and N21 within 72, 96 and 120 h, respectively, whereas at this concentration, only 73.4 % of S. costatum cells exposed to strain P1 were killed within 120 h. At the concentration of 1 % bacteria in algae, the number of S. costatum cells continued to increase and the growth rate of algae upon exposure to strain N5 was significantly inhibited. PMID:23054696

  6. Metatranscriptome profiling of a harmful algal bloom.

    Science.gov (United States)

    Cooper, Endymion D; Bentlage, Bastian; Gibbons, Theodore R; Bachvaroff, Tsvetan R; Delwiche, Charles F

    2014-07-01

    Metagenomic methods provide a powerful means to investigate complex ecological phenomena. Developed originally for study of Bacteria and Archaea, the application of these methods to eukaryotic microorganisms is yet to be fully realized. Most prior environmental molecular studies of eukaryotes have relied heavily on PCR amplification with eukaryote-specific primers. Here we apply high throughput short-read sequencing of poly-A selected RNA to capture the metatranscriptome of an estuarine dinoflagellate bloom. To validate the metatranscriptome assembly process we simulated metatranscriptomic datasets using short-read sequencing data from clonal cultures of four algae of varying phylogenetic distance. We find that the proportion of chimeric transcripts reconstructed from community transcriptome sequencing is low, suggesting that metatranscriptomic sequencing can be used to accurately reconstruct the transcripts expressed by bloom-forming communities of eukaryotes. To further validate the bloom metatransciptome assembly we compared it to a transcriptomic assembly from a cultured, clonal isolate of the dominant bloom-causing alga and found that the two assemblies are highly similar. Eukaryote-wide phylogenetic analyses reveal the taxonomic composition of the bloom community, which is comprised of several dinoflagellates, ciliates, animals, and fungi. The assembled metatranscriptome reveals the functional genomic composition of a metabolically active community. Highlighting the potential power of these methods, we found that relative transcript abundance patterns suggest that the dominant dinoflagellate might be expressing toxin biosynthesis related genes at a higher level in the presence of competitors, predators and prey compared to it growing in monoculture. PMID:25484636

  7. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events

    Science.gov (United States)

    Sison-Mangus, Marilou P.; Jiang, Sunny; Kudela, Raphael M.; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6–65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12–86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  8. Harmful Algal Blooms (HABs)

    Science.gov (United States)

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  9. Allan Bloom's Quarrel with History.

    Science.gov (United States)

    Thompson, James

    1988-01-01

    Responds to Allan Bloom's "The Closing of the American Mind." Concludes that despite cranky comments about bourgeois culture, the focus of Bloom's attack is on historicism, which undercuts his nostalgic vision of a prosperous and just America. Condemns Bloom's exclusion of Blacks, Hispanics, and women from America's cultural heritage. (DMM)

  10. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306

    OpenAIRE

    Pegos, Vanessa R.; Canevarolo, Rafael R.; Sampaio, Aline P.; Andrea Balan; Ana C. M. Zeri

    2014-01-01

    Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quan...

  11. Late Blooming or Language Problem?

    Science.gov (United States)

    ... Careers Certification Publications Events Advocacy Continuing Education Practice Management Research Home / Information for the Public / Speech, Language and Swallowing / Disorders and Diseases Late Blooming or ...

  12. Incorporation of [3H]Leucine and [3H]Valine into Protein of Freshwater Bacteria: Uptake Kinetics and Intracellular Isotope Dilution

    OpenAIRE

    Jørgensen, Niels O. G.

    1992-01-01

    Incorporation of [3H]leucine and [3H]valine into proteins of freshwater bacteria was studied in two eutrophic lakes. Incorporation of both amino acids had a saturation level of about 50 nM external concentration. Only a fraction of the two amino acids taken up was used in protein synthesis. At 100 nM, the bacteria respired 91 and 78% of leucine and valine taken up, respectively. Respiration of 3H and 14C isotopes of leucine gave similar results. Most of the nonrespired leucine was recovered i...

  13. Effect of Water Bloom on the Nitrogen Transformation and the Relevant Bacteria%微囊藻水华对水体中氮转化及微生物的影响

    Institute of Scientific and Technical Information of China (English)

    李洁; 张思凡; 肖琳

    2016-01-01

    氮是水生态系统初级生产力的限制性生源要素,认识水体中氮的转化特征有利于调控和削减水体中过量的氮,对维持水生态健康十分重要。氨氧化细菌、氨氧化古菌以及反硝化细菌在氮循环中发挥关键作用。通过在室内构建微宇宙模拟蓝藻水华的重复暴发,发现在蓝藻水华暴发和衰亡短期内,TN、氨氮、 TOC 浓度快速升高和 DO 急剧降低,但后期逐渐得到恢复,且水体中的 TN 在高浓度藻存在下迅速降低。在蓝藻水华暴发和衰亡过程中,太湖水体中氨氧化菌演化为 AOB 占优势,氨氧化功能活性逐渐恢复,有利于水体中氨氮的去除。蓝藻水华暴发促进太湖水体中含 nirS 和 nirK 基因反硝化菌的数量增加至起始的100倍左右,从而促进水体中总氮的去除。%The biogeochemical cycle of nitrogen in the aquatic environment is the research hotspot in the world all the time. Nitrification and denitrification are the special processes of the microorganisms, and also the key steps in the nitrogen biogeochemical cycle possessing great significance in the freshwater ecosystem. In the processes of outbreaks of cyanobacterial blooms, total nitrogen, chlorophyll a, dissolved oxygen and pH decreased sharply, whilst dissolved organic carbon and ammonium nitrogen increased. The results of simulation of outbreaks of cyanobacterial blooms using micro-universe system in lab showed that the amoA gene abundance was reduced in the early stage and AOA was replaced by AOB gradually. Our results also showed that the amount of denitrifiers with nirS / nirK was elevated by also 100 times during the bloom outbreak, which can explain the promoted denitrification in the water during cyanobacterial bloom.

  14. A New Bloom: Transforming Learning

    Science.gov (United States)

    Cochran, David; Conklin, Jack

    2007-01-01

    This article discusses a new design for the classic Bloom's Taxonomy developed by Anderson, L. W. & Krathwohl, D. (2001), which can be used to evaluate learners' technology-enhanced experience in more powerful and critical ways. The New Bloom's Taxonomy incorporates contemporary research on learning and human cognition into its model. The original…

  15. ECOHAB: Doucette_G- Algicidal bacteria and the regulation of Karenia brevis blooms in the Gulf of Mexico from 1998-11-16 to 1999-09-29 (NODC Accession 0000542)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Interactions between bacteria and species of harmful and/or toxic algae are potentially important factors affecting both the population dynamics and toxicity of...

  16. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.

    Science.gov (United States)

    Hongo, Yuki; Ikuta, Tetsuro; Takaki, Yoshihiro; Shimamura, Shigeru; Shigenobu, Shuji; Maruyama, Tadashi; Yoshida, Takao

    2016-07-10

    Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves. PMID:27016297

  17. Algal Bloom: Boon or Bane?

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Algal blooms occur in response to nutrient deplete or replete conditions. Nitrogen fixing forms proliferate under oligotrophic conditions when nutrient levels are low. Replete conditions in response to upwelling creates the most biologically...

  18. OSU MODIS FLH Bloom Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two bloom products were developed for the Oregon coast based on the observed change between running 8-day composite chlorophyll-a (CHL) and fluorescence line-height...

  19. Molecular Characterization of cyanobacterial blooms

    Science.gov (United States)

    Traditionally, the detection and identification of cyanobacteria implicated in harmful algal blooms has been conducted using microscopical techniques. Such conventional methods are time consuming and cumbersome, cannot discriminate between closely related taxa, and cannot discrim...

  20. The pathogenetic role of rod-shaped bacteria containing intracellular granules in the vellus hairs of a patient with perioral dermatitis: A comparison with perioral corticosteroid-induced rosacea.

    Science.gov (United States)

    Maeda, Azusa; Ishiguro, Naoko; Kawashima, Makoto

    2016-08-01

    The cause of perioral dermatitis is still unknown. We previously reported that rod-shaped bacteria (RB) containing intracellular granules were detected in cases of perioral dermatitis at a high incidence. The aim of this study was to study further the role of RB in perioral dermatitis. Altogether 10 patients with perioral dermatitis and eight patients with perioral corticosteroid-induced rosacea, who were referred to our department from 2009 to 2014, were examined for the presence of RB, using the tape-stripping toluidine blue method. RB were detected on the surfaces of the roots of vellus hairs from lesions in nine of the 10 patients with perioral dermatitis. In contrast, RB were not detected in any of the eight patients with perioral corticosteroid-induced rosacea. No RB were found in the perioral areas of other types of facial dermatitis, including atopic dermatitis and seboerrheic dermatitis or in 16 healthy controls. We treated four of the patients with perioral dermatitis with minocycline hydrochloride and five with cefcapene pivoxil hydrochloride hydrate. Three of the patients with perioral dermatitis who were treated with minocycline hydrochloride were cured in 3 to 8 weeks, while the five patients treated with cefcapene pivoxil hydrochloride hydrate were cured in 2 to 9 weeks. These results strongly suggest that RB (possible fusobacteria) play an important role in perioral dermatitis and that this is probably a distinct clinical entity from corticosteroid-induced rosacea. Cefcapene pivoxil hydrochloride hydrate seems to be an effective treatment for perioral dermatitis associated with RB. PMID:25894304

  1. Reflections on Bloom's Revised Taxonomy

    Science.gov (United States)

    Amer, Aly

    2006-01-01

    In the application of the "Original" Bloom's taxonomy since its publication in 1956, several weaknesses and practical limitations have been revealed. Besides, psychological and educational research has witnessed the introduction of several theories and approaches to learning which make students more knowledgeable of and responsible for their own…

  2. Service discovery using Bloom filters

    NARCIS (Netherlands)

    Goering, Patrick; Heijenk, Geert; Lelieveldt, B.P.F.; Haverkort, B.R.H.M.; Laat, de C.T.A.M.; Heijnsdijk, J.W.J.

    2006-01-01

    A protocol to perform service discovery in adhoc networks is introduced in this paper. Attenuated Bloom filters are used to distribute services to nodes in the neighborhood and thus enable local service discovery. The protocol has been implemented in a discrete event simulator to investigate the beh

  3. Freshwater harmful algal blooms: toxins and children's health.

    Science.gov (United States)

    Weirich, Chelsea A; Miller, Todd R

    2014-01-01

    Massive accumulations of cyanobacteria (a.k.a. "blue-green algae"), known as freshwater harmful algal blooms (FHABs), are a common global occurrence in water bodies used for recreational purposes and drinking water purification. Bloom prevalence is increased due to anthropogenic changes in land use, agricultural activity, and climate change. These photosynthetic bacteria produce a range of toxic secondary metabolites that affect animals and humans at both chronic and acute dosages. Children are especially at risk because of their lower body weight, behavior, and toxic effects on development. Here we review common FHAB toxins, related clinical symptoms, acceptable concentrations in drinking water, case studies of children's and young adults' exposures to FHAB toxins through drinking water and food, methods of environmental and clinical detection in potential cases of intoxication, and best practices for FHAB prevention. PMID:24439026

  4. Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. I. Dependence between phytoplankton and bacteria development.

    Science.gov (United States)

    Chróst, R J

    1975-01-01

    Studies were conducted on the eutrophic Mikołajskie Lake in the Mazurian Lake District. Over the period of investigation three maxima of the development of phytoplankton were observed: in the spring, summer and autumn. During the algal blooms the total number of bacteria in the lake strongly decreased and was between several and a dozen time smaller than between blooms. The decrease in the total number of bacteria in water and the elimination of gram positive bacteria during the algal blooms is most probably caused by the production by the algae of substances inhibiting bacterial development. PMID:810003

  5. Heterotrophic bacterial responses to the winter-spring phytoplankton bloom in open waters of the NW Mediterranean

    Science.gov (United States)

    Gomes, Ana; Gasol, Josep M.; Estrada, Marta; Franco-Vidal, Leticia; Díaz-Pérez, Laura; Ferrera, Isabel; Morán, Xosé Anxelu G.

    2015-02-01

    The response of planktonic heterotrophic prokaryotes to the NW Mediterranean winter-spring offshore phytoplankton bloom was assessed in 3 cruises conducted in March, April-May and September 2009. Bulk measurements of phytoplankton and bacterioplankton biomass and production were complemented with an insight into bacterial physiological structure by single-cell analysis of nucleic acid content [low (LNA) vs. high (HNA)] and membrane integrity ("Live" vs. "Dead" cells). Bacterial production empirical conversion factors (0.82±0.25 SE kg C mol leucine-1) were almost always well below the theoretical value. Major differences in most microbial variables were found among the 3 periods, which varied from extremely high phytoplankton biomass and production during the bloom in March (>1 g C m-2 d-1 primary production) to typically oligotrophic conditions during September stratification (cells (47-97%) were temporally opposite in the study periods, with maxima in March and September, respectively. Different relationships were found between physiological structure and bottom-up variables, with HNA bacteria apparently more responsive to phytoplankton only during the bloom, coinciding with larger average cell sizes of LNA bacteria. Moderate phytoplankton-bacterioplankton coupling of biomass and activity was only observed in the bloom and post-bloom phases, while relationships between both compartments were not significant under stratification. With all data pooled, bacteria were only weakly bottom-up controlled. Our analyses show that the biomass and production of planktonic algae and bacteria followed opposite paths in the transition from bloom to oligotrophic conditions.

  6. Dangerous jellyfish blooms are predictable.

    Science.gov (United States)

    Gershwin, Lisa-ann; Condie, Scott A; Mansbridge, Jim V; Richardson, Anthony J

    2014-07-01

    The potentially fatal Irukandji syndrome is relatively common in tropical waters throughout the world. It is caused by the sting of the Irukandji jellyfish, a family of box jellyfish that are almost impossible to detect in the water owing to their small size and transparency. Using collated medical records of stings and local weather conditions, we show that the presence of Irukandji blooms in coastal waters can be forecast on the basis of wind conditions. On the Great Barrier Reef, blooms largely coincide with relaxation of the prevailing southeasterly trade winds, with average conditions corresponding to near zero alongshore wind on the day prior to the sting. These conditions are consistent with hypotheses long held by local communities and provide a basis for designing management interventions that have the potential to eliminate the majority of stings. PMID:24829278

  7. Development of Phaeocystis globosa blooms in the upwelling waters of the South Central coast of Viet Nam

    Science.gov (United States)

    Hai, Doan-Nhu; Lam, Nguyen-Ngoc; Dippner, Joachim W.

    2010-11-01

    Blooms of haptophyte algae in the south central coastal waters of Viet Nam often occur in association with upwelling phenomenon during the southwest (SW) monsoon. Depending on the magnitude of the blooms, damage to aquaculture farms may occur. Based on two years of data on biology, oceanography, and marine chemistry, the present study suggests a conceptual model of the growth of the haptophyte Phaeocystis globosa. At the beginning of the bloom, low temperature and abundant nutrient supply, especially nitrate from rain and upwelling, favour bloom development. Diatoms utilize available nitrate and phosphate; subsequently, higher ammonium concentration allows P. globosa to grow faster than the diatoms. At the end of the Phaeocystis bloom, free cells may become available as food for a heterotrophic dinoflagellate species, Noctiluca scintillans. During and after the phytoplankton bloom, remineralization by bacteria reduces dissolved oxygen to a very low concentration at depth, and favors growth of nitrate-reducing bacteria.A Lagrangian Harmful Algal Bloom (HAB) model, driven by a circulation model of the area, realistically simulates the transport of microalgae in surface waters during strong and weak SW monsoon periods, suggesting that it may be a good tool for early warning of HABs in Vietnamese coastal waters.

  8. MERUNUT PEMAHAMAN TAKSONOMI BLOOM: SUATU KONTEMPLASI FILOSOFIS

    OpenAIRE

    Dominikus Tulasi

    2010-01-01

    This article would like to share the use of Bloom's taxonomy as a cognitive framework for teaching-learning process to undertake the way student-centered learning. Related to the curriculum based competence in excellent education, the abstract cognitive in applying Blooms taxonomy is so called scaffolding. We know the taxonomy Bloom is a six-level classification system that uses observed student behavior to infer and absorb the level of cognitive achievement domain. This article surveys think...

  9. Modelling the production of dimethylsulfide during a phytoplankton bloom

    Science.gov (United States)

    Gabric, Albert; Murray, Nicholas; Stone, Lewi; Kohl, Manfred

    1993-12-01

    Dimethylsulfide (DMS) is an important sulfur-containing atmospheric trace gas of marine biogenic origin. DMS emitted from the oceans may be a precursor of tropospheric aerosols and cloud condensation nuclei (CCN), thereby affecting the Earth's radiative balance and possibly constituting a negative feedback to global warming, although this hypothesis is still somewhat controversial. The revised conceptual model of the marine pelagic food web gives a central role to planktonic bacteria. Recent experiments have shown that consumption of dissolved DMS by microbial metabolism may be more important than atmospheric exchange in controlling its concentration in surface waters and hence its ventilation to the atmosphere. In this paper we investigate the effect of the marine food web on cycling of dissolved DMS in surface waters during a phytoplankton bloom episode. A nitrogen-based flow network simulation model has been used to analyze the relative importance of the various biological and chemical processes involved. The model predictions suggest that the concentration of DMS in marine surface waters is indeed governed by bacterial metabolism. Environmental factors that affect the bacterial compartment are thus likely to have a relatively large influence on dissolved DMS concentrations. The ecological succession is particularly sensitive to the ratio of phytoplankton to bacterial nutrient uptake rates as well the interaction between herbivore food chain and the microbial loop. Importantly for the design of field studies, the model predicts that peak DMS concentrations are achieved during the decline of the phytoplankton bloom with a typical time lag between peak DMS and peak phytoplankton biomass of 1 to 2 days. Significantly, the model predicts a relatively high DMS concentration persisting after the phytoplankton bloom due to excretion from large protozoa and zooplankton, which may be an additional explanation for the lack of correlation between DMS and chlorophyll a

  10. Algae Bloom in a Lake

    OpenAIRE

    David Sanabria

    2008-01-01

    The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface...

  11. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  12. Cyanobacteria blooms: effects on aquatic ecosystems.

    Science.gov (United States)

    Havens, Karl E

    2008-01-01

    Cyanobacteria become increasingly dominant as concentrations of TP and TN increase during eutrophication of lakes, rivers and estuaries. Temporal dynamics of cyanobacteria blooms are variable--in some systems persistent blooms occur in summer to fall, whereas in other systems blooms are more sporadic. Cyanobacteria blooms have a wide range of possible biological impacts including potential toxic effects on other algae, invertebrates and fish, impacts to plants and benthic algae due to shading, and impacts to food web function as large inedible algae produce a bottleneck to C and energy flow in the plankton food web. In lakes with dense blooms of cyanobacteria, accumulation of organic material in lake sediments and increased bacterial activity also may lead to anoxic conditions that alter the structure of benthic macro-invertebrates. Diffusive internal P loading may increase, and hypolimnetic anoxia may lead to a loss of piscivorous fish that require a summer cold water refuge in temperate lakes. Ecosystem changes associated with frequent blooms may result in delayed response of lakes, rivers and estuaries to external nutrient load reduction. Despite numerous case studies and a vast literature on species-specific responses, community level effects of cyanobacterial blooms are not well understood--in particular the realized impacts of toxins and changes in food web structure/function. These areas require additional research given the prevalence of toxic blooms in the nation's lakes, rivers and coastal waters--systems that provide a wide range of valued ecosystem services. PMID:18461790

  13. Summer heatwaves promote blooms of harmful cyanobacteria

    NARCIS (Netherlands)

    Joehnk, K.D; Huisman, J.; Sharples, J.; Sommeijer, B.P.; Visser, P.M.; Stroom, J.M.

    2008-01-01

    Dense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a lake experi

  14. Algal blooms and Membrane Based Desalination Technology

    NARCIS (Netherlands)

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational pro

  15. Heterotrophic bacterial responses to the winter–spring phytoplankton bloom in open waters of the NW Mediterranean

    KAUST Repository

    Gomes, Ana

    2014-12-03

    The response of planktonic heterotrophic prokaryotes to the NW Mediterranean winter–spring offshore phytoplankton bloom was assessed in 3 cruises conducted in March, April–May and September 2009. Bulk measurements of phytoplankton and bacterioplankton biomass and production were complemented with an insight into bacterial physiological structure by single-cell analysis of nucleic acid content [low (LNA) vs. high (HNA)] and membrane integrity (“Live” vs. “Dead” cells). Bacterial production empirical conversion factors (0.82±0.25 SE kg C mol leucine−1) were almost always well below the theoretical value. Major differences in most microbial variables were found among the 3 periods, which varied from extremely high phytoplankton biomass and production during the bloom in March (>1 g C m−2 d−1 primary production) to typically oligotrophic conditions during September stratification (<200 mg C m−2 d−1). In both these periods bacterial production was ~30 mg C m−2 d−1 while very large bacterial production (mean 228, with some stations exceeding 500 mg C m−2 d−1) but low biomass was observed during the April–May post-bloom phase. The contribution of HNA (30–67%) and “Live” cells (47–97%) were temporally opposite in the study periods, with maxima in March and September, respectively. Different relationships were found between physiological structure and bottom-up variables, with HNA bacteria apparently more responsive to phytoplankton only during the bloom, coinciding with larger average cell sizes of LNA bacteria. Moderate phytoplankton–bacterioplankton coupling of biomass and activity was only observed in the bloom and post-bloom phases, while relationships between both compartments were not significant under stratification. With all data pooled, bacteria were only weakly bottom-up controlled. Our analyses show that the biomass and production of planktonic algae and bacteria followed opposite paths in the transition from bloom to

  16. Qualitative importance of the microbial loop and plankton community structure in a eutropic lake during a bloom of Cyanobacteria

    DEFF Research Database (Denmark)

    Christoffersen, K.

    1990-01-01

    , supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom of Aphanizornenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web...... carbon accounted for only 4-9% of bacterial carbon demand. Cyclopoid copepods and smallsized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ...

  17. Detecting algae blooms in European waters

    OpenAIRE

    Park, Y; K. Ruddick

    2007-01-01

    A near real-time algal bloom detection service has been developed for European waters. Daily chlorophyll a data from Envisat/MERIS and Aqua/MODIS are compared to a predefined threshold map to determine whether an algal bloom has occurred. The design of the threshold map takes account of two factors. Firstly, over European waters regional differences in typical and extreme levels of chlorophyll a span two orders of magnitude. A concentration, e.g. 2 µg/l, that would be considered as a bloom co...

  18. Extreme Algal Bloom Detection with MERIS

    Science.gov (United States)

    Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.

    2009-05-01

    Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.

  19. Asthma Symptoms Can Bloom in Springtime

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159082.html Asthma Symptoms Can Bloom in Springtime Follow your care ... 27, 2016 FRIDAY, May 27, 2016 (HealthDay News) -- Asthma symptoms increase in spring, making it especially important ...

  20. Bloom's taxonomy of cognitive learning objectives.

    Science.gov (United States)

    Adams, Nancy E

    2015-07-01

    Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.

  1. Algal blooms and Membrane Based Desalination Technology

    OpenAIRE

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling...

  2. Rainfall-enhanced blooming in typhoon wakes.

    Science.gov (United States)

    Lin, Y-C; Oey, L-Y

    2016-01-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm. PMID:27545899

  3. Rainfall-enhanced blooming in typhoon wakes

    Science.gov (United States)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  4. Biology in Bloom: Implementing Bloom's Taxonomy to Enhance Student Learning in Biology

    Science.gov (United States)

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and…

  5. Biomass decay rates and tissue nutrient loss in bloom and non-bloom-forming macroalgal species

    Science.gov (United States)

    Conover, Jessie; Green, Lindsay A.; Thornber, Carol S.

    2016-09-01

    Macroalgal blooms occur in shallow, low-wave energy environments and are generally dominated by fast-growing ephemeral macroalgae. When macroalgal mats undergo senescence and decompose they can cause oxygen depletion and release nutrients into the surrounding water. There are relatively few studies that examine macroalgal decomposition rates in areas impacted by macroalgal blooms. Understanding the rate of macroalgal bloom decomposition is essential to understanding the impacts of macroalgal blooms following senescence. Here, we examined the biomass, organic content, nitrogen decay rates and δ15N values for five macroalgal species (the bloom-forming Agardhiella subulata, Gracilaria vermiculophylla, Ulva compressa, and Ulva rigida and the non-bloom-forming Fucus vesiculosus) in Narragansett Bay, Rhode Island, U.S.A. using a litterbag design. Bloom-forming macroalgae had similar biomass decay rates (0.34-0.51 k d-1) and decayed significantly faster than non-bloom-forming macroalgae (0.09 k d-1). Biomass decay rates also varied temporally, with a significant positive correlation between biomass decay rate and water temperature for U. rigida. Tissue organic content decreased over time in all species, although A. subulata and G. vermiculophylla displayed significantly higher rates of organic content decay than U. compressa, U. rigida, and F. vesiculosus. Agardhiella subulata had a significantly higher rate of tissue nitrogen decay (0.35 k d-1) than all other species. By contrast, only the δ15N of F. vesiculosus changed significantly over the decay period. Overall, our results indicate that bloom-forming macroalgal species decay more rapidly than non-bloom-forming species.

  6. Antibody-Fc receptor interactions in protection against intracellular pathogens.

    Science.gov (United States)

    Joller, Nicole; Weber, Stefan S; Oxenius, Annette

    2011-04-01

    Intracellular pathogen-specific antibodies (Abs) can contribute to host protection by a number of different mechanisms. Ab opsonization of pathogens residing outside a host cell can prevent infection of target cells either via neutralization of the critical surface epitopes required for host cell entry, complement-mediated degradation, or via subsequent intracellular degradation. In the case of intracellular localization, Abs can bind to infected cells and thus mark them for destruction by Fc receptor (FcR)-bearing effector cells. This review focuses on the protective role of Abs against intracellular bacteria and parasites involving FcR interactions that modulate the intracellular trafficking of the pathogen, the ability of FcRs to interfere with the establishment of an intracellular replicative niche and the involvement of FcRs to modulate pathogen-specific T-cell responses. PMID:21413006

  7. Phytoplankton Bloom Phenology near Palmer Station Antarctica

    Science.gov (United States)

    Crews, L.; Doney, S. C.; Kavanaugh, M.; Ducklow, H. W.; Schofield, O.; Glover, D. M.

    2015-12-01

    West Antarctic Peninsula (WAP) phytoplankton bloom phenology is coupled to growing season water column stratification precipitated by seasonal warming and the melting of winter sea-ice. Previous studies document declining bloom magnitude over decadal timescales in conjunction with decreasing sea-ice extent and duration in the Northern WAP, but less work has been to done explain the observed inter-annual variability in this region. Here we use a high-resolution in situ time series collected by the Palmer Station Antarctica Long Term Ecological Research program and satellite ocean color imagery to investigate the underlying mechanisms controlling phytoplankton bloom timing and magnitude near Palmer Station. We pair chlorophyll and CTD measurements collected twice per week during the austral summer, 1992—2003, with satellite ocean color and ice fractional cover data to examine bloom development and within-season trends in mixed layer depth. Initial results suggest a possible shift over time with spring/summer blooms occurring earlier in the growing season reflecting earlier sea-ice free conditions. Net phytoplankton accumulation rates are also computed and compared against growth estimates. Our results can be used to develop and validate models of coastal Antarctic primary production that better represent inter-annual primary production variability.

  8. Advances in genetic manipulation of obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Paul eBeare

    2011-05-01

    Full Text Available Infections by obligate intracellular bacterial pathogens result in significant morbidity and mortality worldwide. These bacteria include Chlamydia spp., which causes millions of cases of sexually transmitted disease and blinding trachoma annually, and members of the α-proteobacterial genera Anaplasma, Ehrlichia, Orientia and Rickettsia, agents of serious human illnesses including epidemic typhus. Coxiella burnetii, the agent of human Q fever, has also been considered a prototypical obligate intracellular bacterium, but recent host cell-free (axenic growth has rescued it from obligatism. The historic genetic intractability of obligate intracellular bacteria has severely limited molecular dissection of their unique lifestyles and virulence factors involved in pathogenesis. Host cell restricted growth is a significant barrier to genetic transformation that can make simple procedures for free-living bacteria, such as cloning, exceedingly difficult. Low transformation efficiency requiring long term culture in host cells to expand small transformant populations is another obstacle. Despite numerous technical limitations, the last decade has witnessed significant gains in genetic manipulation of obligate intracellular bacteria including allelic exchange. Continued development of genetic tools should soon enable routine mutation and complementation strategies for virulence factor discovery and stimulate renewed interest in these refractory pathogens. In this review, we discuss the technical challenges associated with genetic transformation of obligate intracellular bacteria and highlight advances made with individual genera.

  9. Winter−spring transition in the subarctic Atlantic: microbial response to deep mixing and pre-bloom production

    DEFF Research Database (Denmark)

    Paulsen, Maria Lund; Riisgaard, Karen; Thingstad, T. Frede;

    2015-01-01

    In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, we document an active microbial food web dominated by pico- and nanoplankton prior to the diatom bloom...... bacteria ratio), and an increase in abundance and size of heterotrophic protists. The major chl a contribution in the early winter−spring transition was found in the fraction pico- and small nanophytoplankton. The relative abundance of picophytoplankton decreased towards the end...

  10. Internal affairs: investigating the Brucella intracellular lifestyle.

    Science.gov (United States)

    von Bargen, Kristine; Gorvel, Jean-Pierre; Salcedo, Suzana P

    2012-05-01

    Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.

  11. AN OVERVIEW ON BLOOM'S REVISED TAKSONOMY

    OpenAIRE

    TUTKUN, Ömer Faruk

    2013-01-01

    In this study, the main purpose is to present the main frame of revised version in 2001 of Bloom's taxonomy that has been accepted extensively in our country since 1956 as well as around the world. In accordance with this purpose, in the study, answers have been searched to these questions: 1- The rise of the original Bloom's taxonomy and what are the key features of? 2- What are the reasons for renewal of original taxonomy? 3- What kind of arrangements has been made in revised taxonomy? 4- W...

  12. Coastal engineering and Harmful Algal Blooms along Alexandria coast, Egypt

    Directory of Open Access Journals (Sweden)

    Amany A. Ismael

    2014-01-01

    The phytoplankton composition and its standing crop became totally different during the two periods. The most important bloom was caused by Micromonas pusilla forming a heavy green tide accompanied by a bloom of Peridinium quinquecorne. Although there were no fish or invertebrate mortality, this bloom caused economic losses to internal tourism. In the absence of any Environmental Assessment, the coastal engineering works increased the harmful algal blooms in Alexandria coastal waters, even after corrective steps were taken to mitigate the harmful effects.

  13. Roles of autophagy in elimination of intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Eun-Kyeong eJo

    2013-05-01

    Full Text Available As a fundamental intracellular catabolic process, autophagy is important and required for the elimination of protein aggregates and damaged cytosolic organelles during a variety of stress conditions. Autophagy is now being recognized as an essential component of innate immunity; i.e., the recognition, selective targeting, and elimination of microbes. Because of its crucial roles in the innate immune system, therapeutic targeting of bacteria by means of autophagy activation may prove a useful strategy to combat intracellular infections. However, important questions remain, including which molecules are critical in bacterial targeting by autophagy, and which mechanisms are involved in autophagic clearance of intracellular microbes. In this review, we discuss the roles of antibacterial autophagy in intracellular bacterial infections (Mycobacteria, Salmonella, Shigella, Listeria, and Legionella and present recent evidence in support of molecular mechanisms driving autophagy to target bacteria and eliminate invading pathogens.

  14. Spring bloom onset in the Nordic Seas

    Science.gov (United States)

    Mignot, Alexandre; Ferrari, Raffaele; Mork, Kjell Arne

    2016-06-01

    The North Atlantic spring bloom is a massive annual growth event of marine phytoplankton, tiny free-floating algae that form the base of the ocean's food web and generates a large fraction of the global primary production of organic matter. The conditions that trigger the onset of the spring bloom in the Nordic Seas, at the northern edge of the North Atlantic, are studied using in situ data from six bio-optical floats released north of the Arctic Circle. It is often assumed that spring blooms start as soon as phytoplankton cells daily irradiance is sufficiently abundant that division rates exceed losses. The bio-optical float data instead suggest the tantalizing hypothesis that Nordic Seas blooms start when the photoperiod, the number of daily light hours experienced by phytoplankton, exceeds a critical value, independently of division rates. The photoperiod trigger may have developed at high latitudes where photosynthesis is impossible during polar nights and phytoplankton enters into a dormant stage in winter. While the first accumulation of biomass recorded by the bio-optical floats is consistent with the photoperiod hypothesis, it is possible that some biomass accumulation started before the critical photoperiod but at levels too low to be detected by the fluorometers. More precise observations are needed to test the photoperiod hypothesis.

  15. MERUNUT PEMAHAMAN TAKSONOMI BLOOM: SUATU KONTEMPLASI FILOSOFIS

    Directory of Open Access Journals (Sweden)

    Dominikus Tulasi

    2010-09-01

    Full Text Available This article would like to share the use of Bloom's taxonomy as a cognitive framework for teaching-learning process to undertake the way student-centered learning. Related to the curriculum based competence in excellent education, the abstract cognitive in applying Blooms taxonomy is so called scaffolding. We know the taxonomy Bloom is a six-level classification system that uses observed student behavior to infer and absorb the level of cognitive achievement domain. This article surveys thinking within general education and management education, which uses and draws on Bloom's taxonomy, and then describes suggested uses of the taxonomy. The empirical evaluation of its effect on student achievement follows, as do thoughts about ways colleagues might use this tool to empower and motivate students as self-responsible learners in the classroom. The objective is to promote higher order thinking in college students, we understood an effort to learn how to assess critical-thinking skills in an introductory course. It means, we develop a process by which questions are prepared with both content and critical-thinking skills in mind.

  16. Acquisition of an animal gene by microsporidian intracellular parasites

    OpenAIRE

    Selman, Mohammed; Pombert, Jean-François; Solter, Leellen; Farinelli, Laurent; Weiss, Louis M.; Keeling, Patrick; Corradi, Nicolas

    2011-01-01

    Parasites have adapted to their specialised way of life by a number of means, including the acquisition of genes by horizontal gene transfer. These newly acquired genes seem to come from a variety of sources, but seldom from the host, even in the most intimate associations between obligate intracellular parasite and host [1]. Microsporidian intracellular parasites have acquired a handful of genes, mostly from bacteria, that help them take energy from their hosts or protect them from the envir...

  17. Biology in Bloom: Implementing Bloom's Taxonomy to Enhance Student Learning in Biology

    OpenAIRE

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and enhance teaching and student learning in a discipline-specific manner in postsecondary education. The BBT was first designed and extensively tested fo...

  18. Species dominance and niche breadth in bloom and non-bloom phytoplankton populations

    OpenAIRE

    Ignatiades, L.

    1994-01-01

    This paper describes the quantitative relationships between phytoplankton abundance and species number, dominance and niche breadth during ''bloom'' and ''non-bloom'' stages in a coastal marine environment of the Eastern Mediterranean Sea. Analysis of the relative frequency distribution of the species breadth per sample showed each assemblage to be a mixture of species with narrow ( 8) niche breadth. Assemblages with higher (> 30) numbers of species tended to ...

  19. Subsurface phytoplankton blooms fuel pelagic production in the North Sea

    DEFF Research Database (Denmark)

    Richardson, Kathrine; Visser, Andre; Pedersen, Flemming

    2000-01-01

    The seasonal phytoplankton biomass distribution pattern in stratified temperate marine waters is traditionally depicted as consisting of spring and autumn blooms. The energy source supporting pelagic summer production is believed to be the spring bloom. However, the spring bloom disappears...... relatively quickly from the water column and a large proportion of the material sedimenting to the bottom following the spring bloom is often comprised of intact phytoplankton cells. Thus, it is easy to argue that the spring bloom is fueling the energy demands of the benthos, but more difficult to argue...... convincingly that energy fixed during the spring bloom is fueling the pelagic production occurring during summer months. We argue here that periodic phytoplankton blooms are occurring during the summer in the North Sea at depths of >25 m and that the accumulated new production [sensu (Dugdale and Goering...

  20. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  1. Siderophores: The special ingredient to cyanobacterial blooms

    Science.gov (United States)

    Du, Xue; Creed, Irena; Trick, Charles

    2013-04-01

    Freshwater lakes provide a number of significant ecological services including clean drinking water, habitat for aquatic biota, and economic benefits. The provision of these ecological services, as well as the health of these aquatic systems, is threatened by the excessive growth of algae, specifically, cyanobacteria. Historically, blooms have been linked to eutrophication but recent occurrences indicate that there are less dramatic changes that induce these blooms. Iron is an essential micronutrient required for specific essential metabolic pathways; however, the amount of biologically available iron in naturally occurring lake ranges from saturation to much lower than cell transport affinities. To assist in the modulation of iron availabilities, cyanobacteria in culture produce low molecular weight compounds that function in an iron binding and acquisition system; nevertheless, this has yet to be confirmed in naturally occurring lakes. This project explored the relationship of P, N and in particular, Fe, in the promotion of cyanobacteria harmful algal blooms in 30 natural freshwater lakes located in and around the Elk Island National Park, Alberta. It is hypothesized that cyanobacteria produce and utilize iron chelators called siderophores in low Fe and nitrogen (N) conditions, creating a competitive advantage over other algae in freshwater lakes. Lakes were selected to represent a range of iron availability to explore the nutrient composition of lakes that propagated cyanobacteria harmful algal blooms (cHABs) compared to lakes that did not. Lake water was analyzed for nutrients, microbial composition, siderophore concentration, and toxin concentration. Modifications were made to optimize the Czaky and Arnow tests for hydroxamate- and catecholate-type siderophores, respectively, for field conditions. Preliminary results indicate the presence of iron-binding ligands (0.11-2.34 mg/L) in freshwater lakes characterized by widely ranging Fe regimes (0.04-2.74 mg

  2. Strategies for Intracellular Survival of Burkholderia pseudomallei.

    Science.gov (United States)

    Allwood, Elizabeth M; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  3. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  4. Biology and intracellular life of chlamydia

    Directory of Open Access Journals (Sweden)

    Ranin Lazar

    2011-01-01

    Full Text Available Introduction. Chlamydiae are Gram-negative obligate intracellular bacteria. The developmental cycle of Chlamydiae is specific and different from other bacteria. The elementary body is the infectious form of the organism, responsible for attaching to the target host cell and promoting its entry. The reticulate body is the larger, metabolically active form of the organism, synthesizing deoxyribonucleic acid, ribonucleic acid and proteins. The elementary body and reticulate body represent evolutionary adaptations to extracellular and intracellular environments. Intracellular persistence of Chlamydia. Predisposition of Chlamydia to persist within the host cell has been recognized as a major factor in the pathogenesis of chlamydial disease. The persistence implies a long-term association between chlamydiae and their host cell that may not manifest as clinically recognizable disease. The ability of chlamydia to remain within one morphological state for a long time in response to exogenous factors suggests an innate ability of these organisms to persist intracellulary in a unique developmental form. Chlamydiae induce interferon γ and exhibit growth inhibition in their presence. While the high levels of interferon γ completely restrict the development of chlamydia, its low levels induce the development of morphologically aberrant intracellular forms. The persistent forms contain reduced levels of major outer membrane protein but high levels of chlamydial heat shock protein. Conclusion. Immunopathogenesis of chlamydial infection is one of the main focal points of current research into Chlamydia. Chlamydial infections are highly prevalent, usually asymptomatic and associated with serious sequelae. Screening programmes are the most important in the prevention of a long-term sequele.

  5. Is Bloom's Taxonomy Appropriate for Computer Science?

    OpenAIRE

    Johnson, Colin G.; Fuller, Ursula

    2007-01-01

    Bloom's taxonomy attempts to provide a set of levels of cognitive engagement with material being learned. It is usually presented as a generic framework. In this paper we outline some studies which examine whether the taxonomy is appropriate for computing, and how its application in computing might differ from its application elsewhere. We place this in the context of ongoing debates concerning graduateness and attempts to benchmark the content of a computing degree.

  6. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  7. Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages.

    Science.gov (United States)

    Saxton, Matthew A; Arnold, Robert J; Bourbonniere, Richard A; McKay, Robert Michael L; Wilhelm, Steven W

    2012-01-01

    Blooms of the potentially toxic cyanobacterium Microcystis are common events globally, and as a result significant resources continue to be dedicated to monitoring and controlling these events. Recent studies have shown that a significant proportion of total cell-associated phosphorus (P) in marine phytoplankton can be surface adsorbed; as a result studies completed to date do not accurately report the P demands of these organisms. In this study we measure the total cell-associated and intracellular P as well as growth rates of two toxic strains of Microcystis aeruginosa Kütz grown under a range of P concentrations. The results show that the intracellular P pool in Microcystis represents a percentage of total cell-associated P (50-90%) similar to what has been reported for actively growing algae in marine systems. Intracellular P concentrations (39-147 fg cell(-1)) generally increased with increasing P concentrations in the growth medium, but growth rate and the ratio of total cell-associated to intracellular P remained generally stable. Intracellular P quotas and growth rates in cells grown under the different P treatments illustrate the ability of this organism to successfully respond to changes in ambient P loads, and thus have implications for ecosystem scale productivity models employing P concentrations to predict algal bloom events. PMID:22279445

  8. Plasticity of total and intracellular phosphorus quotas in Microcystis aeruginosa cultures and Lake Erie algal assemblages

    Directory of Open Access Journals (Sweden)

    Matthew A Saxton

    2012-01-01

    Full Text Available Blooms of the potentially toxic cyanobacterium Microcystis are common events globally, and as a result significant resources continue to be dedicated to monitoring and controlling these events. Recent studies have shown that a significant proportion total cell-associated phosphorus (P in phytoplankton can be surface adsorbed, and many of our current measurements do not accurately reflect the P demands of these organisms. In this study we measure the total cell-associated and intracellular P as well as growth rates of two toxic strains of Microcystis aeruginosa Kütz grown under a range of P concentrations. The results show that the intracellular P pool in Microcystis represents a percentage of total cell-associated P (50-90% similar to what has been reported for actively growing algae in marine systems. Intracellular P levels (39-147 fg cell-1 generally increased with increasing growth media P concentrations, but growth rate and the ratio of total cell-associated to intracellular P remained generally stable. Intracellular P quotas and growth rates in cells grown under the different P treatments illustrate the ability of this organism to successfully respond to changes in ambient P loads, and thus have implications for ecosystem scale productivity models employing P concentrations to predict algal bloom events.

  9. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    Science.gov (United States)

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  10. Coastal bacterial viability and production in the eastern English Channel: A case study during a Phaeocystis globosa bloom

    Science.gov (United States)

    Lamy, D.; Artigas, L. F.; Jauzein, C.; Lizon, F.; Cornille, V.

    2006-10-01

    Heterotrophic bacterial standing stocks (total and viable cells) and production were determined in the coastal surface waters of the eastern English Channel, during different stages of a phytoplankton succession. Two coastal zones of variable freshwater influence were surveyed within the 'coastal flow system' (Wimereux and Somme Bay) where massive and recurrent Phaeocystis globosa blooms take place in spring. The proportion of intact (MEM+) cells, assessed by the LIVE/DEAD® BacLight™ (L/D) method, varied from 15 to 94% at the two coastal stations studied (median of 46%). MEM+ and total (DAPI) cell counts were significantly correlated over the study period, whereas the higher proportion of MEM+ cells did not correspond to an elevated bacterial cell production (BP). Low levels of living (potentially active) cells were nevertheless responsible for the high productivity levels within the bacterial community when the P. globosa bloom declined. Our study revealed that the bacterial carbon production/primary production ratios (BCP/PP) showed broad variations (7 to 111%) within each site, going from low values (7-16%) when the bloom was the most productive, to higher values (61-111%) at the end of the bloom. This suggested (i) a temporal uncoupling between bacteria and phytoplankton throughout the bloom duration and (ii) a drastic change of the amount of PP potentially processed by the bacterial community among high and low productive periods. The BCP increase after the decline of the P. globosa bloom implies that, at this time, a large part of the phytoplankton-derived organic matter (OM) was remineralised via the bacterial heterotrophic production. With respect to the L/D results, this bacterial remineralisation was due to a small yet productive total cell fraction.

  11. Co-monitoring bacterial and dinoflagellates communities by denaturing gradient gel electrophoresis (DGGE) and SSU rRNA sequencing during a dinoflagellates bloom

    Institute of Scientific and Technical Information of China (English)

    KANJinjun; CHENFeng

    2004-01-01

    Dinoflagellates are unicellular eukaryotic protists that dominate in all coastal waters, and are also present in oceanic waters. Despite the central importance of dinoflagellates in global primary production, the relationship between dinoflagellates and bacteria are still poorly understood. In order to understand the ecological interaction between bacterial and dinoflageUates communities, denaturing gradient gel electrophoresis (DGGE) and SSU rRNA sequencing were applied to monitoring the population dynamics of bacteria and dinoflagellates from the onset to disappearance of a dinoflagellates bloom occurred in Baltimore Inner Harbor, from April 15 to 24, 2002. Although Prorocentrum minimum was the major bloom forming species under the light microscopy, DGGE method with dinoflagellate specific primers demonstrated that Prorocentrum micans, Gymnodinium galatheanum and Gyrodinium uncatenum were also present during the bloom. Population shifts among the minor dinoflagellate groups were observed. DGGE of PCR-amplified 16S rRNA gene fragments indicated that cyanobacteria, α, β, γ-proteobacteria, FlavobacteriumBacteroides-Cytophaga (FBC), and Planctomcetes were the major components of bacterial assemblages during the bloom. DGGE analysis showed that Cytophagales and α-proteobacteria played important roles at different stages of dinoflagellates bloom. DGGE can be used as a rapid tool to simultaneously monitor population dynamics of both bacterial and dinoflagellates communities in aquatic environments, which is demonstrated here.

  12. Nanovehicular intracellular delivery systems.

    Science.gov (United States)

    Prokop, Ales; Davidson, Jeffrey M

    2008-09-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  13. Biology in bloom: implementing Bloom's Taxonomy to enhance student learning in biology.

    Science.gov (United States)

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and enhance teaching and student learning in a discipline-specific manner in postsecondary education. The BBT was first designed and extensively tested for a study in which we ranked almost 600 science questions from college life science exams and standardized tests. The BBT was then implemented in three different collegiate settings. Implementation of the BBT helped us to adjust our teaching to better enhance our students' current mastery of the material, design questions at higher cognitive skills levels, and assist students in studying for college-level exams and in writing study questions at higher levels of Bloom's Taxonomy. From this work we also created a suite of complementary tools that can assist biology faculty in creating classroom materials and exams at the appropriate level of Bloom's Taxonomy and students to successfully develop and answer questions that require higher-order cognitive skills.

  14. Study on the Possible Cause of Water Blooming and the Bloom-PreventionTechnology in Lake Qiandaohu

    Institute of Scientific and Technical Information of China (English)

    LIUQi-gen; CHENMa-kang; TONGHe-yi; HEGuang-xi; HONGRong-hua; CHENLai-sheng; CHENLi-qiao

    2004-01-01

    A hypothesis was formulated to explain the possible cause of water bloom occurring in Lake Qiandaohu in 1998 and 1999. We tested this hypothesis with a 3-year in situ field study. The results showed that the reconstruction of the silver carp and bighead carp populations, without other measures of nutrient control, could prevent the recurrence of algal bloom in the lake successfully. This result could serve as an evidence to the suggested hypothesis for water blooming: The drastic decline of the filter feeding silver carp and bighead carp in the lake, rather than the nutrients overloading, was mainly responsible for the algal bloom. According to this study, we suggest a general hypothesis to the ecological mechanism of algal blooming: The insufficient grazing from the phytoplanktivores (top-down control) to the algal reproduction from nutrients available (bottom-up effect) is the radical cause of water blooming, while conventionally,it is primarily attributed to the enrichment of nutrients. Besides, this study showed that stocking silver carp and bighead carp in lakes could improve water quality, which is also contrary to the conventional opinion. Finally, this study provided a costeffective and practicable approach to control water bloom for the large-sized reservoirs,especially when water blooming occurred locally. A net-enclosed aquaculture zone (NEAZ) can be established in the nutrients-exposure area of the waters and stocked with the two carps, water bloom could be controlled and prevented.

  15. Study on the Possible Cause of Water Blooming and the Bloom-Prevention Technology in Lake Qiandaohu

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-gen; CHEN Ma-kang; TONG He-yi; HE Guang-xi; HONG Rong-hua; CHEN Lai-sheng; CHEN Li-qiao

    2004-01-01

    A hypothesis was formulated to explain the possible cause of water bloom occurring inLake Qiandaohu in 1998 and 1999. We tested this hypothesis with a 3-year in situ fieldstudy. The results showed that the reconstruction of the silver carp and bighead carppopulations, without other measures of nutrient control, could prevent the recurrence ofalgal bloom in the lake successfully. This result could serve as an evidence to thesuggested hypothesis for water blooming: The drastic decline of the filter feedingsilver carp and bighead carp in the lake, rather than the nutrients overloading, wasmainly responsible for the algal bloom. According to this study, we suggest a generalhypothesis to the ecological mechanism of algal blooming: The insufficient grazing fromthe phytoplanktivores (top-down control) to the algal reproduction from nutrientsavailable (bottom-up effect) is the radical cause of water blooming, while conventionally,it is primarily attributed to the enrichment of nutrients. Besides, this study showedthat stocking silver carp and bighead carp in lakes could improve water quality, whichis also contrary to the conventional opinion. Finally, this study provided a cost-effective and practicable approach to control water bloom for the large-sized reservoirs,especially when water blooming occurred locally. A net-enclosed aquaculture zone (NEAZ)can be established in the nutrients-exposure area of the waters and stocked with the twocarps, water bloom could be controlled and prevented.

  16. THERMAL BLOOMING OF HIGH POWER LASER BEAMS

    OpenAIRE

    Philbert, M.; Billard, M.; Fertin, G.; Lefèvre, J.

    1980-01-01

    With a view to better predicting the effects of thermal defocusing within the atmosphere, an experimental simulation set-up has been designed at ONERA. This consists essentially of a vertical airtight cell containing a gas or gas mixture sufficiently absorbing to induce "blooming" of a CO2 laser beam over a distance of about 3 m. A return wind tunnel, integrated within the cell, creates a uniform wind on the beam propagation path ; the wind velocity may be precisely adjusted between 0.1 and 2...

  17. Selective algicidal action of peptides against harmful algal bloom species.

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Park

    Full Text Available Recently, harmful algal bloom (HAB, also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal

  18. Selective algicidal action of peptides against harmful algal bloom species.

    Science.gov (United States)

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  19. Phytoplankton Bloom in North Sea off Scotland

    Science.gov (United States)

    2008-01-01

    The northern and western highlands of Scotland were still winter-brown and even dusted with snow in places, but the waters of the North Sea were blooming with phytoplankton on May 8, 2008, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite passed over the region and captured this image. The tiny, plant-like organisms swirled in the waters off the country's east coast, coloring the shallow coastal waters shades of bright blue and green. Phytoplankton are tiny organisms--many are just a single cell--that use chlorophyll and other pigments to capture light for photosynthesis. Because these pigments absorb sunlight, they change the color of the light reflected from the sea surface back to the satellite. Scientists have used observations of 'ocean color' from satellites for more than 20 years to track worldwide patterns in phytoplankton blooms. Phytoplankton are important to the Earth system for a host of reasons, including their status as the base of the ocean food web. In the North Sea, they are the base of the food web that supports Scotland's commercial fisheries, including monkfish and herring. As photosynthesizers, they also play a crucial role in the carbon cycle, removing carbon dioxide from the atmosphere. Some oceanographers are concerned that rising ocean temperatures will slow phytoplankton growth rates, harming marine ecosystems and causing carbon dioxide to accumulate more rapidly in the atmosphere.

  20. Margalef's mandala and phytoplankton bloom strategies

    Science.gov (United States)

    Wyatt, Timothy

    2014-03-01

    Margalef's mandala maps phytoplankton species into a phase space defined by turbulence (A) and nutrient concentrations (Ni); these are the hard axes. The permutations of high and low A and high and low Ni divide the space into four domains. Soft axes indicate some ecological dynamics. A main sequence shows the normal course of phytoplankton succession; the r-K axis of MacArthur and Wilson runs parallel to it. An alternative successional sequence leads to the low A-high Ni domain into which many red tide species are mapped. Astronomical and biological time are implicit. A mathematical transformation of the mandala (rotation) links it to the classical bloom models of Sverdrup (time) and Kierstead and Slobodkin (space).Both rarity and the propensity to form red tides are considered to be species characters, meaning that maximum population abundance can be a target of natural selection. Equally, both the unpredictable appearance of bloom species and their short-lived appearances may be species characters. There may be a correlation too between these features and long-lived dormant stages in the life-cycle; then the vegetative planktonic phase is the 'weak link' in the life-cycle. Red tides are thus due to species which have evolved suites of traits which result in specific demographic strategies.

  1. RECOMMENDATION SYSTEM USING BLOOM FILTER IN MAPREDUCE

    Directory of Open Access Journals (Sweden)

    Reena Pagare

    2013-11-01

    Full Text Available Many clients like to use the Web to discover product details in the form of online reviews. The reviews are provided by other clients and specialists. Recommender systems provide an important response to the information overload problem as it presents users more practical and personalized information facilities. Collaborative filtering methods are vital component in recommender systems as they generate high-quality recommendations by influencing the likings of society of similar users. The collaborative filtering method has assumption that people having same tastes choose the same items. The conventional collaborative filtering system has drawbacks as sparse data problem & lack of scalability. A new recommender system is required to deal with the sparse data problem & produce high quality recommendations in large scale mobile environment. MapReduce is a programming model which is widely used for large-scale data analysis. The described algorithm of recommendation mechanism for mobile commerce is user based collaborative filtering using MapReduce which reduces scalability problem in conventional CF system. One of the essential operations for the data analysis is join operation. But MapReduce is not very competent to execute the join operation as it always uses all records in the datasets where only small fraction of datasets are applicable for the join operation. This problem can be reduced by applying bloomjoin algorithm. The bloom filters are constructed and used to filter out redundant intermediate records. The proposed algorithm using bloom filter will reduce the number of intermediate results and will improve the join performance.

  2. The Self According to Allan Bloom and Charles Reich.

    Science.gov (United States)

    Aspy, David N.; Aspy, Cheryl B.

    1998-01-01

    Discusses the works of Charles Reich and Allan Bloom that have helped to shape current social and political debate concerning self theory. Both Reich and Bloom were concerned with the relationship between self and environment. Argues that it is important to insure that its cultural role of self theory is clearly interpreted and applied. (MKA)

  3. Closing Achievement Gaps: Revisiting Benjamin S. Bloom's "Learning for Mastery"

    Science.gov (United States)

    Guskey, Thomas R.

    2007-01-01

    The problem of achievement gaps among different subgroups of students has been evident in education for many years. This manuscript revisits the work of renowned educator Benjamin S. Bloom, who saw reducing gaps in the achievement of various groups of students as a simple problem of reducing variation in student learning outcomes. Bloom observed…

  4. WATER BLOOM OF BLUEGREEN ALGE IN CARP FISHPOUNDS

    Directory of Open Access Journals (Sweden)

    Melita Mihaljević

    1996-03-01

    Full Text Available The massive development of bluegreen algae (Cyanophyta/Cyanobacteria, the so--called water bloom, is a frequent phenomenon in fishpond ecosystems. This study analyses water bloom development in three carp fishponds owned by a fishbreeding company at Donji Miholjac (Croatia, where one-year-old carps (Cyprinus carpio , were bred in defferent fishstock densities. Analyses of physicallychemical properties of water and phytoplankton biomass were per- formed in fortnight intervals from May till October, 1992. In all there investigated fishponds the water bloom of bluegreen algae developed, but at a different time and showing a different qualitative composition. In the fishpond with fishstock density of 250 kg/ha water bloom consisted of the species Aphanizomenon flos-aquae, and the biggest biomass (131.92 mg/I was found in August. In the fishpond with fishstock density of 437 kg/ha a water bloom consisting of species from the genues Anabaena and species Aphanizomenon flos-aquae developed at the end of July. In the fishpond with the so--called intensive breeding (fishstock density of 750 kg/ha water bloom of the species Microcystis aeruginosa developed as late as September. The beginning of water bloom development was caused by the low value (lower than 7 of the ratio between the quantities of total phosphorus and total nitrogen. However, the qualitative composition of water bloom was influenced by one-year-old carp fingerlings density.

  5. The Evolution of Educational Objectives: Bloom's Taxonomy and beyond

    Science.gov (United States)

    Fallahi, Carolyn R.; LaMonaca, Frank H., Jr.

    2009-01-01

    It is crucial for teachers to communicate effectively about educational objectives to students, colleagues, and others in education. In 1956, Bloom developed a cognitive learning taxonomy to enhance communication between college examiners. The Bloom taxonomy consists of 6 hierarchical levels of learning (knowledge, comprehension, application,…

  6. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R S; Hanson, T. E.

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  7. Characterization of Intracellular and Extracellular Saxitoxin Levels in Both Field and Cultured Alexandrium spp. Samples from Sequim Bay, Washington

    Directory of Open Access Journals (Sweden)

    Vera L. Trainer

    2008-05-01

    Full Text Available Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs, intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004- 2007 and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA and an enzyme-linked immunosorbent assay (ELISA. Characterization of the PST toxin profile in the Sequim Bay isolates by preMar. column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.

  8. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  9. The role of autophagy in the intracellular survival of Campylobacter concisus

    Directory of Open Access Journals (Sweden)

    Jose A. Burgos-Portugal

    2014-01-01

    Full Text Available Campylobacter concisus is an emerging pathogen that has been associated with gastrointestinal diseases. Given the importance of autophagy for the elimination of intracellular bacteria and the subversion of this process by pathogenic bacteria, we investigated the role of autophagy in C. concisus intracellular survival. Gentamicin protection assays were employed to assess intracellular levels of C. concisus within Caco-2 cells, following autophagy induction and inhibition. To assess the interaction between C. concisus and autophagosomes, confocal microscopy, scanning electron microscopy, and transmission electron microscopy were employed. Expression levels of 84 genes involved in the autophagy process were measured using qPCR. Autophagy inhibition resulted in two- to four-fold increases in intracellular levels of C. concisus within Caco-2 cells, while autophagy induction resulted in a significant reduction in intracellular levels or bacterial clearance. C. concisus strains with low intracellular survival levels showed a dramatic increase in these levels upon autophagy inhibition. Confocal microscopy showed co-localization of the bacterium with autophagosomes, while transmission electron microscopy identified intracellular bacteria persisting within autophagic vesicles. Further, qPCR showed that following infection, 13 genes involved in the autophagy process were significantly regulated, and a further five showed borderline results, with an overall indication towards a dampening effect exerted by the bacterium on this process. Our data collectively indicates that while autophagy is important for the clearance of C. concisus, some strains may manipulate this process to benefit their intracellular survival.

  10. Harmful Algal Bloom Research in China

    Institute of Scientific and Technical Information of China (English)

    Su Jilan; Zhou Mingjiang

    2001-01-01

    Proliferations of harmful algae in coastal waters, i.e., harmful algal blooms (HABs), popularly known as "red tides," have attracted the concern of governments and scientists worldwide. In recent years, HABs have occurred in China with increasing frequency and scope. These outbreaks have seriously affected the economy along the coast through fish kills, heavy losses in aquaculture, threats to human health, and other effects detrimental to the marine ecosystem. Therefore, it is important to pay special attention to the ecology and oceanography studies related to the outbreak of HABs. Only through the combination of the advancement of such knowledge with the strengthening of the monitoring network can we develop a HAB warning system for the sustainable development of the coastal economy.

  11. A chemical approach for the mitigation of Prymnesium parvum blooms.

    Science.gov (United States)

    Umphres, George D; Roelke, Daniel L; Netherland, Michael D

    2012-12-01

    Known as Golden Algae in popular media, the harmful algal bloom causing organism Prymnesium parvum secretes increased amounts of toxic chemicals called prymnesins when stressed, resulting in major fish kills in Texas. Although many options exist for mitigation of blooms, a feasible protocol for control of blooms on large-scale impoundments has yet to be identified. Chemical control of P. parvum using six different enzyme inhibiting aquatic herbicides was explored in laboratory experiments. Of the six chemicals screened, one (flumioxazin) was selected for further study due to a significant decrease in P. parvum cell numbers with increasing chemical concentration. It was applied to natural plankton communities during in-situ experiments (Lake Granbury, Texas). The first experiment was conducted during a period of P. parvum bloom initiation (March) and the second experiment conducted during a post bloom period (April). Experiments were carried out in 20 L polycarbonate carboys covered in 30% shade cloth to simulate natural light, temperature and turbulence conditions. Through cell counts via light-microscopy, the chemical flumioxazin was found to cause significant decreases in P. parvum, but no significant differences in zooplankton abundance during the period of bloom initiation. However, significant decreases in adult copepods were observed during the post bloom period, with no significant decreases in P. parvum most likely due to decreased light penetration and inhibition of the photosensitive mode of action. PMID:22960102

  12. Physical Hydrography and Algal Bloom Transport in Hong Kong Waters

    Institute of Scientific and Technical Information of China (English)

    KUANG Cui-ping; LEE Joseph H.W.

    2005-01-01

    In sub-tropical coastal waters around Hong Kong, algal blooms and red tides are usually first sighted in the Mirs Bay, in the eastern waters of Hong Kong. A calibrated three-dimensional hydrodynamic model for the Pearl River Estuary (Delft3D) has been applied to the study of the physical hydrography of Hong Kong waters and its relationship with algal bloom transport patterns in the dry and wet seasons. The general 3D hydrodynamic circulation and salinity structure in the partially-mixed estuary are presented. Extensive numerical surface drogue tracking experiments are performed for algal blooms that are initiated in the Mirs Bay under different seasonal, wind and tidal conditions. The probability of bloom impact on the Victoria Harbour and nearby urban coastal waters is estimated. The computations show that: I) In the wet season (May~August), algal blooms initiated in the Mirs Bay will move in a clockwise direction out of the bay, and be transported away from Hong Kong due to SW monsoon winds which drive the SW to NE coastal current; ii) In the dry season (November~April), algal blooms initiated in the northeast Mirs Bay will move in an anti-clockwise direction and be carried away into southern waters due to the NE to SW coastal current driven by the NE monsoon winds; the bloom typically flows past the east edge of the Victoria Harbour and nearby waters. Finally, the role of hydrodynamic transport in an important episodic event - the spring 1998 massive red tide - is quantitatively examined. It is shown that the strong NE to E wind during late March to early April, coupled with the diurnal tide at the beginning of April, significantly increased the probability of bloom transport into the Port Shelter and East Lamma Channel, resulting in the massive fish kill. The results provide a basis for risk assessment of harmful algal bloom (HAB) impact on urban coastal waters around the Victoria Habour.

  13. Structural Diversity of Bacterial Communities Associated with Bloom-Forming Freshwater Cyanobacteria Differs According to the Cyanobacterial Genus.

    Directory of Open Access Journals (Sweden)

    Imen Louati

    Full Text Available The factors and processes driving cyanobacterial blooms in eutrophic freshwater ecosystems have been extensively studied in the past decade. A growing number of these studies concern the direct or indirect interactions between cyanobacteria and heterotrophic bacteria. The presence of bacteria that are directly attached or immediately adjacent to cyanobacterial cells suggests that intense nutrient exchanges occur between these microorganisms. In order to determine if there is a specific association between cyanobacteria and bacteria, we compared the bacterial community composition during two cyanobacteria blooms of Anabaena (filamentous and N2-fixing and Microcystis (colonial and non-N2 fixing that occurred successively within the same lake. Using high-throughput sequencing, we revealed a clear distinction between associated and free-living communities and between cyanobacterial genera. The interactions between cyanobacteria and bacteria appeared to be based on dissolved organic matter degradation and on N recycling, both for N2-fixing and non N2-fixing cyanobacteria. Thus, the genus and potentially the species of cyanobacteria and its metabolic capacities appeared to select for the bacterial community in the phycosphere.

  14. Winter−spring transition in the subarctic Atlantic: microbial response to deep mixing and pre-bloom production

    DEFF Research Database (Denmark)

    Paulsen, Maria Lund; Riisgaard, Karen; Thingstad, T. Frede;

    2015-01-01

    In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, we document an active microbial food web dominated by pico- and nanoplankton prior to the diatom bloom......, a period with excess nutrients and deep convection of the water column. During repeated visits to stations in the deep Iceland and Norwegian basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the succession and dynamics of photo - synthetic and heterotrophic microorganisms....... We observed that the early phytoplankton production was followed by a decrease in the carbon:nitrogen ratio of the dissolved organic matter in the deep mixed stations, an increase in heterotrophic prokaryote (bacteria) abundance and activity (indicated by the high nucleic acid:low nucleic acid...

  15. Magnetotactic Bacteria from Extreme Environments

    OpenAIRE

    Lefèvre, Christopher T; Dennis A. Bazylinski

    2013-01-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI) in water columns or sediments of aqu...

  16. Optical researches for cyanobacteria bloom monitoring in Curonian Lagoon

    Science.gov (United States)

    Shirshin, Evgeny A.; Budylin, Gleb B.; Yakimov, Boris P.; Voloshina, Olga V.; Karabashev, Genrik S.; Evdoshenko, Marina A.; Fadeev, Victor V.

    2016-04-01

    Cyanobacteria bloom is a great ecological problem of Curonian Lagoon and Baltic Sea. The development of novel methods for the on-line control of cyanobacteria concentration and, moreover, for prediction of bloom spreading is of interest for monitoring the state of ecosystem. Here, we report the results of the joint application of hyperspectral measurements and remote sensing of Curonian Lagoon in July 2015 aimed at the assessment of cyanobacteria communities. We show that hyperspectral data allow on-line detection and qualitative estimation of cyanobacteria concentration, while the remote sensing data indicate the possibility of cyanobacteria bloom detection using the spectral features of upwelling irradiation.

  17. Revised Bloom Taxonomy And Its Apllication In Algebra Area

    OpenAIRE

    Mehmet BEKDEMİR; SELİM, Yavuz

    2008-01-01

     The aim of this study was to introduce “Revised Bloom Taxonomy” and apply it to field of learning algebra in New Elementary Turkish Mathematics Pro- grams (for grades 6-8). Anderson at all (2001) revised Bloom Taxonomy in order to eliminate defi- ciencies and contradictions, improve and make it more modern, and renamed it as “Revised Bloom Taxonomy”. It has a two-dimension framework: Knowledge which indicates subject matter (content) and cognitive process which indicates a description of wha...

  18. Seasonal phytoplankton blooms in the North Atlantic linked to the overwintering strategies of copepods

    Directory of Open Access Journals (Sweden)

    Kevin D. Friedland

    2016-04-01

    Full Text Available Abstract The North Atlantic Ocean contains diverse patterns of seasonal phytoplankton blooms with distinct internal dynamics. We analyzed blooms using remotely-sensed chlorophyll a concentration data and change point statistics. The first bloom of the year began during spring at low latitudes and later in summer at higher latitudes. In regions where spring blooms occurred at high frequency (i.e., proportion of years that a bloom was detected, there was a negative correlation between bloom timing and duration, indicating that early blooms last longer. In much of the Northeast Atlantic, bloom development extended over multiple seasons resulting in peak chlorophyll concentrations in summer. Spring bloom start day was found to be positively correlated with a spring phenology index and showed both positive and negative correlations to sea surface temperature and the North Atlantic Oscillation in different regions. Based on the characteristics of spring and summer blooms, the North Atlantic can be classified into two regions: a seasonal bloom region, with a well-defined bloom limited to a single season; and a multi-seasonal bloom region, with blooms extending over multiple seasons. These regions differed in the correlation between bloom start and duration with only the seasonal bloom region showing a significant, negative correlation. We tested the hypothesis that the near-surface springtime distribution of copepods that undergo diapause (Calanus finmarchicus, C. helgolandicus, C. glacialis, and C. hyperboreus may contribute to the contrast in bloom development between the two regions. Peak near-surface spring abundance of the late stages of these Calanoid copepods was generally associated with areas having a well-defined seasonal bloom, implying a link between bloom shape and their abundance. We suggest that either grazing is a factor in shaping the seasonal bloom or bloom shape determines whether a habitat is conducive to diapause, while recognizing

  19. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  20. Isolation of peptide aptamers that inhibit intracellular processes

    OpenAIRE

    Blum, Jonathan H.; Dove, Simon L.; Hochschild, Ann; Mekalanos, John J.

    2000-01-01

    We have developed a method for isolation of random peptides that inhibit intracellular processes in bacteria. A library of random peptides expressed as fusions to Escherichia coli thioredoxin (aptamers) were expressed under the tight control of the arabinose-inducible PBAD promoter. A selection was applied to the library to isolate aptamers that interfered with the activity of thymidylate synthase (ThyA) in vivo. Expression of an aptamer isolated by this method resulted in a ThyA− phenotype t...

  1. Airborne Monitoring of Harmful Algal Blooms over Lake Erie

    Science.gov (United States)

    Tokars, Roger; Lekki, John

    2013-01-01

    The Hyperspectral Imager mounted to an aircraft was used to develop a remote sensing capability to detect the pigment Phycocyanin, an indicator of Microcystis, in low concentration as an early indicator of harmful algal bloom prediction.

  2. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  3. Lyngbya majuscula Blooms in an Enclosed Marine Environment

    Directory of Open Access Journals (Sweden)

    Chin Soon Lionel Ng

    2012-06-01

    Full Text Available Cyanobacterial blooms are a cause of concern because of their potential impacts on the marine environment. In Sentosa Cove, Singapore, Lyngbya majuscula blooms appeared regularly in the highly enclosed boat canals traversing the seafront residential development. This study investigated whether sediments resuspended by physical disturbance liberated nutrients that contribute to the blooms. Sediment resuspension events were mimicked in containers of sediment collected from the canals. Lyngbya majuscula that were incubated in containers with resuspended sediment attained greater biomass than those in filtered seawater only. Levels of iron, phosphates and nitrites in seawater with resuspended sediments were significantly higher than in those without. The results indicate that recurrent L. majuscula blooms in Sentosa Cove could be attributed to nutrient loading from sediment resuspension.

  4. Seasonal Variations of Phytoplankton Blooms in Suat Ugurlu (Samsun - Turkey)

    OpenAIRE

    Gönülol, Arif

    1998-01-01

    The seasonal variations in phytoplankton blooms in Suat Uğurlu Reservoir were studied between July 1992 and De-cember 1993. In certain months, the species Asterionella formosa Hassal, Cyclotella planctonica Brunthaler, Melosira granulata (Ehr.) Ralfs (Bacillariophyta); Pediastrum simplex Meyen, Pandorina morum Borry (Chlorophyta) and Ceratium hirundinella (O F. Müller) Schrank (Dinophyta) produced blooms in the lake. During the study period, the measured N/P ratio in the water varied from...

  5. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  6. Mathematical model of heat transfer for bloom continuous casting

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Liangzhou Wang; Liqiang Zhang; Liguo Cao; Xiuzhong Ding; Mei Liang; Yongge Qi

    2008-01-01

    A mathematical model for heat transfer during solidification in continuous casting of automobile steel, was established on researching under the influence of the solidifying process of bloom quality of CCM in the EAF steelmaking shop, at Shijiazhuang Iron and Steel Co. Ltd. Several steel grades were chosen to research, such as, 40Cr and 42CrMo. According to the results of the high temperature mechanical property tests of blooms, the respective temperature curves for controlling the solidification of differem steels were acquired, and a simulating software was developed. The model was verified using two methods, which were bloom pin-shooting and surface strand temperature measuring experiments. The model provided references for research on the solidifying proc-ess and optimization of a secondary cooling system for automobile steel. Moreover, it was already applied to real production. The calculated temperature distribution and solidification trend of blooms had offered a reliable theory for optimizing the solidifying process of blooms, increasing withdrawal speed, and improving bloom quality. Meanwhile, a new secondary cooling system was designed to optimize a secondary cooling water distribution, including choice and arrangements of nozzles, calculation of cooling water quantity, and so on.

  7. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms

    Science.gov (United States)

    The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...

  8. Evaluation of Harmful Algal Bloom Outreach Activities

    Directory of Open Access Journals (Sweden)

    Richard Weisman

    2007-12-01

    Full Text Available With an apparent increase of harmful algal blooms (HABs worldwide,healthcare providers, public health personnel and coastal managers are struggling toprovide scientifically-based appropriately-targeted HAB outreach and education. Since1998, the Florida Poison Information Center-Miami, with its 24 hour/365 day/year freeAquatic Toxins Hotline (1-888-232-8635 available in several languages, has received over 25,000 HAB-related calls. As part of HAB surveillance, all possible cases of HAB-relatedillness among callers are reported to the Florida Health Department. This pilot studyevaluated an automated call processing menu system that allows callers to access bilingualHAB information, and to speak directly with a trained Poison Information Specialist. Themajority (68% of callers reported satisfaction with the information, and many provided specific suggestions for improvement. This pilot study, the first known evaluation of use and satisfaction with HAB educational outreach materials, demonstrated that the automated system provided useful HAB-related information for the majority of callers, and decreased the routine informational call workload for the Poison Information Specialists, allowing them to focus on callers needing immediate assistance and their healthcare providers. These results will lead to improvement of this valuable HAB outreach, education and surveillance tool. Formal evaluation is recommended for future HAB outreach and educational materials.

  9. Comparative proteomics reveals highly and differentially expressed proteins in field-collected and laboratory-cultured blooming cells of the diatom Skeletonema costatum.

    Science.gov (United States)

    Zhang, Hao; Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Fei; Wang, Ming-Hua; Lin, Lin

    2015-10-01

    Diatoms are a major phytoplankton group causing extensive blooms in the ocean. However, little is known about the intracellular biological processes occurring during the blooming period. This study compared the protein profiles of field-collected and laboratory-cultured blooming cells of Skeletonema costatum, and identified highly and differentially expressed proteins using the shotgun proteomic approach. A total of 1372 proteins were confidently identified with two or more peptides. Among them, 222 and 311 proteins were unique to the laboratory and field samples respectively. Proteins involved in photosynthesis, translation, nucleosome assembly, carbohydrate and energy metabolism dominated the protein profiles in both samples. However, different features of specific proteins were also found: proteins participated in light harvesting, photosynthetic pigment biosynthesis, photoprotection, cell division and redox homeostasis were highly detected in the field sample, whereas proteins involved in translation, amino acid and protein metabolic processes, and nitrogen and carbon assimilation presented high detection rates in the laboratory sample. ATP synthase cf1 subunit beta and light harvest complex protein were the most abundant protein in the laboratory and field samples respectively. These results indicated that S. costatum had evolved adaptive mechanisms to the changing environment, and integrating field and laboratory proteomic data should provide comprehensive understanding of bloom mechanisms. PMID:26014042

  10. Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014

    Science.gov (United States)

    Groetsch, Philipp M. M.; Simis, Stefan G. H.; Eleveld, Marieke A.; Peters, Steef W. M.

    2016-09-01

    Phytoplankton spring bloom phenology was derived from a 15-year time series (2000-2014) of ship-of-opportunity chlorophyll a fluorescence observations collected in the Baltic Sea through the Alg@line network. Decadal trends were analysed against inter-annual variability in bloom timing and intensity, and environmental drivers (nutrient concentration, temperature, radiation level, wind speed).Spring blooms developed from the south to the north, with the first blooms peaking mid-March in the Bay of Mecklenburg and the latest bloom peaks occurring mid-April in the Gulf of Finland. Bloom duration was similar between sea areas (43 ± 2 day), except for shorter bloom duration in the Bay of Mecklenburg (36 ± 11 day). Variability in bloom timing increased towards the south. Bloom peak chlorophyll a concentrations were highest (and most variable) in the Gulf of Finland (20.2 ± 5.7 mg m-3) and the Bay of Mecklenburg (12.3 ± 5.2 mg m-3).Bloom peak chlorophyll a concentration showed a negative trend of -0.31 ± 0.10 mg m-3 yr-1. Trend-agnostic distribution-based (Weibull-type) bloom metrics showed a positive trend in bloom duration of 1.04 ± 0.20 day yr-1, which was not found with any of the threshold-based metrics. The Weibull bloom metric results were considered representative in the presence of bloom intensity trends.Bloom intensity was mainly determined by winter nutrient concentration, while bloom timing and duration co-varied with meteorological conditions. Longer blooms corresponded to higher water temperature, more intense solar radiation, and lower wind speed. It is concluded that nutrient reduction efforts led to decreasing bloom intensity, while changes in Baltic Sea environmental conditions associated with global change corresponded to a lengthening spring bloom period.

  11. The Blooming Anatomy Tool (BAT): A Discipline-Specific Rubric for Utilizing Bloom's Taxonomy in the Design and Evaluation of Assessments in the Anatomical Sciences

    Science.gov (United States)

    Thompson, Andrew R.; O'Loughlin, Valerie D.

    2015-01-01

    Bloom's taxonomy is a resource commonly used to assess the cognitive level associated with course assignments and examination questions. Although widely utilized in educational research, Bloom's taxonomy has received limited attention as an analytical tool in the anatomical sciences. Building on previous research, the Blooming Anatomy Tool (BAT)…

  12. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    Science.gov (United States)

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  13. Metallochaperones regulate intracellular copper levels.

    Directory of Open Access Journals (Sweden)

    W Lee Pang

    Full Text Available Copper (Cu is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.

  14. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management

    Science.gov (United States)

    Anderson, Donald M.; Cembella, Allan D.; Hallegraeff, Gustaaf M.

    2012-01-01

    The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.

  15. Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis

    OpenAIRE

    Batten, Laura E.; Parnell, Alice E.; Wells, Neil J.; Amber L Murch; Oyston, Petra C. F.; Roach, Peter L.

    2016-01-01

    The metabolism of polyphosphate is important for the virulence of a wide range of pathogenic bacteria and the enzymes of polyphosphate metabolism have been proposed as an anti-bacterial target. In the intracellular pathogen Francisella tularensis, the product of the gene FTT1564 has been identified as a polyphosphate kinase from the polyphosphate kinase 2 (PPK2) family. The isogenic deletion mutant was defective for intracellular growth in macrophages and was attenuated in mice, indicating an...

  16. Physical and biological data collected along the Texas, Mississippi, and Florida Gulf coasts in the Gulf of Mexico as part of the Harmful Algal BloomS Observing System from 19 Aug 1953 to 11 July 2014 (NODC Accession 0120767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — HABSOS (Harmful Algal BloomS Observing System) is a data collection and distribution system for harmful algal bloom (HAB) information in the Gulf of Mexico. The...

  17. Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Hans W. Paerl

    2001-01-01

    Full Text Available Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia, toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia are capable of fixing atmospheric nitrogen (N2, enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from

  18. Optical detection of Prorocentrum donghaiense blooms based on multispectral reflectance

    Institute of Scientific and Technical Information of China (English)

    TAO Bangyi; PAN Delu; MAO Zhihua; SHEN Yuzhang; ZHU Qiankun; CHEN Jianyu

    2013-01-01

    Prorocentrum donghaiense is one of the most common red tide causative dinoflagellates in the Changjiang (Yangtze) River Estuary and the adjacent area of the East China Sea. It causes large-scale blooms in late spring and early summer that lead to widespread ecologic and economic damage. A means for distinguish-ing dinoflagellate blooms from diatom (Skeletonema costatum) blooms is desired. On the basis of measure-ments of remote sensing reflectance [Rrs(λ)] and inherent optical parameters, the potential of using a mul-tispectral approach is assessed for discriminating the algal blooms due to P. donghaiense from those due to S. costatum. The behavior of two reflectance ratios [R1 =Rrs(560)/Rrs(532) and R2 =Rrs(708)/Rrs(665)], suggests that differentiation of P. donghaiense blooms from diatom bloom types is possible from the current band setup of ocean color sensors. It is found that there are two reflectance ratio regimes that indicate a bloom is dominated by P. donghaiense: (1) R1 >1.55 and R2 1.75 and R2 ?1.0. Various sensitivity analyses are conducted to investigate the effects of the variation in varying levels of chlorophyll concentration and colored dissolved organic matter (CDOM) as well as changes in the backscattering ratio (bbp/bp) on the efficacy of this multispectral approach. Results indicate that the intensity and inherent op-tical properties of the algal species explain much of the behavior of the two ratios. Although backscattering influences the amplitude of Rrs(λ), especially in the 530 and 560 nm bands, the discrimination between P. donghaiense and diatoms is not significantly affected by the variation of bbp/bp. Since a CDOM(440) in coastal areas of the ECS is typically lower than 1.0 m−1 in most situations, the presence of CDOM does not interfere with this discrimination, even as SCDOM varies from 0.01 to 0.026 nm−1. Despite all of these effects, the dis-crimination of P. donghaiense blooms from diatom blooms based on multispectral

  19. Toxicity of harmful cyanobacterial blooms to bream and roach.

    Science.gov (United States)

    Trinchet, Isabelle; Cadel-Six, Sabrina; Djediat, Chakib; Marie, Benjamin; Bernard, Cécile; Puiseux-Dao, Simone; Krys, Sophie; Edery, Marc

    2013-09-01

    Aquatic ecosystems are facing increasing environmental pressures, leading to an increasing frequency of cyanobacterial Harmful Algal Blooms (cHABs) that have emerged as a worldwide concern due to their growing frequency and their potential toxicity to the fauna that threatens the functioning of ecosystems. Cyanobacterial blooms raise concerns due to the fact that several strains produce potent bioactive or toxic secondary metabolites, such as the microcystins (MCs), which are hepatotoxic to vertebrates. These strains of cyanobacteria may be potentially toxic to fish via gastrointestinal ingestion and also by direct absorption of the toxin MC from the water. The purpose of our study was to investigate toxic effects observed in fish taken from several lakes in the Ile-de-France region, where MCs-producing blooms occur. This study comprises histological studies and the measurement of MC concentrations in various organs. The histological findings are similar to those obtained following laboratory exposure of medaka fish to MCs: hepatic lesions predominate and include cell lysis and cell detachment. MC concentrations in the organs revealed that accumulation was particularly high in the digestive tract and the liver, which are known to be classical targets of MCs. In contrast concentrations were very low in the muscles. Differences in the accumulation of MC variants produced by blooms indicate that in order to more precisely evaluate the toxic potential of a specific bloom it is necessary not only to consider the concentration of toxins, but also the variants produced.

  20. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    Science.gov (United States)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  1. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica

    Directory of Open Access Journals (Sweden)

    Tom O Delmont

    2015-10-01

    Full Text Available Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (῀160 million reads analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica. Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis. Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface.

  2. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    , the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  3. Nitrogen control in bacteria.

    Science.gov (United States)

    Merrick, M J; Edwards, R A

    1995-12-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  4. Detection of intracellular bacterial communities in human urinary tract infection.

    Directory of Open Access Journals (Sweden)

    David A Rosen

    2007-12-01

    Full Text Available BACKGROUND: Urinary tract infections (UTIs are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC. While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs. These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. METHODS AND FINDINGS: We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18% urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41% urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29% of 66 samples with no evidence of IBCs (p < 0.001. Of 65 urines from patients with E. coli infections, 14 (22% had evidence of IBCs and 29 (45% had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. CONCLUSIONS: The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The

  5. Sulfur bacteria in wastewater stabilization ponds periodically affected by the 'red-water' phenomenon

    NARCIS (Netherlands)

    A. Belila; B. Abbas; I. Fazaa; N. Saidi; M. Snoussi; A. Hassen; G. Muyzer

    2013-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menze

  6. Sulfur bacteria in wastewater stabilization ponds periodically affected by the ‘red-water’ phenomenon

    NARCIS (Netherlands)

    Belila, A.; Abbas, B.; Fazaa, I.; Saidi, N.; Snoussi, M.; Hassen, A.; Muyzer, G.

    2012-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menze

  7. The identification and biogeochemical interpretation of fossil magnetotactic bacteria

    OpenAIRE

    Kopp, Robert E.; Kirschvink, Joseph L

    2008-01-01

    Magnetotactic bacteria, which most commonly live within the oxic-anoxic transition zone (OATZ) of aquatic environments, produce intracellular crystals of magnetic minerals, specifically magnetite or greigite. The crystals cause the bacteria to orient themselves passively with respect to the geomagnetic field and thereby facilitate the bacteria’s search for optimal conditions within the sharp chemical gradients of the OATZ. The bacteria may also gain energy from the redox cycling of their ...

  8. Marine harmful algal blooms, human health and wellbeing

    DEFF Research Database (Denmark)

    Berdalet, Elisa; Fleming, Lora E.; Gowen, Richard;

    2016-01-01

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can...... cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments...... multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include...

  9. Algal Bloom in Aquatic Ecosystems-an Overview

    Directory of Open Access Journals (Sweden)

    M. Ghorbani

    2014-04-01

    Full Text Available Algae play an important role in all aquatic ecosystems by providing all living organisms of water bodies with preliminary nutrients and energy required. However, abnormal and excessive algal growth so-called algal bloom would be detrimental as much. Given the importance of algae in aquatic environment as well as their sensitivity to environmental changes, algal measurements are of key components of water quality monitoring programs. The algal blooms could include a variety of adverse impacts on environmental, social, cultural and economic environments. The present study is an overview on the algal growth, its mechanisms and mitigating strategies in aquatic ecosystems whereas in spite of the growing knowledge of human being of ecological, physiological, and functional conditions of eutrophication, a systematic understanding of algal blooms is still lacking.

  10. Massive fish mortality and Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake.

    Science.gov (United States)

    Svirčev, Zorica; Obradović, Vesna; Codd, Geoffrey A; Marjanović, Prvoslav; Spoof, Lisa; Drobac, Damjana; Tokodi, Nada; Petković, Anđelka; Nenin, Tanja; Simeunović, Jelica; Važić, Tamara; Meriluoto, Jussi

    2016-09-01

    This paper presents a case study of a massive fish mortality during a Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake, Serbia in mid-December 2012. According to a preliminary investigation of the samples taken on November 6 before the fish mortalities and to extended analyses of samples taken on November 15, no values of significant physicochemical parameters emerged to explain the cause(s) of the fish mortality. No industrial pollutants were apparent at this location, and results excluded the likelihood of bacterial infections. Even after freezing, the dissolved oxygen concentration in the water was sufficient for fish survival. High concentrations of chlorophyll a and phaeophytin occurred in the lake, and phytoplankton bloom samples were lethal in Artemia salina bioassays. A bloom of the cyanobacterium C. raciborskii was recorded during November. Although the A. salina bioassays indicated the presence of toxic compounds in the cyanobacterial cells, the cyanotoxins, microcystins, cylindrospermopsin and saxitoxin were not detected. PMID:27352231

  11. [Causes of jellyfish blooms and their influence on marine environment].

    Science.gov (United States)

    Qu, Chang-feng; Song, Jin-ming; Li, Ning

    2014-12-01

    Jellyfish blooms have damaged the normal composition and function of marine ecosystem and ecological environments, which have been one of the new marine ecological disasters. In this study, we summarized the possible inducements of jellyfish blooms, and the influences of jellyfish blooms on biogenic elements, dissolved oxygen, seawater acidity and biological community were discussed emphatically. The results showed that jellyfish blooms had a close contact with its physiological structure and life history, which had favorable characteristics including simple body struc- ture, rapid growth, thriving reproduction and short generation interval to tolerate harsh environment better. Jellyfish abundance increased rapidly when it encountered suitable conditions. The temperature variations of seawater might be the major inducing factor which could result in jellyfish blooms. Jellyfish blooms may benefit from warmer temperature that could increase the food availability of jellyfish and promote jellyfish reproduction, especially for warm temperate jellyfish species. Eutrophication, climate change, overfishing, alien invasions and habitat modification were all possible important contributory factors of jellyfish blooms. Jellyfish could significantly influence the form distribution and biogeochemical cycling of biogenic elements. Jellyfish excreted NH4+ and P04(3-) at a rate of 59.1-91.5 micromol N x kg(-1) x h(-1) and 1.1-1.8 micromol P x kg(-1) x h(-1), which could meet about 8%-10% and 21.6% of the phytoplankton primary production requirement of N and P, respectively. Live jellyfish released dissolved organic carbon (DOC) at a rate of 1.0 micromol C x g(-1) x d(-1). As jellyfish decomposing, the effluxes of total N and total P were 4000 micromol N x kg(-1) x d(-1) and 120 micromol P x kg(-1) x d(-1), respectively, while the efflux of DOC reached 30 micromol C x g(-1) x d(-1). Jellyfish decomposition could cause seawater acidification and lowered level of dissolved oxygen

  12. Use of sleeved rolls in a blooming mill

    Science.gov (United States)

    Kuhn, G.

    1983-03-01

    The use of sleeved rolls in the blooming stand ahead of a continuous semifinishing mill is treated. Two sleeved rolls were produced. One comprises a tough steel arbor and the wear resistant roll sleeve of Cr-Ni-Mo-alloyed spheroidal cast iron with carbide. Both parts were joined together in an unstressed manner by adhesive bonding. Tests show that sleeved rolls can be used in blooming stands, thereby increasing their application possibilities, but porosity in the finishing grooves of the rolls caused during the casting process means that long term behavior can not be assessed.

  13. Karenia mikimotoi: An Exceptional Dinoflagellate Bloom in Western Irish Waters, Summer 2005

    OpenAIRE

    Silke, J.; O'Beirn, F.; Cronin, M.

    2005-01-01

    A protracted bloom of Karenia mikimotoi was present in summer 2005 along the northern half of the western Irish coastline. The onset of this bloom was identified in late May / early June. This event subsequently dissipated over the month of July and was succeeded by a bloom of the same species in the southwest in late July. The bloom was very intense and resulted in discolouration of seawater and foaming in coastal embayments. Major mortalities of benthic and pelagic marine organisms were obs...

  14. Comparative Metagenomics of Toxic Freshwater Cyanobacteria Bloom Communities on Two Continents

    OpenAIRE

    Steffen, Morgan M; Li, Zhou; Effler, T Chad; Hauser, Loren J.; Boyer, Gregory L.; Wilhelm, Steven W.

    2012-01-01

    Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic comm...

  15. Multi-species bacterial biofilm and intracellular infection in otitis media

    Directory of Open Access Journals (Sweden)

    Thornton Ruth B

    2011-10-01

    Full Text Available Abstract Background Bacteria which are metabolically active yet unable to be cultured and eradicated by antibiotic treatment are present in the middle ear effusion of children with chronic otitis media with effusion (COME and recurrent acute otitis media (rAOM. These observations are suggestive of biofilm presence or intracellular sequestration of bacteria and may play a role in OM pathogenesis. The aim of this project is to provide evidence for the presence of otopathogenic bacteria intracellularly or within biofilm in the middle ear mucosa of children with COME or rAOM. Methods Middle ear mucosal biopsies from 20 children with COME or rAOM were examined for otopathogenic bacteria (either in biofilm or located intracellularly using transmission electron microscopy (TEM or species specific fluorescent in situ hybridisation (FISH and confocal laser scanning microscopy (CLSM. One healthy control biopsy from a child undergoing cochlear implant surgery was also examined. Results No bacteria were observed in the healthy control sample. In 2 of the 3 biopsies imaged using TEM, bacteria were observed in mucus containing vacuoles within epithelial cells. Bacterial species within these could not be identified and biofilm was not observed. Using FISH with CLSM, bacteria were seen in 15 of the 17 otitis media mucosal specimens. In this group, 11 (65% of the 17 middle ear mucosal biopsies showed evidence of bacterial biofilm and 12 demonstrated intracellular bacteria. 52% of biopsies were positive for both biofilm and intracellular bacteria. At least one otopathogen was identified in 13 of the 15 samples where bacteria were present. No differences were observed between biopsies from children with COME and those with rAOM. Conclusion Using FISH and CLSM, bacterial biofilm and intracellular infection with known otopathogens are demonstrated on/in the middle ear mucosa of children with COME and/or rAOM. While their role in disease pathogenesis remains to be

  16. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus;

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...... (geJ). and 2) a nuclease attacking nucleic acids intracellularly. The efficacy of these lethal genes has been assessed in model constructions with a synthetic lac promoter. By combination with the regulatory pathway of the TOL genes. a system was designed which allows bacterial growth in the presence...

  17. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas;

    2010-01-01

    variant form of siderocalin, which is expressed only in the macrophage cytosol, inhibited intracellular M.tb growth as effectively as the normal, secreted form, an observation that provides mechanistic insight into how siderocalin might influence iron acquisition by the bacteria in the phagosome. Our...... siderocalin expression is upregulated following M.tb infection of mouse macrophage cell lines and primary murine alveolar macrophages. Furthermore, siderocalin added exogenously as a recombinant protein or overexpressed in the RAW264.7 macrophage cell line inhibited the intracellular growth of the pathogen. A......Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that...

  18. Return bloom in 'Stayman' apple with NAA and/or ethephon: 2007 through 2009

    Science.gov (United States)

    Following a season in which apple trees produce a full crop, many cultivars fail to produce enough bloom the next year for an adequate crop. Obtaining good return bloom is a problem for many apple growers. Plant growth regulators (PGRs) are recommended to enhance return bloom in apple. This study...

  19. Context discovery using attenuated Bloom filters in ad-hoc networks

    NARCIS (Netherlands)

    Liu, Fei; Heijenk, Geert

    2007-01-01

    A novel approach to performing context discovery in ad-hoc networks based on the use of attenuated Bloom filters is proposed in this paper. A Bloom filter is an efficient spacesaving data structure to represent context information. Attenuated Bloom filters are used to advertise the availability of c

  20. A Preliminary Bloom's Taxonomy Assessment of End-of-Chapter Problems in Business School Textbooks

    Science.gov (United States)

    Marshall, Jennings B.; Carson, Charles M.

    2008-01-01

    This article examines textbook problems used in a sampling of some of the most common core courses found in schools of business to ascertain what level of learning, as defined by Bloom's Taxonomy, is required to provide a correct answer. A set of working definitions based on Bloom's Taxonomy (Bloom & Krathwohl, 1956) was developed for the six…

  1. Palladium-mediated intracellular chemistry

    OpenAIRE

    Rahimi M. Yusop; Unciti-Broceta, Asier; Johansson, Emma M. V.; Rosario M. Sanchez-Martin; Bradley, Mark

    2011-01-01

    Many important intracellular biochemical reactions are modulated by transition metals, typically in the form of metalloproteins. The ability to carry out selective transformations inside a cell would allow researchers to manipulate or interrogate innumerable biological processes. Here, we show that palladium nanoparticles trapped within polystyrene microspheres can enter cells and mediate a variety of Pd-0-catalysed reactions, such as allylcarbamate cleavage and Suzuki-Miyaura cross-coupling....

  2. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  3. Was Bloom's Taxonomy Pointed in the Wrong Direction?

    Science.gov (United States)

    Wineburg, Sam; Schneider, Jack

    2010-01-01

    Bloom's Taxonomy usually is depicted as a pyramid with knowledge at the lowest level and evaluation at the top. For the history classroom, however, that arrangement might be upside down. In history, evaluation is often necessary before new knowledge can be learned. (Contains 1 figure.)

  4. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Oosterhout, J.F.X.

    2013-01-01

    The hypothesis that the combination of the flocculent polyaluminium chloride (PAC) with the lanthanum-modified bentonite Phoslock® (Flock & Lock) could sink effectively a water bloom of cyanobacteria and could shift a turbid, cyanobacteria infested lake to a clear water lake was tested in a cont

  5. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples

    NARCIS (Netherlands)

    Waaijenberg, G.W.A.M.; Faassen, E.J.; Lurling, M.

    2014-01-01

    Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a surv

  6. The Unfortunate Consequences of Bloom's Taxonomy

    Science.gov (United States)

    Case, Roland

    2013-01-01

    The sequenced levels of thinking articulated in Bloom's original taxonomy (or in the multitude of subsequent variations) is the most widely known list in education. In addition to enduring popularity, it is arguably one of the most destructive theories in education. In this article, the author explains what makes it so damaging and how…

  7. Toxins produced in cyanobacterial water blooms – toxicity and risks

    OpenAIRE

    Bláha, Luděk; Babica, Pavel; Maršálek, Blahoslav

    2009-01-01

    Cyanobacterial blooms in freshwaters represent a major ecological and human health problem worldwide. This paper briefly summarizes information on major cyanobacterial toxins (hepatotoxins, neurotoxins etc.) with special attention to microcystins-cyclic heptapeptides with high acute and chronic toxicities. Besides discussion of human health risks, microcystin ecotoxicology and consequent ecological risks are also highlighted. Although significant research attention has been paid to microcysti...

  8. Termination of a toxic Alexandrium bloom with hydrogen peroxide

    NARCIS (Netherlands)

    Burson, A.; Matthijs, H.C.P.; Bruijne, de W.; Talens, R.; Hoogenboom, L.A.P.; Gerssen, A.; Visser, P.M.; Stomp, M.; Steur, K.; Scheppingen, van Y.; Huisman, J.

    2014-01-01

    The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1 million cells L-1 oc

  9. Termination of a toxic Alexandrium bloom with hydrogen peroxide

    NARCIS (Netherlands)

    A. Burson; H.C.P. Matthijs; W. de Bruijne; R. Talens; R. Hoogenboom; A. Gerssen; P.M. Visser; M. Stomp; K. Steur; Y. van Scheppingen; J. Huisman

    2014-01-01

    The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1 million cells L−1 oc

  10. Fooling Mother Nature: Forcing Flower Bulbs for Indoor Bloom

    OpenAIRE

    Graine, George; Scoggins, Holly Lynne, 1962-

    2014-01-01

    Think about bulb forcing as an orderly process. This includes choosing the bulb, storing it if necessary, selecting the right size container, determining the potting mix, planting (including fertilizer, water and location), providing a cooling treatment if necessary and after care. Other considerations may be color, fragrance, and timing for seasonal enjoyment of winter or early spring bloom.

  11. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms.

    Directory of Open Access Journals (Sweden)

    Mélanie Gerphagnon

    Full Text Available Many species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids. However, few studies have reported the effects of fungal parasites on filamentous cyanobacterial blooms. To investigate the missing components of bloom ecosystems, we examined an entire field bloom of the cyanobacterium Anabaena macrospora for evidence of chytrid infection in a productive freshwater lake, using a high resolution sampling strategy. A. macrospora was infected by two species of the genus Rhizosiphon which have similar life cycles but differed in their infective regimes depending on the cellular niches offered by their host. R. crassum infected both vegetative cells and akinetes while R. akinetum infected only akinetes. A tentative reconstruction of the developmental stages suggested that the life cycle of R. crassum was completed in about 3 days. The infection affected 6% of total cells (and 4% of akinètes, spread over a maximum of 17% of the filaments of cyanobacteria, in which 60% of the cells could be parasitized. Furthermore, chytrids may reduce the length of filaments of Anabaena macrospora significantly by "mechanistic fragmentation" following infection. All these results suggest that chytrid parasitism is one of the driving factors involved in the decline of a cyanobacteria blooms, by direct mortality of parasitized cells and indirectly by the mechanistic fragmentation, which could weaken the resistance of A. macrospora to grazing.

  12. Conception of Learning Outcomes in the Bloom's Taxonomy Affective Domain

    Science.gov (United States)

    Savickiene, Izabela

    2010-01-01

    The article raises a problematic issue regarding an insufficient base of the conception of learning outcomes in the Bloom's taxonomy affective domain. The search for solutions introduces the conception of teaching and learning in the affective domain as well as presents validity criteria of learning outcomes in the affective domain. The…

  13. Developing Learning Objectives for Accounting Ethics Using Bloom's Taxonomy

    Science.gov (United States)

    Kidwell, Linda A.; Fisher, Dann G.; Braun, Robert L.; Swanson, Diane L.

    2013-01-01

    The purpose of our article is to offer a set of core knowledge learning objectives for accounting ethics education. Using Bloom's taxonomy of educational objectives, we develop learning objectives in six content areas: codes of ethical conduct, corporate governance, the accounting profession, moral development, classical ethics theories, and…

  14. Using Bloom's Taxonomy to Teach Students about Plagiarism

    Science.gov (United States)

    Vosen, Melissa A.

    2008-01-01

    Melissa A. Vosen outlines a unit she has designed to help students comprehend the often unclear boundaries and issues surrounding plagiarism. Using Bloom's taxonomy of the cognitive domain, students complete increasingly complex tasks, learning to construct a works cited page and assess scholarly opinions. They also research the consequences of…

  15. Reconsidering Bloom's Taxonomy of Educational Objectives, Cognitive Domain.

    Science.gov (United States)

    Moore, David S.

    1982-01-01

    The hierarchical structure of the cognitive domain presented in Benjamin S. Bloom's taxonomy of educational objectives does not reflect the actual nature of the learning process. Attempts to apply the classification levels to student learning in mathematics and other subjects place the taxonomy's usefulness in question. (PP)

  16. ENCLOSURE EXPERIMENTS ON AND LACUSTRINE PRACTICE FOR ELIMINATING MICROCYSTIS BLOOM

    Institute of Scientific and Technical Information of China (English)

    刘建康; 谢平

    2002-01-01

    Microcystis bloom, one of the most objectionable characteristics of eutrophication in tropical and subtropical waters, occurred in Donghu Lake (East Lake) of Wuhan every summer from the 1970s up to 1984, but from 1985 up tonow failed to occur there. The cause of its disappearance remained in obscurityuntil recently. In situ enclosure experiments in the lake for three years showed that the stocking of the filter-feeding silver carp (Hypophthalmichthys molitrix) and big-head carp (Aristichthys nobilis) played a decisive role in eliminating Microcystis bloom from the lake; but that recurrence of the bloom is possibleunder certain conditions. This paper presents the details and the results of enclosure experiments. The authors' analysis of fish biomass data obtained by echo-sounding and the fishery production of the lake over the years, revealed that the recurrence of Microcystis bloom can be prevented so long as the combined biomass of silver carp and big-head carp remains at or exceeds 50 g per cubic meter of lakewater, as was the case in the lake's 1985 fish yield of 1015 t.``

  17. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors

    Directory of Open Access Journals (Sweden)

    Maxine A.D. Mowe

    2014-12-01

    Full Text Available Toxic cyanobacterial blooms are a major issue in freshwater systems in many countries. The potentially toxic species and their ecological causes are likely to be different in tropical zones from those in temperate water bodies; however, studies on tropical toxic cyanobacterial blooms are sporadic and currently there is no global synthesis. In this review, we examined published information on tropical cyanobacterial bloom occurrence and toxin production to investigate patterns in their growth and distribution. Microcystis was the most frequently occurring bloom genus throughout tropical Asia, Africa and Central America, while Cylindrospermopsis and Anabaena blooms occurred in various locations in tropical Australia, America and Africa. Microcystis blooms were more prevalent during the wet season while Cylindrospermopsis blooms were more prevalent during the dry period. Microcystin was the most encountered toxin throughout the tropics. A meta-analysis of tropical cyanobacterial blooms showed that Microcystis blooms were more associated with higher total nitrogen concentrations, while Cylindrospermopsis blooms were more associated with higher maximum temperatures. Meta-analysis also showed a positive linear relationship between levels of microcystin and N:P (nitrate:phosphate ratio. Tropical African Microcystis blooms were found to have the lowest microcystin levels in relation to biomass and N:P (nitrate:phosphate compared to tropical Asian, Australian and American blooms. There was also no significant correlation between microcystin concentration and cell concentration for tropical African blooms as opposed to tropical Asian and American blooms. Our review illustrates that some cyanobacteria and toxins are more prevalent in tropical areas. While some tropical countries have considerable information regarding toxic blooms, others have few or no reported studies. 

  18. Intracardiac intracellular angiotensin system in diabetes.

    NARCIS (Netherlands)

    Kumar, R.; Yong, Q.C.; Thomas, C.M.G.; Baker, K.M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appea

  19. Novel Insights on the Dynamics and Consequence of Harmful Algal Blooms in the California Current System: From Parasites as Bloom Control Agents to Human Toxin Exposure

    OpenAIRE

    Mazzillo, Fernanda da Frota Mattos

    2011-01-01

    This dissertation provided novel insights on the dynamics and consequences of harmful algal blooms (HABs) in the California Current System (CCS). Parasitism is described as a biological control agent of harmful dinoflagellate blooms and referred to as a novel factor influencing HAB dynamics in coastal upwelling environments. Chapter 1 documented, for the first time, the presence of Amoebophrya, an endoparasitic dinoflagellate that infects and kills 7 bloom-forming dinoflagellate host species ...

  20. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  1. The plankton community on Sukkertop and Fylla Banks off West Greenland during a spring bloom and post-bloom period: Hydrography, phytoplankton and protozooplankton

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Reuss, N.

    2002-01-01

    The plankton community structure was investigated on Sukkertop and Fylla Banks off West Greenland during the spring bloom in May 2000 and the post-bloom period in June 1999. In May a small change in density, clearly illustrated by the profile of potential energy, was sufficient to support a spring...... bloom in the upper part of the water column. The spring bloom phytoplankton community displayed high biomass (92 +/- 45 mg C m(-3)) dominated by species of the genera Thalassiosira and Chaetoceros. The phytoplankton species composition, ongoing sedimentation and nutrient depletion indicated late spring...

  2. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  3. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  4. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  5. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  6. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  7. Regression modeling of the North East Atlantic Spring Bloom suggests previously unrecognized biological roles for V and Mo

    Directory of Open Access Journals (Sweden)

    Nick J Klein

    2013-03-01

    Full Text Available In order to identify the biogeochemical parameters controlling pCO2, total chlorophyll a, and dimethylsulfide (DMS concentrations during the North East Atlantic Spring Bloom (NASB, we used previously unpublished particulate and dissolved elemental concentrations to construct several linear regression models; first by hypothesis-testing, and then with exhaustive stepwise linear regression followed by leave-one-out cross-validation. The field data was obtained along a latitudinal transect from the Azores Islands to the North Atlantic, and best-fit models (determined by lowest predictive error of up to three variables are presented. Total chlorophyll a is predicted best by biomass (POC, PON parameters and by pigments characteristic of picophytoplankton for the southern section of the sampling transect (from the Azores to the Rockhall-Hatton Plateau and coccolithophores in the northern portion (from the Rockhall-Hatton Plateau to the Denmark Strait. Both the pCO2 and DMS models included variables traditionally associated with the development of the NASB such as mixed-layer depth and with Fe, Si and P-deplete conditions (dissolved Fe, dissolved and biogenic silica, dissolved PO43-. However, the regressions for pCO2 and DMS also include intracellular V and Mo concentrations, respectively. Mo is involved in DMS production as a cofactor in dimethylsulfoxide reductase. No significant biological role for V has yet been determined, although intracellular V is significantly correlated (p-value < 0.05 with biogenic silica (R2 = 0.72 and total chlorophyll a (R2 = 0.49 while the same is not true for its biogeochemical analogue Mo, suggesting active uptake of V by phytoplankton. Our statistical analysis suggests these two lesser-studied metals may play more important roles in bloom dynamics than previously thought, and highlights a need for studies focused on determining their potential biological requirements and cell quotas.

  8. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi

    International Nuclear Information System (INIS)

    To investigate the bioaccumulation patterns of microcystins (MCs) in organs of two gastropods, samples were collected in Lake Dianchi monthly from May to October, 2008, when cyanobacteria typically bloom. The average MCs concentrations for Radix swinhoei (pulmonate) and Margarya melanioides (prosobranch) tended to be similar for the different organs: the highest values in the hepatopancreas (9.33 by 3.74 μg/g DW), followed by digestive tracts (1.66 by 3.03 μg/g DW), gonads (0.45 by 1.34 μg/g DW) and muscles (0.22 by 0.40 μg/g DW). Pulmonate had higher value than prosobranch because of the stronger bioaccumulation ability in hepatopancreas. The levels in organs of R. swinhoei were correlated with environmentally dissolved MCs, but influenced by intracellular MCs for M. melanioides. The estimated MCs concentrations in edible parts of M. melanioides were beyond the WHO’s provisional tolerable daily intake (0.04 μg/kg), suggesting the risk of consumption of M. melanioides from the lake. Highlights: ► We probe bioaccumulated patterns of microcystins in organs of pulmonate and prosobranch. ► The highest microcystins in hepatopancreas for both snails. ► The higher microcystins for pulmonate results from the stronger bioaccumulation ability in hepatopancreas. ► Environmentally dissolved microcystins are the main sources for pulmonate, but intracellular for prosobranch. ► Suggesting the risk of consumption snails in the studying regions. - Higher bioaccumulation MCs level for pulmonate mainly contributed to the stronger bioaccumulation ability in its hepatopancreas.

  9. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    Directory of Open Access Journals (Sweden)

    A. N. Schwier

    2014-10-01

    Full Text Available The effect of ocean acidification and changing water conditions on primary marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect as well as the indirect effect on aerosol that changing biogeochemical parameters can have, ~52 m3 pelagic mesocosms were deployed for several weeks in the Mediterranean Sea during both winter pre-bloom and summer oligotrophic conditions and were subjected to various levels of CO2 to simulate the conditions foreseen in this region for the coming decades. After seawater sampling, primary bubble-bursting aerosol experiments were performed using a plunging water jet system to test both chemical and physical aerosol parameters. Comparing results obtained during pre-bloom and oligotrophic conditions, we find the same four log-normal modal diameters (18.5, 37.5, 91.5, 260 nm describing the aerosol size distribution during both campaigns, yet pre-bloom conditions significantly increased the number fraction of the second (Aitken mode, with an amplitude correlated to virus-like particles, heterotrophic prokaryotes, TEPs, chlorophyll a and other pigments. Organic fractions determined from κ closure calculations for Dp ~50 nm were much larger during the pre-bloom period (64% than during the oligotrophic period (38%, and the organic fraction increased as the particle size decreased. Combining data from both campaigns together, strong positive correlations were found between the organic fraction of the aerosol and chlorophyll a concentrations, heterotrophic and autotrophic bacteria abundance, and dissolved organic carbon (DOC concentrations. As a consequence of the changes in the organic fraction and the size distributions between pre-bloom and oligotrophic periods, we find that the ratio of cloud condensation nuclei (CCN to condensation nuclei (CN slightly decreased during the pre-bloom period. The enrichment of the seawater samples with microlayer samples did not have any

  10. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    Science.gov (United States)

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  11. Intra-ChIP: studying gene regulation in an intracellular pathogen.

    Science.gov (United States)

    Hanson, Brett R; Tan, Ming

    2016-08-01

    Intracellular bacteria that reside within a host cell use a variety of strategies to exploit this unique niche. While these organisms are technically challenging to study in the context of an infected host cell, recent advances have led to an improved understanding of how the intracellular environment impacts bacterial gene expression. We recently demonstrated that chromatin immunoprecipitation (ChIP) can be used to quantify transcription factor binding in the obligate intracellular pathogen Chlamydia trachomatis within infected cells. Furthermore, we showed it was possible to experimentally modulate transcription factor binding while simultaneously measuring changes in transcription. Here we discuss these findings as well as other recent work that has used ChIP to study intracellular pathogens within infected cells. We also discuss technical considerations associated with this approach and its possible future applications. PMID:26886234

  12. Intra-ChIP: studying gene regulation in an intracellular pathogen.

    Science.gov (United States)

    Hanson, Brett R; Tan, Ming

    2016-08-01

    Intracellular bacteria that reside within a host cell use a variety of strategies to exploit this unique niche. While these organisms are technically challenging to study in the context of an infected host cell, recent advances have led to an improved understanding of how the intracellular environment impacts bacterial gene expression. We recently demonstrated that chromatin immunoprecipitation (ChIP) can be used to quantify transcription factor binding in the obligate intracellular pathogen Chlamydia trachomatis within infected cells. Furthermore, we showed it was possible to experimentally modulate transcription factor binding while simultaneously measuring changes in transcription. Here we discuss these findings as well as other recent work that has used ChIP to study intracellular pathogens within infected cells. We also discuss technical considerations associated with this approach and its possible future applications.

  13. DNA topology and adaptation of Salmonella typhimurium to an intracellular environment.

    Science.gov (United States)

    Marshall, D G; Bowe, F; Hale, C; Dougan, G; Dorman, C J

    2000-01-01

    The expression of genes coding for determinants of DNA topology in the facultative intracellular pathogen Salmonella typhimurium was studied during adaptation by the bacteria to the intracellular environment of J774A.1 macrophage-like cells. A reporter plasmid was used to monitor changes in DNA supercoiling during intracellular growth. Induction of the dps and spv genes, previously shown to be induced in the macrophage, was detected, as was expression of genes coding for DNA gyrase, integration host factor and the nucleoid-associated protein H-NS. The topA gene, coding for the DNA relaxing enzyme topoisomerase I, was not induced. Reporter plasmid data showed that bacterial DNA became relaxed following uptake of S. typhimurium cells by the macrophage. These data indicate that DNA topology in S. typhimurium undergoes significant changes during adaptation to the intracellular environment. A model describing how this process may operate is discussed. PMID:10874730

  14. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor.

    Science.gov (United States)

    McGonigle, John E; Purves, Joanne; Rolff, Jens

    2016-06-01

    Survival of bacteria within host cells and tissues presents a challenge to the immune systems of higher organisms. Escape from phagocytic immune cells compounds this issue, as immune cells become potential vehicles for pathogen dissemination. However, the duration of persistence within phagocytes and its contribution to pathogen load has yet to be determined. We investigate the immunological significance of intracellular persistence within the insect model Tenebrio molitor, assessing the extent, duration and location of bacterial recovery during a persistent infection. Relative abundance of Staphylococcus aureus in both intracellular and extracellular fractions was determined over 21 days, and live S. aureus were successfully recovered from both the hemolymph and within phagocytic immune cells across the entire time course. The proportion of bacteria recovered from within phagocytes also increased over time. Our results show that to accurately estimate pathogen load it is vital to account for bacteria persisting within immune cells.

  15. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival.

    Science.gov (United States)

    Lamberti, Yanina; Gorgojo, Juan; Massillo, Cintia; Rodriguez, Maria E

    2013-12-01

    Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.

  16. Intracellular demography and the dynamics of Salmonella enterica infections.

    Directory of Open Access Journals (Sweden)

    Sam P Brown

    2006-10-01

    Full Text Available An understanding of within-host dynamics of pathogen interactions with eukaryotic cells can shape the development of effective preventive measures and drug regimes. Such investigations have been hampered by the difficulty of identifying and observing directly, within live tissues, the multiple key variables that underlay infection processes. Fluorescence microscopy data on intracellular distributions of Salmonella enterica serovar Typhimurium (S. Typhimurium show that, while the number of infected cells increases with time, the distribution of bacteria between cells is stationary (though highly skewed. Here, we report a simple model framework for the intensity of intracellular infection that links the quasi-stationary distribution of bacteria to bacterial and cellular demography. This enables us to reject the hypothesis that the skewed distribution is generated by intrinsic cellular heterogeneities, and to derive specific predictions on the within-cell dynamics of Salmonella division and host-cell lysis. For within-cell pathogens in general, we show that within-cell dynamics have implications across pathogen dynamics, evolution, and control, and we develop novel generic guidelines for the design of antibacterial combination therapies and the management of antibiotic resistance.

  17. Sedimentation of phytoplankton during a diatom bloom : Rates and mechanisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hansen, J.L.S.; Alldredge, A.L.;

    1996-01-01

    Phytoplankton blooms are uncoupled from grazing and are normally terminated by sedimentation. There are several potential mechanisms by which phytoplankton cells may settle out of the photic zone: sinking of individual cells or chains, coagulation of cells into aggregates with high settling...... fjord, and evaluated their potential to control phytoplankton population dynamics. Overall specific sedimentation rates of intact phytoplankton cells were low during the Ii-day study period, averaging ca. 0.1 d(-1), and mass sedimentation and bloom termination did not occur. Most cells settled attached...... to marine snow aggregates formed from discarded larvacean houses, whereas settling of unaggregated cells was insignificant. Formation rates of phytoplankton aggregates by physical coagulation was very low, and losses by this mechanism were much less than 0.07 d(-1); phytoplankton aggregates were...

  18. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin

    NARCIS (Netherlands)

    Alderkamp, A-C.; van Rijssel, M.; Bolhuis, H.

    2007-01-01

    The algal storage glucan laminarin is one of the most abundant carbon sources for marine prokaryotes. Its degradation was investigated in bacteria isolated during and after a spring phytoplankton bloom in the coastal North Sea. On average, 13% of prokaryotes detected by epifluorescence counts were a

  19. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa.

    Science.gov (United States)

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-10-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.

  20. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa

    Science.gov (United States)

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-10-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.

  1. Environmental Chemistry and Chemical Ecology of "Green Tide" Seaweed Blooms.

    Science.gov (United States)

    Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L

    2015-09-01

    Green tides are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green tides consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green tides have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green tides take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-tide blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds. PMID:25972565

  2. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    OpenAIRE

    Armin Oskoueian; Jaafar, Hawa Z. E.; Rudi Hendra; Ehsan Oskoueian; Ehsan Karimi

    2012-01-01

    Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and fla...

  3. Environmental Chemistry and Chemical Ecology of "Green Tide" Seaweed Blooms.

    Science.gov (United States)

    Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L

    2015-09-01

    Green tides are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green tides consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green tides have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green tides take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-tide blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds.

  4. Bloom's Taxonomy (Classification of cognitive areas – remembering, understanding, applying)

    OpenAIRE

    Petrova Gjorgjeva, Emilija

    2011-01-01

    Traditional teaching is based upon the products of thought, but it neglects the processes which lead to these products. Efficacy in learning depends on the student‘s consciousness about the process of learning itself and on the usage of self-regulating learning mechanisms. The taxonomy conceived by Benjamin Bloom and his associates enables teachers to distinguish the questions that instigate lower and higher levels of students‘ thinking, i.e. to make the distinction between questions requi...

  5. Evaluating ILI Advanced Series through Bloom's Revised Taxonomy

    OpenAIRE

    MAHDIPOUR, Nasim; SADEGHI, Bahador

    2015-01-01

    Abstract. This study investigated Iran Language Institute Advanced Series in terms of learning objectives based on Bloom's Revised Taxonomy. It examined the cognitive, affective and psychomotor domains to see how the critical thinking skills are used and to what extent these books are different from each other. For these purposes, the frequencies, percentages and Standard Residual were analyzed. Results revealed that the lower-order cognitive skills (i.e. remembering, understanding and applyi...

  6. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean

    Directory of Open Access Journals (Sweden)

    I. Borrione

    2013-01-01

    Full Text Available South Georgia phytoplankton blooms are amongst the largest of the Southern Ocean and are associated with a rich ecosystem and strong atmospheric carbon drawdown. Both aspects depend on the intensity of blooms, but also on their regularity. Here we use data from 12 yr of SeaWiFS (Sea-viewing Wide Field-of-view Sensor ocean colour imagery and calculate the frequency of bloom occurrence (FBO to re-examine spatial and temporal bloom distributions. We find that upstream of the island and outside the borders of the Georgia Basin, blooms occurred in less than 4 out of the 12 yr (FBO < 4. In contrast, FBO was mostly greater than 8 downstream of the island, i.e., to the north and northwest, and in places equal to 12, indicating that blooms occurred every year. The typical bloom area, defined as the region where blooms occurred in at least 8 out of the 12 yr, covers the entire Georgia Basin and the northern shelf of the island. The time series of surface chlorophyll a (Chl a concentrations averaged over the typical bloom area shows that phytoplankton blooms occurred in every year between September 1997 and September 2010, and that Chl a values followed a clear seasonal cycle, with concentration peaks around December followed in many years by a second peak during late austral summer or early autumn, suggesting a bi-modal bloom pattern. The bloom regularity we describe here is in contrast with results of Park et al. (2010 who used a significantly different study area including regions that almost never exhibit bloom conditions.

  7. A universal strategy for stable intracellular antibodies.

    Science.gov (United States)

    Shaki-Loewenstein, Shelly; Zfania, Rahely; Hyland, Stephen; Wels, Winfried S; Benhar, Itai

    2005-08-01

    The expression of intracellular antibodies (intrabodies) in mammalian cells has provided a powerful tool to manipulate microbial and cellular signalling pathways in a highly precise manner. However, several technical hurdles have thus far restricted their more widespread use. In particular, single-chain antibodies (scFvs) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use scFv-phage libraries as a source of intrabodies unless a preselection step was applied to identify these rare scFvs that could fold properly in the absence of disulfide bonds. Recently, we reported that scFvs can be efficiently expressed within the cytoplasm of bacteria when fused at the C-terminus of the Escherichia coli maltose-binding protein (MBP). Here, we demonstrate that such MBP-scFvs are similarly stabilized when expressed in the mammalian cell cytoplasm as well as other compartments. This was demonstrated by comparing MBP-scFv fusions to the corresponding unfused scFvs that activate a defective beta-galactosidase enzyme, others that neutralize the wild-type beta-galactosidase enzyme, and an antibody that blocks the epidermal growth factor receptor. In all cases, the MBP-scFvs significantly outperformed their unfused counterparts. Our results suggest that fusion of scFvs to MBP, and possibly to other "chaperones in the context of a fusion protein", may provide a universal approach for efficient expression of intrabodies in the mammalian cell cytoplasm. This strategy should allow investigators to bypass much of the in vitro scFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic scFv-phage libraries already in existence to identify intrabodies that will be active in vivo.

  8. Interaction between Chlorella vulgaris and bacteria:interference and resource competition

    Institute of Scientific and Technical Information of China (English)

    QU Liang; WANG Renjun; ZHAO Peng; CHEN Ruinan; ZHOU Wenli; TANG Liuqing; TANG Xuexi

    2014-01-01

    Research of interaction mechanism between Chlorella vulgaris and two bacterial strains (Z-QD08 and Z-QS01) were conducted under laboratory conditions. Growth rates of bacteria and C. vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C. vulgaris and bacteria on their interactions. To test whether the availability of inorganic nutrients, vitamins and trace metals affects the interactions between C. vulgaris and bacteria, experiments were performed with or without the culture medium filtrate of C. vulgaris or bacteria. The results showed that the growth of C. vulgaris was promot-ed at low concentrations of bacteria (5×106 cells/ml), and expressed a positive correlation with the bacteria density, whereas opposite trend was observed for treatments with high bacteria density (10×106 cells/ml and 20×106 cells/ml). The growth rate of bacteria decreased with the increasing concentrations of C. vul-garis. The growth of bacteria Z-QD08 was inhibited by C. vulgaris through interference competition, while the mechanism for interaction between bacteria Z-QS01 and C. vulgaris was resource competition. The influence of cell density on the interaction between microalgae and bacteria was also discussed. These ex-periments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.

  9. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms.

    Science.gov (United States)

    Zhang, Yunlin; Shi, Kun; Liu, Junjie; Deng, Jianming; Qin, Boqiang; Zhu, Guangwei; Zhou, Yongqiang

    2016-11-01

    Potentially toxic black blooms can disrupt drinking water treatment plants and have fatal effects on aquatic ecosystems; therefore, lake management is required to determine whether conditions are favorable for the formation and disappearance of black blooms in water supply sources. Long-term climate background, short-term thresholds of meteorological and hydrological conditions, and the duration of harmful algal blooms (HABs) were investigated as factors affecting the formation and disappearance of black blooms in hyper-eutrophic Lake Taihu. Long-term climate warming (0.31°C/decade), decreases in wind speed (0.26m/s per decade) and air pressure (0.16hPa/decade), and the increase in the meteorological index of black blooms (3.6days/decade) in Lake Taihu over the past 51years provided climate conditions conducive to the formation and occurrence of black blooms. A total of 16 black bloom events with an area larger than 0.1km(2) were observed from 2007 to 2014. Several critical thresholds for short-term meteorological and hydrological conditions were determined for the formation of black blooms, including a five-day average air temperature above 25°C, a five-day average wind speed 5days. Heavy precipitation events, sudden cooling, and large wind disturbances were the driving factors of black blooms' disappearance. The use of a coupling model that combines the remote sensing of HABs with environmental, meteorological, and hydrological observations could permit an adequate and timely response to black blooms in drinking water sources. PMID:27396313

  10. Euglenoid blooms in the floodplain wetlands of Barak Valley, Assam, North eastern India.

    Science.gov (United States)

    Duttagupta, S; Gupta, Susmita; Gupta, Abhik

    2004-07-01

    Red blooms of Euglena sp. in the floodplain wetland ecosystems of Barak Valley, Assam, India, were found to be induced by high concentrations of NH3-N, NO3, Fe, Mg and to some extent, PO4, Cu and Zn in their water. The trace elements were rapidly accumulated by the bloom organisms to high levels, whereby their concentrations in the water declined, leading to a collapse of the bloom, which tended to reappear as decomposition again led to the release of the nutrients. The bloom also harboured fairly high density of certain other algae and zooplankton, thereby acting as a sub-system within the wetland ecosystem. The bloom is non-toxic and is exploited as a fish food by the fish-farmers who artificially induce a bloom for augmenting the growth of surface-feeding species of fishes. PMID:15847351

  11. Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment

    Science.gov (United States)

    Joassin, P.; Delille, B.; Soetaert, K.; Harlay, J.; Borges, A. V.; Chou, L.; Riebesell, U.; Suykens, K.; Grégoire, M.

    2011-04-01

    A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced in mesocosms over a period of 23 days. The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO 2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growth model in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without any modulation term). In a first step, the model has been applied to the simulations of present pCO 2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are

  12. Buoyant densities of phototrophic sulfur bacteria and cyanobacteria

    Science.gov (United States)

    Guerrero, R.

    1985-01-01

    The buoyant densities of bacterial cells are greatly influenced by the accumulation of intracellular reserve material. The buoyant density of phototrophic bacteria that are planktonic is of particular interest, since these organisms must remain in the photic zone of the water column for optimal growth. Separation of cells by their buoyant density may also be of use in separating and identifying organisms from a natural population. The bacteria used were obtained from pure cultures, enrichments, or samples taken directly from the environment.

  13. A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Mike B., E-mail: mike.dixon@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, GPO Box 1751, Adelaide, SA, 5001 (Australia); School of Chemical Engineering, University of Adelaide, SA 5005 (Australia); Richard, Yann [School of Chemistry, Physics and Electronics, 48 Blvd du 11 Nov 1918, BP 2077-69616, Villeurbanne Cedex (France); Ho, Lionel [Australian Water Quality Centre, SA Water Corporation, GPO Box 1751, Adelaide, SA, 5001 (Australia); School of Earth and Environmental Sciences, University of Adelaide, SA 5005 (Australia); Chow, Christopher W.K. [Australian Water Quality Centre, SA Water Corporation, GPO Box 1751, Adelaide, SA, 5001 (Australia); O' Neill, Brian K. [School of Chemical Engineering, University of Adelaide, SA 5005 (Australia); Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, GPO Box 1751, Adelaide, SA, 5001 (Australia)

    2011-02-28

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition.

  14. A coagulation-powdered activated carbon-ultrafiltration--multiple barrier approach for removing toxins from two Australian cyanobacterial blooms.

    Science.gov (United States)

    Dixon, Mike B; Richard, Yann; Ho, Lionel; Chow, Christopher W K; O'Neill, Brian K; Newcombe, Gayle

    2011-02-28

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition. PMID:21227576

  15. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community

    Directory of Open Access Journals (Sweden)

    Meili eXie

    2016-02-01

    Full Text Available Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  16. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuwen, E-mail: qchen@rcees.ac.cn [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China); China Three Gorges University, Daxuelu 8, Yichang 443002 (China); CEER, Nanjing Hydraulics Research Institute, Guangzhoulu 223, Nanjing 210029 (China); Rui, Han; Li, Weifeng; Zhang, Yanhui [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China)

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management.

  17. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    International Nuclear Information System (INIS)

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management

  18. Progressive eutrophication behind the world-largest super floating macroalgal blooms in the Yellow Sea

    OpenAIRE

    Xing, Q.; Gao, M; Gao, X; Tosi, L.; Schmitt, F G; Zhang, Y.; Shi, P.; Wei, J.; Luo, Y.

    2014-01-01

    World-largest super floating macroalgal blooms of Ulva prolifera have lasted 7 years by now in every summer in the Yellow Sea, the outer part of a semi-enclosed coastal sea. Evaluation of the inter-annual variability in the trophic status is one of fundamental tasks for prediction and management of the blooms. We show the new findings of a progressive eutrophication in the large Yellow Sea basin behind the super floating macroalgal blooms. The inter-annual...

  19. Critical Examination of a Revision of Bloom's Taxonomy for the Development of Art Education Curriculum

    OpenAIRE

    Nakamura, Kazuyo; Yamato, Hiroko; Nakashima, Atsuo; Kikkawa, Kazuo

    2011-01-01

    This paper is aimed at developing Art Education Taxonomy Table through critically examining a revision of Bloom's Taxonomy of Educational Objectives contrived by Anderson and Krathwohl. First, the overview of the history of Bloom's Taxonomy is provided in relation to art education. Second, the influence of Bloom's theory of educational evaluation and Taxonomy on the classroom practice of art education in Japan is discussed. Third, aiming at using for the development of art education curriculu...

  20. Diversity and Dynamics of a Widespread Bloom of the Toxic Dinoflagellate Alexandrium fundyense

    OpenAIRE

    Erdner, Deana L.; Richlen, Mindy; McCauley, Linda A. R.; Anderson, Donald M.

    2011-01-01

    Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was n...

  1. Shifts in Cyanobacterial Strain Dominance during the Onset of Harmful Algal Blooms in Florida Bay, USA.

    Science.gov (United States)

    Berry, Dianna L; Goleski, Jennifer A; Koch, Florian; Wall, Charles C; Peterson, Bradley J; Anderson, O Roger; Gobler, Christopher J

    2015-08-01

    Cyanobacteria are fundamental components of aquatic phytoplankton communities and some taxa can cause harmful blooms in coastal ecosystems. Harmful cyanobacterial blooms are typically comprised of multiple strains of a single genus or species that cannot be resolved microscopically. Florida Bay, USA, has experienced harmful cyanobacterial blooms that have been associated with the loss of eelgrass, spiny lobsters, and general food web disruption for more than two decades. To identify the strain or strains of cyanobacteria forming blooms in Florida Bay, samples were collected across the system over an annual cycle and analyzed via DNA sequencing using cyanobacterial-specific 16S rRNA gene primers, flow cytometry, and scanning electron microscopy. Analyses demonstrated that the onset of blooms in Florida Bay was coincident with a transformation of the cyanobacterial populations. When blooms were absent, the cyanobacterial population in Florida Bay was dominated by phycoerythrin-containing Synechococcus cells that were most similar to strains within Clade III. As blooms developed, the cyanobacterial community transitioned to dominance by phycocyanin-containing Synechococcus cells that were coated with mucilage, chain-forming, and genetically most similar to the coastal strains within Clade VIII. Clade VIII strains of Synechococcus are known to grow rapidly, utilize organic nutrients, and resist top-down control by protozoan grazers and viruses, all characteristics consistent with observations of cyanobacterial blooms in Florida Bay. Further, the strains of Synechococcus blooming in this system are genetically distinct from the species previously thought to cause blooms in Florida Bay, Synechococcus elongatus. Collectively, this study identified the causative organism of harmful cyanobacterial blooms in Florida Bay, demonstrates the dynamic nature of cyanobacterial stains within genera in an estuary, and affirms factors promoting Synechococcus blooms. PMID:25661475

  2. Remote Sensing and the Vertical Distribution of the Chrysochromulina Polylepsis Bloom in the Skagerak in 1988

    OpenAIRE

    Sørensen, K.; Lindell, T.; G. Larsen; Nisell, J.

    1991-01-01

    The present study contributes to explain the development of the C. polylepsis bloom and to evaluatethe importance of combined use of in situ monitoring and remote sensing techniques. The results show the difficulties to map the surface distribution of C. polylepsis via satellitedata and to judge the primary sources of water to the area. However, the satellite data indicate the temperature to be a possible prime factor in theacceleration of the bloom. In the later phase of the bloom, the C. po...

  3. Potentized homeopathic drug Arsenicum Album 30C inhibits intracellular reactive oxygen species generation and up-regulates expression of arsenic resistance gene in arsenine-exposed bacteria Escherichia coli%顺势疗法药物白砷剂抑制暴露于三氧化二砷的大肠杆菌细胞内活性氧的产生并上调其抗三氧化二砷基因的表达

    Institute of Scientific and Technical Information of China (English)

    Arnab De; Durba Das; Suman Dutta; Debrup Chakraborty; Naoual Boujedaini; Anisur Rahman Khuda-Bukhsh

    2012-01-01

    目的:检验顺势疗法药物Arsenicum Album 30C(Ars Alb 30C)是否能够降低亚砷酸钠对大肠杆菌(Escherichia coli)的毒性.方法:将在标准培养基中培养至对数生长期的大肠杆菌暴露于低剂量砷剂下.1或2 mmol/L亚砷酸钠单独作用于大肠杆菌作为对照,在此基础上加入Ars Alb 30C作为治疗组,或加入按顺势疗法原则配置的乙醇作为安慰剂组.分别于45 min和90 min后检测大肠杆菌的葡萄糖摄取量,细胞内己糖激酶、脂质过氧化物酶、超氧化物歧化酶及过氧化氢酶活性,细胞内外亚砷酸钠含量,细胞生长情况,细胞膜电位,DNA损伤情况,细胞内活性氧、三磷酸腺苷及自由型谷胱甘肽含量,以及arsB和ptsG基因表达情况.实验按照随机分组原则及盲法原则进行.结果:暴露于亚砷酸钠的大肠杆菌的葡萄糖摄取量、细胞内活性氧、脂质过氧化反应及DNA损伤增加;己糖激酶、超氧化物歧化酶及过氧化氢酶活性降低;细胞内三磷酸腺苷及自由型谷胱甘肽含量降低;细胞膜电位降低且细胞生长缓慢;arsB和ptsG基因表达水平增高.Ars Alb 30C作用后降低了亚砷酸钠对大肠杆菌的毒性,表现为抑制细胞内活性氧的生成和对细胞生长的促进作用.结论:Ars Alb 30C能够降低亚砷酸钠对大肠杆菌的毒性,证实了这一顺势疗法原则下高度稀释的药物的效用.%OBJECTIVE: To examine if potentized homeopathic drug Arsenicum Album 30C (Ars AIb 30C) can reduce sodium arsenite-induced toxicity in Escherichia coli.METHODS: E.coli were exposed to low arsenite insult after they grew up to log phase in standard Luria-Bertani medium.E.coli were treated with 1 or 2 mmol/L sodium arsenite alone (control),or Ars AIb 30C was added to the medium of a subset of sodium arsenite-treated bacteria (drug-treated),or homeopathically agitated alcohol was added to the medium containing a subset of sodium arsenite-treated bacteria (placebo

  4. The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification

    Science.gov (United States)

    Poulton, Alex J.; Painter, Stuart C.; Young, Jeremy R.; Bates, Nicholas R.; Bowler, Bruce; Drapeau, Dave; Lyczsckowski, Emily; Balch, William M.

    2013-12-01

    blooms are significant contributors to the global production and export of calcium carbonate (calcite). The Patagonian Shelf is a site of intense annual coccolithophore blooms during austral summer. During December 2008, we made intensive measurements of the ecology, biogeochemistry, and physiology of a coccolithophore bloom. High numbers of Emiliania huxleyi cells and detached coccoliths (>1 × 103 mL-1 and >10 × 103 mL-1, respectively), high particulate inorganic carbon concentrations (>10 mmol C m-2), and high calcite production (up to 7.3 mmol C m-2 d-1) all characterized bloom waters. The bloom was dominated by the low-calcite-containing B/C morphotype of Emiliania huxleyi, although a small (30%, similar to estimates for E. huxleyi and indicative of a significant role for this diatom in bloom biogeochemistry. Cell-normalized calcification rates, when corrected for a high number of nonactive cells, were relatively high and when normalized to estimates of coccolith calcite indicate excessive coccolith production in the declining phase of the bloom. We find that low measures of calcite and calcite production relative to other blooms in the global ocean indicate that the dominance of the B/C morphotype may lead to overall lower calcite production. Globally, this suggests that morphotype composition influences regional bloom inventories of carbonate production and export and that climate-induced changes in morphotype biogeography could affect the carbon cycle.

  5. Succession and fate of the spring diatom bloom in Disko Bay, western Greenland

    DEFF Research Database (Denmark)

    Dünweber, Michael; Swalethorp, Rasmus; Kjellerup, Sanne;

    2010-01-01

    from the initiation of the bloom but only had a small grazing impact on the phytoplankton. Consequently, there was a close coupling between the spring phytoplankton bloom and sedimentation of particulate organic carbon (POC). Out of 1836 ± 180 mg C m–2 d–1 leaving the upper 50 m, 60% was phytoplankton...... based carbon (PPC). The composition and quality of the sedimenting material changed throughout the bloom succession from PPC dominance in the initial phase with a POC/PON ratio close to 6.6 to a dominance of amorphous detritus with a higher POC/PON ratio (>10) in the post-bloom phase. The succession...

  6. Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California

    Science.gov (United States)

    Ryan, John P.; Fischer, Andrew M.; Kudela, Raphael M.; Gower, James F. R.; King, Stephanie A.; Marin, Roman, III; Chavez, Francisco P.

    2009-03-01

    It has recently been shown that inner shelf waters of NE Monterey Bay, California function as an "extreme bloom incubator", frequently developing dense "red tide" blooms that can rapidly spread. Located within the California Current upwelling system, this open bay is strongly influenced by oceanographic dynamics resulting from cycles of upwelling favorable winds and their relaxation and/or reversal. Different wind forcing causes influx of different water types that originate outside the bay: cold nutrient-rich waters during upwelling and warm nutrient-poor waters during relaxation. In this study, we examine how the bay's bloom incubation area can interact with highly variable circulation to cause red tide spreading, dispersal and retention. This examination of processes is supported by satellite, airborne and in situ observations of a major dinoflagellate bloom during August and September of 2004. Remote sensing of high spatial, temporal and spectral resolution shows that the bloom originated in the NE bay, where it was highly concentrated in a narrow band along a thermal front. Upwelling circulation rapidly spread part of the bloom, mixing cool waters of an upwelling filament with warm bloom source waters as they spread. Vertical migration of the dinoflagellate populations was mapped by autonomous underwater vehicle surveys through the spreading bloom. Following bloom expansion, a two-day wind reversal forced intrusion of warm offshore waters that dispersed much of the bloom. Upwelling winds then resumed, and the bloom was further dispersed by an influx of cold water. Throughout these oceanographic responses to changing winds, an intense bloom persisted in sheltered waters of the NE bay, where extreme blooms are most frequent and intense. Microscopic examination of surface phytoplankton samples from the central bay showed that spreading of the bloom from the NE bay and mixing with regional water masses resulted in significantly increased abundance of

  7. Health risk assessment standards of cyanobacteria bloom occurrence in bathing sites

    Directory of Open Access Journals (Sweden)

    Agnieszka Stankiewicz

    2011-03-01

    Full Text Available Threat for human health appears during a massive cyanobacteria bloom in potable water used for human consumption or in basins used for recreational purposes. General health risk assessment standards and preventive measures to be taken by sanitation service were presented in scope of: – evaluation of cyanobacteria bloom occurrence in bathing sites / water bodies, – procedures in case of cyanobacteria bloom, including health risk assessment and decision making process to protect users’ health at bathing sites, – preventive measures, to be taken in case of cyanobacteria bloom occurrence in bathing sites and basins, where bathing sites are located.

  8. Dynamics of intracellular information decoding

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  9. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    Science.gov (United States)

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-01

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  10. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  11. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Álvaro D. Ortega

    2014-11-01

    Full Text Available Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of ‘intact’ intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.

  12. Radar manifestations of ship wakes in algae bloom zones

    Science.gov (United States)

    Mityagina, Marina I.; Lavrova, Olga Yu.

    2014-10-01

    Radar manifestations of ship wakes in zones of phytoplankton bloom are discussed. It is shown that these signatures can be regarded as indicators of biogenic activity. The main data are satellite radar images. Satellite visible (VIS) and infrared (IR) satellite data are also analyzed. The large amount of the available data allowed us to make some generalizations and obtain statistically reliable results concerning spatial and temporal variability of certain type of ship wake manifestations in synthetic aperture radar (SAR) images of the sea surface. Traditional classification of surface ship wakes manifestations in satellite SAR images specifies distinct features such as a dark trailing centreline region (turbulent wake), narrow V-wakes aligned at some angle to the ship's path (the Kelvin wake), and, sometimes, internal wave wakes generated under conditions of shallow stratification. Their characteristic lengths are reported to be up to tens of kilometers and they can last from tens of minutes up to one hour. Instances of radar signatures of the ship wakes dissimilar to the previously described were detected in radar images obtained in the course of a satellite monitoring campaign of the central and south-eastern Baltic. These ship wakes can be seen in satellite radar images as long bright strips of enhanced backscatter with characteristic length of up to several hundred kilometres lasting more than 5 hours. A hypothesis is put forward of the coherence of this type of ship wakes detected in sea surface radar imagery and areas of intensive biogenic activity under conditions of low near-surface winds. Statistics on their seasonal, spatial and year-to-year distribution are drawn. These results are compared with temporal and spatial variations in chlorophyll a concentration and intensity of phytoplankton bloom in the area of interest. Chlorophyll a concentration maps derived from satellite data are used, as well as those based on in situ measurements. The relation

  13. Bloom: A Relationship Visualization Tool for Complex Networks

    Directory of Open Access Journals (Sweden)

    Frank Horsfall

    2010-07-01

    Full Text Available Faced with an ever-increasing capacity to collect and store data, organizations must find a way to make sense of it to their advantage. Methods are required to simplify the data so that it can inform strategic decisions and help solve problems. Visualization tools are becoming increasingly popular since they can display complex relationships in a simple, visual format. This article describes Bloom, a project at Carleton University to develop an open source visualization tool for complex networks and business ecosystems. It provides an overview of the visualization technology used in the project and demonstrates its potential impact through a case study using real-world data.

  14. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    Directory of Open Access Journals (Sweden)

    Armin Oskoueian

    2012-01-01

    Full Text Available Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts. The obtained total phenolics value for methanolic Citrus aurantium bloom extract was 4.55 ± 0.05 mg gallic acid equivalent (GAE/g dry weight (DW, and for total flavonoids it was 3.83 ± 0.05 mg rutin equivalent/g DW. In addition, the RP-HPLC analyses of phenolics and flavonoids indicated the presence of gallic acid, pyrogallol, syringic acid, caffeic acid, rutin, quercetin and naringin as bioactive compounds. The antioxidant activity of Citrus aurantium bloom were examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH assay and the ferric reducing/antioxidant potential (FRAP. The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of Citrus aurantium bloom at a concentration of 300 μg/mL, with values of 55.3% and 51.7%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. Furthermore, the anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract. Apart from that, the anticancer activity of the methanolic extract was investigated in vitro against human cancer cell lines (MCF-7; MDA-MB-231, human colon adenocarcinoma (HT-29 and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to

  15. Control of toxic marine dinoflagellate blooms by serial parasitic killers.

    Science.gov (United States)

    Chambouvet, Aurelie; Morin, Pascal; Marie, Dominique; Guillou, Laure

    2008-11-21

    The marine dinoflagellates commonly responsible for toxic red tides are parasitized by other dinoflagellate species. Using culture-independent environmental ribosomal RNA sequences and fluorescence markers, we identified host-specific infections among several species. Each parasitoid produces 60 to 400 offspring, leading to extraordinarily rapid control of the host's population. During 3 consecutive years of observation in a natural estuary, all dinoflagellates observed were chronically infected, and a given host species was infected by a single genetically distinct parasite year after year. Our observations in natural ecosystems suggest that although bloom-forming dinoflagellates may escape control by grazing organisms, they eventually succumb to parasite attack.

  16. The Bloom-Gilman duality and leading logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Mukhopadhyay, N.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The existing inclusive electroproduction data base allows the authors a look at the issue of the relative behaviors of background and resonance excitations, a part of the Bloom-Gilman duality. These data lack accuracy at high Q{sup 2} but establish PQCD scaling in the resonance region and even allow the authors a glimpse at the leading logarithmic corrections due to the gluon radiation and its possible quenching at large W and x. These should inspire better quality experimental tests at facilities like CEBAF II.

  17. Intracellular structure and nucleocytoplasmic transport.

    Science.gov (United States)

    Agutter, P S

    1995-01-01

    Intracellular movement of any solute or particle accords with one of two general schemes: either it takes place predominantly in the solution phase or it occurs by dynamic interactions with solid-state structures. If nucleocytoplasmic exchanges of macromolecules and complexes are predominantly solution-phase processes, i.e., if the former ("diffusionist") perspective applies, then the only significant structures in nucleocytoplasmic transport are the pore complexes. However, if such exchanges accord with the latter ("solid-state") perspective, then the roles of the nucleoskeleton and cytoskeleton in nucleocytoplasmic transport are potentially, at least, as important as that of the pore complexes. The role of the nucleoskeleton in mRNA transport is more difficult to evaluate than that of the cytoskeleton because it is less well characterized, and current evidence does not exclude either perspective. However, the balance of evidence favors a solid-state scheme. It is argued that ribosomal subunits are also more likely to migrate by a solid-state rather than a diffusionist mechanism, though the opposite is true of proteins and tRNAs. Moreover, recent data on the effects of viral proteins on intranuclear RNA processing and migration accord with the solid-state perspective. In view of this balance of evidence, three possible solid-state mechanisms for nucleocytoplasmic mRNA transport are described and evaluated. The explanatory advantage of solid-state models is contrasted with the heuristic advantage of diffusion theory, but it is argued that diffusion theory itself, even aided by modern computational techniques and numerical and graphical approaches, cannot account for data describing the movements of materials within the cell. Therefore, the mechanisms envisaged in a diffusionist perspective cannot be confined to diffusion alone, but must include other processes such as bulk fluid flow.

  18. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    Science.gov (United States)

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work.

  19. Ecological Dynamics of Toxic Microcystis spp. and Microcystin-Degrading Bacteria in Dianchi Lake, China

    OpenAIRE

    Zhu, Lin; Wu, Yanlong; Song, Lirong; Gan, Nanqin

    2014-01-01

    Toxic cyanobacterial blooms directly threaten both human safety and the ecosystem of surface waters. The widespread occurrence of these organisms, coupled with the tumor-promoting properties of the microcystin toxins that they produce, demands action to mitigate their potential impacts and, thus, a robust understanding of their ecological dynamics. In the present work, the abundance of toxic Microcystis spp. and microcystin (MC)-degrading bacteria in Dianchi Lake, located in Yunnan Province, ...

  20. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli.

    Science.gov (United States)

    Berry, Ruth E; Klumpp, David J; Schaeffer, Anthony J

    2009-07-01

    Uropathogenic Escherichia coli (UPEC) causes most community-acquired and nosocomial urinary tract infections (UTI). In a mouse model of UTI, UPEC invades superficial bladder cells and proliferates rapidly, forming biofilm-like structures called intracellular bacterial communities (IBCs). Using a gentamicin protection assay and fluorescence microscopy, we developed an in vitro model for studying UPEC proliferation within immortalized human urothelial cells. By pharmacologic manipulation of urothelial cells with the cholesterol-sequestering drug filipin, numbers of intracellular UPEC CFU increased 8 h and 24 h postinfection relative to untreated cultures. Enhanced UPEC intracellular proliferation required that the urothelial cells, but not the bacteria, be filipin treated prior to infection. However, neither UPEC frequency of invasion nor early intracellular trafficking events to a Lamp1-positive compartment were modulated by filipin. Upon inspection by fluorescence microscopy, cultures with enhanced UPEC intracellular proliferation exhibited large, dense bacterial aggregates within cells that resembled IBCs but were contained with Lamp1-positive vacuoles. While an isogenic fimH mutant was capable of forming these IBC-like structures, the mutant formed significantly fewer than wild-type UPEC. Similar to IBCs, expression of E. coli iron acquisition systems was upregulated by intracellular UPEC. Expression of other putative virulence factors, including hlyA, cnf1, fliC, kpsD, and the biofilm adhesin yfaL also increased, while expression of fimA decreased and that of flu did not change. These results indicate that UPEC differentially regulates virulence factors in the intracellular environment. Thus, immortalized urothelial cultures that recapitulate IBC formation in vitro represent a novel system for the molecular and biochemical characterization of the UPEC intracellular life cycle.

  1. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4

    Science.gov (United States)

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.

    2016-05-01

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ˜30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.

  2. Cephalopods as Vectors of Harmful Algal Bloom Toxins in Marine Food Webs

    Directory of Open Access Journals (Sweden)

    Rui Rosa

    2013-09-01

    Full Text Available Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB-related toxins in cephalopods (octopods, cuttlefishes and squids. These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers, saxitoxin (and its derivatives and palytoxin (and palytoxin-like compounds and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin in several tissues, but mainly in the digestive gland (DG—the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6% is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs, these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue reaching 971 μg kg−1 and palytoxin reaching 115 μg kg−1 (the regulatory limit for PlTXs is 30 μg kg−1 in shellfish. Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the

  3. Cephalopods as vectors of harmful algal bloom toxins in marine food webs.

    Science.gov (United States)

    Lopes, Vanessa M; Lopes, Ana Rita; Costa, Pedro; Rosa, Rui

    2013-09-01

    Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB)-related toxins in cephalopods (octopods, cuttlefishes and squids). These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers), saxitoxin (and its derivatives) and palytoxin (and palytoxin-like compounds) and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin) in several tissues, but mainly in the digestive gland (DG)--the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6%) is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas) is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs), these organisms accumulate them at the greatest extent in DG > kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue) reaching 971 μg kg⁻¹ and palytoxin reaching 115 μg kg⁻¹ (the regulatory limit for PlTXs is 30 μg kg⁻¹ in shellfish). Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the

  4. Stochastic resonance in an intracellular genetic perceptron

    Science.gov (United States)

    Bates, Russell; Blyuss, Oleg; Zaikin, Alexey

    2014-03-01

    Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.

  5. Visualization of Intracellular Tyrosinase Activity in vitro

    Science.gov (United States)

    Setty, Subba Rao Gangi

    2016-01-01

    Melanocytes produce the melanin pigments in melanosomes and these organelles protect the skin against harmful ultraviolet rays. Tyrosinase is the key cuproenzyme which initiates the pigment synthesis using its substrate amino acid tyrosine or L-DOPA (L-3, 4-dihydroxyphenylalanine). Moreover, the activity of tyrosinase directly correlates to the cellular pigmentation. Defects in tyrosinase transport to melanosomes or mutations in the enzyme or reduced intracellular copper levels results in loss of tyrosinase activity in melanosomes, commonly observed in albinism. Here, we described a method to detect the intracellular activity of tyrosinase in mouse melanocytes. This protocol will visualize the active tyrosinase present in the intracellular vesicles or organelles including melanosomes. PMID:27231711

  6. Monthly Ensembles in Algal Bloom Predictions on the Baltic Sea

    Science.gov (United States)

    Roiha, Petra; Westerlund, Antti; Stipa, Tapani

    2010-05-01

    In this work we explore the statistical features of monthly ensembles and their capability to predict biogeochemical conditions in the Baltic Sea. Operational marine environmental modelling has been considered hard, and consequently there are very few operational ecological models. Operational modelling of harmful algal blooms is harder still, since it is difficult to separate the algal species in models, and in general, very little is known of HAB properties. We present results of an ensemble approach to HAB forecasting in the Baltic, and discuss the applicability of the forecasting method to biochemical modelling. It turns out that HABs are indeed possible to forecast with useful accuracy. For modelling the algal blooms in Baltic Sea we used FMI operational 3-dimensional biogeochemical model to produce seasonal ensemble forecasts for different physical, chemical and biological variables. The modelled variables were temperature, salinity, velocity, silicate, phosphate, nitrate, diatoms, flagellates and two species of potentially toxic filamentous cyanobacteria nodularia spumigena and aphanizomenon flos-aquae. In this work we concentrate to the latter two. Ensembles were produced by running the biogeochemical model several times and forcing it on every run with different set of seasonal weather parameters from ECMWF's mathematically perturbed ensemble prediction forecasts. The ensembles were then analysed by statistical methods and the median, quartiles, minimum and maximum values were calculated for estimating the probable amounts of algae. Validation for the forecast method was made by comparing the final results against available and valid in-situ HAB data.

  7. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Carol S. [Department of Biological Sciences, 100 Flagg Road, University of Rhode Island, Kingston, RI 02881 (United States)], E-mail: thornber@uri.edu; DiMilla, Peter; Nixon, Scott W. [Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI 02881 (United States); McKinney, Richard A. [US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882 (United States)

    2008-02-15

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and {delta}{sup 15}N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in {delta}{sup 15}N among sites, but with two exceptions had {delta}{sup 15}N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals ({delta}{sup 15}N = {approx}14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  8. Bacterial and protist community changes during a phytoplankton bloom

    KAUST Repository

    Pearman, John K.

    2015-10-01

    The present study aims to characterize the change in the composition and structure of the bacterial and microzooplankton planktonic communities in relation to the phytoplankton community composition during a bloom. High-throughput amplicon sequencing of regions of the 16S and 18S rRNA gene was undertaken on samples collected during a 20 day (d) mesocosm experiment incorporating two different nutrient addition treatments [Nitrate and Phosphate (NPc) and Nitrate, Phosphate and Silicate (NPSc)] as well as a control. This approach allowed us to discriminate the changes in species composition across a broad range of phylogenetic groups using a common taxonomic level. Diatoms dominated the bloom in the NPSc treatment while dinoflagellates were the dominant phytoplankton in the control and NPc treatment. Network correlations highlighted significant interactions between OTUs within each treatment including changes in the composition of Paraphysomonas OTUs when the dominant Chaetoceros OTU switched. The microzooplankton community composition responded to changes in the phytoplankton composition while the prokaryotic community responded more to changes in ammonia concentration.

  9. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  10. Effects of nutrients on Microcystis growth more easily forming bloom

    Institute of Scientific and Technical Information of China (English)

    OU Ming-ming; ZHOU Bao-xue; XIE Wei-jie; JIANG Ju-hui; CAI Wei-min

    2004-01-01

    Different nutrient media experimentally were N, P and Fe-limited conditions and a serial of diluted BG11 media. The cell change of morphology and life history, cell number, cell color and cell area of Microcystis were analyzed quantitatively. First, the effects of nitrogen, phosphorus and iron depletion were distinctively different. Phosphorus and iron depletion caused more special division cells, slowly growth increasing, the easier change of bigger cell area. Second, the nitrogen and iron depletion could make the color of alga from green to brown. Finally, according to the resource competition and Monod equation, Microcystis kinetics of phosphorus and iron were also examined. Ks and μmax of phosphorus absorption were 0.0352 μmol/L, 0.493 d-1 respectively; iron absorption: 0.00323 μmol/L, 0.483 d-1. In a word, some evidences of the Microcystis bloom privilege in certain nutrient conditions were indicated in the experiments. The privileges were determined as the reviving under the adverse circumstances through the special division, the various nitrogen resources, and the lower kinetics of phosphorus and iron than that of most of other algae. The conclusions provided the scientific basis for preventing and managing Microcystis bloom in freshwater.

  11. Is iron a limiting factor of Nodularia spumigena blooms?

    Directory of Open Access Journals (Sweden)

    Lidia Paczuska

    2003-12-01

    Full Text Available It is well known that a deficiency of iron, a trace element essential to every living organism, limits the growth of algae and cyanobacteria. Nodularia spumigena Mertens is a blue-green algae species inhabiting the Baltic region that often forms toxic blooms.     The aim of the study was to assess the growth of the toxic cyanobacteria with respect to iron bioavailability. The measured growth parameters were the numbers of cells (optical density, chlorophyll a and pheopigment a concentrations. The iron concentrations used ranged from 10-7 to 10-4 mol dm-3. Under iron stress conditions (<5 × 10-7 mol dm-3, growth inhibition, gradual pigment decay and cell mortality were observed. However, enriching the medium with complexing factors like citric acid and EDTA significantly stimulated the growth rate and chlorophyll a production. The citric acid - EDTA - Fe (5 × 10-7 mol dm-3 complex was demonstrably effective in stimulating the rate of cell division. Starting with 10-6 mol dm-3, the higher the iron(III concentration used in the media, the more intensive the growth of the cyanobacteria populations. This was most rapid in the presence of high iron concentrations (10-4 mol dm-3, regardless of the presence of complexing agents.     It appears that the growth of toxic cyanobacteria N. spumigena, and thus also its ability to form blooms, may well depend on iron availability in the environment.

  12. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    Full Text Available Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena, a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  13. Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Bhat, S.R.; Dwivedi, R.M.; Nayak, S.R.

    While there have been a number of reports on occurrences of algal blooms in the coastal waters of India, the observation on large scale Noctiluca bloom during FORV Sagar Sampada cruises (years 2003 and 2004), forms the first report from NE Arabian...

  14. Phytoplankton bloom and subpolar gyre induced dynamics in the North Atlantic

    DEFF Research Database (Denmark)

    Ferreira, Ana Sofia; Hátún, Hjálmar; Counillion, Francois;

    represents the integrated oceanic dynamics over the Northern North Atlantic, while the timing of the spring bloom is more governed by direct atmospheric forcing during the pre-bloom weeks. We, therefore, further investigate which published theories (Sverdrup [1953], Siegel et al [2002], Huisman et al [2002...

  15. The Internationalization of Bloom's Learning for Mastery: A 25-Year Retrospective-Prospective View.

    Science.gov (United States)

    Hymel, Glenn M.; Dyck, Walter E.

    Twenty-five years have elapsed since the publication of Benjamin S. Bloom's article titled "Learning for Mastery." With approximately 2,000 master learning/testing citations in the ERIC data base alone, Bloom's 1968 piece is indeed one of the most generative works to appear in the educational psychology literature in decades. At this…

  16. Timing of migratory baleen whales at the Azores in relation to the North Atlantic spring bloom

    NARCIS (Netherlands)

    F. Visser; K.L. Hartman; G.J. Pierce; V.D. Valavanis; J. Huisman

    2011-01-01

    Each year, a phytoplankton spring bloom starts just north of the North Atlantic Subtropical Gyre, and then expands northwards across the entire North Atlantic. Here, we investigate whether the timing of the spring migration of baleen whales is related to the timing of the phytoplankton spring bloom,

  17. Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds

    NARCIS (Netherlands)

    Waajen, Guido W.A.M.; Bruggen, Van Niek C.B.; Pires, Miguel Dionisio L.; Lengkeek, Wouter; Lurling, Miguel

    2016-01-01

    Many urban ponds in The Netherlands and other countries suffer from eutrophication, resulting in harmful algal blooms which are often dominated by cyanobacteria. A sufficient reduction of nutrients, as prerequisite to mitigate cyanobacterial blooms in urban ponds, is not always feasible. Water ma

  18. A Roof without Walls: Benjamin Bloom's Taxonomy and the Misdirection of American Education

    Science.gov (United States)

    Booker, Michael J.

    2007-01-01

    Plato wrote that higher order thinking could not start until the student had mastered conventional wisdom. The American educational establishment has turned Plato on his head with the help of a dubious approach to teaching developed by one Benjamin Bloom. Bloom's taxonomy was intended for higher education, but its misappropriation has resulted in…

  19. Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds

    NARCIS (Netherlands)

    Waajen, Guido W. A. M.; Van Bruggen, Niek C. B.; Pires, L. Miguel Dionisio; Lengkeek, Wouter; Lurling, Miquel

    2016-01-01

    Many urban ponds in The Netherlands and other countries suffer from eutrophication, resulting in harmful algal blooms which are often dominated by cyanobacteria. A sufficient reduction of nutrients, as prerequisite to mitigate cyanobacterial blooms in urban ponds, is not always feasible. Water manag

  20. Calibrating the Difficulty of an Assessment Tool: The Blooming of a Statistics Examination

    Science.gov (United States)

    Dunham, Bruce; Yapa, Gaitri; Yu, Eugenia

    2015-01-01

    Bloom's taxonomy is proposed as a tool by which to assess the level of complexity of assessment tasks in statistics. Guidelines are provided for how to locate tasks at each level of the taxonomy, along with descriptions and examples of suggested test questions. Through the "Blooming" of an examination--that is, locating its constituent…

  1. Nitrogen and phosphorus requirements of an Alexandrium minutum bloom in the Penze' Estuary, France

    Digital Repository Service at National Institute of Oceanography (India)

    Maguer, J.-F.; Wafar, M.V.M.; Madec, C.; Morin, P.; Denn, E.E.

    . The role of NO3 was restricted to sustenance of the bloom, whereas warm conditions resulting in a water column stability seem to have triggered the bloom, and a self-shading, probably coupled with a phosphorus limitation, caused its decline...

  2. Allan Bloom, Mike Rose, and Paul Goodman: In Search of a Lost Pedagogical Synthesis.

    Science.gov (United States)

    Smith, Jeff

    1993-01-01

    Discusses and compares two recent books on American higher education: "The Closing of the American Mind" by Allan Bloom, and "Lives on the Boundary" by Mike Rose. Develops a view which synthesizes those of Bloom and Rose. Considers this view as comparable to that of Paul Goodman. (HB)

  3. Byatt versus Bloom; or Poetic Influence – a Case of Anxiety or Desire?

    DEFF Research Database (Denmark)

    Børch, Marianne

    2013-01-01

    Antonia Byatt's Possession; a Romance (1990) implicitly critiques Harold Bloom's theory of poetic influence as laid out in the influential Anxiety of Influence; her narrative suggests that a better metaphor than Bloom's Oedipal patricide would be that of love, an emotion that opens up for external...

  4. Self-Awareness and Personal Growth: Theory and Application of Bloom's Taxonomy

    Science.gov (United States)

    Ugur, Hasan; Constantinescu, Petru-Madalin; Stevens, Michael J.

    2015-01-01

    Problem Statement: In this article, we summarize a group-based, self-development curriculum based on humanistic principles, framed by contemporary self-determination theory (SDT), and designed in accordance with Bloom's Taxonomy. The processes of awareness and integration are common to SDT and Bloom's Taxonomy, and to our knowledge, have not been…

  5. Use of Bloom's Taxonomy in Developing Reading Comprehension Specifications

    Science.gov (United States)

    Luebke, Stephen; Lorie, James

    2013-01-01

    This article is a brief account of the use of Bloom's Taxonomy of Educational Objectives (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) by staff of the Law School Admission Council in the 1990 development of redesigned specifications for the Reading Comprehension section of the Law School Admission Test. Summary item statistics for…

  6. Evaluating Course-Objective Writing Effectiveness: Applying the Comprehensive Bloom Verb List

    Science.gov (United States)

    Baker, Russell; Almerico, Gina M.; Thornton, Barry

    2008-01-01

    This study is a comparative analysis of the objective writing skills of pre-service teachers to determine the efficacy of utilizing a master verb list based on Bloom's Taxonomy. Students enrolled in a mid-size university were asked to create a set of objectives to measure Bloom's Taxonomy learning outcomes. One group received a master list of…

  7. Critical Thinking in the Management Classroom: Bloom's Taxonomy as a Learning Tool.

    Science.gov (United States)

    Athanassiou, Nicholas; McNett, Jeanne M.; Harvey, Carol

    2003-01-01

    Using Bloom's taxonomy as a scaffolding device moves students toward self-management of learning. Analysis of journals and assignments completed by 42 students in business courses showed that repeated emphasis of Bloom's concepts improved higher-level conceptual thinking. (Contains 35 references.) (SK)

  8. An Evaluative Calculus Project: Applying Bloom's Taxonomy to the Calculus Classroom

    Science.gov (United States)

    Karaali, Gizem

    2011-01-01

    In education theory, Bloom's taxonomy is a well-known paradigm to describe domains of learning and levels of competency. In this article I propose a calculus capstone project that is meant to utilize the sixth and arguably the highest level in the cognitive domain, according to Bloom et al.: evaluation. Although one may assume that mathematics is…

  9. Importance of deep mixing for initiating the North Atlantic spring bloom

    DEFF Research Database (Denmark)

    Riisgaard, Karen; Paulsen, Maria Lund; Thingstad, T. Frede;

    The phytoplankton spring bloom is one of the most important recurrent events in the sup-polar part of the Atlantic Ocean. The classical idea is that the bloom is controlled by nutrients and light, but recent observations challenge this hypothesis. During repeated visits to stations in the deep...

  10. Intense blooms of Trichodesmium erythraeum (Cyanophyta) in the open waters along east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothibabu, R.; Madhu, N.V.; Murukesh, N.; Haridas, P.; Nair, K.K.C.; Venugopal, P.

    Two blooms of Trichodesmium erythraeum were observed during April 2001, in the open waters of Bay of Bengal and this is the first report from this region. The locations of the bloom were off Karaikkal (10°58'N, 81°50'E) and off south of Calcutta (19...

  11. Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light

    NARCIS (Netherlands)

    Huisman, J.; Van Oostveen, P.; Weissing, F.J.

    1999-01-01

    With the eutrophication of many freshwaters and coastal environments, phytoplankton blooms have become a common phenomenon. This article uses a reaction-diffusion model to investigate the implications of mixing processes for the dynamics and species composition of phytoplankton blooms. The model ide

  12. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes

    NARCIS (Netherlands)

    Verspagen, J.M.H.; Van de Waal, D.B.; Finke, J.F; Visser, P.M.; Van Donk, E.; Huisman, J.

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2

  13. The decline process and major pathways of Microcystis bloom in Taihu Lake, China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhicong; LI Guowen; LIGenbao; LI Dunhai

    2012-01-01

    Eutrophication has become a serious concern in many lakes,resulting in cyanobacterial blooms.However,the mechanism and pathways of cyanobacteria decline are less understood.To identify and define the growth and decline of Microcystis blooms in Taihu Lake of China,and to illuminate the destination of surface floating blooms,we investigated the biomass distribution and variations in colony size,morphology,and floating velocity from October 2008 to September 2009.The results showed that the Microcystis bloom declined in response to biomass decrease,colony disaggregation,buoyancy reduction,and increased phytoplankton biodiversity,and these indicative parameters could be applied for recognition of the development phases of the bloom.Three major decline pathways were proposed to describe the bloom decline process,colony disaggregation (Pathway Ⅰ),colony settlement (Pathway Ⅱ),and cell lysis in colonies (Pathway Ⅲ).We proposed a strategy to define the occurrence and decline of Microcystis blooms,to evaluate the survival state under different stress conditions,and to indicate the efficiency of controlling countermeasures against algal blooms.

  14. Species dynamics in phytoplankton blooms : Incomplete mixing and competition for light

    NARCIS (Netherlands)

    Huisman, J.; van Oostveen, P.; Weissing, F.J.

    1999-01-01

    With the eutrophication of many freshwaters and coastal environments, phytoplankton blooms have become a common phenomenon. This article uses a reaction-diffusion model to investigate the implications of mixing processes for the dynamics and species composition of phytoplankton blooms. The model ide

  15. Identification of non-indigenous phytoplankton species dominated bloom off Goa using inverted microscopy and pigment (HPLC) analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Roy, R.; Gauns, M.; Shenoy, D.M.; Rao, V.D.; Mochemadkar, S.

    analysis indicated a decline in the bloom, pheaophytin concentrations in the water column measured by both techniques were very low, presumably due to fast recycling and/or settling rate. The unique composition of the bloom and its probable causes...

  16. Defining the Cognitive Levels in Bloom?s Taxonomy through the Quranic Levels of Understanding - Initial Progress of Developing an Islamic Concept Education

    OpenAIRE

    Syed Zainal Abidin; Syed Kamarul Bahrin; Nur Firdaus Abdul Razak

    2013-01-01

    The cognitive domain of a Bloom?s taxonomy and the Quranic levels of understanding are elements in education that focus on the ability to think. However, there is currently no education system or method that is based on the Quranic levels of understanding due to the absence of proper definition. Therefore, this paper will provide general correlations between the cognitive levels and the Quranic levels of understanding so that the cognitive domain can be defined in term of Quranic levels of un...

  17. 基于Bloom Filter的网络爬虫URL消重算法研究

    Institute of Scientific and Technical Information of China (English)

    王春梅

    2011-01-01

    针对网络大量重复页面,本文研究基于Bloom Filter的网络爬虫URL地址消重算法.首先,本文对Bloom Filter算法进行了分析研究;其次,本文应用Bloom Filter算法设计并实现了网络爬虫的URL消重;最后,论文采用URL消重率争爬虫爬取某类网站所用时间等性能指标,对基于遍历法和基于MD5算法的URL消重性能与基于Bloom Filter的消重性能做了对比.实验证明,基于Bloom Filter的网络爬虫URL地址消重算法效率较高.

  18. Accumulated chilling hours during endodormancy impact blooming and fruit shape developmentin peach (Prunus persicaL.)

    Institute of Scientific and Technical Information of China (English)

    LI Yong; FANG Wei-chao; ZHU Geng-rui; CAO Ke; CHEN Chang-wen; WANG Xin-wei; WANG Li-rong

    2016-01-01

    Winter chil is essential for the growth and development of deciduous species. To understand the relationship between accumulated chiling hours during endodormancy and blooming and fruit shape development, we controled chiling hours and investigated their effects on blooming date and fruit shape of peaches. The results showed that the number of days to full bloom date and the heat requirement for blooming were negatively correlated with accumulated chilling hours. Accumulated chiling hours were signiifcantly negatively correlated with fruit shape index and fruit tip lengths, suggesting that the number of chiling hours affect the fruit shape development. Fewer accumulated chiling hours may be the major reason for longer fruit shape and protruding fruit tips. In conclusion, our results indicate speciifcaly that decreased winter chiling hours can delay the bloom date and may lead to aberrant fruit shape development in peaches. Our study provides preliminary insights into the response of temperate fruit species to global climate change.

  19. Is Occurrence of Harmful Algal Blooms in the Exclusive Economic Zone of India on the Rise?

    Directory of Open Access Journals (Sweden)

    K. B. Padmakumar

    2012-01-01

    Full Text Available Occurrence, increase in frequency, intensity and spatial coverage of harmful algal blooms during the past decade in the EEZ of India are documented here. Eighty algal blooms were recorded during the period 1998–2010. Of the eighty algal blooms, 31 blooms were formed by dinoflagellates, 27 by cyanobacteria, and 18 by diatoms. Three raphidophyte and one haptophyte blooms were also observed. Potentially toxic microalgae recorded from the Indian waters were Alexandrium spp., Gymnodinium spp. Dinophysis spp., Coolia monotis, Prorocentrum lima, and Pseudo-nitzschia spp. Examination of available data from the literature during the last hundred years and in situ observations during 1998–2010 indicates clear-cut increase in the occurrence of HABs in the Indian EEZ.

  20. Free polyamine content during algal bloom succession in the East China Sea in spring 2010

    Science.gov (United States)

    Liu, Yan; Zhao, Weihong; Li, Caiyan; Miao, Hui

    2016-03-01

    We measured the concentrations and distribution of major polyamines (spermine, putrescine and spermidine) in seawater during successive spring algal blooms in an area of frequent harmful blooms in the East China Sea. Spermine, putrescine, and spermidine concentrations were analyzed by high performance liquid chromatography and ranged from 1-64, 7-81, and 0-19 nmol/L. Spermine was present at the highest concentrations, followed by putrescine and spermidine. In late April, when a diatom bloom dominated by Skeletonema costatum dispersed, polyamine concentrations increased, presumably as a result of diatom decomposition. In early May, when a dinoflagellate bloom dominated by Prorocentrum donghaiense occurred, the polyamine concentration decreased from the level seen in late April. The abundant polyamines that decomposed and were released during the diatom bloom in late April may have promoted the growth of P. donghaiense, resulting in its dominance.

  1. Multistability and dynamic transitions of intracellular Min protein patterns.

    Science.gov (United States)

    Wu, Fabai; Halatek, Jacob; Reiter, Matthias; Kingma, Enzo; Frey, Erwin; Dekker, Cees

    2016-01-01

    Cells owe their internal organization to self-organized protein patterns, which originate and adapt to growth and external stimuli via a process that is as complex as it is little understood. Here, we study the emergence, stability, and state transitions of multistable Min protein oscillation patterns in live Escherichia coli bacteria during growth up to defined large dimensions. De novo formation of patterns from homogenous starting conditions is observed and studied both experimentally and in simulations. A new theoretical approach is developed for probing pattern stability under perturbations. Quantitative experiments and simulations show that, once established, Min oscillations tolerate a large degree of intracellular heterogeneity, allowing distinctly different patterns to persist in different cells with the same geometry. Min patterns maintain their axes for hours in experiments, despite imperfections, expansion, and changes in cell shape during continuous cell growth. Transitions between multistable Min patterns are found to be rare events induced by strong intracellular perturbations. The instances of multistability studied here are the combined outcome of boundary growth and strongly nonlinear kinetics, which are characteristic of the reaction-diffusion patterns that pervade biology at many scales. PMID:27279643

  2. An Alternative Efficient Procedure for Purification of the Obligate Intracellular Fish Bacterial Pathogen Piscirickettsia salmonis

    OpenAIRE

    Henríquez, Vitalia; Rojas, María Verónica; Marshall, Sergio H.

    2003-01-01

    Piscirickettsia salmonis is an obligate intracellular bacterial pathogen of salmonid fish and the etiological agent of the aggressive disease salmonid rickettsial syndrome. Today, this disease, also known as piscirickettsiosis, is the cause of high mortality in net pen-reared salmonids in southern Chile. Although the bacteria can be grown in tissue culture cells, genetic analysis of the organism has been hindered because of the difficulty in obtaining P. salmonis DNA free from contaminating h...

  3. Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.

    Science.gov (United States)

    de Barsy, Marie; Frandi, Antonio; Panis, Gaël; Théraulaz, Laurence; Pillonel, Trestan; Greub, Gilbert; Viollier, Patrick H

    2016-09-01

    Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved. PMID:26953603

  4. Control of Intracellular Francisella tularensis by Different Cell Types and the Role of Nitric Oxide

    Science.gov (United States)

    Newstead, Sarah L.; Gates, Amanda J.; Hartley, M. Gillian; Rowland, Caroline A.; Williamson, E. Diane; Lukaszewski, Roman A.

    2014-01-01

    Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS) with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies. PMID:25170518

  5. Control of Intracellular Francisella tularensis by Different Cell Types and the Role of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Sarah L. Newstead

    2014-01-01

    Full Text Available Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies.

  6. DMTB: the magnetotactic bacteria database

    Science.gov (United States)

    Pan, Y.; Lin, W.

    2012-12-01

    Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.

  7. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    Science.gov (United States)

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management.

  8. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. Adaptor protein complexes and intracellular transport

    OpenAIRE

    2014-01-01

    The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers th...

  10. Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Magdenoska, Olivera; Melchiorsen, Jette;

    2014-01-01

    species Ruegeria mobilis are associated with intracellular concentrations of the signal compound cyclic dimeric guanosinmonophosphate (c-di-GMP), which in bacteria regulates transitions between motile and sessile life stages. Genes for diguanylate cyclases and phosphodiesterases, which are involved in c...

  11. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    OpenAIRE

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2011-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibio...

  12. Monitoring Ubiquitin-Coated Bacteria via Confocal Microscopy.

    Science.gov (United States)

    Lork, Marie; Delvaeye, Mieke; Gonçalves, Amanda; Van Hamme, Evelien; Beyaert, Rudi

    2016-01-01

    Salmonella is a gram-negative facultative intracellular pathogen that is capable of infecting a variety of hosts. Inside host cells, most Salmonella bacteria reside and replicate within Salmonella-containing vacuoles. They use virulence proteins to manipulate the host cell machinery for their own benefit and hijack the host cytoskeleton to travel toward the perinuclear area. However, a fraction of bacteria escapes into the cytosol where they get decorated with a dense layer of polyubiquitin, which labels the bacteria for clearance by autophagy. More specifically, autophagy receptor proteins recognize the ubiquitinated bacteria and deliver them to autophagosomes, which subsequently fuse to lysosomes. Here, we describe methods used to infect HeLa cells with Salmonella bacteria and to detect their ubiquitination via immunofluorescence and laser scanning confocal microscopy. PMID:27613040

  13. The Francisella intracellular life cycle: towards molecular mechanisms of intracellular survival and proliferation

    Directory of Open Access Journals (Sweden)

    Audrey eChong

    2010-12-01

    Full Text Available The tularemia-causing bacterium Francisella tularensis is a facultative intracellular organism with a complex intracellular lifecycle that ensures its survival and proliferation in a variety of mammalian cell types, including professional phagocytes. Because this cycle is essential to Francisella pathogenesis and virulence, much research has focused on deciphering the mechanisms of its intracellular survival and replication and characterizing both bacterial and host determinants of the bacterium’s intracellular cycle. Studies of various strains and host cell models have led to the consensual paradigm of Francisella as a cytosolic pathogen, but also to some controversy about its intracellular cycle. In this review, we will detail major findings that have advanced our knowledge of Francisella intracellular survival strategies and also attempt to reconcile discrepancies that exist in our molecular understanding of the Francisella-phagocyte interaction.

  14. A method for functional trans-complementation of intracellular Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Shaun Steele

    Full Text Available Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional

  15. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  16. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  17. pH sensing by intracellular Salmonella induces effector translocation.

    Science.gov (United States)

    Yu, Xiu-Jun; McGourty, Kieran; Liu, Mei; Unsworth, Kate E; Holden, David W

    2010-05-21

    Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation. PMID:20395475

  18. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Khaled Alkhuder

    2009-01-01

    Full Text Available Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative gamma-glutamyl transpeptidase (GGT. This gene (FTL_0766 was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, gamma-glutamyl-cysteinyl-glycine and gamma-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria-host adaptation.

  19. Manganese (Mn oxidation increases intracellular Mn in Pseudomonas putida GB-1.

    Directory of Open Access Journals (Sweden)

    Andy Banh

    Full Text Available Bacterial manganese (Mn oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS. Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.

  20. Discussion about mechanism of harmful algal blooms breakout

    Institute of Scientific and Technical Information of China (English)

    BU Xianwei; XU Weiyi; ZHU Dedi; CHEN Gengxin

    2005-01-01

    HAB (harmful algal bloom) is a serious marine ecological disaster. Up to now there is no definite conclusion about its mechanism of occurrence.The observation results show that the HAB breakout in the Xiangshan Bay was mainly caused by physical convergence ca pacity,and the breakout process had no direct relation to eutrophication. As a new idea it is thought that the process of the HAB break out is mainly a physical convergence or accumulation process in some areas. A hypothesis about dynamic mechanism of the HAB ap pearing in the area off the Changjiang Estuary is put forward according to hydrology and topography and the past work, and a breakthrough is expected to be made for doing further research.

  1. The Role of Cyanobacteria Blooms in Cholera Epidemic in Bangladesh

    Science.gov (United States)

    Sagir Ahmed, Md.; Raknuzzaman, Md.; Akther, Hafeza; Ahmed, Sumaiya

    A study was conducted on association of Vibrio cholerae with plankton specially emphasis on cyanobacteria in relation to some physico-chemical parameters in the River Buriganga, Dhaka, from January to December 2002. Monthly abundance of phytoplankton and zooplankton varied from 457 to 14166 and from 169 to 1055 individual L-1, respectively. Monthly average of faecal coliform in water, zooplankton and phytoplankton samples were 3.99x109, 4.54x103 and 4.28x102 (CFU L-1), respectively. During epidemics, toxigenic V. cholerae 01 and 0139 were isolated from the patients as well as from the surface water. V. cholerae 01 and 0139 were also isolated from plankton samples. More over, it was observed that ctx (cholera toxic) positive in water and phytoplankton samples of the river. A bloom of Oscillatoria sp. (1.6x104 individual L-1) occurred in the upper reaches of the River Buriganga in May 2002. Methanol-water extract of bloom sample was analyzed by high performance liquid chromatography with UV detection and Mass Spectrum (MS) detected microcystin-RR. Cyanobacteria are abundant in the aquatic environment of Bangladesh and it was established that V. cholerae maintain a symbiotic relationship with these algae particularly mucilaginous cyanobacteria. During epidemics, patients symptoms included diarrhea, vomiting and hemorrhagic enteritis and in severe cases hemorrhagic diarrhea. So, question has arisen that which is responsible, microcystins or cholera for death of cholera/diarrhea patients in Bangladesh. Future research should be directed to isolate microcystins and cholera toxins from the epidemic areas to clarify the fact.

  2. Red to red - the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms.

    Science.gov (United States)

    Kim, Dockyu; Kim, Jihyun F; Yim, Joung Han; Kwon, Soon-Kyeong; Lee, Choong Hwan; Lee, Hong Kum

    2008-10-01

    Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the gamma-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations (1 ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints. PMID:18955809

  3. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern united states

    Science.gov (United States)

    Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C.

    2010-01-01

    The mixtures of toxins and taste-and-odor compounds present during cyanobacterial blooms are not well characterized and of particular concern when evaluating potential human health risks. Cyanobacterial blooms were sampled in twenty-three Midwestern United States lakes and analyzed for community composition, thirteen cyanotoxins by liquid chromatography/mass spectrometry and immunoassay, and two taste-and-odor compounds by gas chromatography/mass spectrometry. Aphanizomenon, Cylindrospermopsis and/or Microcystis were dominant in most (96%) blooms, but community composition was not strongly correlated with toxin and taste-and-odor occurrence. Microcystins occurred in all blooms. Total microcystin concentrations measured by liquid chromatography/mass spectrometry and immunoassay were linearly related (rs = 0.76, p Geosmin (87%), 2-methylisoborneol (39%), anatoxin-a (30%), saxitoxins (17%), cylindrospermopsins (9%), and nodularin-R (9%) also were present in these blooms. Multiple classes of cyanotoxins occurred in 48% of blooms and 95% had multiple microcystin variants. Toxins and taste-and-odor compounds frequently co-occurred (91% of blooms), indicating odor may serve as a warning that cyanotoxins likely are present. However, toxins occurred more frequently than taste-and-odor compounds, so odor alone does not provide sufficient warning to ensure human-health protection. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  4. Factors determining the diurnal dynamics of blooming of chosen plant species

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2012-12-01

    Full Text Available The paper attempts to synthesize the determinants which may influence the diurnal rhythm of blooming. Additionally, I tried to explore and bring together topics that concern blooming and have always been considered separately because of their origin in different disciplines. The following species were included: Hydrangea arborescens L. subsp. discolor (Raf., H. paniculata Sieb., Viburnum opulus L., Chaenomeles japonica Lindl., Knautia arvensis L., Adonis vernalis L., Aster saggitifolius Willd., Taraxacum officinale L. Chelidonium majus L. The taxons were observed in Lublin (51008' - 51018' N and 21027' - 21041' E in the years 2001-2007. The blooming of species was determined at least for two vegetation seasons. During observations all flowers developed in one-hour intervals were counted. The diurnal dynamics of blooming differs among species and is modified by different endogenous and exogenous factors. The endogenous determinants of diurnal dynamics of blooming are morphological diversity of flowers (fertility or sterility within species or heterostyly. The different pattern of blooming succour different mechanisms which prevent self-pollination (Chaenomeles japonica Lindl., Knautia arvensis L.. The abiotic factors, such as day length and temperature during the vegetation season, influence the change in the process of diurnal dynamics of blooming (e. g. Taraxacum officinale, Chelidonium majus.

  5. Comparative Metagenomics of Toxic Freshwater Cyanobacteria Bloom Communities on Two Continents

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Morgan M [ORNL; Li, Zhou [ORNL; Effler, Chad [Department of Microbiology, University of Tennessee; Hauser, Loren John [ORNL; Boyer, Gergory [College of Environmental Science and Forestry, State University of New York, Syracuse; Wilhelm, Steven W [ORNL

    2012-01-01

    Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic community associated with bloom events. To address these issues, we examined the bloomassociated microbial communities in single samples from Lake Erie (North America), Lake Tai (Taihu, China), and Grand Lakes St. Marys (OH, USA) using comparative metagenomics. Together the Cyanobacteria and Proteobacteria comprised .90% of each bloom bacterial community sample, although the dominant phylum varied between systems. Relative to the existing Microcystis aeruginosa NIES 843 genome, sequences from Lake Erie and Taihu revealed a number of metagenomic islands that were absent in the environmental samples. Moreover, despite variation in the phylogenetic assignments of bloomassociated organisms, the functional potential of bloom members remained relatively constant between systems. This pattern was particularly noticeable in the genomic contribution of nitrogen assimilation genes. In Taihu, the genetic elements associated with the assimilation and metabolism of nitrogen were predominantly associated with Proteobacteria, while these functions in the North American lakes were primarily contributed to by the Cyanobacteria. Our observations build on an emerging body of metagenomic surveys describing the functional potential of microbial communities as more highly conserved than that of their phylogenetic makeup within natural systems.

  6. Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom

    Science.gov (United States)

    Strutton, Peter G.; Martz, Todd R.; Degrandpre, Michael D.; McGillis, Wade R.; Drennan, William M.; Boss, Emmanuel

    2011-11-01

    A unique time series of moored bio-optical measurements documented the 2004 spring-summer bloom in the southern Labrador Sea. In situ and satellite chlorophyll data show that chlorophyll levels in the 2004 bloom were at the upper end of those typically observed in this region. Satellite chlorophyll and profiling float temperature/salinity data show that the main bloom, which typically peaks in June/July, is often preceded by ephemeral mixed layer shoaling and a lesser, short-lived bloom in May; this was the case in 2004. The particulate backscatter to beam attenuation ratio (bbp[470 nm]/Cp[660 nm]) showed peaks in the relative abundance of small particles at bloom initiation and during the decline of the bloom, while larger particles dominated during the bloom. Chlorophyll/Cp and bbp/chlorophyll were correlated with carbon export and dominated by changes in the pigment per cell associated with lower light levels due to enhanced attenuation of solar radiation during the bloom. An NPZ (nutrients, phytoplankton, zooplankton) model captured the phytoplankton bloom and an early July peak in zooplankton. Moored acoustic Doppler current profiler (ADCP) data showed an additional mid-June peak in zooplankton biomass which was attributed to egg-laying copepods. The data reported here represent one of the few moored time series of Cp, bbp and chlorophyll extending over several months in an open ocean region. Interpretation of data sets such as this will become increasingly important as these deployments become more commonplace via ocean observing systems. Moreover, these data contribute to the understanding of biological-physical coupling in a biogeochemically important, yet poorly studied region.

  7. Low-wind summers promote blooms of cyanobacteria in Lake Tiefer See, NE Germany

    Science.gov (United States)

    Kienel, Ulrike; Kirillin, Georgiy; Brademann, Brian; Plessen, Brigit; Dräger, Nadine; Brauer, Achim

    2016-04-01

    Low-wind summers promote blooms of cyanobacteria in Lake Tiefer See, NE Germany Monitoring in three successive but meteorologically different summer seasons in 2012 to 2014 revealed a major impact of the duration of low-wind periods in summer on the outcome of cyanobacteria blooms. During summer 2014, the period from mid-June to mid-September with wind speeds below the average of 3.5 m s-1 promoted a bloom of Limnothrix redekekei with up to 12 mg particulate matter per liter. This bloom from June to September 2014 led to an enrichment of 13C in the organic matter deposited, and terminated a weak diatom spring bloom. The shorter low-wind period from mid-July to mid-September 2012 caused a less strong 13C enrichment by a weak bloom of cyanobacteria, which coexisted with diatoms, while no such bloom occurred during generally windier summer 2013. The validity of the observed relation of 13C enrichment by cyanobacteria blooms during extended low-wind periods in summer was tested using annual measurements of delta13Corg in the varved sediments deposited between AD1924 and 2008 and the mixing depth as derived from FLake-model calculations based on meteorological data from Schwerin (for 1951-2008). Accordingly, the duration of mixing depth less than 3.5 m water depth explains 25% of the variability of 13C enrichment by cyanobacteria blooms for the full period from 1951 - 2006. The explained variability increases to 53% when the period with increased nutrient load from1970 onwards is considered. In terms of explained variability of lake production, this relation is supplementary to the inverse relation of diatom silica determined by the duration of lake mixing in spring, which is suppressed during the period of increased nutrient load.

  8. Challenges in modelling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman

    Directory of Open Access Journals (Sweden)

    S. Sedigh Marvasti

    2015-07-01

    Full Text Available We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1° models with the relatively complex biogeochemistry (TOPAZ capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6 with a simpler biogeochemistry (miniBLING displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature. We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.

  9. Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents.

    Science.gov (United States)

    Steffen, Morgan M; Li, Zhou; Effler, T Chad; Hauser, Loren J; Boyer, Gregory L; Wilhelm, Steven W

    2012-01-01

    Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic community associated with bloom events. To address these issues, we examined the bloom-associated microbial communities in single samples from Lake Erie (North America), Lake Tai (Taihu, China), and Grand Lakes St. Marys (OH, USA) using comparative metagenomics. Together the Cyanobacteria and Proteobacteria comprised >90% of each bloom bacterial community sample, although the dominant phylum varied between systems. Relative to the existing Microcystis aeruginosa NIES 843 genome, sequences from Lake Erie and Taihu revealed a number of metagenomic islands that were absent in the environmental samples. Moreover, despite variation in the phylogenetic assignments of bloom-associated organisms, the functional potential of bloom members remained relatively constant between systems. This pattern was particularly noticeable in the genomic contribution of nitrogen assimilation genes. In Taihu, the genetic elements associated with the assimilation and metabolism of nitrogen were predominantly associated with Proteobacteria, while these functions in the North American lakes were primarily contributed to by the Cyanobacteria. Our observations build on an emerging body of metagenomic surveys describing the functional potential of microbial communities as more highly conserved than that of their phylogenetic makeup within natural systems.

  10. Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents.

    Directory of Open Access Journals (Sweden)

    Morgan M Steffen

    Full Text Available Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic community associated with bloom events. To address these issues, we examined the bloom-associated microbial communities in single samples from Lake Erie (North America, Lake Tai (Taihu, China, and Grand Lakes St. Marys (OH, USA using comparative metagenomics. Together the Cyanobacteria and Proteobacteria comprised >90% of each bloom bacterial community sample, although the dominant phylum varied between systems. Relative to the existing Microcystis aeruginosa NIES 843 genome, sequences from Lake Erie and Taihu revealed a number of metagenomic islands that were absent in the environmental samples. Moreover, despite variation in the phylogenetic assignments of bloom-associated organisms, the functional potential of bloom members remained relatively constant between systems. This pattern was particularly noticeable in the genomic contribution of nitrogen assimilation genes. In Taihu, the genetic elements associated with the assimilation and metabolism of nitrogen were predominantly associated with Proteobacteria, while these functions in the North American lakes were primarily contributed to by the Cyanobacteria. Our observations build on an emerging body of metagenomic surveys describing the functional potential of microbial communities as more highly conserved than that of their phylogenetic makeup within natural systems.

  11. New combined assay of phagocytosis and intracellular killing of Escherichia coli by polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.J.; Ford, J.M. (Saint Bartholomew' s Hospital, London (UK))

    1982-03-12

    A new combined radiometric assay is described in which adherence, and phagocytosis and killing of Escherichia coli by human polymorphonuclear leucocytes (PMN) are simultaneously measured in the same sample. Pure monolayers of PMN in Petri dishes are allowed to ingest (/sup 14/C)phenylalanine labelled E. coli and excess bacteria are removed by washing. A period of incubation allows intracellular killing to occur while polymyxin-B is added to half the dishes to kill extracellular bacteria. The remaining viable bacteria in all dishes are labelled with (/sup 3/H)thymidine. The number of ingested bacteria and the percentage of intracellular organisms killed is determined from the /sup 14/C and /sup 3/H counts by a simple subtraction technique. By performing protein assays on representative monolayers, the number of PMN adhered in the monolayers and hence the mean bacterial uptake per PMN is estimated. The assay detected killing efficiencies reduced below the normal range, in monolayers treated with sodium azide, phenylbutazone, in polymorphonuclear leukocytes from patients with chronic granulomatous disease, and in immature neutrophils from the promyelocytic leukaemic cell line, HL60. The assay was adapted to measure phagocytosis and killing by cells in suspension.

  12. Recreational Exposure to Low Concentrations of Microcystins During an Algal Bloom in a Small Lake

    OpenAIRE

    Yung-Sung Cheng; Kieszak, Stephanie M.; Hill, Vincent R.; Kate Nierenberg; Johnson, Trisha B.; Yue Zhou; Mitch Irvin; Christopher Williams; Barbara Kirkpatrick; Wayne Carmichael; Backer, Lorraine C.

    2008-01-01

    We measured microcystins in blood from people at risk for swallowing water or inhaling spray while swimming, water skiing, jet skiing, or boating during an algal bloom. We monitored water samples from a small lake as a Microcystis aeruginosa bloom developed. We recruited 97 people planning recreational activities in that lake and seven others who volunteered to recreate in a nearby bloom-free lake. We conducted our field study within a week of finding a 10-μg/L microcystin concentration. W...

  13. Extensive Chaetoceros curvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands.

    Science.gov (United States)

    Begum, Mehmuna; Sahu, Biraja Kumar; Das, Apurba Kumar; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-05-01

    Blooming of diatom species Chaetoceros curvisetus (Cleve, 1889) was observed in Junglighat Bay and Haddo Harbour of Port Blair Bay of Andaman and Nicobar Islands during June 2010. Physico-chemical parameters, nutrient concentrations and phytoplankton composition data collected from five stations during 2010 were classified as bloom area (BA) and non-bloom area (NBA) and compared. Elevated values of dissolved oxygen were recorded in the BA, and it significantly varied (p parametric multidimensional scaling (nMDS) ordinations; cluster analysis powered by SIMPROF test also grouped the stations as BA and NBA.

  14. Extensive Chaetoceros curvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands.

    Science.gov (United States)

    Begum, Mehmuna; Sahu, Biraja Kumar; Das, Apurba Kumar; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-05-01

    Blooming of diatom species Chaetoceros curvisetus (Cleve, 1889) was observed in Junglighat Bay and Haddo Harbour of Port Blair Bay of Andaman and Nicobar Islands during June 2010. Physico-chemical parameters, nutrient concentrations and phytoplankton composition data collected from five stations during 2010 were classified as bloom area (BA) and non-bloom area (NBA) and compared. Elevated values of dissolved oxygen were recorded in the BA, and it significantly varied (p parametric multidimensional scaling (nMDS) ordinations; cluster analysis powered by SIMPROF test also grouped the stations as BA and NBA. PMID:25838063

  15. Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s.

    OpenAIRE

    Martinez, Elodie; Antoine, David; D'Ortenzio, Fabrizio; de Boyer Montégut, Clément

    2011-01-01

    Phytoplankton chlorophyll-a (Chl) seasonal cycles of the North Atlantic are described using satellite ocean color observations covering the 1980s and the 2000s. The study region is where warmer SST and higher Chl in the 2000s as compared to the 1980s have been reported. It covers latitudes from 30 degrees N-50 degrees N and longitudes from 60 degrees W-0 degrees W, where two phytoplankton blooms take place: a spring bloom that follows stratification of upper layers, and a fall bloom due to nu...

  16. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  17. Multiplexed imaging of intracellular protein networks.

    Science.gov (United States)

    Grecco, Hernán E; Imtiaz, Sarah; Zamir, Eli

    2016-08-01

    Cellular functions emerge from the collective action of a large number of different proteins. Understanding how these protein networks operate requires monitoring their components in intact cells. Due to intercellular and intracellular molecular variability, it is important to monitor simultaneously multiple components at high spatiotemporal resolution. However, inherent trade-offs narrow the boundaries of achievable multiplexed imaging. Pushing these boundaries is essential for a better understanding of cellular processes. Here the motivations, challenges and approaches for multiplexed imaging of intracellular protein networks are discussed. © 2016 International Society for Advancement of Cytometry. PMID:27183498

  18. Peroxisome is a reservoir of intracellular calcium.

    Science.gov (United States)

    Raychaudhury, Bikramjit; Gupta, Shreedhara; Banerjee, Shouvik; Datta, Salil C

    2006-07-01

    We have examined fura 2-loaded purified peroxisomes under confocal microscope to prove that this mammalian organelle is a store of intracellular calcium pool. Presence of calcium channel and vanadate sensitive Ca(2+)-ATPase in the purified peroxisomal membrane has been demonstrated. We have further observed that machineries to maintain calcium pool in this mammalian organelle are impaired during infection caused by Leishmania donovani. Results reveal that peroxisomes have a merit to play a significant role in the metabolism of intracellular calcium. PMID:16713100

  19. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly.

    Science.gov (United States)

    Lapaquette, Pierre; Glasser, Anne-Lise; Huett, Alan; Xavier, Ramnik J; Darfeuille-Michaud, Arlette

    2010-01-01

    Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells. Recent genome-wide association studies have highlighted the autophagy pathway as being associated with CD risk. In the present study we investigated whether defects in autophagy enhance replication of commensal and pathogenic Escherichia coli and CD-associated AIEC. We show that functional autophagy limits intracellular AIEC replication and that a subpopulation of the intracellular bacteria is located within LC3-positive autophagosomes. In IRGM and ATG16L1 deficient cells intracellular AIEC LF82 bacteria have enhanced replication. Surprisingly autophagy deficiency did not interfere with the ability of intracellular bacteria to survive and/or replicate for any other E. coli strains tested, including non-pathogenic, environmental, commensal, or pathogenic strains involved in gastro enteritis. Together these findings demonstrate a central role for autophagy restraining Adherent-Invasive E. coli strains associated with ileal CD. AIEC infection in patients with polymorphisms in autophagy genes may have a significant impact on the outcome of intestinal inflammation. PMID:19747213

  20. Dust-induced episodic phytoplankton blooms in the Arabian Sea during winter monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, P.; PrasannaKumar, S.

    Phytoplankton blooms mediated by the oceanic supply of nutrients is a well-understood phenomenon in the Arabian Sea (AS), while the role of dust deposition in enhancing phytoplankton is less explored. In this paper, we show that during winter...

  1. Phytoplankton ice-edge blooms in the marginal ice zone at Princess Astrid Coast in Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N; Dhargalkar, V.K.; Goswami, S.C.; Mhamal, N

    with zooplankton. Spiral and straight chains of Fragilaria striatulla, F. cylindrus, Nitzschia closterium and N. seriata were abundant during bloom. Copepods dominated the zooplankton. Increase in euphausiids on 31st December were responsible for reduction...

  2. Nitrogen deposition fuels harmful algal blooms in the East China Sea

    Science.gov (United States)

    Mackey, K. R.; Kavanaugh, M.; Chien, C. T.; Chen, Y.; Glover, D. M.; Paytan, A.

    2015-12-01

    Chinese marginal seas support vast fisheries and vital economies, but their productivity is threatened by eutrophication and increasing harmful algal blooms (HABs). Here we provide direct experimental evidence that aerosol enrichment shifts seawater chemistry by increasing the ratio of N to phosphorus (N:P) and supports the growth of bloom-forming phytoplankton in the East China Sea. We use a combination of field-based aerosol addition incubation experiments, along with ocean color data on blooms dominated by different taxa to show that HAB forming dinoflagellates are particularly responsive to aerosol inputs. Moreover, we show that the effect of N deposition is strongest in offshore waters further from the Yangtze River outflow, consistent with the large anthropogenic flux of N from this source. This study shows the potential for aerosols to control N:P ratios in offshore waters and to shape the phytoplankton community, contributing to the success of bloom-forming organisms.

  3. West Coast DA Event data - West Coast Toxic Pseudo-nitzschia bloom

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Beginning in the spring of 2015 the US West Coast began to experience the most wide-spread toxic Pseudo-nitzschia bloom to date, after approximately eight years...

  4. Harmful algal blooms discovered during the Mote Monthly transect cruises, 1998 and 1999 (NODC Accession 0000532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, have caused massive fish kills in the Gulf of Mexico since the 1500's, with most occurrences on...

  5. Algal-bloom control by allelopathy of aquatic macrophytes——A review

    Institute of Scientific and Technical Information of China (English)

    Hongying HU; Yu HONG

    2008-01-01

    Algal-bloom control is an important issue for water environment protection as it induces several nega-tive impacts on the lives of aquatic organisms, aquacul-ture, landscaping, and human health. The development of an environment-friendly, cost-effective, and convenient alternative for controlling algal bloom has gained much concern. Using the allelopathy of aquatic macrophytes as a novel and safe method for algal-bloom control is a promising alternative. This paper reviews the develop-ment and potential application about allelopathy of aquatic plants on algae, including the allelopathic research history, the potential research problems, the research methodology, and the reported aquatic macro-phytes and their inhibitory allelochemicals. Potential modes of inhibition action of allelochemicals on algae, possible ways for application, and future development directions of research on algal-bloom control by aquatic macrophytes were also presented.

  6. Bloom Filter-Based Secure Data Forwarding in Large-Scale Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Siyu Lin

    2015-01-01

    Full Text Available Cyber-physical systems (CPSs connect with the physical world via communication networks, which significantly increases security risks of CPSs. To secure the sensitive data, secure forwarding is an essential component of CPSs. However, CPSs require high dimensional multiattribute and multilevel security requirements due to the significantly increased system scale and diversity, and hence impose high demand on the secure forwarding information query and storage. To tackle these challenges, we propose a practical secure data forwarding scheme for CPSs. Considering the limited storage capability and computational power of entities, we adopt bloom filter to store the secure forwarding information for each entity, which can achieve well balance between the storage consumption and query delay. Furthermore, a novel link-based bloom filter construction method is designed to reduce false positive rate during bloom filter construction. Finally, the effects of false positive rate on the performance of bloom filter-based secure forwarding with different routing policies are discussed.

  7. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    Science.gov (United States)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  8. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms.

    NARCIS (Netherlands)

    Bakker, E.S.; Van Donk, E.; Declerck, S.A.J.; Helmsing, N.R.; Hidding, B.; Nolet, B.A.

    2010-01-01

    Submerged freshwater macrophytes decline with increasing eutrophication. This has consequences for ecosystem processes in shallow lakes and ponds as macrophytes can reduce algal blooms under eutrophic conditions. We hypothesize that the productivity of submerged vegetation, biomass change under eutr

  9. Status, Alert System, and Prediction of Cyanobacterial Bloom in South Korea

    Directory of Open Access Journals (Sweden)

    Ankita Srivastava

    2015-01-01

    Full Text Available Bloom-forming freshwater cyanobacterial genera pose a major ecological problem due to their ability to produce toxins and other bioactive compounds, which can have important implications in illnesses of humans and livestock. Cyanobacteria such as Microcystis, Anabaena, Oscillatoria, Phormidium, and Aphanizomenon species producing microcystins and anatoxin-a have been predominantly documented from most South Korean lakes and reservoirs. With the increase in frequency of such blooms, various monitoring approaches, treatment processes, and prediction models have been developed in due course. In this paper we review the field studies and current knowledge on toxin producing cyanobacterial species and ecological variables that regulate toxin production and bloom formation in major rivers (Han, Geum, Nakdong, and Yeongsan and reservoirs in South Korea. In addition, development of new, fast, and high-throughput techniques for effective monitoring is also discussed with cyanobacterial bloom advisory practices, current management strategies, and their implications in South Korean freshwater bodies.

  10. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake

    DEFF Research Database (Denmark)

    De Figueiredo, Daniela R.; P. S. Reboleira, Ana Sofia; Antunes, Sara C.;

    2006-01-01

    The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture, was monito......The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture...... of Aphanizomenon flos-aquae occurred early in May 2001 and was preceded by the lowest nitrogen levels measured in the water during all the study period. At the time of this bloom senescence, dissolved oxygen was severely depleted and a massive death of ichthyofauna was recorded. A Microcystis aeruginosa bloom...

  11. Effect of monsoonal perturbations on the occurrence of phytoplankton blooms in a tropical bay

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    In this study, the influence of intraseasonal variations in rainfall and the resultant freshwater flux (monsoon perturbations) on phytoplankton bloom dynamics were evaluated by quantifying live phytoplankton at a fixed station (Dona Paula Bay, west...

  12. Influence of northeasterly trade winds on intensity of winter bloom in the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Dwivedi, R.M.; Raman, M.; Parab, S.; Matondkar, S.G.P.; Nayak, S.

    Chlorophyll and wind pattern retrieved from remote sensing data have been used to study biological activity in the oceanic waters of Northern Arabian Sea (NAS) during February–March 2002–05. Occurrence of algal bloom in these waters during...

  13. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds

    Science.gov (United States)

    Zhang, Zheng; Wu, Xiao-chun; Zhou, Quan; Duan, Li-li

    2015-08-01

    The correlation between the impact toughness and microstructural characteristics of a large bainitic steel bloom has been investigated. The study focuses on microcrack nucleation and propagation in the basic cleavage plane. To analyze the phase transformation during the wind-cooling process, the temperature field of the bloom was acquired by computer simulation, and a continuous cooling transformation experiment was conducted. The results show that compared with the surface of the bloom, the toughness of the bloom's core is decreased by the increase in proeutectoid ferrite and the coarsening of tempered martensite-austenite constituents. The proeutectoid ferrite decreases the toughness via its effects on carbide precipitation, the formation of martensite-austenite constituents, and the bainite transformation. The relatively large tempered martensite-austenite constituents are conducive to microcrack nucleation and propagation.

  14. Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) (HLY1401, EM122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary objectives of SUBICE were to determine the spatial distribution of large under-ice phytoplankton blooms on the Chukchi Shelf and the physical mechanisms...

  15. Lagrangian Analysis of Kerguelen's Naturally Iron-fertilised Phytoplankton Bloom

    Science.gov (United States)

    Della Penna, A.; Trull, T. W.; Grenier, M.; Wotherspoon, S.; Johnson, C.; De Monte, S.; d'Ovidio, F.

    2015-12-01

    The role of iron as a limiting micro-nutrient for primary production in High Nutrient Low Chlorophyll regions has been highlighted by paleoceanography, artificial fertilisation experiments and observed naturally fertilised systems. Examples of natural fertilisation have suggested that (sub-)mesoscale (1-100 km, days-months) horizontal transport modulates and structures the spatial and temporal extent of iron enrichment, phytoplankton production and biogeography. Here we combine different satellite products (altimetry, ocean color, PHYSAT), in-situ sampling, drifting floats and autonomous profilers to analyse the naturally iron-fertilised phytoplankton bloom of the Kerguelen region (Southern Ocean). Considering the Kerguelen Plateau as the main local source of iron, we compute two Lagrangian diagnostics: the "age" - how long before a water parcel has touched the plateau- and the "origin" - the latitude where a water parcel has left the plateau. First, we verify that these altimetry-defined diagnostics' spatial patterns -computed using geostrophic and Ekman corrected velocity fields- are coherent with the ones structuring the trajectories of more than 100 drifters and that trends in surface Chlorophyll (Chl) present an overall agreement with total column content (yet with ~2-3x differences in dynamic ranges likely due to the varying presence of Chl below the mixed layer). Second, assuming a first-order removal, we fit "age" with iron measurements and we estimate removal rates for bloom and abiotic conditions of respectively 0.058 and 0.041 1/d. Then, we relate "age" and "origin" with locations of high Chl concentrations and diatom-dominance. We find out that locations of high Chl concentration correspond to water parcels that have recently left the plateau. Furthermore, general additive models reveal that recently enriched waters are more likely to present a diatom dominance. However, the expected exponential fit varies within the geographic domain suggesting that

  16. How hydrodynamics control algal blooms in the Ythan estuary, Scotland

    Science.gov (United States)

    Champangern, Khruewan; Hoey, Trevor; Thomas, Rhian

    2016-04-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilizers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as understanding how nutrients and sediments are transported in the estuary is crucial for understanding the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. In order to understand those controls, study of interactions between hydrodynamic factors and water quality, in particular chlorophyll levels, at different time scales has been carried out. The results from the study reveal complex seasonal and event-scale relationships of river flow with the amount of chlorophyll, which provide an initial comprehension of controls over the concentrations of chlorophyll in the estuary. The concentration of chlorophyll changes, whether increasing or decreasing, with regards to changes in river flow. During high flow events, high amounts of chlorophyll are found when the tide is low. During low flow events, high amounts of chlorophyll are found at high tides. These phenomena reveal that both river flow and tidal cycle affect the amount of chlorophyll in the estuary. In addition, the Delft3d flow model, which has been extensively applied to many coastal and estuarine studies is used to simulate hydrodynamic patterns in the estuary during high flow and low flow events. The model is composed of 36,450 fine resolution grids and the upstream/ downstream boundary that represents water level is based on time-series data from river flow and tidal measurements. The bathymetry used for the model domain is

  17. Integrating phylogeny, geographic niche partitioning, and secondary metabolite synthesis in bloom-forming Planktothrix

    OpenAIRE

    Kurmayer, Rainer; Blom, Judith F.; Deng, Li; Pernthaler, Jakob

    2015-01-01

    Toxic freshwater cyanobacteria form harmful algal blooms that can cause acute toxicity to humans and livestock. Globally distributed, bloom-forming cyanobacteria Planktothrix either retain or lose the mcy gene cluster (encoding the synthesis of the secondary metabolite hepatotoxin microcystin or MC), resulting in a variable spatial/temporal distribution of (non)toxic genotypes. Despite their importance to human well-being, such genotype diversity is not being mapped at scales relevant to natu...

  18. Initiation of winter phytoplankton blooms within the Gironde plume waters in the Bay of Biscay

    OpenAIRE

    Labry, Claire; Herbland, Alain; Delmas, Daniel; Laborde, P.; Lazure, Pascal; Froidefond, J; Jegou, Anne-marie; Sautour, B.

    2001-01-01

    Thermostratification and seasonal Light increase are generally considered the first causes of phytoplankton spring blooms in temperate waters. The objective of this study is to confirm the existence of winter phytoplankton blooms, responsible for the early exhaustion of phosphate, within the Gironde plume waters (southeast Bay of Biscay), and to understand what may initiate them so early. Two cruises, BIOMET 2 and BIOMET 3, were carried out respectively in early (8 to 21 January) and late win...

  19. The human health effects of Florida red tide (FRT) blooms: an expanded analysis.

    Science.gov (United States)

    Hoagland, Porter; Jin, Di; Beet, Andrew; Kirkpatrick, Barbara; Reich, Andrew; Ullmann, Steve; Fleming, Lora E; Kirkpatrick, Gary

    2014-07-01

    Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2 and 24 million. PMID:24727069

  20. Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control

    OpenAIRE

    Carvalho, Laurence; McDonald, Claire; de Hoyos, Caridad; Mischke, U.; Phillips, Geoff; Borics, Gabor; Poikane, Sandra; Skjelbred, B.; Lyche Solheim, Anne; Van Wichelen, Jeroen; CARDOSO Ana

    2012-01-01

    A safe, clean water supply is critical for sustaining many important ecosystem services provided by freshwaters. The development of cyanobacterial blooms in lakes and reservoirs has a major impact on the provision of these services, particularly limiting their use for recreation and water supply for drinking and spray irrigation. Nutrient enrichment is thought to be the most important pressure responsible for the widespread increase in cyanobacterial blooms in recent decades. Quantifying how ...

  1. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms

    OpenAIRE

    Visser, P. M.; Verspagen, J.M.H.; Sandrini, G; Stal, L.J.; Matthijs, H.C.P.; Davis, T. W.; Pearl, H.W.; Huisman, J.

    2016-01-01

    Climate change is likely to stimulate the development of harmful cyanobacterial blooms in eutrophic waters, with negative consequences for water quality of many lakes, reservoirs and brackish ecosystems across the globe. In addition to effects of temperature and eutrophication, recent research has shed new light on the possible implications of rising atmospheric CO2 concentrations. Depletion of dissolved CO2 by dense cyanobacterial blooms creates a concentration gradient across the air–water ...

  2. Occurrence of toxic cyano bacterial blooms for the first time in Lake Karaoun, Lebanon

    International Nuclear Information System (INIS)

    The increasing occurrence of cyanobacterial bloom in freshwaters worldwide is of great importance because of public health risks. In addition, they are very likely to have negative impact on ecological and economic aspects. In this study, the seasonal succession of phytoplankton population in Lake Karaoun in Lebanon was monitored from May 2009 to June 2011. The physicochemical parameters of lake water were then monitored for 1 year, from June 2010 until June 2011, to correlate the physicochemical parameters with the phytoplankton population in the lake. Our results showed, for the first time in Lebanon, that the eutrophied Lake Karaoun has been under the invasion of toxic cyanobacterial blooms since May 2009. The cyanobacterial bloom was persistent from late spring (May) until late fall (December) for 2 consecutive years. The high water temperature in the summer season is the main factor that has been affecting the growth of the cyanobacteria. The most frequently encountered bloom-forming species were Microcystis aeruginosa and Aphanizomenon ovalisporum, which were either present individually or coexistent. The obtained results showed that during the period of cyanobacterial bloom, a deterioration of water quality defined by low levels of dissolved oxygen, total dissolved solids, and electric conductivity was reported. During cyanobacterial bloom period, the concentration of the orthophosphate-P (PO4-P) was very minimal. The measured high value of chlorophyll-a concentration during cyanobacterial bloom period (48.6 mg/L) was attributed to high photosynthetic activity. Cyanobacterial blooms can cause a variety of water-quality problems in Lake Karaoun in addition to human health risk. (author)

  3. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    OpenAIRE

    Daniels, C.J.; Poulton, A. J.; Esposito, M; Paulsen, M. L.; Bellerby, R; M St John; Martin, A.P.

    2015-01-01

    The spring bloom is a key annual event in the phenology of pelagic ecosystems, making a major contribution to the oceanic biological carbon pump through the production and export of organic carbon. However, there is little consensus as to the main drivers of spring bloom formation, exacerbated by a lack of in situ observations of the phytoplankton community composition and its evolution during this critical period. We investigated the dynamics of the phytoplankton...

  4. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    Science.gov (United States)

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  5. Stochastic Kinetics of Intracellular Calcium Oscillations

    Institute of Scientific and Technical Information of China (English)

    陈昌胜; 曾仁端

    2003-01-01

    A stochastic model of intracellular calcium oscillations is put forward by taking into account the random opening-closing of Ca2+ channels in endoplasmic reticulum (ER) membrane. The numerical results of the stochastic model show simple and complex calcium oscillations, which accord with the experiment results.

  6. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis.

    Science.gov (United States)

    Garfoot, Andrew L; Rappleye, Chad A

    2016-02-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  7. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  8. Learning Chemistry from Bacteria

    OpenAIRE

    Clardy, Jon

    2013-01-01

    Dr. Jon Clardy Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University All animals, including humans, originated and evolved on a planet already teeming with bacteria, and the two kingdoms of life have been competing and cooperating through their joint history. Although bacteria are most familiar as pathogens, some bacteria produce small molecules that are essential for the biology of animals and other eukaryotes. This lecture explores some of...

  9. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    Science.gov (United States)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  10. Effect of volcano ash additions on nutrient concentrations, bloom dynamics and community metabolism in a short-term experiment in the NW Mediterranean Sea

    Science.gov (United States)

    Weinbauer, Markus

    2016-04-01

    Volcano ash deposition is now considered as an important source of inorganic bioavailable iron which can relieve Fe-limitation in the ocean. As volcano ash also releases PO4, a experiment was performed in the NW Mediterranean Sea to test whether volcano ash deposition can affect nutrient dynamics and bloom development in a P-limited system. In a 54h experiment, it was shown that the development of a phytoplankton bloom was not enhanced or even repressed by ash additions of 2 and 20 mg l-1, whereas higher ash concentrations (200 mg l-1) induced a phytoplankton bloom as indicated by elevated Chlorophyll-a levels. Concurrently, net community production (NCP) and gross primary production (GPP) were enhanced at T24h at the highest ash additions. The metabolic balance was roughly neutral at low or no ash additions, but shifted towards phototrophy at the highest ash additions. The data on inorganic nutrient development and release estimates from ash material assays suggest relieving of P-limitation concomitant with NO3 and silicate use from ash. The concentration of TEP increased with increasing ash levels. The abundances of the heterotrophic compartment (bacteria, viruses and ciliates) also indicated dose-dependent responses. Our data suggest that heterotrophs won the competition for inorganic nutrients at ash levels of 2 and 20 mg l-1, whereas phytoplankton won at levels of 200 mg l-1. Overall, our experiments point to a strong potential of volcano ash deposition as forcing factor for nutrient dynamics and the activity of microbial plankton in a P-limited system.

  11. Dinoflagellate Bloom of Karenia mikimotoi along the Southeast Arabian Sea, Bordering Western India

    Directory of Open Access Journals (Sweden)

    R. S. Robin

    2013-01-01

    Full Text Available A harmful algal bloom (HAB occurred along the southeast Arabian Sea, bordering Western India, during September to November 2004. This bloom was unique in the region in terms of its large spatial extent, and the trend was weakened towards November. Mass mortality of fish, emanation of noxious odour, and respiratory problems among the children on the coastal stretch were noticed. The phytoplankton species Gymnodiniium, class Dinophyceae bloom accounted for 98% of the standing crop. The bloom Karenia mikimotoi showed a maximum density of 19.37×104 cells L−1 and 18.94×104 cells L−1 at nearshore and offshore, respectively. The remotely sensed chlorophyll a (Chl a data from seaWiFS, sea surface temperature (SST from advanced very high resolution radiometer (AVHRR, rainfall from tropical rainfall measuring Mission (TRMM, and Sea winds from QuickSCAT reflected the bloom due to Karenia mikimotoi, suggesting the advection process at the coastal waters. The release of toxins specifically the neurotoxic shellfish poisoning (NSP and azaspiracid shellfish poisoning (AZP from the bloom was assessed by chemical and mouse bioassay of the extract from mussel Perna indica, showing negative results. These indicate that asphyxiation and abnormal mucus secreted by the K. mikimotoi led to clogging of gills that accentuated the mass fish kills.

  12. Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense.

    Science.gov (United States)

    Erdner, Deana L; Richlen, Mindy; McCauley, Linda A R; Anderson, Donald M

    2011-01-01

    Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population. PMID:21829565

  13. Assessment of microcystis bloom toxicity associated with wildlife mortality in the Kruger National Park, South Africa.

    Science.gov (United States)

    Masango, Mxolisi G; Myburgh, Jan G; Labuschagne, Leonie; Govender, Danny; Bengis, Roy G; Naicker, Dharmarai

    2010-01-01

    Based on previous necropsy results, Microcystis blooms in constructed water impoundments in the Kruger National Park (KNP) have been identified as a cause of wildlife mortality. In response to wildlife mortality during 2007, water samples, containing algal bloom material, were collected during February 2007 and July 2007 from four dams (Nhlanganzwani, Mpanamana, Makhohlola, and Sunset) in the southeastern part of the KNP as part of the follow-up investigation. The toxicity of the Microcystis blooms was determined using the enzyme-linked immunosorbent assay (ELISA), protein phosphatase inhibition (PPI) assay, mouse bioassay, and African sharptooth catfish (Clarias gariepinus) primary hepatocytes. Both the ELISA and PPI assays indicated that the water sample collected during February 2007 from the Nhlanganzwani Dam, and samples collected from the Nhlanganzwani and Sunset dams in June 2007, were toxic. These dams, exhibiting the toxic Microcystis blooms, were also associated with the wildlife mortality. Mice injected intraperitoneally with water samples from Nhlanganzwani Dam (February 2007) induced hepatotoxicity and mortality within 1 hr. Primary hepatocytes from the sharptooth catfish exposed to samples from these dams gave similar results. This laboratory investigation and results strongly incriminate the toxic Microcystis blooms as the cause of the wildlife mortality. Eutrophication and bloom formation appear to have been the consequence of the high numbers of hippopotami (Hippopotamus amphibius) in specific dams.

  14. Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense.

    Directory of Open Access Journals (Sweden)

    Deana L Erdner

    Full Text Available Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.

  15. Potentially harmful microalgae and algal blooms in a eutrophic estuary in Turkey

    Directory of Open Access Journals (Sweden)

    S. TAS

    2015-07-01

    Full Text Available Distribution of potentially harmful microalgae and algal blooms were investigated at monthly and weekly time scales between October 2009 and September 2010 in the Golden Horn, a eutrophic estuary in the Sea of Marmara (Turkey. Several physical and chemical parameters were analysed together with phytoplankton composition and abundance. A total number of 23 potentially harmful and/or bloom-forming microalgae (14 dinoflagellates, 4 diatoms and 5 phytoflagellates were identified throughout this study period, of which nine taxa have been confirmed to be toxic elsewhere in the world. Most harmful species and algal blooms were observed in late spring and summer particularly in the middle and upper estuaries, and nine taxa formed dense and successive algal blooms causing water discoloration. Nutrient concentrations increased significantly from the lower to the upper estuary. Additionally, high organic matter loads in the upper estuary could also have benefited by mixotrophic species. The increasing number of potentially harmful and bloom-forming species and algal blooms indicated that the GHE is a potential risk area for future HABs. 

  16. Off-flavor compounds from decaying cyanobacterial blooms of Lake Taihu

    Institute of Scientific and Technical Information of China (English)

    Zhimei Ma; Yuan Niu; Ping Xie; Jun Chen; Min Tao; Xuwei Deng

    2013-01-01

    The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobactedal blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.

  17. Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii.

    Science.gov (United States)

    Rynearson, Tatiana A; Armbrust, E Virginia

    2005-05-01

    Maintenance of genetic diversity in eukaryotic microbes reflects a synergism between reproductive mode (asexual vs. sexual) and environmental conditions. We determined clonal diversity in field samples of the planktonic marine diatom, Ditylum brightwellii, during a bloom, when cell number increased by seven-fold because of rapid asexual division. The genotypes at three microsatellite loci were determined for 607 individual cell lines isolated during the 11 days of sampling. Genetic diversity remained high during the bloom and 87% of the cells sampled each day were genetically distinct. Sixty-nine clonal lineages were sampled two or more times during the bloom, and two clones were sampled seven times. Based on the frequency of resampled clonal lineages, capture-recapture statistics were used to determine that at least 2400 genetically distinct clonal lineages comprised the bloom population. No significant differences in microsatellite allele frequencies were observed among daily samples indicating that the bloom was comprised of a single population. No sexual stages were observed, although linkage equilibrium at two loci, high levels of allelic and genotypic diversity, and heterozygote deficiencies were all indicative of past sexual reproduction events. At the height of the bloom, a windstorm diluted cell numbers by 51% and coincided with a change in the frequency distribution of some resampled lineages. The extensive clonal diversity generated through past sexual reproduction events coupled with frequent environmental changes appear to prevent individual clonal lineages from becoming numerically dominant, maintaining genetic diversity and the adaptive potential of the population. PMID:15836638

  18. Real-time detection of viable microorganisms by intracellular phototautomerism

    Directory of Open Access Journals (Sweden)

    Schuren Frank

    2010-06-01

    Full Text Available Abstract Background To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner. Results The developed method includes exposure of cells to a weak acid probe at low pH. The neutral probe rapidly permeates the membrane and enters the cytosol. In dead cells no signal is obtained, as the cytosolic pH reflects that of the acidic extracellular environment. In live cells with a neutral internal pH, the probe dissociates into a fluorescent phototautomeric anion. After reaching peak fluorescence, the population of live cells decays. This decay can be followed real-time as cell death coincides with intracellular acidification and return of the probe to its uncharged non-fluorescent state. The rise and decay of the fluorescence signal depends on the probe structure and appears discriminative for bacteria, fungi, and spores. We identified 13 unique probes, which can be applied in the real-time viability method described here. Under the experimental conditions used in a microplate reader, the reported method shows a detection limit of 106 bacteria ml-1, while the frequently used LIVE/DEAD BacLight™ Syto9 and propidium iodide stains show detection down to 106 and 107 bacteria ml-1, respectively. Conclusions We present a novel fluorescence-based method for viability assessment, which is applicable to all bacteria and eukaryotic cell types tested so far. The RTV method will have a significant impact in many areas of applied microbiology including research on biocidal activity, improvement of

  19. Economic game theory to model the attenuation of virulence of an obligate intracellular bacterium

    Directory of Open Access Journals (Sweden)

    Damian Tago

    2016-08-01

    Full Text Available Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host’s defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g. with Ehrlichia ruminantium, there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  20. Invasive extravillous trophoblasts restrict intracellular growth and spread of Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Varvara B Zeldovich

    2011-03-01

    Full Text Available Listeria monocytogenes is a facultative intracellular bacterial pathogen that can infect the placenta, a chimeric organ made of maternal and fetal cells. Extravillous trophoblasts (EVT are specialized fetal cells that invade the uterine implantation site, where they come into direct contact with maternal cells. We have shown previously that EVT are the preferred site of initial placental infection. In this report, we infected primary human EVT with L. monocytogenes. EVT eliminated ∼80% of intracellular bacteria over 24-hours. Bacteria were unable to escape into the cytoplasm and remained confined to vacuolar compartments that became acidified and co-localized with LAMP1, consistent with bacterial degradation in lysosomes. In human placental organ cultures bacterial vacuolar escape rates differed between specific trophoblast subpopulations. The most invasive EVT-those that would be in direct contact with maternal cells in vivo-had lower escape rates than trophoblasts that were surrounded by fetal cells and tissues. Our results suggest that EVT present a bottleneck in the spread of L. monocytogenes from mother to fetus by inhibiting vacuolar escape, and thus intracellular bacterial growth. However, if L. monocytogenes is able to spread beyond EVT it can find a more hospitable environment. Our results elucidate a novel aspect of the maternal-fetal barrier.

  1. Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection.

    Science.gov (United States)

    Sherwood, Racquel Kim; Roy, Craig R

    2016-09-01

    The gram-negative bacterial pathogen Legionella pneumophila creates a novel organelle inside of eukaryotic host cells that supports intracellular replication. The L. pneumophila-containing vacuole evades fusion with lysosomes and interacts intimately with the host endoplasmic reticulum (ER). Although the natural hosts for L. pneumophila are free-living protozoa that reside in freshwater environments, the mechanisms that enable this pathogen to replicate intracellularly also function when mammalian macrophages phagocytose aerosolized bacteria, and infection of humans by L. pneumophila can result in a severe pneumonia called Legionnaires' disease. A bacterial type IVB secretion system called Dot/Icm is essential for intracellular replication of L. pneumophila. The Dot/Icm apparatus delivers over 300 different bacterial proteins into host cells during infection. These bacterial proteins have biochemical activities that target evolutionarily conserved host factors that control membrane transport processes, which results in the formation of the ER-derived vacuole that supports L. pneumophila replication. This review highlights research discoveries that have defined interactions between vacuoles containing L. pneumophila and the host ER. These studies reveal how L. pneumophila creates a vacuole that supports intracellular replication by subverting host proteins that control biogenesis and fusion of early secretory vesicles that exit the ER and host proteins that regulate the shape and dynamics of the ER. In addition to recruiting ER-derived membranes for biogenesis of the vacuole in which L. pneumophila replicates, these studies have revealed that this pathogen has a remarkable ability to interfere with the host's cellular process of autophagy, which is an ancient cell autonomous defense pathway that utilizes ER-derived membranes to target intracellular pathogens for destruction. Thus, this intracellular pathogen has evolved multiple mechanisms to control membrane

  2. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum

    OpenAIRE

    Li, Jinhua; Menguy, Nicolas; Gatel, Christophe; Boureau, Victor; Snoeck, Etienne; Patriarche, Gilles; Leroy, Eric; Pan, Yongxin

    2015-01-01

    Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvi...

  3. Copepod Behavior in ``Cryptic Blooms'' of Toxic Algae

    Science.gov (United States)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2014-11-01

    Copepods,Acartia tonsa and Temora longicornis, were exposed to thin layers of exudates from the toxic dinoflagellate Karenia brevis (1 - 10,000 cells/mL) (i.e. models of ``cryptic blooms'' of toxic phytoplankton). Planar laser-induced fluorescence (PLIF) was used to quantify the spatiotemporal structure of the layer allowing for correlation of behavioral responses with toxin levels. Both species explicitly avoided the exudate layer and the vicinity of the layer. Measures of path kinematics (swimming speed, turn frequency) by location (in-layer vs. out-of-layer) and exposure (pre-contact vs. post-contact) revealed some similarities, but also significant differences, in trends for each species. A. tonsa significantly increases swimming speed and swimming speed variability in the exudate layer and post-contact, whereas T. longicornis slightly increases both in-layer and slightly reduces both post-contact. Both species increase turn frequency in-layer and post-contact with increasing K. brevis exudate concentration. Path fracticality indicates that A. tonsatrajectories became more diffuse/sinuous and T. longicornis trajectories became more linear/ballistic (trending effects). Regression analyses revealed that the rate of change of behavior with increasing exudate concentration for A. tonsa was thrice to fifty times that of T. longicornis. Toxic K. brevis can essentially eliminate top-down grazer control ,another sinister means by which it gains a competitive advantage over the local phytoplankton taxa.

  4. Thermomechanical Behavior in Continuous Bloom Casting with Different Mold Tapers

    Institute of Scientific and Technical Information of China (English)

    LUO Xin; CHEN Yong; SHEN Houfa

    2008-01-01

    A two-dimensional finite element model was used to analyze the thermal and mechanical behavior dunng solidification of the strand in a continuous bloom casting mold.The coupled heat transfer and defermation were analyzed to simulate the formation of the air gap between the mold and the strand.The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand.The results show that the air gap mainly forms around the strand corner,causing a hoRer and thinner solidifying shell in this region.The mold taper partially compensates for the strand shell shnnkage and reduces the infiuence of the air gap on the heat transfer.The mold taper compresses the shell and changes the stress state around the stmnd comer region.As the strand moves down into the mold,the mold constraint causes compressive stress beneath the comer surface.which reduces the hot tear that forms on the strand.

  5. Recurrent jellyfish blooms are a consequence of global oscillations.

    Science.gov (United States)

    Condon, Robert H; Duarte, Carlos M; Pitt, Kylie A; Robinson, Kelly L; Lucas, Cathy H; Sutherland, Kelly R; Mianzan, Hermes W; Bogeberg, Molly; Purcell, Jennifer E; Decker, Mary Beth; Uye, Shin-ichi; Madin, Laurence P; Brodeur, Richard D; Haddock, Steven H D; Malej, Alenka; Parry, Gregory D; Eriksen, Elena; Quiñones, Javier; Acha, Marcelo; Harvey, Michel; Arthur, James M; Graham, William M

    2013-01-15

    A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face. PMID:23277544

  6. Mechanism of H. pylori intracellular entry: an in vitro study

    Directory of Open Access Journals (Sweden)

    Hui eLiu

    2012-03-01

    Full Text Available The majority of H. pylori reside on gastric epithelial cell surfaces and in the overlying mucus, but a small fraction of H. pylori enter host epithelial and immune cells. To explore the role of the nudA invasin in host cell entry, a ΔnudA deletion derivative of strain J99 was constructed and transformants were verified by PCR and by fluorescence in situ hybridization. AGS cells were inoculated with either wild type (WT strain J99 or its ΔnudA mutant to determine the fraction of bacteria that were bound to the cells and inside these cells using the gentamicin protection assay. We observed no significant difference between either the density of H. pylori bound to AGS cell membranes or the density of intracellular H. pylori. To further explore this finding, separate chambers of each culture were fixed in glutaraldehyde for transmission electron microscopy (TEM and immunogold TEM. This addition to the classical gentamicin assay demonstrated that there were significantly more intracellular, and fewer membrane-bound, H. pylori in WT-infected AGS cells than in ΔnudA allele infected cells. Thus, the sum of intracellular and membrane-bound H. pylori was similar in the two groups. Since no other similar TEM study has been performed, it is at present unknown whether our observations can be reproduced by others Taken together however, our observations suggest that the classical gentamicin protection assay is not sufficiently sensitive to analyze H. pylori cell entry and that the addition of TEM to the test demonstrate that nudA plays a role in H. pylori entry into AGS cells in vitro. In addition, deletion of the invasin gene appears to limit H. pylori to the AGS cell surface, where it may be partly protected against gentamicin. In contrast, this specific environment may render H. pylori more vulnerable to host defense and therapeutic intervention, and less prone to trigger normal immune, carcinogenic, and other developmental response pathways.

  7. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  8. Structural Dynamics of Community Gene Expression In a Freshwater Cyanobacterial Bloom Over a Day-Night Cycle

    Science.gov (United States)

    Wang, J.; Fernando, S.; Thompson, J. R.

    2011-12-01

    Cyanobacterial blooms are a major problem in eutrophic lakes and reservoirs, negatively impacting the ecology of the water body through oxygen depletion upon bloom decay and in some cases through production of toxins. Waterborne cyanobacterial toxins pose a public health threat through drinking and recreational exposure. The frequency of harmful cyanobacterial blooms (cyanoHABs) is predicted to increase due to warming regional climates (Paerl et.al, 2011) and increases in non-point source pollution due to urban expansion (Novotny, 2011). CyanoHABs represent complex consortia of cyanobacteria that live in association with diverse assemblages of heterotrophic and anoxygenic photosynthetic bacteria. A better understanding of the structure, function, and interaction between members of the complex microbial communities that support the proliferation of toxigenic cyanobacteria will improve our ability to prevent and control cyanoHABs. Studies of community gene expression, or metatranscriptomics, provide a powerful approach for quantifying changes in both the taxonomic composition (structure) and activity (function) of complex microbial systems in response to dynamic environmental conditions. We have used next-generation Illumina sequencing to characterize the metatranscriptome of a tropical eutrophic drinking water reservoir dominated by the toxigenic cyanobacterium Microcystis aeruginosa over a day/night cycle. Bacterioplankton sampling was carried out at six time points over a 24 hour period to capture variability associated with changes in the balance between phototrophic and heterotrophic activity. Total RNA was extracted and subjected to ribosomal depletion followed by cDNA synthesis and sequencing, generating 493,468 to 678,064 95-101 bp post-quality control reads per sample. Hierarchical Clustering of transcriptional profiles supported sorting of samples into two clusters corresponding to "day" and "night" collection times. Annotation of reads through the MG

  9. Trade-Offs of Escherichia coli Adaptation to an Intracellular Lifestyle in Macrophages

    Science.gov (United States)

    Thompson, J. A.; Proença, J. T.; Gordo, I.

    2016-01-01

    The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with some pathogenic strains having evolved to survive and even replicate in the harsh intra-macrophage environment. The rate and effects of mutations that can cause pathoadaptation are key determinants of the pace at which E. coli can colonize such niches and become pathogenic. We used experimental evolution to determine the speed and evolutionary paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We estimated the acquisition of pathoadaptive mutations at a rate of 10−6 per genome per generation, resulting in the fixation of more virulent strains in less than a hundred generations. Whole genome sequencing of independently evolved clones showed that the main targets of intracellular adaptation involved loss of function mutations in genes implicated in the assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intracellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference detected indicate that the first steps of the transition of a commensal E. coli into intracellular pathogens are dominated by a few pathoadaptive mutations with very strong effects. PMID:26752723

  10. Trade-Offs of Escherichia coli Adaptation to an Intracellular Lifestyle in Macrophages.

    Directory of Open Access Journals (Sweden)

    M Azevedo

    Full Text Available The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with some pathogenic strains having evolved to survive and even replicate in the harsh intra-macrophage environment. The rate and effects of mutations that can cause pathoadaptation are key determinants of the pace at which E. coli can colonize such niches and become pathogenic. We used experimental evolution to determine the speed and evolutionary paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We estimated the acquisition of pathoadaptive mutations at a rate of 10-6 per genome per generation, resulting in the fixation of more virulent strains in less than a hundred generations. Whole genome sequencing of independently evolved clones showed that the main targets of intracellular adaptation involved loss of function mutations in genes implicated in the assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intracellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference detected indicate that the first steps of the transition of a commensal E. coli into intracellular pathogens are dominated by a few pathoadaptive mutations with very strong effects.

  11. How honey kills bacteria

    NARCIS (Netherlands)

    P.H.S. Kwakman; A.A. te Velde; L. de Boer; D. Speijer; C.M.J.E. Vandenbroucke-Grauls; S.A.J. Zaat

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria t

  12. A biogeographic distribution of magnetotactic bacteria influenced by salinity

    OpenAIRE

    Lin, Wei; Wang, Yinzhao; Li, Bi; Pan, Yongxin

    2011-01-01

    Magnetotactic bacteria (MTB), which synthesize intracellular ferromagnetic magnetite and/or greigite magnetosomes, have significant roles in global iron cycling in aquatic systems, as well as sedimentary magnetism. The occurrence of MTB has been reported in aquatic environments from freshwater to marine ecosystems; however, the distribution of MTB across heterogeneous habitats remains unclear. Here we examined the MTB communities from diverse habitats across northern and southern China, using...

  13. Diversity of magnetotactic bacteria from a French Pristine Mediterranean Area

    OpenAIRE

    Fuduche, M.; A. Postec; Davidson, Sylvain; Chauvin, J P; Gales, G.; Hirschler-Rea, A.; Ollivier, Bernard; Wu, L F; Pradel, Nathalie

    2015-01-01

    Magnetotactic bacteria synthesize intracellular magnetite and/or greigite magnetosome crystals. They play a significant role in both iron and sulfur cycles in sedimentary aquatic environments. To get insight into the bio-geochemical contribution of MTB, more studies concerning their ecology and their distribution in diverse habitats are necessary. The MTB community of an oil-industry polluted area of the French Mediterranean coast has been previously investigated. Here, we investigate the MTB...

  14. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method

    Science.gov (United States)

    Xie, Ping

    1996-09-01

    The hypertrophic subtropic Donghu Lake's dense water bloom (of mainly Microcystis, Anabaena and Oscillatoria) that occurred annually from the beginning of the 1970s, has disappeared since 1985. The influence of planktivorous fishes (silver and bighead carps) on the water bloom was studied for three years using the enclosure method. The enclosures stocked densely with bighead and/or silver carp were free of water bloom during the experimental period. The water bloom that appeared in the fish-free enclosures was completely eliminated in 10 20 days by introduction of silver and/or bighead carp(grass carp was not effective in controlling water bloom). This study showed clearly that grazing pressure by planktivorous fishes is a key factor in eliminating water bloom from the lake.

  15. 基于Bloom filter引擎的分布式网络取证系统%Distributed network forensics system based on Bloom filter engine

    Institute of Scientific and Technical Information of China (English)

    赵骞; 崔益民; 邹涛

    2009-01-01

    针对目前网络取证的特点和技术挑战,提出和设计了一种基于Bloom filter引擎的分布式网络取证系统.该系统以Bloom filter引擎为核心,能够实时的对网络原始数据进行过滤,映射压缩和存储,捕获完整的证据,节省存储空间,有效支持网络取证的事后分析查询.%Aiming at technical challenges of network forensics at present,a distributed network forensics system based on the Bloom filter engine was proposed and designed.The system with the Bloom filter engine as the core can filtrate,memory-map raw network data for compression,capture complete evidence,save storage space,and help with post-event investigation of network forensics.

  16. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  17. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii.

    Science.gov (United States)

    Van der Henst, Charles; Scrignari, Tiziana; Maclachlan, Catherine; Blokesch, Melanie

    2016-04-01

    Vibrio cholerae is a human pathogen and the causative agent of cholera. The persistence of this bacterium in aquatic environments is a key epidemiological concern, as cholera is transmitted through contaminated water. Predatory protists, such as amoebae, are major regulators of bacterial populations in such environments. Therefore, we investigated the interaction between V. cholerae and the amoeba Acanthamoeba castellanii at the single-cell level. We observed that V. cholerae can resist intracellular killing. The non-digested bacteria were either released or, alternatively, established a replication niche within the contractile vacuole of A. castellanii. V. cholerae was maintained within this compartment even upon encystment. The pathogen ultimately returned to its aquatic habitat through lysis of A. castellanii, a process that was dependent on the production of extracellular polysaccharide by the pathogen. This study reinforces the concept that V. cholerae is a facultative intracellular bacterium and describes a new host-pathogen interaction.

  18. How to estimate costs from harmful algal blooms : economic impacts on wild fisheries, aquaculture and commercial tourism

    OpenAIRE

    Lorentzen, Torbjørn; Pettersson, Lasse H.

    2005-01-01

    The background for the analysis is the increased registration of harmful algal blooms (HABs) in different sea areas world wide. The frequency of algae blooms in for example Skagerrak and along the coast of Norway is relatively high. There exist about 4000 algae species, and the micro organisms play normally an important role in the ecosystem. But under certain conditions the algal can bloom and be harmful for other species and inflict economic losses. The report is addressed to methodological...

  19. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  20. Can LANDSAT be used to catalog historical freshwater harmful algal blooms?

    Science.gov (United States)

    Ho, J. C.; Michalak, A. M.

    2013-12-01

    Blooms of toxic algae are becoming increasingly common in freshwater lakes globally, progressively impacting human and ecosystem health in more locales around the world. Despite this growing footprint of harmful algal blooms (HABs), however, there still exist few quantitative tools for monitoring the temporal and spatial progression of HABs in individual lakes, a prerequisite for documenting and understanding their global increase. Past efforts using MODIS and MERIS to monitor blooms have been limited to studying the subset of blooms that have occurred since those instruments began collecting data (1999 and 2002, respectively) and MERIS imagery in particular is not freely available. In contrast, LANDSAT Thematic Mapper (TM) imagery is available with data starting from 1982 and is freely accessible. Therefore, if LANDSAT could be used to identify blooms, then this would be advantageous for future monitoring and research. In this work, we assess the use of LANDSAT TM for identifying the presence, spatial extent, and timing of HABs. We do this by comparing LANDSAT-generated maps of phycocyanin content in Lake Erie with literature reports of harmful algal blooms and MERIS-generated maps of cyanobacteria. Lake Erie is used as the case study because its HABs have been extensively documented in the scientific literature. Maps are generated using a linear combination of spectral ratios tested previously for Lake Erie, using the Google Earth Engine platform for data processing. We further assess the effectiveness of LANDSAT TM for identifying HABs in other bloom-impacted freshwater lakes around the world. Most of the previous work using remote sensing to identify freshwater HABs has focused on individual remote sensing platforms and individual lakes; this work contributes to knowledge by comparing across platforms and water bodies. This assessment will improve understanding of the challenges of monitoring freshwater HABs, and will contribute to the development of effective

  1. Concentration and dispersal of a Pseudo-nitzschia bloom in Penn Cove, Washington, USA.

    Science.gov (United States)

    Trainer, V L; Adams, N G; Bill, B D; Anulacion, B F; Wekell, J C

    1998-01-01

    A bloom of the pennate diatom Pseudo-nitzschia, several species of which are associated with the production of the potent excitotoxin domoic acid, was observed in a Puget Sound, Washington embayment in July and August of 1997. Penn Cove, which receives nutrients from the nearby Skagit River and abundant sunshine during summer months due to its location in the rain shadow of the Olympic Mountains, is the home of a commercial mussel farm which supplies shellfish to many coastal areas of the USA. Levels of domoic acid in mussels increased to 3 ppm on 6 and 10 July, corresponding to the observation of a brown algal bloom in Penn Cove. Four species of Pseudo-nitzschia (P. pungens, P. multiseries, P. australis, and P. pseudodelicatissima) were present in our samples from the cove, corresponding to levels of domoic acid in seawater ranging from 0.1-0.8 mirog l(-1) as measured by a receptor binding assay. The highest Pseudo-nitzschia concentration during the time of our sampling was 13 million cells per liter on 28 July. The bloom of Pseudo-nitzschia occurred after a period of strong discharge from the Skagit River and rain accompanied by elevated south and southeasterly winds. Stratification of the cove, providing optimal bloom conditions, was facilitated by weak winds, sunshine, and a freshwater lens at the mouth of the cove. The position of the Pseudo-nitzschia bloom was influenced by buoyancy fronts caused by exchange of water within the cove with that of Saratoga Passage. The decay of this bloom in Penn Cove was accompanied by decreasing nitrate levels at all measured depths. These and future observations aid in the development of a model for prediction of toxic bloom events in the shallow embayments of Puget Sound. PMID:10223627

  2. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes

    International Nuclear Information System (INIS)

    As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H2O2. We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments. - Graphical abstract: The mechanism for the removal of cyanobacterial blooms by using H2O2, polymeric ferric sulfate (PFS) and lake sediment clay. Display Omitted Highlights: ► We combined algaecide and flocculants together to control cyanobacterial blooms. ► H2O2 was used to irreversibly inactivate the photosynthesis of cyanobacteria. ► Lake sediment clay and polymeric ferric sulfate were used to deposit cyanobacteria. ► Removal rate was very high and re-suspension rate was very low under disturbance. ► The inactivated cyanobacteria could not serve as a seed source for the next bloom. - Inactivation by H2O2 and sedimentation using polymeric ferric sulfate and sediment clay demonstrated high integrated efficiency in removal of cyanobacterial blooms.

  3. Pigment characterization for the 2011 bloom in Qinhuangdao implicated "brown tide" events in China

    Institute of Scientific and Technical Information of China (English)

    KONG Fanzhou; YU Rencheng; ZHANG Qingchun; YAN Tian; ZHOU Mingjiang

    2012-01-01

    A large-scale bloom occurred from May to June in 2011 in sea area near Qinhuangdao of the Bohai Sea,leading to huge damage of the scallop culture industry.Similar blooms have been observed in this region for three years.The causative species of the bloom,which dominated the phytoplankton community with the maximum cell density around 109 cell/L,could not be identified with morphological features due to the small cell size (~2 μm).A pigment analytical method was then adopted to analyze the pigment profile of the phytoplankton samples collected from the blooming sea area.It was found that pico-sized (<2 μm),nano-sized (2-20 μm),and bulk phytoplankton samples had similar pigment profile,representing the pigment signature of the bloom-causative species.The major pigments detected included 19-butanoyloxyfucoxanthin (But-fuco),fucoxanthin (Fuco),diadinoxanthin (Diad) and chlorophyll a (Chl a),and high content of But-fuco was the most significant characteristics of the phytoplankton samples.Based on the pigment composition and content,the bloom-causative species could be tentatively identified as pelagophyte,"type 8" group of haptophyte,or silicoflagellate.Some unique features of the bloom,such as the extremely high cell density,small-sized and But-fuco containing cells,occurring in early summer,and the feeding-cessation effects on scallops,suggest it be a "brown tide" event similar to those reported in the east coast of the United States of America.The recurrent "brown tide" events and their dramatic impacts on the shellfish mariculture industry in Qinhuangdao need close attention in the coming years.

  4. A niche model to predict Microcystis bloom decline in Chaohu Lake, China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhicong; LI Zhongjie; LI Dunhai

    2012-01-01

    Cyanobacterial blooms occur frequently in lakes due to eutrophication.Although a number of models have been proposed to forecast algal blooms,a good and applicable method is still lacking.This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms.In this study,phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October,2010.The niche breadth and niche overlap of common species were calculated using standard equations,and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap.In July,the potential relative growth rate was 2.79 (a.u.,arbitrary units) but then rapidly declined in the following months to -3.99 a.u.in September.A significant correlation (R=0.998,P<0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model,we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms.Redundancy analysis indicated that decreases in water temperature,dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline.Based on the theory of community succession being caused by resource competition,the growth and decline of blooms can be predicted from a community structure.This may provide a basis for early warning and control of algal blooms.

  5. Paclitaxel Arrests Growth of Intracellular Toxoplasma gondii

    OpenAIRE

    Estes, Randee; Vogel, Nicolas; Mack, Douglas; McLeod, Rima

    1998-01-01

    Addition of paclitaxel (Taxol) at a concentration of 1 μM to Toxoplasma gondii-infected human foreskin fibroblasts arrested parasite multiplication. Division of the T. gondii tachyzoite nucleus was inhibited, leading to syncytium-like parasite structures within the fibroblasts by 24 h after infection and treatment of the cultures. By 4 days after infection and treatment of the cultures with paclitaxel, this inhibition was irreversible, since the arrested intracellular form was incapable of le...

  6. Intracellular serpins, firewalls and tissue necrosis.

    Science.gov (United States)

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis. PMID:18215520

  7. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  8. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory.

    Science.gov (United States)

    Chen, Qiuwen; Rui, Han; Li, Weifeng; Zhang, Yanhui

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004-2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial-temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial-temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties.

  9. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria

    Science.gov (United States)

    Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong

    2016-09-01

    Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.

  10. Real-Time monitoring of intracellular wax ester metabolism

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-09-01

    Full Text Available Abstract Background Wax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions. Results Based on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases. Conclusions The monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.

  11. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis.

    Science.gov (United States)

    Santos, António J M; Durkin, Charlotte H; Helaine, Sophie; Boucrot, Emmanuel; Holden, David W

    2016-07-01

    Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S Typhimurium delays epithelial cell turnover in the intestine.

  12. Strategies to improve intracellular drug delivery by targeted liposomes

    NARCIS (Netherlands)

    Fretz, M.M.

    2007-01-01

    Biotechnological advances increased the number of novel macromolecular drugs and new drug targets. The latter are mostly found intracellular. Unfortunately, most of the new macromolecular drugs rely on drug delivery tools for their intracellular delivery because their unfavourable physicochemical pr

  13. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model.

    Science.gov (United States)

    Jenner, Dominic; Ducker, Catherine; Clark, Graeme; Prior, Jo; Rowland, Caroline A

    2016-04-01

    The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC. PMID:26841315

  14. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    Directory of Open Access Journals (Sweden)

    C. J. Daniels

    2015-01-01

    Full Text Available The spring bloom is a key annual event in the phenology of pelagic ecosystems, making a major contribution to the oceanic biological carbon pump through the production and export of organic carbon. However, there is little consensus as to the main drivers of spring bloom formation, exacerbated by a lack of in situ observations of the phytoplankton community composition and its evolution during this critical period. We investigated the dynamics of the phytoplankton community structure at two contrasting sites in the Iceland and Norwegian Basins during the early stage (25 March–25 April of the 2012 North Atlantic spring bloom. The plankton composition and characteristics of the initial stages of the bloom were markedly different between the two basins. The Iceland Basin (ICB appeared well mixed to > 400 m, yet surface chlorophyll a (0.27–2.2 mg m–3 and primary production (0.06–0.66 mmol C m–3 d–1 were elevated in the upper 100 m. Although the Norwegian Basin (NWB had a persistently shallower mixed layer (< 100 m, chlorophyll a (0.58–0.93 mg m–3 and primary production (0.08–0.15 mmol C m–3 d–1 remained lower than in the ICB, with picoplankton (> 2 μm dominating chlorophyll a biomass. The ICB phytoplankton composition appeared primarily driven by the physicochemical environment, with periodic events of increased mixing restricting further increases in biomass. In contrast, the NWB phytoplankton community was potentially limited by physicochemical and/or biological factors such as grazing. Diatoms dominated the ICB, with the genus Chaetoceros (1–166 cells mL–1 being succeeded by Pseudo-nitzschia (0.2–210 cells mL–1. However, large diatoms (> 10 μm were virtually absent (< 0.5 cells mL–1 from the NWB, with only small nanno-sized (< 5 μm diatoms present (101–600 cells mL–1. We suggest micro-zooplankton grazing, potentially coupled with the lack of a seed population of bloom forming diatoms, was restricting diatom

  15. River flow and ammonium discharge determine spring phytoplankton blooms in an urbanized estuary

    Science.gov (United States)

    Dugdale, Richard; Wilkerson, Frances; Parker, Alexander E.; Marchi, Al; Taberski, Karen

    2012-12-01

    Nutrient loadings to urbanized estuaries have increased over the past decades in response to population growth and upgrading to secondary sewage treatment. Evidence from the San Francisco Estuary (SFE) indicates that increased ammonium (NH4) loads have resulted in reduced primary production, a counter-intuitive finding; the NH4 paradox. Phytoplankton uptake of nitrate (NO3), the largest pool of dissolved inorganic nitrogen, is necessary for blooms to occur in SFE. The relatively small pool of ambient NH4, by itself insufficient to support a bloom, prevents access to NO3 and bloom development. This has contributed to the current rarity of spring phytoplankton blooms in the northern SFE (Suisun Bay), in spite of high inorganic nutrient concentrations, improved water transparency and seasonally low biomass of bivalve grazers. The lack of blooms has likely contributed to deleterious bottom-up impacts on estuarine fish. This bloom suppression may also occur in other estuaries that receive large amounts of anthropogenic NH4. In 2010 two rare diatom blooms were observed in spring in Suisun Bay (followed by increased abundances of copepods and pelagic fish), and like the prior bloom observed in 2000, chlorophyll accumulated after NH4 concentrations were decreased. In 2010, low NH4 concentrations were apparently due to a combination of reduced NH4 discharge from a wastewater treatment plant and increased river flow. To understand the interactions of river flow, NH4 discharge and bloom initiation, a conceptual model was constructed with three criteria; 1) NH4 loading must not exceed the capacity of the phytoplankton to assimilate the inflow of NH4, 2) the NH4 concentration must be ≤4 μmol L-1 to enable phytoplankton NO3 uptake, 3) the dilution rate of phytoplankton biomass set by river flow must not exceed the phytoplankton growth rate to avoid "washout". These criteria were determined for Suisun Bay; with sufficient irradiance and present day discharge of 15 tons NH4-N d

  16. The Subpolar North Atlantic Spring Bloom - What Did We Learn from the NAB 2008 Autonomous Experiment?

    Science.gov (United States)

    Perry, M. J.

    2015-12-01

    The subpolar North Atlantic bloom is one of the most remarkable features on the planet, with almost explosive 'greening' of the oceans. Over decades, investigators from countries bordering the North Atlantic have caught snippets of the bloom from research vessels or merchant ships transiting between continents. On 4 April 2008, Eric D'Asaro, Craig Lee, and I began a comprehensive study of the initiation and demise of the spring bloom using 2 types of autonomous platforms - a patch-following Lagrangian mixed-layer float and 4 float-following gliders. The 3 mo autonomous experiment integrated measurements from the float, gliders and ships, observations from satellites, and analyses from models. The diatom-dominated bloom began in mid April when the water column stabilized, not by solar warming, but rather by eddy-driven slumping of horizontal density gradients. The resulting bloom was patchy in both biomass and phytoplankton diversity, despite high, non-limiting concentrations of macronutrients. Magnitudes and relative proportions of net community productivity (NCP; determined from autonomous budgets of O2 and NO3) and net phytoplankton productivity (NPP; computed from ship-based photosynthetic parameters and float-based biomass and light) diverged as the bloom evolved, with higher fractions of particulate organic carbon (POC) consumed within the mixed layer as the bloom aged. Export productivity (EP; derived as the difference between NCP and accumulation rate of POC) was of similar magnitude during the May diatom bloom and the June picophytoplankton bloom. When silicic acid dropped to 1 μM, diatoms aggregated and sank; the deep flux event was dominated by resting spores of Chaetoceros. Although a short-lived event, it was ubiquitously observed by the 4 gliders and ship. An eddy-driven subduction event was likewise observed, indicating transport of otherwise non-sinking POC along isopycnals to depths of > 200 m. These striking export events reinforce the value of a

  17. Curcumin protects against intracellular amyloid toxicity in rat primary neurons

    OpenAIRE

    Ye, Jelina; Zhang, Yan

    2012-01-01

    To investigate whether curcumin is protective against intracellular amyloid β (Aβ) toxicity, different concentrations of curcumin were applied to with intracellular Aβ in rat primary hippocampal neurons in culture. We find that at low dosages, curcumin effectively inhibits intracellular Aβ toxicity. Reactive oxidative species (ROS) is involved in mediating intracellular Aβ toxicity and possibly curcumin protection. Our results indicate that oxidative stress may mediate cell death induced by i...

  18. Proton-dependent zinc release from intracellular ligands

    OpenAIRE

    Kiedrowski, Lech

    2014-01-01

    In cultured cortical and hippocampal neurons when intracellular pH drops from 6.6 to 6.1, yet unclear intracellular stores release micromolar amounts of Zn2+ into the cytosol. Mitochondria, acidic organelles, and/or intracellular ligands could release this Zn2+. Although exposure to the protonophore FCCP precludes re-loading of the mitochondria and acidic organelles with Zn2+, FCCP failed to compromise the ability of the intracellular stores to repeatedly release Zn2+. There...

  19. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation.

    OpenAIRE

    D'Amore, T; C.J. Panchal; Stewart, G G

    1988-01-01

    An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar af...

  20. Intracellular multiplication of Legionella species and the influence of amoebae on their intracellular growth in human monocytes: mono mac 6 cells and Acanthamoeba castellanii as suitable in vitro models.

    Science.gov (United States)

    Neumeister, Birgid

    2004-01-01

    Legionellae are important etiological agents of pneumonia. Legionella pneumophila (predominantly serogroup 1) is detected in most cases of legionellosis; other species only occasionally cause infections, predominantly in immunocompromized patients. Aquiferous technical systems are the primary source of infection (air-conditioning systems, refrigerators, showers, whirlpools, springs, taps, moisturizing equipment, medical nebulizers, and swimming pools). Legionellae are present in the water in these systems, within the amoebae, flagellates, and ciliates in which they replicate. After inhalation of contaminated aerosols, the bacteria multiply intracellularly within alveolar macrophages. The ability to multiply within monocytic host cells is usually considered to correspond to pathogenicity. The mechanisms of intracellular replication have been only partially characterized. Analysis of the molecular pathogenesis of Legionella infection, both in the pathogen itself and in the host cell, is the subject of current research and may lead to new options in prophylaxis and treatment. We have established the human Mono Mac 6 cell line (MM6) instead of the previously used histiocytic lymphoma cell line U 937 or the promyelocytic leukemia cell line HL-60 to investigate the intracellular replication of legionellae and the molecular pathogenesis of Legionella infection within human monocytic host cells. MM6 cells represent a more mature macrophage-like cell line that expresses phenotypic and functional properties of mature monocytes and that does not need to be stimulated by phorbol esters or 1,25-dihydroxyvitamin D3. A good correlation between the prevalence of a given Legionella species and its intracellular multiplication in MM6 cells could be demonstrated.In addition to Legionella, MM6 cells were found to support the intracellular growth of Mycobacterium tuberculosis and Chlamydia pneumoniae, two other important bacterial agents involved in induction of pneumonia. Therefore

  1. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    Science.gov (United States)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  2. DMS gas transfer coefficients from algal blooms in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    T. G. Bell

    2014-11-01

    Full Text Available Air/sea dimethylsulfide (DMS fluxes and bulk air/sea gradients were measured over the Southern Ocean in February/March 2012 during the Surface Ocean Aerosol Production (SOAP study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (>15 nM. Gas transfer coefficients were considerably scattered at wind speeds above 5 m s−1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A~flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data shows no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.

  3. A Recent Survey on Bloom Filters in Network Intrusion Detection Systems

    Directory of Open Access Journals (Sweden)

    K.Saravanan,

    2011-03-01

    Full Text Available Computer networks are prone to hacking, viruses and other malware; a Network Intrusion Detection System (NIDS is needed to protect the end-user machines from threats. An effective NIDS is therefore anetwork security system capable of protecting the end user machines well before a threat or intruder affects. NIDS requires a space efficient data base for detection of threats in high speed conditions. A bloom filter is a space efficient randomized data structure for representing a set in order to support membership queries. These Bloom filters allow false positive results (FPR but the space saving capability often outweigh this drawback provided the probability of FPR is controlled. Research is being done to reduce FPR by modifying the structure of bloom filters and enabling it to operate in the increasing network speeds, thus variant bloom filters are being introduced. The aim of this paper is to survey the ways in which Bloom filters have been used and modified to be used in high speed Network Intrusion Detection Systems with their merits and demerits.

  4. Curcumin protects against intracellular amyloid toxicity in rat primary neurons

    NARCIS (Netherlands)

    Ye, Jelina; Zhang, Yan

    2012-01-01

    To investigate whether curcumin is protective against intracellular amyloid beta (A beta) toxicity, different concentrations of curcumin were applied to with intracellular A beta in rat primary hippocampal neurons in culture. We find that at low dosages, curcumin effectively inhibits intracellular A

  5. Cultivation and biochemical characterization of heterotrophic bacteria associated with phytoplankton bloom in the Amundsen sea polynya, Antarctica

    Science.gov (United States)

    Choi, Seon-Bin; Kim, Jong-Geol; Jung, Man-Young; Kim, So-Jeong; Min, Ui-Gi; Si, Ok-Ja; Park, Soo-Je; Yeon Hwang, Chung; Park, Jisoo; Lee, SangHoon; Rhee, Sung-Keun

    2016-01-01

    Polynyas are a key ecosystem for carbon cycling in the Antarctic Ocean due to the intensive primary production. Most of the knowledge regarding the bacterioplankton community in the Antarctic Ocean that is responsible for re-mineralization of fixed carbon comes from metagenomic analyses. Here, the extinction-dilution method was used to obtain representative heterotrophs from a polynya in the Amundsen Sea, Antarctica, and their biochemical potential for carbon re-mineralization were assessed. All 23 strains have close relatives belonging to type strains within the following genera (number of strains; % 16S rRNA gene sequence similarity): Bizionia (4; >97.8%), Leeuwenhoekiella (1; 96.2%), Pseudoalteromonas (14; >98.5%), Pseudomonas (1; 99.4%) and Sulfitobacter (3; 100%), which were also observed in 454 pyrosequencing-based analysis of 16S rRNA gene sequences of the polynya. Although sequence reads related to Polaribacter were the most common, Polaribacter strains could only be obtained from colonies cultured on agar plates. The strain of Leeuwenhoekiella showed a prominent ability in hydrolyzing diverse esters, amides, and glycosides while the strains of Pseudoalteromonas, Polaribacter, and Bizionia showed extracellular enzyme activities only on a narrow range of amides. The strains of Leeuwenhoekiella, Pseudoalteromonas, and Sulfitobacter utilized various labile carbon sources: carbohydrates, organic acids, amino acids, and peptides. The most frequent isolates, strains of Pseudoaltermonas, showed marked differences in terms of their potential to utilize different types of labile carbon sources, which may reflect high genomic diversity. The strains of Bizionia and Pseudomonas did not utilize carbohydrates. Unique biochemical properties associated with extracellular hydrolase activities and labile carbon utilization were revealed for dominant culturable heterotrophs which gives insights into their roles in active re-mineralization of fixed carbons in polynya.

  6. The genome of the obligate intracellular parasite Trachipleistophora hominis : new insights into microsporidian genome dynamics and reductive evolution

    OpenAIRE

    Williams, T.A.; Nakjang, S.; No\\xebl, C. J; Swan, D C; Goldberg, A. V; Harris, S. R.; Weinmaier, T; Markert, S; Becher, D.; Bernhardt, J.; Dagan, T.; Hacker, C.; Lucocq, J M; Schweder, T.; Rattei, T.

    2012-01-01

    The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellul...

  7. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.;

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  8. Indicator For Pseudomonas Bacteria

    Science.gov (United States)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  9. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila.

    Science.gov (United States)

    Harrison, Christopher F; Chiriano, Gianpaolo; Finsel, Ivo; Manske, Christian; Hoffmann, Christine; Steiner, Bernhard; Kranjc, Agata; Patthey-Vuadens, Ophelie; Kicka, Sébastien; Trofimov, Valentin; Ouertatani-Sakouhi, Hajer; Soldati, Thierry; Scapozza, Leonardo; Hilbi, Hubert

    2015-07-10

    The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s). PMID:27622823

  10. Quenching of fluorescence by crystal violet and its use to differentiate between surface-bound and internalized bacteria

    Science.gov (United States)

    Mathew, S.; Lim, Y. C.; Kishen, A.

    2008-06-01

    Phagocytosis is a complex process involving attachment, ingestion and intracellular processing of bacteria by phagocytes. A great difficulty in the evaluation of this process is to differentiate between attachment of the particles to the cell surface and internalization of the particles by the cells. Various techniques have been used to differentiate internalized and surface-attached bacteria in cultured cells, but only a few permit differentiations between surface-bound and internalized bacteria. In this study the quenching of fluorescence by crystal violet on acridine orange stained bacterial biofilm and planktonic bacterial cells is used to differentiate between surface-bound and internalized bacteria within macrophages. Method: One week old Enterococcus faecalis biofilm was grown on perspex and glass substrates in All-Culture medium (nutrient-rich condition) and phosphate buffered saline (nutrient-deprived condition). As model systems, human monocytic (THP-1) and histiocytic (U937) cell lines were used. These cell lines were incubated with the biofilm bacteria for 4 hrs in CO II incubator at 37 °C. The cells and bacteria were stained with acridine orange and quenched with crystal violet to distinguish between surface-bound and internalized bacteria. Results: The presence of green-fluorescing internalized bacteria was detected within the macrophages under the planktonic, nutrient-rich and nutrient-deprived biofilm conditions. All infecting bacteria take up acridine orange and fluoresced green, crystal violet quenched the fluorescence of extra-cellular adhering bacteria so that only fluorescent intracellular bacteria would be visible under fluorescent light microscopy.

  11. The link between shrimp farm runoff and blooms of toxic Heterosigma akashiwo in Red Sea coastal waters

    Directory of Open Access Journals (Sweden)

    Zakaria A. Mohamed

    2012-04-01

    Full Text Available In May 2010 a copious bloom of the raphidophyte Heterosigma akashiwo was observed for the first time in Red Sea waters off the coasts of Saudi Arabia.This bloom was confined to an area where water and phytoplankton flow freely between the sea and a shrimp farm. The phytoplankton density and physico-chemical characteristics of the sea water were therefore investigated weekly at bloom and non-bloom sites in order to gain insightinto the environmental factors prevailing at the bloom site and their link with the shrimp farm runoff. The bloom site showed higher nutrient concentrations than the non-bloom site, indicating the possible role of the shrimp farm in flushing nutrients into this site. The bloom appeared on 27 May, coinciding with a decrease in salinity (19°C. The results of toxicological assays showed that both bloom samples and batch cultures of H. akashiwo were toxic toArtemia salina and exhibited haemolytic activity with respectto rabbit erythrocytes.Bloom samples showed a higher toxicity (LC50=8.9 ×10^4 cells ml-1 and haemolytic activity (EC50=3.64 × 104cells ml-1 than the batch cultures (LC50=11.6 × 104 cells ml-1, EC50=5.1 imes 104 cells ml-1. In the light ofthe results of this study, the link between H. akashiwoblooms and shrimp farm runoff should be considered during the monitoring of Red Sea coastal waters for the presence of harmful algal blooms.

  12. A review of the use of sonication to control cyanobacterial blooms.

    Science.gov (United States)

    Rajasekhar, Pradeep; Fan, Linhua; Nguyen, Thang; Roddick, Felicity A

    2012-09-15

    The development of cyanobacterial blooms in water bodies imparts undesirable characteristics to the water such as odours, tastes and the potential presence of toxins. Several chemical and physical methods have been used to control the blooms, but have limitations in terms of pollution and application on a large scale. A more recent approach has been the use of sonication in the control of cyanobacteria (also referred to as blue-green algae). This paper reviews current advancements in research on using sonication to control cyanobacteria, particularly Microcystis aeruginosa, as it is a prevalent and a major bloom-forming toxic species. The impact of sonication on the structure and function of M. aeruginosa is discussed, including the influence of sonication parameters such as power intensity, frequency and exposure time. Alternate strategies of cyanobacterial control in combination with sonication are also reviewed. PMID:22727861

  13. Dynamic Cognitive Process Application of Blooms Taxonomy for Complex Software Design in the Cognitive Domain

    CERN Document Server

    Kumar, NR Shashi; Selvarani, R

    2010-01-01

    Software design in Software Engineering is a critical and dynamic cognitive process. Accurate and flawless system design will lead to fast coding and early completion of a software project. Blooms taxonomy classifies cognitive domain into six dynamic levels such as Knowledge at base level to Comprehension, Application, Analysis, Synthesis and Evaluation at the highest level in the order of increasing complexity. A case study indicated in this paper is a gira system, which is a gprs based Intranet Remote Administration which monitors and controls the intranet from a mobile device. This paper investigates from this case study that the System Design stage in Software Engineering uses all the six levels of Blooms Taxonomy. The application of the highest levels of Blooms Taxonomy such as Synthesis and Evaluation in the design of gira indicates that Software Design in Software Development Life Cycle is a complex and critical cognitive process.

  14. Thermo-Mechanical Behavior of the Continuous Casting Bloom in the Heavy Reduction Process

    Science.gov (United States)

    Ji, Cheng; Wu, Chen-hui; Zhu, Miao-yong

    2016-08-01

    A two-stage sequential heavy reduction (HR) method, in which the reduction amount was increased both before and after the solidification end, is presented to simultaneously improve the homogeneity and compactness of the continuous casting bloom. With bearing steel GCr15 chosen as the specific research steel, a three-dimensional thermal-mechanical finite element model was developed to simulate and analyze the thermal and mechanical behaviors of the continuous casting bloom during the HR process. In order to ensure the accuracy of the simulation, the constitutive model parameters were derived from the experimental results. The predicted temperature distribution and shell thickness were verified using a thermal infrared camera and nail shooting results, respectively. The real measured relationship between the HR pressure and amount were applied to verify the mechanical model. The explorative application results showed that the quality of the bloom center and compactness of rolled bars have both been significantly improved after the HR was applied.

  15. Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold

    Institute of Scientific and Technical Information of China (English)

    LIU Xu-dong; YANG Xiao-dong; ZHU Miao-yong; CHEN Yong; YANG Su-bo

    2007-01-01

    Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.

  16. Synchronicity between ice retreat and phytoplankton bloom in circum-Antarctic polynyas

    Science.gov (United States)

    Li, Yun; Ji, Rubao; Jenouvrier, Stephanie; Jin, Meibing; Stroeve, Julienne

    2016-03-01

    Phytoplankton in Antarctic coastal polynyas has a temporally short yet spatially variant growth window constrained by ice cover and day length. Using 18-year satellite measurements (1997-2015) of sea ice and chlorophyll concentrations, we assessed the synchronicity between the spring phytoplankton bloom and light availability, taking into account the ice cover and the incident solar irradiance, for 50 circum-Antarctic coastal polynyas. The synchronicity was strong (i.e., earlier ice-adjusted light onset leads to earlier bloom and vice versa) in most of the western Antarctic polynyas but weak in a majority of the eastern Antarctic polynyas. The west-east asymmetry is related to sea ice production rate: the formation of many eastern Antarctic polynyas is associated with strong katabatic wind and high sea ice production rate, leading to stronger water column mixing that could damp phytoplankton blooms and weaken the synchronicity.

  17. Categorization of ber varieties in relation to blooming period, fruit setting and harvesting time

    International Nuclear Information System (INIS)

    Thirty four local Ber varieties were evaluated at Horticultural Research Institute AARI, Faisalabad, Horticultural Research Station Bahawalpur (Punjab) and Jujube Research Station, Tandojam (Sindh). Traits viz. total period of blooming (dates), peak period of blooming (dates), total period of fruit set (dates), peak period of fruit set (dates), total period of fruit harvest (dates), peak period of fruit harvest (dates), total flowering days, peak flowering days, total fruit setting days, peak fruit setting days, total harvesting days and peak harvesting days were studied. The results revealed significant differences in parameters studied except total period of blooming under Tandojam, Sindh conditions. Varieties were classified as early, mid and late season for both provinces. Local varieties had potential for further manipulation in terms of variety improvement to attract growers for extensive ber cultivations under changing global climatic scenario. (author)

  18. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    Science.gov (United States)

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  19. Intracellular α-Amylase of Streptococcus mutans

    OpenAIRE

    Simpson, Christine L.; Russell, Roy R. B.

    1998-01-01

    Sequencing upstream of the Streptococcus mutans gene for a CcpA gene homolog, regM, revealed an open reading frame, named amy, with homology to genes encoding α-amylases. The deduced amino acid sequence showed a strong similarity (60% amino acid identity) to the intracellular α-amylase of Streptococcus bovis and, in common with this enzyme, lacked a signal sequence. Amylase activity was found only in S. mutans cell extracts, with no activity detected in culture supernatants. Inactivation of a...

  20. Multiscale bloom dynamics from a high frequency autonomous measurement system in the Eastern English Channel

    Science.gov (United States)

    Derot, Jonathan; Schmitt, François; Gentilhomme, Valérie

    2014-05-01

    We consider here a dataset from an Eulerian automated system, located on the coastal area of the French side of the English Channel (Boulogne-sur-Mer), called MAREL Carnot, operated by IFREMER (France). This system records more than 15 physico-chemical parameters at 20 minutes intervals, and at the constant depth of -1,5m whatever the tidal range. Our study focuses on the period 2004 to 2011. The objective of this study is to have a better understanding of the bloom fluorescence multiscale dynamics, as regards the coastal area of English Channel and possible influence of temperature on this dynamics. Annual blooms are visible, superposed to multiscale fluctuations. The probability density function (PDF) of the fluorescence time series very nicely obeys a power law with slope -2. The PDF for annual portions obeys also power laws, with slopes which are related to the annual average. Empirical mode decomposition (EMD) is used to study the dynamics and display the power spectrum, which will be linked with these dynamics. EMD method is also used to extract a trend and isolate the blooms from the high frequency dynamics. We show that the high frequency part of the fluorescence dynamics has a very large variance during bloom events, compared to normal conditions. We also show that there is a link between the mean winter temperature and the strength of bloom next spring. These results contribute to statistically characterize the bloom dynamics and extract some possible universal relations. Keywords: English Channel; Autonomous monitoring; Power spectra; EMD method; Probability density functions; Power laws.

  1. The effects of the antioxidant lipoic acid on beef longissimus bloom time.

    Science.gov (United States)

    Rentfrow, G; Linville, M L; Stahl, C A; Olson, K C; Berg, E P

    2004-10-01

    The objective of this study was to evaluate the influence of lipoic acid (LA) on beef LM steak bloom time, as well-as to characterize bloom time in the CIE L*, a*, and b* color space over a 93-min period. Thirty-two Simmental steers were supplemented with LA for 21 d immediately before slaughter at levels of 0, 8, 16, or 24 mg of LA/kg BW (eight steers per treatment). Lipoic acid was mixed with liquid paraffin, allowed to solidify, prilled, and top-dressed over a standard finishing diet. Steers were slaughtered at the University of Missouri abattoir in four groups of eight (two steers per treatment) over a 2-wk period. After a 24-h chill at 4 degrees C, the right LM was removed from each carcass. One 2.54cm steak was removed from the anterior portion of the LM, and its color characteristics (CIE L*, a*, and b*) were measured immediately with a standardized spectrocolorimeter. Color measurements were taken every 3 min thereafter for a total of 93-min. Hue angle (true red) and chroma (color saturation) were calculated from the color measurements. Addition of LA to the diet had no effect on bloom time (P = 0.67). When treatment means were analyzed, the addition of 24 mg of LA/kg BW to the diet resulted in higher (lighter) L* values (P 0.05) during the 93-min bloom time; however, a* and chroma values increased for 9 min and plateaued after 12 min (P < 0.01). Similarly, b* values increased (P < 0.01) for the first 6 min, and after 9 min, no further increase in yellowness was detected. Bloom time had little effect on hue angle, which stabilized after 3 min. Supplementing steers with the antioxidant LA for 21 d had no effect on the bloom time of beef LM; however, higher levels of supplemental LA affected L* values and hue angles of beef. PMID:15484956

  2. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation. PMID:27459775

  3. Observations of phytoplankton spring bloom onset triggered by a density front in NW Mediterranean

    Directory of Open Access Journals (Sweden)

    A. Olita

    2013-09-01

    Full Text Available Phytoplankton bloom in NW Mediterranan sea is a seasonal event that mainly occurrs in a limited area (Gulf of Lyon and Provençal basin where this phenomenon is promoted by a cyclonic circulation, strong wind-driven mixing and subsequent spring restratification. At the southern boundary of this area a density front (North Balearic Front separating denser waters from the lighter Modified Atlantic Waters reservoir at south is suspected to trigger weaker and earlier (late winter blooms by (a enhanced pumping of nutrients into the euphotic layer and (b promoting an early restratification of the water column (by frontal instabilities. A multisensor glider round trip, equipped with CTD and fluorimeter, crossing the frontal area in February–March 2013, allowed to observe the bloom triggering after the decrease of intense wind-driven turbulent convection and mixing. Satellite imagery supports and confirms in-situ observations. It was shown that frontal activity has a relevant role in the promotion and acceleration of the dynamical restratification, with a consequent biological response in terms of primary production. Restratification is necessary preconditioning factor for bloom triggering in frontal area, net of other involved mechanism promoting the bloom as the enhanced biological pump. So, like for high-latitude fronts (Taylor and Ferrari, 2011a, also for this mid-latitude oligotrophic region front seems to promote new production by dynamically enahnced restratification inhibiting mixing. Finally, we argued that Sverdrup's Critical Depth criterion seems to apply in the northern well-mixed area, where the zeroing of heat fluxes (and related turbulent convection does not correspond to a prompt onset of the bloom (which appeared 1 month later.

  4. Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages

    Directory of Open Access Journals (Sweden)

    Muhammad Azam

    2013-11-01

    Full Text Available Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.

  5. Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement

    Science.gov (United States)

    Cook, Perran L. M.; Jennings, Miles; Holland, Daryl P.; Beardall, John; Briles, Christy; Zawadzki, Atun; Doan, Phuong; Mills, Keely; Gell, Peter

    2016-06-01

    Blooms of noxious N2 fixing cyanobacteria such as Nodularia spumigena are a recurring problem in some estuaries; however, the historic occurrence of such blooms in unclear in many cases. Here we report the results of a palaeoecological study on a temperate Australian lagoon system (the Gippsland Lakes) where we used stable isotopes and pigment biomarkers in dated cores as proxies for eutrophication and blooms of cyanobacteria. Pigment proxies show a clear signal, with an increase in cyanobacterial pigments (echinenone, canthaxanthin and zeaxanthin) in the period coinciding with recent blooms. Another excursion in these proxies was observed prior to the opening of an artificial entrance to the lakes in 1889, which markedly increased the salinity of the Gippsland Lakes. A coincident increase in the sediment organic-carbon content in the period prior to the opening of the artificial entrance suggests that the bottom waters of the lakes were more stratified and hypoxic, which would have led to an increase in the recycling of phosphorus. After the opening of the artificial entrance, there was a ˜ 60-year period with low values for the cyanobacterial proxies as well as a low sediment organic-carbon content suggesting a period of low bloom activity associated with the increased salinity of the lakes. During the 1940s, the current period of re-eutrophication commenced, as indicated by a steadily increasing sediment organic-carbon content and cyanobacterial pigments. We suggest that increasing nitrogen inputs from the catchment led to the return of hypoxia and increased phosphorus release from the sediment, which drove the re-emergence of cyanobacterial blooms.

  6. Spatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis--Aphanizomenon interactions.

    Directory of Open Access Journals (Sweden)

    Todd R Miller

    Full Text Available Spatial and temporal variability in cyanobacterial community composition (CCC within and between eutrophic lakes is not well-described using culture independent molecular methods. We analyzed CCC across twelve locations in four eutrophic lakes and within-lake locations in the Yahara Watershed, WI, on a weekly basis, for 5 months. Taxa were discriminated by length of MspI-digested cpcB/A intergenic spacer gene sequences and identified by comparison to a PCR-based clone library. CCC across all stations was spatially segregated by depth of sampling locations (ANOSIM R = 0.23, p < 0.001. Accordingly, CCC was correlated with thermal stratification, nitrate and soluble reactive phosphorus (SRP, R = 0.2-0.3. Spatial variability in CCC and temporal trends in taxa abundances were rarely correlative between sampling locations in the same lake indicating significant within lake spatiotemporal heterogeneity. Across all stations, a total of 37 bloom events were observed based on distinct increases in phycocyanin. Out of 97 taxa, a single Microcystis, and two different Aphanizomenon taxa were the dominant cyanobacteria detected during bloom events. The Microcystis and Aphanizomenon taxa rarely bloomed together and were significantly anti-correlated with each other at 9 of 12 stations with Pearson R values of -0.6 to -0.9 (p < 0.001. Of all environmental variables measured, nutrients, especially nitrate were significantly greater during periods of Aphanizomenon dominance while the nitrate+nitrite:SRP ratio was lower. This study shows significant spatial variability in CCC within and between lakes structured by depth of the sampling location. Furthermore, our study reveals specific genotypes involved in bloom formation. More in-depth characterization of these genotypes should lead to a better understanding of factors promoting bloom events in these lakes and more reliable bloom prediction models.

  7. Rapid formation of large aggregates during the spring bloom of Kerguelen Island: observations and model comparisons

    Science.gov (United States)

    Jouandet, M.-P.; Jackson, G. A.; Carlotti, F.; Picheral, M.; Stemmann, L.; Blain, S.

    2014-08-01

    While production of aggregates and their subsequent sinking is known to be one pathway for the downward movement of organic matter from the euphotic zone, the rapid transition from non-aggregated to aggregated particles has not been reported previously. We made one vertical profile of particle size distributions (PSD; sizes ranging from 0.052 to several millimeters in equivalent spherical diameter) at pre-bloom stage and seven vertical profiles 3 weeks later over a 48 h period at early bloom stage using the Underwater Vision Profiler during the Kerguelen Ocean and Plateau Compared Study cruise 2 (KEOPS2, October-November 2011). In these naturally iron-fertilized waters southeast of Kerguelen Island (Southern Ocean), the total particle numerical abundance increased by more than fourfold within this time period. A massive total volume increase associated with particle size distribution changes was observed over the 48 h survey, showing the rapid formation of large particles and their accumulation at the base of the mixed layer. The results of a one-dimensional particle dynamics model support coagulation as the mechanism responsible for the rapid aggregate formation and the development of the VT subsurface maxima. The comparison of VT profiles between early bloom stage and pre-bloom stage indicates an increase of particulate export below 200 m when bloom has developed. These results highlight the role of coagulation in forming large particles and triggering carbon export at the early stage of a naturally iron-fertilized bloom, while zooplankton grazing may dominate later in the season. The rapid changes observed illustrate the critical need to measure carbon export flux with high sampling temporal resolution. Our results are the first published in situ observations of the rapid accumulation of marine aggregates and their export and the general agreement of this rapid event with a model of phytoplankton growth and coagulation.

  8. Maintenance of coastal surface blooms by surface temperature stratification and wind drift.

    Directory of Open Access Journals (Sweden)

    Mary Carmen Ruiz-de la Torre

    Full Text Available Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS, the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.

  9. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  10. Approaches to monitoring, control and management of harmful algal blooms (HABs)

    OpenAIRE

    Anderson, Donald M.

    2009-01-01

    Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosys...

  11. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    OpenAIRE

    Noonan James P; Yankiwski Victor; Neff Norma F

    2001-01-01

    Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of ...

  12. Exploration of the link between Emiliania huxleyi bloom dynamics and aerosol fluxes to the lower Atmosphere

    Science.gov (United States)

    Trainic, M.

    2013-12-01

    Phytoplankton blooms are responsible for about 50% of the global photosynthesis, thus are a key component of the major nutrient cycles in the ocean. These blooms can be a significant source for flux of volatiles and aerosols, affecting physical chemical processes in the atmosphere. One of the most widely distributed and abundant phytoplankton species in the oceans is the coccolithophore Emiliania huxleyi. In this research, we explore the influence of the different stages of E. huxleyi bloom on the emission of primary aerosols. For this purpose, we conducted a series of controlled lab experiments to measure aerosol emissions during the growth of E. huxleyi. The cultures were grown in a specially designed growth chamber, and the aerosols were generated in a bubbling system. We collected the emitted aerosol particles on filters, and conducted a series of analysis. Scanning electron microscopy (SEM) analysis of the aerosols emitted from E.huxleyi 1216 cultures demonstrate emission of CaCO3 platelets from their exoskeleton into the air, while coccolithophores cells were absent. The results suggest that while healthy coccolithophore cells are too heavy to aerosolize, during cell lysis the coccoliths shed from the coccolithophore cells are emitted into the atmosphere. Therefore, aerosol production during bloom demise may be greater than from healthy E.huxleyi populations. We also investigated the size distribution of the aerosols at various stages of E. huxleyi growth. The presence of calcified cells greatly effects the size distribution of the emitted aerosol population. This work motivated us to explore aerosols emitted during E. huxleyi spring bloom, in a laboratory we constructed onboard the R/V Knorr research vessel, as part of the North Atlantic Virus Infection of Coccolithophore Expedition (June-July 2012). These results have far-reaching implications on the effect of E. huxleyi bloom dynamics on aerosol properties. We not only show that the E. huxleyi calcite

  13. Blooming biology and sugar efficiency of two cultivars of Lonicera kamtschatica (Sevast.) Pojark.

    OpenAIRE

    Małgorzata Bożek; Justyna Wieniarska

    2012-01-01

    The studies on the period and abundance of blooming, flower development, as well as nectar productivity of two cultivars of Lonicera kamtschatica (Sevast.) Pojark. were carried out in 2004-2005 in Lublin. The investigated plants bloomed between the third decade of April and the middle of May. The life span of protogynous flowers was about 4-5 days. The mean amount of sugars secreted by 10 flowers of the examined cultivars ranged from 17.77 mg to 28.31 mg. The sugars yield amounted to from 44....

  14. Physiological features of toleranceof the main species of blooming lawns in the urban environment

    Directory of Open Access Journals (Sweden)

    G. A. Zaiyko

    2011-01-01

    Full Text Available The activity of enzymes of the antioxidative complex and glutathione-ascorbic acid system of the main species of decoratively-flowering plants used for blooming lawns in the urban environment are determined. The activity of catalase, peroxydase and polyphenoloxydase, and the content of glutathione and ascorbic acid in 13 plant species were analyzed. One of the basic criteria of plants tolerance is the level of prooxydative and antioxydative metabolic processes. The plant species resistant to adverse conditions are recommended for use in the blooming lawns design in industrial cities.

  15. Modelling the production and cycling of dimethylsulphide during the vernal bloom in the Barents Sea

    OpenAIRE

    Albert J. GABRIC; Matrai, Patricia A; Vernet, María

    2011-01-01

    Recent field work suggests an important ro^le for the Arctic Ocean in the global budget of dimethylsulphide (DMS), a climatically active volatile sulphur compound. Here, we have used an existing DMS production model and local field data to examine the temporal dynamics of the DMS cycle during the spring bloom in the Arctic shelf of the Barents Sea. The timing and duration of the spring phytoplankton bloom has been shown to be a key determinant of the flux of DMS to the atmosphere. Particular ...

  16. Detection of microcystins in Pamvotis lake water and assessment of cyanobacterial bloom toxicity.

    Science.gov (United States)

    Papadimitriou, Theodoti; Armeni, Euthimia; Stalikas, Constantine D; Kagalou, Ifigeneia; Leonardos, Ioannis D

    2012-05-01

    Lake Pamvotis is a shallow, eutrophic Mediterranean lake with ecological significance. This paper deals with the evaluation of cyanobacterial toxicity in Lake Pamvotis. ELISA and HPLC revealed the presence of significant amounts of MCYST-LR. Danio rerio bioassay confirmed the toxic nature of the bloom. Cyanobacterial extracts had adverse toxic effects on development of D. rerio. Also, it was shown that cyanobacterial extracts containing environmentally detected concentrations of MCYST can cause reduced survival rate of fish species. The results clearly indicate that cyanobacterial blooms in Lake Pamvotis may be regarded as human and fish health hazard. Continuous monitoring of the lake is suggested, in order to prevent future possible intoxications. PMID:21713485

  17. Reduction of blooming artifacts in cardiac CT images by blind deconvolution and anisotropic diffusion filtering

    Science.gov (United States)

    Castillo-Amor, Angélica M.; Navarro-Navia, Cristian A.; Cadena-Bonfanti, Alberto J.; Contreras-Ortiz, Sonia H.

    2015-12-01

    Even though CT is an imaging technique that offers high quality images, limitations on its spatial resolution cause blurring in small objects with high contrast. This phenomenon is known as blooming artifact and affects cardiac images with small calcifications and stents. This paper describes an approach to reduce the blooming artifact and improve resolution in cardiac images using blind deconvolution and anisotropic diffusion filtering. Deconvolution increases resolution but reduces signal-to-noise ratio, and the anisotropic diffusion filter counteracts this effect without affecting the edges in the image.

  18. Random Access for Machine-Type Communication based on Bloom Filtering

    DEFF Research Database (Denmark)

    Pratas, Nuno; Stefanovic, Cedomir; Madueño, Germán Corrales;

    2016-01-01

    We present a random access method inspired on Bloom filters that is suited for Machine-Type Communications (MTC). Each accessing device sends a signature during the contention process. A signature is constructed using the Bloom filtering method and contains information on the device identity...... utilizes the system resources more efficiently and achieves similar or lower latency of connection establishment in case of synchronous arrivals, compared to the variant of the LTE-A access protocol that is optimized for MTC traffic. A dividend of the proposed method is that allows the base station (BS...

  19. Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Tiselius, P.; Mitchell-Innes, B.;

    1998-01-01

    The surfaces of most pelagic diatoms are sticky at times and may therefore form rapidly settling aggregates by physical coagulation. Stickiness and aggregate formation may be particularly adaptive in upwelling systems by allowing the retention of diatom populations in the vicinity of the upwelling...... center. We therefore hypothesized that upwelling diatom blooms are terminated by aggregate formation and rapid sedimentation. We monitored the development of a maturing diatom (mainly Chaetoceros spp.) bloom in the Benguela upwelling current during 7 d in February. Chlorophyll concentrations remained...

  20. Benthic‐pelagic coupling drives non‐seasonal zooplankton blooms and restructures energy flows in shallow tropical lakes

    Science.gov (United States)

    Schagerl, Michael; Yasindi, Andrew; Singer, Gabriel; Kaggwa, Mary Nakabungo; Winder, Monika

    2016-01-01

    Abstract Zooplankton blooms are a frequent phenomenon in tropical systems. However, drivers of bloom formation and the contribution of emerging resting eggs are largely unexplored. We investigated the dynamics and the triggers of rotifer blooms in African soda‐lakes and assessed their impact on other trophic levels. A meta‐analysis of rotifer peak densities including abundances of up to 6 × 105 individuals L−1 demonstrated that rotifer bloom formation was uncoupled from the food environment and the seasonality of climatic conditions. A time series with weekly sampling intervals from Lake Nakuru (Kenya) revealed that intrinsic growth factors (food quality and the physicochemical environment) significantly affected rotifer population fluctuations, but were of minor importance for bloom formation. Instead, rotifer bloom formation was linked to sediment resuspension, a prerequisite for hatching of resting‐eggs. Population growth rates exceed pelagic birth rates and simulations of rotifer dynamics confirmed the quantitative importance of rotifer emergence from the sediment egg‐bank and signifying a decoupling of bloom formation from pelagic reproduction. Rotifer blooms led to a top‐down control of small‐sized algae and facilitated a switch to more grazing‐resistant, filamentous cyanobacteria. This shift in phytoplankton composition cascaded up the food chain and triggered the return of filter‐feeding flamingos. Calculations of consequent changes in the lake's energy budget and export of aquatic primary production to terrestrial ecosystems demonstrated the large potential impact of nonseasonal disturbances on the functioning of shallow tropical lakes.

  1. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities

    Science.gov (United States)

    Rosen, Barry H.; Ann St. Amand

    2015-01-01

    Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.

  2. Factors controlling the timing of the spring bloom in the Strait of Georgia estuary, British Columbia, Canada

    DEFF Research Database (Denmark)

    Yin, K.D.; Harrison, P.J.; Goldblatt, R.H.;

    1997-01-01

    El Nino year, the annual freshet of the Fraser River and probably the spring bloom started 1 month earlier. The bloom was interrupted by a wind event in late March. A few days later, its full recovery was interrupted by the peak in zooplankton grazing, and ambient ammonium concentrations increased...

  3. Promoting Cognitive Complexity in Graduate Written Work: Using Bloom's Taxonomy as a Pedagogical Tool To Improve Literature Reviews.

    Science.gov (United States)

    Granello, Darcy Haag

    2001-01-01

    Applies Bloom's "Taxonomy of Educational Objectives, Handbook I: Cognitive Domain" to the process of graduate-level writing in counselor education. Bloom's Taxonomy is provided as a mechanism to help students develop and demonstrate cognitive complexity when writing comprehensive literature reviews. Outlines tips to move students' writing to more…

  4. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  5. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  6. Stochastic models of intracellular calcium signals

    International Nuclear Information System (INIS)

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed

  7. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  8. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  9. Magnetotactic Bacteria from Extreme Environments

    Science.gov (United States)

    Bazylinski, Dennis A.; Lefère, Christopher T.

    2013-03-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  10. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  11. Magnetotactic bacteria. Promising biosorbents for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong [Sichuan Agricultural Univ., Chengdu (China). Provincial Key Lab. of Agricultural Environmental Engineering

    2012-09-15

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. (orig.)

  12. Magnetotactic bacteria: nanodrivers of the future.

    Science.gov (United States)

    Mathuriya, Abhilasha Singh

    2016-10-01

    Magnetotactic bacteria (MTB) represent a heterogeneous group of Gram-negative aquatic prokaryotes with a broad range of morphological types, including vibrioid, coccoid, rod and spirillum. MTBs possess the virtuosity to passively align and actively swim along the magnetic field. Magnetosomes are the trademark nano-ranged intracellular structures of MTB, which comprise magnetic iron-bearing inorganic crystals enveloped by an organic membrane, and are dedicated organelles for their magnetotactic lifestyle. Magnetosomes endue high and even dispersion in aqueous solutions compared with artificial magnetites, claiming them as paragon nanomaterials. MTB and magnetosomes offer high technological potential in modern science, technology and medicines. This review focuses on the applicability of MTB and magnetosomes in various areas of modern benefits. PMID:26287367

  13. Effects of cultivation conditions on folate production by lactic acid bacteria

    NARCIS (Netherlands)

    Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.N.; Hugenholtz, J.

    2003-01-01

    A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not

  14. Cyanobacteria and algae blooms: Review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007-2011.

    Science.gov (United States)

    Backer, Lorraine C; Manassaram-Baptiste, Deana; LePrell, Rebecca; Bolton, Birgit

    2015-04-01

    Algae and cyanobacteria are present in all aquatic environments. We do not have a good sense of the extent of human and animal exposures to cyanobacteria or their toxins, nor do we understand the public health impacts from acute exposures associated with recreational activities or chronic exposures associated with drinking water. We describe the Harmful Algal Bloom-related Illness Surveillance System (HABISS) and summarize the collected reports describing bloom events and associated adverse human and animal health events. For the period of 2007-2011, Departments of Health and/or Environment from 11 states funded by the National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention contributed reports for 4534 events. For 2007, states contributed 173 reports from historical data. The states participating in the HABISS program built response capacity through targeted public outreach and prevention activities, including supporting routine cyanobacteria monitoring for public recreation waters. During 2007-2010, states used monitoring data to support196 public health advisories or beach closures. The information recorded in HABISS and the application of these data to develop a wide range of public health prevention and response activities indicate that cyanobacteria and algae blooms are an environmental public health issue that needs continuing attention.

  15. What are the effects of macroalgal blooms on the structure and functioning of marine ecosystems? A systematic review protocol

    Directory of Open Access Journals (Sweden)

    Lyons Devin A

    2012-06-01

    Full Text Available Abstract Background Anthropogenic activities are believed to have caused an increase in the magnitude, frequency, and extent of macroalgal blooms in marine and estuarine environments. These blooms may contribute to declines in seagrasses and non-blooming macroalgal beds, increasing hypoxia, and reductions in the diversity of benthic invertebrates. However, they may also provide other marine organisms with food and habitat, increase secondary production, and reduce eutrophication. The objective of this systematic review will be to quantify the positive and negative impacts of anthropogenically induced macroalgal blooms in order to determine their effects on ecosystem structure and functioning, and to identify factors that cause their effects to vary. Methods We will search a number of online databases to gather empirical evidence from the literature on the impacts of macroalgal blooms on: (1 species richness and other univariate measures of biodiversity; (2 productivity and abundance of algae, plants, and animals; and (3 biogeochemical cycling and other flows of energy and materials, including trophic interactions and cross-ecosystem subsidies. Data from relevant studies will be extracted and used in a random effects meta-analysis in order to estimate the average effect of macroalgal blooms on each response of interest. Where possible, sub-group analyses will be conducted in order to evaluate how the effects of macroalgal blooms vary according to: (1 which part of the ecosystem is being studied (e.g. which habitat type, taxonomic group, or trophic level; (2 the size of blooms; (3 the region in which blooms occurred; (4 background levels of ecosystem productivity; (5 physical and chemical conditions; (6 aspects of study design and quality (e.g. lab vs. field, experimental vs. observational, degree of replication; and (7 whether the blooms are believed to be anthropogenically induced or not.

  16. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  17. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality.

    Science.gov (United States)

    Thomas, Vincent; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2010-05-01

    An increasing number of microorganisms, including bacteria but also viruses and eukaryotes, have been described as benefiting from interaction with free-living amoebae (FLA). Beneficial interaction can be due to resistance to predation conferring ecological advantage, intracellular survival and/or intracellular proliferation. This review highlights the potential risk associated with amoebae by listing all known pathogenic microbial species for which growth and/or survival promotion by FLA (mainly Acanthamoeba spp.) has been demonstrated. It focuses on the susceptibility of amoebal and intra-amoebal bacteria to various categories of biocides, the known mechanisms of action of these biocides against trophozoites and cysts and the various methods used to demonstrate efficacy of treatments against FLA. Brief descriptions of FLA ecology and prevalence in domestic/institutional water systems and their intrinsic pathogenicity are also presented. The intention is to provide an informed opinion on the environmental risks associated with the presence of FLA and on the survival of cysts following biocidal treatments, while also highlighting the need to conduct research on the roles of amoebae in aquatic ecosystems.

  18. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Christopher C. Thompson

    2011-02-01

    Full Text Available Iron is an essential cofactor in a number of critical biochemical reactions, and as such, its acquisition, storage, and metabolism is highly regulated in most organisms. The obligate intracellular bacterium, Chlamydia trachomatis experiences a developmental arrest when iron within the host is depleted. The nature of the iron starvation response in Chlamydia is relatively uncharacterized because of the likely inefficient method of iron depletion, which currently relies on the compound deferoxamine mesylate (DFO. Inefficient induction of the iron starvation response precludes the identification of iron-regulated genes. This report evaluated DFO with another iron chelator, 2,2’-bipyridyl (Bpdl and presented a systematic comparison of the two across a range of criteria in a single-treatment time-of-infection regimen. We demonstrate that the membrane permeable Bpdl was superior to DFO in the inhibition of chlamydia development, the induction of aberrant morphology, and the induction of an iron starvation transcriptional response in both host and bacteria. Furthermore, iron starvation using Bpdl identified the periplasmic iron binding protein-encoding ytgA gene as iron- responsive. Overall, the data present a compelling argument for the use of Bpdl, rather than DFO, in future iron starvation studies of chlamydia and other intracellular bacteria.

  19. Disrupting protein expression with Peptide Nucleic Acids reduces infection by obligate intracellular Rickettsia.

    Science.gov (United States)

    Pelc, Rebecca S; McClure, Jennifer C; Kaur, Simran J; Sears, Khandra T; Rahman, M Sayeedur; Ceraul, Shane M

    2015-01-01

    Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria's ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria.

  20. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp.

    Science.gov (United States)

    Ruiz-Herrera, José; León-Ramírez, Claudia; Vera-Nuñez, Antonio; Sánchez-Arreguín, Alejandro; Ruiz-Medrano, Roberto; Salgado-Lugo, Holjes; Sánchez-Segura, Lino; Peña-Cabriales, Juan José

    2015-08-01

    We observed that the maize pathogenic fungus Ustilago maydis grew in nitrogen (N)-free media at a rate similar to that observed in media containing ammonium nitrate, suggesting that it was able to fix atmospheric N2 . Because only prokaryotic organisms have the capacity to reduce N2 , we entertained the possibility that U. maydis was associated with an intracellular bacterium. The presence of nitrogenase in the fungus was analyzed by acetylene reduction, and capacity to fix N2 by use of (15) N2 . Presence of an intracellular N2 -fixing bacterium was analyzed by PCR amplification of bacterial 16S rRNA and nifH genes, and by microscopic observations. Nitrogenase activity and (15) N incorporation into the cells proved that U. maydis fixed N2 . Light and electron microscopy, and fluorescence in situ hybridization (FISH) experiments revealed the presence of intracellular bacteria related to Bacillus pumilus, as evidenced by sequencing of the PCR-amplified fragments. These observations reveal for the first time the existence of an endosymbiotic N2 -fixing association involving a fungus and a bacterium.

  1. Patterns of plankton communities in subtropical waters off the Canary Islands during the late winter bloom

    Science.gov (United States)

    Schmoker, Claire; Ojeda, Alicia; Hernández-León, Santiago

    2014-01-01

    The microbial planktonic community of the subtropical waters around Gran Canaria Island, Canary Islands, was studied before, during and after the typical late winter bloom. The study consisted of a weekly sampling from October 2005 to June 2006 at five stations. Abundances and biomass of heterotrophic prokaryotes, small autotrophic plankton (picoplankton 0.2-2 μm in ESD), heterotrophic and autotrophic nanoflagellates (nanoplankton mainly in the range of 3-4 μm in ESD), microzooplankton (mainly ciliates and dinoflagellates 15-200 μm in ESD) and mesozooplankton (> 200 μm in ESD) were estimated in order to know the effect of the winter mixing. During all the period of study, microplankton abundance was dominated by small athecate dinoflagellates (15-20 μm in ESD) whereas its biomass was dominated by aloricate ciliates (20-30 μm and > 40 μm in ESD). The bloom began with the increase of autotrophic picoplanktonic cells and small diatoms. Consecutively, nano-, micro-, and mesozooplankton biomass also increased. During the development of the winter bloom, picoplankton, heterotrophic nanoflagellates, microzooplankton, mainly aloricate ciliates, and mesozooplankton showed inverse trends suggesting that the bloom is a succession of complex top-down controls.

  2. BLOOMS OF EPHEMERAL GREEN ALGAE IN SAN ANDRES ISLAND, INTERNATIONAL BIOSPHERE RESERVE SEAFLOWER, SOUTHWESTERN CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Brigitte Gavio

    2014-12-01

    Full Text Available We report the presence of persistent blooms of Chaetomorpha linum in San Andres island, Southwestern Caribbean, during the year 2013.RESUMENReportamos la presencia de florecimientos persistentes del alga verde Chaetomorpha linum en la isla de San Andrès, Caribe suroccidental.

  3. Satellite Remote Sensing and Crowd Sourcing to Monitor and Predict Cyanobacteria Blooms

    Science.gov (United States)

    Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...

  4. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    Science.gov (United States)

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  5. Effect of Multiple Intelligence Theory Practice on Student Success by Bloom's Taxonomy

    Science.gov (United States)

    Uzunoz, Abdulkadir

    2011-01-01

    In this study, it is aimed to determine the effects of the "Multiple Intelligence Theory" on the retention and achievement of the students according to Bloom Taxonomy. This study is a research as an experimental model. Research in academic year of 2008/2009 in Foca Izmir Lesbos Reha Country High School 9 Class is conducted on students. In this…

  6. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome

    DEFF Research Database (Denmark)

    Suhasini, Avvaru N; Rawtani, Nina A; Wu, Yuliang;

    2011-01-01

    Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact...

  7. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    Digital Repository Service at National Institute of Oceanography (India)

    Tholkapiyan, M.; Shanmugam, P.; Suresh, T.

    .1029/2010JC006796. Shanmugam, P., Suresh, M., & Sundarabalan, V.B. (2013). OSABT An innovative algorithm to detect and characterize surface algal blooms. IEEE Transaction on Selected Topics in Earth Observations and Remote Sensing, 6, 1879-1892. Shankar, D...

  8. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms

    NARCIS (Netherlands)

    P.M. Visser; J.M.H. Verspagen; G. Sandrini; L.J. Stal; H.C.P. Matthijs; T.W. Davis; H.W. Paerl; J. Huisman

    2016-01-01

    Climate change is likely to stimulate the development of harmful cyanobacterial blooms in eutrophic waters, with negative consequences for water quality of many lakes, reservoirs and brackish ecosystems across the globe. In addition to effects of temperature and eutrophication, recent research has s

  9. Algal blooms in the seas around India - Networking for research and outreach

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.; Matondkar, S.G.P.

    - goers and seaside residents in South Africa?s largest False Bay, faced discomfort of coughing, burning of n a- sal pass ages, difficulty in breathing, stinging eyes and skin irritation due to release of toxins in the sea - spray aerosols by the blooms...

  10. "Byatt versus Bloom: or, Reading by Patricide versus Reading by Love"

    DEFF Research Database (Denmark)

    Børch, Marianne

    2016-01-01

    Antonia Byatt's Possession takes issue with Harold Bloom's famous claim that creation - including an author's creative reading of an intertext - entails a violent encounter. Byatt's book suggests a more positive Construction of the process by which tradition is transformed in transmission....

  11. Using Bloom's Taxonomy to Evaluate the Cognitive Levels of Master Class Textbook's Questions

    Science.gov (United States)

    Assaly, Ibtihal R.; Smadi, Oqlah M.

    2015-01-01

    This study aimed at evaluating the cognitive levels of the questions following the reading texts of Master Class textbook. A checklist based on Bloom's Taxonomy was the instrument used to categorize the cognitive levels of these questions. The researchers used proper statistics to rank the cognitive levels of the comprehension questions. The…

  12. An Evaluation of E-Learning on the Basis of Bloom's Taxonomy: An Exploratory Study

    Science.gov (United States)

    Halawi, Leila A.; McCarthy, Richard V.; Pires, Sandra

    2009-01-01

    Universities have rushed to expand their delivery of courses through e-learning environments. But is e-learning effective? The authors conducted an exploratory study to evaluate e-learning through WebCT on the basis of Bloom's taxonomy. The authors distributed 75 questionnaires to investigate whether individual or instructional factors play an…

  13. Bloom de Noctiluca scintillans y Ceratium dens en el Golfo de Guayaquil (2004)

    OpenAIRE

    Torres, G.; Palacios, C.

    2007-01-01

    El objetivo de este estudio fue difundir las investigaciones del bloom de C. dens y N. scintillans ocurridos en el Golfo de Guayaquil como parte del Proyecto de Mareas Rojas desarrollado por el Instituto Oceanográfico de la Armada (INOCAR).

  14. Impact of elevated pH on succession in the Arctic spring bloom

    DEFF Research Database (Denmark)

    Riisgaard, Karen; Nielsen, Torkel Gissel; Hansen, Per Juel

    2015-01-01

    at the initiation of the spring bloom each year and manipulated to cover pH levels in the range of 8.0-9.5 to test the immediate tolerance of Arctic protist plankton to elevated pH under nutrient-limiting (2011) and nutrient-rich conditions (2012). The most pronounced effect of elevated pH was found......The development of pH during the spring bloom in 2011 and 2012 was investigated in Disko Bay, West Greenland. During the spring phytoplankton bloom pH reached 8.5 at the peak of the bloom. Subsequently, the pH decreased to 7.5. Microcosm experiments were conducted on natural assemblages sampled...... for heterotrophic protists, whereas phytoplankton proved more robust. Two out of three heterotrophic protist species were significantly affected if pH increased above 8.5, and all heterotrophic protists had disappeared at pH 9.5. Based on Chl a measurements from the two sets of experiments, phytoplankton community...

  15. Phytoplankton Dynamics During the Spring Bloom in the South-eastern English Channel

    Science.gov (United States)

    Brunet, C.; Brylinski, J. M.; Bodineau, L.; Thoumelin, G.; Bentley, D.; Hilde, D.

    1996-10-01

    The two main phases of a phytoplankton spring bloom in the South-eastern English Channel were studied during two 3-day cruises in March and May 1992. Physico-chemical parameters were measured, such as temperature, salinity, density, turbidity and nutrients, as well as biological parameters ( in situchlorophyll afluorescence, photosynthetic pigments and fatty acids). Photo-synthetic pigments and fatty acids were used as taxonomic and physiological markers of phytoplankton populations. Data suggest the existence of two ' biological provinces ' north and south of the Bay of Somme. In the Northern province, the bloom starts earlier, probably due to the shallower coastal water, and is characterized by high proportions of diatoms and, successively, of Prymnesiophytes ( Phaeocystissp.). The bloom maintains high biomass levels sustained by inputs from the Somme River and probable nutrient regeneration. The Southern province, directly influenced by the Seine River, is characterized by a deeper coastal water column and the presence of phytoflagellates. Despite the higher supply of nutrients from the Seine River, the bloom starts later and supports a lower phytoplankton biomass. The differences between both areas are analysed on the basis of the hydrodynamism of the area, and are interpreted as two different stages of the same process. To understand the spatio-temporal variations of phytoplankton dynamics, interactions between biology and hydrodynamical characteristics of this area are discussed.

  16. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. PMID:26590285

  17. Phaeocystis blooms in the global ocean and their controlling mechanisms : a review

    NARCIS (Netherlands)

    Schoemann, [No Value; Becquevort, S; Stefels, J; Rousseau, W; Lancelot, C

    2005-01-01

    Phaeocystis is a genus of marine phytoplankton with a world-wide distribution. It has a polymorphic life cycle alternating free-living cells and colonies but develops massive blooms under the colony form in nutrient (major)-enriched areas (mostly nitrates) of the global ocean. Among the 6 species, o

  18. Long term characterization of Trichodesmium erythraeum blooms in Gabès Gulf (Tunisia)

    Science.gov (United States)

    Sabeur, Hamza Ismail; Wafa, Feki-Sahnoun; Asma, Hamza; Malika, Bel Hassen

    2016-08-01

    The present paper reports on a twenty six year monitoring of the diazotrophic cyanobacteria, Trichodesmium erythraeum in the Gulf of Gabès associated with environmental parameters and meteorological variables. Trichodesmium erythraeum blooms were not recurrent all years and were observed on average 2.11 times per year over the period between 1988 and 2013. Blooms were associated with temperature exceeding 24 °C and wind speed generally less than 5 m s-1. Trichodesmium erythraeum reached very high densities fluctuating between 0.12×106 and 720×106 trichomes dm-3. The wind speed during dust events and the number of dust days per year were highly correlated to Trichodesmium abundances. Two wind regimes during dust events were identified. The South -South East direction crossing the Tunisian desert generated the most intensive blooms. High dissolved inorganic nitrogen concentrations (2-14.6 μM) and orthophosphate concentrations (0.05-2.79 μM) were observed during bloom events leading to high N/P ratio well above the Redfield ratio and fluctuating linearly as function of Trichodesmium abundance. The anomalous N/P ratio could result from Trichodesmium erythraeum biological N2 fixation and/or the contribution of atmospheric deposition.

  19. Bloom-Gilman Duality of Nucleon Spin Structure Function and Elastic Peak Contribution

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-Bing

    2005-01-01

    By employing the parametrization form of the nucleon spin structure function in the resonance region,which includes the contributions of the resonance peaks and of nonresonance background, we study Bloom-Gilman quark-hadron duality of g1 both in the inelastic resonance region and elastic one.

  20. Risk in Daily Newspaper Coverage of Red Tide Blooms in Southwest Florida

    Science.gov (United States)

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter

    2015-01-01

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an…