WorldWideScience

Sample records for blood-ocular barrier change

  1. Experimental model for research on the blood-ocular barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Jin; Jea, Seung Youn; Park, Jae Sung; Jung, Yeon Joo [Pusan National University, Pusan (Korea, Republic of); Kim, Yong Woo [Inje University, Kimhae (Korea, Republic of); Park, Byung Rae [Catholic University, Seoul (Korea, Republic of)

    2006-03-15

    The eyeball has 2 blood-ocular barriers, i.e, the blood-retinal and blood-aqueous barriers. The purpose of this study was to evaluate if triolein emulsion could disrupt the barriers, and we wanted to suggest as an experimental model for future blood-ocular barrier studies. The triolein emulsion was made of 0.1 ml triolein and 20 ml normal saline, and this was infused into the carotid artery of ten cats (the experimental group). As a control group, only normal saline was infused in another ten cats. Precontrast and postcontrast T1-weighted MR images were obtained at 30 minutes and 3 hours after embolization in both groups. The signal intensities were evaluate qualitatively and quantitatively in the anterior and posterior chambers and also in the vitreus fluid. Statistical analysis was performed by employing the Kruskal Wallist test, Dunn's Multiple Comparison test and the wilcoxon signed rank test. In the control group, no contrast enhancement was demonstrated in the anterior or posterior chamber or in the vitreus fluid of the ipsilateral or contralateral eyeball on the 30 minutes MR images. The anterior chambers of the ipsilateral and contralateral eyeballs revealed delayed contrast enhancement on the 3 hour MR images. In the experimental group, the 30 minute-postembolization MR images were not different from those of the control group. The 30 minute-postembolization MR images demonstrated delayed contrast enhancement in the anterior chamber of the ipsilateral and contralateral eyeballs and in the posterior chamber of the ipsilateral eyeball. The delayed contrast enhancement of the posterior chamber of the ipsilateral eyeball was statistically significant ({rho} < 0.05). The present study demonstrated significant contrast enhancement in the posterior chamber with infusion of the triolein emulsion, and this can serve as a model for blood-aqueous barrier studies.

  2. Experimental model for research on the blood-ocular barrier

    International Nuclear Information System (INIS)

    Kim, Hak Jin; Jea, Seung Youn; Park, Jae Sung; Jung, Yeon Joo; Kim, Yong Woo; Park, Byung Rae

    2006-01-01

    The eyeball has 2 blood-ocular barriers, i.e, the blood-retinal and blood-aqueous barriers. The purpose of this study was to evaluate if triolein emulsion could disrupt the barriers, and we wanted to suggest as an experimental model for future blood-ocular barrier studies. The triolein emulsion was made of 0.1 ml triolein and 20 ml normal saline, and this was infused into the carotid artery of ten cats (the experimental group). As a control group, only normal saline was infused in another ten cats. Precontrast and postcontrast T1-weighted MR images were obtained at 30 minutes and 3 hours after embolization in both groups. The signal intensities were evaluate qualitatively and quantitatively in the anterior and posterior chambers and also in the vitreus fluid. Statistical analysis was performed by employing the Kruskal Wallist test, Dunn's Multiple Comparison test and the wilcoxon signed rank test. In the control group, no contrast enhancement was demonstrated in the anterior or posterior chamber or in the vitreus fluid of the ipsilateral or contralateral eyeball on the 30 minutes MR images. The anterior chambers of the ipsilateral and contralateral eyeballs revealed delayed contrast enhancement on the 3 hour MR images. In the experimental group, the 30 minute-postembolization MR images were not different from those of the control group. The 30 minute-postembolization MR images demonstrated delayed contrast enhancement in the anterior chamber of the ipsilateral and contralateral eyeballs and in the posterior chamber of the ipsilateral eyeball. The delayed contrast enhancement of the posterior chamber of the ipsilateral eyeball was statistically significant (ρ < 0.05). The present study demonstrated significant contrast enhancement in the posterior chamber with infusion of the triolein emulsion, and this can serve as a model for blood-aqueous barrier studies

  3. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  4. Demonstration of the blood-ocular barrier integrity by contrast-enhanced MR imaging: A preliminary study

    International Nuclear Information System (INIS)

    Frank, J.A.; Dwyer, A.J.; Girton, M.; Sank, V.; Knop, R.H.; Gansow, O.A.; Brechbiel, M.W.; Doppman, J.L.

    1986-01-01

    In five Rhesus monkeys we assessed the potential for monitoring the blood-ocular barrier (BOB) with Gd-DTPA-enhanced MR imaging. Unilateral opening of the BOB was achieved by infusion of mannitol into the internal carotid artery. This was followed immediately by Gd-DTPA, 0.2 mmol/kg, given intravenously. T-l weighted MR images (Picken unit, 0.5 T, SE 500/40, 5-mm thickness, 15cm FOV) obtained before and within one-half hour after injection of Gd-DTPA demonstrated marked enhancement (2-to 17-fold) of the anterior and posterior chambers of the challenged eye, representing leakage of Gd-DTPA into those chambers. Animals remained free of ocular side effects

  5. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    International Nuclear Information System (INIS)

    Ikemura, Tsukasa; Kashima, Hideaki; Yamaguchi, Yuji; Miyaji, Akane; Hayashi, Naoyuki

    2015-01-01

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  6. The Steroid Effect on the Blood-Ocular Barrier Change Induced by Triolein Emulsion as seen on Contrast-Enhanced MR Images

    International Nuclear Information System (INIS)

    Lee, Jong Yuk; Eun, Choong Ki; Kim, Yong Woo; Kim, Hak Jin; Jung, Yeon Joo; Jae, Seung Youn; Cho, Byung Mann; Choi, Seon Hee

    2008-01-01

    The purpose of this study is to evaluate the effect of dexamethasone on the damaged blood-ocular barrier caused by triolein emulsion, using contrast-enhanced MR imaging. An emulsion of 0.1-mL triolein in 20 mL of saline was infused into the carotid arteries of 32 cats, 12 cats were placed in the treatment group and 18 cats were placed in the Control group. Thirty minutes after the infusion of triolein emulsion, a set of orbital pre- and post-contrast T1-weighted MR images (T1WIs) were obtained. Infusion of 10 mg/kg dexamethasone into the ipsilateral carotid artery of each of the cats in the treatment group cats and 20 mL saline in each of the cats in the control group was given. A second set of pre- and post-contrast orbital T1WIs were obtained three hours following triolein emulsion infusion. Qualitative analysis was performed for the the anterior chamber (AC), the posterior chamber (PC), and in the vitreous humor of the ipsilateral and contralateral eyes. The signal intensity ratios of the ipsilateral eye over the contralateral eye were quantitatively evaluated in the three ocular chambers on the first and second set of T1WIs, and were then statistically compared. Qualitatively, the AC, the PC or the vitreous did not show immediate contrast enhancement on the first and the second set of post-contrast T1WIs. However, the AC and the PC showed delayed contrast enhancement for both groups of cats on the second pre-contrast T1WIs. No enhancement or minimally delayed enhancement was seen for the vitreous humor. Quantitatively, the signal intensity ratios in the PC of the treatment group of cats were statistically lower than the ratios of the control group of cats for the second set of T1WIs (p = 0.037). The AC and vitreous showed no statistically significant difference between the feline treatment group and control group (p > 0.05). Contrast-enhanced MR images revealed increased vascular permeability in the PC of the eye after infusion of triolein emulsion

  7. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Science.gov (United States)

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  8. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Directory of Open Access Journals (Sweden)

    Aditi Bauskar

    Full Text Available Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  9. Ocular blood flow decreases during passive heat stress in resting humans

    OpenAIRE

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-01-01

    Background Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Findings Ocular blood flow, end-tidal carbon dioxide (P ETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the s...

  10. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change

    Science.gov (United States)

    Evans, D.; Harris, A.; Garrett, M.; Chung, H. S.; Kagemann, L.

    1999-01-01

    BACKGROUND/AIMS—Autoregulation of blood flow during posture change is important to ensure consistent organ circulation. The purpose of this study was to compare the change in retrobulbar ocular blood flow in glaucoma patients with normal subjects during supine and upright posture.
METHODS—20 open angle glaucoma patients and 20 normal subjects, similar in age and sex distribution, were evaluated. Blood pressure, intraocular pressure, and retrobulbar blood velocity were tested after 30 minutes of sitting and again after 30 minutes of lying. Retrobulbar haemodynamic measures of peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) were obtained in the ophthalmic and central retinal arteries using colour Doppler imaging (CDI).
RESULTS—When changing from the upright to supine posture, normal subjects demonstrated a significant increase in OA EDV (p = 0.016) and significant decrease in OA RI (p = 0.0006) and CRA RI (p = 0.016). Glaucoma patients demonstrated similar changes in OA measures of EDV (p = 0.02) and RI (p = 0.04), but no change in CRA measures.
CONCLUSION—Glaucoma patients exhibit faulty autoregulation of central retinal artery blood flow during posture change.

 PMID:10381668

  11. Undefined role of mucus as a barrier in ocular drug delivery.

    Science.gov (United States)

    Ruponen, Marika; Urtti, Arto

    2015-10-01

    Mucus layer covers the ocular surface, and soluble mucins are also present in the tear fluid. After topical ocular drug administration, the drugs and formulations may interact with mucus layer that may act as a barrier in ocular drug delivery. In this mini-review, we illustrate the mucin composition of the ocular surface and discuss the influence of mucus layer on ocular drug absorption. Based on the current knowledge the role of mucus barrier in drug delivery is still undefined. Furthermore, interactions with mucus may prolong the retention of drug formulations on the ocular surface. Mucus may decrease or increase ocular bioavailability depending on the magnitude of its role as barrier or retention site, respectively. Mechanistic studies are needed to clarify the role of mucin in ocular drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modern Diagnostic Techniques for the Assessment of Ocular Blood Flow in Myopia: Current State of Knowledge.

    Science.gov (United States)

    Grudzińska, Ewa; Modrzejewska, Monika

    2018-01-01

    Myopia is the most common refractive error and the subject of interest of various studies assessing ocular blood flow. Increasing refractive error and axial elongation of the eye result in the stretching and thinning of the scleral, choroid, and retinal tissues and the decrease in retinal vessel diameter, disturbing ocular blood flow. Local and systemic factors known to change ocular blood flow include glaucoma, medications and fluctuations in intraocular pressure, and metabolic parameters. Techniques and tools assessing ocular blood flow include, among others, laser Doppler flowmetry (LDF), retinal function imager (RFI), laser speckle contrast imaging (LSCI), magnetic resonance imaging (MRI), optical coherence tomography angiography (OCTA), pulsatile ocular blood flowmeter (POBF), fundus pulsation amplitude (FPA), colour Doppler imaging (CDI), and Doppler optical coherence tomography (DOCT). Many researchers consistently reported lower blood flow parameters in myopic eyes regardless of the used diagnostic method. It is unclear whether this is a primary change that causes secondary thinning of ocular tissues or quite the opposite; that is, the mechanical stretching of the eye wall reduces its thickness and causes a secondary lower demand of tissues for oxygen. This paper presents a review of studies assessing ocular blood flow in myopes.

  13. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease.

    Science.gov (United States)

    Roach, Tracoyia; Alcendor, Donald J

    2017-03-03

    Ocular abnormalities present in microcephalic infants with presumed Zika virus (ZIKV) congenital disease includes focal pigment mottling of the retina, chorioretinal atrophy, optic nerve abnormalities, and lens dislocation. Target cells in the ocular compartment for ZIKV infectivity are unknown. The cellular response of ocular cells to ZIKV infection has not been described. Mechanisms for viral dissemination in the ocular compartment of ZIKV-infected infants and adults have not been reported. Here, we identify target cells for ZIKV infectivity in both the inner and outer blood-retinal barriers (IBRB and OBRB), describe the cytokine expression profile in the IBRB after ZIKV exposure, and propose a mechanism for viral dissemination in the retina. We expose primary cellular components of the IBRB including human retinal microvascular endothelial cells, retinal pericytes, and Müller cells as well as retinal pigmented epithelial cells of the OBRB to the PRVABC56 strain of ZIKV. Viral infectivity was analyzed by microscopy, immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR and qRT-PCR). Angiogenic and proinflammatory cytokines were measured by Luminex assays. We find by immunofluorescent staining using the Flavivirus 4G2 monoclonal antibody that retinal endothelial cells and pericytes of the IBRB and retinal pigmented epithelial cells of the OBRB are fully permissive for ZIKV infection but not Müller cells when compared to mock-infected controls. We confirmed ZIKV infectivity in retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells by RT-PCR and qRT-PCR using ZIKV-specific oligonucleotide primers. Expression profiles by Luminex assays in retinal endothelial cells infected with ZIKV revealed a marginal increase in levels of beta-2 microglobulin (β2-m), granulocyte macrophage colony-stimulating factor (GMCSF), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP

  14. Evaluating ocular blood flow

    Directory of Open Access Journals (Sweden)

    Jyotsna Maram

    2017-01-01

    Full Text Available Studies have shown that vascular impairment plays an important role in the etiology and pathogenesis of various ocular diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal venous occlusive disease. Thus, qualitative and quantitative assessment of ocular blood flow (BF is a topic of interest for early disease detection, diagnosis, and management. Owing to the rapid improvement in technology, there are several invasive and noninvasive techniques available for evaluating ocular BF, with each of these techniques having their own limitations and advantages. This article reviews these important techniques, with a particular focus on Doppler Fourier domain optical coherence tomography (OCT and OCT-angiography.

  15. Ocular blood flow decreases during passive heat stress in resting humans.

    Science.gov (United States)

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-12-06

    Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Ocular blood flow, end-tidal carbon dioxide (P(ET)CO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35 °C (normothermia) for 30 min and (2) at 50 °C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects' blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively. The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.

  16. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    Science.gov (United States)

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  17. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    Li Yuge; Gao Qinyi; Wang Shuang; Zhao Yong

    2008-01-01

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99 Tc m -ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99 Tc m -ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  18. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  19. Ocular Blood Flow Measurements in Healthy White Subjects Using Laser Speckle Flowgraphy.

    Directory of Open Access Journals (Sweden)

    Nikolaus Luft

    Full Text Available To assess the feasibility and reliability of Laser Speckle Flowgraphy (LSFG to measure ocular perfusion in a sample of healthy white subjects and to elucidate the age-dependence of the parameters obtained.This cross-sectional study included 80 eyes of 80 healthy, non-smoking white subjects of Western European descent between 19 and 79 years of age. A commercial LSFG instrument was applied to measure ocular blood flow at the optic nerve head (ONH three successive times before and after pharmacological pupil dilation. The mean blur rate (MBR, a measure of relative blood flow velocity, was obtained for different regions of the ONH. Eight parameters of ocular perfusion derived from the pulse-waveform analysis of MBR including blowout time (BOT and falling rate (FR were also recorded.Artifact-free LSFG images meeting the quality criteria for automated image analysis were obtainable in 93.8% without pupil dilation and in 98.8% with pharmacological pupil dilation. Measurements of MBR showed excellent repeatability with intraclass correlation coefficients ≥ 0.937 and were barely affected by pupil dilation. The majority of pulse-waveform derived variables exhibited equally high repeatability. MBR-related blood flow indices exhibited significant age dependence (p<0.001. FR (r = 0.747, p<0.001 and BOT (r = -0.714, p<0.001 most strongly correlated with age.LSFG represents a reliable method for the quantitative assessment of ocular blood flow in white subjects. Our data affirms that the LSFG-derived variables FR and BOT may be useful biomarkers for age-related changes in ocular perfusion.

  20. Fibronectin changes in eosinophilic meningitis with blood-CSF barrier disruption.

    Science.gov (United States)

    Shyu, Ling-Yuh; Hu, Ming-E; Chou, Chun-Hui; Chen, Ke-Min; Chiu, Ping-Sung; Lai, Shih-Chan

    2015-01-01

    Fibronectin, which is present at relatively low levels in healthy central nervous systems (CNS), shows increased levels in meningitis. In this study, fibronectin processing was correlated with the increased permeability of the blood-cerebrospinal fluid (CSF) barrier as well as with the formation of eosinophil infiltrates in angiostrongyliasis meningitis. The immunohistochemistry results show matrix metalloproteinase-9 (MMP-9) is localized in the choroid plexus epithelium. Coimmunoprecipitation demonstrated fibronectin strongly binds MMP-9. Furthermore, treatment with the MMP-9 inhibitor GM6001 significantly inhibited fibronectin processing, reduced the blood-CSF barrier permeability, and decreased the eosinophil counts. The decreased fibronectin processing in CSF implies decreased cellular invasion of the subarachnoid space across the blood-CSF barrier. Therefore, increased fibronectin processing may be associated with barrier disruption and participate in the extravasation and migration of eosinophils into the CNS during experimental parasitic infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?

    Directory of Open Access Journals (Sweden)

    Danny Moore

    2008-04-01

    Full Text Available Danny Moore, Alon Harris, Darrell WuDunn, Nisha Kheradiya, Brent Siesky1Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Primary open angle glaucoma (OAG is a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and associated visual field loss. OAG is an emerging disease with increasing costs and negative outcomes, yet its fundamental pathophysiology remains largely undetermined. A major treatable risk factor for glaucoma is elevated intraocular pressure (IOP. Despite the medical lowering of IOP, however, some glaucoma patients continue to experience disease progression and subsequent irreversible vision loss. The scientific community continues to accrue evidence suggesting that alterations in ocular blood flow play a prominent role in OAG disease processes. This article develops the thesis that dysfunctional regulation of ocular blood flow may contribute to glaucomatous optic neuropathy. Evidence suggests that impaired vascular autoregulation renders the optic nerve head susceptible to decreases in ocular perfusion pressure, increases in IOP, and/or increased local metabolic demands. Ischemic damage, which likely contributes to further impairment in autoregulation, results in changes to the optic nerve head consistent with glaucoma. Included in this review are discussions of conditions thought to contribute to vascular regulatory dysfunction in OAG, including atherosclerosis, vasospasm, and endothelial dysfunction.Keywords: glaucoma, autoregulation, blood flow, atherosclerosis, vasospasm, endothelial dysfunction

  2. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  3. The Blood-Brain Barrier: An Engineering Perspective

    Directory of Open Access Journals (Sweden)

    Andrew eWong

    2013-08-01

    Full Text Available It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich’s first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and it remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore advances in our understanding of the structure and function of the blood-brain barrier are key to advances in treatment of a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.

  4. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  5. Ocular Fundus Photography as a Tool to Study Stroke and Dementia.

    Science.gov (United States)

    Cheung, Carol Y; Chen, Christopher; Wong, Tien Y

    2015-10-01

    Although cerebral small vessel disease has been linked to stroke and dementia, due to limitations of current neuroimaging technology, direct in vivo visualization of changes in the cerebral small vessels (e.g., cerebral arteriolar narrowing, tortuous microvessels, blood-brain barrier damage, capillary microaneurysms) is difficult to achieve. As the retina and the brain share similar embryological origin, anatomical features, and physiologic properties with the cerebral small vessels, the retinal vessels offer a unique and easily accessible "window" to study the correlates and consequences of cerebral small vessel diseases in vivo. The retinal microvasculature can be visualized, quantified and monitored noninvasively using ocular fundus photography. Recent clinic- and population-based studies have demonstrated a close link between retinal vascular changes seen on fundus photography and stroke and dementia, suggesting that ocular fundus photography may provide insights to the contribution of microvascular disease to stroke and dementia. In this review, we summarize current knowledge on retinal vascular changes, such as retinopathy and changes in retinal vascular measures with stroke and dementia as well as subclinical makers of cerebral small vessel disease, and discuss the possible clinical implications of these findings in neurology. Studying pathologic changes of retinal blood vessels may be useful for understanding the etiology of various cerebrovascular conditions; hence, ocular fundus photography can be potentially translated into clinical practice. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Markers for blood-brain barrier integrity

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain......, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well...... known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction...

  7. Dissociation of changes in the permeability of the blood-brain barrier from catecholamine-induced changes in blood pressure of normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Taylor, B.

    1982-01-01

    Researchers have studied the effects of the pressor catecholamine, dopamine, and the depressor catecholamine, isoproterenol, on the systemic blood pressure and the permeability of the blood-brain barrier (BBB) to albumin in normotensive (WKY) and spontaneously hypertensive (SHR) rats. The rats were anesthetized with pentobarbital. The permeability of the BBB to protein was measured by the extravasation of radioiodinated serum albumin (RISA). The permeability was decreased by both catecholamines despite the dose-dependent, yet opposite, changes in blood pressure in the WKY rats. The blood pressure response to both of the catecholamines was enhanced in the SHR rats. Isoproterenol caused a decrease in the permeability of the BBB in the SHR but dopamine did not. Results with both WKY and SHR rats are suggestive of an adrenergically-mediated decrease in movement across the BBB of compounds of large molecular weight, regardless of changes in blood pressure

  8. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  9. Relationship between the Direction of Ophthalmic Artery Blood Flow and Ocular Microcirculation before and after Carotid Artery Stenting.

    Science.gov (United States)

    Ishii, Masashi; Hayashi, Morito; Yagi, Fumihiko; Sato, Kenichiro; Tomita, Goji; Iwabuchi, Satoshi

    2016-01-01

    When internal carotid artery stenosis is accompanied by ocular ischemic syndrome, intervention is recommended to prevent irreversible visual loss. In this study, we used laser speckle flowgraphy to measure the ocular microcirculation in the optic nerve head before and after carotid artery stenting (CAS) of 40 advanced internal carotid stenosis lesions from 37 patients. The aim was to investigate the relationship between ocular microcirculation and the direction of ophthalmic artery blood flow obtained by angiography. We found that there was a significant increase in blood flow after CAS ( P = 0.003). Peak systolic velocity as an indicator of the rate of stenosis was also significantly higher in the group with retrograde/undetected flow of the ophthalmic artery than in the group with antegrade flow ( P = 0.002). In all cases where retrograde flow of the ophthalmic artery was observed before stenting, the flow changed to antegrade after stenting. Through the use of laser speckle flowgraphy, this study found that CAS can improve ocular microcirculation. Furthermore, while patients displaying retrograde flow of the ophthalmic artery before stenting have a poor prognosis, CAS corrected the flow to antegrade, suggesting that visual loss can be prevented by improving the ocular microcirculation.

  10. Multiple transfused thalassemia major: Ocular manifestations in a hospital-based population

    Directory of Open Access Journals (Sweden)

    Taneja Rashi

    2010-01-01

    Full Text Available Purpose: To study the ocular manifestations in multiple transfused beta-thalassemia major patients and assess the ocular side-effects of iron chelating agents. Materials and Methods: In this prospective observational study, 45 multiple transfused beta-thalassemia major children between six months and 21 years of age were enrolled and assigned groups according to the treatment regimens suggested. Group A received only blood transfusions, Group B blood transfusions with subcutaneous desferrioxamine, Group C blood transfusions with desferrioxamine and oral deferriprone and Group D blood transfusions with deferriprone. Ocular status at the time of enrolment was documented. Subjects were observed quarterly for one year for changes in ocular status arising due to the disease process and due to iron chelation therapy. Children with hemoglobinopathies other than beta-thalassemia major, congenital ocular anomalies and anemia due to other causes were excluded. Results: Ocular involvement was observed in 58% of patients. Lenticular opacities were the most common ocular finding (44%, followed by decreased visual acuity (33%. An increased occurrence of ocular changes was observed with increase of serum ferritin and serum iron levels as well as with higher number of blood transfusions received. Desferrioxamine seemed to have a protective influence on retinal pigment epithelium (RPE mottling. Occurrence of lenticular opacities and RPE degeneration correlated positively with use of desferrioxamine and deferriprone respectively. Follow-up of patients for one year did not reveal any change in ocular status. Conclusion: Regular ocular examinations can aid in preventing, delaying or ameliorating the ocular complications of thalassemia.

  11. Changes in the blood-nerve barrier after sciatic nerve cold injury: indications supporting early treatment

    Directory of Open Access Journals (Sweden)

    Hao Li

    2015-01-01

    Full Text Available Severe edema in the endoneurium can occur after non-freezing cold injury to the peripheral nerve, which suggests damage to the blood-nerve barrier. To determine the effects of cold injury on the blood-nerve barrier, the sciatic nerve on one side of Wistar rats was treated with low temperatures (3-5°C for 2 hours. The contralateral sciatic nerve was used as a control. We assessed changes in the nerves using Evans blue as a fluid tracer and morphological methods. Excess fluid was found in the endoneurium 1 day after cold injury, though the tight junctions between cells remained closed. From 3 to 5 days after the cold injury, the fluid was still present, but the tight junctions were open. Less tracer leakage was found from 3 to 5 days after the cold injury compared with 1 day after injury. The cold injury resulted in a breakdown of the blood-nerve barrier function, which caused endoneurial edema. However, during the early period, the breakdown of the blood-nerve barrier did not include the opening of tight junctions, but was due to other factors. Excessive fluid volume produced a large increase in the endoneurial fluid pressure, prevented liquid penetration into the endoneurium from the microvasculature. These results suggest that drug treatment to patients with cold injuries should be administered during the early period after injury because it may be more difficult for the drug to reach the injury site through the microcirculation after the tissue fluid pressure becomes elevated.

  12. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  13. Atomistic modeling of the structural components of the blood-brain barrier

    Science.gov (United States)

    Glukhova, O. E.; Grishina, O. A.; Slepchenkov, M. M.

    2015-03-01

    Blood-brain barrier, which is a barrage system between the brain and blood vessels, plays a key role in the "isolation" of the brain of unnecessary information, and reduce the "noise" in the interneuron communication. It is known that the barrier function of the BBB strictly depends on the initial state of the organism and changes significantly with age and, especially in developing the "vascular accidents". Disclosure mechanisms of regulation of the barrier function will develop new ways to deliver neurotrophic drugs to the brain in the newborn. The aim of this work is the construction of atomistic models of structural components of the blood-brain barrier to reveal the mechanisms of regulation of the barrier function.

  14. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia

    DEFF Research Database (Denmark)

    Andrade, Chittaranjan; Bolwig, Tom G

    2014-01-01

    Preclinical and clinical evidence show that electroconvulsive therapy (ECT)-induced intraictal surge in blood pressure may result in a small, transient breach in the blood-brain barrier, leading to mild cerebral edema and a possible leach of noxious substances from blood into brain tissues...... convincing evidence of benefits. It is concluded that there is insufficient support, at present, for the hypothesis that the hypertensive surge during ECT and the resultant blood-brain barrier breach contribute meaningfully to ECT-induced cognitive deficits. Future research should address the subset....... These changes may impair neuronal functioning and contribute to the mechanisms underlying ECT-induced cognitive deficits. Some but not all clinical data on the subject suggest that blood pressure changes during ECT correlate with indices of cognitive impairment. In animal models, pharmacological manipulations...

  15. [The blood-brain barrier and drug delivery in the central nervous system].

    Science.gov (United States)

    Loch-Neckel, Gecioni; Koepp, Janice

    2010-08-01

    To provide an updated view of the difficulties due to barriers and strategies used to allow the release of drugs in the central nervous system. The difficulty for the treatment of many diseases of the central nervous system, through the use of intra-venous drugs, is due to the presence of barriers that prevent the release of the same: the blood-brain barrier, blood-cerebro-spinal fluid barrier and the blood-arachnoid barrier. The blood-brain barrier is the main barrier for the transport of drugs in the brain that also acts as a immunologic and metabolic barrier. The endothelial cells of the blood-brain barrier are connected to a junction complex through the interaction of transmembrane proteins that protrude from de inside to the outside, forming a connection between the endothelial cells. The transport of substances to the brain depends on the mechanisms of transport present in the barrier and the diffusion of these compounds also depends on the physicochemical characteristics of the molecule. Some diseases alter the permeability of the blood-brain barrier and thus the passage of drugs. Strategies such as the use of methods for drug delivery in the brain have been investigated. Further details regarding the mechanisms of transport across the blood-brain barrier and the changes in neuropathology would provide important information about the etiology of diseases and lead to better therapeutic strategies.

  16. [Blood-brain barrier part III: therapeutic approaches to cross the blood-brain barrier and target the brain].

    Science.gov (United States)

    Weiss, N; Miller, F; Cazaubon, S; Couraud, P-O

    2010-03-01

    Over the last few years, the blood-brain barrier has come to be considered as the main limitation for the treatment of neurological diseases caused by inflammatory, tumor or neurodegenerative disorders. In the blood-brain barrier, the close intercellular contact between cerebral endothelial cells due to tight junctions prevents the passive diffusion of hydrophilic components from the bloodstream into the brain. Several specific transport systems (via transporters expressed on cerebral endothelial cells) are implicated in the delivery of nutriments, ions and vitamins to the brain; other transporters expressed on cerebral endothelial cells extrude endogenous substances or xenobiotics, which have crossed the cerebral endothelium, out of the brain and into the bloodstream. Recently, several strategies have been proposed to target the brain, (i) by by-passing the blood-brain barrier by central drug administration, (ii) by increasing permeability of the blood-brain barrier, (iii) by modulating the expression and/or the activity of efflux transporters, (iv) by using the physiological receptor-dependent blood-brain barrier transport, and (v) by creating new viral or chemical vectors to cross the blood-brain barrier. This review focuses on the illustration of these different approaches. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  17. Radiation effects of electromagnetic pulses on mouse blood-testis barrier

    International Nuclear Information System (INIS)

    Hou Wugang; Zhao Jie; Zhang Yuanqiang

    2005-01-01

    Radiation effects caused by 100 kV/m and 400 kV/m electromagnetic pulse (EMP) irradiations on mouse blood-testis barrier were studied by means of routine HE staining, Lanthanum traced electron microscope and injection of caudal vein with Evans Blue. The EMP irradiation of different dose rates damaged Sertoli's cell and blood-testis barrier of mouse testis in different levels. Severe injuries were observed with the 400 kV/m irradiation group, with apoptosis and necrosis in a large quantity of the spermatogenic cells, shape and structural changes of the Sertoli's cells, and serious injuries to the blood-testis barrier, one day after the irradiation. The basal compartment separated from the adluminal compartment in most of the VIII stage seminiferous epithelium, and a great number of apoptosis and necrosis spermatogenic cells were released into the cavities. Injuries of blood-testis barrier could be observed 21 days after the 400 kV/m irradiation. The injuries of 100 kV/m irradiation groups were less severe than the 400 kV/m groups, in which the damages to the Sertoli's cells, the seminiferous epithelium and blood-testis barrier recovered to some extent 14 days after the irradiation. The authors conclude that EMP irradiation can damage mouse blood-tests barrier. The injuries, and the time for recovery, are related to EMP power intensity. (authors)

  18. Lead poisoning and the blood-brain barrier

    International Nuclear Information System (INIS)

    Hertz, M.H.; Bolwig, T.G.; Grandjean, P.; Westergaard, E.

    1981-01-01

    Lead exposure may produce varying degrees of neuropsychiatric manifestations from discrete phenomena, quite often seen in children and as an occupational disease, to the rare fulminant lead encephalopathy. It was determined whether or not damage of the blood-brain barrier permeability in adult rats, as has been demonstr rated in neonatal animals exposed to lead, could also play a role. Massive lead exposure did not induce any change in the transfer (facilitated diffusion) of phenylalanine and tyrosine measured by means of the indicator dilution technique. Ultrastructural examination, after application of horseradish peroxidase, did not reveal any pahtological changes in the permeability to the tracer. It is concluded that in adult rats, in contrast to neonatal anmials, the observed pathological signs clearly seen in the chronically exposed animals must be ascribed to a noxious influence of lead on the extravascular side of the blood-brain barrier. (author)

  19. Effect of tropicamide on ocular blood flow in the rabbit

    International Nuclear Information System (INIS)

    Delgado, D.; Michel, P.; Jaanus, S.D.

    1982-01-01

    Intracardiac injection of 15 microspheres labeled with 85 Sr (strontium) and 141 Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed

  20. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  1. Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye

    NARCIS (Netherlands)

    Schlingemann, R. O.; Hofman, P.; Anderson, L.; Troost, D.; van der Gaag, R.

    1997-01-01

    The endothelium-specific antigen PAL-E is expressed in capillaries and veins throughout the body with the exception of the brain, where the antigen is absent from anatomical sites with a patent blood-brain barrier. In this study we determined vascular endothelial staining for PAL-E in the normal eye

  2. Modification of radiation changes of the blood-brain barrier by exogenous hypoxia

    International Nuclear Information System (INIS)

    Antipov, V.V.; Fedorov, V.P.; Kordenko, A.N.; Ushakov, I.B.

    1987-01-01

    The authors conducted an experimental study of a radiomodifying effect of exogenous hypoxia on the structures of the blood-brain barrier in rats early after irradiation of the head at a dose of 10 Gy. Histochemical and histological methods were used to assess the status of the endothelium, basal membrane tissue basophils and astrocytic junction. They indicated change of these structures in irradiation and action of GHM-8 gaseous mixture. Exogenous hypoxia was shown to promote the normalization of transport through the capillary wall as a result of the prevention of injury of the structure and metabollic processes in endothelial cells and basal membrane. The astrocytic junction and, to a certain degree, tissue basophils exhibited synergy in the action of the studied fators

  3. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  4. Pulse waveform analysis on temporal changes in ocular blood flow due to caffeine intake: a comparative study between habitual and non-habitual groups.

    Science.gov (United States)

    Ismail, Aishah; Bhatti, Mehwish S; Faye, Ibrahima; Lu, Cheng Kai; Laude, Augustinus; Tang, Tong Boon

    2018-06-06

    To evaluate and compare the temporal changes in pulse waveform parameters of ocular blood flow (OBF) between non-habitual and habitual groups due to caffeine intake. This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p groups in several ocular pulse waveform parameters, namely MBR (overall, vessel, tissue), BOT (overall), rising rate (overall), and falling rate (vessel), all with p group, but not within the habitual group. The temporal changes in parameters MBR (vessel, tissue), skew (overall, vessel), BOT (overall, vessel), rising rate (overall), falling rate (overall, vessel), and FAI (tissue) were significant for both groups (habitual and non-habitual) in response to caffeine intake. The experiment results demonstrated caffeine does modulate OBF significantly and response differently in non-habitual and habitual groups. Among all ten parameters, MBR and BOT were identified as the suitable biomarkers to differentiate between the two groups.

  5. Lysosomal storage diseases and the blood-brain barrier.

    Science.gov (United States)

    Begley, David J; Pontikis, Charles C; Scarpa, Maurizio

    2008-01-01

    The blood-brain barrier becomes a crucial issue in neuronopathic lysosomal storage diseases for three reasons. Firstly, the function of the blood-brain barrier may be compromised in many of the lysosomal storage diseases and this barrier dysfunction may contribute to the neuropathology seen in the diseases and accelerate cell death. Secondly, the substrate reduction therapies, which successfully reduce peripheral lysosomal storage, because of the blood-brain barrier may not have as free an access to brain cells as they do to peripheral cells. And thirdly, enzyme replacement therapy appears to have little access to the central nervous system as the mannose and mannose-6-phosphate receptors involved in their cellular uptake and transport to the lysosome do not appear to be expressed at the adult blood-brain barrier. This review will discuss in detail these issues and their context in the development of new therapeutic strategies.

  6. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.

    Science.gov (United States)

    Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D

    2018-03-01

    Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals

  7. Phasic changes of blood-brain-barrier permeability in mice after non-uniform γ-irradiation

    International Nuclear Information System (INIS)

    Ushakov, I.B.

    1986-01-01

    Early changes of blood-brain barrier (BBB) permeability in mice after irradiation of head or body were studied. The experiments were carried out on male-mice F 1 (C57xCBA) with medium mass of 25.1±0.8 g, irradiated in 2.58 C/kg dose to head or body. Correlation between BBB permeability decrease and radiation disease clinical manifestation frequency is determined. In early periods after irradiation, minimum two phases of BBB permeability change were observed: increase (0-2 h) and decrease (2-6 h) of permeability. BBB changes were expressed in later periods (24-120 h) as well. BBB permeability progressively increased after irradiation of head. According to the author's suggestion, this phenomenon gives evidence of generalization of vessel permeability disturbance (primarily of brain vessels) which leads to complete BBB dysfunction and to the loss of this morphofunctional formation's ability to perform its protective function. When considering BBB permeability connection with the frequency of neurologycal sign (tremor, ataxia) appearance, reversible correlation between these indicators is marked, beginning with the first period. The presence connection of fluid redistribution between blood and internal brain medium (edema growth) with the development of clinical manifestations of CNS affection is suggested

  8. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    Science.gov (United States)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  9. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol

    DEFF Research Database (Denmark)

    Thornit, Dorte Nellemann; Vinten, Carl Martin; Sander, Birgit

    2010-01-01

    PURPOSE: To compare the changes in macular volume (MV) between healthy subjects and patients with diabetic macular edema (DME) after an osmotic load and to determine the glycerol permeability (P(gly)) of the blood-retinal barrier (BRB). METHODS: In this unmasked study, 13 patients with DME and 5...

  10. Risk of ocular blood splatter during oculofacial plastic surgery.

    Science.gov (United States)

    Stacey, Andrew W; Czyz, Craig N; Kondapalli, Srinivas Sai A; Hill, Robert H; Everman, Kelly R; Cahill, Kenneth V; Foster, Jill A

    2015-01-01

    To assess intraoperative blood splatter to the ocular surface and adnexa during oculofacial surgery. Four surgeons and multiple assistants at three separate locations wore a total of 331 protective eye shields during 131 surgeries. Postoperatively, a luminol blood detection system was used to identify blood splatter on the shields. In the event of positive blood splatter, the total number of blood spots was counted. Controls were used to verify the blood detection protocol. A postoperative questionnaire was given to all surgeons and assistants after each case, and they were asked whether intraoperative blood splatter was noticed. Blood was detected on 61% of eye shields and in a total of 80% of surgical cases. However, only 2% of blood splatters were recognized intraoperatively by the surgical participants. There was no significant difference in the splatter rate between surgeons (64%), assistants (60%), and surgical technicians (58%) (p = 0.69). Shields worn during full-thickness eyelid procedures, direct brow lifting, orbitotomy with bony window, and orbital fracture repairs were more likely to be splattered (p = 0.03), and there was a significant difference between splatter rates among different surgeons (range, 29-90%; p = 0.0004), suggesting that blood splatter rate may be both procedure dependent and surgeon dependent. Mucocutaneous and transconjunctival transmission of human immunodeficiency virus and viral hepatitis has been documented. These results suggest that oculofacial plastic surgeons should consider eye protection for patients with known blood-borne diseases and in cases where blood splatter is expected. This precautionary practice is supported by the high incidence (98%) of undetected, intraoperative blood splatter.

  11. Effects of intracarotid ioxaglate on the normal blood-brain barrier

    International Nuclear Information System (INIS)

    Wilcox, J.; Sage, M.R.

    1985-01-01

    Using two different models, the effect on the blood-brain barrier of intracarotid injections of sodium/meglumine ioxaglate at similar iodine concentrations (280 mgI/ml) was investigated. In both models the degree of blood-brain barrier damage was assessed visually using Evans' Blue stain. Quantitative assessment of blood-brain barrier disruption was made by contrast enhancement as measured by CT of the dog brain, and by 99m Tc-pertechnetate uptake by the brain in the rabbit model. No Evans' Blue staining was observed in any study using the canine/CT model. Slight staining was observed in two studies with ioxaglate using the rabbit/pertechnetate model. Statistical analysis of results from the canine/CT model did not detect any damage to the blood-brain barrier with either ioxaglate or saline control studies (P>0.1). However, in the rabbit/pertechnetate model a slight increase in disruption of the blood-brain barrier was observed with ioxaglate compared with control studies, but this was only significant at the 0.1 level. The results suggest that the rabbit/pertechnetate model is a more sensitive measure of blood-brain barrier disruption than the canine/CT model. This study also demonstrates that blood-brain barrier disruption following intracarotid injection of ioxaglate is minimal. (orig.)

  12. In vitro models of the blood-brain barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Abbott, N Joan; Burek, Malgorzata

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic...... components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug...... transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture...

  13. [Contribution of hemodynamic disturbances in magistral vessels to optic neuropathy progression and ocular tension changes in endocrine ophthalmopathy].

    Science.gov (United States)

    Likhvantseva, V G; Kharlap, S I; Korosteleva, E V; Solomatina, M V; Mel'nikova, M V; Budanova, S V; Regeb, A Ben; Vygodin, V A

    2015-01-01

    to investigate the contribution of various hemodynamic disturbances in magistral vessels to optic neuropathy (ON) progression and ocular tension changes in endocrine ophthalmopathy (EOP). A total of 39 patients (78 eyes) with subclinical EOP (clinical activity score, CAS ≤ 2) associated with Graves' disease (n = 32, 64 eyes) or autoimmune thyroiditis (n = 7, 14 eyes) were examined. Orbit echography was performed in all patients. Blood flow was assessed with a Voluson 730 PRO ultrasound diagnostic system ("Kretz", Austria) in triplex mode (B-scan, color Doppler flow mapping in combination with pulse-wave Doppler). Thus obtained hemodynamic parameters in ophthalmic artery, central retinal artery (CRA), central retinal vein (CRV), short posterior ciliary arteries (SPCA), and long posterior ciliary arteries (LPCA) were analyzed. To reveal the role of hemodynamic disturbances in the above mentioned vessels in ON progression and eye pressure maintenance, the patients were divided into 7 groups. Only those eyes, whose peripheral indices were increased by more than 25% of normal values and diastolic blood flow decreased by not less than 25%, were selected for further study. Intraocular pressure changes were evaluated by group mean (Mmean = M ± m mmHg), optic neuropathy progression--by the difference in group mean depth (dB) and number of scotomas between the first and the last visit (6 months of observation). In almost all types of perfusion disturbances, the resultant chronic ocular ischemia causes a decrease in IOP. The only exception, as shown, is simultaneous involvement of CRA, SPCA, and LPCA. The level of blood flow disturbance determines the severity of qualitative and quantitative changes in eyes with EOP-associated ON. The rate of ON progression directly correlates with baseline IOP values on day zero. Long-lasting chronic impairment of blood supply of the eyeball leads to reduction in ocular tension and progression of optic neuropathy. Combined perfusion

  14. Ocular lesions and experimental choline deficiency Lesiones oculares y deficiencia experimental de colina

    Directory of Open Access Journals (Sweden)

    Georgina P. Ossani

    2006-10-01

    Full Text Available Previous studies have shown ocular haemorrhages in choline-deficient rats. The aim of this paper is to study further the relationship between ocular and renal lesions and biochemical alterations in rats fed a choline-deficient diet. Fifty one weanling male Wistar rats, were divided into two groups. Thirty one of them were fed a choline-deficient diet and the rest was fed a choline-supplemented diet ad libitum. Animals from both groups were killed between the fifth and the eighth day. Urea, creatinine and homocysteine concentrations in blood were determined. Eyes were used for light microscopy study; high resolution light microscopy and the study of the retina as "rétine a plat". Kidneys were studied by light microscopy. Choline-supplemented rats did not show ocular or renal lesion. Choline-deficient rats that showed renal lesions, tubular or cortical necrosis, did not always have ocular changes. There were no ocular changes in the only choline-deficient rat without renal lesion. The ocular changes consisted mainly in haemorrhage in both cameras and ciliary and vitreous bodies. Correlations between ocular and renal lesion (r=0.72, pEstudios previos han demostrado hemorragia ocular en ratas deficientes en colina. El objetivo de este trabajo es profundizar en la relación entre las alteraciones oculares, renales y bioquímicas en ratas deficientes en colina. Cincuenta y una ratas Wistar macho recién destetadas fueron divididas en dos grupos: treinta y una fueron alimentadas con una dieta colino deficiente y el resto con colina suplementada ad-libitum. Los animales de ambos grupos fueron sacrificados entre el quinto y el octavo día. Se midió la concentración de urea, creatinina y homocisteína en sangre. Los ojos fueron estudiados por microscopía de luz, microscopía óptica de alta resolución y para el estudio de la retina como retina plana. Los riñones fueron estudiados por microscopía de luz. Las ratas suplementadas con colina no

  15. Protection of the blood-brain barrier by hypercapnia during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Mayhan, W.G.; Heistad, D.D.

    1986-01-01

    The purpose of this study was to examine effects of hypercapnia on susceptibility of the blood-brain barrier to disruption during acute hypertension. Two methods were used to test the hypothesis that cerebral vasodilation during hypercapnia increases disruption of the blood-brain barrier. First, permeability of the blood-brain barrier was measured in anesthetized cats with 125 I-labeled serum albumin. Severe hypertension markedly increased permeability of the blood-brain barrier during normocapnia, but not during hypercapnia. The protective effect of hypercapnia was not dependent on sympathetic nerves. Second, in anesthetized rats, permeability of the barrier was quantitated by clearance of fluorescent dextran. Disruption of the blood-brain barrier during hypertension was decreased by hypercapnia. Because disruption of the blood-brain barrier occurred primarily in pial venules, the authors also measured pial venular diameter and pressure. Acute hypertension increased pial venular pressure and diameter in normocapnic rats. Hypercapnia alone increased pial venular pressure and pial venular diameter, and acute hypertension during hypercapnia further increased venular pressure. The magnitude of increase in pial venular pressure during acute hypertension was significantly less in hypercapnic than in normocapnic rats. They conclude that hypercapnia protects the blood-brain barrier. Possible mechanisms of this effect include attenuation of the incremental increase in pial venular pressure by hypercapnia or a direct effect on the blood-brain barrier not related to venous pressure

  16. Longitudinal changes of ocular blood flow using laser speckle flowgraphy during normal pregnancy.

    Directory of Open Access Journals (Sweden)

    Takahiro Sato

    Full Text Available Innovative laser speckle flowgraphy (LSFG enables noninvasive evaluation of retinal microcirculation and the usefulness has been reported in the field of ophthalmology. LSFG has allowed us to measure the real time changes of retinal blood flow without pupillary dilatations and contrast media. Herein, we investigated the change of retinal blood flow in normal pregnant women during gestation using LSFG.A prospective cohort study was conducted in 53 pregnant women who visited our institution between January, 2013 and July, 2014. Finally, a total of 41 participants without any obstetric complications were available for evaluation. Retinal blood flow was measured with LSFG in a total of 4 times during pregnancy (T1. 11-13 weeks, T2. 19-21 weeks, T3. 28-30 weeks, T4. 34-36 weeks and mean blur rate (MBR, blowout score (BOS, flow acceleration index (FAI, and resistive index (RI are analyzed from these measurements. Relations between LSFG parameters and mean arterial blood pressure (MAP are determined throughout pregnancy.MBR showed no significant changes throughout pregnancy. BOS showed a tendency to increase in the 3rd trimester. FAI values showed a slight increase from the 1st to 2nd trimester while a significant decrease was noted in the 3rd trimester. RI exhibited no changes between the 1st and 2nd trimesters, values decreased significantly after the 3rd trimester. MAP was positively correlated with BOS, and negatively correlated with FAI and RI.The present study clearly demonstrated that profiles of LSFG parameters demonstrated a decrease of resistance in retinal blood vessels. These changes in indices provide a highly sensitive reflection of physiological changes in vascular resistance due to pregnancy. Thus, LSFG may be useful, as a non-invasive, diagnostic tool to detect pregnancy related disorders such as preeclampsia.

  17. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  18. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    International Nuclear Information System (INIS)

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  19. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  20. Barriers and motivators to blood and cord blood donations in young African-American women.

    Science.gov (United States)

    Grossman, Brenda; Watkins, Andre R; Fleming, Faye; Debaun, Michael R

    2005-03-01

    The primary aim of this study was to assess potential barriers and motivators to blood and cord blood donation among African-American women. A telephone survey of African-American women, ages 18-30 years, in the St. Louis metropolitan area was performed. The survey was administered by trained telemarketing personnel using a Computer-Assisted Direct Interview (CADI) system. One hundred sixty-two women were surveyed. Common barriers to blood donation were inconvenience of donor sites (19%), fear of needles (16%), and too much time required to donate (15%). Potential motivators were increasing awareness of need for blood (43%), increasing the number of convenient donor locations (19%), and encouragement by spiritual leaders to have blood drives at their church (17%). Lack of awareness was the only identified barrier to cord blood donation. Most women surveyed (88%) indicated that they definitely or probably would donate cord blood. Strategies to increase the proportion of African-American blood and cord blood donations may include educating potential donors about the process and benefits of donation to particular patient populations and engaging church leadership in supporting blood and cord blood donations.

  1. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle S

    2017-01-01

    concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...... cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux......., regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo...

  2. Delivery of therapeutics for deep-seated ocular conditions - status quo.

    Science.gov (United States)

    Nguyen, Hubert; Eng, Shawn; Ngo, Thanh; Dass, Crispin R

    2018-04-19

    There is a need for research into designing effective pharmaceutical systems for delivering therapeutic drugs to the posterior of the eye for glaucoma-related pathology, macular degeneration, diabetic retinopathy, macular oedema, retinitis and choroiditis. Conventionally, eye drops have been extensively utilised for topical drug delivery to the anterior segment of the eye, but are less effective for delivery of therapeutics to the back of the eye due to significant barriers hampering drug penetration into the target intraocular tissue. This review explores some of the current and novel delivery systems employed to deliver therapeutics to the back of the eye such as those using liposomes, ocular implants, in situ gels, and nanoparticles, and how they can overcome some of these limitations. Issues such as blinking, precorneal fluid drainage, tear dilution and turnover, conjunctiva and nasal drug absorption, the corneal epithelium, vitreous drug clearance, and the blood-ocular barriers are reviewed and discussed. Further studies are needed to address their shortcomings such as drug compatibility and stability, economic viability and patient compliance. © 2018 Royal Pharmaceutical Society.

  3. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases

    Science.gov (United States)

    Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H. F.; Karla, Pradeep K.; Boddu, Sai H. S.

    2018-01-01

    Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. PMID:29495528

  4. An oncological view on the blood-testis barrier

    NARCIS (Netherlands)

    Bart, J; Groen, HJM; van der Graaf, WTA; Hollema, H; Hendrikse, NH; Vaalburg, W; Sleijfer, DT; de Vries, EGE

    The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular

  5. Assessment of effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    V. V. Neroev

    2014-07-01

    Full Text Available Purpose: To evaluate the effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular agerelatedmacular degeneration (AMD.Methods: 35 patients with wet AMD undergone intravitreal 0.5 mg ranibizumab injection. Color Doppler Imaging (CDI and dopplerographywere used to measure hemodynamic parameters including the peak systolic velocity (Vsyst, cm / s, end-diastolic velocity (V diast, cm / s, and resistance index (RI of blood flow in the central retinal artery (CRA, the short posterior ciliary arteries (PCA, and the ophthalmic artery (OA. All patients were examined before and after injection on day 1‑7 and 30 day during the 3‑month follow up period.Results: Before intravitreal injection Vsyst was decreased in short PCA (p<0.05, RI in CRA and in short PCA significantly increased in comparison with normal index in same vessels. The peak systolic velocity in OA, in CRA and in short PCA was not significantly changed. After second injection resistance index in CRA and in short PCA was normalized.Conclusion: There was not impairment of ocular blood flow in retinal and choroidal after monthly intravitreal injection of ranibizumab during the 3‑month follow up period.

  6. Assessment of effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    V. V. Neroev

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of intravitreal ranibizumab injection on the ocular blood flow in patients with neovascular agerelatedmacular degeneration (AMD.Methods: 35 patients with wet AMD undergone intravitreal 0.5 mg ranibizumab injection. Color Doppler Imaging (CDI and dopplerographywere used to measure hemodynamic parameters including the peak systolic velocity (Vsyst, cm / s, end-diastolic velocity (V diast, cm / s, and resistance index (RI of blood flow in the central retinal artery (CRA, the short posterior ciliary arteries (PCA, and the ophthalmic artery (OA. All patients were examined before and after injection on day 1‑7 and 30 day during the 3‑month follow up period.Results: Before intravitreal injection Vsyst was decreased in short PCA (p<0.05, RI in CRA and in short PCA significantly increased in comparison with normal index in same vessels. The peak systolic velocity in OA, in CRA and in short PCA was not significantly changed. After second injection resistance index in CRA and in short PCA was normalized.Conclusion: There was not impairment of ocular blood flow in retinal and choroidal after monthly intravitreal injection of ranibizumab during the 3‑month follow up period.

  7. Cytomegalovirus glycoprotein B genotyping in ocular fluids and blood of AIDS patients with cytomegalovirus retinitis

    NARCIS (Netherlands)

    Peek, R.; Verbraak, F.; Bruinenberg, M.; van der Lelij, A.; van den Horn, G.; Kijlstra, A.

    1998-01-01

    To determine the frequency of cytomegalovirus glycoprotein B (gB) genotypes in clinical samples of ocular fluids of patients with acquired immune deficiency syndrome (AIDS) who have cytomegalovirus retinitis and to compare these with the cytomegalovirus gB genotype in paired peripheral blood

  8. The blood-brain barrier in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, L; Tfelt-Hansen, P

    2008-01-01

    Salient aspects of the anatomy and function of the blood-barrier barrier (BBB) are reviewed in relation to migraine pathophysiology and treatment. The main function of the BBB is to limit the access of circulating substances to the neuropile. Smaller lipophilic substances have some access...

  9. The in vitro blood-brain barrier model under OGD condition

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... the wall of brain capillaries. The restrictive nature of the BBB is due to the presence of tight junctions, which seal the paracellular space, a low number of endocytotic vesicles and the presence of efflux transporters, resulting in a very tight layer. Ischemic insult and the subsequent reperfusion...... of therapies to treat this devastating disease. Materials and Methods - Primary cultures of endothelial cells from bovine brain microvessels were cocultured with rat astrocytes in transwell inserts. At day 11, cells were treated with 4h of OGD by changing the culture medium with glucose-free medium...

  10. Delayed astrocytic contact with cerebral blood vessels in FGF-2 deficient mice does not compromise permeability properties at the developing blood-brain barrier.

    Science.gov (United States)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Unsicker, Klaus; Ek, C Joakim

    2016-11-01

    The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016. © 2016 Wiley Periodicals, Inc.

  11. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

  13. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    Science.gov (United States)

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  14. Fingolimod promotes blood-nerve barrier properties in vitro.

    Science.gov (United States)

    Nishihara, Hideaki; Maeda, Toshihiko; Sano, Yasuteru; Ueno, Maho; Okamoto, Nana; Takeshita, Yukio; Shimizu, Fumitaka; Koga, Michiaki; Kanda, Takashi

    2018-04-01

    The main effect of fingolimod is thought to be functional antagonism of lymphocytic S1P1 receptors and the prevention of lymphocyte egress from lymphoid tissues, thereby reducing lymphocyte infiltration into the nervous system. However, a growing number of reports suggest that fingolimod also has a direct effect on several cell types in the nervous system. Although we previously reported that fingolimod enhances blood-brain barrier (BBB) functions, there have been no investigations regarding the blood-nerve barrier (BNB). In this study, we examine how fingolimod affects the BNB. An immortalized human peripheral nerve microvascular endothelial cell line (HPnMEC) was used to evaluate BNB barrier properties. We examined tight junction proteins and barrier functions of HPnMECs in conditioned medium with or without fingolimod-phosphate and blood sera from patients with typical chronic inflammatory demyelinating polyneuropathy (CIDP). Incubation with fingolimod-phosphate increased levels of claudin-5 mRNA and protein as well as TEER values in HPnMECs. Conversely, typical CIDP sera decreased claudin-5 mRNA/protein levels and TEER values in HPnMECs; however, pretreatment with fingolimod-phosphate inhibited the effects of the typical CIDP sera. Fingolimod-phosphate directly modifies the BNB and enhances barrier properties. This mechanism may be a viable therapeutic target for CIDP, and fingolimod may be useful in patients with typical CIDP who have severe barrier disruption.

  15. Posture changes and subfoveal choroidal blood flow.

    Science.gov (United States)

    Longo, Antonio; Geiser, Martial H; Riva, Charles E

    2004-02-01

    To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

  16. Placental Growth Factor Contributes to Micro-Vascular Abnormalization and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy

    Science.gov (United States)

    Kowalczuk, Laura; Touchard, Elodie; Omri, Samy; Jonet, Laurent; Klein, Christophe; Valamanes, Fatemeh; Berdugo, Marianne; Bigey, Pascal; Massin, Pascale; Jeanny, Jean-Claude; Behar-Cohen, Francine

    2011-01-01

    Objective There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1). Materials and Methods pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis. Results After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation. Conclusion This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease. PMID:21408222

  17. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    Science.gov (United States)

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  18. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    OpenAIRE

    Strazielle, Nathalie; Ghersi-Egea, Jean-Fran?ois

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system dise...

  19. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  20. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  1. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori

    2011-02-01

    Full Text Available Abstract Guanidino compounds (GCs, such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCSFB have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC 6A8 expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6 and organic cation transporter (OCT3/SLC22A3 expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen

  2. Feline Infectious Peritonitis: Immunohistochemical Features of Ocular Inflammation and the Distribution of Viral Antigens in Structures of the Eye.

    Science.gov (United States)

    Ziółkowska, Natalia; Paździor-Czapula, Katarzyna; Lewczuk, Bogdan; Mikulska-Skupień, Elżbieta; Przybylska-Gornowicz, Barbara; Kwiecińska, Kamila; Ziółkowski, Hubert

    2017-11-01

    Feline infectious peritonitis (FIP) is a serious, widely distributed systemic disease caused by feline coronavirus (FCoV), in which ocular disease is common. However, questions remain about the patterns of ocular inflammation and the distribution of viral antigen in the eyes of cats with FIP. This study characterized the ocular lesions of FIP including the expression of glial fibrillary acidic protein and proliferating cell nuclear antigen by Müller cells in the retina in cases of FIP and to what extent macrophages are involved in ocular inflammation in FIP. Immunohistochemistry for FCoV, CD3, CD79a, glial fibrillary acidic protein, calprotectin, and proliferating cell nuclear antigen was performed on paraffin sections from 15 naturally occurring cases of FIP and from controls. Glial fibrillary acidic protein expression was increased in the retina in cases of FIP. Müller cell proliferation was present within lesions of retinal detachment. Macrophages were present in FIP-associated ocular lesions, but they were the most numerous inflammatory cells only within granulomas (2/15 cats, 13%). In cases of severe inflammation of the ciliary body with damage to blood vessel walls and ciliary epithelium (3/15, 20%), some macrophages expressed FCoV antigens, and immunolabeling for calprotectin on consecutive sections suggested that these FCoV-positive macrophages were likely to be recently derived from blood. In cases of severe and massive inflammation of most ocular structures (4/15, 26%), B cells and plasma cells predominated over T cells and macrophages. These results indicate that gliosis can be present in FIP-affected retinas and suggest that breakdown of the blood-ocular barrier can allow FCoV-bearing macrophages to access the eye.

  3. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen

    2015-01-01

    associated with blood-borne horseradish peroxidase leakage indicating blood-brain barrier breakdown. The cerebrospinal fluid aquaporin-4-immunoglobulin G therefore distributes widely in brain to initiate astrocytopathy and blood-brain barrier breakdown....... was evaluated. A distinct distribution pattern of aquaporin-4-immunoglobulin G deposition was observed in the subarachnoid and subpial spaces where vessels penetrate the brain parenchyma, via a paravascular route with intraparenchymal perivascular deposition. Perivascular astrocyte-destructive lesions were...

  4. Cold injury, blood-brain barrier changes, and leukotriene synthesis: Inhibition by phenidone

    International Nuclear Information System (INIS)

    Robichaud, L.J.; Marcoux, F.W.

    1990-01-01

    Transcranial cold injury in rats and guinea pigs induced cerebral extravasation of albumin labeled with Evans blue dye or 125 I, respective indicators of the area and amount of blood-brain barrier (BBB) disruption. Radioimmunoassay of brain extracts showed that cold injury induced leukotriene (LT)C4 in rat and guinea pig brains 15 min after injury. In guinea pigs, the LT synthesis inhibitor phenidone (30 mg/kg, i.p.) completely blocked cold-induced LTC4 in brain. Phenidone (30 and 100 mg/kg) also inhibited cerebral tissue accumulation of 125 I-albumin and dye in rats and guinea pigs. Phenidone is reported to show antioxidant properties and selective lipoxygenase inhibition of arachidonic acid metabolism compared to cyclooxygenase inhibitors, meclofenamate sodium, and other nonsteroidal anti-inflammatory agents. Since several oxygen and hydroxyl radical scavengers and the cyclooxygenase inhibitor, meclofenamate sodium, did not inhibit protein extravasation, the findings support a role for LT as a mediator of cold-induced changes in BBB permeability in rats and guinea pigs and suggest that the inhibitory effects of phenidone on BBB permeability may be due to inhibition of LT production

  5. OCULAR ASPECTS OF HYPERTHYROIDISM WITH SPECIAL REFERENCE TO OCULAR MYOPATHY

    Directory of Open Access Journals (Sweden)

    Mallika O. U

    2017-04-01

    Full Text Available BACKGROUND Hyperthyroidism can result in ocular manifestations even before systemic signs and symptoms develop. It is seen more in females and severe forms are more common in males. Early detection of ocular involvement can prevent vision threatening complications and troublesome discomforts affecting quality of vision. This clinical study highlights the importance of detailed ocular examination in hyperthyroidism. MATERIALS AND METHODS Fifty consecutive patients with ocular signs of hyperthyroidism were evaluated and followed up for an average period of 1 year. Detailed ocular examination included exophthalmometric measurements, ocular movements and Worth four-dot test. T3, T4, TSH, CT scan and antimicrosomal antibodies and antithyroglobulin antibodies were done along with routine investigations. Study Design- Prospective cohort study. RESULTS Statistical analysis did not reveal any correlation between the level of serum T3 and severity of ocular findings. Majority of the cases were euthyroid with moderate ocular myopathy having multiple muscle involvement. Inferior rectus was affected most. CONCLUSION The ocular signs of hyperthyroidism in the present study seem to be mild. The severe eye changes like corneal involvement and optic nerve changes were less common.

  6. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    Science.gov (United States)

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  7. Alteration in ocular blood flow and its effect on the progression of glaucoma

    Directory of Open Access Journals (Sweden)

    Sher Zaman Safi

    2017-04-01

    Full Text Available Glaucoma is a multifactorial neurodegenerative disease that can result in permanent vision loss by damaging optic nerves due to higher pressure in the eye. Although most of the fundamental pathophysiological mechanisms involved in glaucoma are undetermined but alteration in ocular blood flow(OBFin tissues such as optic nerve, retina, choroid and iris is an important risk factor for glaucoma. Various factors such as limited knowledge of the factors causing optic nerve damage, confusion in the measurement assays and lack of therapies, make hindrances in the understanding of glaucoma. Researchers are continuously accumulating evidence to suggest that alterations in OBF play important role in the pathogenesis of glaucoma but most of the times they have diverse and contradictory conclusions regarding changes in the OBF and risk of glaucoma. In this article we have reviewed different aspects of glaucoma and the effect of OBF in the disease progression

  8. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...

  9. Changes in anterior ocular structures and macula following deep sclerectomy with collagen implant.

    Science.gov (United States)

    Suominen, Sakari M A; Harju, Mika P; Hautamäki, Asta M E; Vesti, Eija T

    2018-01-01

    To determine the effect of intraocular pressure (IOP) lowering with deep sclerectomy (DS) on visual acuity, macular structures, and anterior ocular dimensions during the early postoperative period. We prospectively analyzed 35 eyes of 35 patients scheduled for DS. Our focus with the measurements was on early postoperative changes in anterior ocular and macular structures related to IOP lowering during the first month after DS. In addition to a clinical ophthalmologic examination, our measurements included corneal topography, measurement of ocular dimensions with optical biometry, and examination of macular structure with optical coherence tomography. These measurements were repeated 1, 2, and 4 weeks postoperatively. Best-corrected visual acuity (BCVA) decreased 1 week postoperatively to 0.22 (0.20) LogMAR (p = 0.006). The BCVA then increased to its preoperative level, 0.17 (0.18) (p = 0.28), after 4 weeks. Axial length decreased from 24.12 (1.81) mm to 24.04 (1.81) (p<0.001) 4 weeks postoperatively. The steeper meridian of corneal curvature and average corneal power increased postoperatively; central corneal thickness was decreased. No significant change appeared in other measurements. We found changes in corneal curvature and ocular dimensions after DS. These changes were relatively small and do not completely explain the decrease in visual acuity postoperatively. Macular structures showed no changes.

  10. Correlation of Ultrastructural Changes of Endothelial Cells and Astrocytes Occurring during Blood Brain Barrier Damage after Traumatic Brain Injury with Biochemical Markers of Blood Brain Barrier Leakage and Inflammatory Response

    Czech Academy of Sciences Publication Activity Database

    Vajtr, D.; Benada, Oldřich; Kukačka, J.; Průša, R.; Houšťava, L.; Toupalík, P.; Kizek, R.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 263-268 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50200510 Keywords : Blood brain barrier * Expansive contusion * Metalloproteinases Subject RIV: EE - Microbiology, Virology Impact factor: 1.430, year: 2009

  11. Developmental changes of l-arginine transport at the blood-brain barrier in rats.

    Science.gov (United States)

    Tachikawa, Masanori; Hirose, Shirou; Akanuma, Shin-Ichi; Matsuyama, Ryo; Hosoya, Ken-Ichi

    2018-05-01

    l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  13. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.

    Science.gov (United States)

    Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw

    2017-11-01

    The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently

  14. Barrier mechanisms in the Drosophila blood-brain barrier.

    Science.gov (United States)

    Hindle, Samantha J; Bainton, Roland J

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  15. Evaluation of blood--brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography

    International Nuclear Information System (INIS)

    Yen, C.K.; Budinger, T.F.

    1981-01-01

    Dynamic positron tomography of the brain with 82 Rb, obtained from a portable generator [ 82 Sr (25 days) -- 82 Rb (76 sec)], provides a means of studying blood-brain barrier (BBB) permeability in physiological and clinical investigations. The BBB in rhesus monkeys was opened unilaterally by intracarotid infusion of 3 M urea. This osmotic barrier opening allowed entry into the brain of intravenously administered rubidium chloride. The BBB opening was demonstrated noninvasively using 82 Rb and positron emission tomography and corroborated by the accumulation of 86 Rb in tissue samples. Positron emission tomography studies can be repeated every 5 min and indicate that dynamic tomography or static imaging can be used to study BBB permeability changes induced by a wide variety of noxious stimuli. Brain tumors in human subjects are readily detected because of the usual BBB permeability disruption in and around the tumors

  16. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    2011-01-01

    Full Text Available The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+/K(+-ATPase α1 (ATP1A1 with protein kinase C eta (PKCη and occludin is one of the mechanisms of loud sound-induced vascular permeability increase.Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma.The results presented here provide a novel method for

  17. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  18. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?

    Science.gov (United States)

    Phillips, C I; Tsukahara, S; Hosaka, O; Adams, W

    1992-01-01

    In 26 random out-patients, including 13 treated glaucoma patients and ocular hypertensives, the higher the ocular tension, the greater the pulse amplitude, by Alcon pneumotonometry, at a statistically significant level. In a single untreated hypertensive, when 2-hourly pneumotonometry was done for 24 h, the correlation was similar and significant. The higher the diastolic blood pressure, the higher the ocular pulsation, also significantly. Pulsation is suggested to be a pump, the choroid being the piston, contributing (1) to an increase in the outflow of aqueous humour and (2) to a homeostatic mechanism contributing to normalization of the intra-ocular pressure, wherein pulsation increases or decreases, as the intraocular pressure increases or decreases, respectively.

  19. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  20. Targeted liposomes for drug delivery across the blood-brain barrier

    NARCIS (Netherlands)

    van Rooy, I.

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot

  1. Relationship between ocular surface temperature and peripheral vasoconstriction in healthy subjects: A thermographic study

    DEFF Research Database (Denmark)

    Matteoli, Sara; Vannetti, Federica; Finocchio, Lucia

    2014-01-01

    An impairment of ocular blood flow regulation is commonly considered one of the main pathogenetic mechanisms involved in the development of several eye diseases, like glaucoma. The aim of this study was to investigate whether an alteration of ocular blood supply induced by peripheral vasoconstric......An impairment of ocular blood flow regulation is commonly considered one of the main pathogenetic mechanisms involved in the development of several eye diseases, like glaucoma. The aim of this study was to investigate whether an alteration of ocular blood supply induced by peripheral...

  2. The rights and wrongs of blood-brain barrier permeability studies

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M

    2014-01-01

    Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus....... The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically......, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term "blood-brain barrier" "Blut-Hirnschranke" is often attributed to Lewandowsky, but it does not appear in his papers...

  3. Studying the blood-brain barrier on a microfluidic chip

    NARCIS (Netherlands)

    McKim, J.M.; van der Helm, Marieke Willemijn; Broersen, Kerensa; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    A realistic model of the blood-brain barrier (BBB) is valuable to perform drug screening experiments and to improve the understanding of the barrier's physiology at normal and pathological conditions. Although the conventional in vitro systems (e.g. Transwell systems) have been used for this, they

  4. Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation.

    Science.gov (United States)

    Bianchi, E; Ripandelli, G; Feher, J; Plateroti, A M; Plateroti, R; Kovacs, I; Plateroti, P; Taurone, S; Artico, M

    2015-01-01

    The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings.

  5. The protective influence of the locus ceruleus on the blood-brain barrier

    International Nuclear Information System (INIS)

    Harik, S.I.; McGunigal, T. Jr.

    1984-01-01

    The functions of the putative noradrenergic innervation of cerebral microvessels from the nucleus locus ceruleus remain ambiguous. Although most evidence indicates that such innervation does not have a major role in the control of cerebral blood flow, there are increasing indications that it modulates transport and permeability functions of the blood-brain barrier. In this study we investigated the effect of unilateral chemical lesioning of the locus ceruleus on the leakage of radioiodinated human serum albumin across the blood-brain barrier. Experiments were performed in awake and restrained rats under steady-state conditions and during drug-induced systemic arterial hypertension, and in anesthetized and paralyzed rats during bicuculline-induced seizures. Both hypertension and seizures are known to be associated with increased leakage of macromolecules across the blood-brain barrier. Albumin leakage into norepinephrine-depleted forebrain structures ipsilateral to the locus ceruleus lesion was compared with that of the contralateral side. There were no side-to-side differences in blood-brain barrier permeability to albumin under steady-state conditions, the stress of restraint, or angiotensin-induced hypertension, or after isoproterenol administration. Norepinephrine-induced hypertension and seizures, however, caused significant increases in albumin leakage into forebrain structures ipsilateral to the lesion. These results suggest that noradrenergic innervation of cerebral microvessels from the locus ceruleus helps preserve the integrity of the blood-brain barrier during pathophysiological states associated with hypertension and increased circulating catecholamines

  6. Caveolins and caveolae in ocular physiology and pathophysiology.

    Science.gov (United States)

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All

  7. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis

    DEFF Research Database (Denmark)

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle Juhl

    2015-01-01

    in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison...... with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging...... fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent...

  8. Psychological Barriers to Behavior Change: How to indentify the barriers that inhibit change

    OpenAIRE

    Olson, James M.

    1992-01-01

    Adopting a healthy lifestyle often requires changing patterns of behavior. This article describes three categories of psychological barriers to behavior change: those that prevent the admission of a problem, those that interfere with initial attempts to change behavior, and those that make long-term change difficult. Strategies are identified that family physicians can use to overcome the barriers.

  9. Firocoxib on aqueous humor prostaglandin E 2 levels for controlling experimentally-induced breakdown of blood-aqueous barrier in healthy and Toxoplasma gondii -seropositive cats

    Directory of Open Access Journals (Sweden)

    Deise Cristine Schroder

    2016-06-01

    Full Text Available ABSTRACT: This study aimed to evaluate the effects of firocoxib for controlling experimentally-induced breakdown of the blood-aqueous barrier in healthy and Toxoplasma gondii -seropositive cats. Thirty two cats with no ocular abnormalities were used. Groups (n=8/each were formed with healthy cats that received 5mg g-1 of oral firocoxib (FH or no treatment (CH on day 0; seropositive cats for anti -T. gondii specific immunoglobulin G (IgG were grouped (n=8/each and treated in a similar fashion (FT and CT. On day 1, cats of all groups received the same treatment protocol, and 1h later, aqueocentesis was performed under general anesthesia (M0. Following 1h, the same procedure was repeated (M1. Quantitation of aqueous humor total protein and prostaglandin E2 (PGE2 were determined. Aqueous samples of seropositive cats were tested for anti- T. gondii specific IgG. In M0, aqueous samples of CT showed a significantly higher concentration of PGE2 in comparison with other groups (P<0.05. In all groups, PGE2 concentration increased significantly from M0 to M1 (P=0.001. PGE2 values did not change significantly between groups in M1 (P=0.17. Anti- T. gondii specific IgG were reported only in samples of M1, and aqueous titers did not change significantly between FT and CT (P=0.11. Although we have observed that aqueous humor PGE2 levels were significantly higher in cats of CT group during M0, such increase was not able to break the blood-aqueous barrier and cause anterior uveitis. Firocoxib did not prevent intraocular inflammation after aqueocentesis, in healthy and toxoplasmosis-seropositive cats.

  10. Motivators and Barriers to Blood Donation in African American College Students

    Science.gov (United States)

    Shaz, Beth H.; Demmons, Derrick G.; Crittenden, Colleen P.; Carnevale, Claudine V.; Lee, Mark; Burnett, Miriam; Easley, Kirk; Hillyer, Christopher D.

    2009-01-01

    Background An adequate blood supply depends on volunteer non-remunerated blood donors. African Americans have lower blood donation rates than whites. To improve African American blood donation rates, the motivators and barriers to African Americans must be explored. To study the differences in motivators and barriers to blood donation between donor and non-donor African American college students. Methods African Americans college students at two Historically Black Colleges and Universities completed a 41-item, self-administered questionnaire, which assessed participant’s donation frequency, motivators and barriers toward donation, and knowledge and beliefs towards blood donation. Results 364 primarily female college students (96% African Americans, 93% female) completed the questionnaire. 49% reported prior blood donation experience (donors) and 51% were non-donors. The primary motivator for donors and non-donors was convenience (89% donor, 82% non-donor). Donors were more likely than non-donors to disagree with statements regarding blood donation as being too painful (82% donor, 44% non-donor), resulting in feeling faint, dizzy, or nauseated (61% donor, 29% non-donor). Donors more often agreed that the blood supply is safe (77% donor, 58% non-donor), less often concerned about receiving a transfusion (61% donor, 73% non-donor), and more often aware of local blood shortages (50% donor, 35% non-donor). Conclusions African Americans female college students are willing to donate blood given convenience and support from their university. Educational campaigns to increase knowledge regarding the safety of the blood donation process and the ongoing needs of an adequate blood supply might be effective methods to increase blood donation. PMID:19782000

  11. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    Science.gov (United States)

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  12. Ocular morbidity among porters at high altitudes.

    Science.gov (United States)

    Gnyawali, Subodh; Shrestha, Gauri Shankar; Khanal, Safal; Dennis, Talisa; Spencer, John C

    2017-01-01

    High altitude, often characterized by settings over 2400m, can be detrimental to the human body and pose a significant risk to ocular health. Reports concerning various ocular morbidities occurring as a consequence of high altitude are limited in the current literature. This study was aimed at evaluating the ocular health of porters working at high altitudesof Himalayas in Nepal. A mobile eye clinic was set up in Ghat and patient data were collected from its out- patient unit by a team of seven optometrists which was run for five days. Ghat is a small village in north-eastern Nepal, located at 2860 m altitude. Travellers walking through the trekking route were invited to get their eyes checked at the clinic. Comprehensive ocular examinations were performed, including visual acuities, objective and subjective refraction, anterior and posterior segment evaluations, and intraocular pressure measurements; blood pressure and blood glucose levels were also measured as required. Ocular therapeutics, prescription glasses, sunglasses and ocular health referrals were provided free of cost as necessary. A total of 1890 people visited the eye clinic, among which 57.4% (n=1084) were porters. Almost half of the porters had an ocular morbidity. Correctable refractive error was most prevalent, with other ocular health-related complications, including dry eye disease, infectious disorders, glaucoma and cataract. Proper provision of regular and effective eye care services should be made more available for those residing at these high altitudes in Nepal. © NEPjOPH.

  13. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B

    1999-01-01

    of blood-brain barrier permeability for two benzodiazepine antagonists were performed in 44 rats by the double-indicator technique. Cerebral blood flow was measured by intracarotid Xe-injection. The apparent permeability-surface product (PSapp) was measured while CBF or bolus composition was changed......The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements......(avail) and f(eq) as well as the effect of CBF on PSapp can be caused by capillary heterogeneity....

  14. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  15. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... pathways across the barrier in ischemic and postischemic brain endothelium is important for developing new medical therapies capable to exploit the barrier changes occurring during/after ischemia to permeate in the brain and treat this devastating disease. Materials and Methods - Primary cultures...... the wall of brain capillaries. The restrictive nature of the BBB is due to the tight junctions (TJs), which seal the intercellular clefts, limiting the paracellular diffusion, efflux transporters, which extrude xenobiotics, and metabolizing enzymes, which may break down or convert molecules during...

  16. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    Science.gov (United States)

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721

  17. Ocular disorders in stroke patients in a tertiary hospital in Nigeria

    African Journals Online (AJOL)

    2015-08-06

    Aug 6, 2015 ... Abstract. Background: Stroke is a medical emergency of public health ... Aim: To determine the prevalence of ocular disorders in patients with stroke in a Tertiary Hospital in Nigeria. ... Risk factors include old age, high blood pressure, previous .... such as cataract, refractive errors, and age‑related changes.

  18. [The blood-brain barrier in ageing persons].

    Science.gov (United States)

    Haaning, Nina; Damsgaard, Else Marie; Moos, Torben

    2018-03-26

    Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.

  19. Ocular changes in primary hypothyroidism.

    Science.gov (United States)

    Ozturk, Banu T; Kerimoglu, Hurkan; Dikbas, Oguz; Pekel, Hamiyet; Gonen, Mustafa S

    2009-12-29

    To determine the ocular changes related to hypothyrodism in newly diagnosed patients without orbitopathy. Thirty-three patients diagnosed to have primary overt hypothyroidism were enrolled in the study. All subjects were assigned to underwent central corneal thickness (CCT), anterior chamber volume, depth and angle measurements with the Scheimpflug camera (Pentacam, Oculus) and cup to disc ratio (C/D), mean retinal thickness and mean retinal nerve fiber layer (RNFL) thickness measurements with optical coherence tomography (OCT) in addition to ophthalmological examination preceeding the replacement therapy and at the 1(st), 3(rd )and 6(th )months of treatment. The mean age of the patients included in the study were 40.58 +/- 1.32 years. The thyroid hormone levels return to normal levels in all patients during the follow-up period, however the mean intraocular pressure (IOP) revealed no significant change. The mean CCT was 538.05 +/- 3.85 mu initially and demonstrated no statistically significant change as the anterior chamber volume, depth and angle measurements did. The mean C/D ratio was 0.29 +/- 0.03 and the mean retinal thickness was 255.83 +/- 19.49 mu initially and the treatment did not give rise to any significant change. The mean RNFL thickness was also stable during the control visits, so no statistically significant change was encountered. Neither hypothyroidism, nor its replacement therapy gave rise to any change of IOP, CCT, anterior chamber parameters, RNFL, retinal thickness and C/D ratio.

  20. Molecular targets in radiation-induced blood-brain barrier disruption

    International Nuclear Information System (INIS)

    Nordal, Robert A.; Wong, C. Shun

    2005-01-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection

  1. Effects of pathological conditions on ocular pharmacokinetics of antimicrobial drugs.

    Science.gov (United States)

    Ueda, Kayoko; Ohtori, Akira; Tojo, Kakuji

    2010-10-01

    A diffusion model of ocular pharmacokinetics was used to estimate the effects of pathological conditions on ocular pharmacokinetics. In vivo rabbit data after topical instillation of ciprofloxacin and ofloxacin were compared with the simulated concentrations in the aqueous and vitreous humors. The barrier capacity of the surrounding membranes such as the retina/choroid/sclera (RCS) membrane and the cornea was characterized by dimensionless Sherwood number derived by the pseudo-steady state approach (PSSA). We assumed the barrier capacity decreased by inflammation; when the barrier capacity of the RCS membrane and the cornea was assumed to be one-tenth for the RCS membrane and a half for the cornea respectively, the in vivo data agreed with the simulated profile without contradiction. The drug concentration gradient simulated in the vitreous body near the RCS membrane was more significant in the inflamed eyes than in the normal eyes, suggesting that the elimination of the drugs from the RCS membrane was enhanced by inflammation. The present diffusion model can better describe the ocular pharmacokinetics in both normal and diseased conditions.

  2. Influence of ocular perfusion pressure fluctuation on glaucoma

    Directory of Open Access Journals (Sweden)

    Min-Zi Ren

    2015-12-01

    Full Text Available AIM:To investigate the influence of ocular perfusion pressure fluctuation on glaucoma. METHODS:Forty patients with primary open angle glaucoma from January 2013 to June 2015 in our hospital were used as observation group and 40 families were used as control group. Circadian fluctuation of intraocular pressure, blood pressure and ocular perfusion pressure in 24h were determined to obtain systolic ocular perfusion pressure(SOPP, diastolic ocular perfusion pressure(DOPPand mean ocular perfusion pressure(MOPP. Pearson linear correlation was used to analyze the correlation of circadian MOPP fluctuation with cup-disc ratio, mean defect(MDand the picture standard deviation(PSD. RESULTS:The fluctuation of MOPP, SOPP and DOPP of observation group were significantly higher than those of control group(Pr=-0.389, 95%CI:-0.612~-0.082; P=0.011, was positively correlated with PSD(r=0.512, 95%CI:0.139 ~0.782; P=0.008; no correlation was found between it and the vertical cup-disc ratio(r=0.115, 95%CI:0.056~0.369; P=0.355. CONCLUSION:Ocular perfusion pressure fluctuations in patients with primary open angle glaucoma may reflect the severity of the disease and may make the situation aggravating. Therefore through perfusion pressure monitor in 24h may help us understand the ocular blood flow and the development of primary open-angle glaucoma.

  3. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  4. Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge

    Directory of Open Access Journals (Sweden)

    Maria Antònia Busquets

    2015-12-01

    Full Text Available The blood-brain barrier is a physical and physiological barrier that protects the brain from toxic substances within the bloodstream and helps maintain brain homeostasis. It also represents the main obstacle in the treatment of many diseases of the central nervous system. Among the different approaches employed to overcome this barrier, the use of nanoparticles as a tool to enhance delivery of therapeutic molecules to the brain is particularly promising. There is special interest in the use of magnetic nanoparticles, as their physical characteristics endow them with additional potentially useful properties. Following systemic administration, a magnetic field applied externally can mediate the capacity of magnetic nanoparticles to permeate the blood-brain barrier. Meanwhile, thermal energy released by magnetic nanoparticles under the influence of radiofrequency radiation can modulate blood-brain barrier integrity, increasing its permeability. In this review, we present the strategies that use magnetic nanoparticles, specifically iron oxide nanoparticles, to enhance drug delivery to the brain.

  5. Pharmacokinetics and In Vitro Blood-Brain Barrier Screening of the Plant-Derived Alkaloid Tryptanthrin.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Sampath, Chethan; Butterweck, Veronika; Culot, Maxime; Cecchelli, Roméo; Gosselet, Fabien; Walter, Fruzsina R; Deli, Mária A; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-07-01

    The indolo[2,1-b]quinazoline alkaloid tryptanthrin was previously identified as a potent anti-inflammatory compound with a unique pharmacological profile. It is a potent inhibitor of cyclooxygenase-2, 5-lipooxygenase-catalyzed leukotriene synthesis, and nitric oxide production catalyzed by the inducible nitric oxide synthase. To characterize the pharmacokinetic properties of tryptanthrin, we performed a pilot in vivo study in male Sprague-Dawley rats (2 mg/kg bw i. v.). Moreover, the ability of tryptanthrin to cross the blood-brain barrier was evaluated in three in vitro human and animal blood-brain barrier models. Bioanalytical UPLC-MS/MS methods used were validated according to current international guidelines. A half-life of 40.63 ± 6.66 min and a clearance of 1.00 ± 0.36 L/h/kg were found in the in vivo pharmacokinetic study. In vitro data obtained with the two primary animal blood-brain barrier models showed a good correlation with an immortalized human monoculture blood-brain barrier model (hBMEC cell line), and were indicative of a high blood-brain barrier permeation potential of tryptanthrin. These findings were corroborated by the in silico prediction of blood-brain barrier penetration. P-glycoprotein interaction of tryptanthrin was assessed by calculation of the efflux ratio in bidirectional permeability assays. An efflux ratio below 2 indicated that tryptanthrin is not subjected to active efflux. Georg Thieme Verlag KG Stuttgart · New York.

  6. Nanocarriers in ocular drug delivery: an update review.

    Science.gov (United States)

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani Rai; Vyas, S P

    2009-01-01

    Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.

  7. Ocular Pharmacokinetics of Dorzolamide and Brinzolamide After Single and Multiple Topical Dosing: Implications for Effects on Ocular Blood FlowS⃞

    Science.gov (United States)

    Kadam, Rajendra S.; Jadhav, Gajanan; Ogidigben, Miller

    2011-01-01

    Ophthalmic carbonic anhydrase inhibitors have been shown to improve retinal and optic nerve blood flow. However, the relative tissue distributions of commercially available carbonic anhydrase inhibitors to the optic nerve are not known. The objective of this study was to compare the ocular pharmacokinetics and tissue distribution profiles of dorzolamide and brinzolamide after single and multiple topical applications. Pigmented rabbits were treated with single or multiple topical administrations of 30 μl of Trusopt (dorzolamide hydrochloride ophthalmic solution, 2%) to one eye and 30 μl of Azopt (brinzolamide ophthalmic suspension, 1%) to the other eye. Rabbits were euthanized at 10 predetermined time intervals over a period of 24 h, and ocular tissues and plasma samples were collected. For multiple dosing, rabbits were dosed twice per day with an 8-h interval between two doses, groups of rabbits were euthanized at 7, 14, and 21 days at 1 h after the last dose, and ocular tissues and plasma samples were collected. Drug levels in tissue samples were measured using liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameters (Cmax, Tmax, and AUC0–24) were estimated by noncompartmental analysis. After a single dose, dorzolamide delivery (AUC0–24) to the aqueous humor, anterior sclera, posterior sclera, anterior retina, posterior retina, anterior vitreous, and optic nerve was 2-, 7-, 2.6-, 1.4-, 1.9-, 1.2-, and 9-fold higher than those of brinzolamide. Cmax was 2- to 5-fold higher for dorzolamide than that of brinzolamide in all of the ocular tissue. After multiple dosing, dorzolamide levels in the aqueous humor, sclera, retina, vitreous humor, and optic nerve were higher than those of brinzolamide, but statistical significance was achieved only with aqueous humor, vitreous humor, and optic nerve. Dorzolamide levels in the aqueous humor, anterior vitreous, posterior vitreous, and optic nerve were 1.4- to 3.2-, 2.4- to 2.7-, 2.2- to 4.5-, and 2.4- to

  8. Ocular changes in primary hypothyroidism

    Directory of Open Access Journals (Sweden)

    Pekel Hamiyet

    2009-12-01

    Full Text Available Abstract Background To determine the ocular changes related to hypothyrodism in newly diagnosed patients without orbitopathy. Findings Thirty-three patients diagnosed to have primary overt hypothyroidism were enrolled in the study. All subjects were assigned to underwent central corneal thickness (CCT, anterior chamber volume, depth and angle measurements with the Scheimpflug camera (Pentacam, Oculus and cup to disc ratio (C/D, mean retinal thickness and mean retinal nerve fiber layer (RNFL thickness measurements with optical coherence tomography (OCT in addition to ophthalmological examination preceeding the replacement therapy and at the 1st, 3rd and 6th months of treatment. The mean age of the patients included in the study were 40.58 ± 1.32 years. The thyroid hormone levels return to normal levels in all patients during the follow-up period, however the mean intraocular pressure (IOP revealed no significant change. The mean CCT was 538.05 ± 3.85 μ initially and demonstrated no statistically significant change as the anterior chamber volume, depth and angle measurements did. The mean C/D ratio was 0.29 ± 0.03 and the mean retinal thickness was 255.83 ± 19.49 μ initially and the treatment did not give rise to any significant change. The mean RNFL thickness was also stable during the control visits, so no statistically significant change was encountered. Conclusions Neither hypothyroidism, nor its replacement therapy gave rise to any change of IOP, CCT, anterior chamber parameters, RNFL, retinal thickness and C/D ratio.

  9. The Blood-Brain Barrier: Connecting the Gut and the Brain

    OpenAIRE

    Banks, William A.

    2008-01-01

    The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated b...

  10. Intact blood-brain barrier during spontaneous attacks of migraine without aura

    DEFF Research Database (Denmark)

    Amin, F M; Hougaard, A; Cramer, S P

    2017-01-01

    BACKGROUND AND PURPOSE: The integrity of the blood-brain barrier (BBB) has been questioned in migraine, but BBB permeability has never been investigated during spontaneous migraine attacks. In the present study, BBB permeability during spontaneous attacks of migraine without aura was investigated......, brain stem, posterior pons and whole brain. The paired samples t test was used to compare Ki (permeability) values between the attack and headache-free days. RESULTS: Nineteen patients completed the study. Median time from onset of migraine attack to scan was 6.5 h (range 4.0-15.5 h). No change...

  11. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    Science.gov (United States)

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (peffect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  12. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  13. Ocular candidiasis: a review.

    Science.gov (United States)

    Shah, C P; McKey, J; Spirn, M J; Maguire, J

    2008-04-01

    To review the epidemiology, diagnosis and changing treatment paradigm of ocular candidiasis, and report current prevalence rates and risk factors at one inpatient hospital. Retrospective review; systematic literature review. All Wills Eye Institute inpatient ophthalmology consultations from Thomas Jefferson University Hospital were retrospectively reviewed between June 2006 and November 2006. All consultations for candidaemia were included. The outcome variables included chorioretinitis, endophthalmitis, visual symptoms and Candida speciation. The ophthalmic literature was reviewed using PubMed. Keywords included Candida, candidaemia, chorioretinitis, vitritis and endophthalmitis. Bibliographies were manually searched. Three of the 38 consultations for candidaemia (7.9%) had chorioretinitis. There were no cases of vitritis or endophthalmitis. The presence of symptoms, or the inability to articulate symptoms, was significantly associated with risk of ocular candidiasis (p = 0.003). All three cases of chorioretinitis had positive blood cultures for Candida albicans (p = 0.089) and were treated with oral fluconazole. Various factors have led to the increasing prevalence of inpatient candidaemia. Risk factors for ocular involvement include albicans species and the presence of, or inability to articulate, visual symptoms. For those without abnormal findings on initial examination, a subsequent retinal examination should be performed in 2 weeks, particularly if new symptoms develop or if the patient is unable to relay symptoms. Patients with chorioretinitis should be treated with systemic antifungal agents. For those with vitritis or endophthalmitis, particularly if worsening on systemic therapy alone, intravitreal antifungal medications or early vitrectomy should be considered.

  14. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B

    1999-01-01

    The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements...... of blood-brain barrier permeability for two benzodiazepine antagonists were performed in 44 rats by the double-indicator technique. Cerebral blood flow was measured by intracarotid Xe-injection. The apparent permeability-surface product (PSapp) was measured while CBF or bolus composition was changed...... and flumazenil increased significantly by 89% and 161% after relative CBF increases of 259% and 201%, respectively. The results demonstrate that application of f(eq) in neuroreceptor studies underestimates the plasma input function to the brain. Model simulations render possible that the differences between f...

  15. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  16. Gliomas and the vascular fragility of the blood brain barrier

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo eDubois

    2014-12-01

    Full Text Available Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB. By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM, characterized by a highly heterogeneous cell population (including tumor stem cells, extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the blood brain barrier and the concerns that arise when this barrier is affected.

  17. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  18. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions.

    Science.gov (United States)

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R

    2015-06-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an

  19. Upregulated inflammatory associated factors and blood-retinal barrier changes in the retina of type 2 diabetes mellitus model

    Directory of Open Access Journals (Sweden)

    Rui-Jin Ran

    2016-11-01

    Full Text Available AIM: To examine the expression of high mobility group box-1 (HMGB-1 and intercellular adhesion molecule-1 (ICAM-1 in the retina and the hippocampal tissues; and further to evaluate the association of these two molecules with the alterations of blood-retinal barrier (BRB and blood-brain barrier (BBB in a rat model of type 2 diabetes. METHODS: The type-2 diabetes mellitus (DM model was established with a high-fat and high-glucose diet combined with streptozotocin (STZ. Sixteen weeks after DM induction, morphological changes of retina and hippocampus were observed with hematoxylin-eosin staining, and alternations of BRB and BBB permeability were measured using Evans blue method. Levels of HMGB-1 and ICAM-1 in retina and hippocampus were detected by Western blot. Serum HMGB-1 levels were determined by enzyme-linked immunosorbent assay (ELISA. RESULTS: A significantly higher serum fasting blood glucose level in DM rats was observed 2wk after STZ injection (P<0.01. The serum levels of fasting insulin, Insulin resistance homeostatic model assessment (IRHOMA, total cholesterol (TC, total triglycerides (TG and low density lipoprotein cholesterol (LDL-C in the DM rats significantly higher than those in the controls (all P<0.01. HMGB-1 (0.96±0.03, P<0.01 and ICAM-1 (0.76±0.12, P<0.05 levels in the retina in the DM rats were significantly higher than those in the controls. HMGB-1 (0.83±0.13, P<0.01 and ICAM-1 (1.15±0.08, P<0.01 levels in the hippocampal tissues in the DM rats were also significantly higher than those in the controls. Sixteen weeks after induction of DM, the BRB permeability to albumin-bound Evans blue dye in the DM rats was significantly higher than that in the controls (P<0.01. However, there was no difference of BBB permeability between the DM rats and controls. When compared to the controls, hematoxylin and eosin staining showed obvious irregularities in the DM rats. CONCLUSION: BRB permeability increases significantly

  20. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Characterisation of the metabolome of ocular tissues and post-mortem changes in the rat retina.

    Science.gov (United States)

    Tan, Shi Z; Mullard, Graham; Hollywood, Katherine A; Dunn, Warwick B; Bishop, Paul N

    2016-08-01

    Time-dependent post-mortem biochemical changes have been demonstrated in donor cornea and vitreous, but there have been no published studies to date that objectively measure post-mortem changes in the retinal metabolome over time. The aim of the study was firstly, to investigate post-mortem, time-dependent changes in the rat retinal metabolome and secondly, to compare the metabolite composition of healthy rat ocular tissues. To study post-mortem changes in the rat retinal metabolome, globes were enucleated and stored at 4 °C and sampled at 0, 2, 4, 8, 24 and 48 h post-mortem. To study the metabolite composition of rat ocular tissues, eyes were dissected immediately after culling to isolate the cornea, lens, vitreous and retina, prior to storing at -80 °C. Tissue extracts were subjected to Gas Chromatograph Mass Spectrometry (GC-MS) and Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS). Generally, the metabolic composition of the retina was stable for 8 h post-mortem when eyes were stored at 4 °C, but showed increasing changes thereafter. However, some more rapid changes were observed such as increases in TCA cycle metabolites after 2 h post-mortem, whereas some metabolites such as fatty acids only showed decreases in concentration from 24 h. A total of 42 metabolites were identified across the ocular tissues by GC-MS (MSI level 1) and 2782 metabolites were annotated by UHPLC-MS (MSI level 2) according to MSI reporting standards. Many of the metabolites detected were common to all of the tissues but some metabolites showed partitioning between different ocular structures with 655, 297, 93 and 13 metabolites being uniquely detected in the retina, lens, cornea and vitreous respectively. Only a small percentage (1.6%) of metabolites found in the vitreous were only detected in the retina and not other tissues. In conclusion, mass spectrometry-based techniques have been used for the first time to compare the metabolic composition of

  2. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2014-10-01

    Full Text Available The function of the blood-brain barrier (BBB related to chronic pain has been explored by its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as the opioid analgesics (e.g., morphine and non-steroidal anti-inflammatory drugs (NSAIDs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein (P-gp, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including: substance P, calcitonin gene related peptide (CGRP and IL- 1β. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier (BSCB and blood-nerve barrier (BNB and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.

  3. Evaluation of Cystoid Change Phenotypes in Ocular Toxoplasmosis Using Optical Coherence Tomography

    Science.gov (United States)

    Shao, Qing; Keane, Pearse A.; Stübiger, Nicole; Joussen, Antonia M.; Sadda, Srinivas R.; Heussen, Florian M.

    2014-01-01

    Purpose To present unique cystoid changes occurring in patients with ocular toxoplasmosis observed in spectral domain optical coherence tomography (OCT). Methods Forty-six patients (80 eyes) with a diagnosis of ocular toxoplasmosis, who underwent volume OCT examination between January 2005 and October 2012, were retrospectively collected. Review of clinical examination findings, fundus photographs, fluorescein angiograms (FA) and OCT image sets obtained at initial visits and follow-up. Qualitative and quantitative analyses of cystoid space phenotypes visualized using OCT. Results Of the 80 eyes included, 17 eyes (15 patients) demonstrated cystoid changes in the macula on OCT. Six eyes (7.5%) had cystoid macular edema (CME), 2 eyes (2.5%) had huge outer retinal cystoid space (HORC), 12 eyes (15%) had cystoid degeneration and additional 3 eyes (3.75%) had outer retinal tubulation due to age related macular degeneration. In one eye with HORC, the lesion was seen in the photoreceptor outer segment, accompanied by photoreceptor elongation and splitting. Three eyes presented with paravascular cystoid degeneration in the inner retina without other macular OCT abnormality. Conclusions In this study, different phenotypes of cystoid spaces seen in eyes with ocular toxoplasmosis using spectral domain OCT (SD-OCT) were demonstrated. CME presented as an uncommon feature, consistently with previous findings. Identification of rare morphological cystoid features (HORC with/without photoreceptor enlongation or splitting) on clinical examination had provided evidence to previous experimental models, which may also expand the clinical spectrum of the disease. Cystoid degeneration in the inner retina next to the retinal vessels in otherwise “normal” looking macula was observed, which may suggest more often clinical evaluation for those patients. Further studies are needed to verify the relevance of cystoid features seen on SD-OCT in assisting with the diagnosis and management of

  4. Evaluation of cystoid change phenotypes in ocular toxoplasmosis using optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Yanling Ouyang

    Full Text Available PURPOSE: To present unique cystoid changes occurring in patients with ocular toxoplasmosis observed in spectral domain optical coherence tomography (OCT. METHODS: Forty-six patients (80 eyes with a diagnosis of ocular toxoplasmosis, who underwent volume OCT examination between January 2005 and October 2012, were retrospectively collected. Review of clinical examination findings, fundus photographs, fluorescein angiograms (FA and OCT image sets obtained at initial visits and follow-up. Qualitative and quantitative analyses of cystoid space phenotypes visualized using OCT. RESULTS: Of the 80 eyes included, 17 eyes (15 patients demonstrated cystoid changes in the macula on OCT. Six eyes (7.5% had cystoid macular edema (CME, 2 eyes (2.5% had huge outer retinal cystoid space (HORC, 12 eyes (15% had cystoid degeneration and additional 3 eyes (3.75% had outer retinal tubulation due to age related macular degeneration. In one eye with HORC, the lesion was seen in the photoreceptor outer segment, accompanied by photoreceptor elongation and splitting. Three eyes presented with paravascular cystoid degeneration in the inner retina without other macular OCT abnormality. CONCLUSIONS: In this study, different phenotypes of cystoid spaces seen in eyes with ocular toxoplasmosis using spectral domain OCT (SD-OCT were demonstrated. CME presented as an uncommon feature, consistently with previous findings. Identification of rare morphological cystoid features (HORC with/without photoreceptor enlongation or splitting on clinical examination had provided evidence to previous experimental models, which may also expand the clinical spectrum of the disease. Cystoid degeneration in the inner retina next to the retinal vessels in otherwise "normal" looking macula was observed, which may suggest more often clinical evaluation for those patients. Further studies are needed to verify the relevance of cystoid features seen on SD-OCT in assisting with the diagnosis and

  5. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder

    Science.gov (United States)

    Flanagan, Eoin P.; Fujihara, Kazuo; Kim, Ho Jin; Skejoe, Hanne P.; Wuerfel, Jens; Kuroda, Hiroshi; Kim, Su Hyun; Maillart, Elisabeth; Marignier, Romain; Pittock, Sean J.; Paul, Friedemann; Weinshenker, Brian G.

    2017-01-01

    Objective: To describe leptomeningeal blood-barrier impairment reflected by MRI gadolinium-enhanced lesions in patients with aquaporin-4 immunoglobulin G (AQP4-IgG)–positive neuromyelitis optica spectrum disorder (NMOSD). Methods: A retrospective case series of 11 AQP4-IgG–positive NMOSD patients with leptomeningeal enhancement (LME) were collected from 5 centers. External neuroradiologists, blinded to the clinical details, evaluated MRIs. Results: LME was demonstrated on postcontrast T1-weighted and fluid-attenuated inversion recovery images as a sign of leptomeningeal blood-barrier disruption and transient leakage of contrast agent into the subarachnoid space in 11 patients, 6 in the brain and 6 in the spinal cord. The patterns of LME were linear or extensive and were accompanied by periependymal enhancement in 5 cases and intraparenchymal enhancement in all cases. The location of LME in the spinal cord was adjacent to intraparenchymal contrast enhancement with involvement of a median number of 12 (range 5–17) vertebral segments. At the time of LME on MRI, all patients had a clinical attack such as encephalopathy (36%) and/or myelopathy (70%) with median interval between symptom onset and LME of 12 days (range 2–30). LME occurred in association with an initial area postrema attack (44%), signs of systemic infection (33%), or AQP4-IgG in CSF (22%) followed by clinical progression. LME was found at initial clinical presentation in 5 cases and at clinical relapses leading to a diagnosis of NMOSD in 6 cases. Conclusion: This study suggests that altered leptomeningeal blood barrier may be accompanied by intraparenchymal blood-brain barrier breakdown in patients with AQP4-IgG–positive NMOSD during relapses. PMID:28451627

  6. Effects of Electromagnetic Fields on the Blood Brain Barrier

    National Research Council Canada - National Science Library

    Persson, Rolf

    2000-01-01

    ...) in the 91 5-2450 MHz range on the permeability of the blood brain barrier (BBB) in rats. Male and female Fischer rats were exposed to continuous wave or pulse-modulated EMF, with different pulse powers and times up to 960 minutes...

  7. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier.

    Science.gov (United States)

    Nittby, Henrietta; Grafström, Gustav; Eberhardt, Jacob L; Malmgren, Lars; Brun, Arne; Persson, Bertil R R; Salford, Leif G

    2008-01-01

    During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use.

  8. The vasopressin receptor of the blood-brain barrier in the rat hippocampus is linked to calcium signalling

    DEFF Research Database (Denmark)

    Hess, J.; Jensen, Claus V.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, vasopressin receptor, VI subtype, blood-brain barrier, cerebral endothelium, hippocampus, Fura-2......Neuropathology, vasopressin receptor, VI subtype, blood-brain barrier, cerebral endothelium, hippocampus, Fura-2...

  9. Ocular Effects of Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Yunes Panahi

    2013-06-01

    Full Text Available Purpose: To review current knowledge about ocular effects of sulfur mustard (SM and the associated histopathologic findings and clinical manifestationsMethods: Literature review of medical articles (human and animal studies was accomplished using PubMed, Scopus and ISI databases. A total of 274 relevant articles in English were retrieved and reviewed thoroughly.Results: Eyes are the most sensitive organs to local toxic effects of mustard gas. Ocular injuries are mediated through different toxic mechanisms including: biochemical damages, biomolecular and gene expression modification, induction of immunologic and inflammatory reactions, disturbing ultrastructural architecture of the cornea, and long-lasting corneal denervation. The resulting ocular injuries can roughly be categorized into acute or chronic complications. Most of the patients recover from acute injuries, but a minority of victims will suffer from chronic ocular complications. Mustard gas keratopathy (MGK is a devastating late complication of SM intoxication that proceeds from limbal stem cell deficiency (LSCD.Conclusion: SM induces several different damaging changes in case of ocular exposure; hence leading to a broad spectrum of ocular manifestations in terms of severity, timing and form. Unfortunately, no effective strategy has been introduced yet to inhibit or restore these damaging changes.

  10. haematological changes accompanying prolonged ocular ...

    African Journals Online (AJOL)

    Dr Olaleye

    oral chloramphenicol provided the basis for comparison. 20 adult male rabbits were randomly but equally divided into two main groups based on the route of administration of the drug (i.e ocular or oral). In each group of ten rabbits equal number of rabbits were randomly divided into test (n=5) and control (n=5) subgroups.

  11. [Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain].

    Science.gov (United States)

    Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-03-01

    The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.

  12. Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier

    OpenAIRE

    Fu, Bingmei M

    2012-01-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and i...

  13. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior

    Directory of Open Access Journals (Sweden)

    Samantha J. Hindle

    2017-10-01

    Full Text Available Summary: Central nervous system (CNS chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB. Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice. Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation. : Hindle et al. shed light on the curious finding that some drugs cause behavioral side-effects despite negligible access into the brain. These authors propose a unifying hypothesis that links blood-brain barrier drug transporter function and brain access of circulating steroids to common CNS adverse drug responses. Keywords: drug side effect mechanisms, central nervous system, blood brain barrier, behavior, toxicology, drug transporters, endobiotics, steroid hormones

  14. Selective effects of alpha-MSH and MIF-1 on the blood-brain barrier

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Kastin, A.J.

    1981-01-01

    The effects of intravenously-injected alpha-MSH and MIF-1 (Pro-Leu-Gly-NH2) on the permeability of the blood-brain barrier (BBB) to a large protein and a small anion were studied using radioiodinated serum albumin (RISA) and 99mTc-labeled sodium pertechnetate. The permeability of the BBB to RISA was unaltered by either peptide. Permeability to the inorganic pertechnetate anion, however, was significantly increased by alpha-MSH but not by MIF-1 at doses known to evoke EEG and behavioral responses. The peptides did not cause a change in the systemic blood pressure. It is possible, therefore, that at least some CNS effects of peripherally administered peptides are exerted by alteration of the permeability of the BBB to other substances

  15. Ocular hemodynamics in patients with rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    N. H. Zavgorodnya

    2014-10-01

    Full Text Available Aim. In case of retinal detachment atrophic processes lead to irreversible loss of functions within 4–6 days, it happens on underlying low ocular blood flow. In order to evaluate the degree of violation of regional hemodynamics in patients with retinal detachment two groups of patients were examined: the main group (52 patients with rhegmatogenous retinal detachment and the control group (24 myopic patients with lattice form of peripheral chorioretinal dystrophy. Methods and results. Doppler and reography results had been compared, significant decrease of blood flow in patients with retinal detachment was found. No differences between affected and fellow eye in these patients, close negative correlation between the level of ocular blood flow and the degree of myopia in the control group. Conclusion. This demonstrates the feasibility of actions to improve regional blood flow in patients operated on for retinal detachment.

  16. Fundus Autofluorescence Imaging in an Ocular Screening Program

    Directory of Open Access Journals (Sweden)

    A. M. Kolomeyer

    2012-01-01

    Full Text Available Purpose. To describe integration of fundus autofluorescence (FAF imaging into an ocular screening program. Methods. Fifty consecutive screening participants were included in this prospective pilot imaging study. Color and FAF (530/640 nm exciter/barrier filters images were obtained with a 15.1MP Canon nonmydriatic hybrid camera. A clinician evaluated the images on site to determine need for referral. Visual acuity (VA, intraocular pressure (IOP, and ocular pathology detected by color fundus and FAF imaging modalities were recorded. Results. Mean ± SD age was 47.4 ± 17.3 years. Fifty-two percent were female and 58% African American. Twenty-seven percent had a comprehensive ocular examination within the past year. Mean VA was 20/39 in the right eye and 20/40 in the left eye. Mean IOP was 15 mmHg bilaterally. Positive color and/or FAF findings were identified in nine (18% individuals with diabetic retinopathy or macular edema (n=4, focal RPE defects (n=2, age-related macular degeneration (n=1, central serous retinopathy (n=1, and ocular trauma (n=1. Conclusions. FAF was successfully integrated in our ocular screening program and aided in the identification of ocular pathology. Larger studies examining the utility of this technology in screening programs may be warranted.

  17. Fundus autofluorescence imaging in an ocular screening program.

    Science.gov (United States)

    Kolomeyer, A M; Nayak, N V; Szirth, B C; Khouri, A S

    2012-01-01

    Purpose. To describe integration of fundus autofluorescence (FAF) imaging into an ocular screening program. Methods. Fifty consecutive screening participants were included in this prospective pilot imaging study. Color and FAF (530/640 nm exciter/barrier filters) images were obtained with a 15.1MP Canon nonmydriatic hybrid camera. A clinician evaluated the images on site to determine need for referral. Visual acuity (VA), intraocular pressure (IOP), and ocular pathology detected by color fundus and FAF imaging modalities were recorded. Results. Mean ± SD age was 47.4 ± 17.3 years. Fifty-two percent were female and 58% African American. Twenty-seven percent had a comprehensive ocular examination within the past year. Mean VA was 20/39 in the right eye and 20/40 in the left eye. Mean IOP was 15 mmHg bilaterally. Positive color and/or FAF findings were identified in nine (18%) individuals with diabetic retinopathy or macular edema (n = 4), focal RPE defects (n = 2), age-related macular degeneration (n = 1), central serous retinopathy (n = 1), and ocular trauma (n = 1). Conclusions. FAF was successfully integrated in our ocular screening program and aided in the identification of ocular pathology. Larger studies examining the utility of this technology in screening programs may be warranted.

  18. Blood-aqueous Barrier Function in a Patient With Choroideremia

    Directory of Open Access Journals (Sweden)

    Muh-Shy Chen

    2010-02-01

    Full Text Available The purpose was to determine whether there was a breakdown of the blood-aqueous barrier in a patient with choroideremia. A 27-year-old man with typical choroideremia underwent standardized ophthalmo-logical evaluation, including quantitative measurement of aqueous flare intensity, by a laser flare-cell meter. The results showed areas of atrophy of the choriocapillaries and retinal pigment epithelium in the mid-periphery and posterior pole, although not in the macula. Fluorescein angiography showed areas of loss of the choriocapillaries and retinal pigment epithelium. The fovea was spared with a surrounding zone of hy-perfluorescence. Electroretinography showed a subnormal photopic amplitude and extinguished scotopic response. Electrooculography revealed that the light peak/dark trough ratio was reduced. Goldmann perimetry showed constricted peripheral fields. Laser photometry showed an increase in the aqueous flare intensity in both eyes, as compared with normal subjects. We conclude that the function of the blood-aqueous barrier might be affected in patients with choroideremia.

  19. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  20. Barriers and motivators to blood donation among university students in Japan: development of a measurement tool.

    Science.gov (United States)

    Ngoma, A M; Goto, A; Yamazaki, S; Machida, M; Kanno, T; Nollet, K E; Ohto, H; Yasumura, S

    2013-10-01

    Despite growing demand for transfusion, the number of voluntary young blood donors has steadily decreased over recent years in Japan. This study aimed to develop an easy-to-use survey tool to assess barriers and motivators to blood donation among Japanese university students. We conducted cross-sectional studies at two universities in Fukushima Prefecture, Japan, in December 2011 (Stage 1) and February 2012 (Stage 2) using self-administered questionnaires. A short list of motivators and barriers to blood donation was developed from the open-ended questions asked of 50 students in Stage 1. In the Stage 2, we asked 105 students how important these items were when they decided whether or not to donate blood. Items showing a significant difference between donors and non-donors were kept in the final list. Overall, 56% of the 100 participants analysed in Stage 2 were men, and ages ranged from 19 to 24 with a median of 20 years. Comparison of motivators and barriers between donors and non-donors revealed that only barrier item 8 ('Frightened by blood donation') showed a significant difference (P = 0·0006) in an expected direction and with a consistency between two universities. This study identified fear as being the most significant barrier to blood donation among Japanese university students, which could be used as a single convenient indicator to assess their readiness to donate. More academic and clinical efforts are needed to understand and address students' fear towards blood donation in order to increase the donor pool in Japan. © 2013 International Society of Blood Transfusion.

  1. Barriers to blood glucose monitoring in a multiethnic community.

    Science.gov (United States)

    Zgibor, Janice C; Simmons, David

    2002-10-01

    We studied a multiethnic community to determine factors associated with blood glucose monitoring (BGM) and to determine the independent association between barriers to diabetes care and BGM. A total of 323 participants (35.6% European, 32.2% Maori, and 32.2% Pacific Islander) from the South Auckland Diabetes Project (free of major complications by self-report) completed a qualitative survey to determine barriers to diabetes care. Five barriers to diabetes care categories were generated including internal psychological (self efficacy/health beliefs), external psychological (psychosocial environment), internal physical (comorbidities/side effects of treatment), external physical (finance/access to care), and educational (knowledge of diabetes/services) barriers. Characteristics associated with BGM greater than or equal to twice weekly were female sex, HbA(1c) >8%, higher diabetes knowledge scores, and insulin use. Multivariate analyses demonstrated that those reporting external physical barriers (OR 0.47, 95% CI 0.26-0.84), external psychological barriers (0.55, 0.30-1.0), and internal psychological barriers (0.56, 0.32-1.0) were less likely to perform BGM independent of ethnicity, insulin use, age, sex, diabetes knowledge, and glycemic control. Further multivariate analyses demonstrated that those reporting external physical barriers, particularly related to personal finance, were less likely to perform BGM. These data demonstrate that patient-reported barriers to diabetes care are associated with BGM, particularly in relation to financial, psychosocial, and self-efficacy issues. Understanding these barriers and overcoming them within the context of the patient's ethnic environment may lead to increased participation in self-care.

  2. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis

    NARCIS (Netherlands)

    Gorter, Jan A.; van Vliet, Erwin A.; Aronica, Eleonora

    2015-01-01

    Over the last 15 years, attention has been focused on dysfunction of the cerebral vasculature and inflammation as important players in epileptogenic processes, with a specific emphasis on failure of the blood-brain barrier (BBB; Fig. 1) (Seiffert et al., 2004; Marchi et al., 2007; Oby and Janigro,

  3. Scleral buckling-induced ocular parameter changes in different age group patients of rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Ashish Bedarkar

    2017-01-01

    Conclusion: Age-related change in physical properties of ocular tissue does not have any major additional effect on the results of SB except that the postsurgical change in corneal curvature stops earlier in older patients compared to that in younger patients.

  4. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent

    Directory of Open Access Journals (Sweden)

    Pascale Crissey L

    2011-07-01

    Full Text Available Abstract Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD. There is an accumulation of amyloid-beta peptides (Aβ in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB. With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1, P-glycoprotein (P-gp, LRP-2 (megalin and the receptor for advanced glycation end-products (RAGE at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.

  5. Ocular Manifestations of Mosquito-Transmitted Diseases.

    Science.gov (United States)

    Karesh, James W; Mazzoli, Robert A; Heintz, Shannon K

    2018-03-01

    Of the 3,548 known mosquito species, about 100 transmit human diseases. Mosquitoes are distributed globally throughout tropical and temperate regions where standing water sources are available for egg laying and the maturation of larva. Female mosquitoes require blood meals for egg production. This is the main pathway for disease transmission. Mosquitoes carry several pathogenic organisms responsible for significant ocular pathology and vision loss including West Nile, Rift Valley, chikungunya, dengue viruses, various encephalitis viruses, malarial parasites, Francisella tularensis, microfilarial parasites, including Dirofilaria, Wuchereria, and Brugia spp., and human botfly larvae. Health care providers may not be familiar with many of these mosquito-transmitted diseases or their associated ocular findings delaying diagnosis, treatment, and recovery of visual function. This article aims to provide an overview of the ocular manifestations associated with mosquito-transmitted diseases.

  6. 21 CFR 882.1790 - Ocular plethysmograph.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1790 Ocular plethysmograph. (a) Identification. An ocular plethysmograph is a device used to measure or detect volume changes in the eye produced...

  7. Comparison of Optic Nerve Head Blood Flow Autoregulation among Quadrants Induced by Decreased Ocular Perfusion Pressure during Vitrectomy

    Directory of Open Access Journals (Sweden)

    Ryuya Hashimoto

    2017-01-01

    Full Text Available Purpose. The present study aimed to examine changes in optic nerve head (ONH blood flow autoregulation in 4 quadrants (superior, nasal, inferior, and temporal with decreased ocular perfusion pressure (OPP during vitrectomy in order to determine whether there is a significant difference of autoregulatory capacity in response to OPP decrease at each ONH quadrant. Methods. This study included 24 eyes with an epiretinal membrane or macular hole that underwent vitrectomy at Toho University Sakura Medical Center. Following vitrectomy, the tissue mean blur rate (MBR, which reflects ONH blood flow, was measured. Mean tissue MBRs in the four quadrants were generated automatically in the software analysis report. Measurements were conducted before and 5 and 10 min after intraocular pressure (IOP elevation of approximately 15 mmHg in the subjects without systemic disorders. Results. The baseline tissue MBR of the temporal quadrant was significantly lower than that of the other 3 quadrants (all P<0.05. However, the time courses of tissue MBR in response to OPP decrease were not significantly different among the four quadrants during vitrectomy (P=0.23. Conclusions. There is no significant difference in the autoregulatory capacity of the four ONH quadrants in patients without systemic disorders during vitrectomy.

  8. You Shall Not Pass – Tight junctions of the Blood Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Hans-Christian eBauer

    2014-12-01

    Full Text Available Tissue barriers restricting the free diffusion of substances between the central nervous system and the systemic circulation are of great medical interest. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB during ischemic/hypoxic conditions or due to an autoimmune disease are detrimental to the physiology of nervous tissue.On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a functional BBB or blood cerebrospinal fluid barrier. At the basis of the BBB are, next to an elaborate transporting machinery, intimate cell-cell contacts (tight junctions creating not only a paracellular diffusion constraint but also enabling the vectorial transport across cell monolayers.More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ proteins during development has brought much insight into the developmental tightening of tissue barriers. Further, over the last two decades a detailed molecular map of tight junctions has emerged.TJs not only represent a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell proliferation, cytoskeletal rearrangement, and transcriptional control.This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial

  9. Fluorescein isothiocyanate (FITC)-Dextran Extravasation as a Measure of Blood-Brain Barrier Permeability

    Science.gov (United States)

    Natarajan, Reka; Northrop, Nicole

    2017-01-01

    The blood-brain barrier (BBB) is formed in part by vascular endothelial cells that constitute the capillaries and microvessels of the brain. The function of this barrier is to maintain homeostasis within the brain microenvironment and buffer the brain from changes in the periphery. A dysfunction of the BBB would permit circulating molecules and pathogens typically restricted to the periphery to enter the brain and interfere with normal brain function. As increased permeability of the BBB is associated with several neuropathologies, it is important to have a reliable and sensitive method that determines BBB permeability and the degree of BBB disruption. A detailed protocol is presented for assessing the integrity of the BBB by transcardial perfusion of a 10,000 Da FITC labeled dextran molecule and its visualization to determine the degree of extravasation from brain microvessels. PMID:28398646

  10. Relationship between blood-retinal barrier development and formation of selenite nuclear cataract in rat

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2017-12-01

    Full Text Available AIM: To investigate the relationship between development of blood-retinal barrier and formation of selenite nuclear cataract in rat. METHODS: Activity of GPx, MDA level in lens and selenium content in the eyeballs of different ages rats were determined. Besides, lanthanum hydroxide \\〖La(OH3\\〗 tracer method was used to detect development status of blood-retina barrier at different ages. RESULTS: The result showed that the enzyme activity of GPx was highest in young rats before open eyes, but then decreased gradually with age. Distribution of La(OH3 in retinal pigment epithelial layer of 20-day-old rats was significantly less than 11-day-old rats. Injecting sodium selenite to 9-day-old rats, lanthanum hydroxide increased obviously and extended to the inner layers of the retina after 48h, and the retinal pigment epithelial layer was damaged seriously; while injecting sodium selenite to 18-day-old rats with the same dose, number of lanthanum hydroxide decreased significantly and did not extend to the inner layer after 48h.Before opening eyes, the content of MDA in the lens of rats was the highest, and decreased significantly after opening eyes. The Se group was 5 times as that of the control group. Besides, in these groups of rats, selenium content in the eyeballs and MDA level in the lens were in agreement with the change of La(OH3 distribution. CONCLUSION: These results indicated that antioxidant capacity in the eyelid unopened rats is not the main reason for selenite induced cataract formation. The real reason is that blood-retina barrier development is not mature in the eyelid unopened rats.

  11. Ocular surface changes in type II diabetic patients with proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Yan Gao

    2015-04-01

    Full Text Available AIM: To detect and analyze the changes on ocular surface and tear function in type II diabetic patients with proliferative diabetic retinopathy (PDR, an advanced stage of diabetic retinopathy (DR, using conventional ophthalmic tests and the high-resolution laser scanning confocal microscopy. METHODS: Fifty-eight patients with type II diabetes were selected. Based on the diagnostic criteria and stage classification of DR, the patients were divided into the non-DR (NDR group and the PDR group. Thirty-six patients with cataract but no other ocular and systemic disease were included as non-diabetic controls. All the patients were subjected to the conventional clinical tests of corneal sensitivity, Schirmer I Test, and corneal fluorescein staining. The non-invasive tear film break-up time (NIBUT and tear interferometry were conducted by a Tearscope Plus. The morphology of corneal epithelia and nerve fibers was examined using the high-resolution confocal microscopy. RESULTS: The NDR group exhibited significantly declined corneal sensitivity and Schirmer I test value, as compared to the non-diabetic controls (P< 0.001. The PDR group showed significantly reduced corneal sensitivity, Schirmer I test value, and NIBUT in comparison to the non-diabetic controls (P < 0.001. Corneal fluorescein staining revealed the progressively injured corneal epithelia in the PDR patients. Moreover, significant decrease in the corneal epithelial density and morphological abnormalities in the corneal epithelia and nerve fibers were also observed in the PDR patients. CONCLUSION: Ocular surface changes, including blunted corneal sensitivity, reduced tear secretion, tear film dysfunction, progressive loss of corneal epithelia and degeneration of nerve fibers, are common in type II diabetic patients, particularly in the diabetic patients with PDR. The corneal sensitivity, fluorescein staining scores, and the density of corneal epithelial cells and nerve fibers in the diabetic

  12. Ocular surface changes in type II diabetic patients with proliferative diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Yan; Gao; Yan; Zhang; Yu-Sha; Ru; Xiao-Wu; Wang; Ji-Zhong; Yang; Chun-Hui; Li; Hong-Xing; Wang; Xiao-Rong; Li; Bing; Li

    2015-01-01

    AIM: To detect and analyze the changes on ocular surface and tear function in type II diabetic patients with proliferative diabetic retinopathy(PDR), an advanced stage of diabetic retinopathy(DR), using conventional ophthalmic tests and the high-resolution laser scanning confocal microscopy.METHODS: Fifty-eight patients with type II diabetes were selected. Based on the diagnostic criteria and stage classification of DR, the patients were divided into the non-DR(NDR) group and the PDR group. Thirty-six patients with cataract but no other ocular and systemic disease were included as non-diabetic controls. All the patients were subjected to the conventional clinical tests of corneal sensitivity, Schirmer I test, and corneal fluorescein staining. The non-invasive tear film break-up time(NIBUT) and tear interferometry were conducted by a Tearscope Plus. The morphology of corneal epithelia and nerve fibers was examined using the high-resolution confocal microscopy.RESULTS: The NDR group exhibited significantly declined corneal sensitivity and Schirmer I test value, as compared to the non-diabetic controls(P <0.001). The PDR group showed significantly reduced corneal sensitivity, Schirmer I test value, and NIBUT in comparison to the non-diabetic controls(P <0.001).Corneal fluorescein staining revealed the progressively injured corneal epithelia in the PDR patients. Moreover,significant decrease in the corneal epithelial density andmorphological abnormalities in the corneal epithelia and nerve fibers were also observed in the PDR patients.CONCLUSION: Ocular surface changes, including blunted corneal sensitivity, reduced tear secretion, tear film dysfunction, progressive loss of corneal epithelia and degeneration of nerve fibers, are common in type II diabetic patients, particularly in the diabetic patients with PDR. The corneal sensitivity, fluorescein staining scores,and the density of corneal epithelial cells and nerve fibers in the diabetic patients correlate with the

  13. Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier

    International Nuclear Information System (INIS)

    Zlokovic, B.V.; Segal, M.B.; Davson, H.; Jankov, R.M.

    1988-01-01

    Unidirectional flux of 125 I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of 125 I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternal perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides

  14. Ocular Hypertension

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Ocular Hypertension Sections What Is Ocular Hypertension? Ocular Hypertension Causes ... Hypertension Diagnosis Ocular Hypertension Treatment What Is Ocular Hypertension? Leer en Español: ¿Qué es la hipertensión ocular? ...

  15. Relation of anthropometric measurements to ocular biometric changes and refractive error in children with thalassemia.

    Science.gov (United States)

    Elkitkat, Rania S; El-Shazly, Amany A; Ebeid, Weam M; Deghedy, Marwa R

    2018-03-01

    To evaluate and correlate anthropometric, biometric, and refractive error changes in thalassemia major (TM). One hundred children with TM and another hundred healthy controls were recruited. Height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were the anthropometric parameters recorded. Full ophthalmologic examination was performed, including best-corrected visual acuity, cycloplegic refraction, slit-lamp examination, Goldmann applanation tonometry, indirect ophthalmoscopy, keratometry (K readings), and ocular biometry. Compared to controls, children with TM were shorter and lighter, with a smaller BMI (pbiometric data, patients with thalassemia had steeper mean K readings (p = 0.03), shorter axial length (AXL) (p = 0.005), shorter vitreous chamber depth (pbiometric changes (steeper corneas and thicker lenses) to reach emmetropization, with an exaggerated response and subsequent myopic shift. However, growth retardation is not directly related to ocular growth changes, myopic shift, or variations in biometric parameters.

  16. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system

    OpenAIRE

    Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed

    2012-01-01

    Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented o...

  17. An analysis of blood donation barriers experienced by North American and Caribbean university students in Grenada, West Indies.

    Science.gov (United States)

    Dean, Benjamin W; Hewitt, Sarah N; Begos, Morgan C; Gomez, Angela; Messam, Locksley L McV

    2018-02-01

    To estimate the associations of nationality, university program, donation history and gender, with blood donation barriers experienced by non-donating students on the day of a campus blood drive. This project focused particularly on nationality and the effect of the different blood donation cultures in the students' countries of origin. A retrospective cohort study of 398 North American and Caribbean university students was conducted at St. George's University, Grenada, in 2010. Data were collected from non-donating students on campus while a blood drive was taking place. Log-binomial regression was used to estimate associations between the exposures of interest and donation barriers experienced by the students. North American (voluntary blood donation culture) students were more likely than Caribbean (replacement blood donation culture) students to experience "Lack of Time" (relative risk (RR) = 1.57; 95% confidence interval (CI): 1.19-2.07) and "Lack of Eligibility" (RR = 1.55; 95% CI: 1.08-2.22) as barriers to donation. Conversely, Caribbean students were a third as likely to state "Lack of Incentive" (RR = 0.32; 95% CI: 0.20-0.50), "Fear of Infection" (RR = 0.35; 95% CI: 0.21-0.58), and "Fear of Needles" (RR = 0.32; 95% CI: 0.21-0.48) were barriers than North American students. University students from voluntary blood donation cultures are likely to experience different barriers to donation than those from replacement cultures. Knowledge of barriers that students from contrasting blood donation systems face provides valuable information for blood drive promotion in university student populations that contain multiple nationalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  19. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud

    2017-06-01

    See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier

  20. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage

    NARCIS (Netherlands)

    Nieuwenhuizen, K.M. van; Hendrikse, J.; Klijn, C.J.M.

    2017-01-01

    Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two

  1. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage

    NARCIS (Netherlands)

    van Nieuwenhuizen, Koen M; Hendrikse, Jeroen; Klijn, Catharina J M

    Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two

  2. The Changing Epidemiology of Herpes Simplex Virus Type 1 Infection: The Associated Effects on the Incidence of Ocular Herpes

    Directory of Open Access Journals (Sweden)

    Abedi Kiasari, B.

    2016-07-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 with a worldwide distribution has been reported in all human populations, resulting in a clinical spectrum of infections. Although HSV type 2 (HSV-2 is known as the most common cause of genital herpes, an increasing number of cases with genital herpes are caused by HSV-1. The present study aimed to discuss the changes in the epidemiology of HSV-1 infection including the decline in the general incidence of HSV-1 infection in childhood and the increased rate of genital herpes, caused by HSV-1. Moreover, changes in the epidemiology of ocular herpes, i.e., the reduced rate of primary ocular herpes in children and increased incidence of ocular HSV infection in adults, were discussed.

  3. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  4. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  5. Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus.

    Science.gov (United States)

    Del Bigio, Marc R; Slobodian, Ili; Schellenberg, Angela E; Buist, Richard J; Kemp-Buors, Tanya L

    2011-08-11

    Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR) imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB) permeability would be detected. Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2) and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA) tracer and microscopically by detection of fluorescent dextran conjugates. In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers. MR characteristics cannot be used as direct surrogates for water

  6. Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus

    Directory of Open Access Journals (Sweden)

    Del Bigio Marc R

    2011-08-01

    Full Text Available Abstract Background Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB permeability would be detected. Methods Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2 and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA tracer and microscopically by detection of fluorescent dextran conjugates. Results In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers. Conclusions MR

  7. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues da Silva, Gisele [Federal University of Sao Joao Del Rei, School of Pharmacy, Divinopolis, Minas Gerais (Brazil); Silva-Cunha, Armando da [Federal University of Minas Gerais, School of Pharmacy, Belo Horizonte, Minas Gerais (Brazil); Behar-Cohen, Francine [INSERM, Physiopathology of ocular diseases: Therapeutic innovations, Institut des Cordeliers, Paris (France); Laboratoire d' Innovations Therapeutiques, Fondation Rothschild, Paris (France); Universite Rene Descartes, Hotel Dieu University Hospital, Paris (France); Ayres, Eliane [Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Belo Horizonte, Minas Gerais (Brazil); Orefice, Rodrigo L., E-mail: rorefice@demet.ufmg.br [Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Belo Horizonte, Minas Gerais (Brazil)

    2011-03-12

    The treatment of posterior segment ocular diseases, such as uveitis, by using eye drops and oral drugs is usually not effective due to the body's natural barriers to drug penetration. In this study, ocular implants to treat uveitis were synthesized by incorporating dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, into a biodegradable polyurethane containi clay nanoparticles. Biodegradable polyurethane nanocomposites having poly(caprolactone) oligomers as soft segments were obtained by delaminating clay particles within a polyurethane aqueous dispersion. The drug was incorporated into the polymer by dispersing it in the waterborne polyurethane followed by a drying step. Nanoparticles derived from clay were demonstrated to be able to tailor the mechanical properties of polyurethanes to achieve values that can match the properties of ocular soft tissues. Infrared spectra (FTIR) showed that the presence of clay particles was able to change the microphase separation process typical of polyurethanes. X-ray diffraction and small angle x-ray scattering (SAXS) results were explored to show that the incorporation of both dexamethasone acetate and nanocomponents derived from clay led to a less defined two-phase polyurethane. The presence of clay nanoparticles increased the rate of drug release measured in vitro. Human retinal pigment epithelial cells (ARPE-19) were cultured in contact with polyurethanes and polyurethane nanocomposites, and the viability of them (evaluated by using MTT assay after 7 days) showed that no toxic components were released from polyurethanes containing no drugs during the test.

  8. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route

    International Nuclear Information System (INIS)

    Rodrigues da Silva, Gisele; Silva-Cunha, Armando da; Behar-Cohen, Francine; Ayres, Eliane; Orefice, Rodrigo L.

    2011-01-01

    The treatment of posterior segment ocular diseases, such as uveitis, by using eye drops and oral drugs is usually not effective due to the body's natural barriers to drug penetration. In this study, ocular implants to treat uveitis were synthesized by incorporating dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, into a biodegradable polyurethane containi clay nanoparticles. Biodegradable polyurethane nanocomposites having poly(caprolactone) oligomers as soft segments were obtained by delaminating clay particles within a polyurethane aqueous dispersion. The drug was incorporated into the polymer by dispersing it in the waterborne polyurethane followed by a drying step. Nanoparticles derived from clay were demonstrated to be able to tailor the mechanical properties of polyurethanes to achieve values that can match the properties of ocular soft tissues. Infrared spectra (FTIR) showed that the presence of clay particles was able to change the microphase separation process typical of polyurethanes. X-ray diffraction and small angle x-ray scattering (SAXS) results were explored to show that the incorporation of both dexamethasone acetate and nanocomponents derived from clay led to a less defined two-phase polyurethane. The presence of clay nanoparticles increased the rate of drug release measured in vitro. Human retinal pigment epithelial cells (ARPE-19) were cultured in contact with polyurethanes and polyurethane nanocomposites, and the viability of them (evaluated by using MTT assay after 7 days) showed that no toxic components were released from polyurethanes containing no drugs during the test.

  9. Ultrastructural studies on the blood-brain barrier. Mainly as to changes in the permeability of cerebral capillary walls induced by experimental x-ray irradiation and the effect of glucocorticoid on such changes

    Energy Technology Data Exchange (ETDEWEB)

    Ichitsubo, H [Tokyo Medical Coll. (Japan)

    1977-03-01

    In the present study, an ultrastructural examination was made of the role of capillary endothelial cells of the brain which is one of the constituent factors of the blood-brain barrier. In normal cerebral capillaries, both endothelial cells and the basement membrane were demonstrated to be not crossed by a tracer (horseradish peroxidase) even in 60 minutes after its intravenous administration, thus suggesting the blood-brain barrier effect. Author investigated changes in the permeability of cerebral capillary walls induced by experimental brain irradiation and the effect of glucocorticoid on such changes. On forty-eight hours following an appropriate irradiation a marked brain edema was developed; under such circumstances when the tracer was injected intravenously, on 60 minutes thereafter the tracer was demonstrated to be transferred into the neutral tissue, and this was interpreted as indicating that capillary hyperpermeability was induced. These findings were suggested that the mechanism of capillary hyperpermeability might not be based on the passage of a tight junction of the cells of capillary wall but rather on account of activated active transport via an increased number of pinocytotic vesicles. The mechanism of increase of pinocytotic vesicle appeared to be resulting from a breakdown of the controlling system of pinocytotic vesicle production. However, the existence of this controlling system is still speculative. Pre-and post-irradiation administration of glucocorticoid proved to be effective in the prevention of irradiation-induced hyperpermeability of cerebral capillaries, and to be indicating the possible usefulness of the drug for the maintenance or repair of the aforementioned system.

  10. Comfort, Ocular Dryness, and Equilibrium Water Content Changes of Daily Disposable Contact Lenses.

    Science.gov (United States)

    Insua Pereira, Eduardo; Lira, Madalena

    2017-10-26

    The objective of this investigation was to evaluate the level of comfort and ocular dryness during wear with six daily disposable contact lenses (DDCL) and also determine the changes in contact lens equilibrium water content (EWC) resulting from their wear. In this contralateral open trial, 27 subjects were randomly fitted with six DDCL (stenfilcon A, delefilcon A, nelfilcon A, narafilcon A, nesofilcon A, and omafilcon A). The evaluation of comfort and ocular dryness sensation was recorded by the participants at two moments of the day (11 AM and 5 PM) over a period of 10 days of contact lens wear. The assessment was made with the aid of visual analogue scales (0-10). The refractive index of 54 contact lenses was accessed by a single operator using a digital automated refractometer (CLR 12-70; Index Instruments). The EWC of the lenses was estimated based on its refractive index values. Comfort ratings were slightly higher for delefilcon A (9.56±0.67, P=0.01) and narafilcon A (9.40±0.93, P=0.01) and these lenses wearers also reported less ocular dryness. The results revealed a pronounced water content reduction for omafilcon A (P=0.002), narafilcon A (P=0.008), and nesofilcon A (P=0.003). Although changes in subjective responses and EWC were distinct among the materials analyzed, all the contact lenses performed well during the 10 days of wear.

  11. Tear Film and Ocular Surface Changes in Patients Receiving Systemic Isotretinoin

    Directory of Open Access Journals (Sweden)

    Ebru Nevin Çetin

    2013-10-01

    Full Text Available Purpose: Our aim in this study was to assess the ocular surface and tear film changes in acne vulgaris patients receiving systemic isotretinoin. Material and Method: Twenty-two eyes of 22 patients who received oral isotretinoin (roaccutane®, 0.7 mg/kg/day for nodular acne vulgaris were enrolled in this prospective study. Tear film break-up time (BUT, Schirmer 1 test scores with anesthesia, ocular surface disease index (OSDI scores and conjunctival impression cytology scores were recorded before treatment and at 3- and 6-month visits following the beginning of treatment. Results: BUT values decreased and OSDI scores significantly increased at 3 months after treatment (p=0.007 and p=0.018, paired samples test. Schirmer scores did not significantly change by isotretinoin treatment. Of 9 eyes with impression cytology specimens, 4 revealed normal conjunctival findings before treatment. At the 3rd month, there was an increase in the scores characterized by decrease of Goblet cells, and at 6 months of treatment, normal conjunctival findings did not exist in any of the patients (p=0.004, Friedman test. Discussion: Systemic isotretinoin treatment can cause alterations in the tear film and cause dry eye symptoms. (Turk J Ophthalmol 2013; 43: 309-12

  12. Systems pharmacology and blood-brain barrier functionality in Parkinson's disease

    NARCIS (Netherlands)

    Ravenstijn, Paulien Gerarda Maria

    2009-01-01

    Parkinson’s disease is a progressive neurodegenerative disease, which is composed of many components, each caused by interplay of a number of genetic and nongenetic causes. As the blood-brain barrier (BBB) is a key player in the relationship between plasma and brain pharmacokinetics, the influences

  13. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed

    2012-01-01

    Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented opportunities for the development of novel therapeutics. PMID:21921682

  14. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    DEFF Research Database (Denmark)

    Helms, Hans CC; Aldana, Blanca I; Groth, Simon

    2017-01-01

    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co...... brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites....

  15. Engineering an in vitro air-blood barrier by 3D bioprinting

    Science.gov (United States)

    Horváth, Lenke; Umehara, Yuki; Jud, Corinne; Blank, Fabian; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing. PMID:25609567

  16. Diurnal blood pressure changes.

    Science.gov (United States)

    Asayama, Kei; Satoh, Michihiro; Kikuya, Masahiro

    2018-05-23

    The definition of diurnal blood pressure changes varies widely, which can be confusing. Short-term blood pressure variability during a 24-h period and the dipping status of diurnal blood pressure can be captured by ambulatory blood pressure monitoring, and these metrics are reported to have prognostic significance for cardiovascular complications. Morning blood pressure surge also indicates this risk, but its effect may be limited to populations with specific conditions. Meanwhile, the combined use of conventional office blood pressure and out-of-office blood pressure allows us to identify people with white-coat and masked hypertension. Current home devices can measure nocturnal blood pressure during sleep more conveniently than ambulatory monitoring; however, we should pay attention to blood pressure measurement conditions regardless of whether they are in a home, ambulatory, or office setting. The relatively poor reproducibility of diurnal blood pressure changes, including the nocturnal fall of blood pressure, is another underestimated issue to be addressed. Although information on diurnal blood pressure changes is expected to be used more effectively in the future, we should also keep in mind that blood pressure levels have remained central to the primary and secondary prevention of blood pressure-related cardiovascular diseases in clinical practice.

  17. Why testes are resistant to hydatidosis: Is blood-testis-barrier ...

    African Journals Online (AJOL)

    There was demonstrable hydatid cyst (protoscoleces and germinative layer) in testes of five rabbits from Group A, but in one rabbit, both testes were normal. In Group B, three out of four rabbits developed peritoneal hydatidosis. The mechanism of testicular resistance to echinococcosis could be due to blood-testis barrier ...

  18. Relationship between ocular surface temperature and peripheral vasoconstriction in healthy subjects: a thermographic study.

    Science.gov (United States)

    Vannetti, Federica; Matteoli, Sara; Finocchio, Lucia; Lacarbonara, Francesco; Sodi, Andrea; Menchini, Ugo; Corvi, Andrea

    2014-03-01

    An impairment of ocular blood flow regulation is commonly considered one of the main pathogenetic mechanisms involved in the development of several eye diseases, like glaucoma. The aim of this study was to investigate whether an alteration of ocular blood supply induced by peripheral vasoconstriction might be detected by measuring the ocular surface temperature. The ocular surface temperature was evaluated in a group of 38 healthy young subjects (28 males and 10 females; mean age: 25.4 ± 4.1 years) by infrared thermography. For each subject, the experimental procedure consisted of two thermographic acquisitions both lasting 10 s, recorded before and during the immersion of both hands in a mixture of ice and water (1.6 °C ± 0.4 °C). Specifically, the second acquisition began 20 s after the hand immersion. Analysis of variance was used to compare the ocular surface temperature of the two profiles. The analysis of infrared images was carried out every 2 s: at the eye opening (t(0)) until 10 s (t(5)), for both profiles. Data showed that ocular surface temperature increased significantly (p-value temperature at t(0) for P(1) = 0.12 °C ± 0.13 °C). Therefore, these results suggest a response of the ocular hemodynamic to the peripheral vasoconstriction. The ocular surface temperature may represent a cheap, non-invasive and non-time-consuming test to evaluate ocular vaso-regulation.

  19. Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers.

    Science.gov (United States)

    Kohli, Neha; Westerveld, Donevan R; Ayache, Alexandra C; Verma, Amrisha; Shil, Pollob; Prasad, Tuhina; Zhu, Ping; Chan, Sic L; Li, Qiuhong; Daniell, Henry

    2014-03-01

    Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer's disease (3×TgAD) mice, across the blood-brain barriers (BBB) and blood-retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S-stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB.

  20. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  1. Protective effects of monomethyl fumarate at the inflamed blood-brain barrier

    NARCIS (Netherlands)

    Lim, J.L.; van der Pol, S.M.A.; Di Dio, F.; van het Hof, B.; Kooij, G.; de Vries, H.E.; van Horssen, J.

    2015-01-01

    Background: Reactive oxygen species play a key role in the pathogenesis of multiple sclerosis as they induce blood-brain barrier disruption and enhance transendothelial leukocyte migration. Thus, therapeutic compounds with antioxidant and anti-inflammatory potential could have clinical value in

  2. Defense at the border : the blood-brain barrier versus bacterial foreigners

    NARCIS (Netherlands)

    van Sorge, Nina M.; Doran, Kelly S.

    Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical

  3. Transcriptional Changes in the Mouse Retina after Ocular Blast Injury: A Role for the Immune System.

    Science.gov (United States)

    Struebing, Felix L; King, Rebecca; Li, Ying; Chrenek, Micah A; Lyuboslavsky, Polina N; Sidhu, Curran S; Iuvone, P Michael; Geisert, Eldon E

    2018-01-01

    Ocular blast injury is a major medical concern for soldiers and explosion victims due to poor visual outcomes. To define the changes in gene expression following a blast injury to the eye, we examined retinal ribonucleic acid (RNA) expression in 54 mouse strains 5 days after a single 50-psi overpressure air wave blast injury. We observe that almost 40% of genes are differentially expressed with a false discovery rate (FDR) of immune system are activated. Accompanied by lymphocyte invasion into the inner retina, blast injury also results in progressive loss of visual function and retinal ganglion cells (RGCs). Collectively, these data demonstrate how systems genetics can be used to put meaning to the transcriptome changes following ocular blast injury that eventually lead to blindness.

  4. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI

    DEFF Research Database (Denmark)

    Cramer, Stig Præstekær; Simonsen, Helle Juhl; Frederiksen, Jette Lautrup Battistini

    2013-01-01

    To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics.......To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics....

  5. Changes in the ocular surface: initial observations from a pilot study of diagnostic radiology technicians (radiographers)

    International Nuclear Information System (INIS)

    Guerdal, Canan; Aydin, Sevda; Sengoer, Tomris; Onmus, Hale; Oezarar, Muemtaz

    2002-01-01

    The purpose of this study was to evaluate the clinical and cytological changes in the ocular surface of radiology technicians (radiographers) exposed to diagnostic doses of radiation. The Schirmer, Rose Bengal staining and Tear-Break-Up-Time tear function tests were carried out following routine ophthalmic examination in 15 radiology technicians (group I) and 15 controls (group II). Impression cytology was performed by placing 5-mm-thick half-circular cellulose acetate filter paper in the upper and lower quadrants around the limbus. The cytological evaluation was made using the mapping technique. Significantly increased dry eye was detected in group I. In the impression cytology investigation, squamous metaplasia and intraepithelial lymphocytic infiltration was noted in all the group-I cases. A distinct change was observed between the regions showing squamous metaplasia and neigbouring normal epithelial cell structure. Dry eye and ocular surface cytological changes were observed in diagnostic radiology technicians. Routine ophthalmic evaluation of radiology technicians would be beneficial in detecting early cytological changes and dry eye. (orig.)

  6. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  7. Altered Blood-Brain Barrier Permeability in Patients With Systemic Lupus Erythematosus: A Novel Imaging Approach.

    Science.gov (United States)

    Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W

    2017-02-01

    To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to

  8. Consequences of repeated blood-brain barrier disruption in football players.

    Directory of Open Access Journals (Sweden)

    Nicola Marchi

    Full Text Available The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT scans. Players from three college football teams were enrolled (total of 67 volunteers. None of the players experienced a concussion. Blood samples were collected before and after games (n = 57; the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games. A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10. Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes.

  9. Consequences of Repeated Blood-Brain Barrier Disruption in Football Players

    Science.gov (United States)

    Puvenna, Vikram; Janigro, Mattia; Ghosh, Chaitali; Zhong, Jianhui; Zhu, Tong; Blackman, Eric; Stewart, Desiree; Ellis, Jasmina; Butler, Robert; Janigro, Damir

    2013-01-01

    The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD) and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT) scans. Players from three college football teams were enrolled (total of 67 volunteers). None of the players experienced a concussion. Blood samples were collected before and after games (n = 57); the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games). A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10). Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes. PMID:23483891

  10. Experimental methods and transport models for drug delivery across the blood-brain barrier.

    Science.gov (United States)

    Fu, Bingmei M

    2012-06-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

  11. The prevalence of ocular lesions associated with hypertension in a population of geriatric cats in Auckland, New Zealand.

    Science.gov (United States)

    Carter, J M; Irving, A C; Bridges, J P; Jones, B R

    2014-01-01

    To provide an estimate of the prevalence of ocular lesions associated with hypertension in geriatric cats in Auckland, New Zealand and to evaluate the importance of examination of the ocular fundi of cats over eight years of age. A total of 105 cats ≥8 years of age were examined and clinical signs recorded. Blood was collected for the laboratory measurement of the concentrations of blood urea nitrogen (BUN), glucose and creatinine in serum, urine was collected for determination of urine specific gravity (USG), and blood pressure (BP) was measured using high definition oscillometry equipment. A cat was determined to have systemic hypertension with a systolic BP ≥160 mm Hg and a diastolic BP ≥100 mm Hg. Each animal had an ocular fundic examination using a retinal camera to diagnose ocular lesions associated with hypertension, including retinopathies, choroidopathies and optic neuropathies. Blood pressure was successfully recorded in 73 cats. Of these, 37 (51%) had no hypertensive ocular lesions and no underlying disease diagnosed, 24 (33%) had no hypertensive ocular lesions detected, but underlying disease such as chronic kidney disease, hyperthyroidism or diabetes mellitus was diagnosed, and 12 (16%) cats had evidence of hypertensive ocular lesions. Ten of the cats with hypertensive ocular lesions were hypertensive at the time of the first visit and two were normotensive. One additional cat had hypertensive ocular lesions, but it was not possible to obtain consistent BP readings in this animal. Chronic kidney disease was the most commonly diagnosed concurrent disease in cats with hypertensive ocular lesions (n=6). Mean systolic BP for cats with hypertensive ocular lesions (168.0 (SE 6.29) mm Hg) was higher than for those with no ocular lesions (144.7 (SE 3.11) mm Hg) or those with no lesions but with underlying disease (146.0 (SE 4.97) mm Hg) (p=0.001). Ocular fundic examination of cats over eight years of age allows identification of cats with

  12. Microfluidic organ-on-chip technology for blood-brain barrier research

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and

  13. Selective boron accumulation in human ocular melanoma by 10B1-para-boronophenylalanine administration for neutron capture therapy

    International Nuclear Information System (INIS)

    Wadabayashi, Nobutoshi; Ichihashi, Masamitsu; Honda, Chihiro; Mishima, Yutaka.

    1994-01-01

    Malignant melanoma occurs not only in the skin but also in ocular tissues. Ocular melanoma located superficially as in conjunctiva can be treated successfully by BNCT. In the present study, we investigated 10 B dynamics in ocular melanoma and the surrounding normal tissues, to evaluate the possibility of applying BNCT to ocular melanoma. In three ocular melanoma patients, 10 B concentration in melanoma after administration of 10 B-BPA by oral or drip infusion ranged from 10.4 to 21.5 ppm. The boron concentrations in lens and vitreous body were lower than blood level, whereas higher than blood in sclera and palpebral skin. These results suggest that we can treat such a superficial melanoma lesions as conjunctival melanoma by BNCT using 10 B 1 -BPA. (author)

  14. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Flanagan, Eoin P.; Fujihara, Kazuo

    2017-01-01

    with leptomeningeal enhancement (LME) were collected from 5 centers. External neuroradiologists, blinded to the clinical details, evaluated MRIs. Results: LME was demonstrated on postcontrast T1-weighted and fluid-attenuated inversion recovery images as a sign of leptomeningeal blood-barrier disruption and transient...

  15. The effect of high energy electron irradiation on blood-brain barrier permeability to haloperidol and stobadin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Trnovec, T; Kallay, Z [Komenskeho Univ., Bratislava (Czechoslovakia). Inst. of Preventive and Clinical Medicine; Volenec, K [Karlova Univ., Hradec Kralove (Czechoslovakia). Lekarska Fakulta; Bezek, S; Durisova, M; Scasnar, V; Kubu, M [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Ustav Experimentalnej Farmakologie; Svoboda, V [Medical Academy J.E. Purkyne, Hradec Kralove (Czechoslovakia)

    1991-10-01

    The heads of rats were irradiated by 4 MeV electrons in doses 90, 180, and 360 Gy. The observed times of deaths ranged 120-600, 60-420, and 150-370 min after 90, 180, and 360 Gy, respectively. A dose dependent decrease of the brain uptake index of haloperidol was observed 1 and 3 h post radiation. On the other hand an increased brain uptake index was found for stobadin after head irradiation with doses of 180 and 360 Gy. Regional cerebral blood flow, blood pressure, and heart rate were not significantly altered in the period following irradiation with 180 Gy. The observed changes in blood-brain barrier (BBB) permeability seem to be the result of the damaged function of morphological structures forming the BBB rather than altered regional blood flow. (orig.).

  16. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  17. Blood-brain barrier opening by isotonic saline infusion in normotensive and hypertensive animals

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, S I [Baltimore City Hospitals, MD (USA)

    1978-01-01

    The blood-brain barrier to intravascular Evans blue-albumin was opened in monkeys and rabbits by infusing isotonic saline for 15 s into the common carotid artery, when the external carotid was clamped temporarily and the lingual was catheterized for measuring pressure. Barrier opening correlated better with infusion pressure than with infusion rate, and occurred at carotid artery pressures above 170 mmHg. Systematic hypertension induced by Aramine increased barrier vulnerability by causing a higher net carotid artery pressure to be attained at a given infusion rate.

  18. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    Science.gov (United States)

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  19. /GD-Tracker/ A software for blood-brain barrier permeability assessment\

    Czech Academy of Sciences Publication Activity Database

    Kala, David; Svoboda, Jan; Litvinec, Andrej; Pošusta, Antonín; Lisý, J.; Šulc, V.; Tomek, A.; Marusič, P.; Jiruška, Přemysl; Otáhal, Jakub

    2017-01-01

    Roč. 47, č. 2 (2017), s. 43-48 ISSN 0301-5491 R&D Projects: GA MZd(CZ) NV15-33115A; GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 Keywords : blood-brain barrier * MRI * Gd-DTPA * permeability * stroke * epileptogenesis * MATLAB * freeware * Gd-Tracker Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology

  20. Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension.

    Science.gov (United States)

    Gugleta, Konstantin

    2010-06-01

    Dorzolamide and brinzolamide are topical carbonic anhydrase inhibitors (CAI) indicated for patients with glaucoma and ocular hypertension. An evidence-based review of clinical trials of dorzolamide and brinzolamide was undertaken to determine an effect of these medications on visual function (primarily visual field) in open-angle glaucoma and ocular hypertension. Using the keywords 'dorzolamide' and 'brinzolamide', all articles describing trials of these medications reporting on visual acuity, contrast sensitivity and visual field from September 1966 to July 2009 were found in MEDLINE and EMBASE databases. No information from other sources was included in this review. A relatively modest number of trials was identified, where impact of therapy on one or more of the visual function modes was reported. In the studies of less than 1 year duration (3 days to 1 year, 23 studies) in all but three studies treatment with topical CAIs did not influence visual function, in two studies with dorzolamide some improvement in the contrast sensitivity was observed and in one open-label retrospective no-control-group study with dorzolamide visual field indices improved significantly. A different picture was seen in long-term studies, which were designed and powered to detect changes in visual field. One large study (European Glaucoma Prevention Study) with dorzolamide versus placebo failed to detect significant protective effect of the drug on glaucoma occurrence in ocular hypertensives. Several interesting aspects of this study are discussed in detail. The other two long-term studies reported on the superiority of adding dorzolamide over timolol therapy alone, and the superiority of the combination of dorzolamide and timolol over brinzolamide and timolol in terms of improving ocular blood flow (retrobulbar Color Doppler Imaging--CDI parameters) as well as in terms of visual field preservation in glaucoma patients over 4 to 5 years. For the first time one study could demonstrate

  1. Ocular abnormalities in atopic dermatitis in Indian patients

    Directory of Open Access Journals (Sweden)

    Kaujalgi Radhika

    2009-01-01

    Full Text Available Background and Aims: Atopic dermatitis (AD is a common skin disease. Long-standing, severe AD with repeated scratching and rubbing of the face, which requires continuous dermatologic care, predisposes the patient to various ocular complications. The knowledge of the frequency and significance of these ocular complications may allow their early diagnosis and treatment. The present study assesses the ocular complications in Indian children suffering from AD. Methods: In order to study the ocular complications in AD, 100 patients (61 male and 39 female between the ages of 1 and 14 years were recruited. All the patients had complete dilated fundus examination with indirect ophthalmoscopy. The lid, conjunctiva and cornea were examined. Also, any evidence of cataract formation and retinal disorders were recorded. Results: The mean age of the children was 5.4 years. Forty-three (43.0% AD patients showed ocular abnormalities in the form of lid and conjunctival changes. Of these, 18 (41.9% patients showed only lid involvement, 16 (37.2% only conjunctival involvement and both conjunctival and lid changes were seen in nine (20.9% patients. Conjunctival changes were mostly in the form of a cobblestone appearance of the papillae, with mild to moderate papillary reaction and papillary hypertrophy. Variables observed to have a significant impact on the development of ocular abnormalities were age more than 5 years, duration of illness> 12 months, positive family history of atopy, presence of palmar hyperlinearity and a combination of both xerosis and Dennie-Morgan fold. Conclusions: The present study is the first of its kind from India to document an association between AD in children and various ocular manifestations. The ocular manifestations observed in our cohort were not associated with significant ocular morbidity or visual impairment possibly because of a less-severe disease in Indians.

  2. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    International Nuclear Information System (INIS)

    Ellison, M.D.B.

    1985-01-01

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study compares in rats, following acute hypertension, the cerebrovascular passage of 14 C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction

  3. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  4. Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental fetal asphyxia

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Tweed, W A

    1979-01-01

    reaching CBF values up to 6 times normal at normal MABP of about 60 to 70 mmHg, and severe ischemia reaching CBF values close to zero in large cortical areas at MABP of 30 mmHg. CVP remained essentially unchanged at 10--15 mmHg. The severe and prolonged asphyxia rendered the blood-brain barrier leaky......Cerebral blood flow (CBF) was studied in non-exteriorized near-term sheep fetuses using the radioactive microsphere technique. By partially occluding the umbilical vessels for a period of 1--1 1/2 hours a progressive and severe asphyxia with a final arterial pH of 6.90 was achieved. Varying...... the mean arterial blood pressure in the fetuses by blood withdrawal or infusion in this state, CBF was measured at different perfusion pressures (mean arterial blood pressure (MABP) minus central venous pressure (CVP)). A passive flow/pressure relationship--loss of autoregulation--was found, with hyperemia...

  5. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Suk-Yee Li

    Full Text Available Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R injuries. Lycium barbarum polysaccharides (LBP, extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS or LBP (1 mg/kg once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP, aquaporin-4 (AQP4, poly(ADP-ribose (PAR and nitrotyrosine (NT were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL and the inner nuclear layer (INL of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.

  6. Delivery of Biologics Across the Blood-Brain Barrier Through Nanoencapsulation

    DEFF Research Database (Denmark)

    Bruun, Jonas

    is a polymeric micelle made from an anionic triblock copolymer and was intended for delivery of drugs to the central nervous system (CNS), which is protected by the largely impermeable blood-brain barrier (BBB). In order to target the nanocarrier to the brain endothelial cells and obtain receptor...... of the reporter protein. One of the great challenges for drug delivery by nanocarriers is the dilemma of designing a particle that is highly stable whit no cellular interaction while in the blood stream but has a high uptake and efficient drug release in the diseased cells. As a solution to this dilemma...

  7. Blood-brain barrier opening by isotonic saline infusion in normotensive and hypertensive animals

    International Nuclear Information System (INIS)

    Rapoport, S.I.

    1978-01-01

    The blood-brain barrier to intravascular Evans blue-albumin was opened in monkeys and rabbits by infusing isotonic saline for 15 s into the common carotid artery, when the external carotid was clamped temporarily and the lingual was catheterized for measuring pressure. Barrier opening correlated better with infusion pressure than with infusion rate, and occurred at carotid artery pressures above 170 mmHg. Systematic hypertension induced by Aramine increased barrier vulnerability by causing a higher net carotid artery pressure to be attained at a given infusion rate. (Auth.)

  8. Brain uptake of C14-cycloleucine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O; Synder, S H

    1969-01-01

    Comparisons were made as to extra vasalation of fluorescence Na and uptake of C14-cycloleucine between barrier damaged and undamaged rabbit brain hemispheres. The results show that mercury ions damage the blood-brain barrier and thus the uptake of C14-cycloleucine.

  9. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier

    International Nuclear Information System (INIS)

    Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M.

    1991-01-01

    Delivery of nonlipophilic drugs to the brain is hindered by the tightly apposed capillary endothelial cells that make up the blood-brain barrier. The authors have examined the ability of a monoclonal antibody (OX-26), which recognizes the rat transferrin receptor, to function as a carrier for the delivery of drugs across the blood-brain barrier. This antibody, which was previously shown to bind preferentially to capillary endothelial cells in the brain after intravenous administration, labels the entire cerebrovascular bed in a dose-dependent manner. The initially uniform labeling of brain capillaries becomes extremely punctate ∼ 4 hr after injection, suggesting a time-dependent sequestering of the antibody. Capillary-depletion experiments, in which the brain is separated into capillary and parenchymal fractions, show a time-dependent migration of radiolabeled antibody from the capillaries into the brain parenchyma, which is consistent with the transcytosis of compounds across the blood-brain barrier. Antibody-methotrexate conjugates were tested in vivo to assess the carrier ability of this antibody. Immunohistochemical staining for either component of an OX-26-methotrexate conjugate revealed patterns of cerebrovascular labeling identical to those observed with the unaltered antibody. Accumulation of radiolabeled methotrexate in the brain parenchyma is greatly enhanced when the drug is conjugated to OX-26

  10. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection

    OpenAIRE

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-01-01

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute...

  11. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    OpenAIRE

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an i...

  12. Does sumatriptan cross the blood-brain barrier in animals and man?

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer

    2010-01-01

    Sumatriptan, a relatively hydrophilic triptan, based on several animal studies has been regarded to be unable to cross the blood-brain barrier (BBB). In more recent animal studies there are strong indications that sumatriptan to some extent can cross the BBB. The CNS adverse events of sumatriptan...

  13. Smuggling Drugs into the Brain : An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

    NARCIS (Netherlands)

    Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

    2015-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics

  14. Iontoforese no transporte ocular de drogas Iontophoresis for ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Sílvia Ligório Fialho

    2004-10-01

    Full Text Available O método mais comum de administração de drogas no olho é por meio de colírios. Entretanto, por este método, não é possível atingir a concentração terapêutica nos fluidos e tecidos posteriores do olho. A administração sistêmica apresenta reduzido acesso ao segmento posterior do olho devido à presença das barreiras oculares. Injeções subconjuntivais e retrobulbares não são capazes de proporcionar níveis adequados da droga, e a injeção intravítrea é método invasivo, inconveniente e que apre-senta riscos de perfuração do bulbo ocular ou descolamento da retina. A iontoforese, no entanto, apresenta-se como alternativa para o transporte de doses terapêuticas de drogas para o segmento posterior do olho. A iontoforese é uma técnica que consiste na administração de drogas para o organismo através dos tecidos, utilizando um campo elétrico. O eletrodo ativo, que se encontra em contato com a droga, é colocado no local a ser tratado, e um segundo eletrodo, com a finalidade de fechar o circuito elétrico, é colocado em outro local do organismo. O campo elétrico facilita o transporte da droga, que deve se encontrar, preferencialmente, na forma ionizada. A iontoforese pode ser considerada como um método seguro e não invasivo de transporte de drogas para locais específicos do olho. Aplicada experimentalmente para o tratamento de doenças oculares, esta técnica tem evoluído muito nos últimos anos e, atualmente, testes clínicos de fase III encontram-se em andamento.The most traditional method of ocular drug delivery is through the use of eyedrops. However, by this method, the therapeutic concentration in deep ocular fluids and tissues can not be efficiently reached. Systemic administration presents poor access to the posterior segment of the eye due to ocular barriers. Subconjuntival and retrobulbar injections are not able to produce adequate levels of the drug, and intravitreal injection is an invasive and problematic

  15. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    Science.gov (United States)

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2017-07-01

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  17. Theranastic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation

    NARCIS (Netherlands)

    Lammers, Twan Gerardus Gertudis Maria; Koczera, Patrick; Fokong, Stanley; Gremse, Felix; Ehling, Josef; Vogt, Michael; Pich, Andrij; Storm, Gerrit; van Zandvoort, Marc; Kiessling, Fabian

    2015-01-01

    Efficient and safe drug delivery across the blood-brain barrier (BBB) remains one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, it is demonstrated that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO)

  18. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation

    NARCIS (Netherlands)

    Lammers, Twan; Koczera, Patrick; Fokong, Stanley; Gremse, Felix; Ehling, Josef; Vogt, Michael; Pich, Andrij; Storm, G; Van Zandvoort, Marc; Kiessling, Fabian

    2015-01-01

    Efficient and safe drug delivery across the blood-brain barrier (BBB) remains one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, it is demonstrated that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO)

  19. Microfluidic organ-on-chip technology for blood-brain barrier research.

    Science.gov (United States)

    van der Helm, Marinke W; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue. It protects the brain from harmful compounds from the blood and provides homeostasis for optimal neuronal function [corrected]. Studying BBB function and dysfunction is important for drug development and biomedical research. Microfluidic BBBs-on-chips enable real-time study of (human) cells in an engineered physiological microenvironment, for example incorporating small geometries and fluid flow as well as sensors. Examples of BBBs-on-chips in literature already show the potential of more realistic microenvironments and the study of organ-level functions. A key challenge in the field of BBB-on-chip development is the current lack of standardized quantification of parameters such as barrier permeability and shear stress. This limits the potential for direct comparison of the performance of different BBB-on-chip models to each other and existing models. We give recommendations for further standardization in model characterization and conclude that the rapidly emerging field of BBB-on-chip models holds great promise for further studies in BBB biology and drug development.

  20. Evaluation and Computational Characterization of the Faciliated Transport of Glc Carbon C-1 Oxime Reactivators Across a Blood Brain Barrier Model

    Science.gov (United States)

    2013-01-01

    blood brain barrier (BBB) to reactivate inhibited brain acetylcholinesterase (AChE). We selected glucose (Glc) transporters (GLUT) for this purpose as...Eur. J. Pharm. 332 (1997) 43–52. [4] N.J. Abbott , L. Ronnback, E. Hansson, Astrocyte-endothelial interactions at the blood –brain barrier, Nat. Rev...5a. CONTRACT NUMBER oxime reactivators across a blood brain barrier model 5b. GRANT NUMBER 1.E005.08.WR 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  1. Optimization of the Ultrasound-Induced Blood-Brain Barrier Opening

    OpenAIRE

    Konofagou, Elisa E.

    2012-01-01

    Current treatments of neurological and neurodegenerative diseases are limited due to the lack of a truly non-invasive, transient, and regionally selective brain drug delivery method. The brain is particularly difficult to deliver drugs to because of the blood-brain barrier (BBB). The impermeability of the BBB is due to the tight junctions connecting adjacent endothelial cells and highly regulatory transport systems of the endothelial cell membranes. The main function of the BBB is ion and vol...

  2. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection.

    Science.gov (United States)

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-12-22

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute lung inflammation, we demonstrated that intravenously (iv) infused NPs made from denatured bovine serum albumin (BSA) were specifically internalized by activated neutrophils, and subsequently, the neutrophils containing NPs migrated across blood vessels into inflammatory tissues. When neutrophils were depleted using anti-Gr-1 in a mouse, the transport of albumin NPs across blood vessel walls was robustly abolished. Furthermore, it was found that albumin nanoparticle internalization did not affect neutrophil mobility and functions. Administration of drug-loaded albumin NPs markedly mitigated the lung inflammation induced by LPS (lipopolysaccharide) or infection by Pseudomonas aeruginosa. These results demonstrate the use of an albumin nanoparticle platform for in situ targeting of activated neutrophils for delivery of therapeutics across the blood vessel barriers into diseased sites. This study demonstrates our ability to hijack neutrophils to deliver nanoparticles to targeted diseased sites.

  3. Routes for drug translocation across the blood-brain barrier

    DEFF Research Database (Denmark)

    Kristensen, Mie; Brodin, Birger

    2017-01-01

    A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some...... small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted; both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment...... of brain diseases such as neurodegenerative diseases or brain cancers, require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vectors is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor...

  4. Ocular abnormalities in congenital Zika syndrome: are the ophthalmoscopic findings "the top of the iceberg"?

    Science.gov (United States)

    de Oliveira Dias, João Rafael; Ventura, Camila V; de Paula Freitas, Bruno; Prazeres, Juliana; Ventura, Liana O; Bravo-Filho, Vasco; Aleman, Tomas; Ko, Albert Icksang; Zin, Andréa; Belfort, Rubens; Maia, Mauricio

    2018-04-23

    Zika virus (ZIKV) is an arbovirus mainly transmitted to humans by mosquitoes from Aedes genus. Other ways of transmission include the perinatal and sexual routes, blood transfusion, and laboratory exposure. Although the first human cases were registered in 1952 in African countries, outbreaks were only reported since 2007, when entire Pacific islands were affected. In March 2015, the first cases of ZIKV acute infection were notified in Brazil and, to date, 48 countries and territories in the Americas have confirmed local mosquito-borne transmission of ZIKV. Until 2015, ZIKV infection was thought to only cause asymptomatic or mild exanthematous febrile infections. However, after explosive ZIKV outbreaks in Polynesia and Latin American countries, it was confirmed that ZIKV could also lead to Guillain-Barré syndrome and congenital birth abnormalities. These abnormalities, which can include neurologic, ophthalmologic, audiologic, and skeletal findings, are now considered congenital Zika syndrome (CZS). Brain abnormalities in CZS include cerebral calcifications, malformations of cortical development, ventriculomegaly, lissencephaly, hypoplasia of the cerebellum and brainstem. The ocular findings, which are present in up to 70% of infants with CZS, include iris coloboma, lens subluxation, cataract, congenital glaucoma, and especially posterior segment findings. Loss of retinal pigment epithelium, the presence of a thin choroid, a perivascular choroidal inflammatory infiltrate, and atrophic changes within the optic nerve were seen in histologic analyses of eyes from deceased fetuses. To date, there is no ZIKV licensed vaccines or antiviral therapies are available for treatment. Preventive measures include individual protection from mosquito bites, control of mosquito populations and the use of barriers measures such as condoms during sexual intercourse or sexual abstinence for couples either at risk or after confirmed infection. A literature review based on studies that

  5. An investigation into diabetic patients knowledge of diabetes and its ocular complications in the Western Cape

    Directory of Open Access Journals (Sweden)

    P. C. Clarke-Farr

    2005-12-01

    Full Text Available This paper presents the findings of a study which evaluated the knowledge of a sample of diabetic patients about their disease and its ocular complications. A comprehensive questionnaire was provided to diabetic patients in the Cape Town metropolitan district and its surrounds. Specifically, the questionnaire aimed to determine the patient’s knowledge of diabetes, their knowledge of the ocular complications of diabetes, the options for its management and treatment as well as a section considering other general information relating to diabetes and its ocular complications. Their subject knowledge about diabetes and its ocular complications was relatively limited as only 42% of respondents knew about the existence of two types of diabetes. Twenty nine percent of respondents believed that diabetes would not affect their eyes. Although 76% of the patients felt it very important to measure their blood sugar and 80% rated blood sugar control as very important, only 37% of the respondents measured their blood sugar on a daily basis. A particular concern was that although 96% of the respondents felt that it was important to have their eyes checked regularly, only 30% of the respondents stated that they had actually had their eyes checked every year. The results of this investigation support the need for diabetic patients to receive better patient education about diabetes and its ocular complications. Furthermore, attention needs to be paid to expanding patient access to diabetic screenings and ocular examinations in order to manage this condition effectively.

  6. Blood-brain barrier injury following intracarotid injection of radiographic contrast media

    International Nuclear Information System (INIS)

    Hayakawa, K.; Yamashita, K.; Mitsumori, M.; Nakano, Y.; Kyoto Univ. School of Medicine

    1990-01-01

    Changes in signal intensity of the brain at magnetic resonance (MR) imaging before and after Gd-DTPA were used for in vivo quantification of injury to the blood-brain barrier (BBB). Immediately following intracarotid injection of 2 ml/kg of radiographic contrast medium (CM) 0.4 mmol/kg of Gd-DTPA was injected intravenously. MR imaging was performed with a 400/25 partial saturation pulse sequence. The maximum percentage changes (mean ± SD) in signal intensity of the brain after CM and Gd-DTPA were 1.6 ± 1.6% with saline, 3.2 ± 2.0% with iotrolan, 4.3 ± 1.7% with iohexol, 6.6 ± 3.6% with ioxaglate and 8.2 ± 3.6% with diatrizoate. Not only the osmolality but also the ionicity and chemotoxicity seemed to influence Gd-DTPA leakage. A subtle BBB injury had a stronger tendency to occur in the basal ganglia than in the cerebral cortex. MR enhancement is proposed as a sensitive method for in vivo quantification of the BBB injury caused by intracarotid CM injection. (orig.)

  7. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (pblood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  8. Ocular Surface Temperature in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Andrea Sodi

    2014-01-01

    Full Text Available Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320. The ocular surface temperature (OST of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272. OST in AMD patients was significantly lower than in controls (P>0.05. Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD.

  9. Nanoparticle transport across the blood brain barrier.

    Science.gov (United States)

    Grabrucker, Andreas M; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni

    2016-01-01

    While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.

  10. ROLE OF INTRANASAL STEROIDAL SPRAY IN SEASONAL ALLERGIC RHINITIS WITH OCULAR SYMPTOMS

    Directory of Open Access Journals (Sweden)

    Vineel Muppidi

    2017-06-01

    Full Text Available BACKGROUND The eye is especially susceptible to the symptoms of allergic rhinitis, itching (pruritus, tearing (epiphora and redness (erythema because it lacks a mechanical barrier that could prevent the deposition of allergens, such as pollen on the conjunctival surface. These ocular symptoms have been described as examples of the type 1 immediate hypersensitivity reaction. A number of recently published clinical studies apparently support the positive effect of intranasal steroidal sprays on ocular allergy symptoms. The aim of the study is to evaluate the role of intranasal steroids in relieving ocular symptoms in allergic rhinitis. MATERIALS AND METHODS 60 subjects who had seasonal allergic rhinitis with ocular symptoms came to Outpatient Department of Chalmeda Anand Rao Hospital in the year 2015-2016. Randomly, each intranasal steroid is given to 12 patients to a total of 60 patients for 4 weeks 2 puffs in each nostril twice daily and the clinical response is observed. RESULTS A subjective improvement in ocular symptoms was observed in 11 of the 12 patients treated with fluticasone furoate, 8 of 12 patients with fluticasone propionate, 7 of the 12 patients with mometasone furoate, 6 of the 12 patients with beclomethasone and 6 of the 12 patients with budesonide. CONCLUSION Intranasal corticosteroids, which are used for seasonal allergic rhinitis with ocular symptoms are effective in controlling of ocular symptoms. Among these, intranasal corticosteroids, which are used for allergic rhinitis, fluticasone furoate is more effective in relieving ocular symptoms in our study.

  11. Nanoparticles laden in situ gelling system for ocular drug targeting

    Directory of Open Access Journals (Sweden)

    Divya Kumar

    2013-01-01

    Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

  12. (R-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Directory of Open Access Journals (Sweden)

    Lammertsma Adriaan A

    2011-01-01

    Full Text Available Abstract Background Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp expression and functionality at an early stage after induction of status epilepticus by kainate. Methods (R-[11C]verapamil, which is currently the most frequently used positron emission tomography (PET ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R-[11C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R-[11C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles as well as by population mixed effects modelling (NONMEM. Results All data analysis approaches indicated only modest differences in brain distribution of (R-[11C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. Conclusions P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.

  13. (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    International Nuclear Information System (INIS)

    Syvänen, Stina; Luurtsema, Gert; Molthoff, Carla FM; Windhorst, Albert D; Huisman, Marc C; Lammertsma, Adriaan A; Voskuyl, Rob A; Lange, Elizabeth C de

    2011-01-01

    Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate. (R)-[ 11 C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R)-[ 11 C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R)-[ 11 C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM). All data analysis approaches indicated only modest differences in brain distribution of (R)-[ 11 C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate

  14. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  15. Characteristics of donors who do or do not return to give blood and barriers to their return

    Science.gov (United States)

    Wevers, Anne; Wigboldus, Daniël H.J.; de Kort, Wim L.A.M.; van Baaren, Rick; Veldhuizen, Ingrid J.T.

    2014-01-01

    Background In the Netherlands about 50% of whole blood donors return to give blood after an invitation to donate. This study aimed to investigate the characteristics of donor return behaviour and to gain insight into the barriers to blood donation reported by the donors themselves. Materials and methods A total of 4,901 whole blood donors were invited to donate in week 39 of 2009. Barriers mentioned by donors who informed the blood bank for not donating were registered for 1 month. Logistic regression analyses assessed relevant characteristics of return behaviour, such as age and blood type, in men and women separately. Results Of the invited donors, 55% returned to give a donation, whereas 45% did not return. Male donors were more likely to return when they were older, had a higher previous return rate and had no past deferrals. The same pattern was found among women, but was less strong. The main barriers were: time constraints (35%), preference to postpone donation due to general physical problems although being eligible to donate (29%), and being ineligible to donate due to medical deferral criteria (9%). Discussion Specific donor characteristics are associated with return behaviour. Not donating due to time constraints could mean that donors do not feel the urgency of donating blood. Interventions targeted to increase commitment among specific donor groups should be tested further. PMID:23522891

  16. Plasticity of the human otolith-ocular reflex

    Science.gov (United States)

    Wall, C. 3rd; Smith, T. R.; Furman, J. M.

    1992-01-01

    The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.

  17. Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available Previously, we showed that insulin growth factor (IGF-1 binding protein-3 (IGFBP-3, independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR. The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1 and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP. IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab. Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs. NO release was neither associated with an increase in intracellular calcium nor decreased by Ca(2+/calmodulin-dependent protein kinase II (CamKII blockade; however, dephosphorylation of eNOS-Thr(495 was observed. Phosphatidylinositol 3-kinase (PI3K activity and Akt-Ser(473 phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate

  18. On trans-parenchymal transport after blood brain barrier opening: pump-diffuse-pump hypothesis

    Science.gov (United States)

    Postnov, D. E.; Postnikov, E. B.; Karavaev, A. S.; Glushkovskaya-Semyachkina, O. V.

    2018-04-01

    Transparenchymal transport attracted the attention of many research groups after the discovery of glymphatic mechanism for the brain drainage in 2012. While the main facts of rapid transport of substances across the parenchyma are well established experimentally, specific mechanisms that drive this drainage are just hypothezised but not proved yed. Moreover, the number of modeling studies show that the pulse wave powered mechanism is unlikely able to perform pumping as suggested. Thus, the problem is still open. In addition, new data obtained under the conditions of intensionally opened blood brain barrier shows the presence of equally fast transport in opposite durection. In our study we investigate the possible physical mechanisms for rapid transport of substances after the opening of blood-brain barrier under the conditions of zero net flow.

  19. Albumin extravasation in bicuculline-induced blood-brain barrier dysfunction

    International Nuclear Information System (INIS)

    Persson, L.I.; Rosengren, L.E.; Johansson, B.B.

    1980-01-01

    The extravasation of endogeneous rat albumin and exogeneous 125 I-labeled human serum albumin was compared in rats subjected to bicuculline-induced blood-brain barrier dysfunction. The correlation between rocket immunoelectrophoretic assays of endogeneous rat albumin and 125 I-labeled human serum albumin, assayed by gamma scintillation counting, was good irrespective of whether 125 I-labeled albumin was studied in whole brain tissue or in brain homogenates. The ratio of brain to serum albumin was similar with the two assay methods. (author)

  20. The effect of micro-particles of linoleic acid emulsion on the blood-brain barrier in cats

    International Nuclear Information System (INIS)

    Kim, Hak Jin; Lee, Chang Hun; Lee, Tae Hong; Pyun, Yong Seon

    2004-01-01

    The purpose of this study was to investigate the permeability change of the blood-brain barrier and the reversibility of the embolized lesions induced with a fat-emulsion technique by using magnetic resonance imaging (MRI), and we also wished to evaluate the resultant histologic findings in cat brains. MR imaging was scheduled serially at 1 hour, day 1, day 4 and day 7 after infusion of linoleic acid-emulsion (0.05 ml linoleic acid + 20 ml saline) to the internal carotid artery in 12 cats. Abnormal signal intensity or contrast enhancement was evaluated on diffusion-weighted images (DWIs), the apparent diffusion coefficient (ADC) maps, and gadolinium-enhanced T1-weighted images (Gd-T1WIs) at the stated times. MR imaging was stopped if the lesion shows isointensity and no contrast enhancement was observed at the acquisition time, and then brain tissue was harvested and examined. Light microscopic (LM) and electron microscopic (EM) examinations were performed. The embolized lesions appeared as isointensities (n = 7) or mild hyperintensities (n = 5) on DWIs, as isointensities (n = 12) on the ADC maps, and as contrast enhancements (n = 12) on Gd-T1WIs at 1 hour. The lesions showed isointensity on DWIs and the ADC maps, and as no contrast enhancement for all cats at day 1. The LM findings revealed small (< 1 cm) focal necrosis and demyelination in three cats. EM examinations showed minimal findings of small (< 3 μm) fat globules within the endothelial wall (n = 10) and mild swelling of the neuropils (< 5 μm). Widening of the interstitium or morphologic disruption of the endothelial wall was not seen. Cerebral fat embolism induced by linoleic acid emulsion revealed vasogenic edema and reversible changes as depicted on the MR images. These results might help us to understand the mechanisms of fat on the blood-brain barrier, and this technique could be used as a basic model for research of the effects of drugs on the disrupted blood-brain barrier, and also as a research

  1. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  2. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side.

  3. The observation of blood-brain barrier of organic mercury poisoned rat

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Hidaka, Kazuyuki; Igarashi, Hironaka; Kaneko, Kiyotoshi; Miyatake, Tadashi

    1989-01-01

    Permeability of the blood-brain barrier (BBB) of methymercury chrolide (MMC) intoxicated rat brain was studied in vivo by gadlinium diethylenetriamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI), measuring the longitudinal relaxation time (T 1 ) and the transverse relaxation time (T 2 ). MMC intoxicated rat brain showed the prolonged T 1 in the cerebral white matter and prolonged T 2 in the cerebellar cortex. After Gd-DTPA administration, T 1 of cerebral and cerebellar white matter shortened from 1.647 to 1.344 sec., and 1.290 to 1.223 sec. respectively. On the contrary, T 2 showed no change after Gd-DTPA injection. It was concluded that, although the shortening of T 1 after Gd-DTPA enhancement was rather little when compared with experimental brain ischemia, the shortening of the relaxation time of the MMC intoxicated rat brain was caused by the increased permeability of BBB. (author)

  4. Development and Characterization of a Microemulsion System Containing Amphotericin B with Potential Ocular Applications.

    Science.gov (United States)

    da Silveira, Walteçá Louis Lima; Damasceno, Bolivar P G L; Ferreira, Laura F; Ribeiro, Izabel L S; Silva, Karolyne S; Silva, André Leandro; Giannini, Maria José Mendes; da Silva-Júnior, Arnóbio Antônio; de Oliveira, Anselmo Gomes; do Egito, E Sócrates Tabosa

    2016-01-01

    Amphotericin B eye drops are widely used in the treatment of ocular infections. However, amphotericin's toxicity leads to low patient compliance and aggravation of symptoms. This work describes the development of a microemulsion system containing amphotericin B, aiming for its use in ocular applications. The microemulsion was developed by the titration technique. The physicochemical characteristics were determined with both loaded and unloaded amphotericin B-microemulsion. The nanostructures were analyzed by polarized light microscopy. The microdilution method was used to establish the minimum inhibitory concentration against fungal strains, and, therefore, evaluate the microemulsion activity. Additionally, in order to evaluate the microemulsion toxicity an in vitro toxicity assay against red blood cells was performed. The performed studies showed that the presence of amphotericin B loaded into the system did not induce serious changes in the physicochemical properties of the microemulsion when compared to the unloaded system. The spectrophotometric studies depicted amphotericin B-self-associated species, which allow predicting its behavior in vitro. The high pressure liquid chromatography results revealed high drug content entrapment in the microemulsion droplet. Finally, the amphotericin B-microemulsion in vitro susceptibility test showed high activity against Candida strains and a low toxicity profile against red blood cells when compared to Fungizone®. The physicochemical characterization of the microemulsion demonstrated that its characteristics are compatible with the topical ocular route, making it eligible for consideration as a new and interesting amphotericin B-deliverydosage form to be used as eye drop formulation.

  5. Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis.

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-09-01

    Full Text Available The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa-induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW mice that are typically resistant to P. aeruginosa-induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß-dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.

  6. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA2 inhibitor Darapladib.

    Science.gov (United States)

    Acharya, Nimish K; Qi, Xin; Goldwaser, Eric L; Godsey, George A; Wu, Hao; Kosciuk, Mary C; Freeman, Theresa A; Macphee, Colin H; Wilensky, Robert L; Venkataraman, Venkat; Nagele, Robert G

    2017-05-01

    Using a porcine model of diabetes mellitus and hypercholesterolaemia, we previously showed that diabetes mellitus and hypercholesterolaemia is associated with a chronic increase in blood-brain barrier permeability in the cerebral cortex, leading to selective binding of immunoglobulin G and deposition of amyloid-beta 1-42 peptide in pyramidal neurons. Treatment with Darapladib (GlaxoSmithKline, SB480848), an inhibitor of lipoprotein-associated phospholipase-A2, alleviated these effects. Here, investigation of the effects of chronic diabetes mellitus and hypercholesterolaemia on the pig retina revealed a corresponding increased permeability of the blood-retina barrier coupled with a leak of plasma components into the retina, alterations in retinal architecture, selective IgG binding to neurons in the ganglion cell layer, thinning of retinal layers due to cell loss and increased glial fibrillary acidic protein expression in Müller cells, all of which were curtailed by treatment with Darapladib. These findings suggest that chronic diabetes mellitus and hypercholesterolaemia induces increased blood-retina barrier permeability that may be linked to altered expression of blood-retina barrier-associated tight junction proteins, claudin and occludin, leading to structural changes in the retina consistent with diabetic retinopathy. Additionally, results suggest that drugs with vascular anti-inflammatory properties, such as Darapladib, may have beneficial effects on eye diseases strongly linked to vascular abnormalities such as diabetic retinopathy and age-related macular degeneration.

  7. The blood-brain barrier and oncology : new insights into function and modulation

    NARCIS (Netherlands)

    Bart, J; Groen, HJM; Hendrikse, NH; van der Graaf, WTA; Vaalburg, W; de Vries, EGE

    2000-01-01

    The efficacy of chemotherapy for malignant primary or metastatic brain tumours is still poor. This is at least partly due to the presence of the blood-brain barrier (BBB). The functionality of the BBB can be explained by physicochemical features and efflux pump mechanisms. An overview of the

  8. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.

    Science.gov (United States)

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an "inverse" configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this

  9. Ocular Melanoma

    Science.gov (United States)

    ... is Ocular Melanoma? Leer en Español: ¿Qué es el melanoma ocular? Written By: Daniel Porter Reviewed By: Robert H Janigian Jr MD Sep. 01, 2017 Ocular melanoma (melanoma in or around the eye) is a type of cancer that develops in the cells that produce pigment. ...

  10. (R)-[{sup 11}C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Energy Technology Data Exchange (ETDEWEB)

    Syvänen, Stina [Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Luurtsema, Gert [Department of Nuclear Medicine & Molecular Imaging, Groningen University Medical Center, P.O. Box 30.001 9700 RB Groningen (Netherlands); Molthoff, Carla FM; Windhorst, Albert D; Huisman, Marc C; Lammertsma, Adriaan A [Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam (Netherlands); Voskuyl, Rob A [Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Epilepsy Institute of The Netherlands Foundation (SEIN), P.O. Box 21, 2100 AA, Heemstede (Netherlands); Lange, Elizabeth C de [Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

    2011-01-03

    Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate. (R)-[{sup 11}C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R)-[{sup 11}C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R)-[{sup 11}C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM). All data analysis approaches indicated only modest differences in brain distribution of (R)-[{sup 11}C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.

  11. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2015-01-01

    Full Text Available The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics, which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  12. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier.

    Science.gov (United States)

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  13. Crohn’s Disease Ocular Manifestations

    Directory of Open Access Journals (Sweden)

    Koev Kr.

    2014-12-01

    Full Text Available Crohn’s disease is an inflammatory bowel disease which causes inflammation of the digestive tract. Crohn’s disease most frequently affects the ileum and the colon. In the active stage of the disease signs and symptoms may include diarrhea, abdominal pain and cramping, blood in the stools, reduced appetite and weight loss. In patients with severe Crohn’s disease the following signs and symptoms may be observed: fever, fatigue, arthritis, eye inflammation, oral ulcers, skin disorders, inflammation of the liver or bile ducts or delayed growth. Heredity and dysfunctions of the immune system are considered to cause the development of Crohn’s disease. About 10% of people with inflammatory bowel disease have also ocular problems. The most common ocular manifestations of Crohn’s disease are uveitis, iritis, episcleritis, keratopathy, keratoconjunctivitis and retinal vasculitis. Untreated uveitis may cause glaucoma and vision loss. Uveitis and iritis are four times more common in women than in men. In patients in the active stage of the disease, episcleritis also flares. Symptoms of episcleritis include inflammation, bright red spots on the sclera and localized pain. Keratoconjunctivitis in Crohn’s disease is caused by decreased tear production or increased tear film evaporation. Dry eyes can cause itching, burning or infection. Keratopathy usually causes no pain or vision loss, therefore in most cases no treatment is needed. In retinal vasculitis tortuosity of retinal veins, retinal edema at the posterior pole and intraretinal blood near blood vessels are observed. Intravenous fluorescein angiography shows intraretinal neovascularisation and haemorrhage in the posterior pole.

  14. Blood epididymal barrier to [3H]-inulin in intact and vasectomized hamsters

    International Nuclear Information System (INIS)

    Turner, T.T.; D'Addario, D.A.; Howards, S.S.

    1981-01-01

    The net transport of [ 3 H]-inulin into the fluids of the hamster seminiferous and caput, corpus, and cauda epididymal tubules was examined in both intact animals and those vasectomized 10 months previously. Mean isotope concentrations in reproductive tract tubule fluids did not exceeded 10 per cent of blood plasma isotope concentrations during the experiment. There were no significant differences in net transport of [ 3 H]-inulin into any of the tubule fluids sampled. Ten months after vasectomy, the seminiferous tubule, and all regions of the epididymal tubule retain the capacity to exclude [ 3 H]-insulin. Thus in the hamster 10 months after vasectomy, the blood testis and blood epididymal barriers to inulin are intact

  15. Comprehensive Evaluation of dehydration impact on ocular tissue during Ramadan fasting

    Directory of Open Access Journals (Sweden)

    Javad Heravian

    2015-05-01

    Full Text Available Purpose: The present study aimed to review the effect of dehydration during Ramadan fasting on the health and ocular parameters leading to changes in eye function. Methods: Articles included in the study were taken from Pub Med, Ovid, Web of Science and Google Scholar up to 2014.Related articles were also obtained from scientific journals in fasting and eye. Results: Dehydration and nutrition changes in Ramadan cause an increase in tear osmolarity, ocular aberration, anterior chamber depth, IOL measurement, central corneal thickness, retinal and choroidal thickness. And also a decrease in IOP, tear secretion, and vitreous thickness. Conclusion: Besides many research in relation to effect of dehydration impact on ocular parameters during Ramadan fasting, although the findings reveal it is associated with significant changes on ocular parameters. It seems requisite to have comprehensive study in "fasting and ocular parameters” which will be helpful in making decision and giving plan to the patients.

  16. Dry Eye Management: Targeting the Ocular Surface Microenvironment

    Science.gov (United States)

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo

    2017-01-01

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  17. Dry Eye Management: Targeting the Ocular Surface Microenvironment.

    Science.gov (United States)

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei

    2017-06-29

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  18. Quantitative Analysis of Nanoparticle Transport through in Vitro Blood-Brain Barrier Models

    NARCIS (Netherlands)

    Åberg, Christoffer

    2016-01-01

    Nanoparticle transport through the blood-brain barrier has received much attention of late, both from the point of view of nano-enabled drug delivery, as well as due to concerns about unintended exposure of nanomaterials to humans and other organisms. In vitro models play a lead role in efforts to

  19. Evidence Report: Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS)

    Science.gov (United States)

    Stenger, Michael B.; Tarver, William J.; Brunstetter, Tyson; Gibson, Charles Robert; Laurie, Steven S.; Lee, Stuart M. C.; Macias, Brandon R.; Mader, Thomas H.; Otto, Christian; Smith, Scott M.; hide

    2017-01-01

    A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.

  20. Notice of retraction: Role of Cerebrospinal Fluid in Spaceflight-induced Ocular Changes and Visual Impairment in Astronauts.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M; Oliu, Carlos J; Lee, Sang H; Lam, Byron L

    2017-10-16

    Notice of retraction: the article "Role of Cerebral Spinal Fluid in Space Flight Induced Ocular Changes and Visual Impairment in Astronauts" by Alperin et al This article has been retracted due to security concerns raised by NASA, the sponsoring agency. © RSNA, 2017.

  1. Interaction between blood-brain barrier and glymphatic system in solute clearance.

    Science.gov (United States)

    Verheggen, I C M; Van Boxtel, M P J; Verhey, F R J; Jansen, J F A; Backes, W H

    2018-03-30

    Neurovascular pathology concurs with protein accumulation, as the brain vasculature is important for waste clearance. Interstitial solutes, such as amyloid-β, were previously thought to be primarily cleared from the brain by blood-brain barrier transport. Recently, the glymphatic system was discovered, in which cerebrospinal fluid is exchanged with interstitial fluid, facilitated by the aquaporin-4 water channels on the astroglial endfeet. Glymphatic flow can clear solutes from the interstitial space. Blood-brain barrier transport and glymphatic clearance likely serve complementary roles with partially overlapping mechanisms providing a well-conditioned neuronal environment. Disruption of these mechanisms can lead to protein accumulation and may initiate neurodegenerative disorders, for instance amyloid-β accumulation and Alzheimer's disease. Although both mechanisms seem to have a similar purpose, their interaction has not been clearly discussed previously. This review focusses on this interaction in healthy and pathological conditions. Future health initiatives improving waste clearance might delay or even prevent onset of neurodegenerative disorders. Defining glymphatic flow kinetics using imaging may become an alternative way to identify those at risk of Alzheimer's disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Plasmalemma Vesicle-Associated Protein Has a Key Role in Blood-Retinal Barrier Loss

    NARCIS (Netherlands)

    Wisniewska-Kruk, Joanna; van der Wijk, Anne-Eva; van Veen, Henk A.; Gorgels, Theo G. M. F.; Vogels, Ilse M. C.; Versteeg, Danielle; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.; Klaassen, Ingeborg

    2016-01-01

    Loss of blood-retinal barrier (BRB) properties induced by vascular endothelial growth factor (VEGF) and other factors is an important cause of diabetic macular edema. Previously, we found that the presence of plasmalemma vesicle-associated protein (PLVAP) in retinal capillaries associates with loss

  3. The Blood Brain Barrier and its Role in Alzheimer's Therapy: An Overview.

    Science.gov (United States)

    Jakki, Satya Lavanya; Senthil, V; Yasam, Venkata Ramesh; Chandrasekar, M J N; Vijayaraghavan, C

    2018-01-01

    Alzheimer's disease (AD) is the most frequent age related neurodegenerative disorder. It represents 70% of all dementia. Millions of people have been affected by AD worldwide. It is a complex illness characterized pathologically by accumulation of protein aggregates of amyloid and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD requires drugs that can circumvent the blood-brain barrier (BBB) which is not a simple physical barrier between blood and brain, but acts as an iron curtain, allowing only selective molecules to enter the brain. Unfortunately, this dynamic barrier restricts transport of drugs to the brain; due to which, currently very few drugs are available for AD treatment. The present review focuses mainly on strategies used for administration of drug to the CNS by-passing BBB for the treatment of AD. Many studies have proved to be effective in overcoming BBB and targeting drugs to CNS by using different strategies. Here we have discussed some of the most important drug permeability and drug targeting approaches. In conclusion, concentrating solely in development of drug discovery programs is not enough but it is important to maintain balance between the drug discovery and drug delivery systems that are more specific and effective in targeting CNS of AD patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D; Mok, Ka-Wai; Li, Michelle W M; Wong, Chris K C; Lee, Will M; Han, Daishu; Silvestrini, Bruno; Cheng, C Yan

    2016-04-01

    Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to

  5. Endothelial Proliferation and Increased Blood - Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydrozyphenyl-L-Alanine-Induced Dyskinesia

    DEFF Research Database (Denmark)

    Westin, Jenny E.; Lindgren, Hanna S.; Gardi, Jonathan Eyal

    2006-01-01

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of th...... of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications....... dyskinesia. The vast majority (60-80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition......, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence...

  6. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  7. Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila

    OpenAIRE

    Mayer, Fahima; Mayer, Nasima; Chinn, Leslie; Pinsonneault, Robert L.; Kroetz, Deanna; Bainton, Roland J.

    2009-01-01

    Pharmacologic remedy of many brain diseases is difficult because of the powerful drug exclusion properties of the blood-brain barrier (BBB). Chemical isolation of the vertebrate brain is achieved through the highly integrated, anatomically compact and functionally overlapping chemical isolation processes of the BBB. These include functions that need to be coordinated between tight diffusion junctions and unidirectionally-acting xenobiotic transporters. Understanding of many of these processes...

  8. Stage-dependency of apoptosis and the blood-testis barrier in the dogfish shark (Squalus acanthias): cadmium-induced changes as assessed by vital fluorescence techniques.

    Science.gov (United States)

    McClusky, Leon M

    2006-09-01

    Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity.

  9. A Survey on Prevalence of Ocular Complications and It’s Risk Factors in Diabetic Patients of Diabetic Center of Nader Kazemi Clinic Shiraz- Iran 1998-2010

    Directory of Open Access Journals (Sweden)

    SM Kashfi

    2014-03-01

    Full Text Available Background & Objective: With respect to an increase in diabetes prevalence, and the likelihood of ocular complications among them, this study was conducted to investigate the prevalence and risk factors and incidence of the ocular complications in patients of Nader Kazemi, Shiraz Diabetic center from 1998 to 2010.Materials & Methods: In a cross sectional study , subjects were selected based on a systematic random sampling to investigate the incidence of the ocular complications and the influence of factors such as age, sex, types of diabetes, job, education, blood triglyceride (TG and cholesterol level, Family history of diabetes, history of hypertension, history of participation in educational classes, methods of treatment, duration of diabetes and fasting blood sugar were considered on them.Results: Ocular complications were found among 229 diabetic patients (32.6%. patients having type II diabetic have more ocular complications comparing with patients with type I diabetes (P<0. 005. Factors such as job (P=0. 022, history of participation in educational classes (P<0. 001, education (P<0. 001, family history of diabetes (P<0. 001, blood triglyceride (TG (P=0. 021, duration of diabetes(P<0. 001,age (P<0. 001, method of treatment(P<0. 001and fasting blood sugar (P<0. 001 had a significant relationship with the occurrence of ocular complication. However, other risk factors such as hypertension,gender and cholesterol levels were not statistically significant relationship with the occurrence of ocular complication.Conclusion: Given the prevalence of ocular complications, educating diabetics’ patients can have a significant influence in reducing the occurrence of ocular complications.

  10. Miopatia ocular descendente Descending ocular myopathy: a case report

    Directory of Open Access Journals (Sweden)

    Marcos R. G. de Freitas

    1975-06-01

    Full Text Available Os autores apresentam caso de paciente jovem, do sexo feminino, com afecção muscular primária ocular e faríngea sem caráter familial. Foram feitos estudos eletromiográficos e histopatológicos musculares que confirmam o caráter miogênico do processo. É feita comparação entre a miopatia ocular e a miopatia ocular descendente, acreditando os autores que seriam variantesThe case of a 23 years old female patient, with primary involvement of the extraocular and faringeal muscles without familiar history is reported. Electromyographic and muscular biopsy studies proved the myogenic nature of the process. A clinical comparison between the ocular myopathy and the descending ocular myopathy is made, the authors thinking that both of them would be variants of the same muscle disease.

  11. Mucin deficiency causes functional and structural changes of the ocular surface.

    Science.gov (United States)

    Floyd, Anne M; Zhou, Xu; Evans, Christopher; Rompala, Olivia J; Zhu, Lingxiang; Wang, Mingwu; Chen, Yin

    2012-01-01

    MUC5AC is the most abundant gel-forming mucin in the ocular system. However, the specific function is unknown. In the present study, a Muc5ac knockout (KO) mouse model was subject to various physiological measurements as compared to its wide-type (WT) control. Interestingly, when KO mice were compared to WT mice, the mean tear break up time (TBUT) values were significantly lower and corneal fluorescein staining scores were significantly higher. But the tear volume was not changed. Despite the lack of Muc5ac expression in the conjunctiva of KO mice, Muc5b expression was significantly increased in these mice. Corneal opacification, varying in location and severity, was found in a few KO mice but not in WT mice. The present results suggest a significant difference in the quality, but not the quantity, of tear fluid in the KO mice compared to WT mice. Dry eye disease is multifactorial and therefore further evaluation of the varying components of the tear film, lacrimal unit and corneal structure of these KO mice may help elucidate the role of mucins in dry eye disease. Because Muc5ac knockout mice have clinical features of dry eye, this mouse model will be extremely useful for further studies regarding the pathophysiology of the ocular surface in dry eye in humans.

  12. Mucin deficiency causes functional and structural changes of the ocular surface.

    Directory of Open Access Journals (Sweden)

    Anne M Floyd

    Full Text Available MUC5AC is the most abundant gel-forming mucin in the ocular system. However, the specific function is unknown. In the present study, a Muc5ac knockout (KO mouse model was subject to various physiological measurements as compared to its wide-type (WT control. Interestingly, when KO mice were compared to WT mice, the mean tear break up time (TBUT values were significantly lower and corneal fluorescein staining scores were significantly higher. But the tear volume was not changed. Despite the lack of Muc5ac expression in the conjunctiva of KO mice, Muc5b expression was significantly increased in these mice. Corneal opacification, varying in location and severity, was found in a few KO mice but not in WT mice. The present results suggest a significant difference in the quality, but not the quantity, of tear fluid in the KO mice compared to WT mice. Dry eye disease is multifactorial and therefore further evaluation of the varying components of the tear film, lacrimal unit and corneal structure of these KO mice may help elucidate the role of mucins in dry eye disease. Because Muc5ac knockout mice have clinical features of dry eye, this mouse model will be extremely useful for further studies regarding the pathophysiology of the ocular surface in dry eye in humans.

  13. Ex vivo changes in blood glucose levels seldom change blood glucose control algorithm recommendations

    NARCIS (Netherlands)

    de Groene, L.; Harmsen, R. E.; Binnekade, J. M.; Spronk, P. E.; Schultz, M. J.

    2010-01-01

    Background. Hyperglycemia and glycemic variabilities are associated with adverse outcomes in critically ill patients. Blood glucose control with insulin mandates an adequate and precise assessment of blood glucose levels. Blood glucose levels, however, can change ex vivo after sampling. The aim of

  14. Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies

    Science.gov (United States)

    Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto

    2018-04-01

    In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.

  15. [Chromogranin A derived peptide CGA47-66 inhibits hyper-permeability of blood brain barrier in mice with sepsis].

    Science.gov (United States)

    Zeng, Yan; Zhang, Dan; Jiang, Liping; Wei, Fu; Xu, Shan

    2016-02-01

    To explore the effect of chromofungin (CHR), a chromogranin A (CGA) derived peptide CGA47-66, on hyper-permeability of blood brain barrier in septic mice. 120 healthy male C57BL/6 mice were randomly divided into groups, with 12 mice in each group. Seventy-two mice were used for dynamic observation of the contents of water and Evan blue (EB) in brain tissue after being treated with lipopolysaccharide (LPS). Another 48 mice were divided into normal saline control group (NS group), LPS induced sepsis model group (LPS group), low-dose CHR pretreatment group (CL+LPS group), and high-dose CHR pretreatment group (CH+LPS group). The septic model was reproduced by intraperitoneal injection of 10 mg/kg LPS 0.1 mL, and the mice in NS group was given equal volume of normal saline. The mice in CL+LPS group and CH+LPS group were intraperitoneally injected with 15.5 μg/kg and 77.5 μg/kg CHR 10 minutes before LPS injection. Six hours after LPS injection, 4 mL/kg of 2% EB was injected via caudal vein, the contents of water and EB in brain tissue were determined, and EB immune fluorescence in brain tissue was determined to assess the changes in permeability of blood brain barrier. Brain pathology was observed with hematoxylin and eosin (HE) staining. With the extension of time after LPS injection, the contents of water and EB in brain tissue were gradually increased, and the time of difference with statistical significance appeared earlier when compared with that of control group in the contents of water than that in EB contents (3 hours and 6 hours, respectively). The contents of water and EB in brain tissue in LPS group were significantly increased as compared with NS group [water content: (79.77±0.62)% vs. (78.28±0.44)%, P water and EB contents in brain tissue induced by LPS, and the effect was more significant in CH+LPS group [water content: (78.15±0.73)% vs. (79.77±0.62)%, EB (μg/g): 7.09±2.59 vs. 13.87±4.50, both P leakage in LPS group was more marked than that of NS

  16. Generation of a High Resistance in vitro Blood-Brain-Barrier Model and Investigations of Brain-to-Blood Glutamate Efflux

    DEFF Research Database (Denmark)

    Helms, Hans Christian

    Blod-hjernebarrieren (blood-brain barrier, BBB) opretholder den generelle homeostase i hjernens væsker. BBB kan også spille en rolle i homeostasen for den eksitatoriske aminosyre, L-glutamat. In vitro modeller kan være effektive værktøjer til at få mekanistiske informationer om transcellulær...

  17. Relative blood volume changes underestimate total blood volume changes during hemodialysis

    NARCIS (Netherlands)

    Dasselaar, Judith J.; Lub-de Hooge, Marjolijn N.; Pruim, Jan; Nijnuis, Hugo; Wiersum, Anneke; de Jong, Paul E.; Huisman, Roel M.; Franssen, Casper F. M.

    Background: Measurements of relative blood volume changes (ARBV) during hemodialysis (HD) are based on hemoconcentration and assume uniform mixing of erythrocytes and plasma throughout the circulation. However, whole-body hematocrit (Ht) is lower than systemic Ht. During HD, a change in the ratio

  18. Prospective Observational Study of Ocular Health in ISS Crews - The Ocular Health Study

    Science.gov (United States)

    Otto, C.; Barr, Y.; Platts, S.; Ploutz-Snyder, R.; Sargsyan, A.; Alexander, D.; Riascos, R.; Gibson, C.; Patel, N.

    2015-01-01

    The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and dilated optic nerve sheaths), and in some cases with documented increased intracranial pressure (ICP) postflight. While the eye appears to be the main affected end organ of this syndrome, the ocular effects are thought to be related to underlying changes in the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity-induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, leading to cephalic congestion, decreased CSF resorption and increased ICP. Since 70% of ISS crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that the majority have some degree of ICP elevation in-flight compared to the ground. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and have been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.

  19. The Role of Prosthesis Spacer for Ocular Prostheses.

    Science.gov (United States)

    Figueiredo, Luiza Alencar De Andrade; Sampaio, Aline Araújo; Souza, Samilly Evangelista; Ferreira, Fernando José Rigolin; Buzzá, Edmur Pereira; Rizzatti-Barbosa, Celia Marisa

    2017-06-01

    Eye defects can lead to emotional, psychological, and social changes, impacting negatively the quality of life of the patient. When these structures cannot be satisfactorily repaired by reconstructive surgery, the prosthetic rehabilitation is the better treatment option to restore lost ocular anatomy and promote the social integration of the individual. The aim of this clinical report is to report and discuss a case of ocular prosthesis confection eviscerated patient with opening limitation eyelid and shortening of the distance between palpebral commissure, to obtain a more natural and comfortable to the patient ocular rehabilitation.

  20. Comparison of in vivo efficacy of different ocular lubricants in dry eye animal models.

    Science.gov (United States)

    Zheng, Xiaodong; Goto, Tomoko; Ohashi, Yuichi

    2014-04-29

    To compare the efficacy of three types of ocular lubricants in protecting corneal epithelial cells in dry eye animal models. Ocular lubricants containing 0.1% or 0.3% sodium hyaluronate (SH), carboxymethylcellulose (CMC), or hydroxypropyl methylcellulose (HPMC) were tested. First, ocular lubricant containing 0.002% fluorescein was dropped onto the rabbit corneas. The fluorescein intensity as an index of retention was measured. Second, a rabbit dry eye model was made by holding the eye open with a speculum, and 50 μL of each ocular lubricant was dropped onto the cornea. After 3 hours, the corneas were stained with 1% methylene blue (MB), and the absorbance of MB was measured. Third, a rat dry eye model was treated with the ocular lubricants for 4 weeks, and the corneal fluorescein staining was scored. Eyes treated with physiological saline were used as controls. Finally, immunohistochemistry was used to analyze occludin, an epithelial barrier protein, in cultured human corneal epithelial cells pretreated with ocular lubricants and desiccated for 20 or 60 minutes. Our results showed that 0.3% SH had a significantly longer retention time than the other lubricants (all P eye syndrome. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Valbona Hoxha

    Full Text Available Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.

  3. AAnti-leakage mechanism and effect of sodium aescinate on the permeability of blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Ping GUO

    2012-02-01

    Full Text Available Objective  To study the anti-leakage mechanism and protective effect of sodium aescinate on the blood-brain barrier of rats acutely exposed to hypoxia. Methods  Seventy-five healthy SD rats were randomly divided into 3 groups (25 each: normoxic control (NC, simple hypoxic (SH and drug treated (DT group. Acute hypoxia brain edema rat model was established by a simulation of acute high-altitude hypoxia for 5 days. The cerebral water content was determined by dry-wet method. The permeability of the blood-brain barrier (BBB was evaluated by Evans blue (EB method. The pathological change of the brain was detected by HE staining. The state of BBB tight junction (TJ and ultrastructures of the brain tissues were observed by lanthanum nitrate tracer method under transmission electron microscope (TEM. Protein and mRNA expression of Occludin, Zo-1 and Claudin-5 were investigated by immunohistochemistry, Western-blotting and real-time PCR respectively. Results  After exposure to acute hypoxia for 5 days, compared with NC group, the water content of brain in SH group increased obviously (PPPPPConclusion  Acute hypoxia exposure may lead to a remarkable decline of the expressions of rat's brain Occludin protein and the Occludin, Zo-1 and Claudin-5 mRNA, and an obvious increase of BBB permeability. Sodium aescinate can up-regulate the expression level of these molecules and decrease BBB permeability, thus playing a profitable role of anti-leakage and BBB protection.

  4. Ocular manifestations of graft-versus-host disease

    Science.gov (United States)

    Nassar, Amr; Tabbara, Khalid F.; Aljurf, Mahmoud

    2013-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) has evolved over the past two decades to become the standard of care for hematologic and lymphoid malignancies. Major ocular complications after allogeneic HSCT have been increasing in number and severity. Graft-versus-host disease (GVHD) remains a major cause of ocular morbidity after allogeneic HSCT. The main objective of this review is to elucidate the ocular complications in patients developing GVHD following HSCT. Ocular complications secondary to GVHD are common and include dry eye syndrome, acquisition of ocular allergy from donors with allergic disorders. Eyelid changes may occur in GVHD leading to scleroderma-like changes. Patients may develop poliosis, madarosis, vitiligo, lagophthalmos, and entropion. The cornea may show filamentary keratitis, superficial punctate keratitis, corneal ulcers, and peripheral corneal melting which may lead to perforation in severe cases. Scleritis may also occur which can be anterior or posterior. Keratoconjunctivis sicca appears to be the most common presentation of GVHD. The lacrimal glands may be involved with mononuclear cell infiltration of both the major and accessory lacrimal glands and decrease in tear production. Severe dry eye syndrome in patients with GVHD may develop conjunctival scarring, keratinization, and cicatrization of the conjunctiva. Therapy of GVHD includes systemic immunosuppression and local therapy. Surgical treatment in refractory cases includes surgical intervention to improve the manifestation of GVHD of the eye. This may include tarsorrhapy, prose lenses, punctal occlusions and corneal transplantation. PMID:24227989

  5. [Predictive ocular motor control in Parkinson's disease].

    Science.gov (United States)

    Ying, Li; Liu, Zhen-Guo; Chen, Wei; Gan, Jing; Wang, Wen-An

    2008-02-19

    To investigate the changes of predictive ocular motor function in the patients with Parkinson's disease (PD), and to discuss its clinical value. Videonystagmography (VNG) was used to examine 24 patients with idiopathic Parkinson's disease, 15 males and 9 females, aged 61 +/- 6 (50-69), and 24 sex and age-matched healthy control subjects on random ocular saccade (with the target moving at random intervals to random positions) and predictive ocular saccade (with the 1.25-second light target moving 10 degrees right or left from the center). In the random ocular saccade program, the latency of saccade of the PD patients was 284 ms +/- 58 ms, significantly longer than that of the healthy controls (236 ms +/- 37 ms, P = 0.003). In the predictive ocular saccade pattern, the latency of saccades the PD patients was 150 ms +/- 138 ms, significantly longer than that of the healthy controls (59 ms +/- 102 ms, P = 0.002). The appearance rate of predictive saccades (with the latency of saccade <80 ms) in the PD group was 21%, significantly lower than that in the control group (31%, P = 0.003). There is dysfunction of predictive ocular motor control in the PD patients, and the cognitive function may be impaired at the early stage of PD.

  6. Ocular changes induced by drugs commonly used in dermatology

    NARCIS (Netherlands)

    Turno-Kręcicka, Anna; Grzybowski, Andrzej; Misiuk-Hojło, Marta; Patryn, Eliza; Czajor, Karolina; Nita, Małgorzata

    2016-01-01

    The use of many drugs in dermatologic diseases may cause ocular side effects. Some may regress after discontinuation of the therapy, but others persist or progress even after the cessation of treatment. This review presents four groups of commonly prescribed drugs-antimalarial medicines,

  7. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Arijit Bhowmik

    2015-01-01

    Full Text Available Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB. BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.

  8. Mobile and cordless telephones, serum transthyretin and the blood-cerebrospinal fluid barrier: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carlberg Michael

    2009-04-01

    Full Text Available Abstract Background Whether low-intensity radiofrequency radiation damages the blood-brain barrier has long been debated, but little or no consideration has been given to the blood-cerebrospinal fluid barrier. In this cross-sectional study we tested whether long-term and/or short-term use of wireless telephones was associated with changes in the serum transthyretin level, indicating altered transthyretin concentration in the cerebrospinal fluid, possibly reflecting an effect of radiation. Methods One thousand subjects, 500 of each sex aged 18–65 years, were randomly recruited using the population registry. Data on wireless telephone use were assessed by a postal questionnaire and blood samples were analyzed for serum transthyretin concentrations determined by standard immunonephelometric techniques on a BN Prospec® instrument. Results The response rate was 31.4%. Logistic regression of dichotomized TTR serum levels with a cut-point of 0.31 g/l on wireless telephone use yielded increased odds ratios that were statistically not significant. Linear regression of time since first use overall and on the day that blood was withdrawn gave different results for males and females: for men significantly higher serum concentrations of TTR were seen the longer an analogue telephone or a mobile and cordless desktop telephone combined had been used, and in contrast, significantly lower serum levels were seen the longer an UMTS telephone had been used. Adjustment for fractions of use of the different telephone types did not modify the effect for cumulative use or years since first use for mobile telephone and DECT, combined. For women, linear regression gave a significant association for short-term use of mobile and cordless telephones combined, indicating that the sooner blood was withdrawn after the most recent telephone call, the higher the expected transthyretin concentration. Conclusion In this hypothesis-generating descriptive study time since first

  9. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Phillip S Coburn

    Full Text Available The blood-retinal barrier (BRB functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE, a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3 was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB

  10. Sequential assessment of regional cerebral blood flow, regional cerebral blood volume, and blood-brain barrier in focal cerebral ischemia: a case report

    International Nuclear Information System (INIS)

    Di Piero, V.; Perani, D.; Savi, A.; Gerundini, P.; Lenzi, G.L.; Fazio, F.

    1986-01-01

    Regional CBF (rCBF) and regional cerebral blood volume (rCBV) were evaluated by N,N,N'-trimethyl-N'-(2)-hydroxy-3-methyl-5-[123I]iodobenzyl-1, 3-propanediamine-2 HCl- and /sup 99m/TC-labeled red blood cells, respectively, and single-photon emission computerized tomography (SPECT) in a patient with focal cerebral ischemia. Sequential transmission computerized tomography (TCT) and SPECT functional data were compared with clinical findings to monitor the pathophysiological events occurring in stroke. A lack of correlation between rCBF-rCBV distributions and blood-brain barrier (BBB) breakdown was found in the acute phase. In the face of more prolonged alteration of BBB, as seen by TCT enhancement, a rapid evolution of transient phenomena such as luxury perfusion was shown by SPECT studies. Follow-up of the patient demonstrated a correlation between the neurological recovery and a parallel relative improvement of the cerebral perfusion

  11. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    Science.gov (United States)

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  12. Pathways for Small Molecule Delivery to the Central Nervous System Across the Blood-Brain Barrier

    OpenAIRE

    Mikitsh, John L; Chacko, Ann-Marie

    2014-01-01

    The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their abi...

  13. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    Science.gov (United States)

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  14. The effects of hypoglycemic and alcoholic coma on the blood-brain barrier permeability

    Science.gov (United States)

    Yorulmaz, Hatice; Seker, Fatma Burcu; Oztas, Baria

    2011-01-01

    In this investigation, the effects of hypoglycemic coma and alcoholic coma on the blood-brain barrier (BBB) permeability have been compared. Female adult Wistar albino rats weighing 180-230 g were divided into three groups: Control group (n=8), Alcoholic Coma Group (n=18), and Hypoglycemic Coma group (n=12). The animals went into coma approximately 3-4 hours after insulin administration and 3-5 minutes after alcohol administration. Evans blue (4mL/kg) was injected intravenously as BBB tracer. It was observed that the alcoholic coma did not significantly increase the BBB permeability in any of the brain regions when compared to control group. Changes in BBB permeability were significantly increased by the hypoglycemic coma in comparison to the control group values (pcoma have different effects on the BBB permeability depending on the energy metabolism. PMID:21619558

  15. Hormones and the blood-brain barrier.

    Science.gov (United States)

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  16. Carbenoxolone does not cross the blood brain barrier: an HPLC study

    Directory of Open Access Journals (Sweden)

    Burnham William M

    2006-01-01

    Full Text Available Abstract Background Carbenoxolone (CBX is a widely used gap junctional blocker. Considering several reports indicating that transient gap junctional blockade could be a favourable intervention following injuries to central nervous tissue, and some current enthusiasm in studies using systemic injections of CBX, it is imperative to consider the penetration of CBX into central nervous tissue after systemic administrations. So far, only very indirect evidence suggests that CBX penetrates into the central nervous system after systemic administrations. We thus determined the amounts of CBX present in the blood and the cerebrospinal fluid of rats after intraperitoneal administration, using high performance liquid chromatography Results CBX was found in the blood of the animals, up to 90 minutes post-injection. However, the cerebrospinal fluid concentration of CBX was negligible. Conclusion Thus, we conclude that, most likely, CBX does not penetrate the blood brain barrier and therefore recommend careful consideration in the manner of administration, when a central effect is desired.

  17. Cluster bomb ocular injuries.

    Science.gov (United States)

    Mansour, Ahmad M; Hamade, Haya; Ghaddar, Ayman; Mokadem, Ahmad Samih; El Hajj Ali, Mohamad; Awwad, Shady

    2012-01-01

    To present the visual outcomes and ocular sequelae of victims of cluster bombs. This retrospective, multicenter case series of ocular injury due to cluster bombs was conducted for 3 years after the war in South Lebanon (July 2006). Data were gathered from the reports to the Information Management System for Mine Action. There were 308 victims of clusters bombs; 36 individuals were killed, of which 2 received ocular lacerations and; 272 individuals were injured with 18 receiving ocular injury. These 18 surviving individuals were assessed by the authors. Ocular injury occurred in 6.5% (20/308) of cluster bomb victims. Trauma to multiple organs occurred in 12 of 18 cases (67%) with ocular injury. Ocular findings included corneal or scleral lacerations (16 eyes), corneal foreign bodies (9 eyes), corneal decompensation (2 eyes), ruptured cataract (6 eyes), and intravitreal foreign bodies (10 eyes). The corneas of one patient had extreme attenuation of the endothelium. Ocular injury occurred in 6.5% of cluster bomb victims and 67% of the patients with ocular injury sustained trauma to multiple organs. Visual morbidity in civilians is an additional reason for a global ban on the use of cluster bombs.

  18. Measurement of blood-brain barrier permeability with positron emission tomography in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Fieschi, C.; Pozzilli, C.; Bernardi, S.; Bozzao, L.; Lenzi, G.L.; Picozzi, P.; Iannotti, F.; Conforti, P.

    1988-01-01

    The purpose of the investigation was to elucidate the role of positron emission tomography using 68 Ga-EDTA in the study of blood-brain barrier abnormalities associated with multiple sclerosis. 14 refs.; 1 figure

  19. A Survey on Prevalence of Ocular Complications and It’s Risk Factors in Diabetic Patients Referred to Diabetic Center of Nader Kazemi Clinic Shiraz- Iran 1998-2010

    Directory of Open Access Journals (Sweden)

    ali khani jeihooni

    2014-03-01

    Full Text Available Background & Objective: With respect to increasing prevalence of diabetes, the chance for incidence of ocular complications among diabetics, this study was conducted to investigate the prevalence and risk factors for the incidence of the ocular complications in the patients referred to the Nader Kazemi Shiraz Diabetic center from 1998 to 2010.Materials & Methods: In a cross sectional study , subjects were selected based on a systematic random sampling to investigate the incidence of the ocular complications and factors influencing like wise age, sex, type of diabet, job, education, blood triglyceride (TG and cholesterol level, Family history of diabetes, history of hypertension, history of participation in educational classes, method of treatment, duration of diabetes and fasting blood sugar were considered.Results: Ocular complications were found among 229 diabetic patients (32.6%. Ocular complications of type II diabetic patients than in patients with type I diabetes (P<0. 005. Factors such as job(P=0. 022, history of participation in educational classes(P<0. 001, education(P<0. 001, Family history of diabetes(P<0. 001, blood triglyceride (TG (P=0. 021, duration of diabetes(P<0. 001,age (P<0. 001, method of treatment(P<0. 001and fasting blood sugar (P<0. 001 had a significant relationship with the occurrence of ocular complication. But other risk factors such as hypertension, gender and cholesterol levels were not statistically significant relationship with the occurrence of ocular complication.Conclusion: Given the prevalence of ocular complications, continuing education on the disease of diabetes complications, it can have a role in reducing the occurrence of ocular complications.

  20. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model.

    Science.gov (United States)

    Berghoff, Stefan A; Düking, Tim; Spieth, Lena; Winchenbach, Jan; Stumpf, Sina K; Gerndt, Nina; Kusch, Kathrin; Ruhwedel, Torben; Möbius, Wiebke; Saher, Gesine

    2017-12-01

    In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.

  1. An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis.

    Science.gov (United States)

    Motobayashi, Mitsuo; Inaba, Yuji; Nishimura, Takafumi; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi

    2015-04-01

    Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  3. Permselectivity of blood follicle barriers in mouse ovaries of the mifepristone-induced polycystic ovary model revealed by in vivo cryotechnique.

    Science.gov (United States)

    Zhou, Hong; Ohno, Nobuhiko; Terada, Nobuo; Saitoh, Sei; Naito, Ichiro; Ohno, Shinichi

    2008-11-01

    Despite the potential association of polycystic ovary (PCO) syndrome with hemodynamic changes, follicular microenvironment and the involvement of blood follicle barriers (BFB), a histopathological examination has been hampered by artifacts caused by conventional preparation methods. In this study, mouse ovaries of a mifepristone-induced PCO model were morphologically and immunohistochemically examined by in vivo cryotechnique (IVCT), which prevents those technical artifacts. Ovarian specimens of PCO model mice were prepared by IVCT or the conventional perfusion fixation after s.c. injection of mifepristone. Their histology and immunolocalization of plasma proteins, including albumin (molecular mass, 69 kDa), immunoglobulin G (IgG, 150 kDa), inter-alpha-trypsin inhibitor (ITI, 220 kDa), fibrinogen (340 kDa), and IgM (900 kDa), were examined. In the PCO model, enlarged blood vessels with abundant blood flow were observed in addition to cystic follicles with degenerative membrana granulosa. The immunolocalization of albumin and IgM in the PCO model were similar to those in normal mice. Albumin immunolocalized in the blood vessels, interstitium or follicles, and IgM was mostly restricted within the blood vessels. In contrast, immunolocalization of IgG, ITI, and fibrinogen changed in the PCO model. Both IgG and ITI were clearly blocked by follicular basement membranes, and hardly observed in the membrana granulosa, though fibrinogen was mostly observed within blood vessels. These findings suggest that increased blood flow and enhanced selectivity of molecular permeation through the BFB are prominent features in the PCO ovaries, and changes in hemodynamic conditions and permselectivity of BFB are involved in the pathogenesis and pathophysiology of PCO syndrome.

  4. Measurement of human blood brain barrier integrity using 11C-inulin and positron emission tomography

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Iio, Masaaki; Tsukiyama, Takashi

    1988-01-01

    Positron emission tomography (PET) using 11 C-inulin was demonstrated to be applicable to the clinical measurement of blood brain barrier permeability and cerebral interstitial fluid volume. Kinetic data were analyzed by application of a two compartment model, in which blood plasma and interstitial fluid spaces constitute the compartments. The blood activity contribution was subtracted from the PET count with the aid of the 11 CO inhalation technique. The values we estimated in a human brain were in agreement with the reported values obtained for animal brains by the use of 14 C-inulin. (orig.)

  5. Measurement and quantification of fluorescent changes in ocular tissue using a novel confocal instrument

    Science.gov (United States)

    Buttenschoen, Kim K.; Girkin, John M.; Daly, Daniel J.

    2014-05-01

    Our sight is a major contributor to our quality of life. The treatment of diseases like macular degeneration and glaucoma, however, presents a challenge as the delivery of medication to ocular tissue is not well understood. The instrument described here will help quantify targeted delivery by non-invasively and simultaneously measuring light reflected from and fluorescence excited in the eye, used as position marker and to track compounds respectively. The measurement concept has been proven by monitoring the diffusion of fluorescein and a pharmaceutical compound for treating open angle glaucoma in vitro in a cuvette and in ex vivo porcine eyes. To obtain a baseline of natural fluorescence we measured the change in corneal and crystalline lens autofluorescence in volunteers over a week. We furthermore present data on 3D ocular autofluorescence. Our results demonstrate the capability to measure the location and concentration of the compound of interest with high axial and temporal resolution of 178 μm and 0.6 s respectively. The current detection limit is 2 nM for fluorescein, and compounds with a quantum yield as low as 0.01 were measured to concentrations below 1 μM. The instrument has many applications in assessing the diffusion of fluorescent compounds through the eye and skin in vitro and in vivo, measuring autofluorescence of ocular tissues and reducing the number of animals needed for research. The instrument has the capability of being used both in the clinical and home care environment opening up the possibility of measuring controlled drug release in a patient friendly manner.

  6. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  7. Ocular TRUST: nationwide antimicrobial susceptibility patterns in ocular isolates.

    Science.gov (United States)

    Asbell, Penny A; Colby, Kathryn A; Deng, Sophie; McDonnell, Peter; Meisler, David M; Raizman, Michael B; Sheppard, John D; Sahm, Daniel F

    2008-06-01

    Ocular Tracking Resistance in U.S. Today (TRUST) annually evaluates in vitro antimicrobial susceptibility of Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae to ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, penicillin, azithromycin, tobramycin, trimethoprim, and polymyxin B in national samples of ocular isolates. Laboratory investigation. Prospectively collected ocular isolates (197 S. aureus, 49 S. pneumoniae, and 32 H. influenzae) from 35 institutions and archived ocular isolates (760 S. pneumoniae and 356 H. influenzae) from 34 institutions were tested by an independent, central laboratory. Mean minimum inhibitory concentrations that would inhibit growth of 90% of the tested isolates (MIC(90)) were interpreted as susceptible, intermediate, or resistant according to standardized breakpoints for systemic treatment. S. aureus isolates were classified as methicillin susceptible (MSSA) or methicillin resistant (MRSA). MSSA or MRSA susceptibility patterns were virtually identical for the fluoroquinolones, that is, MSSA susceptibility was 79.9% to 81.1% and MRSA susceptibility was 15.2%. Trimethoprim was the only agent tested with high activity against MRSA. All S. pneumoniae isolates were susceptible to gatifloxacin, levofloxacin, and moxifloxacin; 89.8% were susceptible to ciprofloxacin. H. influenzae isolates were 100% susceptible to all tested agents but trimethoprim. Ocular TRUST 1 data were consistent with the eight-year longitudinal sample of archived ocular isolates. The fluoroquinolones were consistently active in MSSA, S. pneumoniae, and H. influenzae. After more than a decade of intensive ciprofloxacin and levofloxacin use as systemic therapy, 100% of ocular S. pneumoniae isolates were susceptible to gatifloxacin, levofloxacin, and moxifloxacin; nonsusceptibility to ciprofloxacin was less than 15%. High-level in vitro MRSA resistance suggests the need to consider alternative therapy to fluoroquinolones when MRSA is a

  8. Blood-Brain Barrier Permeability of Normal Appearing White Matter in Relapsing-Remitting Multiple Sclerosis

    DEFF Research Database (Denmark)

    Lund, Henrik; Krakauer, Martin; Skimminge, Arnold

    2013-01-01

    Background: Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before...

  9. Delivery of chemotherapeutics across the blood-brain barrier: challenges and advances.

    Science.gov (United States)

    Doolittle, Nancy D; Muldoon, Leslie L; Culp, Aliana Y; Neuwelt, Edward A

    2014-01-01

    The blood-brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2-26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. © 2014 Elsevier Inc. All rights reserved.

  10. Utility of angiotensin-converting enzyme activity in aqueous humor in the diagnosis of ocular sarcoidosis.

    Science.gov (United States)

    Mihailovic-Vucinic, Violeta; Popevic, Ljubica; Popevic, Spasoje; Stjepanovic, Mihailo; Aleksic, Andjelka; Stanojevic-Paovic, Anka

    2017-10-01

    Many studies include elevated activity of angiotensin-converting enzyme (ACE) in serum in sarcoidosis and in ocular sarcoidosis as well, but there are only a few analyzing ACE activities in aqueous humor. The aim of this study is to illuminate the diagnostic value of ACE in aqueous humor in patients with ocular sarcoidosis. We analyzed twenty patients with ocular sarcoidosis and 18 patients with nonocular involvement. All patients have biopsy-positive sarcoidosis of the lungs and/or mediastinal lymph nodes. Blood samples for ACE serum levels were obtained from all patients. Aqueous humor samples were taken by paracentesis with a 25-gauge needle in local anesthesia. With appropriate statistical tests, we compared ACE activity in serum and aqueous humor in patients with and without ocular sarcoidosis. The majority of our patients with ocular sarcoidosis were female (12/20), also in the group with systemic sarcoidosis and without ocular involvement (12/6). Mean age of the whole analyzed group of sarcoidosis patients was 45 ± 6 years. There is no statistically significant difference in ACE activity in serum between two groups of patients (with and without ocular sarcoidosis). There is statistically significant difference in ACE activity in aqueous humor among patients with ocular and nonocular sarcoidosis. ACE activity in aqueous humor is significantly higher in patients with ocular sarcoidosis. Increased ACE activity in aqueous humor can point to a diagnosis of ocular sarcoidosis, without the need for ocular biopsy.

  11. OCULAR ASPECTS OF HYPERTHYROIDISM WITH SPECIAL REFERENCE TO OCULAR MYOPATHY

    OpenAIRE

    Mallika O. U; Suma Job

    2017-01-01

    BACKGROUND Hyperthyroidism can result in ocular manifestations even before systemic signs and symptoms develop. It is seen more in females and severe forms are more common in males. Early detection of ocular involvement can prevent vision threatening complications and troublesome discomforts affecting quality of vision. This clinical study highlights the importance of detailed ocular examination in hyperthyroidism. MATERIALS AND METHODS Fifty consecutive patients with ocu...

  12. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes

    OpenAIRE

    DeSalvo, Michael K.; Hindle, Samantha J.; Rusan, Zeid M.; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J.

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; ...

  13. Development of the blood-brain barrier: a historical point of view.

    Science.gov (United States)

    Ribatti, Domenico; Nico, Beatrice; Crivellato, Enrico; Artico, Marco

    2006-01-01

    Although there has been considerable controversy since the observation by Ehrlich more than 100 years ago that the brain did not take up dyes from the vascular system, the concept of an endothelial blood-brain barrier (BBB) was confirmed by the unequivocal demonstration that the passage of molecules from blood to brain and vice versa was prevented by endothelial tight junctions (TJs). There are three major functions implicated in the term "BBB": protection of the brain from the blood milieu, selective transport, and metabolism or modification of blood- or brain-borne substances. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of complex TJs and a number of specific transport and enzyme systems that regulate molecular traffic across the endothelial cells. The development of the BBB is a complex process that leads to endothelial cells with unique permeability characteristics due to high electrical resistance and the expression of specific transporters and metabolic pathways. This review article summarizes the historical background underlying our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB. (c) 2006 Wiley-Liss, Inc.

  14. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Science.gov (United States)

    Rimayanti, Ulfah; Kiuchi, Yoshiaki; Uemura, Shohei; Takenaka, Joji; Mochizuki, Hideki; Kaneko, Makoto

    2014-01-01

    To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs). One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  15. A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip.

    Directory of Open Access Journals (Sweden)

    Sudhir P Deosarkar

    Full Text Available Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB. To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1. ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0 ± 0.9 x 10-6 cm/s to 2.9 ± 1.0 x 10-6 cm/s or 1.1±0.4 x 10-6 cm/s, respectively. Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we

  16. Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa

    Science.gov (United States)

    Martínez-Fernández de la Cámara, Cristina; Salom, David; Sequedo, Ma Dolores; Hervás, David; Marín-Lambíes, Cristina; Aller, Elena; Jaijo, Teresa; Díaz-LLopis, Manuel; Millán, José María; Rodrigo, Regina

    2013-01-01

    Retinitis Pigmentosa is a common form of hereditary retinal degeneration constituting the largest Mendelian genetic cause of blindness in the developed world. It has been widely suggested that oxidative stress possibly contributes to its pathogenesis. We measured the levels of total antioxidant capacity, free nitrotyrosine, thiobarbituric acid reactive substances (TBARS) formation, extracellular superoxide dismutase (SOD3) activity, protein, metabolites of the nitric oxide/cyclic GMP pathway, heme oxygenase-I and inducible nitric oxide synthase expression in aqueous humor or/and peripheral blood from fifty-six patients with retinitis pigmentosa and sixty subjects without systemic or ocular oxidative stress-related disease. Multivariate analysis of covariance revealed that retinitis pigmentosa alters ocular antioxidant defence machinery and the redox status in blood. Patients with retinitis pigmentosa present low total antioxidant capacity including reduced SOD3 activity and protein concentration in aqueous humor. Patients also show reduced SOD3 activity, increased TBARS formation and upregulation of the nitric oxide/cyclic GMP pathway in peripheral blood. Together these findings confirmed the hypothesis that patients with retinitis pigmentosa present reduced ocular antioxidant status. Moreover, these patients show changes in some oxidative-nitrosative markers in the peripheral blood. Further studies are needed to clarify the relationship between these peripheral markers and retinitis pigmentosa. PMID:24069283

  17. St. John's Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier.

    NARCIS (Netherlands)

    Ott, M.; Huls, M.; Cornelius, M.G.; Fricker, G.

    2010-01-01

    PURPOSE: The purpose of this study was to investigate the short-term signaling effects of St. John's Wort (SJW) extract and selected SJW constituents on the blood-brain barrier transporter P-glycoprotein and to describe the role of PKC in the signaling. METHODS: Cultured porcine brain capillary

  18. On the nature of barriers to climate change adaptation

    NARCIS (Netherlands)

    Biesbroek, G.R.; Klostermann, J.E.M.; Termeer, C.J.A.M.; Kabat, P.

    2013-01-01

    Considerable barriers can emerge in developing and implementing climate change adaptation strategies. Understanding the nature of barriers to adaptation is important so as to find strategic ways of dealing with them. However, our current understanding is limited and highly fragmented across the

  19. Microwave hyperthermia-induced blood-brain barrier alterations

    International Nuclear Information System (INIS)

    Lin, J.C.; Lin, M.F.

    1982-01-01

    We have studied the interaction of microwaves with the blood-brain barrier in Wistar rats. Indwelling catheters were placed in the femoral vein. Evans blue in isotonic saline was used as a visual indicator of barrier permeation. Irradiation with pulsed 2450-MHz microwaves for 20 min at average power densities of 0.5 to 2600 mW/cm 2 , which resulted in average specific absorption rages (SARs) of 0.04 to 200 mW/g in the brain, did not produce staining, except in regions that normally are highly permeable. When the incident power density was increased to 3000 mW/cm 2 (SAR of 240 mW/g), extravasation of Evans blue could be seen in the cortex, hippocampus, and midbrain. The rectal temperature, as monitored by a copper-constantan thermocouple, showed a maximum increase of less than 1.0/sup o/C. the brain temperature recorded in a similar group of animals using a non-field-perturbing thermistor exceeded 43/sup o/C. At the higher power density the extravasation depended on the irradition and euthanization times. In one series of experiments, rats were irradiated at 3000 mW/cm 2 for 5, 10, 15, and 20 min. Immediately after irradiation all except the 5-min animals exhibited increased permeability in some regions of the brain. Brains of rats euthanized 30 min after irradiation were free of Evans blue, while those euthanized 10 and 20 min postirradiation showed significant dye staining but with less intensity than those euthanized immediately after irradiation

  20. Emotional-motivational barriers to blood donation among Togolese adults: a structural approach.

    Science.gov (United States)

    Alinon, K; Gbati, K; Sorum, P C; Mullet, E

    2014-02-01

    Although the number of blood donors has been rapidly increasing in Togo since 2003, it is nevertheless insufficient to cover the demand. To increase needed blood donation in Togo, it is necessary to understand why most people are reluctant to do it. A sample of 400 adult volunteers in Lomé, mostly university educated, rated, on a scale of 0-10, the relevance to them of a comprehensive list of reasons that might deter people from donating blood. The ratings of 250 participants were subjected to factor analysis, and the resulting factorial structure was confirmed on the ratings of the other 150 participants. The resulting six factors were labelled (in order of their ratings of a representative sample of items): Lack of Courage and Lack of Information (mean 5·43 of 10), Concerns about the Use of Blood (4·72), Risk Aversion (4·37), Fear of Medical Settings (2·41), Conformity with Tradition (1·88) and Indifference to Others and Hostility to the Procedure (1·69). To increase blood donation, a public information campaign should address the emotional-motivational barriers found even in the most educated segment of Togolese society. © 2013 The Authors. Transfusion Medicine © 2013 British Blood Transfusion Society.

  1. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis

    Directory of Open Access Journals (Sweden)

    Roberto Villaseñor

    2017-12-01

    Full Text Available Transcytosis across the blood-brain barrier (BBB regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.

  2. X-linked ocular albinism in Blacks. Ocular albinism cum pigmento.

    Science.gov (United States)

    O'Donnell, F E; Green, W R; Fleischman, J A; Hambrick, G W

    1978-07-01

    X-linked ocular albinism can be an unsuspected cause of congenital nystagmus in blacks. In this study, eight of ten black ocular albinos from two kindreds had nonalbinotic, moderately pigmented fundi and no transillumination of the iris. We refer to this paradoxical condition as "ocular albinism cum pigmento." The only constant ophthalmoscopic feature was a foveal hypoplasia. Biopsy of clinically normal skin to demonstrate giant pigment granules is the most accurate means of diagnosis.

  3. Effect of different concentrations of sodium hyaluronate on the ocular surface change of dry eye in New Zealand rabbits

    Directory of Open Access Journals (Sweden)

    Shuang-Yong Wang

    2015-10-01

    Full Text Available AIM:To observe the effect of different concentrations of sodium hyaluronate on ocular surface change of dry eye. METHODS: New Zealand rabbits with dry eye was prepared and treated with 0.1% and 0.3% sodium hyaluronate drops fluid respectively, which were regarded as low concentration treatment group(group Band high concentration treatment group(group Crespectively. However, the rabbits treated with saline were regarded as control group(group A. And then, corneal fluorescein staining, Schirmer test, conjunctival goblet cells, mucin expression and histological changes were observed.RESULTS: On D7 and D14 after treatment, corneal fluorescein staining scores were lower in group B and group C than that in group A(PP PCONCLUSION: The sodium hyaluronate can improve ocular surface damage of dry eye in New Zealand rabbits. The high concentration of sodium hyaluronate has better effect than low concentration.

  4. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    OpenAIRE

    Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and n...

  5. Alteration of blood-brain barrier integrity by retroviral infection.

    Directory of Open Access Journals (Sweden)

    Philippe V Afonso

    2008-11-01

    Full Text Available The blood-brain barrier (BBB, which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans, both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies.

  6. Decreased ocular blood flow after photocoagulation therapy in neonatal retinopathy of prematurity.

    Science.gov (United States)

    Matsumoto, Tadashi; Itokawa, Takashi; Shiba, Tomoaki; Tomita, Masahiko; Hine, Kotaro; Mizukaki, Norio; Yoda, Hitoshi; Hori, Yuichi

    2017-11-01

    To evaluate the relationships between optic nerve head blood flow, expressed as mean blur rate (MBR) measured by laser speckle flowgraphy (LSFG), and photocoagulation therapy in neonates with retinopathy of prematurity (ROP). Case series study. We studied 5 ROP neonates either during sleep or under sedation both before and after photocoagulation, and evaluated 8 eyes in which the circulation could be measured three times consecutively. Correlations between the MBR-A (mean of all values), MBR-V (vessel mean) and MBR-T (tissue mean) and postmenstrual age were evaluated using Spearman's rank correlation coefficient. In addition, correlations between the relative MBR (-A, -V, -T) value and number of photocoagulation burns and the NV score were evaluated. Differences between post-treatment MBR in ROP subjects and normal neonates' MBR were estimated using analysis of covariance (ANCoVA), with adjustment for postmenstrual age. The relative MBR (-A, -V, -T) values after photocoagulation were 69.6 ± 16.0%, 66.7 ± 17.0% and 74.3 ± 14.6%, respectively. Postmenstrual age was significantly correlated with post-treatment MBR-A (r = 0.83, p = 0.0101), MBR-V (r = 0.85, p = 0.007) and MBR-T (r = 0.76, p = 0.0282). The relative MBR-T value was significantly correlated with the number of photocoagulation burns (r = -0.75, p = 0.033) and NV score (r = -0.72, p = 0.0437). The ANCoVA results showed no significant difference between post-treatment MBR and normal neonates' MBR. Photocoagulation improved the dilation of veins and tortuosity of arteries and reduced ocular blood flow in ROP subjects. Since the post-treatment MBR was not different from a normal neonate's MBR, it is suggested that the pre-treatment MBR was higher in severe ROP cases.

  7. The Relationship Between Ocular Itch, Ocular Pain, and Dry Eye Symptoms (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Galor, Anat; Small, Leslie; Feuer, William; Levitt, Roy C; Sarantopoulos, Konstantinos D; Yosipovitch, Gil

    2017-08-01

    To evaluate associations between sensations of ocular itch and dry eye (DE) symptoms, including ocular pain, and DE signs. A cross-sectional study of 324 patients seen in the Miami Veterans Affairs eye clinic was performed. The evaluation consisted of questionnaires regarding ocular itch, DE symptoms, descriptors of neuropathic-like ocular pain (NOP), and evoked pain sensitivity testing on the forehead and forearm, followed by a comprehensive ocular surface examination including corneal mechanical sensitivity testing. Analyses were performed to examine for differences between those with and without subjective complaints of ocular itch. The mean age was 62 years with 92% being male. Symptoms of DE and NOP were more frequent in patients with moderate-severe ocular itch compared to those with no or mild ocular itch symptoms. With the exception of ocular surface inflammation (abnormal matrix metalloproteinase 9 testing) which was less common in those with moderate-severe ocular itch symptoms, DE signs were not related to ocular itch. Individuals with moderate-severe ocular itch also demonstrated greater sensitivity to evoked pain on the forearm and had higher non-ocular pain, depression, and post-traumatic stress disorders scores, compared to those with no or mild itch symptoms. Subjects with moderate-severe ocular itch symptoms have more severe symptoms of DE, NOP, non-ocular pain and demonstrate abnormal somatosensory testing in the form of increased sensitivity to evoked pain at a site remote from the eye, consistent with generalized hypersensitivity.

  8. A novel PET imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood-brain barrier

    Science.gov (United States)

    Bankstahl, Jens P.; Bankstahl, Marion; Kuntner, Claudia; Stanek, Johann; Wanek, Thomas; Meier, Martin; Ding, Xiao-Qi; Müller, Markus; Langer, Oliver; Löscher, Wolfgang

    2013-01-01

    About one third of epilepsy patients are pharmacoresistant. Overexpression of P-glycoprotein and other multidrug transporters at the blood-brain barrier is thought to play an important role in drug-refractory epilepsy. Thus, quantification of regionally different P-glycoprotein activity in the brain in vivo is essential to identify P-glycoprotein overactivity as the relevant mechanism for drug-resistance in an individual patient. Using the radiolabeled P-glycoprotein substrate (R)-[11C]verapamil and different doses of co-administered tariquidar, which is an inhibitor of P-glycoprotein, we evaluated whether small-animal positron emission tomography (PET) can quantify regional changes in transporter function in the rat brain at baseline and 48 h after a pilocarpine-induced status epilepticus. P-glycoprotein expression was additionally quantified by immunohistochemistry. To reveal putative seizure-induced changes in blood-brain barrier integrity, we performed gadolinium-enhanced magnetic resonance scans on a 7.0 Tesla small-animal scanner. Before P-glycoprotein modulation, brain uptake of (R)-[11C]verapamil was low in all regions investigated in control and post-status epilepticus rats. After administration of 3 mg/kg tariquidar, which inhibits P-glycoprotein only partially, we observed increased regional differentiation in brain activity uptake in post-status epilepticus versus control rats, which diminished after maximal P-glycoprotein inhibition. Regional increases in the efflux rate constant k2, but not in distribution volume VT or influx rate constant K1, correlated significantly with increases in P-glycoprotein expression measured by immunohistochemistry. This imaging protocol proves to be suitable to detect seizure-induced regional changes in P-glycoprotein activity and is readily applicable to humans, with the aim to detect relevant mechanisms of pharmacoresistance in epilepsy in vivo. PMID:21677164

  9. Ocular Sarcoidosis

    Science.gov (United States)

    Pasadhika, Sirichai; Rosenbaum, James T

    2015-01-01

    Sarcoidosis is one of the leading causes of inflammatory eye disease. Ocular sarcoidosis can involve any part of the eye and its adnexal tissues, and may cause uveitis, episcleritis/scleritis, eyelid abnormalities, conjunctival granuloma, optic neuropathy, lacrimal gland enlargement and orbital inflammation. Glaucoma and cataract can be complications from inflammation itself or adverse effects from therapy. Ophthalmic manifestations can be isolated, or associated with other organ involvement. Patients with ocular sarcoidosis can present with a wide range of clinical presentations and severity. Multi-disciplinary approaches are required to achieve the best treatment outcomes for both ocular and systemic manifestations. PMID:26593141

  10. An update on the ocular phenotype in patients with pseudoxanthoma elasticum

    Directory of Open Access Journals (Sweden)

    Martin eGliem

    2013-04-01

    Full Text Available Pseudoxanthoma elasticum (PXE is an inherited multi-system disorder characterized by ectopic mineralization and fragmentation of elastic fibres in the skin, the elastic laminae of blood vessels and Bruch membrane in the eye. Biallelic mutations in the ABC transporter gene ABCC6 on chromosome 16 are responsible for the disease.The pathophysiology is incompletely understood. However, there is consent that a metabolic alteration leads to dysfunction in extracellular calcium homeostasis and subsequent calcification of connective tissues rich in elastic fibres. This review summarizes and aims at explaining the variety of phenotypic ocular findings in patients with PXE. Specialised imaging techniques including white light fundus photography, blue light autofluorescence, near-infrared confocal reflectance imaging, high resolution optical coherence tomography, fluorescein and indocyanin green angiography have revealed characteristic lesions at the ocular fundus of PXE patients. These include the classic signs of angioid streaks, peau d’orange, comet lesions and choroidal neovascularisations (CNV, but also the more recently recognised features such as chorioretinal atrophy, subretinal fluid independent from CNV, pattern dystrophy-like changes, debris accumulation under the retinal pigment epithelium, and a decreased fluorescence on late phase indocyanine green angiography.

  11. Microbiota conjuntival em pacientes com alergia ocular Conjunctival microbiota in patients with ocular allergy

    Directory of Open Access Journals (Sweden)

    Alexandre Mattoso Libório

    2005-12-01

    Full Text Available OBJETIVO: Avaliar a presença de microbiota aeróbia da conjuntiva de portadores de alergia ocular e comparar a um grupo controle. MÉTODOS: Foram examinados 133 pacientes no período de abril a junho de 2001 divididos em 2 grupos. O grupo A foi composto de 63 portadores de conjuntivite alérgica (sem uso de medicação e o grupo B de 70 pacientes do ambulatório geral (controle. Foram coletadas amostras do fundo de saco conjuntival do olho direito de todos os pacientes e o material foi semeado em meios sólidos de cultura (ágar sangue, chocolate e Sabouraud. RESULTADOS: No grupo A, 30 culturas (47,7% foram positivas e no grupo B, 6 (8,6%. Sete bactérias foram isoladas no grupo A e 4 no B. A análise estatística revelou associação significante entre a positividade dos cultivos e conjuntivite alérgica. CONCLUSÃO: Microbiota bacteriana foi mais freqüentemente encontrada nos pacientes com alergia ocular.PURPOSE: To evaluate de presence of conjunctival aerobic microbiota in patients with ocular allergy as compared to a control group. METHODS: One hundred and thirty-three patients were evaluated from April to June 2001 and divided into 2 groups. Sixty-three patients with allergic conjunctivitis (without medication were in group A and 70 patients from the general outpatient clinic were in group B (control group. Samples from the conjunctival sac of the right eye were collected and cultured in solid media (blood, chocolate and Sabouraud agar. RESULTS: In group A, 30 cultures (47.7% were positive and 6 (8.6% in group B. Seven bacteria were isolated from group A and 4 from group B. Statistical analysis revealed significant association between positive cultures and allergic conjunctivitis. CONCLUSION: Bacterial microbiota was more frequently found in patients with ocular allergy.

  12. The Role of P-Glycoprotein in Transport of Danshensu across the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Peng-Fei Yu

    2011-01-01

    Full Text Available Danshensu (3-(3, 4-dihydroxyphenyl lactic acid, a water-soluble active component isolated from the root of Salvia miltiorrhiza Bunge, is widely used for the treatment of cerebrovascular diseases. The present study aims to investigate the role of P-glycoprotein in transport of Danshensu across the blood-brain barrier. Sprague-Dawley rats were pretreated with verapamil at a dose of 20 mg kg−1 (verapamil group or the same volume of normal saline (control group. Ninety minutes later, the animals were administrated with Danshensu (15 mg kg−1 by intravenous injection. At 15 min, 30 min, and 60 min after Danshensu administration, the levels of Danshensu in the blood and brain were detected by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS. The results showed that Danshensu concentrations in the brain of the rats pretreated with verapamil were significantly increased. In addition, the brain-plasma ratios of the group pretreated with verapamil were much higher than that of the control group. There was no difference in Danshensu level in plasma between the verapamil group and control group. The findings indicated that Danshensu can pass the blood-brain barrier, and P-glycoprotein plays an important role in Danshensu transportation in brain.

  13. Treatment of ocular rosacea: comparative study of topical cyclosporine and oral doxycycline.

    Science.gov (United States)

    Arman, Aysegul; Demirseren, Duriye Deniz; Takmaz, Tamer

    2015-01-01

    To compare the effectiveness of topical cyclosporine A emulsion with that of oral doxycycline for rosacea associated ocular changes and dry eye complaints. One hundred and ten patients with rosacea were screened. Thirty-eight patients having rosacea associated eyelid and ocular surface changes and dry eye complaints were included in the study. Patients were randomly divided into two groups: nineteen patients were given topical cyclosporine twice daily and nineteen patients were given oral doxycycline 100 mg twice daily for the first month and once daily for the following two months. Symptom and sign scores, ocular surface disease index questionnarie and tear function tests were evaluated at baseline and monthly for 3mo. Three months after results were compared with that of baseline. Mean values of symptom, eyelid sign and corneal/conjunctival sign scores of each treatment group at baseline and 3mo after treatments were compared and both drugs were found to be effective on rosacea associated ocular changes (Ptreatment of eyelid signs (P=0.01). There was statistically significant increase in the mean Schirmer score with anesthesia and tear break up time scores in the cyclosporine treatment group compared to the doxycycline treatment group (Ptreatment of rosacea associated ocular complications because it is more effective than doxycycline. In addition ocular rosacea as a chronic disease requires long term treatment and doxycycline has various side effects limiting its long term usage.

  14. Drug and xenobiotic biotransformation in the blood-brain barrier: A neglected issue.

    Directory of Open Access Journals (Sweden)

    José A.G. Agúndez

    2014-10-01

    Full Text Available Drug biotransformation is a crucial mechanism for facilitating the elimination of chemicals from the organism and for decreasing their pharmacological activity. Published evidence suggests that brain drug metabolism may play a role in the development of adverse drug reactions and in the clinical response to drugs and xenobiotics. The blood-brain barrier (BBB has been regarded mainly as a physical barrier for drugs and xenobiotics, and little attention has been paid to BBB as a drug-metabolizing barrier. The presence of drug metabolizing enzymes in the BBB is likely to have functional implications because local metabolism may inactivate drugs or may modify the drug's ability to cross the BBB, thus modifying the drug response and the risk of developing adverse drug reactions. In this perspective paper, we discuss the expression of relevant xenobiotic metabolizing enzymes in the brain and in the BBB, and we cover current advances and future directions on the potential role of these BBB drug-metabolizing enzymes as modifiers of drug response.

  15. The signs of ocular-surface disorders after switching from latanoprost to tafluprost/timolol fixed combination: a prospective study

    Directory of Open Access Journals (Sweden)

    Okumichi H

    2017-06-01

    Full Text Available Hideaki Okumichi,1 Yoshiaki Kiuchi,1 Tetsuya Baba,2 Takashi Kanamoto,3 Tomoko Naito,4,5 Shunsuke Nakakura,6 Hitoshi Tabuchi,6 Hiroki Nii,7 Chie Sueoka,7 Yosuke Sugimoto1,8 1Department of Ophthalmology and Visual Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; 2Shirai Eye Hospital, Mitoyo, Japan; 3Department of Ophthalmology, Hiroshima Memorial Hospital, Hiroshima, Japan; 4Department of Ophthalmology, Okayama University Graduate School of Medicine, Okayama, Japan; 5Department of Ophthalmology, Konko Hospital, Asakuchi, Japan; 6Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji, Japan; 7Department of Ophthalmology, Hiroshima General Hospital, Hiroshima, Japan; 8Department of Ophthalmology, Hiroshima Prefectural Hospital, Hiroshima, Japan Purpose: To evaluate the ocular-surface safety of a 0.001% benzalkonium chloride-containing tafluprost/timolol fixed combination (TTFC in patients with primary open-angle glaucoma (POAG or ocular hypertension who have inadequate intraocular pressure (IOP control with latanoprost monotherapy.Methods: This study is a multicenter, prospective, single-arm, open-label clinical study. Patients with POAG or ocular hypertension who have inadequate IOP control with latanoprost monotherapy were considered eligible. After providing informed consent, patients continued latanoprost monotherapy for 12 weeks, followed by a switch to TTFC. We evaluated the extent of ocular-surface damage using superficial punctate keratopathy (SPK score, tear breakup time (TBUT, hyperemia score, IOP, systolic blood pressure (SBP, diastolic blood pressure (DBP, and heart rate at 0, 4, and 12 weeks after switching.Results: A total of 68 patients were enrolled, of whom, 64 patients were included in the final analysis. No significant changes in SPK score, TBUT, or hyperemia score were observed at 4 and 12 weeks compared with week 0. IOP decreased significantly at 4 (13.9±2.5 mmHg and 12

  16. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Directory of Open Access Journals (Sweden)

    Ulfah Rimayanti

    Full Text Available PURPOSE: To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP reading changes caused by wearing soft contact lenses (CLs. METHODS: One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL, with -5.0 diopters (D, -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. RESULTS: The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. CONCLUSIONS: Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  17. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  18. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    Science.gov (United States)

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Quantitative targeted proteomics for understanding the blood-brain barrier: towards pharmacoproteomics.

    Science.gov (United States)

    Ohtsuki, Sumio; Hirayama, Mio; Ito, Shingo; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-06-01

    The blood-brain barrier (BBB) is formed by brain capillary endothelial cells linked together via complex tight junctions, and serves to prevent entry of drugs into the brain. Multiple transporters are expressed at the BBB, where they control exchange of materials between the circulating blood and brain interstitial fluid, thereby supporting and protecting the CNS. An understanding of the BBB is necessary for efficient development of CNS-acting drugs and to identify potential drug targets for treatment of CNS diseases. Quantitative targeted proteomics can provide detailed information on protein expression levels at the BBB. The present review highlights the latest applications of quantitative targeted proteomics in BBB research, specifically to evaluate species and in vivo-in vitro differences, and to reconstruct in vivo transport activity. Such a BBB quantitative proteomics approach can be considered as pharmacoproteomics.

  20. Ocular surface changes following oral anticholinergic use for overactive bladder.

    Science.gov (United States)

    Sekeroglu, Mehmet Ali; Hekimoglu, Emre; Tasci, Yasemin; Dolen, Ismail; Arslan, Umut

    2016-09-01

    To investigate the effect of oral solifenacin succinate on Schirmer I test results, tear break-up time (TBUT) and Ocular Surface Disease Index (OSDI) scores in overactive bladder (OAB) patients and to compare these results with those of healthy control subjects. The female OAB patients who were prescribed oral solifenacin succinate 5 mg/day (Group I, N = 80) and age-matched healthy female subjects (Group II, N = 40) were recruited for the study and underwent ophthalmological examination prior to oral treatment and after 4 weeks. They completed the OSDI questionnaire and underwent ocular surface tests including Schirmer I test and TBUT. The statistical analysis of the Schirmer I test and TBUT revealed no significant difference between the baseline and 4th week values in both groups (Group I, p = 0.506 and p = 0.070 consecutively) (Group II, p = 0.810 and p = 0.823 consecutively). OSDI scores were found to be significantly increased in group I (21.8 ± 4.2 vs 23.1 ± 4.6, p = 0.020) and remained unchanged in group II (20.5 ± 7.0 vs 20.7 ± 7.0, p = 0.805). Short-term solifenacin succinate treatment has no effect on the Schirmer I test results and TBUT, but ocular surface symptoms appeared to be exacerbated in respect with increased OSDI scores. However, the clinical significance needs to be further evaluated with larger studies.

  1. Miopatia ocular descendente

    Directory of Open Access Journals (Sweden)

    Marcos R. G. de Freitas

    1975-06-01

    Full Text Available Os autores apresentam caso de paciente jovem, do sexo feminino, com afecção muscular primária ocular e faríngea sem caráter familial. Foram feitos estudos eletromiográficos e histopatológicos musculares que confirmam o caráter miogênico do processo. É feita comparação entre a miopatia ocular e a miopatia ocular descendente, acreditando os autores que seriam variantes

  2. The Effect of Ovariectomy and Estrogen on Penetrating Brain Arterioles and Blood-Brain Barrier Permeability

    NARCIS (Netherlands)

    Cipolla, Marilyn J.; Godfrey, Julie A.; Wiegman, Marchien J.

    2009-01-01

    Objective: We investigated the effect of estrogen replacement on the structure and function of penetrating brain arterioles (PA) and blood-brain barrier (BBB) permeability. Materials and Methods: Female ovariectomized Sprague-Dawley rats were replaced with estradiol (E-2) and estriol (E-3) (OVX + E;

  3. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Science.gov (United States)

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  4. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Ralf; Cramer, Sandra; Huewel, Sabine [Department of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, D-48149 Muenster (Germany); Galla, Hans-Joachim, E-mail: gallah@uni-muenster.de [Department of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, D-48149 Muenster (Germany)

    2011-03-04

    Research highlights: {yields} Poly(n-butylcyano-acrylate) (PBCA) nanoparticles may be promising drug carriers. {yields} Influence of PBCA nanoparticles on the integrity of the blood-brain barrier in vitro. {yields} PBCA nanoparticles lead to a reversible disruption of the BBB in vitro after 4 h. {yields} Potential application as time-dependent and specific opener of the BBB. -- Abstract: In previous studies it was shown that polysorbate 80(PS80)-coated poly(n-butylcyano-acrylate) nanoparticles (PBCA-NP) are able to cross the blood-brain barrier (BBB) in vitro and in vivo. In order to explore and extend the potential applications of PBCA-NP as drug carriers, it is important to ascertain their effect on the BBB. The objective of the present study was to determine the effect of PS80-coated PBCA-NP on the BBB integrity of a porcine in vitro model. This has been investigated by monitoring the development of the transendothelial electrical resistance (TEER) after the addition of PBCA-NP employing impedance spectroscopy. Additionally, the integrity of the BBB in vitro was verified by measuring the passage of the reference substances {sup 14}C-sucrose and FITC-BSA after addition of PBCA-NP. In this study we will show that the application of PS80-coated PBCA-NP leads to a reversible disruption of the barrier after 4 h. The observed disruption of the barrier could also be confirmed by {sup 14}C-sucrose and FITC-BSA permeability studies. Comparing the TEER and permeability studies the lowest resistances and maximal values for permeabilities were both observed after 4 h. These results indicate that PS80-coated PBCA-NP might be suitable for the use as drug carriers. The reversible disruption also offers the possibility to use these particles as specific opener of the BBB. Instead of incorporating the therapeutic agents into the NP, the drugs may cross the BBB after being applied simultaneously with the PBCA-NP.

  5. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases.

    Science.gov (United States)

    Anitua, Eduardo; Muruzabal, Francisco; de la Fuente, María; Merayo, Jesús; Durán, Juan; Orive, Gorka

    2016-07-01

    The purpose of this work is to describe and review the technology of plasma rich in growth factors (PRGF), a novel blood derivative product, in the treatment of ocular surface disorders. To demonstrate the importance of this technology in the treatment of ocular pathologies, a thorough review of the preclinical and clinical literature results obtained following use of the different therapeutic formulations of PRGF was carried out. A literature search for applications of PGRF plasma in the ophthalmology field was carried out using the PubMed database. PRGF involves the use of patient's own biologically active proteins, growth factors, and biomaterial scaffolds for therapeutic purposes. This procedural technology is gaining interest in regenerative medicine due to its potential to stimulate and accelerate the tissue healing processes. The versatility and biocompatibility of this technology opens the door to a personalized medicine on ocular tissue regeneration. This review discusses the state of the art of the new treatments and technologies developed to promote ocular surface tissue regeneration. The standardized protocol that has been developed to source eye drops from PRGF technology is also described. The preclinical research, together with the most relevant clinical applications are summarized and discussed. The preliminary results suggest that the use of PRGF to enhance ocular tissue regeneration is safe and efficient.

  6. Systematic analysis of ocular trauma by a new proposed ocular trauma classification

    Directory of Open Access Journals (Sweden)

    Bhartendu Shukla

    2017-01-01

    Full Text Available Purpose: The current classification of ocular trauma does not incorporate adnexal trauma, injuries that are attributable to a nonmechanical cause and destructive globe injuries. This study proposes a new classification system of ocular trauma which is broader-based to allow for the classification of a wider range of ocular injuries not covered by the current classification. Methods: A clinic-based cross-sectional study to validate the proposed classification. We analyzed 535 cases of ocular injury from January 1, 2012 to February 28, 2012 over a 4-year period in an eye hospital in central India using our proposed classification system and compared it with conventional classification. Results: The new classification system allowed for classification of all 535 cases of ocular injury. The conventional classification was only able to classify 364 of the 535 trauma cases. Injuries involving the adnexa, nonmechanical injuries and destructive globe injuries could not be classified by the conventional classification, thus missing about 33% of cases. Conclusions: Our classification system shows an improvement over existing ocular trauma classification as it allows for the classification of all type of ocular injuries and will allow for better and specific prognostication. This system has the potential to aid communication between physicians and result in better patient care. It can also provide a more authentic, wide spectrum of ocular injuries in correlation with etiology. By including adnexal injuries and nonmechanical injuries, we have been able to classify all 535 cases of trauma. Otherwise, about 30% of cases would have been excluded from the study.

  7. Space Flight-Associated Neuro-ocular Syndrome.

    Science.gov (United States)

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  8. Changing activity in MS lesions

    International Nuclear Information System (INIS)

    Kermode, A.G.; Tofts, P.S.; Thompson, A.J.; Rudge, P.; MacManus, D.G.; Kendall, B.E.; Moseley, I.F.; Kingsley, D.P.E.; McDonald, W.I.

    1989-01-01

    Gd-DTPA enhanced T1 weighted MRI is a discriminating test for a defective blood-brain barrier, with MS lesions showing considerable variation in the pattern of enhancement. Since little is known of the changes in the blood-brain barrier in the active plaque over time, the natural history of blood-brain barrier disturbance in the MS lesion was examined to confirm earlier reports that Gd-DTPA enhancement is a consistent early event in new lesions of relapsing/remitting MS. This knowledge is essential for the use of MRI in monitoring treatment. (author). 9 refs

  9. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  10. Oxygen–induced barrier height changes in aluminium – amorphous ...

    African Journals Online (AJOL)

    The results show that the application of voltage causes charge exchange between the surface states and the semiconductor leading to a change in the height of the potential barrier for electrons passing from aluminium into the a-Se films. The empirically determined values of barrier height of Al/a-Se diodes with thin and ...

  11. Neurological and ocular fascioliasis in humans.

    Science.gov (United States)

    Mas-Coma, Santiago; Agramunt, Verónica H; Valero, María Adela

    2014-01-01

    techniques and neuroimaging useful for the diagnosis of neurological cases are exposed. Within fascioliasis infection indirectly causing ocular manifestations, case distribution and frequency are similarly analysed. A short analysis is devoted to clarify the first reports of a human eye infection. The affection of related and close organs is discussed by differentiating between cases of the dorsal spine, pulmonary manifestations, heart and vessel affection, findings in blood vessels, skin and dermatologic reactions, cases of ectopic mature flukes, and upper body locations. The clinical complexity of the puzzling polymorphisms, the disconcerting multifocality of the manifestations, and their changes along the evolution of the disease in the same patient, as well as the differences between the clinical pictures shown by different patients, are highlighted. The many syndromes involved are enumerated. The pathogenic and physiological mechanisms underlying neurofascioliasis and ophthalmofascioliasis caused by ectopic flukes and the physiopathogenic processes indirectly affecting the central nervous system and causing genuine neurological, meningeal, psychiatric, and ocular manifestations are discussed. The diagnosis of neurological and ophthalmologic fascioliasis is analysed in depth, including clinical and paraclinical diagnosis, eosinophilia in the blood and cerebrospinal fluid, differential diagnosis from other parasitic infections such as helminthiases and myiases, an update of human fascioliasis diagnosis, and fluke and/or fluke egg recovery by surgery. Diagnostic analyses with faecal and blood samples for fascioliasis patients are updated. Therapy for patients with major neurological manifestations includes both antiparasitic treatments and anti-inflammatory therapeutics. Prognosis in fascioliasis patients with neurological manifestations is discussed, with emphasis on sequelae and fatal cases, and the care of patients with ophthalmologic manifestations is added

  12. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaobo; Liu, Mimi; Zhang, Jingna; Ye, Ya; Lin, Ying; Luyckx, Jacques; Qu, Jia

    2009-09-01

    The disaccharide trehalose is a key element involved in anhydrobiosis (the capability of surviving almost complete dehydration) in many organisms. Its presence also confers resistance to desiccation and high osmolarity in bacterial and human cells by protecting proteins and membranes from denaturation. The present study used a novel murine dry eye model induced by controlled low-humidity air velocity to determine whether topically applied trehalose could heal ocular surface epithelial disorders caused by ocular surface desiccation. In addition, the efficacy of 87.6 mM trehalose eyedrops was compared with that of 20% serum, the efficacy of which has been well documented. Mice ocular surface epithelial disorders were induced by exposure of murine eyes to continuous controlled low-humidity air velocity in an intelligently controlled environmental system (ICES) for 21 days, which accelerated the tear evaporation. The mice were then randomized into three groups: the control group received PBS (0.01 M) treatment; a second group received 87.6 mM trehalose eyedrops treatment; and the third group received mice serum eyedrops treatment. Each treatment was administered as a 10 microl dose every 6 h for 14 days. The resultant changes in corneal barrier function and histopathologic examination of cornea and conjunctiva were analyzed and the level of apoptosis on the ocular surface was assessed using active caspase-3. After 14 days of treatment, the corneal fluorescein staining area, the ruffling and desquamating cells on the apical corneal epithelium, as well as the apoptotic cells on ocular surface epithelium had significantly reduced in eyes treated with trehalose compared with those treated with serum and PBS. In contrast, after 14 days of treatment, improvements in the thickness of the corneal epithelium, the squamous metaplasia in conjunctival epithelium and the number of goblet cells of the conjunctiva were less marked in eyes treated with trehalose compared with serum

  13. Ocular Straylight

    Directory of Open Access Journals (Sweden)

    Sigrid Mueller-Schotte OD, MSc

    2015-10-01

    Full Text Available Intra-ocular straylight can cause decreased visual functioning, and it may cause diminished vision-related quality of life (VRQOL. This cross-sectional population-based study investigates the association between straylight and VRQOL in middle-aged and elderly individuals. Multivariable linear regression analyses were used to assess the association between straylight modeled continuously and cutoff at the recommended fitness-to-drive value, straylight ≥ 1.4 log(s, and VRQOL. The study showed that participants with normal straylight values, straylight ≤ 1.4 log(s, rated their VRQOL slightly better than those with high straylight values (straylight ≥ 1.4 log(s. Furthermore, multivariable regression analysis revealed a borderline statistical significant association ( p = .06 between intra-ocular straylight and self-reported VRQOL in middle-aged and elderly individuals. The association between straylight and self-reported VRQOL was not influenced by the status of the intra-ocular lens (natural vs. artificial intra-ocular lens after cataract extraction or the number of (instrumental activities of daily living that were reported as difficult for the elderly individuals.

  14. Effects of corn silk aqueous extract on intraocular pressure of ocular hypertensive human subjects

    Directory of Open Access Journals (Sweden)

    G.O. George

    2013-01-01

    Full Text Available Stigma/style of Zea mays L (Corn silk has been documented to have hypotensive effect on blood pressure and to relieve oedema. However we are not aware of any literature on its hypotensive effect on intraocular pressure (IOP of humans or animals. We studied the effects of water only, masked doses of corn silk aqueous extract (60 mg/kg, 130 mg/kg, 192.5 mg/kg and 260 mg/kg body weight on the IOP and blood pressure (BP of twenty normotensives and twenty ocular hypertensive subjects. Also we compared the effects of the varied doses of corn silk aqueous extract (CSAE with masked doses (5 mg/kg and 10 mg/kg body weight of acetazolamide on IOP of ocular hypertensive subjects only. The results showed that the last three doses of CSAE lowered IOP and BP significantly (p<0.001 within eight hours of administration. The peak effect on IOP was observed after four hours while the peak effect on BP was observed after three hours of administration in the normotensives and ocular hypertensive subjects likewise the hypotensive effect was dose-dependent. The results also showed that 130 mg/kg body weight of CSAE produced the same hypotensive effect on IOP of ocular hypertensive subjects as 5 mg/kg body weight of acetazolamide. Therefore CSAE may have some IOP lowering effects that require further investigation in the management of ocular hypertension. (S Afr Optom 2013 72(3 133-143

  15. The interaction between the meningeal lymphatics and blood-brain barrier

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Dubrovsky, A.; Pavlov, A.; Shushunova, N.; Maslyakova, G.; Navolokin, N.; Bucharskaya, A.; Tuchin, V.; Kurths, J.

    2018-02-01

    Here we show the interaction between the meningeal lymphatic system and the blood-brain barrier (BBB) function. In normal state, the meningeal lymphatic vessels are invisible on optical coherent tomography (OCT), while during the opening of the BBB, meningeal lymphatic vessels are clearly visualized by OCT in the area of cerebral venous sinuses. These results give a significant impulse in the new application of OCT for the study of physiology of meningeal lymphatic system as well as sheds light on novel strategies in the prognosis of the opening of the BBB related with many central nervous system diseases, such as stroke, brain trauma, Alzheimers disease, etc.

  16. Local blood-brain barrier penetration following systemic contrast medium administration

    International Nuclear Information System (INIS)

    Utz, R.; Ekholm, S.E.; Isaac, L.; Sands, M.; Fonte, D.

    1988-01-01

    The present study was initiated by a severe complication in a patient with renal dysfunction who developed cortical blindness and weakness of her left extremities 30 hours following renal and abdominal angiography. To evaluate the impact of prolonged high serum concentrations of contrast medium (CM) this clinical situation was simulated in a laboratory model using sheep with elevated serum levels of contrast medium maintained for 48 hours. The experimental data did not support the theory that the prolonged exposure to high circulating levels of contrast medium (4 ml/kg body weight of meglumine diatrizoate 60%) is sufficient alone to cause penetration of the blood-brain barrier. (orig.)

  17. Ocular dirofilariasis: Ophthalmic implication of climate change on vector-borne parasites

    Directory of Open Access Journals (Sweden)

    Joseph D. Boss, M.D.

    2017-09-01

    Conclusions and importance: With increasing global temperatures, ocular dirofilariasis is being introduced in more northern climates and should be included in the differential diagnosis in areas previously isolated from these vector-borne parasites.

  18. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    Science.gov (United States)

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  19. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    Directory of Open Access Journals (Sweden)

    Yali Xu

    2016-01-01

    Full Text Available Objective. Blood-brain barrier (BBB is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01. Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2 while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  20. Barriers to Climate Change Adaptation Among Farming Households ...

    African Journals Online (AJOL)

    Climate change is perhaps the most serious environmental threat to the fight against hunger, malnutrition, disease and poverty in Africa, essentially because of its impact on agricultural productivity. The objective of this paper was to identify the major barriers to climate change adaptation among smallholder farmers of ...

  1. Dry Eye: an Inflammatory Ocular Disease

    Science.gov (United States)

    Hessen, Michelle; Akpek, Esen Karamursel

    2014-01-01

    Keratoconjunctivitis sicca, or dry eye, is a common ocular disease prompting millions of individuals to seek ophthalmological care. Regardless of the underlying etiology, dry eye has been shown to be associated with abnormalities in the pre-corneal tear film and subsequent inflammatory changes in the entire ocular surface including the adnexa, conjunctiva and cornea. Since the recognition of the role of inflammation in dry eye, a number of novel treatments have been investigated designed to inhibit various inflammatory pathways. Current medications that are used, including cyclosporine A, corticosteroids, tacrolimus, tetracycline derivatives and autologous serum, have been effective for management of dry eye and lead to measurable clinical improvement. PMID:25279127

  2. Staphylococcus aureus ocular infection: methicillin-resistance, clinical features, and antibiotic susceptibilities.

    Directory of Open Access Journals (Sweden)

    Chih-Chun Chuang

    Full Text Available BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA infection is an important public health issue. The study aimed to determine the prevalence of ocular infections caused by MRSA and to identify the clinical characteristics and antibiotic susceptibility of ocular MRSA infections by comparing those of ocular methicillin-sensitive S. aureus (MSSA infections. METHODOLOGY/PRINCIPAL FINDINGS: The medical records of the patients (n = 519 with culture-proven S. aureus ocular infections seen between January 1, 1999 and December 31, 2008 in Chang Gung Memorial Hospital were retrospectively reviewed. Two hundred and seventy-four patients with MRSA and 245 with MSSA ocular infections were identified. The average rate of MRSA in S. aureus infections was 52.8% and the trend was stable over the ten years (P value for trend  = 0.228. MRSA ocular infections were significantly more common among the patients with healthcare exposure (P = 0.024, but 66.1% (181/274 patients with MRSA ocular infections had no healthcare exposure. The most common clinical presentation for both MRSA and MSSA ocular infections was keratitis; MRSA and MSSA caused a similar disease spectrum except for lid infections. MRSA was significantly more resistant than MSSA to clindamycin, erythromycin and sulfamethoxazole/trimethoprim (all P<0.001. CONCLUSIONS/SIGNIFICANCE: We demonstrated a paralleled trend of ocular MRSA infection in a highly prevalent MRSA country by hospital-based survey. Except for lid disorder, MRSA shared similar spectrum of ocular pathology with MSSA. Since S. aureus is a common ocular pathogen, our results raise clinician's attention to the existence of highly prevalent MRSA.

  3. Autologous serum for ocular surface diseases Soro autólogo para doenças da superfície ocular

    Directory of Open Access Journals (Sweden)

    Guilherme Goulart Quinto

    2008-12-01

    Full Text Available Autologous serum has been used to treat dry eye syndrome for many years. It contains several growth factors, vitamins, fibronectin and other components that have been considered important for corneal and conjunctival integrity. Serum eye drops are usually prepared as an unpreserved blood solution. The serum is by nature well tolerated and its biochemical properties are somewhat similar to natural tears. Autologous serum eye drops have been reported to be effective for the treatment of severe dry eye-related ocular surface disorders (Sjögren's syndrome, and also other entities such as superior limbic keratoconjunctivitis, graft-versus-host disease, Stevens-Johnson syndrome, ocular cicatricial pemphigoid, recurrent or persistent corneal erosions, neurotrophic keratopathy, Mooren's ulcer, aniridic keratopathy, filtering blebs after trabeculectomy, and post-keratorefractive surgery. The purpose of this study is to review the recently published literature on ocular surface diseases treated with human autologous serum eye drops.O soro autólogo tem sido adotado como uma nova abordagem para tratar síndrome do olho seco porque contém vitaminas, alguns fatores de crecimento e fibronectina que são considerados importantes contribuintes para integridade corneana e conjuntival. Colírio de soro autólogo é produzido sem preservativo. O soro é não-alérgico e suas propriedades bioquímicas são similares à lágrima. O soro autólogo tópico tem sido relatado efetivo para o tratamento de olho seco grave relacionado a distúrbios da superfície ocular como na síndrome de Sjögren, ceratoconjuntivite límbica superior, doença do enxerto versus hospedeiro, síndrome de Stevens-Johnson, procedimentos cerato-refrativos, erosão corneana persistente ou recorrente, ceratopatia neurotrófica, úlcera de Mooren, ceratopatia associada à aniridia, e bolhas filtrantes após trabeculectomia. O objetivo do presente estudo é revisar a literatura recentemente

  4. Animal models for studying transport across the blood-brain barrier.

    Science.gov (United States)

    Bonate, P L

    1995-01-01

    There are many reasons for wishing to determine the rate of uptake of a drug from blood into brain parenchyma. However, when faced with doing so for the first time, choosing a method can be a formidable task. There are at least 7 methods from which to choose: indicator dilution, brain uptake index, microdialysis, external registration, PET scanning, in situ perfusion, and compartmental modeling. Each method has advantages and disadvantages. Some methods require very little equipment while others require equipment that can cost millions of dollars. Some methods require very little technical experience whereas others require complex surgical manipulation. The mathematics alone for the various methods range from simple algebra to complex integral calculus and differential equations. Like most things in science, as the complexity of the technique increases, so does the quantity of information it provides. This review is meant to serve as a starting point for the researcher who wishes to study transport and uptake across the blood-brain barrier in animal models. An overview of the mathematical theory, as well as an introduction to the techniques, is presented.

  5. Radionuclide detection of blood-retinal barrier disruption in diabetes mellitus

    International Nuclear Information System (INIS)

    Freeman, M.L.; Barnes, W.E.; Eastman, G.; Evans, L.; Gergans, G.; Kelertas, A.; Emanuele, N.; Kaplan, E.

    1984-01-01

    Diabetic retinopathy is one of the leading causes of blindness in the United States today. Because early treatment of proliferative retinopathy offers the best chance for visual salvation, there is an essential need for methods of identifying eyes at high risk. Recent research has shown that subclinical leakage from retinal blood vessels is one of the earliest signs of retinopathy. The feasibility of using radionuclide techniques to quantitate blood-retinal barrier disruption is demonstrated by a study in which 23 diabetics and 7 nondiabetics were imaged with an Anger camera in the anterior Waters projection at 2 hours after the administration of Tc-99m DTPA. In the digitized images, regions of interest were placed over each orbit and over one of the cerebral hemispheres. Orbital counts were then compared to cerebral counts on a per pixel basis. Eye to brain ratios were found to be lowest for nondiabetics and highest for patients with proliferative retinopathy. Additionally, the dynamic analysis of the same radiopharmaceutical may allow investigators to further study the pathophysiology of the diabetic eye

  6. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier.

    Science.gov (United States)

    Banks, William A; Niehoff, Michael L; Drago, Denise; Zatta, Paolo

    2006-10-20

    A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.

  7. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    Science.gov (United States)

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  8. Altered blood-brain barrier transport in neuro-inflammatory disorders.

    Science.gov (United States)

    Schenk, Geert J; de Vries, Helga E

    2016-06-01

    During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    Science.gov (United States)

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  10. Multiple ocular abnormalities associated with trisomy 4p.

    Science.gov (United States)

    Hong, Samin; Kang, Sung Yong; Seong, Gong Je; Shin, Joo Youn; Kim, Chan Yun

    2008-01-01

    Ocular features associated with trisomy 4p have rarely been described. The authors have experienced multiple ocular abnormalities (bilateral cataracts, posterior synechiae, and posterior segment changes) associated with this chromosomal abnormality. It was presumed that these intraocular findings might be associated with the previous inflammatory process. In the current case, the patient recovered some useful vision after surgical removal of cataracts and intraocular lens implantations in both eyes. A detailed ophthalmic examination for patients with the autosomal imbalance is recom-mended.

  11. Tumor ocular metastásico Metastatic ocular tumor

    Directory of Open Access Journals (Sweden)

    Martha G Domínguez Expósito

    2004-06-01

    Full Text Available El carcinoma metastásico del ojo es considerado la neoplasia maligna que más frecuente se encuentra de forma intraocular. Solo cerca del 10 % de las personas que tienen una o más lesiones metastásicas intraoculares son detectadas clínicamente antes de la muerte. A menudo, el carcinoma metastásico ocular es diagnosticado por el oftalmólogo ante la presencia de síntomas oculares. Las lesiones están localizadas con preferencia en coroides. Nos motivo a realizar la presentación de este caso la presencia de lesiones intraoculares múltiples tumorales metastásicos en un paciente cuyo síntoma de presentación fue la disminución de la agudeza visualThe eye metastatic carcinoma is considered the most frequently found intraocular malignant neoplasia. Only 10 % of the persons with one or more metastatic intraocular injuries are clinically detected before death. The metastatic ocular carcinoma is often diagnosed by the ophthalmologist in the presence of ocular symptoms. The injuries are preferably located in the choroid. The appearance of multiple metastatic intraaocular tumoral injuries in a patient whose chief complaint was the reduction of visual acuity motivated us to presente this case

  12. Review of "The blood-brain and other neural barriers reviews and protocols" by Sukriti Nag (Editor

    Directory of Open Access Journals (Sweden)

    Begley David J

    2011-05-01

    Full Text Available Abstract This is a review of the content and scope of a multi-author volume for readers with an interest in the structure and function of the blood-brain barrier and in drug delivery to the central nervous system.

  13. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.

    Science.gov (United States)

    Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L

    2017-01-31

    The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes

  14. Cellular specificity of the blood-CSF barrier for albumin transfer across the choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Shane A Liddelow

    Full Text Available To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF. We used in vivo physiological measurements of transfer of endogenous (mouse and exogenous (human albumins, in situ Proximity Ligation Assay (in situ PLA, and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood-CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood-CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub

  15. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    2007-11-01

    Full Text Available The blood-brain barrier (BBB, blood-spinal cord barrier (BSCB, and blood-cerebrospinal fluid barrier (BCSFB control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.Evans Blue (EB dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.

  16. Contribution of the maculo-ocular reflex to gaze stability in the rabbit.

    Science.gov (United States)

    Pettorossi, V E; Errico, P; Santarelli, R M

    1991-01-01

    The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Relation between histamine release and dye permeability of pulmonary blood-air barrier in x-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, H [Kobe Univ. (Japan). School of Medicine

    1976-04-01

    The histamine-release kinetics and the influence of released histamine on the permeability of the pulmonary blood-air(BA) barrier during the early period after either whole-body or thoracic x irradiation of the rat were studied. Histamine contents of skin and lung of the irradiated rat decreased rapidly, reaching a minimum at 5 h, and this histamine depletion continued for at least 7 days. Conversely, in circulating blood histamine increased during the early period of 5 h and then decreased gradually. This early increase was linear up to 500R and then became saturated between 500 and 1,000R. Administration of polymixine B (5mg/100g body weight) to rats liberated histamine similarly. Rat sera containg histamine released soon after irradiation enhanced the capillary permeability of Evans blue(EB) in the guinea pig skin reaction, which was effectively countered by pretreatment of the guinea pig with anti-histaminic pyribenzamine (29..mu..g/100g body weight), but not by anti-serotonic chlorpromazine (0.3mg/100g body weight). Similarly, perhaps only the EB-bound serum albumin (EB-albumin), that was seen in alveolar perfusate, penetrated more through the pulmonary BA-barrier with increasing x-ray dose, in parallel with the increase in blood histamine. Pyribenzamine inhibited this effect effectively, but cysteamine (a radical scavenger) did so only partially. Thus, it seems possible that at soon after x irradiation the enhanced permeability of EB-albumin through the BA barrier of rat lung is due preferentially to the pharmacologic action of released histamine and subsidiarily to radiation damage to pulmonary cells.

  18. Alergia ocular: un reto diagnóstico Ocular allergy: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Ricardo Cardona Villa

    2007-12-01

    Full Text Available El ojo es uno de los órganos más sensibles y está permanentemente expuesto a diversos agentes ambientales. Dado que la conjuntiva es un tejido inmunológicamente activo, no es sorprendente que sea un sitio común de respuestas alérgicas. Las alergias oculares son un grupo de enfermedades que afectan la superficie conjuntival y están asociadas usualmente a reacciones de hipersensibilidad tipo 1. Pueden ser divididas en varias categorías: conjuntivitis alérgica estacional, conjuntivitis alérgica perenne, queratoconjuntivitis vernal y queratoconjuntivitis atópica. La inflamación de la superficie ocular produce prurito, lagrimeo, edema conjuntival y fotofobia. Como en otras enfermedades alérgicas, se puede desarrollar una condición crónica, acompañada de remodelación de los tejidos oculares. Las estrategias para el tratamiento de la alergia ocular han aumentado exponencialmente y los clínicos disponen de un inventario cada vez mayor de agentes dirigidos a la protección del ojo contra la inflamación. En este trabajo presentamos una revisión sobre las principales formas de alergia ocular, haciendo énfasis en el cuadro clínico, el diagnóstico y las nuevas opciones terapéuticas disponibles en la actualidad. The eye, one of the most sensitive organs, is permanently exposed to different environmental agents. Since the conjunctiva is an immunologically active tissue, it is not surprising for it to be a common site for allergic responses. Ocular allergies constitute a group of diseases affecting the conjunctival surface; they are usually associated with type 1 hypersensitivity reactions. This disorder can be divided into several categories: seasonal allergic conjunctivitis, perennial allergic conjunctivitis, vernal keratoconjunctivitis and atopic keratoconjunctivitis. Ocular surface inflammation results in itching, tearing, conjunctival edema, and photophobia. As is the case with other allergic diseases, a chronic situation can also

  19. Ocular leech infestation

    Directory of Open Access Journals (Sweden)

    Lee YC

    2015-02-01

    Full Text Available Yueh-Chang Lee, Cheng-Jen Chiu Department of Ophthalmology, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan, ROC Abstract: This case report describes a female toddler with manifestations of ocular leech infestation. A 2-year-old girl was brought to our outpatient clinic with a complaint of irritable crying after being taken to a stream in Hualien 1 day previous, where she played in the water. The parents noticed that she rubbed her right eye a lot. Upon examination, the girl had good fix and follow in either eye. Slit-lamp examination showed conjunctival injection with a moving dark black–brown foreign body partly attached in the lower conjunctiva. After applying topical anesthetics, the leech, measuring 1 cm in length, was extracted under a microscope. The patient began using topical antibiotic and corticosteroid agents. By 1 week after extraction, the patient had no obvious symptoms or signs, except for a limited subconjunctival hemorrhage, and no corneal/scleral involvement was observed. Keywords: leech, ocular foreign body, conjunctival reaction, pediatric ophthalmology

  20. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    Directory of Open Access Journals (Sweden)

    Mohamed eOuzzine

    2014-10-01

    Full Text Available UDP-glucuronosyltransferases (UGTs form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-Dglucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds by the linkage of glucuronic acid from the high energy donor, UDP-αD-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier. They are also associated to brain interfaces devoid of blood-brain barrier, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed.

  1. Hello from the Other Side: How Autoantibodies Circumvent the Blood-Brain Barrier in Autoimmune Encephalitis.

    Science.gov (United States)

    Platt, Maryann P; Agalliu, Dritan; Cutforth, Tyler

    2017-01-01

    Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood-brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies.

  2. Meibomian gland dysfunction and ocular discomfort in video display terminal workers.

    Science.gov (United States)

    Fenga, C; Aragona, P; Cacciola, A; Spinella, R; Di Nola, C; Ferreri, F; Rania, L

    2008-01-01

    Meibomian gland dysfunction (MGD) is one of the most common ocular disorders encountered in clinical practice. The clinical manifestations of MGD are related to the changes in the tear film and ocular surface with symptoms of ocular discomfort. In recent years, many surveys have evaluated symptoms associated with the use of Video Display Terminals (VDT), and VDT use is recognized as a risk factor for eye discomfort. The aim of the present study was to determine if the presence of MGD contributes to the signs and symptoms of ocular discomfort during the use of VDT. In course of a routine health surveillance programme, a group of 70 subjects fulfilled the inclusion criteria and responded to a questionnaire about symptoms of ocular discomfort. The following ocular tests were performed: tear break-up time, fluorescein corneal stain, and basal tear secretion test. A total of 52 subjects out of 70 (74.3%) had MGD. A statistically significant correlation between the symptoms of ocular discomfort and hours spent on VDT work was observed in the total population (r=0.358; P=0.002; 95% CI 0.13-0.54) and in the group of subjects with MGD (r=0.365; P=0.009; 95% CI 0.103-0.58). Such correlation was not shown in subjects without MGD. The high prevalence of MGD among the subjects with symptoms of ocular discomfort suggests that this diagnosis should be considered when occupational health practitioners encounter ocular complaints among VDT operators. It appears that MGD can contribute to the development of ocular discomfort in VDT operators.

  3. Nitric oxide levels in the aqueous humor vary in different ocular hypertension experimental models

    Directory of Open Access Journals (Sweden)

    Da-Wen Lu

    2014-12-01

    Full Text Available This study investigated the relationships among intraocular pressure (IOP, nitric oxide (NO levels, and aqueous flow rates in experimental ocular hypertension models. A total of 75 rabbits were used. One of four different materials [i.e., α-chymotrypsin, latex microspheres (Polybead, red blood cell ghosts, or sodium hyaluronate (Healon GV] was injected into the eyes of the 15 animals in each experimental group; the remaining 15 rabbits were reserved for a control group. The IOP changes in the five groups were recorded on postinduction Days 1–3, Day 7, Day 14, Day 30, Day 60, Day 90, and Day 120. On postinduction Day 7, the dynamics and NO levels in the aqueous humor were recorded. Significant IOP elevations were induced by α-chymotrypsin (p < 0.01 and Polybead (p < 0.01 on each postinduction day. In the red blood cell ghosts model, significant elevations (p < 0.01 were found on postinduction Days 1–3; Healon GV significantly elevated IOP (p < 0.01 on postinduction Day 1 and Day 2. On postinduction Day 7, the aqueous humor NO levels increased significantly in the models of α-chymotrypsin, Polybead, and red blood cell ghosts (all p < 0.01, while the aqueous flow rates were significantly reduced in the models of α-chymotrypsin and Polybead (p < 0.005. Persistent ocular hypertension models were induced with α-chymotrypsin and Polybead in the rabbits. The Polybead model exhibited the characteristic of an increased aqueous humor NO level, similar to human eyes with acute angle-closure glaucoma and neovascular glaucoma.

  4. Update on twice-daily bromfenac sodium sesquihydrate to treat postoperative ocular inflammation following cataract extraction

    Directory of Open Access Journals (Sweden)

    Carreño E

    2012-04-01

    Full Text Available Ester Carreño1, Alejandro Portero2, David J Galarreta1,3, José M Herreras1,31Ocular Immunology Unit-IOBA (Instituto Universitario de Oftalmobiología, University of Valladolid, Campus Miguel Delibes, Valladolid, Spain; 2Ocular Immunology Unit, Hospital La Zarzuela, Madrid, Spain; 3Ocular Immunology Unit, Hospital Clínico Universitario de Valladolid, Valladolid, SpainAbstract: Ophthalmic bromfenac sodium sesquihydrate is a topically applied selective cyclooxygenase (COX-2 inhibitor. It is similar to amfenac, except for a bromine atom at the C4 of the benzoyl ring position, which markedly affects its in vitro and in vivo potency, extends the duration of anti-inflammatory activity, and enhances its inhibitory effect on COX-2 absorption across the cornea and penetration into ocular tissues. The United States Food and Drug Administration approved bromfenac in 2005 for the treatment of postoperative inflammation and the reduction of ocular pain in patients who have undergone cataract surgery. Nonsteroidal anti-inflammatory drugs (NSAIDs, and among them bromfenac, could be even more effective than steroids at reestablishing the blood–aqueous barrier, as revealed by flare on slit-lamp examination and as quantitatively measured using ocular fluorophotometry. Similar to other NSAIDs, it has a role in inhibiting intraoperative miosis during cataract surgery. However, bromfenac also seems to be useful in other situations, such as refractive surgery, allergic conjunctivitis (not useful in dry eye, choroidal neovascularization, and even ocular oncology. No reports of systemic toxicity have been published and bromfenac has good topical tolerance with a low incidence of adverse effects.Keywords: bromfenac, ophthalmic nonsteroidal anti-inflammatory drugs, inflammation, cataract surgery

  5. Surveillance of Ocular Parameters and Visual Function in Bed Rest Subjects

    Science.gov (United States)

    Cromwell, Ronita L.

    2011-01-01

    Recent visual changes in astronauts have raised concern about ocular health during long duration spaceflight. Seven cases have been documented in astronauts who spent 6 months aboard the International Space Station. These astronauts were male ranging in age from 45 to 55 years old. All astronauts exhibited pre- to post flight refractive changes. Decreased intraocular pressure (IOP) post flight was observed in 3 cases. Fundoscopic exams revealed post flight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and the presence of cotton wool spots in 3 cases. Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema, and also documented retinal nerve fiber layer thickening (5 cases). Findings from MRI examinations showed posterior globe flattening (5 cases), optic nerve sheath distention (6 cases) and torturous optic nerves (2 cases). Of the 7 cases, intracranial pressure was measured on 4 astronauts. These 4 showed elevated ICP post-flight that remained elevated for as long as 19 months in one case. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes seen in astronauts. Head-down tilt bed rest is a spaceflight analog that induces cephalad fluid shifts. This study is designed to provide ocular monitoring of bed rest subjects and determine whether clinically relevant changes are found. Ocular Changes

  6. The Hierarchy of Proinflammatory Cytokines in Ocular Inflammation.

    Science.gov (United States)

    Da Cunha, A P; Zhang, Q; Prentiss, M; Wu, X Q; Kainz, V; Xu, Y Y; Vrouvlianis, J; Li, H; Rangaswamy, N; Leehy, B; McGee, T L; Bell, C L; Bigelow, C E; Kansara, V; Medley, Q; Huang, Q; Wu, H Y

    2018-04-01

    The concept of tissue-dependent cytokine hierarchy has been demonstrated in a number of diseases, but it has not been investigated in ophthalmic diseases. Here, we evaluated the functional hierarchy of interleukin-1β (IL-1β), IL-6, IL-17A, and tumor necrosis factor (TNF) in the induction of ocular inflammation. We delivered adeno-associated virus (AAV) vectors expressing IL-1β, IL-6, IL-17A, or TNF intravitreally in naïve C57/BL6 mice and compared and contrasted the inflammatory effects in the eye 5 weeks after AAV-mediated gene transfer. We also used an in vitro human system to test the effect of cytokines on barrier function. We found that IL-1β had the highest ability to initiate ocular inflammation. The continuous overexpression of IL-1β resulted in a significant upregulation of additional proinflammatory mediators in the eye. Using scanning laser ophthalmoscope and optical coherence tomography imaging techniques, we showed that a low dose of AAVIL-1β was sufficient and was as pathogenic as a high dose of TNF in inducing vascular leakage, retinal degeneration, and cellular infiltration. Furthermore, only a marginal increase in IL-1β was enough to cause cellular infiltration, thus confirming the highly pathogenic nature of IL-1β in the eye. Contrary to our expectation, IL-6 or IL-17A had minimal or no effect in the eye. To examine the clinical relevance of our findings, we used an impedance assay to show that IL-1β alone or TNF alone was able to cause primary human retinal endothelial cell barrier dysfunction in vitro. Again, IL-6 alone or IL-17A alone had no effect on barrier function; however, in the presence of IL-1β or TNF, IL-17A but not IL-6 may provide additive proinflammatory effects. Our studies demonstrate the existence of a functional hierarchy of proinflammatory cytokines in the eye, and we show that IL-1β is the most pathogenic when it is continuously expressed in the eye.

  7. Physiologically active hydrogel (in situ gel of sparfloxacin and its evaluation for ocular retention using gamma scintigraphy

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2015-01-01

    Full Text Available Objective: Due to the structure and physiological barrier of eye, only 1% of instilled dose is available for action on the corneal surface. In this work, we developed and evaluated chitosan (pH sensitive and gellan gum (ion sensitive in situ gel of sparfloxacin to improve precorneal residence time. Materials and Methods: A protocol for radiolabeling of sparfloxacin with Tc-99m was optimized to study the ocular retention using gamma scintigraphy technique. Results: The clear formulation was developed. In vitro release showed a sustained and prolonged release compared to plain eye drop solution. Dynamic and static gamma scintigraphy showed better retention than plain eye drops. The ocular tolerance test (hen′s egg test-chorioallantoic membrane test and infra-red study showed that the formulation is nonirritant and can be used as ocular vehicle. Conclusion: Radiolabel protocol for sparfloxacin was successfully developed and evaluated on ocular retention studies of developed in situ gel. The developed in situ gel is non irritant and can go further with clinical evaluation.

  8. Perceptions of barriers and facilitators to health behavior change among veteran cancer survivors.

    Science.gov (United States)

    Beehler, Gregory P; Rodrigues, Amy E; Kay, Morgan A; Kiviniemi, Marc T; Steinbrenner, Lynn

    2014-09-01

    This study aimed to identify barriers and facilitators to health behavior change related to body size in a sample of veteran cancer survivors. A qualitative study was conducted with a sample of 35 male and female cancer survivors receiving care at a Veterans Administration comprehensive cancer center. Participants completed individual interviews regarding barriers and facilitators to lifestyle change and responded to a brief questionnaire regarding current health behaviors. Participants reported suboptimal adherence to recommended health behavior goals and the majority were overweight or obese (80%). Qualitative analysis revealed numerous barriers and facilitators to health behavior change across six broad categories: environmental factors, health services delivery factors, health-related factors, factors related to attitudes toward change, factors related to enacting change, and motivational factors. Veteran cancer survivors were impacted by common barriers to change affecting the general population, cancer-specific factors related to personal diagnosis and treatment history, and health service delivery factors related to the Veterans Administration health care system. There are many barriers and facilitators that exist in diverse domains for veteran cancer survivors, each of which offers unique challenges and opportunities for improving engagement in behavior change following cancer diagnosis and treatment. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  9. Changes in ocular biometry and anterior chamber parameters after pharmacologic mydriasis and peripheral iridotomy in primary angle closure suspects

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Razeghinejad

    2016-07-01

    Conclusions: This study showed no change in the ocular biometric and anterior chamber parameters including iridocorneal angle after PI and/or pharmacologic mydriasis except for increments in anterior chamber volume. This factor has the potential to be used as a numerical proxy for iris position in evaluating and monitoring patients with primary angle closure suspects after PI.

  10. Prevention of ocular toxicity by the intra-carotid perfusion of anticancer agents in the treatment of malignant glioma. Usefulness of a remodeled epidural catheter and selective CT enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Shozaburo; Matsukado, Yasuhiko; Yoshioka, Susumu; Ohtsuka, Tadahiro; Kuratsu, Jun-ichi; Sonoda, Hiroshi

    1986-06-01

    It is a problem of great concern to prevent ocular toxicity from complicating intra-carotid administration of lipophil anticancer agents. Attempts to prevent such a side effect were made during intra-carotid chemotherapy using remodeled catheter tips for epidural anesthesia. Twenty nine patients with malignant glioma received intra-carotid administration of neocarzinostatin (NCS). Six out of 17 patients (35.3 %) who received intra-carotid perfusion through an original catheter without a remodeled tip, developed ocular toxicity. The catheter tip remained proximal to the ophthalmic artery in all cases. On the other hand, 12 patients with a remodeled catheter tip did not develop ocular toxicity. In the latter group the tip of the catheter was located in the internal carotid artery sufficiently distal to the ophthalmic artery, or beyond the carotid bifurcation in 3 cases. Another advantage of the remodeled catheter was that the intra-carotid perfusion was feasible for a longer period with higher doses of NCS, than treatment with the commercial catheter for superselective embolization, which was found to be easily occluded and often ejected out of the carotid artery. Prior to and during the intra-carotid perfusion selective injection of Angiografin was performed through the catheter and the tumor was enhanced in the area of arterial supply, indicating the extent of chemotherapy and the degree of destruction of the blood-brain barrier.

  11. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity.

    Science.gov (United States)

    Hammer, C; Stepniak, B; Schneider, A; Papiol, S; Tantra, M; Begemann, M; Sirén, A-L; Pardo, L A; Sperling, S; Mohd Jofrry, S; Gurvich, A; Jensen, N; Ostmeier, K; Lühder, F; Probst, C; Martens, H; Gillis, M; Saher, G; Assogna, F; Spalletta, G; Stöcker, W; Schulz, T F; Nave, K-A; Ehrenreich, H

    2014-10-01

    In 2007, a multifaceted syndrome, associated with anti-NMDA receptor autoantibodies (NMDAR-AB) of immunoglobulin-G isotype, has been described, which variably consists of psychosis, epilepsy, cognitive decline and extrapyramidal symptoms. Prevalence and significance of NMDAR-AB in complex neuropsychiatric disease versus health, however, have remained unclear. We tested sera of 2817 subjects (1325 healthy, 1081 schizophrenic, 263 Parkinson and 148 affective-disorder subjects) for presence of NMDAR-AB, conducted a genome-wide genetic association study, comparing AB carriers versus non-carriers, and assessed their influenza AB status. For mechanistic insight and documentation of AB functionality, in vivo experiments involving mice with deficient blood-brain barrier (ApoE(-/-)) and in vitro endocytosis assays in primary cortical neurons were performed. In 10.5% of subjects, NMDAR-AB (NR1 subunit) of any immunoglobulin isotype were detected, with no difference in seroprevalence, titer or in vitro functionality between patients and healthy controls. Administration of extracted human serum to mice influenced basal and MK-801-induced activity in the open field only in ApoE(-/-) mice injected with NMDAR-AB-positive serum but not in respective controls. Seropositive schizophrenic patients with a history of neurotrauma or birth complications, indicating an at least temporarily compromised blood-brain barrier, had more neurological abnormalities than seronegative patients with comparable history. A common genetic variant (rs524991, P=6.15E-08) as well as past influenza A (P=0.024) or B (P=0.006) infection were identified as predisposing factors for NMDAR-AB seropositivity. The >10% overall seroprevalence of NMDAR-AB of both healthy individuals and patients is unexpectedly high. Clinical significance, however, apparently depends on association with past or present perturbations of blood-brain barrier function.

  12. Ocular lens availability of glutathione from collagen inserts for protection of eye from radiation

    International Nuclear Information System (INIS)

    Omer, S.A.

    2003-01-01

    Full text: Ocular inserts of glutathione ( G ) were prepared using 1 % collagen solution containing free G ,liposomal G and liposomal G with Concanavalin A ,a specific targeting agent of G to ocular lens. These inserts have to be sterilized for in-vivo ophthalmic application by exposure to U V radiation for 2 hr. using dry ice and acetone for protection of G from thermal degradation. In vitro release characteristics of G (17.0 μ mole) from the prepared inserts were investigated at 37deg C in phosphate buffer pH 7.4 . The results of release data showed that the release of G from inserts were arranged in the following order, free G, liposomal G with or without Concanavalin A. The extent of uptake of G from the collagen inserts by rabbit cornea was also tested. The results of ocular lens availability of G from collagen inserts revealed that a highly significant increase in the uptake of G by ocular lenses,where the percentages drug uptake from the applied doses at T max were 1.12% (p(0.05), 2.12% (p(0.01) and 3.4% (p(0.001) in case of using collagen inserts containing free G, liposomal G and liposomal G with Concanavalin A respectively. That is to say,lipid nature of liposomes together with Concanavlin A improved the penetration of the entrapped hydrophilic G through corneal barrier to the ocular lenses

  13. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the 21st century and what are the alternatives?

    Directory of Open Access Journals (Sweden)

    Norman Ruthven Saunders

    2015-10-01

    Full Text Available In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late 19th-Century. Their use continues in spite of their known serious limitations in in vivo applications. These were well known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction of HRP in the mid 20th-Century was an important advance because its reaction product can be visualized at the electron microscopical level. Advantages and disadvantages these markers will be discussed together with a critical evaluation of alternative approaches. There is no single marker suitable for all purposes. A combination of different sized, visualisable dextrans and radiolabelled molecules currently seems to be the most appropriate approach for qualitative and quantitative assessment of barrier integrity.

  14. Coloboma ocular: alterações oculares e sistêmicas associadas

    Directory of Open Access Journals (Sweden)

    Tzelikis Patrick Frensel de Moraes

    2004-01-01

    Full Text Available OBJETIVO: Avaliar e comparar com a literatura o perfil dos pacientes portadores de colobomas oculares, bem como verificar a acuidade visual, alterações oculares associadas e alterações sistêmicas apresentadas pelos mesmos. MÉTODOS: Foram estudados retrospectivamente 18 pacientes com diagnóstico de coloboma ocular matriculados no serviço de Visão Subnormal do Hospital São Geraldo da Universidade Federal de Minas Gerais (HSG - HCUFMG. Foram avaliados: sexo, idade, raça, história familiar de anomalias oculares, história gestacional, tipo de coloboma, localização, bilateralidade, presença de microftalmia ou anoftalmia, alterações oculares concomitantes, e associação com doenças sistêmicas e acuidade visual. RESULTADO: Dez (55,6% pacientes eram do sexo feminino, 15 (83,3% eram leucodérmicos. A idade variou de 4 a 57 anos, com média de 9,5 anos. Apenas 3 (16,7% apresentavam história familiar para coloboma. Todos apresentavam história gestacional negativa para qualquer intercorrência. Houve acometimento bilateral em 100% dos casos, com microftalmia presente em 6 (33,3% casos. O coloboma foi típico em 14 (77,8% pacientes, sendo o coloboma mais comum o retinocoroidal ocorrendo em 16 (88,9% pacientes. 50% dos pacientes apresentavam o coloboma como achado isolado, e a outra metade associado a alguma doença sistêmica. Em 14 (77,8% pacientes foi encontrado algum tipo de alteração ocular além do coloboma. CONCLUSÃO: O exame oftalmológico completo é muito importante tanto no diagnóstico quanto no prognóstico de pacientes com coloboma, visto que este pode estar associado a uma baixa visual importante, além de poder estar relacionados a diferentes anomalias ou síndromes.

  15. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier.

    Science.gov (United States)

    Chen, Zhi-Lan; Huang, Man; Wang, Xia-Rong; Fu, Jun; Han, Min; Shen, You-Qing; Xia, Zheng; Gao, Jian-Qing

    2016-02-01

    α-Mangostin (α-M) is a polyphenolic xanthone that protects and improves the survival of cerebral cortical neurons against Aβ oligomer-induced toxicity in rats. α-M is a potential candidate as a treatment for Alzheimer's disease (AD). However, the efficacy was limited by the poor penetration of the drug through the blood-brain barrier (BBB). In this study, we modified the α-M liposome with transferrin (Tf) and investigated the intracellular distribution of liposomes in bEnd3 cells. In addition, the transport of α-M across the BBB in the Tf(α-M) liposome group was examined. In vitro studies demonstrated that the Tf(α-M) liposome could cross the BBB in the form of an integrated liposome. Results of the in vivo studies on the α-M distribution in the brain demonstrated that the Tf(α-M) liposome improved the brain delivery of α-M. These results indicated that the Tf liposome is a potential carrier of α-M against AD. The use of α-Mangostin (α-M) as a potential agent to treat Alzheimer's disease (AD) has been reported. However, its use is limited by the poor penetration through the blood brain barrier. The delivery of this agent by transferrin-modified liposomes was investigated by the authors in this study. The positive results could point to a better drug delivery system for brain targeting. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Changes in Ocular Surface Characteristics after Switching from Benzalkonium Chloride-Preserved Latanoprost to Preservative-Free Tafluprost or Benzalkonium Chloride-Preserved Tafluprost

    Directory of Open Access Journals (Sweden)

    Naoto Tokuda

    2017-01-01

    Full Text Available Purpose. The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Materials and Methods. Forty patients (40 eyes with glaucoma (mean age: 62.0 ± 10.9 years using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes or preservative-free-Tafluprost group (20 eyes. The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500, superficial punctate keratopathy (AD classification, and tear film breakup time (TBUT were assessed before switching and at 12 weeks after switching. Results. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. Conclusion. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.

  17. Changes in Ocular Surface Characteristics after Switching from Benzalkonium Chloride-Preserved Latanoprost to Preservative-Free Tafluprost or Benzalkonium Chloride-Preserved Tafluprost.

    Science.gov (United States)

    Tokuda, Naoto; Kitaoka, Yasushi; Matsuzawa, Akiko; Tsukamoto, Ayaka; Sase, Kana; Sakae, Shinsuke; Takagi, Hitoshi

    2017-01-01

    The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Forty patients (40 eyes) with glaucoma (mean age: 62.0 ± 10.9 years) using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes) or preservative-free-Tafluprost group (20 eyes). The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500), superficial punctate keratopathy (AD classification), and tear film breakup time (TBUT) were assessed before switching and at 12 weeks after switching. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.

  18. Treatment of ocular rosacea:comparative study of topical cyclosporine and oral doxycycline

    Directory of Open Access Journals (Sweden)

    Aysegul Arman

    2015-06-01

    Full Text Available AIM:To compare the effectiveness of topical cyclosporine A emulsion with that of oral doxycycline for rosacea associated ocular changes and dry eye complaints.METHODS:One hundred and ten patients with rosacea were screened. Thirty-eight patients having rosacea associated eyelid and ocular surface changes and dry eye complaints were included in the study. Patients were randomly divided into two groups:nineteen patients were given topical cyclosporine twice daily and nineteen patients were given oral doxycycline 100 mg twice daily for the first month and once daily for the following two months. Symptom and sign scores, ocular surface disease index questionnarie and tear function tests were evaluated at baseline and monthly for 3mo. Three months after results were compared with that of baseline.RESULTS:Mean values of symptom, eyelid sign and corneal/conjunctival sign scores of each treatment group at baseline and 3mo after treatments were compared and both drugs were found to be effective on rosacea associated ocular changes (P<0.001. Cyclosporine was more effective in symptomatic relief and in the treatment of eyelid signs (P=0.01. There was statistically significant increase in the mean Schirmer score with anesthesia and tear break up time scores in the cyclosporine treatment group compared to the doxycycline treatment group (P<0.05.CONCLUSION:Cyclosporine as a topical drug can be used in the treatment of rosacea associated ocular complications because it is more effective than doxycycline. In addition ocular rosacea as a chronic disease requires long term treatment and doxycycline has various side effects limiting its long term usage.

  19. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.

    Science.gov (United States)

    Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2017-01-01

    Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    OpenAIRE

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background: The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Fi...

  1. Case Report: Ocular Myasthenia Gravis Associated with In Vitro Fertilization Procedures.

    Science.gov (United States)

    Yoo, Yung Ju; Han, Sang Beom; Yang, Hee Kyung; Hwang, Jeong-Min

    2018-05-01

    Ocular myasthenia gravis is a localized form of myasthenia gravis, which is a postsynaptic disorder of the neuromuscular junction that causes fluctuating weakness of extraocular muscles resulting from autoimmune mechanisms. In women with myasthenia, changes in sex hormone levels and administration of corticosteroids can trigger or worsen symptoms of myasthenia gravis. To describe a case of seronegative ocular myasthenia gravis whose first symptom appeared a day after in vitro fertilization procedure. A 37-year-old woman suddenly developed mild ptosis and fluctuating diplopia that worsened in the evening. Before the development of symptoms, she had undergone in vitro fertilization procedure and had taken oral steroids. Ocular motility examination revealed an intermittent exotropia in primary gaze at both distance and near. The neostigmine test confirmed her diagnosis as ocular myasthenia gravis. When taking a history for young women with sudden onset of binocular diplopia, steroids and sex hormones should be taken into account, which may trigger or exacerbate symptoms of ocular myasthenia gravis.

  2. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability.

    Science.gov (United States)

    Sauer, Reine-Solange; Krug, Susanne M; Hackel, Dagmar; Staat, Christian; Konasin, Natalia; Yang, Shaobing; Niedermirtl, Benedikt; Bosten, Judith; Günther, Ramona; Dabrowski, Sebastian; Doppler, Kathrin; Sommer, Claudia; Blasig, Ingolf E; Brack, Alexander; Rittner, Heike L

    2014-07-10

    The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using μ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Iron uptake and transport at the blood-brain barrier

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    The mechanism by which iron is transported across the blood-brain barrier (BBB) remains controversial, and in this study we aimed to further clarify mechanisms by which iron is transported into the brain. We analyzed and compared the mRNA and protein expression of a variety of proteins involved...... in the transport of iron (transferrin receptor, divalent metal transporter I (DMT1), steap 2, steap 3, ceruloplasmin, hephaestin and ferroportin) in both primary rat brain capillary endothelial cells (BCEC) and immortalized rat brain capillary endothelial cell line (RBE4) grown in co-culture with defined polarity....... The mRNA expression of the iron-related molecules was also investigated in isolated brain capillaries from iron deficiency, iron reversible and normal rats. We also performed iron transport studies to analyze the routes by which iron is transported through the brain capillary endothelial cells: i) We...

  4. Physical insights into the blood-brain barrier translocation mechanisms

    Science.gov (United States)

    Theodorakis, Panagiotis E.; Müller, Erich A.; Craster, Richard V.; Matar, Omar K.

    2017-08-01

    The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.

  5. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  6. Ocular manifestations in the Hutchinson-Gilford progeria syndrome

    Directory of Open Access Journals (Sweden)

    Shivcharan L Chandravanshi

    2011-01-01

    Full Text Available The Hutchinson-Gilford progeria (HGP syndrome is an extremely rare genetic condition characterized by an appearance of accelerated aging in children. The word progeria is derived from the Greek word progeros meaning ′prematurely old′. It is caused by de novo dominant mutation in the LMNA gene (gene map locus 1q21.2 and characterized by growth retardation and accelerated degenerative changes of the skin, musculoskeletal and cardiovascular systems. The most common ocular manifestations are prominent eyes, loss of eyebrows and eyelashes, and lagophthalmos. In the present case some additional ocular features such as horizontal narrowing of palpebral fissure, superior sulcus deformity, upper lid retraction, upper lid lag in down gaze, poor pupillary dilatation, were noted. In this case report, a 15-year-old Indian boy with some additional ocular manifestations of the HGP syndrome is described.

  7. An investigation into diabetic patients’ knowl-edge of diabetes and its ocular complications in the Western Cape

    Directory of Open Access Journals (Sweden)

    P.C. Clarke-Farr

    2006-12-01

    Full Text Available This paper presents the findings of a study which  evaluated  the  knowledge  of  a  sample of diabetic patients about their disease and its ocular complications. A comprehensive ques-tionnaire  was  provided  to  diabetic  patients in  the  Cape  Town  metropolitan  district  and its  surrounds.  Specifically,  the  questionnaire aimed  to  determine  the  patient’s  knowledge of  diabetes,  their  knowledge  of  the  ocular complications of diabetes, the options for its management and treatment as well as a section considering  other  general  information  relat-ing  to  diabetes  and  its  ocular  complications. Their subject knowledge about diabetes and its ocular complications was relatively limited as only 42% of respondents knew about the exis-tence  of  two  types  of  diabetes. Twenty  nine percent of respondents believed that diabetes would not affect their eyes. Although 76% of the patients felt it very important to measure their blood sugar and 80% rated blood sugar control  as  very  important,  only  37%  of  the respondents  measured  their  blood  sugar  on a  daily  basis. A  particular  concern  was  that although  96%  of  the  respondents  felt  that  it was important to have their eyes checked regu-larly, only 30% of the respondents stated that they had actually had their eyes checked every year. The results of this investigation support the need for diabetic patients to receive better patient education about diabetes and its ocular complications. Furthermore, attention needs to be paid to expanding patient access to diabetic screenings and ocular examinations in order to manage this condition effectively.

  8. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.

    Science.gov (United States)

    Mandal, Abhirup; Bisht, Rohit; Rupenthal, Ilva D; Mitra, Ashim K

    2017-02-28

    Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age-related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in-vitro and in-vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non-toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Blood pressure modifies retinal susceptibility to intraocular pressure elevation.

    Directory of Open Access Journals (Sweden)

    Zheng He

    Full Text Available Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP. An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion, moderate (∼100 mmHg, saline, or high levels (∼160 mmHg, angiotensin II of mean arterial pressure (MAP, n = 5-10 per group were subjected to IOP challenge (10-120 mmHg, 5 mmHg steps every 3 minutes. Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave and inner retinal function (scotopic threshold response or STR. Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow.

  10. The incidence of ocular candidiasis and evaluation of routine opthalmic examination in critically ill patients with candidaemia.

    Science.gov (United States)

    Gluck, S; Headdon, W G; Tang, Dws; Bastian, I B; Goggin, M J; Deane, A M

    2015-11-01

    Despite a paucity of data regarding both the incidence of ocular candidiasis and the utility of ophthalmic examination in critically ill patients, routine ophthalmic examination is recommended for critically ill patients with candidaemia. The objectives were to estimate the incidence of ocular candidiasis and evaluate whether ophthalmic examination influenced subsequent management of these patients. We conducted a ten-year retrospective observational study. Data were extracted for all ICU patients who were blood culture positive for fungal infection. Risk factors for candidaemia and eye involvement were quantified and details regarding ophthalmic examination were reviewed. Candida species were cultured in 93 patients. Risk factors for ocular candidiasis were present in 57% of patients. Forty-one percent of patients died prior to ophthalmology examination and 2% of patients were discharged before candidaemia was identified. During examination, signs of ocular candidiasis were only present in one (2.9%) patient, who had a risk factor for ocular candidiasis. Based on these findings, the duration of antifungal treatment for this patient was increased. Ocular candidiasis occurs rarely in critically ill patients with candidaemia, but because treatment regimens may be altered when diagnosed, routine ophthalmic examination is still indicated.

  11. Receptor-mediated transcytosis of cyclophilin B through the blood-brain barrier.

    Science.gov (United States)

    Carpentier, M; Descamps, L; Allain, F; Denys, A; Durieux, S; Fenart, L; Kieda, C; Cecchelli, R; Spik, G

    1999-07-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein mainly located in intracellular vesicles and secreted in biological fluids. In previous works, we demonstrated that CyPB interacts with T lymphocytes and enhances in vitro cellular incorporation and activity of CsA. In addition to its immunosuppressive activity, CsA is able to promote regeneration of damaged peripheral nerves. However, the crossing of the drug from plasma to neural tissue is restricted by the relative impermeability of the blood-brain barrier. To know whether CyPB might also participate in the delivery of CsA into the brain, we have analyzed the interactions of CyPB with brain capillary endothelial cells. First, we demonstrated that CyPB binds to two types of binding sites present at the surface of capillary endothelial cells from various species of tissues. The first type of binding sites (K(D) = 300 nM; number of sites = 3 x 10(6)) is related to interactions with negatively charged compounds such as proteoglycans. The second type of binding sites, approximately 50,000 per cell, exhibits a higher affinity for CyPB (K(D) = 15 nM) and is involved in an endocytosis process, indicating it might correspond to a functional receptor. Finally, the use of an in vitro model of blood-brain barrier allowed us to demonstrate that CyPB is transcytosed by a receptor-mediated pathway (flux = 16.5 fmol/cm2/h). In these conditions, CyPB did not significantly modify the passage of CsA, indicating that it is unlikely to provide a pathway for CsA brain delivery.

  12. Transport across the blood-brain barrier of pluronic leptin.

    Science.gov (United States)

    Price, Tulin O; Farr, Susan A; Yi, Xiang; Vinogradov, Serguei; Batrakova, Elena; Banks, William A; Kabanov, Alexander V

    2010-04-01

    Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (K(i)) = 0.272 +/- 0.037 microl/g x min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0-30 min, p penetration by a mechanism-independent BBB leptin transporter.

  13. Desferrioxamine-related ocular toxicity: A case report

    Directory of Open Access Journals (Sweden)

    Sumu Simon

    2012-01-01

    Full Text Available A 29-year-old lady receiving repeated blood transfusions for β thalassemia since childhood, presented with rapidly deteriorating symptoms of night blindness and peripheral visual field loss. She was recently commenced on high-dose intravenous desferrioxamine for reducing the systemic iron overload. Clinical and investigative findings were consistent with desferrioxamine-related pigmentary retinopathy and optic neuropathy. Recovery was partial following cessation of desferrioxamine. This report highlights the ocular side-effects of desferrioxamine mesylate and the need to be vigilant in patients on high doses of desferrioxamine.

  14. Alterações oftalmológicas decorrentes do tratamento do lúpus eritematoso sistêmico juvenil Ocular changes due to the treatment of juvenile systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Melissa Mariti Fraga

    2011-12-01

    Full Text Available OBJETIVO: Avaliar retrospectivamente as alterações oftalmológicas de crianças e adolescentes com lúpus eritematoso sistêmico juvenil (LESJ em um serviço de reumatologia pediátrica terciário. MÉTODOS: Avaliamos 117 pacientes com LESJ (85,5% do gênero feminino, 60,7% não caucasoides com média de idade de 10,4 anos e média de tempo de evolução da doença de 5,4 anos que preenchiam no mínimo quatro critérios de classificação do LES de acordo com o American College of Rheumatology de 1997. Aplicamos um protocolo que continha dados clínicos e demográficos, queixas e alterações oftalmológicas, idade do início, tempo de uso e dose cumulativa das medicações. RESULTADOS: Dos 117 pacientes, 24 (20,5% apresentaram alterações oftalmológicas. Destes, 16 apresentaram alteração de fundo de olho associada a hipertensão arterial sistêmica e/ou uso de cloroquina, quatro apresentaram catarata, dois apresentaram glaucoma e dois apresentaram catarata e glaucoma. A média de idade do aparecimento das alterações oftalmológicas foi de 14,1 anos. Os pacientes com alterações oftalmológicas receberam, estatisticamente, maiores doses e tempos de pulsoterapia de glicocorticoide em relação aos pacientes sem alterações oftalmológicas [1,5 (0,4-1,6 versus 1 (0,2-1,6 mg/kg, P = 0,003; 25,7 (2-99 versus 17,8 (1-114 meses, P = 0,0001; respectivamente]. CONCLUSÃO: Verificamos alta prevalência de alterações oftalmológicas relacionadas principalmente ao tratamento do LESJ, o que demonstra a necessidade de avaliações regulares mesmo em pacientes assintomáticos, visando ao diagnóstico e intervenção precoces e à diminuição da morbidade ocular relacionada a essa doença.OBJECTIVE: To assess retrospectively the ocular changes in children and adolescents with juvenile systemic lupus erythematosus (JSLE in a tertiary pediatric rheumatology service. METHODS: This study assessed 117 JSLE patients (85.5% female, 60.7% non

  15. Clinical value of different detection methods in blunt ocular trauma

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-02-01

    Full Text Available Blunt ocular can cause persistent change of eye structure and function, the method of detection which is closely related to eye injury including B-can ultrasonography, UBM, OCT, FFA, scanning laser polarimetry, fundus autofluorescence, each examination with particular emphasis. This paper aims to review the advantages and disadvantages of different inspection methods in order to provide reference for clinical diagnosis and treatment of blunt ocular trauma.

  16. Institutional Barriers to Climate Change Adaptation in U.S. National Parks and Forests

    Directory of Open Access Journals (Sweden)

    Lesley C. Jantarasami

    2010-12-01

    Full Text Available Climate change will increasingly challenge ecosystem managers' ability to protect species diversity and maintain ecosystem function. In response, the National Park Service and the United States Forest Service have promoted climate change adaptation as a management strategy to increase ecosystem resilience to changing climatic conditions. However, very few examples of completed adaptation plans or projects exist. Here, we examine managers' perceptions of internal and external institutional barriers to implementing adaptation strategies. We conducted semi-structured interviews (n=32 with regional managers and agency staff in six park and forest units in Washington State. We found that internal barriers, including unclear mandates from superiors and bureaucratic rules and procedures, are perceived as greater constraints than external barriers related to existing federal environmental laws. Respondents perceived process-oriented environmental laws, such as the National Environmental Policy Act, as enablers of adaptation strategies, and prescriptive laws, such as the Endangered Species Act, as barriers. Our results suggest that climate change adaptation is more often discussed than pursued, and that institutional barriers within agencies limit what can be accomplished.

  17. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  18. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  19. Prevalence of, and barriers to, preventive lifestyle behaviors in hypertension (from a national survey of Canadians with hypertension).

    Science.gov (United States)

    Gee, Marianne E; Bienek, Asako; Campbell, Norman R C; Bancej, Christina M; Robitaille, Cynthia; Kaczorowski, Janusz; Joffres, Michel; Dai, Sulan; Gwadry-Sridar, Femida; Nolan, Robert P

    2012-02-15

    Patients with hypertension are advised to lower their blood pressure to lifestyle modification and/or pharmacotherapy. To describe the use of lifestyle changes for blood pressure control and to identify the barriers to these behaviors, the data from 6,142 Canadians with hypertension who responded to the 2009 Survey on Living With Chronic Diseases in Canada were analyzed. Most Canadians with diagnosed hypertension reported limiting salt consumption (89%), having changed the types of food they eat (89%), engaging in physical activity (80%), trying to control or lose weight if overweight (77%), quitting smoking if currently smoking (78%), and reducing alcohol intake if currently drinking more than the recommended levels (57%) at least some of the time to control their blood pressure. Men, those aged 20 to 44 years, and those with lower educational attainment and lower income were, in general, less likely to report engaging in lifestyle behaviors for blood pressure control. A low desire, interest, or awareness were commonly reported barriers to salt restriction, changes in diet, weight loss, smoking cessation, and alcohol reduction. In contrast, the most common barrier to engaging in physical activity to regulate blood pressure was the self-reported challenge of managing a coexisting physical condition or time constraints. In conclusion, programs and interventions to improve the adherence to lifestyle changes to treat hypertension may need to consider the identified barriers to lifestyle behaviors in their design. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium.

    Science.gov (United States)

    Fatima, A; Iftekhar, G; Sangwan, V S; Vemuganti, G K

    2008-09-01

    To report histopathologic changes of the ocular surface pannus in patients with severe limbal stem cell deficiency (LSCD). Corneal and conjunctival pannus tissues from 29 patients undergoing ocular reconstruction with cultured limbal cell transplantation were included. The medical records of these patients were reviewed for demographics, aetiologic diagnosis, type of injury, interval between the initial insult and excision of pannus, and medical history involving human amniotic membrane (HAM) or limbal transplantation. The paraffin-embedded tissues were reviewed for epithelial changes, type-degree of fibrosis, degenerative changes, vascular changes, conjunctivalization of corneal surface, and evidence of residual HAM. We attempted a clinicopathologic correlation to understand the pathogenesis of pannus formation in LSCD. The 29 tissues were from 29 eyes of patients with primary aetiology of chemical burn in 89.6% (undetermined in 10.4%) of cases. The pannus showed epithelial hyperplasia in 62%, active fibrosis in 66%, severe inflammation in 21%, giant cell reaction in 28%, and stromal calcification in 14% cases. Goblet cells were seen over the cornea in 64% cases; their absence was associated with squamous metaplasia of the conjunctiva and with long duration of insult. Evidence of residual HAM was noted in 42% cases. The commonest cause of severe LSCD is alkali-induced injury. Goblet cells over the cornea were seen in 60% of cases. HAM used for ocular surface reconstruction could persist for long periods within the corneal pannus, thus raising the need for further studies with long-term follow-up.

  1. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies.

    Science.gov (United States)

    Di Tommaso, Claudia; Bourges, Jean-Louis; Valamanesh, Fatemeh; Trubitsyn, Gregory; Torriglia, Alicia; Jeanny, Jean-Claude; Behar-Cohen, Francine; Gurny, Robert; Möller, Michael

    2012-06-01

    Cornea transplantation is one of the most performed graft procedures worldwide with an impressive success rate of 90%. However, for "high-risk" patients with particular ocular diseases in addition to the required surgery, the success rate is drastically reduced to 50%. In these cases, cyclosporin A (CsA) is frequently used to prevent the cornea rejection by a systemic treatment with possible systemic side effects for the patients. To overcome these problems, it is a challenge to prepare well-tolerated topical CsA formulations. Normally high amounts of oils or surfactants are needed for the solubilization of the very hydrophobic CsA. Furthermore, it is in general difficult to obtain ocular therapeutic drug levels with topical instillations due to the corneal barriers that efficiently protect the intraocular structures from foreign substances thus also from drugs. The aim of this study was to investigate in vivo the effects of a novel CsA topical aqueous formulation. This formulation was based on nanosized polymeric micelles as drug carriers. An established rat model for the prevention of cornea graft rejection after a keratoplasty procedure was used. After instillation of the novel formulation with fluorescent labeled micelles, confocal analysis of flat-mounted corneas clearly showed that the nanosized carriers were able to penetrate into all corneal layers. The efficacy of a 0.5% CsA micelle formulation was tested and compared to a physiological saline solution and to a systemic administration of CsA. In our studies, the topical CsA treatment was carried out for 14 days, and the three parameters (a) cornea transparency, (b) edema, and (c) neovascularization were evaluated by clinical observation and scoring. Compared to the control group, the treated group showed a significant higher cornea transparency and significant lower edema after 7 and 13 days of the surgery. At the end point of the study, the neovascularization was reduced by 50% in the CsA-micelle treated

  2. The effect of aging on brain barriers and the consequences for Alzheimer's disease development.

    Science.gov (United States)

    Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.

  3. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Luissint Anny-Claude

    2012-11-01

    Full Text Available Abstract The Blood–brain barrier (BBB, present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit. The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

  4. Use of CD25 as an immunohistochemical marker for acquired ocular toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Cristina Miyamoto

    2010-10-01

    Full Text Available PURPOSE: Toxoplasmosis is the most common cause of posterior infectious uveitis worldwide. It is often impossible to determine its congenital or acquired nature. Interleukin-2 (IL-2 in peripheral blood has been described as a possible marker for acquired toxoplasmosis. The purpose of this study is to evaluate the histopathological characteristics of ocular toxoplasmosis cases using CD25 as a marker for the expression of interleukin-2. METHODS: Ten formalin-fixed, paraffin-embedded enucleated globes from ten immunocompetent patients with clinical diagnosis of toxoplasmosis were evaluated. Four patients had the acquired form of ocular toxoplasmosis (positive IgM while six were IgM negative and IgG positive for toxoplasmosis. Histopathological slides were reviewed for the extension of the retinal necrosis, number of toxo cysts, the granulomatous inflammatory reaction, the presence of T and B cells within the choroid and the IL-2 expression. Immunohistochemistry using monoclonal antibodies was performed to observe the expression of CD4, CD8, CD20, CD25, and CD68. RESULTS: The histopathological evaluation disclosed no differences between acquired and the other ocular toxoplasmosis cases regarding the characteristics studied. However, CD25 showed a higher expression of IL-2 on the 4 acquired cases of ocular toxoplasmosis compared to the remainders. CONCLUSIONS: To the best of our knowledge, this is the first report showing that the use of CD25 as a marker for interleukin-2 could differentiate acquired ocular toxoplasmosis.

  5. Observation of Influence of Cataract Surgery on the Ocular Surface.

    Directory of Open Access Journals (Sweden)

    Yuli Park

    Full Text Available To evaluate meibomian gland function, changes of lacrimal tears and ocular surface parameters and tear inflammatory mediators following cataract surgery.48 eyes of 34 patients who underwent uncomplicated phacoemulsification were involved and divided into 2 groups with those who had preexisting dry-eye before cataract surgery and those who did not. Ocular symptom score, Schirmer I test, tear film break-up time (TBUT, corneal sensitivity threshold, corneal staining, inflammatory cytokine activities, lid margin abnormalities, meibum expressibility, meibum quality and meibomian gland imaging were evaluated preoperatively, at 1 day, 1 and 2 months postoperatively.Ocular symptom scores were worse at 1 and 2 months postoperatively but, TBUT, corneal staining score and corneal sensitivity threshold showed gradual improvements at 1 month and 2 months postoperatively (p<0.05, respectively. Interestingly there were statistically significant improvements in TBUT, corneal staining score and corneal sensitivity threshold at 1 month postoperatively when topical eye drops were used compared to the period without topical therapy which is the months 2 postoperatively. There were statistically significant decreases in IL-1β, IL-6, IL-8, MCP-1, TNF-α and IFN-γ concentrations at 1 and 2 months postoperatively. Lid margin abnormalities, meibum quality and expressibility scores increased significantly (p < 0.05, respectively at postoperative period. Compared with the no dry eye group, dry eye group revealed significantly higher ocular symptom scores, lower TBUT, higher lid margin abnormalities, meibum quality and expressibility scores after cataract surgery. There were significant correlations between IL-6 and parameters of dry eye, and between MGD parameters and ocular symptom scores.Our study revealed that meibomian gland function is influenced after cataract surgery accompanying structural changes and these were correlated with increased ocular symptom scores

  6. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    OpenAIRE

    David Israeli, David Tanne, Dianne Daniels, David Last, Ran Shneor, David Guez, Efrat Landau, Yiftach Roth, Aharon Ocherashvilli, Mati Bakon, Chen Hoffman, Amit Weinberg, Talila Volk, Yael Mardor

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI...

  7. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    OpenAIRE

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI...

  8. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    International Nuclear Information System (INIS)

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-01-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented

  9. Ocular injury requiring hospitalisation in the south east of Ireland: 2001-2007.

    LENUS (Irish Health Repository)

    Saeed, Ayman

    2012-02-01

    AIM: To investigate whether recent socio-demographic changes and recent health and safety measures have impacted on the trends of ocular trauma in the South East of Ireland. METHODS: We retrospectively reviewed all cases of ocular trauma admitted to our department between October 2001 and September 2007, and the following data were retrieved: demographic details; mechanism of injury and nature of injury. RESULTS: During the study period, 517 patients were admitted with ocular trauma. Work-related and home-related activities were the commonest causes of admission, and accounted for 160 (31.8%) and 145 (28.4%) cases, respectively. In 2006\\/2007, and following the influx of migrant workers from the 10 new EU accession states (EUAS), the incidence of hospitalised ocular injuries per 100,000 was 89 in persons from the EUAS versus 18 in those of Irish origin, P < or = 0.0001. After adding the offence of not wearing a seat belt to the traffic penalty point system in Ireland, the proportion of road traffic accident (RTA)-related ocular injuries dropped significantly from 6.7% to 2.4%, P=0.03. CONCLUSION: The inclusion of the offence of not wearing a seat belt in the traffic penalty point system may have contributed to the significantly lower proportion of hospitalised ocular injuries attributable to RTAs. Also, the demographic profile of patients admitted because of ocular trauma has changed over the last 6 years, reflected in an increasing proportion of these injuries in persons from the EUAS. These data will inform healthcare providers, and those involved in developing health and safety guidelines for the workplace.

  10. Gene therapy for ocular diseases.

    Science.gov (United States)

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  11. Amphiphilic Copolymers Shuttle Drugs Across the Blood-Brain Barrier.

    Science.gov (United States)

    Clemens-Hemmelmann, Mirjam; Kuffner, Christiane; Metz, Verena; Kircher, Linda; Schmitt, Ulrich; Hiemke, Christoph; Postina, Rolf; Zentel, Rudolf

    2016-05-01

    Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    Science.gov (United States)

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes

  13. Expression of ICAM-1 in blood-spinal cord barrier disruption and CNS radiation injury

    International Nuclear Information System (INIS)

    Nordal, R.A.; Li, Y.-Q.; Wong, C.S.

    2003-01-01

    Full text: Intercellular adhesion molecule-1 (ICAM-1) expression is increased following a number of CNS insults in association with blood-brain barrier (BBB) disruption. While disruption of ICAM-1 expression reduces injury in diverse pathologies ranging from trauma to ischemia, its role in CNS radiation injury is not understood. Adult rats received 0 to 22 Gy to a 1.6 cm length of the cervical spinal cord. Expression of ICAM-1 was studied using immunohistochemistry (IHC). Blood-spinal cord barrier (BSCB) disruption was detected by IHC for endogenous albumin and the BBB protein endothelial barrier antigen (EBA). To assess the role of ICAM-1 in the mechanisms of BSCB disruption, animals received IV injections of an ICAM-1-specific blocking antibody (IA-29) or vehicle control, and BSCB disruption was examined by albumin IHC. ICAM-1, albumin, and EBA staining areas were quantified by digital image analysis. ICAM-1 expression localized predominantly to endothelium in non-irradiated spinal cord sections. Some expression was also identified in astrocytes. ICAM-1 expression was increased in white matter, but not in grey matter following radiation. After 22 Gy, ICAM-1 protein increased at 24 hours, and increased again from baseline at 17-20 weeks. Induction was seen in both the total immunostained area, and in the number of ICAM-1 positive glia. A dose response was observed in ICAM-1 expression 20 weeks after 16-20 Gy. BSCB disruption also increased with doses 16-20 Gy at 20 weeks. Blocking ICAM-1 with IA-29 significantly decreased BSCB leakage of albumin at 24 hours (p=0.03). Regions with both increased ICAM-1 expression and BSCB disruption were identified in white matter. Thus the dose response and spatial distribution of increased ICAM-1 expression parallels that for BSCB disruption. These results are consistent with a role for increased ICAM-1 expression in radiation-induced BSCB disruption. The effect of blocking ICAM-1 with a neutralizing antibody suggests its

  14. Headaches with ocular localization and involvement Cefaleas de localización y compromiso oculares

    Directory of Open Access Journals (Sweden)

    Marta Lucía Muñoz Cardona

    2005-04-01

    Full Text Available The most frequent primary headaches, including migraine variants, and intrinsic optic nerve disorders that produce headache, are reviewed. The latter are often accompanied by autonomic nervous system alterations which lead to vasomotor changes, frequently present in neuralgic processes known as headaches with disautonomic involvement. Epidemiological, semiological, clinical, and therapeutical aspects of different cranial, facial and ocular diseases that produce headache are included. Some physiopathological elements that may help to analyze painful craniofacial processes are discussed. Secondary headaches and common facial neuralgias, on the other hand, are also considered because they may confuse the differential diagnosis. Se revisan las cefaleas primarias más frecuentes que comprometen las estructuras oculares y vecinas al globo ocular, las variantes de la migraña y las alteraciones propias del nervio óptico que alteran la función visual y que se acompañan no solamente de síntomas dolorosos sino también de trastornos vasomotores debidos a alteraciones del sistema nervioso autónomo que suelen ser comunes en algunos procesos neurálgicos llamados ahora cefaleas con compromiso disautonómico. En este artículo se comentan los elementos epidemiológicos de las diferentes enfermedades craneales, faciales y oculares que cursan con cefalea; las diferencias clínicas entre las mismas y su presentación semiológica, al igual que algunos elementos terapéuticos. Se discuten además algunos elementos fisiopatológicos de gran utilidad en el análisis de los procesos dolorosos craneofaciales y el perfil temporal de los mismos; también se comentan algunas cefaleas secundarias que comparten con las primarias elementos que se prestan a confusión en la clínica. Finalmente, se hace un análisis de las neuralgias faciales comunes.

  15. Nano carriers for drug transport across the blood-brain barrier.

    Science.gov (United States)

    Li, Xinming; Tsibouklis, John; Weng, Tingting; Zhang, Buning; Yin, Guoqiang; Feng, Guangzhu; Cui, Yingde; Savina, Irina N; Mikhalovska, Lyuba I; Sandeman, Susan R; Howel, Carol A; Mikhalovsky, Sergey V

    2017-01-01

    Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully

  16. The blood-brain barrier in vitro using primary culture

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart

    The brain is protected from the entry of unwanted substances by means of the blood-brain barrier (BBB) formed by the brain microvasculature. This BBB is composed of non-fenestrated brain capillary endothelial cells (BCECs) with their intermingling tight junctions. The presence of the BBB is a huge...... obstacle for the treatment of central nervous system (CNS) diseases, as many potentially CNS active drugs are unable to reach their site of action within the brain. In vitro BBB models are, therefore, being developed to investigate the BBB permeability of a drug early in its development. The first part...... of the thesis involves the establishment and characterization of an in vitro BBB models based on primary cells isolated from the rat brain. Co-culture and triple culture models with astrocytes and pericytes were found to be the superior to mono cultured BCECs with respect to many important BBB characteristics...

  17. Frosted branch angiitis, neuroretinitis as initial ocular manifestation in Behçet disease

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mujaini

    2011-01-01

    Full Text Available Behçet disease is an idiopathic, multisystem disorder characterized by recurrent episodes of orogenital ulceration and vasculitis of the veins and arteries of all calibers. Ocular involvement may affect the conjunctiva, sclera, uveal tract, vitreous, blood vessels, and retina. Many theories have pointed toward an autoimmune response behind its pathogenesis, which may be triggered by exposure to an infectious agent. Frosted branch angiitis is characterized by vascular inflammation, sheathing, retinal edema, and retinal hemorrhages. The disease may be idiopathic in a majority of the cases or may be associated with ocular and systemic pathology. Association between Behηet disease, Frosted branch angiitis, and neuroretinitis is not reported in literature. This uncommon combination reflects the varied systemic and ocular manifestations in Behηet disease, especially in patients who are not diagnosed and treated in time. We hereby report a case of bilateral frosted branch angiitis and neuroretinitis in a young male from Middle-east, suffering from Behçet disease.

  18. Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination

    International Nuclear Information System (INIS)

    Widdowson, P.S.; Farnworth, M.J.; Simpson, M.G.; Lock, E.A.

    1996-01-01

    Experiments were performed to determine the extent of paraquat entry into the brain of neonatal and elderly rats, as compared with adult rats, which may be dependent on the efficacy of the blood-brain barrier. A single, median lethal dose (20 mg/kg s.c.) of paraquat containing [14C]paraquat was administered to neonatal (10 day old), adult (3 month old) and elderly (18 month old) rats. In contrast to the adult and elderly rats where paraquat levels fell over the 24 h post-dosing period to negligible levels, paraquat concentrations in neonatal brains did not decrease with time between 0.5 and 24 h following dosing. The distribution of [14C]paraquat was measured in selective brain regions using quantitative autoradiography in all three age groups of rats, 30 min and 24 h following dosing. Autoradiography demonstrated that brain paraquat distributions were similar in the rat age groups. Most of the paraquat was confined to regions outside the blood-brain barrier and to brain regions that lack a complete blood-brain barrier e.g. dorsal hypothalamus, area postrema and the anterior olfactory bulb. Between 0.5 h and 24 h following dosing, paraquat concentrations in deeper brain structures, some distance away from the sites of entry, began to slowly increase in all the rat age groups. By 24 h following dosing, a majority of brain regions examined using quantitative autoradiography revealed significantly higher paraquat concentrations in neonatal brains as compared to brain regions of adult and elderly rats. Despite increased paraquat entry into neonatal brain, we could find no evidence for paraquat-induced neuronal cell damage following a detailed histopathological examination of perfused-fixed brains. In conclusion, impaired blood-brain barrier integrity in neonatal brain thus permitting more paraquat to enter than in adult brain, did not result in neuronal damage

  19. Modulation of Mrp1 (ABCc1 and Pgp (ABCb1 by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat.

    Directory of Open Access Journals (Sweden)

    Silvia Gazzin

    2011-01-01

    Full Text Available Accumulation of unconjugated bilirubin (UCB in the brain causes bilirubin encephalopathy. Pgp (ABCb1 and Mrp1 (ABCc1, highly expressed in the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj Gunn rats compared to heterozygous, not jaundiced (Jj littermates at different developmental stages (2, 9, 17 and 60 days after birth. BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16-27% of adult values, despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17-P60, respectively; Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60-70% of the adult values in both jj and Jj at P2, but was markedly (50% down-regulated in jj pups starting at P9, particularly in the 4(th ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity.

  20. Ocular emergencies presenting to Menelik II Hospital.

    Science.gov (United States)

    Negussie, Dereje; Bejiga, Abebe

    2011-01-01

    Ocular conditions such as trauma, painful red eye of any cause, painless sudden visual loss and others are commonly seen as ocular emergencies, and can lead to ocular morbidity and visual loss. To determine types and causes of ocular emergencies seen at Menelik II hospital. A cross-sectional study was conducted from April to October, 2007. Consecutive patients who presented with ocular emergencies at any time of the day were prospectively evaluated and registered on a formatted questionnaire. Evaluation of the patients included history of presenting illness, visual acuity testing intraocular pressure measurement on non-perforated and non-infected eyes, and complete eye examination in order to arrive at the diagnosis. A total of 26,400 patients attended Menelik II hospital during the study period. Of these, 758 (3%) were persons with an ocular emergency. The majority of patients (n=551; 72.7%) were male, with a male to female ratio of 2.7:1. The age group of 16 to 30 years was the most affected (47.9%), followed by those aged 15 years or younger (27.3%). Ocular trauma and ocular infections accounted for 75.6% and 13.1% of cases, respectively. Of the total ocular emergencies, open globe injuries constituted 171 (22.6%), corneal foreign bodies and abrasion 125 (16.5%), and open adnexal injuries 119 (15.7%). Metal and wood were the commonest work-related causes of ocular injuries in adults, with both together accounting for 60% of all ocular injuries. Children, on the other hand, sustained ocular injury while playing with others in 128 (22.3%) of cases. This study was able to provide a more complete picture to improve understanding of the nature and circumstances of ocular emergencies in Ethiopia. Ocular emergencies were dominated by ocular trauma, particularly affecting males and working-age adults. Public education and use of protective safety measures are recommended to alleviate the problem.

  1. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Directory of Open Access Journals (Sweden)

    Lee Na-Young

    2010-08-01

    Full Text Available Abstract Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells, as in vitro blood-placental barrier (BPB model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC activator in TR-TBT cells. Also, calcium ion (Ca2+ was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α, lipopolysaccharide (LPS and diethyl maleate (DEM significantly increased taurine uptake, but H2O2 and nitric oxide (NO donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus.

  2. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  3. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  4. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Science.gov (United States)

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  5. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Sylvia Wagner

    Full Text Available BACKGROUND: The blood-brain barrier (BBB represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. CONCLUSIONS/SIGNIFICANCE: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  6. Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.

    Science.gov (United States)

    Clark, D E

    2001-09-01

    This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.

  7. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells

    OpenAIRE

    Kim, Brandon J.; Bee, Olivia B.; McDonagh, Maura A.; Stebbins, Matthew J.; Palecek, Sean P.; Doran, Kelly S.; Shusta, Eric V.

    2017-01-01

    ABSTRACT Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with a...

  8. Extraction of [99mTc]-d,l-HM-PAO across the blood-brain barrier

    DEFF Research Database (Denmark)

    Andersen, A R; Friberg, H; Knudsen, K B

    1988-01-01

    The initial extraction (E) across the blood-brain barrier (BBB) of [99mTc]-d,l-HM-PAO after intracarotid injection was measured in 14 Wistar rats and 6 patients using the double indicator, single injection method with Na-24 as the cotracer. In both series, cerebral blood flow (CBF) was measured...... was increased from 20 to 120 microliters, while using a 120 microliters bolus containing 10% albumin resulted in a decrease in E. This suggests that HM-PAO binding to albumin is not totally and rapidly reversible during a single passage through brain capillaries and that binding to blood elements may reduce...... the apparent extraction across brain capillaries. In patients using a bolus of 1 ml saline, E decreased linearly with increasing CBF (r = -0.81, p less than 0.001). For a CBF of 0.59 ml/g/min and an average apparent E of 0.72, an apparent PS product of 0.76 ml/g/min was calculated.(ABSTRACT TRUNCATED AT 250...

  9. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Directory of Open Access Journals (Sweden)

    Michael K DeSalvo

    2014-11-01

    Full Text Available AbstractCentral nervous system (CNS function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with FACS and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ABC and SLC transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  10. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Science.gov (United States)

    DeSalvo, Michael K; Hindle, Samantha J; Rusan, Zeid M; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  11. Ocular Surface and Tear Film Changes in Older Women Working with Computers

    Directory of Open Access Journals (Sweden)

    Alfredo Ribelles

    2015-01-01

    Full Text Available The aim of this work is to investigate changes in the ocular surface (OS and tear film (TF by means of questionnaire-based subjective symptoms, TF break-up time, Schirmer test, and TF analysis in women working with computers and to analyze the effects of the oral supplementation with antioxidants/omega 3 fatty acids (A/ω3 in the OS outcomes. Women aged 40–65 years (n=148 were recruited at the Administrative Offices of Valencia (Spain and distributed into two age groups, 40–52 years (AGE1; n=87 and 53–65 years (AGE2; n=61, and then subdivided according to being (or not computer users (CUG; NCUG during the workday. Homogeneous subgroups were randomly assigned (or not to the daily intake of three pills of A/ω3 for three months. At baseline and at the end of follow-up, personalized interviews and ocular examination were done. Reflex tear samples were collected from the inferior meniscus and processed for a multiplexed particle-based flow cytometry assay to measure proinflammatory molecules. Statistics were performed using the SPSS 15.0 program. The OS pathology was clinically evident in the AGE1-CUG (33% versus the AGE2-CUG (64% of women. Significantly higher interleukins-1β and -6 tear levels were found in the AGE1 versus the AGE2 women employees (P=0.006 and P=0.001, resp., as well as in the CUG versus the NCUG (P=0.001 and P=0.000, resp.. Supplementation with A/ω3 positively influenced the OS pathology as manifested by the amelioration of the clinical signs/symptoms related to computer uses. Strategies involving a safe environment and oral micronutrient supplements may be managed within eye-care standards in older women.

  12. Hyphema as a Complication of Blunt Ocular Trauma and Additional Ocular Findings

    Directory of Open Access Journals (Sweden)

    Mehmet Giray Ersöz

    2014-01-01

    Full Text Available Objectives: To investigate the frequency of angle recession, commotio retinae, and other ocular findings in patients with hyphema due to blunt ocular trauma. Materials and Methods: The medical records of 66 patients hospitalized between July 2010 and May 2012 with a diagnosis of traumatic hyphema were retrospectively reviewed. The age, gender, period between injury and the first examination, visual acuity at presentation, intraocular pressure (IOP, time of disappearance of hyphema, cause of blunt injury, additional ocular findings, medical and/or surgical treatment, follow-up time, and visual outcome were noted. Results: The mean age of the patients was 23.8±19.2 years. Males constituted the 83.3% of the whole group. Game-related injury (43.9% and work-related injury (22.7% were the most common causes of blunt trauma. The bead gun was the most common tool involved in injury. Angle recession was detected in 36 patients (54.5%. Development of secondary glaucoma was higher in the patients with angle recession (chi-square test, p<0.05. Commotio retinae was observed in 47% of patients. The mean visual acuity at presentation was 0.4±0.3, while at the last visit, it was 0.8±0.3. There was a statistically significant difference between baseline and final visual acuity (paired-samples t-test, p<0.001. Conclusion: Hyphema due to blunt ocular trauma is observed mostly in young men and children. The most common blunt ocular injuries are game-and work-related. Angle recession and commotio retinae are the main complications of blunt ocular trauma causing hyphema. In cases with blunt ocular trauma, the presence of hyphema makes it difficult to examine the anterior chamber angle and the fundus. It is important to perform these investigations at the earliest stage to manage the complications since commotio retinae and angle recession accompany many cases with hyphema. (Turk J Ophthalmol 2014; 44: 19-22

  13. Role of the Blood-Brain Barrier in the Formation of Brain Metastases

    Directory of Open Access Journals (Sweden)

    István A. Krizbai

    2013-01-01

    Full Text Available The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB. The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation.

  14. Invasiveness as a barrier to self-monitoring of blood glucose in diabetes.

    Science.gov (United States)

    Wagner, Julie; Malchoff, Carl; Abbott, Gina

    2005-08-01

    This study investigated the degree to which the invasive characteristic of glucose monitoring is a barrier to self-monitoring of blood glucose (SMBG). A paper-and-pencil Measure of Invasiveness as a reason for Skipping SMBG (MISS) was created and administered to 339 people with diabetes. The correlations between MISS scores and actual SMBG frequency, percent adherence to SMBG recommendations, SMBG anxiety, SMBG burden, and knowledge of the importance of glycemic control for avoiding diabetes complications were each explored. On a scale of 0-28, the average MISS score was M = 4.3 (SD = 5.4, range 0-28). Fully 63% (nearly two-thirds) of respondents reported skipping SMBG because of the invasiveness of the procedure. MISS scores were negatively related to percent adherence to healthcare provider SMBG recommendations as measured by memory function of automated meters (Spearman's r= -0.47, P diabetes vascular complications. Invasiveness is a common and serious barrier to SMBG. These findings suggest that people with diabetes would perform SMBG more frequently and have improved quality of life with non-invasive SMBG.

  15. Epidemiology of Ocular Toxoplasmosis

    NARCIS (Netherlands)

    Petersen, E.; Kijlstra, A.; Stanford, M.

    2012-01-01

    Retinal infection with Toxoplasma gondii is the most important cause of posterior uveitis, whereby prevalence and incidence of ocular symptoms after infection depend on socio-economic factors and the circulating parasite genotypes. Ocular toxoplasmosis is more common in South America, Central

  16. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier

    NARCIS (Netherlands)

    Doze, P; Van Waarde, A; Elsinga, P H; Hendrikse, N H; Vaalburg, W

    Low cerebral uptake of some therapeutic drugs can be enhanced by modulation of P-glycoprotein (P-gp), an ATP-driven drug efflux pump at the blood-brain barrier (BBB). We investigated the possibility of increasing cerebral uptake of the beta-adrenergic ligands S-1'-[(18)F]-fluorocarazolol (FCAR) and

  17. Mometasone furoate nasal spray relieves the ocular symptoms of seasonal allergic rhinoconjunctivitis.

    Science.gov (United States)

    Igarashi, Tsutomu; Nakazato, Yuri; Kunishige, Tomoyuki; Fujita, Miho; Yamada, Yumi; Fujimoto, Chiaki; Okubo, Kimihiro; Takahashi, Hiroshi

    2012-01-01

    Recent studies have examined the effects of intranasal corticosteroids (INSs) in relieving the ocular symptoms of seasonal allergic rhinoconjunctivitis (SAR) and perennial allergic rhinitis. However, because most of these studies were based on subjective assessments by patients, the associated factors and mechanism of action are unknown. A single-center, randomized, double-blind, parallel-group study was carried out in which patients with SAR were randomly assigned to an INS mometasone furoate nasal spray (MFNS) group or to a placebo group and treated once daily for 4 weeks. Substance P concentrations in tears were measured, ocular and nasal symptoms were recorded by patients in an allergy diary, and findings were recorded by an ophthalmologist. There was no significant difference between treatment groups in the mean change from baseline of substance P concentration in tears after 4 weeks of treatment, but the mean change tended to increase in the placebo group and tended to decrease in the MFNS group (P = 0.089). All ocular and nasal symptom scores, except eye tearing, were significantly lower in the MFNS group than in the placebo group. Furthermore, substance P concentrations were strongly correlated with ocular and nasal symptom scores. In patients with SAR, INSs tend to decrease the substance P concentration in tears, which is correlated with the severity of ocular and nasal symptoms.

  18. Tear film and ocular surface assessment in psoriasis.

    Science.gov (United States)

    Aragona, Emanuela; Rania, Laura; Postorino, Elisa Imelde; Interdonato, Alberto; Giuffrida, Roberta; Cannavò, Serafinella Patrizia; Puzzolo, Domenico; Aragona, Pasquale

    2018-03-01

    Psoriasis is a skin disease with also systemic involvement: its impact on the eye is not well established and often clinically underestimated. Aim of this study was to investigate the presence of ocular discomfort symptoms and of ocular surface changes in a population of patients with psoriasis. For this cross-sectional, comparative study, 66 patients with psoriasis were subdivided according to the presence of arthritis and to the use of biological therapy. All patients underwent clinical evaluation with the following tests: Ocular Surface Disease Index Questionnaire, Tearscope examination, meibometry, tear film breakup time, corneal and conjunctival fluorescein staining, Schirmer I test, corneal aesthesiometry, meibomian gland dysfunction (MGD) assessment and conjunctival impression cytology. 28 healthy subjects were also enrolled and treated with the same clinical tests. A statistical analysis of the results was performed. Patients with psoriasis showed a significant deterioration of the ocular surface tests, if compared with healthy subjects, demonstrated by tear film lipid layer alteration, tear film instability, corneal and conjunctival epithelial suffering and mild squamous metaplasia at impression cytology. No differences were found in ocular surface test results of the psoriatic group when patients were divided according to the presence of arthritis, whereas the anti-inflammatory treatment with biological drugs demonstrated a significant improvement of corneal stain and MGD. Our findings suggest that the ocular surface involvement in patients with psoriasis indicates the need of periodic ophthalmological examinations to diagnose the condition and allow a proper treatment, so contributing to the amelioration of patients' quality of life. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. [Descending ocular myopathy].

    Science.gov (United States)

    de Freitas, M R; Nascimento, O J

    1975-06-01

    The case of a 23 years old female patient, with primary involvement of the extraocular and faringeal muscles without familiar history is reported. Electromyographic and muscular biopsy studies proved the myogenic nature of the process. A clinical comparison between the ocular myopathy and the descending ocular myopathy is made, the authors thinking that both of them would be variants of the same muscle disease.

  20. Strategies for transporting nanoparticles across the blood-brain barrier.

    Science.gov (United States)

    Zhang, Tian-Tian; Li, Wen; Meng, Guanmin; Wang, Pei; Liao, Wenzhen

    2016-02-01

    The existence of blood-brain barrier (BBB) hampers the effective treatment of central nervous system (CNS) diseases. Almost all macromolecular drugs and more than 98% of small molecule drugs cannot pass the BBB. Therefore, the BBB remains a big challenge for delivery of therapeutics to the central nervous system. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now possible to design delivery systems that could cross the BBB effectively. Because of their advantageous properties, nanoparticles have been widely deployed for brain-targeted delivery. This review paper presents the current understanding of the BBB under physiological and pathological conditions, and summarizes strategies and systems for BBB crossing with a focus on nanoparticle-based drug delivery systems. In summary, with wider applications and broader prospection the treatment of brain targeted therapy, nano-medicines have proved to be more potent, more specific and less toxic than traditional drug therapy.

  1. Blood brain barrier permeability and tPA-mediated neurotoxicity

    Science.gov (United States)

    Nassar, Taher; Yarovoi, Sergey; Rayan, Anwar; Lamensdorf, Itschak; Karakoveski, Michael; Vadim, Polianski; Fanne, Rami Abu; Jamal, Mahmud; Cines, Douglas B.; Higazi, Abd Al-Roof

    2015-01-01

    Tissue type plasminogen activator (tPA) induces neuronal apoptosis, disrupt the blood-brain-barrier (BBB), and promotes dilation of the cerebral vasculature. The timing, sequence and contributions of these and other deleterious effects of tPA and their contribution to post-ischemic brain damage after stroke, have not been fully elucidated. To dissociate the effects of tPA on BBB permeability, cerebral vasodilation and protease-dependent pathways, we developed several tPA mutants and PAI-1 derived peptides constructed by computerized homology modeling of tPA. Our data show that intravenous administration of human tPA to rats increases BBB permeability through a non-catalytic process, which is associated with reversible neurotoxicity, brain damage, edema, mortality and contributes significantly to its brief therapeutic window. Furthermore, our data show that inhibiting the effect of tPA on BBB function without affecting its catalytic activity, improves outcome and significantly extends its therapeutic window in mechanical as well as thromboembolic models of stroke. PMID:20060006

  2. Perceptions of climate change and barriers to adaptation amongst ...

    African Journals Online (AJOL)

    Perceptions of climate change and barriers to adaptation amongst commonage and commercial livestock farmers in the semi-arid Eastern Cape Karoo. ... of farmers, compelling them to implement more resilient adaptive measures to decrease ...

  3. Functional anatomy and immunological interactions of ocular surface and adnexa.

    Science.gov (United States)

    Paulsen, Friedrich

    2008-01-01

    This chapter gives an overview about the structures and physiology of the ocular surface and its adnexa and focuses in a second part on the possible meaning of eye-associated lymphoid tissue (EALT) in a context with the development of dry eye. Sections deal with (1) anatomy of the ocular surface, lacrimal gland, eyelid and nasolacrimal ducts. (2) The meaning and importance of the lacrimal functional unit and the function of the mucosal innate immune system are briefly summarized. (3) Finally, the occurrence and the possible function of EALT is discussed with regard to tolerance induction and dry eye. The epithelial surface of the eye and its specialized glandular infoldings produce the components of the tear film, which include water, protective antimicrobials, cytokines, lipids as well as mucins and trefoil factor family (TFF) peptides. Antimicrobials, mucins and TFF peptides perform a number of essential functions which, collectively, provide protection of the ocular surface. Their production changes in cases of dry eye. The development of EALT is a common feature frequently occurring in symptomatically normal conjunctiva and nasolacrimal ducts. The production of antimicrobials, mucins and TFF peptides can be linked with cell signaling, tear film rheology, and antimicrobial defense at the ocular surface. Changes in the production of such peptides and proteins in cases of dry eye support the assumption that these peptides and proteins are involved in the pathophysiological events that occur at the ocular surface and lacrimal apparatus. Whether special types of bacteria, viruses, or other factors, e.g., immune deviation, are responsible for the development of EALT in humans requires further investigation in prospective and experimental studies.

  4. Plasmalemmal Vesicle Associated Protein-1 (PV-1 is a marker of blood-brain barrier disruption in rodent models

    Directory of Open Access Journals (Sweden)

    Ali Zarina S

    2008-02-01

    Full Text Available Abstract Background Plasmalemmal vesicle associated protein-1 (PV-1 is selectively expressed in human brain microvascular endothelial cells derived from clinical specimens of primary and secondary malignant brain tumors, cerebral ischemia, and other central nervous system (CNS diseases associated with blood-brain barrier breakdown. In this study, we characterize the murine CNS expression pattern of PV-1 to determine whether localized PV-1 induction is conserved across species and disease state. Results We demonstrate that PV-1 is selectively upregulated in mouse blood vessels recruited by brain tumor xenografts at the RNA and protein levels, but is not detected in non-neoplastic brain. Additionally, PV-1 is induced in a mouse model of acute ischemia. Expression is confined to the cerebovasculature within the region of infarct and is temporally regulated. Conclusion Our results confirm that PV-1 is preferentially induced in the endothelium of mouse brain tumors and acute ischemic brain tissue and corresponds to blood-brain barrier disruption in a fashion analogous to human patients. Characterization of PV-1 expression in mouse brain is the first step towards development of rodent models for testing anti-edema and anti-angiogenesis therapeutic strategies based on this molecule.

  5. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant?

    Directory of Open Access Journals (Sweden)

    Gesa eWeise

    2012-12-01

    Full Text Available Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain (BBB or blood nerve barrier (BNB preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd-DTPA-enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO and perfluorocarbons (PFC enable assessment of leukocyte (mainly macrophage infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis (MS, cerebral ischemia and traumatic nerve injury and review corresponding findings in patients.

  6. Adapting to climate change by water management organisations: Enablers and barriers

    Science.gov (United States)

    Azhoni, Adani; Jude, Simon; Holman, Ian

    2018-04-01

    Climate change will be particularly experienced though the medium of water. Water organisations, that are managing societal and ecological needs for water, are therefore likely to experience the impact the most. This study reviews the current literature regarding adaptation to climate change by water management organisations and associated barriers. Literature on adaptive capacity is growing and a general consensus is emerging on the determinants of adaptive capacity, although variations exist regarding how it is to be evaluated, enhanced and applied to policy making due to its dynamic, contextual and latent nature. Since adaptive capacity is hard to measure and successful adaptation difficult to define, some studies focus on the existence of adaptation attributes of organisations. Studies reporting successful adaptation are minimal and barriers of adaptation are being discovered as adaptation research transitions into implementation. But the root causes of these barriers are often overlooked and the interconnectedness of the barriers is poorly addressed. Increasingly, combining top-down and bottom-up approaches to adaptation is being recommended due to the limitations of each. However, knowledge regarding how organisations operating at different scales can enhance adaptive capacity of other organisations operating at another scale is lacking due to the few studies of inter-organisational networks across scales. Social networks among actors are recognised as a key factor to enable adaptation. However, network studies generally focus on individual actors and rarely between public agencies/organisations. Moreover, the current literature is inadequate to understand the relationship between adaptation enabling characteristics, barriers and adaptation manifestation. The review demonstrates that research on understanding the emergence and sustenance of barriers is urgently required. Addressing these knowledge gaps will help to improve the design of adaptation strategies

  7. [Ocular surface system integrity].

    Science.gov (United States)

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  8. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  9. Routes for Drug Translocation Across the Blood-Brain Barrier: Exploiting Peptides as Delivery Vectors.

    Science.gov (United States)

    Kristensen, Mie; Brodin, Birger

    2017-09-01

    A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted, both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment of brain diseases such as neurodegenerative diseases or brain cancers require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vector is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor-mediated transcytosis, adsorptive-mediated transcytosis, and the paracellular route. The latter, however, being controversial due to the risk of co-delivery of blood-borne potential harmful substances. On the other hand, a number of studies report on drug delivery across the BBB exploiting receptor-mediated transcytosis and adsorptive-mediated transcytosis, indicating that peptides and peptide vectors may be of use in a central nervous system delivery context. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Challenging ocular image recognition

    Science.gov (United States)

    Pauca, V. Paúl; Forkin, Michael; Xu, Xiao; Plemmons, Robert; Ross, Arun A.

    2011-06-01

    Ocular recognition is a new area of biometric investigation targeted at overcoming the limitations of iris recognition performance in the presence of non-ideal data. There are several advantages for increasing the area beyond the iris, yet there are also key issues that must be addressed such as size of the ocular region, factors affecting performance, and appropriate corpora to study these factors in isolation. In this paper, we explore and identify some of these issues with the goal of better defining parameters for ocular recognition. An empirical study is performed where iris recognition methods are contrasted with texture and point operators on existing iris and face datasets. The experimental results show a dramatic recognition performance gain when additional features are considered in the presence of poor quality iris data, offering strong evidence for extending interest beyond the iris. The experiments also highlight the need for the direct collection of additional ocular imagery.

  11. MRI in ocular drug delivery

    OpenAIRE

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery de...

  12. Computational Prediction of Blood-Brain Barrier Permeability Using Decision Tree Induction

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2012-08-01

    Full Text Available Predicting blood-brain barrier (BBB permeability is essential to drug development, as a molecule cannot exhibit pharmacological activity within the brain parenchyma without first transiting this barrier. Understanding the process of permeation, however, is complicated by a combination of both limited passive diffusion and active transport. Our aim here was to establish predictive models for BBB drug permeation that include both active and passive transport. A database of 153 compounds was compiled using in vivo surface permeability product (logPS values in rats as a quantitative parameter for BBB permeability. The open source Chemical Development Kit (CDK was used to calculate physico-chemical properties and descriptors. Predictive computational models were implemented by machine learning paradigms (decision tree induction on both descriptor sets. Models with a corrected classification rate (CCR of 90% were established. Mechanistic insight into BBB transport was provided by an Ant Colony Optimization (ACO-based binary classifier analysis to identify the most predictive chemical substructures. Decision trees revealed descriptors of lipophilicity (aLogP and charge (polar surface area, which were also previously described in models of passive diffusion. However, measures of molecular geometry and connectivity were found to be related to an active drug transport component.

  13. Ocular melanoma metastatic to skin: the value of HMB-45 staining.

    Science.gov (United States)

    Schwartz, Robert A; Kist, Joseph M; Thomas, Isabelle; Fernández, Geover; Cruz, Manuel A; Koziorynska, Ewa I; Lambert, W Clark

    2004-06-01

    Cutaneous metastatic disease is an important finding that may represent the first sign of systemic cancer, or, if already known, that may change tumor staging and thus dramatically altered therapeutic plans. Although cutaneous metastases are relatively frequent in patients with cutaneous melanoma, they are less so from ocular melanoma. To demonstrate the value of HMB-45, staining in the detection of ocular melanoma metastatic to skin. The immunohistochemical stain HMB-45 a monoclonal antibody directed against intact human melanoma cells, was employed on a skin biopsy specimen from a cutaneous tumor. HMB-45 staining was positive in the atypical hyperchromatic cells of the deep dermis. HMB-45 may be of value in the detection of ocular melanoma metastatic to skin. Cutaneous metastatic disease is a somewhat common and extremely important diagnosis. Although cutaneous metastases from cutaneous melanoma are relatively frequent, those from ocular melanomas are less so. Use of histochemical staining, especially the HMB-45 stain, allows confirmation of the diagnosis.

  14. Ocular complications of boxing

    Science.gov (United States)

    Bianco, M; Vaiano, A; Colella, F; Coccimiglio, F; Moscetti, M; Palmieri, V; Focosi, F; Zeppilli, P; Vinger, P

    2005-01-01

    Objectives: To investigate the prevalence of ocular injuries in a large population of boxers over a period of 16 years, in particular, the most severe lesions that may be vision threatening. Methods: Clinical records of the medical archive of the Italian Boxing Federation were analysed. A total of 1032 boxers were examined from February 1982 to October 1998. A complete ophthalmological history was available for 956, who formed the study population (a total of 10 697 examinations). The following data were collected: age when started boxing; duration of competitive boxing career (from the date of the first bout); weight category; a thorough ocular history. The following investigations were carried out: measurement of visual acuity and visual fields, anterior segment inspection, applanation tonometry, gonioscopy, and examination of ocular fundus. Eighty age matched healthy subjects, who had never boxed, formed the control group. Results: Of the 956 boxers examined, 428 were amateur (44.8%) and 528 professional (55.2%). The median age at first examination was 23.1 (4.3) years (range 15–36). The prevalence of conjunctival, corneal, lenticular, vitreal, ocular papilla, and retinal alterations in the study population was 40.9% compared with 3.1% in the control group (p⩽0.0001). The prevalence of serious ocular findings (angle, lens, macula, and peripheral retina alterations) was 5.6% in boxers and 3.1% in controls (NS). Conclusions: Boxing does not result in a higher prevalence of severe ocular lesions than in the general population. However, the prevalence of milder lesions (in particular with regard to the conjunctiva and cornea) is noteworthy, justifying the need for adequate ophthalmological surveillance. PMID:15665199

  15. Autofluorescence imaging of macular pigment: influence and correction of ocular media opacities

    Science.gov (United States)

    Sharifzadeh, Mohsen; Obana, Akira; Gohto, Yuko; Seto, Takahiko; Gellermann, Werner

    2014-09-01

    The healthy adult human retina contains in its macular region a high concentration of blue-light absorbing carotenoid compounds, known as macular pigment (MP). Consisting of the carotenoids lutein, zeaxanthin, and meso-zeaxanthin, the MP is thought to shield the vulnerable tissue layers in the retina from light-induced damage through its function as an optical attenuator and to protect the tissue cells within its immediate vicinity through its function as a potent antioxidant. Autofluorescence imaging (AFI) is emerging as a viable optical method for MP screening of large subject populations, for tracking of MP changes over time, and for monitoring MP uptake in response to dietary supplementation. To investigate the influence of ocular media opacities on AFI-based MP measurements, in particular, the influence of lens cataracts, we conducted a clinical trial with a large subject population (93 subjects) measured before and after cataract surgery. General AFI image contrast, retinal blood vessel contrast, and presurgery lens opacity scores [Lens Opacities Classification System III (LOCS III)] were investigated as potential predictors for image degradation. These clinical results show that lens cataracts can severely degrade the achievable pixel contrasts in the AFI images, which results in nominal MP optical density levels that are artifactually reduced. While LOCS III scores and blood vessel contrast are found to be only a weak predictor for this effect, a strong correlation exists between the reduction factor and the image contrast, which can be quantified via pixel intensity histogram parameters. Choosing the base width of the histogram, the presence or absence of ocular media opacities can be determined and, if needed, the nominal MP levels can be corrected with factors depending on the strength of the opacity.

  16. Effective RES blood flow changes in children with homozygous β-thalassemia in relation to blood transfusion

    International Nuclear Information System (INIS)

    Karpathios, T.; Dimitriou, P.; Giamouris, J.; Nicolaidou, P.; Antipas, S.E.; Matsaniotis, N.

    1983-01-01

    Denatured radioiodinated human serum albumin (DHA) clearance studies at a dose of 1 mg/kg body wt., were carried out in 16 thalassemic children, prior to and 7-10 days following blood transfusion, to investigate changes of the effective RES blood flow which might accompany the posttransfusion spleen size diminution. A statistically significant increase (P<0.001) of the DHA plasma clearance rate was observed 7-10 days following blood transfusion denoting an increase of the blood flow to the effective RES while at the same time the spleen diminished in size. It is suggested that changes in the effective RES blood flow in these patients are directly related to changes in the intrasplenic circulatory capacity. (orig.)

  17. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  18. Combat ocular trauma and systemic injury.

    Science.gov (United States)

    Weichel, Eric D; Colyer, Marcus H

    2008-11-01

    To review the recent literature regarding combat ocular trauma during hostilities in Operations Iraqi Freedom and Enduring Freedom, describe the classification of combat ocular trauma, and offer strategies that may assist in the management of eye injuries. Several recent publications have highlighted features of combat ocular trauma from Operation Iraqi Freedom. The most common cause of today's combat ocular injuries is unconventional fragmentary munitions causing significant blast injuries. These explosive munitions cause high rates of concomitant nonocular injuries such as traumatic brain injury, amputation, and other organ injuries. The most frequent ocular injuries include open-globe and adnexal lacerations. The extreme severity of combat-related open-globe injuries leads to high rates of primary enucleation and retained intraocular foreign bodies. Visual outcomes of intraocular foreign body injuries are similar to other series despite delayed removal, and no cases of endophthalmitis have occurred. Despite these advances, however, significant vision loss persists in cases of perforating globe injuries as well as open and closed-globe trauma involving the posterior segment. This review summarizes the recent literature describing ocular and systemic injuries sustained during Operations Iraqi and Enduring Freedom. An emphasis on classification of ocular injuries as well as a discussion of main outcome measures and complications is discussed.

  19. The enzymatic degradation and transport of leucine-enkephalin and 4-imidazolidinone enkephalin prodrugs at the blood-brain barrier

    DEFF Research Database (Denmark)

    Lund, L.; Bak, A.; Friis, G.J.

    1998-01-01

    In this study, the stability in and transport across a cell culture model of the blood-brain barrier (BBB) is investigated for leucine-enkephalin (Leu-enkephalin) and four 4-imidazolidinone prodrugs of Leu-enkephalin. The results show that Leu-enkephalin is degraded in the cell culture model...

  20. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.