WorldWideScience

Sample records for blood vessel remodeling

  1. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression.

    Science.gov (United States)

    Liu, Yue; Li, Tianqi; Hu, Dan; Zhang, Shuping

    2016-09-01

    Previous studies have indicated that the overexpression of NOK, also named STYK1, led to tumorigenesis and metastasis. Here, we provide evidence that increased expression of NOK/STYK1 caused marked alterations in the overall and inner structures of tumors and substantially facilitates the genesis and remodeling of the blood and lymphatic vessels during tumor progression. In particular, NOK-expressed HeLa stable cells (HeLa-K) significantly enhanced tumor growth and metastasis in xenografted nude mice. Hematoxylin and eosin (HE) staining demonstrated that the tumor tissues generated by HeLa-K cells were much more ichorous and had more interspaces than those generated by control HeLa cells (HeLa-C). The fluorescent areas stained with cluster of differentiation 31 (CD31), a marker protein for blood vessels, appeared to be in different patterns. The total blood vessels, especially the ring patterns, within the tumors of the HeLa-K group were highly enriched compared with those in the HeLa-C group. NOK-HA was demonstrated to be well colocalized with CD31 in the wall of the tubular structures within tumor tissues. Interestingly, antibody staining of the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) further revealed the increase in ring (oratretic strip-like) lymphatic vessels in either the peritumoral or intratumoral areas in the HeLa-K group compared with the HeLa-C group. Consistently, the analysis of human cancerous tissue also showed that NOK was highly expressed in the walls of tubular structures. Thus, our results reveal a novel tumorigenic function of NOK to mediate the genesis and remodeling of blood and lymphatic vessels during tumor progression.

  2. Understanding How Space Travel Affects Blood Vessels: Arterial Remodeling and Functional Adaptations Induced by Microgravity

    Science.gov (United States)

    Delp, Michael; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Ever rise quickly from the couch to get something from the kitchen and suddenly feel dizzy? With a low heart rate and relaxed muscles, the cardiovascular system does not immediately provide the resistance necessary to keep enough blood going to your head. Gravity wins, at least for a short time, before your heart and blood vessels can respond to the sudden change in position and correct the situation. Actually, the human cardiovascular system is quite well adapted to the constant gravitational force of the Earth. When standing, vessels in the legs constrict to prevent blood from collecting in the lower extremities. In the space environment, the usual head-to-foot blood pressure and tissue fluid gradients that exist during the upright posture on Earth are removed. The subsequent shift in fluids from the lower to the upper portions of the body triggers adaptations within the cardiovascular system to accommodate the new pressure and fluid gradients. In animal models that simulate microgravity, the vessels in the head become more robust while those in the lower limbs become thin and lax. Similar changes may also occur in humans during spaceflight and while these adaptations are appropriate for a microgravity environment, they can cause problems when the astronauts return to Earth or perhaps another planet. Astronauts often develop orthostatic intolerance which means they become dizzy or faint when standing upright. This dizziness can persist for a number of days making routine activities difficult. In an effort to understand the physiological details of these cardiovascular adaptations, Dr. Michael Delp at Texas A&M University, uses the rat as a model for his studies. For the experiment flown on STS-107, he will test the hypothesis that blood vessels in the rats' hindlimbs become thinner, weaker, and constrict less in response to pressure changes and to chemical signals when exposed to microgravity. In addition, he will test the hypothesis that arteries in the brain

  3. Blood vessel remodeling in pig ovarian follicles during the periovulatory period: an immunohistochemistry and SEM-corrosion casting study

    Directory of Open Access Journals (Sweden)

    Berardinelli Paolo

    2009-07-01

    Full Text Available Abstract Background The present research aims to describe the process of vascular readjustment occurring in pig ovary during the periovulatory phase (from LH surge to ovulation that drives the transformation of the follicle, a limited blood supplied structure, into the corpus luteum, a highly vascularised endocrine gland required to maintain high levels of progesterone in pregnancy. The swine model was chosen because it is characterized by a long periovulatory window (about 40–44 hrs-similar to human that permits to recover follicles at a precise endocrinological timing. Methods By validated hormonal protocol (eCG+hCG, able to mimic the physiologic gonadotropin stimulation, preovulatory follicles (PreOFs, 60 h-eCG, follicles in the middle (early periovulatory follicles, EPerOFs, 18 h-hCG or late (LPerOFs, 36 h-hCG periovulatory phase were isolated from prepubertal gilts. To understand the angiogenic process, morphological/morphometrical analyses were performed by combining immunohistochemistry (IHC and SEM of vascular corrosion casts (VCC techniques. Results PreOFs showed a vascular plexus with proliferating endothelial cells (EPI. This plexus was characterized by a dense inner capillary network, with angiogenic figures, connected to the outer network by anastomotic vessels (arterioles and venules of the middle network. EPerOFs decreased their EPI, blood vessel extension in the outer network, and evidenced a reduced compactness of blood vessels. In LPerOFs, a rapid neovascularization was associated to an intensive tissue remodeling: the follicle acquired an undulated aspect presenting arterioles/venules near the basal membrane, increased vascular extension by EPI, sprouting and non-sprouting angiogenesis. The analysis of vascular geometric relations and branching angles evidenced similar values at all stages. Conclusion These data allow us to hypothesize that EPerOFs are in a quiescent status. LPerOFs represent the "metamorphic" follicles that

  4. Effect of antiprogesterone RU486 on VEGF expression and blood vessel remodeling on ovarian follicles before ovulation.

    Directory of Open Access Journals (Sweden)

    Annunziata Mauro

    Full Text Available BACKGROUND: The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF drives angiogenesis before ovulation, the local role exerted by Progesterone (P₄ remains to be clarified, in particular when its concentration rapidly increases before ovulation. AIM: This in vivo study was designed to clarify the effect promoted by a P₄ receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG administration. MATERIAL AND METHODS: Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. RESULTS AND CONCLUSIONS: VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P₄ antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory

  5. Role of arginase in vessel wall remodeling

    Directory of Open Access Journals (Sweden)

    William eDurante

    2013-05-01

    Full Text Available Arginase metabolizes the semi-essential amino acid L-arginine to L-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and L-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages towards an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide synthesis by competing with nitric oxide synthase for substrate, L-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.

  6. Vessel remodelling, pregnancy hormones and extravillous trophoblast function.

    Science.gov (United States)

    Chen, Jessie Z-J; Sheehan, Penelope M; Brennecke, Shaun P; Keogh, Rosemary J

    2012-02-26

    During early human pregnancy, extravillous trophoblast (EVT) cells from the placenta invade the uterine decidual spiral arterioles and mediate the remodelling of these vessels such that a low pressure, high blood flow can be supplied to the placenta. This is essential to facilitate normal growth and development of the foetus. Defects in remodelling can manifest as the serious pregnancy complication pre-eclampsia. During the period of vessel remodelling three key pregnancy-associated hormones, human chorionic gonadotrophin (hCG), progesterone (P(4)) and oestradiol (E(2)), are found in high concentrations at the maternal-foetal interface. Potentially these hormones may control EVT movement and thus act as regulators of vessel remodelling. This review will discuss what is known about how these hormones affect EVT proliferation, migration and invasion during vascular remodelling and the potential relationship between hCG, P(4), E(2) and the development of pre-eclampsia.

  7. Blood Vessel Tension Tester

    Science.gov (United States)

    1978-01-01

    In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

  8. A Computational Model Predicting Disruption of Blood Vessel Development

    Science.gov (United States)

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

  9. Blood vessels, circulation and blood pressure.

    Science.gov (United States)

    Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series, describes the vessels of the body's blood and lymphatic circulatory systems. Blood pressure and its regulatory systems are examined. The causes and management of hypertension are also explored. It is important that nurses and other healthcare professionals understand the various mechanisms involved in the regulation of blood pressure to prevent high blood pressure or ameliorate its damaging consequences.

  10. Regulation of Blood Vessel Sprouting

    Science.gov (United States)

    Chappell, John C; Wiley, David M; Bautch, Victoria L

    2012-01-01

    Blood vessels are essential conduits of nutrients and oxygen throughout the body. The formation of these vessels involves angiogenic sprouting, a complex process entailing highly integrated cell behaviors and signaling pathways. In this review, we discuss how endothelial cells initiate a vessel sprout through interactions with their environment and with one another, particularly through lateral inhibition. We review the composition of the local environment, which contains an initial set of guidance cues to facilitate the proper outward migration of the sprout as it emerges from a parent vessel. The long-range guidance and sprout stability cues provided by soluble molecules, extracellular matrix components, and interactions with other cell types are also discussed. We also examine emerging evidence for mechanisms that govern sprout fusion with its target and lumen formation. PMID:22020130

  11. Remodeling of the collagen fiber architecture due to compaction in small vessels under tissue engineered conditions.

    Science.gov (United States)

    Soares, Ana L F; Stekelenburg, Maria; Baaijens, Frank P T

    2011-07-01

    Mechanical loading protocols in tissue engineering (TE) aim to improve the deposition of a properly organized collagen fiber network. In addition to collagen remodeling, these conditioning protocols can result in tissue compaction. Tissue compaction is beneficial to tissue collagen alignment, yet it may lead to a loss of functionality of the TE construct due to changes in geometry after culture. Here, a mathematical model is presented to relate the changes in collagen architecture to the local compaction within a TE small blood vessel, assuming that under static conditions, compaction is the main factor responsible for collagen fiber organization. An existing structurally based model is extended to incorporate volumetric tissue compaction. Subsequently, the model is applied to describe the collagen architecture of TE constructs under either strain based or stress based stimulus functions. Our computations indicate that stress based simulations result in a helical collagen fiber distribution along the vessel wall. The helix pitch angle increases from a circumferential direction in the inner wall, over about 45 deg in the middle vessel layer, to a longitudinal direction in the outer wall. These results are consistent with experimental data from TE small diameter blood vessels. In addition, our results suggest a stress dependent remodeling of the collagen, suggesting that cell traction is responsible for collagen orientation. These findings may be of value to design improved mechanical conditioning protocols to optimize the collagen architecture in engineered tissues.

  12. Tea May Benefit Blood Vessels

    Institute of Scientific and Technical Information of China (English)

    华剑铭

    2000-01-01

    读到有关饮茶有益健康的消息,我总是充满了自豪感:茶的故乡毕竟在中国。饮茶对人的心脏有益,这已经不是新闻,但是到底如何起到此类保健作用,多年来一直是一个谜。本文揭开了此谜底: Drinking a cup of tea makes blood vessels work better within 2 hours, dilating(扩张)the arteries(动脉)and improving blood flow. 文章令我感动之处在于那些科研人员的敬业精神。比如茶中含有caffeine(咖啡因),饮茶对心脏有利,此“利”是否源于caffeine呢?试验人员为了弄清这 一点,便让另一组受试人员服用等量的caffeine,结果证实:Caffeine had no response on the blood vessel function.】

  13. Purinergic signaling and blood vessels in health and disease.

    Science.gov (United States)

    Burnstock, Geoffrey; Ralevic, Vera

    2014-01-01

    Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.

  14. Photoacoustic determination of blood vessel diameter.

    NARCIS (Netherlands)

    Kolkman, R.G.; Klaessens, J.H.G.M.; Hondebrink, E.; Hopman, J.C.W.; Mul, F.F. de; Steenbergen, W.; Thijssen, J.M.; Leeuwen, T.G. van

    2004-01-01

    A double-ring sensor was applied in photoacoustic tomographic imaging of artificial blood vessels as well as blood vessels in a rabbit ear. The peak-to-peak time (tau(pp)) of the laser (1064 nm) induced pressure transient was used to estimate the axial vessel diameter. Comparison with the actual ves

  15. Complete Blood Count and Retinal Vessel Calibers

    OpenAIRE

    Gerald Liew; Jie Jin Wang; Elena Rochtchina; Tien Yin Wong; Paul Mitchell

    2014-01-01

    OBJECTIVE: The influence of hematological indices such as complete blood count on microcirculation is poorly understood. Retinal microvasculature can be directly visualized and vessel calibers are associated with a range of ocular and systemic diseases. We examined the association of complete blood count with retinal vessel calibers. METHODS: Cross-sectional population-based Blue Mountains Eye Study, n = 3009, aged 49+ years. Complete blood count was measured from fasting blood samples taken ...

  16. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    Science.gov (United States)

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-01-18

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases.

  17. Trends in Tissue Engineering for Blood Vessels

    Directory of Open Access Journals (Sweden)

    Judee Grace Nemeno-Guanzon

    2012-01-01

    Full Text Available Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient’s conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering.

  18. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  19. Immersive volume rendering of blood vessels

    Science.gov (United States)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  20. Zinc oxide nanoflowers make new blood vessels

    Science.gov (United States)

    Barui, Ayan Kumar; Veeriah, Vimal; Mukherjee, Sudip; Manna, Joydeb; Patel, Ajay Kumar; Patra, Sujata; Pal, Krishnendu; Murali, Shruthi; Rana, Rohit K.; Chatterjee, Suvro; Patra, Chitta Ranjan

    2012-11-01

    It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role.It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood

  1. Genetic analysis of blood vessel formation role of endothelial versus smooth muscle cells.

    Science.gov (United States)

    Carmeliet, P; Collen, D

    1997-11-01

    Formation of new blood vessels is vital during embryogenesis, essential for reproduction and wound healing during adulthood, and required to rescue tissue during ischemia. Neovascularization may, however, also contribute to the pathogenesis of several disorders, including tumorigenesis, diabetic vasculopathy, and chronic inflammation. Initially, blood vessels form as endothelium-lined channels by in situ differentiation of endothelial cells. Subsequently, they sprout and remodel into a highly organized and interconnected vascular network. During further maturation of the blood vessels, a sheet of primitive vascular smooth muscle cells surrounds the endothelium-lined channels, which controls endothelial cell function and provides structural support. Recent molecular analyses have identified candidate molecules that affect these processes. Their in vivo role has been further established by targeted gene manipulation in transgenic mice. This review highlights recent developments in the genetic analysis of blood vessel formation, as deduced from analysis of gene-inactivated mice. (Trends Cardiovasc Med 1997;7:271-281). © 1997, Elsevier Science Inc.

  2. Late stent malapposition and marked positive vessel remodeling after sirolimus-eluting coronary stent implantation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; QIAN Ju-ying; GE Jun-bo

    2006-01-01

    @@ It has been reported that positive remodeling, regression of neointimal hyperplasia, and late malapposition are associated with brachytherapy, one of the approaches to prevent first-time and recurrent in-stent restenosis.1,2 Recently, some drug-eluting stents have been demonstrated to dramatically reduce restenosis rates.3,4 Despite these promising results, these drug-eluting stents may have the same potential risks as brachytherapy, with some similarities between the 2 technologies in anti- proliferative effects on vascular smooth muscle cells and endothelial cells. We reported a case of late stent malapposition and marked positive vessel remodeling after sirolimus-eluting coronary stent implantation.

  3. Photoacoustic removal of occlusions from blood vessels

    Science.gov (United States)

    Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Maitland, IV, Duncan J.; Esch, Victor C.

    2002-01-01

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  4. Photoacoustic imaging of blood vessels in tissues

    Science.gov (United States)

    de Mul, Frits F. M.; Pilatou, Magdalena C.; Kolkman, Roy G. M.; Hondebrink, Erwin; Steenbergen, Wiendelt

    2002-10-01

    To localize and monitor the blood content in tissue we developed very sensitive photoacoustical detectors. In these detectors a PVdF-layer has been used as piezo-electric material and also fibers for the illumination of the sample are integrated. The resolution is about 20 im in depth and about 50-100 im laterally. The wavelengths ofthe laser light were 532and 1064 nm. With these colors we can measure at different depths in tissue. We will report measurements on real tissue: vessels in chicken breast, in the human arm, and in test animals at various positions.

  5. Ouabain induces cardiac remodeling in rats independent of blood pressure

    Institute of Scientific and Technical Information of China (English)

    Xing JIANG; Yan-ping REN; Zhuo-ren L(U)

    2007-01-01

    Aim: To investigate the ouabain's effects on cardiac remodeling in rats. Methods:Male Sprague-Dawley rats were treated with ouabain. Systolic blood pressure(SBP) was recorded weekly. After 4 and 6 weeks, echocardiography were performed,hemodynamic parameters were measured by invasive cardiac catheterization,changes in cardiac ultrastructure were analyzed using transmission electron microscopy, the collagen fraction of the left ventricle was assessed with Picrosirius red stain, and RT-PCR was applied to evaluate the mRNA level of myosin heavy chain-α and-β in the left ventricle. Results: Having been treated with ouabain for 4 weeks, there was no significant difference in the mean SBP of the two groups.However, left ventricular hypertrophy, myocardial ultrastructure deterioration,and extracellular matrix remodeling were induced by ouabain treatment; meanwhile,cardiac systolic and diastolic performance were both worsened. Moreover, the cardiac MHC-β mRNA was upregulated by ouabain treatment, whereas MHC-αmRNA was downregulated. After 4 weeks, the mean SBP in the ouabain group began to increase and was significantly higher than that in control group after 6 weeks (P<0.01); the rats' cardiac structure and function were worsened.Conclusion: These results suggested that ouabain induces alterations in cardiac structure and function, and the effects happened before the increase of blood pressure. The results indicated that ouabain induced cardiac remodeling in rats independent of blood pressure.

  6. [Nitroxidergic nerve fibers of intracerabral blood vessels].

    Science.gov (United States)

    Kotsiuba, A E; Kotsiuba, E P; Chertok, V M

    2009-01-01

    Methods of light and electron microscopic histochemistry were applied to study the structure and distribution of NADPH-diaphorase-positive neurons and processes in the parietal area of rat cerebral cortex. It was found that the most of the neurons displayed close connections with the intracerebral vessels. In the cerebral cortex, the smallest distance between the axonal plasma membrane and smooth muscle cells of the intracerebral arteries was found to be no less than 0.3-0.5 microm. Neuronal cell bodies were located in the functionally important areas of the vessels (in the areas of lateral trunk branching and in arteriolar sources), while their processes accompanied the vessels, tightly embracing them with their branches. Quite often, the neurons, the dendrites of which make contacts with the bodies or processes of over- or underlying neurons, sent their nerve fibers to the arteries, veins and capillaries. Thus, nitroxidergic neurons or their groups may control the blood flow in the different areas of vascular bed, performing the functions of the local nerve center.

  7. Application of Computational Physics: Blood Vessel Constrictions and Medical Infuses

    CERN Document Server

    Suprijadi,; Subekti, Petrus; Viridi, Sparisoma

    2013-01-01

    Application of computation in many fields are growing fast in last two decades. Increasing on computation performance helps researchers to understand natural phenomena in many fields of science and technology including in life sciences. Computational fluid dynamic is one of numerical methods which is very popular used to describe those phenomena. In this paper we propose moving particle semi-implicit (MPS) and molecular dynamics (MD) to describe different phenomena in blood vessel. The effect of increasing the blood pressure on vessel wall will be calculate using MD methods, while the two fluid blending dynamics will be discussed using MPS. Result from the first phenomenon shows that around 80% of constriction on blood vessel make blood vessel increase and will start to leak on vessel wall, while from the second phenomenon the result shows the visualization of two fluids mixture (drugs and blood) influenced by ratio of drugs debit to blood debit. Keywords: molecular dynamic, blood vessel, fluid dynamic, movin...

  8. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure.

    Science.gov (United States)

    Schepelmann, M; Yarova, P L; Lopez-Fernandez, I; Davies, T S; Brennan, S C; Edwards, P J; Aggarwal, A; Graça, J; Rietdorf, K; Matchkov, V; Fenton, R A; Chang, W; Krssak, M; Stewart, A; Broadley, K J; Ward, D T; Price, S A; Edwards, D H; Kemp, P J; Riccardi, D

    2016-02-01

    The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive (SM22α)CaSR(Δflox/Δflox) [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca(2+)) concentrations (1-5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca(2+) concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaSR.

  9. BLOOD FLOW AND MACROMOLECULAR TRANSPORT IN CURVED BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    WEI Lan; WEN Gong-bi; TAN Wen-chang

    2006-01-01

    A numerical analysis of the steady/pulsatile flow and macromolecular (such as LDL and Albumin) transport in curved blood vessels was carried out. The computational results predict that the vortex of the secondary flow is time-dependent in the aortic arch.The concentration of macromolecule concentrates at the region of sharp curve, and the wall concentration at the outer part is higher than that at the inner part. Atherosclerosis and thrombosis are prone to develop in such regions with sharp flow.

  10. Bone marrow blood vessels: normal and neoplastic niche

    Directory of Open Access Journals (Sweden)

    Saeid Shahrabi

    2016-11-01

    Full Text Available Blood vessels are among the most important factors in the transport of materials such as nutrients and oxygen. This study will review the role of blood vessels in normal bone marrow hematopoiesis as well as pathological conditions like leukemia and metastasis. Relevant literature was identified by a Pubmed search (1992-2016 of English-language papers using the terms bone marrow, leukemia, metastasis, and vessel. Given that blood vessels are conduits for the transfer of nutrients, they create a favorable situation for cancer cells and cause their growth and development. On the other hand, blood vessels protect leukemia cells against chemotherapy drugs. Finally, it may be concluded that the vessels are an important factor in the development of malignant diseases.

  11. Heritability of retinal vessel diameters and blood pressure

    DEFF Research Database (Denmark)

    Taarnhøj, Nina C B B; Larsen, Michael; Sander, Birgit

    2006-01-01

    PURPOSE: To assess the relative influence of genetic and environmental effects on retinal vessel diameters and blood pressure in healthy adults, as well as the possible genetic connection between these two characteristics. METHODS: In 55 monozygotic and 50 dizygotic same-sex healthy twin pairs......%-80%) for CRAE, 83% (95% CI: 73%-89%) for CRVE, and 61% (95% CI: 44%-73%) for mean arterial blood pressure (MABP). Retinal artery diameter decreased with increasing age and increasing arterial blood pressure. Mean vessel diameters in the population were 165.8 +/- 14.9 microm for CRAE, 246.2 +/- 17.7 microm...... and blood glucose, variations in retinal blood vessel diameters and blood pressure were predominantly attributable to genetic effects. A genetic influence may have a role in individual susceptibility to hypertension and other vascular diseases. The results suggest that retinal vessel diameters...

  12. Detection and measurement of retinal blood vessel pulsatile motion

    Science.gov (United States)

    Xiao, Di; Frost, Shaun; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. Pulsatile properties caused by cardiac rhythm, such as spontaneous venous pulsation (SVP) and pulsatile motion of small arterioles, can be visualized by dynamic retinal imaging techniques and provide clinical significance. In this paper, we aim at vessel pulsatile motion detection and measurement. We proposed a novel approach for pulsatile motion measurement of retinal blood vessels by applying retinal image registration, blood vessel detection and blood vessel motion detection and measurement on infrared retinal image sequences. The performance of the proposed methods was evaluated on 8 image sequences with 240 images. A preliminary result has demonstrated the good performance of the method for blood vessel pulsatile motion observation and measurement.

  13. Lattice BGK Simulations of the Blood Flow in Elastic Vessels

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-Yang; YI Hou-Hui; CHEN Ji-Yao; FANG Hai-Ping

    2006-01-01

    @@ The lattice Boltzmann method is applied to study the flow in elastic blood vessels. The volume-flow rate increases considerably when the compliance constant of the blood vessel is below a critical value. There is a region of the compliance constant in which the average volume-flow rate is dramatically enhanced. A harmonic perturbation of the pressure does not change the behaviour of the average volume-flow rate while the harmonic wave attenuates very quickly along the tube when the resonant period is close to that of the input wave. The model, together with the simulation results, is expected to be helpful to understand the mechanism of the blood volume-flow rate related to the compliance constant of the blood vessel, especially on the dependence of the flux of human blood vessel under weather changes, which has medical significance.

  14. Instability and "Sausage-String" Appearance in Blood Vessels during High Blood Pressure

    CERN Document Server

    Alstrøm, P; Colding-Jorgensen, M; Gustafsson, F; Holstein-Rathlou, N H; Alstrom, Preben; Eguiluz, Victor M.; Colding-Jorgensen, Morten; Gustafsson, Finn; Holstein-Rathlou, Niels-Henrik

    1999-01-01

    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dilatations formed in blood vessels under influence of a vasoconstricting agent. Our theory involves the nonlinear elasticity characteristics of the vessel wall, and provides predictions for the conditions under which the cylindrical form of a blood vessel becomes unstable.

  15. Automated blood vessel extraction using local features on retinal images

    Science.gov (United States)

    Hatanaka, Yuji; Samo, Kazuki; Tajima, Mikiya; Ogohara, Kazunori; Muramatsu, Chisako; Okumura, Susumu; Fujita, Hiroshi

    2016-03-01

    An automated blood vessel extraction using high-order local autocorrelation (HLAC) on retinal images is presented. Although many blood vessel extraction methods based on contrast have been proposed, a technique based on the relation of neighbor pixels has not been published. HLAC features are shift-invariant; therefore, we applied HLAC features to retinal images. However, HLAC features are weak to turned image, thus a method was improved by the addition of HLAC features to a polar transformed image. The blood vessels were classified using an artificial neural network (ANN) with HLAC features using 105 mask patterns as input. To improve performance, the second ANN (ANN2) was constructed by using the green component of the color retinal image and the four output values of ANN, Gabor filter, double-ring filter and black-top-hat transformation. The retinal images used in this study were obtained from the "Digital Retinal Images for Vessel Extraction" (DRIVE) database. The ANN using HLAC output apparent white values in the blood vessel regions and could also extract blood vessels with low contrast. The outputs were evaluated using the area under the curve (AUC) based on receiver operating characteristics (ROC) analysis. The AUC of ANN2 was 0.960 as a result of our study. The result can be used for the quantitative analysis of the blood vessels.

  16. Changes of vessel-cells complex in zones of adaptive remodeling of the bone tissue under microgravity conditions

    Science.gov (United States)

    Rodionova, N.; Oganov, V.; Nosova, L.

    The development and differentiation of osteogenic cells in organism happen in closely topographical and functional connection with blood capillaries. We formerly proofed, that small-differentiated cells, which are in the population of perivascular cells are osteogenic cells -precursors . At the present time it is actually to clear up, how these biostructures react on conditions of less of biomechanical load on skeleton bones. We researched peculiarities of blood-bed structure and perivascular cells in metaphises of thighbones and tibial bones in rats, which were onboard the American space station SLS-2 and in experiments of modeling hypokinesia. There were used methods of cytochemistry, histology and electron microscopy. We established, that under the support and functional load decreasing in zones of bones adaptive remodeling, comparatively to control, on histosections the own volume of sinusoid capillaries reduces. The small vessels prevail here. The spaces of sinusoid capillaries are limited by 1 2 cells of the endothelia. Endotheliocytes in- general have the typical ultrastructure. Basal membranes are expressed not-distinctly. Perivascular cells don't create the unbroken layer. The population of these cells is not-homogeneous. It includes enclosed to endothelia small-differentiated forms and separating cells with sings of fibroblastic differentiation (the own volume of rough endoplasmic reticulum in cytoplasm induces). The part of these cells reacts on the alkaline phosphatase (the marker of the osteogenic differentiation). Under the conditions of support load decreasing (especially under the microgravity) there is a tendency to reducing of separating osteogenic cells number. We noted the priority of differentiating fibroblasts. It leads to further development in zones of bone remodeling of hearths of fibrous tissue, that doesn't mineralize. The obtained data are seen as one of mechanisms of osteoporosis and osteopenia development under the deficite of support

  17. Development and Remodeling of the Vertebrate Blood-Gas Barrier

    Directory of Open Access Journals (Sweden)

    Andrew Makanya

    2013-01-01

    Full Text Available During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG-β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.

  18. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels.

    Science.gov (United States)

    Falcón, Beverly L; Hashizume, Hiroya; Koumoutsakos, Petros; Chou, Jeyling; Bready, James V; Coxon, Angela; Oliner, Jonathan D; McDonald, Donald M

    2009-11-01

    Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have complex actions in angiogenesis and vascular remodeling due to their effects on Tie2 receptor signaling. Ang2 blocks Ang1-mediated activation of Tie2 in endothelial cells under certain conditions but is a Tie2 receptor agonist in others. We examined the effects of selective inhibitors of Ang1 (mL4-3) or Ang2 (L1-7[N]), alone or in combination, on the vasculature of human Colo205 tumors in mice. The Ang2 inhibitor decreased the overall abundance of tumor blood vessels by reducing tumor growth and keeping vascular density constant. After inhibition of Ang2, tumor vessels had many features of normal blood vessels (normalization), as evidenced by junctional accumulation of vascular endothelial-cadherin, junctional adhesion molecule-A, and platelet/endothelial cell adhesion molecule-1 in endothelial cells, increased pericyte coverage, reduced endothelial sprouting, and remodeling into smaller, more uniform vessels. The Ang1 inhibitor by itself had little noticeable effect on the tumor vasculature. However, when administered with the Ang2 inhibitor, the Ang1 inhibitor prevented tumor vessel normalization, but not the reduction in tumor vascularity produced by the Ang2 inhibitor. These findings are consistent with a model whereby inhibition of Ang2 leads to normalization of tumor blood vessels by permitting the unopposed action of Ang1, but decreases tumor vascularity primarily by blocking Ang2 actions.

  19. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Eva Kochhan

    Full Text Available After the initial formation of a highly branched vascular plexus, blood vessel pruning generates a hierarchically structured network with improved flow characteristics. We report here on the cellular events that occur during the pruning of a defined blood vessel in the eye of developing zebrafish embryos. Time-lapse imaging reveals that the connection of a new blood vessel sprout with a previously perfused multicellular endothelial tube leads to the formation of a branched, Y-shaped structure. Subsequently, endothelial cells in parts of the previously perfused branch rearrange from a multicellular into a unicellular tube, followed by blood vessel detachment. This process is accompanied by endothelial cell death. Finally, we show that differences in blood flow between neighboring vessels are important for the completion of the pruning process. Our data suggest that flow induced changes in tubular architecture ensure proper blood vessel pruning.

  20. Robust Retinal Blood Vessel Segmentation Based on Reinforcement Local Descriptions

    Directory of Open Access Journals (Sweden)

    Meng Li

    2017-01-01

    Full Text Available Retinal blood vessels segmentation plays an important role for retinal image analysis. In this paper, we propose robust retinal blood vessel segmentation method based on reinforcement local descriptions. A novel line set based feature is firstly developed to capture local shape information of vessels by employing the length prior of vessels, which is robust to intensity variety. After that, local intensity feature is calculated for each pixel, and then morphological gradient feature is extracted for enhancing the local edge of smaller vessel. At last, line set based feature, local intensity feature, and morphological gradient feature are combined to obtain the reinforcement local descriptions. Compared with existing local descriptions, proposed reinforcement local description contains more local information of local shape, intensity, and edge of vessels, which is more robust. After feature extraction, SVM is trained for blood vessel segmentation. In addition, we also develop a postprocessing method based on morphological reconstruction to connect some discontinuous vessels and further obtain more accurate segmentation result. Experimental results on two public databases (DRIVE and STARE demonstrate that proposed reinforcement local descriptions outperform the state-of-the-art method.

  1. Diffuse light tomography to detect blood vessels using Tikhonov regularization

    Science.gov (United States)

    Kazanci, Huseyin O.; Jacques, Steven L.

    2016-04-01

    Detection of blood vessels within light-scattering tissues involves detection of subtle shadows as blood absorbs light. These shadows are diffuse but measurable by a set of source-detector pairs in a spatial array of sources and detectors on the tissue surface. The measured shadows can reconstruct the internal position(s) of blood vessels. The tomographic method involves a set of Ns sources and Nd detectors such that Nsd = Ns x Nd source-detector pairs produce Nsd measurements, each interrogating the tissue with a unique perspective, i.e., a unique region of sensitivity to voxels within the tissue. This tutorial report describes the reconstruction of the image of a blood vessel within a soft tissue based on such source-detector measurements, by solving a matrix equation using Tikhonov regularization. This is not a novel contribution, but rather a simple introduction to a well-known method, demonstrating its use in mapping blood perfusion.

  2. DETECTION OF BLOOD VESSELS AND MEASUREMENT OF VESSEL WIDTH FOR DIABETIC RETINOPATHY

    Directory of Open Access Journals (Sweden)

    S.Sukanya

    2014-09-01

    Full Text Available The proposed method measures the retinal blood vessel diameter to identify arteriolar narrowing, arteriovenous (AV nicking, branching coefficients to detect early diabetic retinopathy. It utilizes the vessel centerline and edge information to measure the width for a vessel segment. From the input retinal image, the vascular network is extracted using the local entropy thresholding method. The vessel boundaries are extracted using sobel edge detection method. The skeletonization operation is applied to the vascular network and mapping the vessel boundaries and the skeleton image. The branching point detection method is then performed to localize all crossing locations. A rotational invariant mask to search the pixel pairs from the edge image, and calculate the shortest distance pair which provides the vessel width (or diameter for that cross-section. Variation in the width measurement identifies the diabetic retinopathy.

  3. Endocan immunoreactivity in the mouse brain: method for identifying nonfunctional blood vessels

    Science.gov (United States)

    Frahm, Krystle A.; Nash, Connor P.; Tobet, Stuart A.

    2013-01-01

    Endocan is a secreted proteoglycan that has been shown to indicate angiogenic activity: remodeling in several tumor types in humans and mice. Serum endocan levels also indicate prognosis and has been proposed as a biomarker for certain cancers. Recently, monoclonal antibodies directed against mouse endocan have been developed allowing for further characterization of endocan function and potentially as a marker for angiogenesis through immunoreactivity in endothelial tip cells. The results of the current study show that endocan immunoreactivity in the mouse brain is present in blood vascular networks including but not limited to the cortex, hippocampus and paraventricular nucleus of the hypothalamus in C57BL/6J and FVB/N mice. Endocan immunoreactivity did not vary during postnatal development or by sex. Interestingly, after vascular perfusion with fluorescein isothiocyanate (FITC), endothelial cells positive for FITC were immunonegative for endocan suggesting FITC interference with the immunohistochemistry. A small number of FITC-negative blood vessels were endocan immunoreactive suggesting the identification of new blood vessels that are not yet functional. The current study shows that endocan is normally present in the mouse brain and prior vascular perfusion with FITC may provide a useful tool for identify newly forming blood vessels. PMID:24055127

  4. Architecture of the subendothelial elastic fibers of small blood vessels and variations in vascular type and size.

    Science.gov (United States)

    Shinaoka, Akira; Momota, Ryusuke; Shiratsuchi, Eri; Kosaka, Mitsuko; Kumagishi, Kanae; Nakahara, Ryuichi; Naito, Ichiro; Ohtsuka, Aiji

    2013-04-01

    Most blood vessels contain elastin that provides the vessels with the resilience and flexibility necessary to control hemodynamics. Pathophysiological hemodynamic changes affect the remodeling of elastic components, but little is known about their structural properties. The present study was designed to elucidate, in detail, the three-dimensional (3D) architecture of delicate elastic fibers in small vessels, and to reveal their architectural pattern in a rat model. The fine vascular elastic components were observed by a newly developed scanning electron microscopy technique using a formic acid digestion with vascular casts. This method successfully visualized the 3D architecture of elastic fibers in small blood vessels, even arterioles and venules. The subendothelial elastic fibers in such small vessels assemble into a sheet of meshwork running longitudinally, while larger vessels have a higher density of mesh and thicker mesh fibers. The quantitative analysis revealed that arterioles had a wider range of mesh density than venules; the ratio of density to vessel size was higher than that in venules. The new method was useful for evaluating the subendothelial elastic fibers of small vessels and for demonstrating differences in the architecture of different types of vessels.

  5. Tracking blood vessels in human forearms using visual servoing

    DEFF Research Database (Denmark)

    Savarimuthu, Thiusius Rajeeth; Ellekilde, Lars-Peter; Hansen, Morten

    compensation. By using images taken with near-infrared light to locate the blood vessels in a human forearm and using the same images to detects movements of the arm, this paper shows that it is possible make a robot arm, potentially equipped with a needle for drawing the blood, compensate for the movements......Drawing an average of more than 2 blood sample per Danish citizen per year increases the demand for an automatic blood sampling method. This paper presents a proof of concept to one of the main challenges in making a fully automated blood sampling procedure, namely: the patient movement...

  6. OBSERVATIONS ON VASCULAR PATTERN OF CHORIONIC BLOOD VESSELS OF PLACENTA

    Directory of Open Access Journals (Sweden)

    Yousuf Sarwar

    2013-10-01

    Full Text Available ABSTRACT: BACKGROUND: Placenta is a choriodecidual structure develops during pregnancy implanted on the uterine wall and car ries vital functions. It is connected to the foetus through umbilical cord. The branches of umbilical vessels that traverse along foetal surface of placenta are referred as chorionic vessels. There are two different patterns of chorionic vessels – Dispersa l and Magistral. In the dispersal type, the umbilical vessels undergo successive divisions with gradually diminishing caliber towards periphery while in magistral pattern the vessels traverse to the edge of placenta without appreciable decrease in diameter of vessels. The present study has been done for visualization of the pattern of chorionic vessels in placenta obtained from labour room of a tertiary care hospital in eastern Bihar, India. MATERIALS AND METHODS: A total of one hundred and fifty (150 fres h and intact placenta of full term pregnancies collected from Obstetrics & Gynaecology department were included in the study. After washing with distilled water, removal of blood clots were done with slight digital pressure applied over arteries and vein a nd later on by irrigation with saline. The cut end of the umbilical cord was carefully visualized to identify the umbilical arteries and vein. Dye was injected into umbilical vessels under normal physiological pressure and diameter of chorionic blood vesse ls were taken at the center and periphery. Ultimately each vessel was followed and examined to observe the dispersal and magistral pattern of chorionic blood vessels of placenta. RESULTS AND CONCLUSION: Out of the total of one hundred and fifty (150 full term placenta obtained and examined in the Anatomy department during the study period, 64% Dispersal type & 36 % of Magistral type of arterial pattern of branching of chorionic vessels were observed. Vein and its tributaries presented Dispersal pattern in 60% and Magistral pattern in 40%. There is a significant

  7. Customizable engineered blood vessels using 3D printed inserts.

    Science.gov (United States)

    Pinnock, Cameron B; Meier, Elizabeth M; Joshi, Neeraj N; Wu, Bin; Lam, Mai T

    2016-04-15

    Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment.

  8. Human Blood-Vessel-Derived Stem Cells for Tissue Repair and Regeneration

    Directory of Open Access Journals (Sweden)

    Chien-Wen Chen

    2012-01-01

    Full Text Available Multipotent stem/progenitor cells with similar developmental potentials have been independently identified from diverse human tissue/organ cultures. The increasing recognition of the vascular/perivascular origin of mesenchymal precursors suggested blood vessels being a systemic source of adult stem/progenitor cells. Our group and other laboratories recently isolated multiple stem/progenitor cell subsets from blood vessels of adult human tissues. Each of the three structural layers of blood vessels: intima, media, and adventitia has been found to include at least one precursor population, that is, myogenic endothelial cells (MECs, pericytes, and adventitial cells (ACs, respectively. MECs and pericytes efficiently regenerate myofibers in injured and dystrophic skeletal muscles as well as improve cardiac function after myocardial infarction. The applications of ACs in vascular remodeling and angiogenesis/vasculogenesis have been examined. Our recent finding that MECs and pericytes can be purified from cryogenically banked human primary muscle cell culture further indicates their potential applications in personalized regenerative medicine.

  9. Obesity, blood vessels and metabolic syndrome.

    Science.gov (United States)

    Tesauro, M; Cardillo, C

    2011-09-01

    Obesity is rising worldwide at an alarming rate and so is the incidence of obesity-related disorders, such as the metabolic syndrome, type 2 diabetes and cardiovascular diseases. The obesity-dependent vascular damage appears to be derived from a variety of changes in the adipose tissue, leading to a chronic inflammatory state and dysregulation of adipocyte-derived factors. This, in turn, impairs vascular homeostasis by determining an unbalance between the protective effect of the nitric oxide pathway and the unfavourable action of the endothelin-1 system. In addition, hyperinsulinemia and insulin resistance contribute to vascular dysfunction because the opposing endothelium-dependent vasodilating and vasoconstrictor effects of insulin are shifted towards a predominant vasoconstriction in patients with obesity. Importantly, emerging evidence suggests that the vascular dysfunction of obesity is not only limited to the endothelium but also involves the other layers of the vessel wall. In particular, obesity-related changes in vascular smooth muscle seem to disrupt the physiological facilitatory action of insulin on the responsiveness to vasodilator stimuli, whereas the adventitia and the perivascular fat appear to be a source of proinflammatory and vasoactive factors that may contribute to endothelial and smooth muscle cell dysfunction and to the pathogenesis of vascular disease.

  10. Light and electron microscopic observations of blood vessels in neurilemoma.

    Science.gov (United States)

    Kasantikul, V; Glick, A D; Netsky, M G

    1979-12-01

    A study of 105 cases of neurilemoma disclosed frequent alterations of blood vessels, including hyalinized walls. Many vascular walls were formed by tumor cells. Two cases were analyzed by electron microscopy, and showed fenestrae, patent interendothelial gap junctions, and leakage of RBCs. The presence of erythrocytes in the gap junction and outside vessels is a factor acounting for xanthochromia of the CSF, and serum leakage for the frequent increase in CSF protein in cases of neurilemoma. Attenuation of endothelial cells increases the liability of vessels to bleed within the tumor. Massive bleeding may cause subarachnoid hemorrhage on rare occasions. Hyalinized vessels and dense collagen are features contributing to the relative infrequence of major hemorrhage. Evidence is presented that Schwann and perineural cells are similar.

  11. Aminopeptidase A is a functional target in angiogenic blood vessels.

    NARCIS (Netherlands)

    Marchio, S.; Lahdenranta, J.; Schlingemann, R.O.; Valdembri, D.; Wesseling, P.; Arap, M.A.; Hajitou, A.; Ozawa, M.G.; Trepel, M.; Giordano, R.J.; Nanus, D.M.; Dijkman, H.B.P.M.; Oosterwijk, E.; Sidman, R.L.; Cooper, M.D.; Bussolino, F.; Pasqualini, R.; Arap, W.

    2004-01-01

    We show that a membrane-associated protease, aminopeptidase A (APA), is upregulated and enzymatically active in blood vessels of human tumors. To gain mechanistic insight, we evaluated angiogenesis in APA null mice. We found that, although these mice develop normally, they fail to mount the expected

  12. H2S and Blood Vessels: An Overview.

    Science.gov (United States)

    Yang, Guangdong; Wang, Rui

    2015-01-01

    The physiological and biomedical importance of hydrogen sulfide (H2S) has been fully recognized in the cardiovascular system as well as in the rest of the body. In blood vessels, cystathionine γ-lyase (CSE) is a major H2S-producing enzyme expressed in both smooth muscle and endothelium as well as periadventitial adipose tissues. Regulation of H2S production from CSE is controlled by a complex integration of transcriptional, posttranscriptional, and posttranslational mechanisms in blood vessels. In smooth muscle cells, H2S regulates cell apoptosis, phenotypic switch, relaxation and contraction, and calcification. In endothelial cells, H2S controls cell proliferation, cellular senescence, oxidative stress, inflammation, etc. H2S interacts with nitric oxide and acts as an endothelium-derived relaxing factor and an endothelium-derived hyperpolarizing factor. H2S generated from periadventitial adipose tissues acts as an adipocyte-derived relaxing factor and modulates the vascular tone. Extensive evidence has demonstrated the beneficial roles of the CSE/H2S system in various blood vessel diseases, such as hypertension, atherosclerosis, and aortic aneurysm. The important roles signaling in the cardiovascular system merit further intensive and extensive investigation. H2S-releasing agents and CSE activators will find their great applications in the prevention and treatment of blood vessel-related disorders.

  13. Fractal structures in stenoses and aneurysms in blood vessels.

    Science.gov (United States)

    Schelin, Adriane B; Károlyi, György; de Moura, Alessandro P S; Booth, Nuala A; Grebogi, Celso

    2010-12-28

    Recent advances in the field of chaotic advection provide the impetus to revisit the dynamics of particles transported by blood flow in the presence of vessel wall irregularities. The irregularity, being either a narrowing or expansion of the vessel, mimicking stenoses or aneurysms, generates abnormal flow patterns that lead to a peculiar filamentary distribution of advected particles, which, in the blood, would include platelets. Using a simple model, we show how the filamentary distribution depends on the size of the vessel wall irregularity, and how it varies under resting or exercise conditions. The particles transported by blood flow that spend a long time around a disturbance either stick to the vessel wall or reside on fractal filaments. We show that the faster flow associated with exercise creates widespread filaments where particles can get trapped for a longer time, thus allowing for the possible activation of such particles. We argue, based on previous results in the field of active processes in flows, that the non-trivial long-time distribution of transported particles has the potential to have major effects on biochemical processes occurring in blood flow, including the activation and deposition of platelets. One aspect of the generality of our approach is that it also applies to other relevant biological processes, an example being the coexistence of plankton species investigated previously.

  14. Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels.

    Science.gov (United States)

    Pen, Ally; Moreno, Maria J; Martin, Joel; Stanimirovic, Danica B

    2007-04-15

    Glioblastoma multiforme (GBM) are the most malignant and vascularized brain tumors. The aberrant vascular phenotype of GBM could be exploited for diagnosis or therapeutic targeting. This study identified new molecular markers of GBM vessels, using a combination of laser capture microdissection (LCM) microscopy, RNA amplification, and microarray analyses to compare vessels from nonmalignant human brain and GBM tumors. Forty-two genes were differentially expressed in GBM vessels compared to nonmalignant brain vessels. Validation of differentially expressed genes was performed by literature mining, Q-PCR, and immunohistochemistry. Among the differentially expressed genes, only 64% were previously associated with vessels, angiogenesis, gliomas, and/or cancer. The upregulation of genes encoding secreted extracellular proteins IGFBP7 and SPARC was confirmed by Q-PCR in LCM-captured vessels. Whereas SPARC and IGFBP7 protein were absent in nonmalignant brain vessels, a distinct immunoreactivity patterns were observed in GBM sections whereby SPARC was strongly expressed in perivascular cells adjacent to GBM vessels while GBM endothelial cells were immunostained for IGFBP7. IGFBP7 immunoreactivity was also detected on the abluminal side of GBM vessels deposited between strands of vascular basal lamina. The study discerns unique molecular characteristics of GBM vessels compared with nonmalignant brain vessels that could potentially be used for diagnostic or therapeutic purposes.

  15. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  16. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos.

    Science.gov (United States)

    Lee, Jung Yeop; Ji, Ho Seong; Lee, Sang Joon

    2007-10-01

    The hemodynamic characteristics of blood flow are important in the diagnosis of circulatory diseases, since such diseases are related to wall shear stress of cardiovascular vessels. In chicken embryos at early stages of development, it is possible to directly visualize blood flow inside blood vessels. We therefore employed a micro-PIV technique to assess blood flow in extraembryonic venous and arterial blood vessels of chicken embryos, using red blood cells (RBCs) as tracers and obtaining flow images of RBCs using a high-speed CMOS camera. The mean velocity field showed non-Newtonian flow characteristics. The blood flow in two venous vessels merged smoothly into the Y-shaped downstream vein without any flow separation or secondary flow. Vorticity was high in the inner regions, where the radius of curvature varied greatly. A periodic variation of temporally resolved velocity signals, due to beating of the heart, was observed in arterial blood vessels. The pulsating frequency was obtained by fast Fourier transform analysis using the measured velocity data. The measurement technique used here was useful in analyzing the hemodynamic characteristics of in vivo blood flow in chicken embryos.

  17. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    Science.gov (United States)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  18. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    Institute of Scientific and Technical Information of China (English)

    YI Hou-Hui; XU Shi-Xiong; QIAN Yue-Hong; FANG Hai-Ping

    2005-01-01

    @@ The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results,is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  19. Investigation on artificial blood vessels prepared from bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Shanshan; Zhang, Ran; Chen, Hua; Lu, Yudong; Zhou, Jianhai [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chang, Xiao; Qiu, Guixing; Wu, Zhihong [Department of Orthopaedics, Peking Union Medical College Hospital, Beijing 100730 (China); Yang, Guang, E-mail: yang_sunny@yahoo.com [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-01-01

    BC (bacterial cellulose) exhibits quite distinctive properties than plant cellulose. The outstanding properties make BC a promising material for preparation of artificial blood vessel. By taking advantage of the high oxygen permeability of PDMS (polydimethylsiloxane) as a tubular template material, a series of BC tubes with a length of 100 mm, a thickness of 1 mm and an outer diameter of 4 or 6 mm were biosynthesized with the help of Gluconacetobacter xylinum. Through characterization by SEM (scanning electron microscope), tensile testing and thermal analysis, it is demonstrated that BC tubes are good enough for artificial blood vessel with elaborated nano-fiber architecture, qualified mechanical properties and high thermal stability. In addition, measurement of biocompatibility also shows that BC tubes are greatly adaptable to the in vivo environment. The results indicate that BC tubes have great potential for being utilized as tubular scaffold materials in the field of tissue engineering. - Highlights: • Bacterial cellulose (BC) can be made into tubular shape through PDMS mold. • BC represents a fine nanofiber network. • The mechanical and thermal properties of BC mimic the situation of real vessel. • BC exhibits attractive biocompatible properties as a substitution of vessel.

  20. Investigation on artificial blood vessels prepared from bacterial cellulose.

    Science.gov (United States)

    Zang, Shanshan; Zhang, Ran; Chen, Hua; Lu, Yudong; Zhou, Jianhai; Chang, Xiao; Qiu, Guixing; Wu, Zhihong; Yang, Guang

    2015-01-01

    BC (bacterial cellulose) exhibits quite distinctive properties than plant cellulose. The outstanding properties make BC a promising material for preparation of artificial blood vessel. By taking advantage of the high oxygen permeability of PDMS (polydimethylsiloxane) as a tubular template material, a series of BC tubes with a length of 100 mm, a thickness of 1mm and an outer diameter of 4 or 6mm were biosynthesized with the help of Gluconacetobacter xylinum. Through characterization by SEM (scanning electron microscope), tensile testing and thermal analysis, it is demonstrated that BC tubes are good enough for artificial blood vessel with elaborated nano-fiber architecture, qualified mechanical properties and high thermal stability. In addition, measurement of biocompatibility also shows that BC tubes are greatly adaptable to the in vivo environment. The results indicate that BC tubes have great potential for being utilized as tubular scaffold materials in the field of tissue engineering.

  1. Blood vessels restrain pancreas branching, differentiation and growth.

    Science.gov (United States)

    Magenheim, Judith; Ilovich, Ohad; Lazarus, Alon; Klochendler, Agnes; Ziv, Oren; Werman, Roni; Hija, Ayat; Cleaver, Ondine; Mishani, Eyal; Keshet, Eli; Dor, Yuval

    2011-11-01

    How organ size and form are controlled during development is a major question in biology. Blood vessels have been shown to be essential for early development of the liver and pancreas, and are fundamental to normal and pathological tissue growth. Here, we report that, surprisingly, non-nutritional signals from blood vessels act to restrain pancreas growth. Elimination of endothelial cells increases the size of embryonic pancreatic buds. Conversely, VEGF-induced hypervascularization decreases pancreas size. The growth phenotype results from vascular restriction of pancreatic tip cell formation, lateral branching and differentiation of the pancreatic epithelium into endocrine and acinar cells. The effects are seen both in vivo and ex vivo, indicating a perfusion-independent mechanism. Thus, the vasculature controls pancreas morphogenesis and growth by reducing branching and differentiation of primitive epithelial cells.

  2. Photoacoustic monitoring and imaging of blood vessels in tissue

    Science.gov (United States)

    Kolkman, Roy G. M.; Pilatou, Magdalena C.; Steenbergen, Wiendelt; de Mul, Frits F. M.

    2002-06-01

    Using very sensitive photoacoustical detectors we localized and monitored the blood content in tissue. In these detectors a PVdF-layer has been used as piezo-electric material and also fibers for the illumination of the sample are integrated. The resolution is about 20micrometers in depth and about 50-100micrometers laterally. The wavelengths of the laser light were 532 and 1064 nm. With these colors we can measure at different depths in tissue. The measurements concerned blood perfusion in real tissue: vessels in chicken breast, in test animals at various positions and in the human arm.

  3. Analysis by NASA's VESGEN Software of Retinal Blood Vessels Before and After 70-Day Bed Rest: A Retrospective Study

    Science.gov (United States)

    Raghunandan, Sneha; Vyas, Ruchi J.; Vizzeri, Gianmarco; Taibbi, Giovanni; Zanello, Susana B.; Ploutz-Snyder, Robert; Parsons-Wingerter, Patricia A.

    2016-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema and cotton wool spots. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal blood vessels that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASAs innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) head-down tilt in human subjects before and after 70 days of bed rest, and (2) U.S. crew members before and after ISS missions. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage, potentially reversible progression of the visually impairing and blinding disease, diabetic retinopathy.

  4. Over-expression of Slit2 induces vessel formation and changes blood vessel permeability in mouse brain

    Institute of Scientific and Technical Information of China (English)

    Hai-xiong HAN; Jian-guo GENG

    2011-01-01

    Aim:To investigate the effect of the axon guidance cue Slit2 on the density of blood vessels and permeability of the blood-brain barrier in mouse brain.Methods:hSlit2 transgenic mouse line was constructed,and the phenotypes of the mice were compared with wild-type mice in respect to the lateral ventricle (LV),ventricle pressure,and the choroids plexus.An in vivo Miles permeability assay and an amyloid-β permeability assay were used to assess the permeability of brain blood vessels.Brain vessel casting and intracerebral hemorrhage models were built to investigate vessel density in the transgenic mice.An in vitro permeability assay was used to test whether Slit2 could change the permeability and tight junctions of blood vessel endothelial cells.Results:Hydrocephalus occurred in some transgenic mice,and a significantly larger lateral ventricle area and significantly higher ventricle pressure were observed in the transgenic mice.The transgenic mice displayed changed construction of the choroids plexus,which had more micro vessels,dilated vessels,gaps between epithelial cells and endothelial cells than wild-type mice.Slit2 significantly increased brain vessel density and the permeability of brain vessels to large molecules.These blood vessels were more sensitive to cues that induce brain hemorrhage.At the cellular level,Slit2 disturbed the integrity of tight junctions in blood vessel endothelial cells and improved the permeability of the endothelial cell layer.Thus,it promoted the entry of amyloid-β peptides from the serum into the central nervous system,where they bound to neurons.Conclusion:Slit2 increases vessel density and permeability in the brains of transgenic mice.Thus,Slit2 induces numerous changes in brain vessels and the barrier system.

  5. Noncontact discrimination of animal and human blood with vacuum blood vessel and factors affect the discrimination

    Science.gov (United States)

    Zhang, Linna; Zhang, Shengzhao; Sun, Meixiu; Li, Hongxiao; Li, Yingxin; Fu, Zhigang; Guan, Yang; Li, Gang; Lin, Ling

    2017-03-01

    Discrimination of human and nonhuman blood is crucial for import-export ports and inspection and quarantine departments. Current methods are usually destructive, complicated and time-consuming. We had previously demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize human blood discrimination. In that research, the spectra were measured with the fiber probe under the surface of blood samples. However, open sampling may pollute the blood samples. Virulence factors in blood samples can also endanger inspectors. In this paper, we explored the classification effect with the blood samples measured in the original containers-vacuum blood vessel. Furthermore, we studied the impact of different conditions of blood samples, such as coagulation and hemolysis, on the prediction ability of the discrimination model. The calibration model built with blood samples in different conditions displayed a satisfactory prediction result. This research demonstrated that visible and near-infrared diffuse reflectance spectroscopy method was potential for noncontact discrimination of human blood.

  6. Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics

    Science.gov (United States)

    Anderson, Gregory Arthur

    Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image

  7. Blood vessel classification into arteries and veins in retinal images

    Science.gov (United States)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  8. Mapping by VESGEN of Blood Vessels in the Retinas of ISS Crew Members and Bed Rest Subjects for Increased Understanding of VIIP

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Vizzeri, G.; Tabbi, G.; Zanello, S. B.; Ploutz-Snyder, R.

    2014-01-01

    Research by NASA has established that significant risks for visual impairment in association with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema, and cotton wool spots. Much remains to be learned about the etiology of VIIP before effective countermeasures can be developed. Contributions of retinal vascular remodeling to the etiology of VIIP have not yet been investigated, primarily due to the current lack of ophthalmic tools for precisely measuring progressive pathophysiological remodeling of the retinal microvasculature. Although ophthalmic science and clinical practice are now highly sophisticated at detecting indirect, secondary signs of vascular remodeling such as cotton wool spots that arise during the progression of retinal vascular diseases, methods for quantifying direct, primary vascular changes are not yet established. To help develop insightful analysis of retinal vascular remodeling for aerospace medicine, we will map and quantify by our innovative VESsel GENeration Analysis (VESGEN) software the remodeling status of retinal blood vessels in crew members before and after ISS missions, and in healthy human subjects before and after head-down tilt bed rest. For this proof-of-concept study, we hypothesize that pathophysiological remodeling of retinal blood vessels occurs in coordination with microgravity-induced fluid shifts prior to development of visual impairments. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage progression of the visually impairing, potentially blinding disease, diabetic retinopathy.

  9. Modeling Of Blood Vessel Constriction In 2-D Case Using Molecular Dynamics Method

    CERN Document Server

    Rendi, Mohamad; Viridi, Sparisoma

    2013-01-01

    Blood vessel constriction is simulated with particle-based method using a molecular dynamics authoring software known as Molecular Workbench (WM). Blood flow and vessel wall, the only components considered in constructing a blood vessel, are all represented in particle form with interaction potentials: Lennard-Jones potential, push-pull spring potential, and bending spring potential. Influence of medium or blood plasma is accommodated in plasma viscosity through Stokes drag force. It has been observed that pressure p is increased as constriction c is increased. Leakage of blood vessel starts at 80 % constriction, which shows existence of maximum pressure that can be overcome by vessel wall.

  10. Angiogenesis and blood vessel stability in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Kennedy, Aisling

    2012-02-01

    OBJECTIVE: To assess blood vessel stability in inflammatory synovial tissue (ST) and to examine neural cell adhesion molecule (NCAM), oxidative DNA damage, and hypoxia in vivo. METHODS: Macroscopic vascularity and ST oxygen levels were determined in vivo in patients with inflammatory arthritis who were undergoing arthroscopy. Vessel maturity\\/stability was quantified in matched ST samples by dual immunofluorescence staining for factor VIII (FVIII)\\/alpha-smooth muscle actin (alpha-SMA). NCAM and 8-oxo-7,8-dihydro-2\\'-deoxyguanosine (8-oxodG) were examined by immunohistochemistry. Angiogenesis was assessed in vitro, using human dermal endothelial cells (HDECs) in a Matrigel tube formation assay. RESULTS: A significant number of immature vessels (showing no pericyte recruitment) was observed in tissue from patients with inflammatory arthritis (P < 0.001), in contrast to osteoarthritic and normal tissue, which showed complete recruitment of pericytes. Low in vivo PO(2) levels in the inflamed joint (median [range] 22.8 [3.2-54.1] mm Hg) were inversely related to increased macroscopic vascularity (P < 0.04) and increased microscopic expression of FVIII and alpha-SMA (P < 0.04 and P < 0.03, respectively). A significant proportion of vessels showed focal expression of NCAM and strong nuclear 8-oxodG expression, implicating a loss of EC-pericyte contact and increased DNA damage, levels of which were inversely associated with low in vivo PO(2) (P = 0.04 for each comparison). Circulating cells were completely negative for 8-oxodG. Exposure of HDEC to 3% O(2) (reflecting mean ST in vivo measurements) significantly increased EC tube formation (P < 0.05). CONCLUSION: Our findings indicate the presence of unstable vessels in inflamed joints associated with hypoxia, incomplete EC-pericyte interactions, and increased DNA damage. These changes may further contribute to persistent hypoxia in the inflamed joint to further drive this unstable microenvironment.

  11. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells.

    Science.gov (United States)

    Wang, Xue-Ying; Pei, Ying; Xie, Min; Jin, Zi-He; Xiao, Ya-Shi; Wang, Yang; Zhang, Li-Na; Li, Yan; Huang, Wei-Hua

    2015-02-21

    Reproducing a tumor microenvironment consisting of blood vessels and tumor cells for modeling tumor invasion in vitro is particularly challenging. Here, we report an artificial blood vessel implanted 3D microfluidic system for reproducing transvascular migration of tumor cells. The transparent, porous and elastic artificial blood vessels are obtained by constructing polysaccharide cellulose-based microtubes using a chitosan sacrificial template, and possess excellent cytocompatibility, permeability, and mechanical characteristics. The artificial blood vessels are then fully implanted into the collagen matrix to reconstruct the 3D microsystem for modeling transvascular migration of tumor cells. Well-defined simulated vascular lumens were obtained by proliferation of the human umbilical vein endothelial cells (HUVECs) lining the artificial blood vessels, which enables us to reproduce structures and functions of blood vessels and replicate various hemodynamic parameters. Based on this model, the adhesion and transvascular migration of tumor cells across the artificial blood vessel have been well reproduced.

  12. The effects of the synthetic nocistatin on blood vessel activities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nocistatin was synthesized by the solid-phase peptide synthesismethod. Its effects on rat systemic arterial pressure; rat hindquarter vascular bed resistance; tension of rabbit pectoral, abdominal, femoral aorta muscle strips without endothelium; and nociceptin induced decreases of rat systemic arterial pressure were determined. The results showed that nocistatin can increase the systemic arterial pressure, increase the hindquarter vascular bed resistance and induce the contraction significantly of abdominal, femoral aorta muscle strips without endothelium; it has no significant effect on tension of pectoral aorta muscle strips, it cannot antagonize significantly the decrease of rat systemic arterial pressure induced by nociceptin. These results suggest that nocistatin has some important effects on blood vessel activities.

  13. Plasma membrane electron transport in frog blood vessels

    Indian Academy of Sciences (India)

    Rashmi P Rao; K Nalini; J Prakasa Rao

    2009-12-01

    In an attempt to see if frog blood vessels possess a plasma membrane electron transport system, the postcaval vein and aorta isolated from Rana tigrina were tested for their ability to reduce ferricyanide, methylene blue, and 2,6-dichloroindophenol. While the dyes remained unchanged, ferricyanide was reduced to ferrocyanide. This reduction was resistant to inhibition by cyanide and azide. Heptane extraction or formalin fixation of the tissues markedly reduced the capability to reduce ferricyanide. Denuded aortas retained only 30% of the activity of intact tissue. Our results indicate that the amphibian postcaval vein and aorta exhibit plasma membrane electron transport

  14. Microfluidic strategy to investigate dynamics of small blood vessel function

    Science.gov (United States)

    Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

    2010-11-01

    Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

  15. Vascular network remodeling via vessel cooption, regression and growth in tumors

    CERN Document Server

    Bartha, K

    2016-01-01

    The transformation of the regular vasculature in normal tissue into a highly inhomogeneous tumor specific capillary network is described by a theoretical model incorporating tumor growth, vessel cooption, neo-vascularization, vessel collapse and cell death. Compartmentalization of the tumor into several regions differing in vessel density, diameter and in necrosis is observed for a wide range of parameters in agreement with the vessel morphology found in human melanoma. In accord with data for human melanoma the model predicts, that microvascular density (MVD, regarded as an important diagnostic tool in cancer treatment, does not necessarily determine the tempo of tumor progression. Instead it is suggested, that the MVD of the original tissue as well as the metabolic demand of the individual tumor cell plays the major role in the initial stages of tumor growth.

  16. BIFURCATION OF FLOW AND MASS TRANSPORT IN A CURVED BLOOD VESSEL

    Institute of Scientific and Technical Information of China (English)

    TAN Wenchang(谭文长); WEI Lan(魏兰); ZHAO Yaohua(赵耀华); TAKASHI Masuoka

    2003-01-01

    A numerical analysis of flow and concentration fields of macromolecules in a slightly curved blood vessel was carried out. Based on these results, the effect of the bifurcation of a flow on the mass transport in a curved blood vessel was discussed. The macromolecules turned out to be easier to deposit in the inner part of the curved blood vessel near the critical Dean number. Once the Dean number is higher than the critical number, the bifurcation of the flow appears. This bifurcation can prevent macromolecules from concentrating in the inner part of the curved blood vessel. This result is helpful for understanding the possible correlations between the blood dynamics and atherosclerosis.

  17. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels.

    Science.gov (United States)

    Chan-Park, Mary B; Shen, Jin Ye; Cao, Ye; Xiong, Yun; Liu, Yunxiao; Rayatpisheh, Shahrzad; Kang, Gavin Chun-Wei; Greisler, Howard P

    2009-03-15

    Small-diameter blood vessel substitutes are urgently needed for patients requiring replacements of their coronary and below-the-knee vessels and for better arteriovenous dialysis shunts. Circulatory diseases, especially those arising from atherosclerosis, are the predominant cause of mortality and morbidity in the developed world. Current therapies include the use of autologous vessels or synthetic materials as vessel replacements. The limited availability of healthy vessels for use as bypass grafts and the failure of purely synthetic materials in small-diameter sites necessitate the development of a biological substitute. Tissue engineering is such an approach and has achieved promising results, but reconstruction of a functional vascular tunica media, with circumferentially oriented contractile smooth muscle cells (SMCs) and extracellular matrix, appropriate mechanical properties, and vasoactivity has yet to be demonstrated. This review focuses on strategies to effect the switch of SMC phenotype from synthetic to contractile, which is regarded as crucial for the engineering of a functional vascular media. The synthetic SMC phenotype is desired initially for cell proliferation and tissue remodeling, but the contractile phenotype is then necessary for sufficient vasoactivity and inhibition of neointima formation. The factors governing the switch to a more contractile phenotype with in vitro culture are reviewed.

  18. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P. (Department of Pharmacology, College of Medicine, University of California, Irvine (USA))

    1991-07-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 (11-2-((2-(diethylaminomethyl)- 1-piperidinyl)acetyl)-5,11-dihydro-6H- pyrido(2,3-b)(1,4)benzodiazepine-6-one), hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of (3H)quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of (3H)-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.

  19. Illustration of the heart and blood vessels in medieval times.

    Science.gov (United States)

    Khalili, Majid; Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios; Alakbarli, Farid; Newman, Andrew J

    2010-08-06

    Throughout history, illustrations had played a key role in the promotion and evolution of medicine by providing a medium for transmission of scientific observations. Due to religious prohibitions, color drawings of the human body did not appear in medieval Persia and during the Islamic Golden Age. This tradition, however, has been overlooked with the publication of the first color atlas and text of human anatomy, Tashrihi Mansuri (Mansur's Anatomy), by Mansur ibn Ilyas in the fourteenth century AD. Written in Persian and containing several vivid illustrations of the human body, this book gained widespread attention by both scholars and lay persons. In this article, a brief history of Mansur's Anatomy and an English translation of selected sections from this book regarding the heart and blood vessels are presented.

  20. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion.

    Directory of Open Access Journals (Sweden)

    Yan Cai

    Full Text Available We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth.

  1. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion.

    Science.gov (United States)

    Cai, Yan; Wu, Jie; Li, Zhiyong; Long, Quan

    2016-01-01

    We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth.

  2. Sodium hydrosulfide alleviates pulmonary artery collagen remodeling in rats with high pulmonary blood flow.

    Science.gov (United States)

    Li, Xiaohui; Du, Junbao; Jin, Hongfang; Geng, Bin; Tang, Chaoshu

    2008-11-01

    This study aimed to explore the effect of sodium hydrosulfide (NaHS) on pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Thirty-two Sprague-Dawley rats were randomly divided into a sham group, shunt group, sham + NaHS (an H2S donor) group, and shunt + NaHS group. After 11 weeks of shunting, mean pulmonary artery pressure (MPAP), relative median area (RMA) of pulmonary arteries, H2S concentration in lung tissues, plasma endothelin-1 (ET-1) levels, and ET-1 mRNA in lung tissues were investigated. Collagen I and collagen III were evaluated by immunohistochemistry. Hydroxyproline assay and Sirius-red staining were performed. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and connective tissue growth factor (CTGF) were evaluated by immunohistochemistry. After 11 weeks of shunting, rats showed a significant pulmonary hypertension and pulmonary artery collagen remodeling in association with a decrease in lung tissue H2S content. After NaHS treatment for 11 weeks, lung tissue H(2)S content was increased, whereas MPAP was attenuated and RMA was reduced. Meanwhile, pulmonary artery collagen I and collagen III protein expressions of intra-acinar pulmonary arteries were inhibited, but MMP-13/TIMP-1 ratio was augmented with a decreased plasma ET-1 content and lung tissue ET-1mRNA and CTGF expressions. The downregulation of H(2)S is involved in the development of pulmonary artery collagen remodeling induced by high pulmonary blood flow.

  3. Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz; Marcela A. Garabalino; Andrea Monti Hughes; Elisa M. Heber; Emiliano C. C. Pozzi; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2012-07-01

    Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor blood vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.

  4. Influence of cerebral blood vessel movements on the position of perivascular synapses

    Science.gov (United States)

    DeFelipe, Javier

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396

  5. Niflumic Acid Attenuated Pulmonary Artery Tone and Vascular Structural Remodeling of Pulmonary Arterial Hypertension Induced by High Pulmonary Blood Flow In Vivo.

    Science.gov (United States)

    Wang, Kai; Ma, Jianfa; Pang, Yusheng; Lao, Jinquan; Pan, Xuanren; Tang, Qiaoyun; Zhang, Feng; Su, Danyan; Qin, Suyuan; Shrestha, Arnav Prasad

    2015-10-01

    Calcium-activated chloride channels (CaCCs) play a vital role in regulating pulmonary artery tone during pulmonary arterial hypertension (PAH) induced by high blood flow. The role of CaCCs inhibitor niflumic acid (NFA) in vivo during this process requires further investigation. We established the PAH model by abdominal shunt surgery and treated with NFA in vivo. Fifty rats were randomly divided into normal, sham, shunt, NFA group 1 (0.2 mg/kg), and NFA group 2 (0.4 mg/kg). Pathological changes, right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter were analyzed. Then contraction reactions of pulmonary arteries were measured. Finally, the electrophysiological characteristics of pulmonary arterial smooth muscle cells were investigated using patch-clamp technology. After 11 weeks of shunting, PAH developed, accompanied with increased right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter. In the NFA treatment groups, the pressure and pathological changes were alleviated. The pulmonary artery tone in the shunt group increased, whereas it decreased after NFA treatment. The current density of CaCC was higher in the shunt group, and it was decreased in the NFA treatment groups. In conclusion, NFA attenuated pulmonary artery tone and structural remodeling in PAH induced by high pulmonary blood flow in vivo. CaCCs were involved and the augmented current density was alleviated by NFA treatment.

  6. Determination of the critical buckling pressure of blood vessels using the energy approach.

    Science.gov (United States)

    Han, Hai-Chao

    2011-03-01

    The stability of blood vessels under lumen blood pressure is essential to the maintenance of normal vascular function. Differential buckling equations have been established recently for linear and nonlinear elastic artery models. However, the strain energy in bent buckling and the corresponding energy method have not been investigated for blood vessels under lumen pressure. The purpose of this study was to establish the energy equation for blood vessel buckling under internal pressure. A buckling equation was established to determine the critical pressure based on the potential energy. The critical pressures of blood vessels with small tapering along their axis were estimated using the energy approach. It was demonstrated that the energy approach yields both the same differential equation and critical pressure for cylindrical blood vessel buckling as obtained previously using the adjacent equilibrium approach. Tapering reduced the critical pressure of blood vessels compared to the cylindrical ones. This energy approach provides a useful tool for studying blood vessel buckling and will be useful in dealing with various imperfections of the vessel wall.

  7. MACROMICROSCOPIC AND ULTRAMICROSCOPIC CHARACTERISTICS OF THE HART AND ITS BLOOD VESSELS IN MICE EHRLICHIOSIS INFECTION

    Directory of Open Access Journals (Sweden)

    Pokhil S. I.

    2013-12-01

    Full Text Available The macromicroscopic, ultramicroscopic studying change’s in the hart and its blood vessels in unlinear immunocomprometive laboratory male and female mice with the experimental ehrlichiosis is presented in this article. The cardiac destructive and degenerative changes,cardiomyopathy, cardiosclerosis had been established inexperimental animal group’s. The blood vessels endothelial lieyr disorganization, stasis, thrombosis has been noted.

  8. [Effects of high intensity focused ultrasound with SonoVue on blood vessels pathological examinations].

    Science.gov (United States)

    Qin, Yan; Bai, Jin; Li, Faqi; Wang, Zhibiao

    2010-12-01

    The injury of tumor blood vessels will break up the nutrition supply for the tumor. In this paper, we investigated the effects exerted by high intensity focused ultrasound (HIFU) combined with ultrasound microbubble agent on blood vessels. Ultrasound diagnosis was used to find the goat hepatic blood vessels each being approximately 3mm in diameter. HIFU was focused on the blood vessels. The acoustic power was 250W; HIFU irradiating Mode was line scan (the length of the line: 10 mm; speed: 3 mm/s; irradiating time: 30s). In the experimental group, 0.03 ml/kg SonoVue was injected into the goat before HIFU irradiation,while normal saline was given to the control group. The goats were killed at 24h after HIFU irradiation, then goat liver tissues and blood vessels of target area were taken out. HE staining and Victoria's blue and Ponceau's staining of tissue section showed that the endothelial cells of blood vessels dropped off and became necrosed, and the continuity of blood vessels was interrupted. HIFU combined with SonoVue will damage large blood vessels on HIFU focus, but there is no evident discrepancy between the group with SonoVue and the group without SonoVue.

  9. Tumor blood vessels formation in osteosarcoma:vasculogenesis mimicry

    Institute of Scientific and Technical Information of China (English)

    蔡宣松; 贾永伟; 梅炯; 汤如勇

    2004-01-01

    Background Osteosarcoma is characterized by high neovascularization and a high propensity for metastasis through bloodstream. This study was to examine whether there is evidence for vasculogenic mimicry in osteosarcoma and to illustrate mechanism of tumor blood vessels formation in osteosarcoma.Methods Osteosarcoma cell lines (U-2OS) were tested for their ability to form tubular networks in three-dimensional culture containing type Ⅰ collagen. The structures of the tubular networks were observed with phase contrast microscope and transmission electron microscope (TEM). Morphometric studies using hematoxylin and eosin (HE) stain and CD31 immunohistochemical stain to show tumor-lined channels in human osteosarcoma were also performed.Results Observation with light microscope and TEM showed that highly aggressive osteosarcoma cell lines (U-2OS) formed networks containing channels when grown in three-dimensional culture containing type Ⅰ collagen, in the absence of endothelial cells or fibroblasts. Morphometric observation using HE stain and CD31 immunohistochemical stain showed that tumor cell-lined channels were also detected in vivo in osteosarcoma; by comparison, all vascular areas in the pedicel of osteochondroma or outside osteochondroma were endothelial-lined.Conclusion These observations strongly suggest that aggressive osteosarcoma cells may generate vascular channels that facilitate tumor perfusion independent of tumor angiogenesis and have the ability of vasculogenic mimicry.

  10. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  11. Blood Vessels Extraction in Retinal Image Using New Generation Curvelet Transform and Adaptive Weighted Morphology Operators

    Directory of Open Access Journals (Sweden)

    Saleh Shahbeig

    2013-02-01

    Full Text Available According to many medical and biometric applications of retinal images, the automatic and accurate extraction of the retinal blood vessels is very important. In this paper, an effective method is introduced to extract the blood vessels from the background of colored images of retina. In this algorithm, by applying the equalizer function on the retinal images, the brightness of the images is considerably uniformed. Because of high ability of Curvelet transform in introducing image borders in various scale and directions, borders and, consequently the contrast of retinal images can be enhanced. Therefore, the enhanced retinal image can be prepared for the extraction of blood vessels by improving Curvelet coefficients of the retinal images, adaptively and locally. Since the blood vessels in retinal images are distributed in various directions, we use the adaptive weighted morphology operators to extract the blood vessels from retinal images. Morphology operators based on reconstruction are used to refine the appeared frills with the size of smaller than arterioles in images properly. Finally, by analyzing the connected component in the images and applying adaptive filter on the components locally, all residual frills are refined from the images. The proposed algorithm in this paper has been evaluated by the images in the DRIVE database. The results how that the blood vessels are extracted from background of the retinal images of DRIVE database with the high accuracy of 96.15%, which in turn shows the high ability of the proposed algorithm in extracting the retinal blood vessels.

  12. Laser optical method of visualizing cutaneous blood vessels and its applications in biometry and photomedicine

    Science.gov (United States)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

    2011-05-01

    We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.

  13. Solitonlike attractor for blood vessel tip density in angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.

    2016-12-01

    Recently, numerical simulations of a stochastic model have shown that the density of vessel tips in tumor-induced angiogenesis adopts a solitonlike profile [Sci. Rep. 6, 31296 (2016), 10.1038/srep31296]. In this work, we derive and solve the equations for the soliton collective coordinates that indicate how the soliton adapts its shape and velocity to varying chemotaxis and diffusion. The vessel tip density can be reconstructed from the soliton formulas. While the stochastic model exhibits large fluctuations, we show that the location of the maximum vessel tip density for different replicas follows closely the soliton peak position calculated either by ensemble averages or by solving an alternative deterministic description of the density. The simple soliton collective coordinate equations may also be used to ascertain the response of the vessel network to changes in the parameters and thus to control it.

  14. The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children

    NARCIS (Netherlands)

    Cuper, Natascha J.; Klaessens, John H. G.; Jaspers, Joris E. N.; de Roode, Rowland; Noordmans, Herke Jan; de Graaff, Jurgen C.; Verdaasdonk, Rudolf M.

    2013-01-01

    Obtaining access to blood vessels can be difficult, especially in children. Visualization of subsurface blood vessels might be a solution. Ultrasound and visible light have been used to this purpose, but have some drawbacks. Near-infrared light might be a better option since subsurface blood vessels

  15. Primary Reconstruction of Completely Biologic Tissue Engineered Blood Vessel and Related Basic Research

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionIt is a usual regiment to execute surgical treatments to vascular diseases, which need much more vessels than the acquirable natural ones. This requires necessary vessel substitutes of tissue engineered blood vessels (TEBV)~([1]). It is one of the present research focuses to reconstruct TEBV with decellularised vascular scaffolds~([2, 3]).Despite the fact~([1,2]) that some of the large-diameter (>5 mm internal diameter) TEBV have been successfully developed from polymers such as Dacron or expa...

  16. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  17. 论脉之生理特性%Discussion of physiological characteristic of blood vessel

    Institute of Scientific and Technical Information of China (English)

    刘玲

    2011-01-01

    The blood vessel has been named as extraordinary Fu-organ by traditional Chinese medicine. It's role is transporting the blood to nourishing the tissues and organs. As it hide between in the tissues,it lacks of the theories of physiological and pathological characteristics. So more blood vessel's diseases must be treated by adjusting blood. By modern technology,it has been proved that the blood vessel's disease is not only independent existence,but also the main pathological factor of the blood diseases. So preventing the blood vessel diseases,the main method is regulating and nourishing the blood vessel. This article thought that the physiological characteristics of the blood vessel are having unblocked's and nomal contraction or expansion's and solid wall's channel. It's also an organ of more Qi and blood. Besides the heart control,the healthy of blood vessel dependent on the unfold and smooth's liver Qi,and spleen Qi's manage.%传统中医学认为脉是奇恒之腑,具有输送血液濡养组织器官的作用.由于脉深藏于组织之间,故缺乏对脉生理、病理特点的论述,致使脉病多从血论治.现代科技手段证明脉病不仅独立存在,还是导致血病的主要病理因素.调脉、养脉是防治血病的重要环节.认为脉以柔顺畅达、舒缩有度、约束有节为生理特性,为多气多血组织,除心主血脉外,肝气的疏泄及脾气固摄都是脉保持健康、通畅的保证.

  18. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Science.gov (United States)

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling.

  19. In vivo experiments and numerical investigations on nanocryosurgical freezing of target tissues with large blood vessels.

    Science.gov (United States)

    Sun, Zi-Qiao; Yang, Yang; Liu, Jing

    2012-02-01

    This study presented the first in vivo animal experiments of using nano-cryosurgical modality to completely freezing tumor tissues embedded with large blood vessels, which is a tough issue to tackle otherwise. Three-dimensional theoretical simulations were also performed on the complex freezing problems by considering flow and heat transfer of blood flow in large vessels. According to the experimental measurements and numerical predictions, injecting the nanoparticles with high thermal conductivity into the freezing target can significantly reduce the heating effect of blood vessel, shorten the freezing time, and enlarge the freezing range. Most importantly, the introduction of nanoparticles successfully overcomes the classical challenges in completely ablating the tumor region with large blood vessel and enhancing the freezing efficacy of cryosurgery. This investigation consolidates the practical and theoretical foundation for nano-cryosurgery which suggests a highly efficient freezing strategy for treating late stage tumor.

  20. Blood vessel growth blocker may treat AIDS-related Kaposi’s sarcoma

    Science.gov (United States)

    Patients with an AIDS-associated cancer, Kaposi's sarcoma (KS), showed improvement after receiving the combination of bevacizumab, a cancer drug that blocks the growth of new blood vessels, and highly active antiretroviral therapy (HAART).

  1. The Primary Study of the Construction of Small Diameter Tissue-engineered Blood Vessel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionToday, the blood vessel substitutes are in large demand for coronary and peripheral bypass procedures. Each year, more than 600,000 coronary artery bypass graft procedures are performed in the United States. There are some blood vessel substitutes including autografts, allografts and synthetic grafts that have been applied in vascular surgery in clinics. But their clinical implementations are prevented, especially for the <6mm in diameter grafts, because of their shortcomings such as inadequat...

  2. Pericyte coverage of abnormal blood vessels in myelofibrotic bone marrows

    DEFF Research Database (Denmark)

    Zetterberg, Eva; Vannucchi, Alessandro M; Migliaccio, Anna Rita

    2007-01-01

    BACKGROUND AND OBJECTIVES: Myelofibrotic bone marrow displays abnormal angiogenesis but the pathogenic mechanisms of this are poorly understood. Since pericyte abnormalities are described on solid tumor vessels we studied whether vessel morphology and pericyte coverage in bone marrow samples from...... patients with myelofibrosis differed from that in samples from controls. DESIGN AND METHODS: We assessed the microvascular density (MVD), vessel morphology and pericyte coverage in bone marrows from 19 myelofibrosis patients and nine controls. We also studied the same parameters in two mouse models...... of myelofibrosis, with genetic alterations affecting megakaryocyte differentiation (i.e. one model with low GATA-1 expression and the other with over-expression of thrombopoietin). RESULTS: In myelofibrotic marrows, MVD was 3.8-fold greater than in controls (pvessels displayed 5.9-fold larger mean...

  3. [The structure of the developing blood vessels of the neocortical anlage of the human embryo].

    Science.gov (United States)

    Korzhevskiĭ, D E; Omel'chenko, N V; Smirnov, E B; Petrova, E S

    2000-01-01

    Using light and electron microscopy the structure of blood vessels of neocortical anlage of human 7-12 embryos was studied. It was shown that at the early stage of formation of intraorgan vascular network the wall of blood vessels of ventricular zone successively differentiate, which is characterized by the appearance of second layer of cells (pericytes), accumulation of basement membrane components, widening of the zone of contacts between endotheliocytes and establishment of the contacts with bipolar cells of neocortex anlage. The morphological data obtained assist in comprehension of physiological aspects of formation of blood brain barrier and regulation of blood flow in human embryonal neocortex.

  4. Impact of Cold Ischemia on Mitochondrial Function in Porcine Hearts and Blood Vessels

    Science.gov (United States)

    Wiedemann, Dominik; Schachner, Thomas; Bonaros, Nikolaos; Dorn, Melissa; Andreas, Martin; Kocher, Alfred; Kuznetsov, Andrey V.

    2013-01-01

    The effects of cold storage using Custodiol® (Histidine-Tryptophan-Ketoglutarate, HTK) or isotonic saline solution on mitochondrial function in hearts (left and rights ventricles) and various blood vessels of pigs were investigated. Hearts, saphenous veins, internal-mammary-arteries and aortas of male landrace pigs were harvested and exposed to cold ischemia in either saline or Custodiol-HTK solution. Mitochondrial function was measured in situ in permeabilized fibers by high-resolution respirometry. Mitochondrial respiratory capacities (maximal respiration rates) were similar in the right and left ventricle in controls and after 14 h of cold storage were significantly better preserved in Custodiol-HTK than in saline solution. Mitochondrial respiration rates in various blood vessels including aorta, arteries and veins were less than 5% of myocardium rates. In contrast to the pig heart, in some blood vessels, like veins, mitochondrial function remained stable even after 24 h of cold ischemia. HTK-Custodiol protection of mitochondrial function after prolonged cold ischemia was observed in the myocardium but not in blood vessels. HTK-Custodiol solution thus offers significant protection of myocardial mitochondria against cold ischemic injury and can be used as efficient preservation solution in organ transplantation but probably has no benefit for blood vessels preservation. Analysis of mitochondrial function can be used as a valuable approach for the assessment of cold ischemic injury in various tissues including pig heart and various blood vessels. PMID:24213604

  5. Impact of Cold Ischemia on Mitochondrial Function in Porcine Hearts and Blood Vessels

    Directory of Open Access Journals (Sweden)

    Andrey V. Kuznetsov

    2013-11-01

    Full Text Available The effects of cold storage using Custodiol® (Histidine-Tryptophan-Ketoglutarate, HTK or isotonic saline solution on mitochondrial function in hearts (left and rights ventricles and various blood vessels of pigs were investigated. Hearts, saphenous veins, internal-mammary-arteries and aortas of male landrace pigs were harvested and exposed to cold ischemia in either saline or Custodiol-HTK solution. Mitochondrial function was measured in situ in permeabilized fibers by high-resolution respirometry. Mitochondrial respiratory capacities (maximal respiration rates were similar in the right and left ventricle in controls and after 14 h of cold storage were significantly better preserved in Custodiol-HTK than in saline solution. Mitochondrial respiration rates in various blood vessels including aorta, arteries and veins were less than 5% of myocardium rates. In contrast to the pig heart, in some blood vessels, like veins, mitochondrial function remained stable even after 24 h of cold ischemia. HTK-Custodiol protection of mitochondrial function after prolonged cold ischemia was observed in the myocardium but not in blood vessels. HTK-Custodiol solution thus offers significant protection of myocardial mitochondria against cold ischemic injury and can be used as efficient preservation solution in organ transplantation but probably has no benefit for blood vessels preservation. Analysis of mitochondrial function can be used as a valuable approach for the assessment of cold ischemic injury in various tissues including pig heart and various blood vessels.

  6. Differential Effects between Cigarette Total Particulate Matter and Cigarette Smoke Extract on Blood and Blood Vessel

    Science.gov (United States)

    Park, Jung-Min; Chang, Kyung-Hwa; Park, Kwang-Hoon; Choi, Seong-Jin; Lee, Kyuhong; Lee, Jin-Yong; Satoh, Masahiko; Song, Seong-Yu; Lee, Moo-Yeol

    2016-01-01

    The generation and collection of cigarette smoke (CS) is a prerequisite for any toxicology study on smoking, especially an in vitro CS exposure study. In this study, the effects on blood and vascular function were tested with two widely used CS preparations to compare the biological effects of CS with respect to the CS preparation used. CS was prepared in the form of total particulate matter (TPM), which is CS trapped in a Cambridge filter pad, and cigarette smoke extract (CSE), which is CS trapped in phosphate-buffered saline. TPM potentiated platelet reactivity to thrombin and thus increased aggregation at a concentration of 25~100 μg/mL, whereas 2.5~10% CSE decreased platelet aggregation by thrombin. Both TPM and CSE inhibited vascular contraction by phenylephrine at 50~100 μg/mL and 10%, respectively. TPM inhibited acetylcholine-induced vasorelaxation at 10~100 μg/mL, but CSE exhibited a minimal effect on relaxation at the concentration that affects vasoconstriction. Neither TPM nor CSE induced hemolysis of erythrocytes or influenced plasma coagulation, as assessed by prothrombin time (PT) and activated partial thromboplastin time (aPTT). Taken together, CS affects platelet activity and deteriorates vasomotor functions in vitro. However, the effect on blood and blood vessels may vary depending on the CS preparation. Therefore, the results of experiments conducted with CS preparations should be interpreted with caution.

  7. Analyses of thermal stress and fracture during cryopreservation of blood vessel

    Institute of Scientific and Technical Information of China (English)

    华泽钊; 徐红艳; 周国燕; 刘锦纷; 黄惠民; 丁文祥

    2001-01-01

    The occurrence of fractures in the vessel wall has been a major problem for human blood vessel cryopreservation. The large volumetric expansion of water during crystallization produces great inner stresses. To solve these complicated heat transfer and thermal stress problems, a model and an analytic method are presented in this paper, with which transient temperature field, the transient stress field inside the blood vessels during freezing can be calculated and analyzed, and the probable cracks or fractures can be predicted. The analytic results of sheep thoracic artery are consistent with the experimental observations of fractures.

  8. Computational study of thermal effects of large blood vessels in human knee joint.

    Science.gov (United States)

    Xue, Xu; He, Zhi Zhu; Liu, Jing

    2013-01-01

    This paper is dedicated to present a comprehensive investigation on the thermal effects of large blood vessels of human knee joint during topical cooling and fomentation treatment. A three-dimensional (3D) finite element analysis by taking full use of the anatomical CAD model of human knee joint was developed to accurately simulate the treatment process. Based on the classical Pennes bio-heat transfer equation, the time evolution of knee joint's temperature distribution and heat flux from large blood vessels was obtained. In addition, we compared several influencing factors and obtained some key conclusions which cannot be easily acquired through clinical experiments. The results indicated that the thermal effects of large blood vessels could remarkably affect the temperature distribution of knee joint during treatment process. Fluctuations of blood flow velocity and metabolic heat production rate affect little on the thermal effects of large blood vessels. Changing the temperature of blood and regimes of treatment could effectively regulate this phenomenon, which is important for many physiological activities. These results provide a guideline to the basic and applied research for the thermally significant large blood vessels in the knee organism.

  9. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery

    Science.gov (United States)

    Matsumoto, Yu; Nichols, Joseph W.; Toh, Kazuko; Nomoto, Takahiro; Cabral, Horacio; Miura, Yutaka; Christie, R. James; Yamada, Naoki; Ogura, Tadayoshi; Kano, Mitsunobu R.; Matsumura, Yasuhiro; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Bae, You Han; Kataoka, Kazunori

    2016-06-01

    Enhanced permeability in tumours is thought to result from malformed vascular walls with leaky cell-to-cell junctions. This assertion is backed by studies using electron microscopy and polymer casts that show incomplete pericyte coverage of tumour vessels and the presence of intercellular gaps. However, this gives the impression that tumour permeability is static amid a chaotic tumour environment. Using intravital confocal laser scanning microscopy we show that the permeability of tumour blood vessels includes a dynamic phenomenon characterized by vascular bursts followed by brief vigorous outward flow of fluid (named ‘eruptions’) into the tumour interstitial space. We propose that ‘dynamic vents’ form transient openings and closings at these leaky blood vessels. These stochastic eruptions may explain the enhanced extravasation of nanoparticles from the tumour blood vessels, and offer insights into the underlying distribution patterns of an administered drug.

  10. Vascular wall remodeling in women with hypertension: relationship with heart rate variability and blood pressure

    Directory of Open Access Journals (Sweden)

    E. A. Koval

    2013-08-01

    Full Text Available Purpose. There is abundant evidence that increased sympathetic activity in patients with hypertension plays an important role in stimulating the growth of cardiomyocytes and myocardial fibroblasts, leading to structural remodeling of the left ventricle and to its hypertrophy. This is true for the pathophysiological processes taking place at the same time of remodeling of the vascular wall and its tunica media, but these processes have been studied much less detail. Aim.To assess the relationship between structural changes of the common carotid arteries wall in healthy women and women with hypertension, depending on heart rate variability and circadian blood pressure (BP. Materials and methods.We examined 90 female (to avoid sex difference patients with AH I - II degree without any additional risk factors (disease duration 2 - 16 yrs, average age 47,5 ± 7,2 yrs. 36 apparently healthy women (the average age 43,3 ± 8,1 yrs have formed the control group. To assess the structural changes of the common carotid artery we performed ultrasound scan on both sides of its wall by LOGIC P5 PRO (General Electric. BP monitoring (CBP was performed on the apparatus AVRM-04 (Meditech, Hungary. We evaluated the mean systolic and diastolic BP (MSBP and MDBP, their time indices, variability and circadian index. Short-term heart rate variability was performed using an automated diagnostic complex "Cardio +" (NVP Metekol, Ukraine. Results and discussion. In the group of women with hypertension IMT was significantly greater than in the control group (p = 0.001. Intimal layer thickness between the two groups did not differ significantly (p = 0.190. Internal diameter of the carotid arteries in women with hypertension was 0,58 ± 0,07 cm, and in the control group – 0,56 ± 0,04 cm and was significantly greater (p = 0.031. The DBP variability was significantly higher in patients with hypertension than in the control group (p = 0.0001. The time index of systolic and

  11. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  12. Characteristics of blood vessels forming “sausages-on-a-string” patterns during hypertension

    Science.gov (United States)

    Ravnsborg Beierholm, Ulrik; Christian Brings Jacobsen, Jens; Holstein-Rathlou, Niels-Henrik; Alstrøm, Preben

    2007-03-01

    A phenomenon of alternate constrictions and dilatations in blood vessels has been studied for over 50 years. Recently, a theory has been presented involving a Rayleigh type instability. We analyze the model in terms of the lengths of the deformations in relation to the wall thickness, blood pressure and stress. Analytical and numerical results obtained are consistent with experimental data.

  13. Lymphatic vessels growing apart from blood vessels in transplanted corneas after the blockade of vascular endothelial growth factor C

    Institute of Scientific and Technical Information of China (English)

    Ye Hui; Yan Hao; Zhong Lei; Wang Tao; Deng Juan; Ling Shi-qi

    2016-01-01

    BACKGROUND:Corneal lymphangiogenesis is beneficial to the transport of corneal antigenic materials, and accelerates the process of antigen presentation, thereby playing an important role in corneal immunity. However, due to the paral el outgrowth of corneal blood and lymphatic vessels in transplanted corneas, it is often difficult to accurately evaluate the role of corneal lymphatic vessels in allograft rejection. OBJECTIVE:To explore the development of corneal lymphangiogenesis and angiogenesis in transplanted rat corneas after the blockade of vascular endothelial growth factor C (VEGF-C). METHODS:130 rats used to establish corneal al ogenic transplantation models were equally randomized into two groups:the anti-VEGF-C group and the control group. VEGF-C was blocked in the anti-VEGF-C group by intraperitoneal injection of neutralizing monoclonal anti-VEGF-C antibody every other day for 2 consecutive weeks. Meanwhile, rats in control groups received intraperitoneal injections of saline. Corneal angiogenesis and lymphangiogenesis were characterized using whole mount immunofluorescence, and the immune rejection of the grafts was evaluated by scoring the rejection index (RI). In addition, the expression of VEGF-C was examined by real-time PCR. The relationship of corneal lymphangiogenesis and angiogenesis to RI in transplanted corneas was also characterized. RESULTS AND CONCLUSION:VEGF-C expression was markedly downregulated after VEGF-C blockade. Corneal lymphangiogenesis developed in parallel with corneal angiogenesis in the control group. While there was a mild reduction in blood vessel area (BVA) and a significant decrease in lymphatic vessel area (LVA) in the anti-VEGF-C group (P0.05). the graft survival time in the anti-VEGF-C group was significantly increased compared with that in the control group (P<0.05). Our results show that the outgrowth of lymphatic vessels is separated from that of blood vessels in transplanted corneas by blocking VEGF-C. The blockade

  14. Role of thyroid hormones in ventricular remodeling.

    Science.gov (United States)

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  15. Study of fluid dynamics reveals direct communications between lymphatic vessels and venous blood vessels at lymph nodes of mice.

    Science.gov (United States)

    Takeda, Kazu; Mori, Shiro; Kodama, Tetsuya

    2017-02-22

    Cancer cells metastasize to lymph nodes, with distant metastasis resulting in poor prognosis. The role of lymph node metastasis (LNM) in the spread of cancer to distant organs remain incompletely characterized. The visualization of flow dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of lymph nodes up to 10mm in diameter, has revealed that lymph nodes have the potential to be a direct source of systemic metastasis. However, it is not known whether these fluid dynamics characteristics are universal phenomena present in other strains of laboratory mice. Here we show that the fluid dynamics observed in MXH10/Mo-lpr/lpr mice are the same as those observed in C57BL/6J, BALB/cAJcl and NOD/ShiJic-scidJcl mice. Furthermore, when fluorescent solution was injected into a tumor-bearing lymph node, the flow dynamics observed in the efferent lymphatic vessels and thoracoepigastric vein depended on the type of tumor cell. Our results indicate that fluid dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice are generalized phenomena seen in conventional laboratory mice. We anticipate our results can facilitate studies of the progression of lymphatic metastasis to hematogenous metastasis via lymph nodes and the early diagnosis and treatment of LNM.

  16. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  17. Coronary Arterioles in Type 2 Diabetic (db/db) Mice Undergo a Distinct Pattern of Remodeling Associated with Decreased Vessel Stiffness

    Science.gov (United States)

    Katz, Paige S.; Trask, Aaron J.; Souza-Smith, Flavia M.; Hutchinson, Kirk R.; Galantowicz, Maarten L.; Lord, Kevin C.; Stewart, James A.; Cismowski, Mary J.; Varner, Kurt J.; Lucchesi, Pamela A.

    2011-01-01

    Background Little is known about the impact of type 2 diabetes mellitus (DM) on coronary arteriole remodeling. The aim of this study was to determine the mechanisms that underlie coronary arteriole structural remodeling in type 2 diabetic (db/db) mice. Methods and Results Passive structural properties of septal coronary arterioles isolated from 12- and 16-wk-old diabetic db/db and control mice were assessed by pressure myography. Coronary arterioles from 12-wk-old db/db mice were structurally similar to age-matched controls. By 16-wks of age, coronary wall thickness was increased in db/db arterioles (p < 0.01), while luminal diameter was reduced (Control: 118±5μm; db/db: 102±4μm, p < 0.05), augmenting the wall-to-lumen ratio by 58% (Control: 5.9±0.6; db/db: 9.5±0.4, p < 0.001). Inward hypertrophic remodeling was accompanied by a 56% decrease in elastic modulus (p < 0.05, indicating decreased vessel coronary wall stiffness) and a ~30% reduction in coronary flow reserve in diabetic mice. Interestingly, aortic pulse wave velocity and femoral artery incremental modulus were increased (p < 0.05) in db/db mice, indicating macrovascular stiffness. Molecular tissue analysis revealed increased elastin-to-collagen ratio in diabetic coronaries when compared to control and a decrease in the same ratio in the diabetic aortas. Conclusions These data show that coronary arterioles isolated from type 2 diabetic mice undergo inward hypertrophic remodeling associated with decreased stiffness and increased elastin-to-collagen ratio which results in a decreased coronary flow reserve. This study suggests that coronary microvessels undergo a different pattern of remodeling from macrovessels in type 2 DM. PMID:21744279

  18. Proliferation of CD8-positive T cells in blood vessels of rat renal allografts.

    Science.gov (United States)

    Grau, V; Fuchs-Moll, G; Wilker, S; Weimer, R; Padberg, W

    2011-09-01

    It is still disputed in which anatomical compartments of allograft recipients T-cells proliferate. After experimental renal transplantation, host monocytes and lymphocytes accumulate in the lumina of graft blood vessels. In this study, we test the hypothesis that T lymphocytes proliferate in the vascular bed of the graft. Kidneys were transplanted in the Dark Agouti to Lewis rat strain combination, an established experimental model for acute rejection. Isogeneic transplantation was performed as a control. Cells in the S-phase of mitosis were detected in situ three days posttransplantation by pulse-labeling with BrdU and by immunohistochemical detection of the proliferating cell nuclear antigen (PCNA). More than 20% of all T-cells in the lumina of allograft blood vessels incorporated BrdU and approximately 30% of them expressed PCNA. In the blood vessels of isografts as well as in other organs of allograft recipients, only few BrdU(+) cells were detected. A majority of the BrdU(+) cells in graft blood vessels expressed CD8. In conclusion, we demonstrate that CD8(+) T lymphocytes proliferate in the lumina of the blood vessels of renal allografts during the onset of acute rejection.

  19. Long-range enhancers modulate Foxf1 transcription in blood vessels of pulmonary vascular network.

    Science.gov (United States)

    Seo, Hyejin; Kim, Jinsun; Park, Gi-Hee; Kim, Yuri; Cho, Sung-Won

    2016-09-01

    Intimate crosstalk occurs between the pulmonary epithelium and the vascular network during lung development. The transcription factor forkhead box f1 (Foxf1) is expressed in the lung mesenchyme and plays an indispensable role in pulmonary angiogenesis. Sonic hedgehog (Shh), a signalling molecule, is expressed in lung epithelium and is required to establish proper angiogenesis. It has been suggested that Foxf1, a downstream target of the Shh signalling pathway, mediates interaction between angiogenesis and the epithelium in lung. However, there has been no clear evidence showing the mechanism how Foxf1 is regulated by Shh signalling pathway during lung development. In this study, we investigated the lung-specific enhancers of Foxf1 and the Gli binding on the enhancers. At first, we found three evolutionarily conserved Foxf1 enhancers, two of which were long-range enhancers. Of the long-range enhancers, one demonstrated tissue-specific activity in the proximal and distal pulmonary blood vessels, while the other one demonstrated activity only in distal blood vessels. At analogous positions in human, these long-range enhancers were included in a regulatory region that was reportedly repeatedly deleted in alveolar capillary dysplasia with misalignment of pulmonary vein patients, which indicates the importance of these enhancers in pulmonary blood vessel formation. We also determined that Gli increased the activity of one of these long-range enhancers, which was specific to distal blood vessel, suggesting that Shh regulates Foxf1 transcription in pulmonary distal blood vessel formation.

  20. Analysis by NASA's VESGEN Software of Retinal Blood Vessels in Human Subjects Undergoing Head-Down Tilt During 70-Day Bed Rest

    Science.gov (United States)

    Vyas, Ruchi J.; Murray, Matthew C.; Predovic, Marina; Lim, Shiyin; Askin, Kayleigh N.; Vizzeri, Gianmarco; Taibbi, Giovanni; Mason, Sara Stroble; Zanello, Susana B.; Young, Millenia; Parsons-Wingerter, Patricia

    2017-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions [1]. We hypothesize that microgravity-induced fluid shifts result in pathological changes within blood vessels of the retina that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated for two studies in 30deg infrared (IR) Heidelberg Spectralis(Registered Trademark) images with NASA's innovative VESsel GENeration Analysis (VESGEN) software [2,3]. The retrospective studies include: (1) before, during and after (pre, mid and post) 6º head-down tilt (HDT) in human subjects during 70 days of bed rest, and (2) before and after missions to the International Space Station (ISS) by U.S. crew members. Results for both studies are almost complete. A preliminary example for HDT is described below.

  1. Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-hui LI; Jun-bao DU; Ding-fang BU; Xiu-ying TANG; Chao-shu TANG

    2006-01-01

    Aim: To explore the possible role of endogenous hydrogen sulfide (H2S), a novel gasotransmitter, in the pathogenesis of pulmonary vascular structural remodeling (PVSR) induced by high pulmonary blood flow. Methods: Thirty-two Sprague-Dawley male rats were randomly divided into sham, shunt, sham+NaHS (a H2S donor) and shunt+NaHS groups. Rats in shunt and shunt+NaHS groups underwent an abdominal aorta-inferior vena cava shunt, and rats in shunt+NaHS and sham+NaHS groups were intraperitoneally injected with NaHS. PVSR was investigated using optical microscope and transmission electron microscope. Lung tissue H2S was evaluated by sulfide-sensitive electrodes. Nitric oxide synthase (NOS), heme oxygenase (HO-1), proliferative cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) activation were analyzed by Western blotting. Results: After 11 weeks of shunting, PVSR developed with a decrease in lung tissue H2S production and an increase in nitric oxide (NO). However, lung tissue carbon monoxide (CO) did not change. After the treatment with NaHS for 11 weeks, H2S donor ameliorated PVSR and downregulated PCNA expression and ERK activation with an increase in lung tissue CO production and HO-1 protein expression but a decrease in NO production, NOS activity and eNOS protein expression in shunted rats. Conclusions: H2S exerted a regulatory effect on PVSR induced by high pulmonary blood flow. Meanwhile, H2S down-regulated the ERK/MAPK signal pathway, inhibited the NO/NOS pathway and enhanced the CO/HO pathway in rats with high pulmonary blood flow.

  2. ANALYSIS OF OSCILLATORY BLOOD FLOW IN VARYING-AREA ELASTIC VESSEL

    Institute of Scientific and Technical Information of China (English)

    Gong Ke-qin; Sun Hui; Liu Zhao-rong

    2003-01-01

    In this paper, by solving the fundamental equations of periodically oscillatory blood flow, the distributions of pressure gradient and blood velocity in varying-area elastic vessel were obtained, and then the wall shear stress and its gradient were calculated. As an example, the pulsatile blood flow in human carotid was analyzed and the effects of vessel taper angle on the distribution of wall shear stress and its gradient were discussed in detail. Numercial results show that the wall shear stress will enlarge when the taper angle increases. Meantime, no matter whether the vessel is converging or diverging, with the increase of the absolute value of taper angle, the amplitude of wall shear stress gradient will enlarge significantly.

  3. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    Science.gov (United States)

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  4. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves.

    Science.gov (United States)

    Cattin, Anne-Laure; Burden, Jemima J; Van Emmenis, Lucie; Mackenzie, Francesca E; Hoving, Julian J A; Garcia Calavia, Noelia; Guo, Yanping; McLaughlin, Maeve; Rosenberg, Laura H; Quereda, Victor; Jamecna, Denisa; Napoli, Ilaria; Parrinello, Simona; Enver, Tariq; Ruhrberg, Christiana; Lloyd, Alison C

    2015-08-27

    The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.

  5. How to explore the effects of sex hormone on blood vessels

    Institute of Scientific and Technical Information of China (English)

    Sun Mei-li; Nie Min; Liu Bing; Du Zhi-jun; Ge Qin-sheng

    2004-01-01

    The risk of cardiovascular disease increases along with aging. There are increasing interests in researches on the protective effects of hormone replacement therapy (HRT)on cardiovascular system in postmenopausal women. In this article we will review how we have explored the evidence of different sex hormones on blood vessels since 1996. The results showed that low-dose HRT significantly protected cardiovascular system in postmenopausal women.However, the high-dose 17β-estradiol (E2), with or without progesterone (P) or testosterone (T), or any hormone alone, as their concentrations increase, may even inhibit the protective effects of low-dose HRT on blood vessels.

  6. Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Xiu-Ying; Liu, Da-He; Zhou, Jing; Jin, Yong-Juan

    2005-11-01

    The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in a wide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation are presented in detail. The flow separation zones revealed with increase of Reynolds number are located in the areas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particular blood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmann method is adaptive to simulating the flow in larger vessels under a high Reynolds number.

  7. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    Science.gov (United States)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  8. First trimester trophoblasts forming endothelial-like tubes in vitro emulate a 'blood vessel development' gene expression profile.

    Science.gov (United States)

    Highet, Amanda R; Buckberry, Sam; Mayne, Benjamin T; Khoda, Sultana M; Bianco-Miotto, Tina; Roberts, Claire T

    2016-07-01

    Extravillous cytotrophoblasts isolated from first trimester placenta, and immortalised cell lines derived from them, have the intrinsic ability to form endothelial-like tubes when cultured on Matrigel™ extracellular matrix. This in vitro tube formation may model placental angiogenesis and/or endovascular differentiation by trophoblasts. To interpret the relevance of this phenomenon to placental development, we used a gene expression microarray approach to identify which genes and pathways are associated with the tube-forming phenotype of HTR8/SVneo first trimester trophoblasts (HTR8-M), compared with HTR8/SVneo not forming tubes on plastic culture surface (HTR8-P). Furthermore, we used weighted gene co-expression network analysis (WGCNA) of microarray data to identify modules of co-expressed genes underlying the biological processes. There were 481 genes differentially expressed between HTR8-M and HTR8-P and these were significantly enriched for blood vessel development and related gene ontologies. WGCNA clustered the genes into 9 co-expression modules. One module was significantly associated with HTR8-M (p = 1.15E-05) and contained genes involved in actin cytoskeleton organization, cell migration and blood vessel development, consistent with tube formation on Matrigel. Another module was significantly associated with HTR8-P (p = 1.94E-05) and was enriched for genes involved in mitosis, consistent with proliferation by cells on plastic which do not differentiate. Up-regulation of angiogenesis and vascular development pathways in endovascular trophoblasts in vivo could underpin spiral artery remodelling processes, which are defective in preeclamptic pregnancies.

  9. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  10. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth.

    Directory of Open Access Journals (Sweden)

    Roeland M H Merks

    Full Text Available Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels organize into a vessel network (vasculogenesis, or by sprouting or splitting of existing blood vessels (angiogenesis. Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.

  11. Generalization of geometrical flux maximizing flow on Riemannian manifolds for improved volumetric blood vessel segmentation.

    Science.gov (United States)

    Gooya, Ali; Liao, Hongen; Sakuma, Ichiro

    2012-09-01

    Geometric flux maximizing flow (FLUX) is an active contour based method which evolves an initial surface to maximize the flux of a vector field on the surface. For blood vessel segmentation, the vector field is defined as the vectors specified by vascular edge strengths and orientations. Hence, the segmentation performance depends on the quality of the detected edge vector field. In this paper, we propose a new method for level set based segmentation of blood vessels by generalizing the FLUX on a Riemannian manifold (R-FLUX). We consider a 3D scalar image I(x) as a manifold embedded in the 4D space (x, I(x)) and compute the image metric by pullback from the 4D space, whose metric tensor depends on the vessel enhancing diffusion (VED) tensor. This allows us to devise a non-linear filter which both projects and normalizes the original image gradient vectors under the inverse of local VED tensors. The filtered gradient vectors pertaining to the vessels are less sensitive to the local image contrast and more coherent with the local vessel orientation. The method has been applied to both synthetic and real TOF MRA data sets. Comparisons are made with the FLUX and vesselsness response based segmentations, indicating that the R-FLUX outperforms both methods in terms of leakage minimization and thiner vessel delineation.

  12. Thermal reactions of blood vessels in vascular stroke and heatstroke.

    Science.gov (United States)

    Thulesius, Olav

    2006-01-01

    Research on the pathophysiology and treatment of brain damage with special focus on thermal vascular responses is the subject of this minireview. Interruption of cerebral blood supply by vascular obstruction, temporary cardiac arrest or hyperthermia causes a sudden attack of vascular stroke or heatstroke with serious consequences. It may not induce immediate cell death, but can precipitate a complex biochemical cascade leading to a delayed neuronal loss. When testing thermal vasomotor responses by stepwise cooling of isolated carotid arteries, a temperature-proportional dilatation was observed while heating induced the opposite response: a marked vasoconstriction. General hyperthermia with an increased oxygen demand combined with a reduction of blood supply therefore is a serious consequence. At the cellular level an important mechanism involving hyperthermia is the temperature-dependent regulation of K(+) channel tone of vascular smooth muscle. Further, their inhibition through temperature elevation causes vasoconstriction. In heatstroke, which can induce platelet aggregation and the release of the vasoconstrictor serotonin, arterial cooling attenuates this response. General hypothermia is induced to prevent or attenuate neurological damage in stroke. The procedure is not without serious side effects. Therefore, rapid institution of selective brain cooling has been considered in adults and in infants with postpartum encephalopathy.

  13. Quantification of mast cells and blood vessels in the skin of patients with cutaneous mucinosis.

    Science.gov (United States)

    Martins, Clarice; Nascimento, Adriana Paulino; Monte-Alto-Costa, Andréa; Alves, Maria de Fátima Scotelaro; Carneiro, Sueli Coelho; Porto, Luís Cristóvão de Moraes Sobrino

    2010-07-01

    Recent studies have suggested that mast cell numbers are increased in the skin of patients with cutaneous mucinosis and that these cells may have an important role in angiogenesis and production of mucin. Then, skin biopsies from 30 patients with cutaneous mucinosis (papular mucinosis, focal mucinosis, and mucinosis associated with lupus erythematosus) and from 10 healthy subjects were analyzed. Mast cells and blood vessels were immunolabeled with anti-tryptase and anti-CD34 antibodies, respectively, and then quantified stereologically. Counting was performed in papillary and reticular dermis. An increase in the number of mast cells was observed in the skin of patients with cutaneous mucinosis compared with the control group. Only minimal differences were observed in vessel stereology. There was no correlation between the increase in the number of mast cells and the number of blood vessels in the patients studied. There was no significant difference in the numbers of mast cells or blood vessels between the 3 subgroups of cutaneous mucinosis. Although many clinical forms of mucinosis have been described, neither mast cell number nor vessel distribution seems to distinguish the 3 different forms studied here.

  14. Characterization of Imidazoline Receptors in Blood Vessels for the Development of Antihypertensive Agents

    OpenAIRE

    Mei-Fen Chen; Jo-Ting Tsai; Li-Jen Chen; Tung-Pi Wu; Jia-Jang Yang; Li-Te Yin; Yu-lin Yang; Tai-An Chiang; Han-Lin Lu; Ming-Chang Wu

    2014-01-01

    It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metform...

  15. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Biscocho, N

    2006-01-01

    . Here we show that the nuclei are preferentially localized near blood vessels (BV), particularly in slow-twitch, oxidative fibers. Thus, in rat soleus muscle fibers, 81% of the nuclei appear next to BV. Lack of desmin markedly perturbs the distribution of nuclei along the fibers but does not prevent...

  16. Cerebral blood flow in small vessel disease : A systematic review and meta-analysis

    NARCIS (Netherlands)

    Shi, Yulu; Thrippleton, Michael J; Makin, Stephen D; Marshall, Ian; Geerlings, Mirjam I; de Craen, Anton Jm; van Buchem, Mark A; Wardlaw, Joanna M

    2016-01-01

    White matter hyperintensities are frequent on neuroimaging of older people and are a key feature of cerebral small vessel disease. They are commonly attributed to chronic hypoperfusion, although whether low cerebral blood flow is cause or effect is unclear. We systematically reviewed studies that as

  17. Measurement of streaming potentials of mammalian blood vessels, aorta and vena cava, in vivo.

    Science.gov (United States)

    Sawyer, P N; Himmelfarb, E; Lustrin, I; Ziskind, H

    1966-09-01

    Attempts to measure streaming potentials in large rabbit blood vessels in vivo have been carried out. Streaming potentials, V(89), were measured by the introduction of microelectrodes through the wall of the blood vessel at separations greater than 1 cm. The outputs from these electrodes fed through calomel cells were amplified and recorded directly by using an Electronics for Medicine photorecorder (White Plains, N. Y.). "Effective streaming currents" were determined by running the output through a low impedence galvanometer while simultaneously measuring the resistance of the circuit V(8) were, therefore, calculated from two measurements and compared. Flow through vessels studied was measured using two different electromagnetic flowmeters. The results indicate that V(8) present in both aorta and vena cava are of the order of 5 to 10 mv. By using the Helmholtz-Smoluchowski equation into which flow was reintegrated, the numbers yield zeta potentials approximating 0.1 to 0.4 v in both aorta and vena cava. This number approaches the apparent upper limit for zeta (actually "interfacial potentials") potentials in biological systems. The measured "i.f." potential is considered as the interreaction of several physical and metabolic factors operating at the blood intimal interface. The polarity of the potential suggests that the interface is negative with respect to the blood flowing through the vessel. Interfacial potential and related V(8) are discussed in terms of their possible importance as a mechanism for maintaining vascular homeostasis in the living animal.

  18. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, Roy G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; Leeuwen, van Ton G.; Mul, de Frits F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two ri

  19. In situ tissue engineering of functional small-diameter blood vessels by host circulating cells only

    NARCIS (Netherlands)

    Talacua, Hanna; Smits, Anthal I P M; Muylaert, Dimitri E P; Van Rijswijk, Jan Willem; Vink, Aryan; Verhaar, Marianne C.; Driessen-Mol, Anita; Van Herwerden, Lex A.; Bouten, Carlijn V C; Kluin, Jolanda; Baaijens, Frank P T

    2015-01-01

    Inflammation is a natural phase of the wound healing response, which can be harnessed for the in situ tissue engineering of small-diameter blood vessels using instructive, bioresorbable synthetic grafts. This process is dependent on colonization of the graft by host circulating cells and subsequent

  20. Automated characterization of blood vessels as arteries and veins in retinal images.

    Science.gov (United States)

    Mirsharif, Qazaleh; Tajeripour, Farshad; Pourreza, Hamidreza

    2013-01-01

    In recent years researchers have found that alternations in arterial or venular tree of the retinal vasculature are associated with several public health problems such as diabetic retinopathy which is also the leading cause of blindness in the world. A prerequisite for automated assessment of subtle changes in arteries and veins, is to accurately separate those vessels from each other. This is a difficult task due to high similarity between arteries and veins in addition to variation of color and non-uniform illumination inter and intra retinal images. In this paper a novel structural and automated method is presented for artery/vein classification of blood vessels in retinal images. The proposed method consists of three main steps. In the first step, several image enhancement techniques are employed to improve the images. Then a specific feature extraction process is applied to separate major arteries from veins. Indeed, vessels are divided to smaller segments and feature extraction and vessel classification are applied to each small vessel segment instead of each vessel point. Finally, a post processing step is added to improve the results obtained from the previous step using structural characteristics of the retinal vascular network. In the last stage, vessel features at intersection and bifurcation points are processed for detection of arterial and venular sub trees. Ultimately vessel labels are revised by publishing the dominant label through each identified connected tree of arteries or veins. Evaluation of the proposed approach against two different datasets of retinal images including DRIVE database demonstrates the good performance and robustness of the method. The proposed method may be used for determination of arteriolar to venular diameter ratio in retinal images. Also the proposed method potentially allows for further investigation of labels of thinner arteries and veins which might be found by tracing them back to the major vessels.

  1. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling

    Science.gov (United States)

    Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

    In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

  2. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately.

  3. Optics based signal processing methods for intraoperative blood vessel detection and quantification in real time (Conference Presentation)

    Science.gov (United States)

    Chaturvedi, Amal; Shukair, Shetha A.; Le Rolland, Paul; Vijayvergia, Mayank; Subramanian, Hariharan; Gunn, Jonathan W.

    2016-03-01

    Minimally invasive operations require surgeons to make difficult cuts to blood vessels and other tissues with impaired tactile and visual feedback. This leads to inadvertent cuts to blood vessels hidden beneath tissue, causing serious health risks to patients and a non-reimbursable financial burden to hospitals. Intraoperative imaging technologies have been developed, but these expensive systems can be cumbersome and provide only a high-level view of blood vessel networks. In this research, we propose a lean reflectance-based system, comprised of a dual wavelength LED, photodiode, and novel signal processing algorithms for rapid vessel characterization. Since this system takes advantage of the inherent pulsatile light absorption characteristics of blood vessels, no contrast agent is required for its ability to detect the presence of a blood vessel buried deep inside any tissue type (up to a cm) in real time. Once a vessel is detected, the system is able to estimate the distance of the vessel from the probe and the diameter size of the vessel (with a resolution of ~2mm), as well as delineate the type of tissue surrounding the vessel. The system is low-cost, functions in real-time, and could be mounted on already existing surgical tools, such as Kittner dissectors or laparoscopic suction irrigation cannulae. Having been successfully validated ex vivo, this technology will next be tested in a live porcine study and eventually in clinical trials.

  4. Placental Protein 13 Administration to Pregnant Rats Lowers Blood Pressure and Augments Fetal Growth and Venous Remodeling.

    Science.gov (United States)

    Gizurarson, Sveinbjorn; Sigurdardottir, Elisabet Run; Meiri, Hamutal; Huppertz, Berthold; Sammar, Marei; Sharabi-Nov, Adi; Mandalá, Maurizio; Osol, George

    2016-01-01

    Reduced first-trimester concentrations of placental protein 13 (PP13) are associated with subsequent development of preeclampsia, a major pregnancy disorder. We previously showed that PP13 has a vasodilatory effect, reduces blood pressure and augments expansive remodeling of the uteroplacental vasculature in pregnant rats. In this study, slow-release osmotic pumps were implanted in gravid rats (on day 8) to provide 1 week of PP13 supplementation. Treatment was associated with a reversible blood pressure reduction that returned to normal on day 15. In addition, PP13 caused venous expansion that is larger in the venous branches closer to the placenta. Then, it increased placental and pup weights. Similar administration of a truncated PP13 variant (DelT221) that is unable to bind carbohydrates (a rare spontaneous mutation associated with a high frequency of severe early preeclampsia among Blacks in South Africa) produced a hypotensive effect similar to the full-length molecule, but without venous remodeling and increased placental and pup weights. These results indicate the importance of PP13 carbohydrate binding for inducing vascular remodeling and improving reproductive outcome. Future studies are needed to determine whether beneficial effects would be evident in animal models of preeclampsia or in women predisposed to the development of preeclampsia.

  5. Peristaltic Pumping of Blood in micro-vessels of Non-uniform Cross-section

    CERN Document Server

    Misra, J C

    2010-01-01

    The paper is devoted to a study of the peristaltic motion of blood in the micro-circulatory system. The vessel is considered of non-uniform cross-section. The progressive peristaltic waves are taken to be of sinusoidal nature. The Reynolds number is considered to be small. Blood is considered to be a Herschel-Bulkley fluid. Of particular concern here is to investigate the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, streamline pattern and wall shear stress. Basing upon the study, extensive numerical calculations has been made. The study reveals that peristaltic pumping as well as velocity and wall shear stress are appreciably affected due to the non-uniform geometry of blood vessels. They are also highly sensitive to the magnitude of the amplitude of the amplitude ratio and the value of the fluid index.

  6. Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels.

    Science.gov (United States)

    Rich, Max H; Lee, Min Kyung; Baek, Kwanghyun; Jeong, Jae Hyun; Kim, Dong Hyun; Millet, Larry J; Bashir, Rashid; Kong, Hyunjoon

    2014-12-28

    Hydrogels designed to sustainably release bioactive molecules are extensively used to enhance tissue repair and regenerative therapies. Along this line, numerous efforts are made to control the molecular release rate and amount. In contrast, few efforts are made to control the molecular release pattern, and, subsequently, modulate the spatial organization of newly forming tissues, including blood vessels. Therefore, using a hydrogel printed to release vascular endothelial growth factor (VEGF) into a pre-defined pattern, this study demonstrates that spatial distribution of VEGF is important in guiding growth direction of new blood vessels, and also in retaining the structural integrity of pre-existing vasculature. Guided by a computational model, we fabricated a patch composed of micro-sized VEGF-releasing poly(ethylene glycol) diacrylate (PEGDA) hydrogel cylinders using an ink-jet printer. Interestingly, hydrogel printed with computationally optimized spacing created anisotropically aligned vasculature exclusively when the printed gel pattern was placed parallel to pre-existing blood vessels. In contrast, vascular sprouting from placing the printed gel pattern perpendicular to pre-existing vessels resulted in deformation and structural disintegration of the original vasculature. We envision that this study will be useful to better understand angiogenesis-modulated neovascularization and further improve the treatment quality for various wounds and tissue defects.

  7. Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    KANG Xiu-Ying; LIU Da-He; ZHOU Jing; JIN Yong-Juan

    2005-01-01

    @@ The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in awide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation arepresented in detail. The flow separation zones revealed with increase of Reynolds number are located in theareas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particularblood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmannmethod is adaptive to simulating the flow in larger vessels under a high Reynolds number.

  8. Imaging polarimetry and retinal blood vessel quantification at the epiretinal membrane

    Science.gov (United States)

    Miura, Masahiro; Elsner, Ann E.; Cheney, Michael C.; Usui, Masahiko; Iwasaki, Takuya

    2007-05-01

    We evaluated a polarimetry method to enhance retinal blood vessels masked by the epiretinal membrane. Depolarized light images were computed by removing the polarization retaining light reaching the instrument and were compared with parallel polarized light images, average reflectance images, and the corresponding images at 514 nm. Contrasts were computed for retinal vessel profiles for arteries and veins. Contrasts were higher in the 514 nm images in normal eyes but higher in the depolarized light image in the eyes with epiretinal membranes. Depolarized light images were useful for examining the retinal vasculature in the presence of retinal disease.

  9. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells.

    Science.gov (United States)

    Samuel, Rekha; Daheron, Laurence; Liao, Shan; Vardam, Trupti; Kamoun, Walid S; Batista, Ana; Buecker, Christa; Schäfer, Richard; Han, Xiaoxing; Au, Patrick; Scadden, David T; Duda, Dan G; Fukumura, Dai; Jain, Rakesh K

    2013-07-30

    Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers--CD34, neuropilin 1, and human kinase insert domain-containing receptor--and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.

  10. Screening of specific binding peptide targeting blood vessel of human esophageal cancer in vivo in mice

    Institute of Scientific and Technical Information of China (English)

    ZHI Min; WU Kai-chun; HAO Zhi-ming; GUO Chang-cun; YAO Jia-yin

    2011-01-01

    Background Cancer of the esophagus and gastroesophageal junction remains a virulent malignancy with poor prognosis. Rapid progresses were made in chemotherapeutic agents and the development of molecular markers allowed better identification of candidates for targeted therapy. This study aimed to identify the candidate peptides used for anti-angiogenic therapy of esophageal cancer by in vivo screening C7C peptide library for peptides binding specifically to blood vessels of human esophageal cancer.Methods The phage displayed C7C peptide library was injected intravenously into mice bearing human esophageal tumor xenografts under renal capsule. After 5 rounds of screening, 13 clones were picked up individually and sequenced.During each round of screening, titers of phage recovery were calculated from tumor xenograft and control tissues.Homing of these 9 peptides to tumor vessel was detected by calculating phage titers in the tumor xenograft and control tissues (lung and spleen) after each phage was injected into mice model, and compared with the distribution of phage M13 and Ⅷ-related antigen in tumor xenograft by immunohistochemical staining. Comparisons among groups of data were made using one-way analysis of variance (ANOVA), followed by the Bonferroni multiple comparisons test.Results The number of phage recovered from tumor tissue of each round increased gradually in tumor group while decreased in control groups (P <0.01 in tumor and spleen, P <0.05 in lung). Immunohistochemical staining showed similar staining pattern with M13 antibody or Ⅷ-related antigen antibody, suggesting that phages displaying the selected peptides could home to blood vessel of human esophageal cancer. According to their DNA, 9 corresponding peptide sequences were deduced. And the homing ability to blood vessel of phages displaying the selected peptides was confirmed by comparing with their recovery in tumor and control tissues. Two motifs, YSXNXW and PXNXXN, were also obtained by

  11. Threadlike bundle of tubules running inside blood vessels New anatomical structure

    CERN Document Server

    Jiang, X; Shin, H; Lee, B; Choi, C; Soh, K; Cheun, B; Baik, K; Soh, K; Jiang, Xiaowen; Kim, Hee-kyeong; Shin, Hak-soo; Lee, Byong-chon; Choi, Chunho; Soh, Kyung-soon; Cheun, Byeung-soo; Baik, Ku-youn; Soh, Kwang-sup

    2002-01-01

    According to current anatomy, the arteries and veins do not have threadlike structures running inside the vessels. Despite such prevailing knowledge here we report on observation of a novel structure inside the blood vessels of rats and rabbits, which is a semi-transparent elastic bundle of tubules whose diameters are of 10$\\mu$m order. This is a rediscovery of the Bong Han ducts1,2 which have not been confirmed because the observing method was not known. We found a new procedure of observing the intra blood vessel ducts (IBVD) which are too thin, fragile, and semi-transparent to be detected in ordinary surgical operation. The method we contrived is to let blood be coagulated around the IBVD so that they become thick and strong by intravenous injection of 10 per cent dextrose solution at the vena femoralis. A piece of thickened IBVD sample is treated with urokinase to remove blood clots and the thin thread of IBVD is embedded inside of a string of fibrin

  12. In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV

    Science.gov (United States)

    Park, Hanwook; Park, Jun Hong; Lee, Sang Joon

    2016-11-01

    Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.

  13. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    Science.gov (United States)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  14. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... examination sessions using motion-contrast velocimetry and retinal oximetry with vessel diameter corrections. To test oxygen reactivity, participants were examined during normoxia, after 15 min of hyperoxia and finally after 45 min of normoxia. Repeatability was assessed by intraclass correlation coefficients...... retinal arterial oxygen saturation from 95.1 ± 5.0% to 96.6 ± 6.4% (p = 0.038) and increased retinal venous oxygen saturation from 62.9 ± 6.7% to 70.3 ± 7.8% (p = 0.0010). Parameters returned to baseline levels after subsequent normoxia. Saturation and vessel diameter ICCs were 0.88-0.98 (range...

  15. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Shi, Yulu; Thrippleton, Michael J; Makin, Stephen D; Marshall, Ian; Geerlings, Mirjam I; de Craen, Anton Jm; van Buchem, Mark A; Wardlaw, Joanna M

    2016-10-01

    White matter hyperintensities are frequent on neuroimaging of older people and are a key feature of cerebral small vessel disease. They are commonly attributed to chronic hypoperfusion, although whether low cerebral blood flow is cause or effect is unclear. We systematically reviewed studies that assessed cerebral blood flow in small vessel disease patients, performed meta-analysis and sensitivity analysis of potential confounders. Thirty-eight studies (n = 4006) met the inclusion criteria, including four longitudinal and 34 cross-sectional studies. Most cerebral blood flow data were from grey matter. Twenty-four cross-sectional studies (n = 1161) were meta-analysed, showing that cerebral blood flow was lower in subjects with more white matter hyperintensity, globally and in most grey and white matter regions (e.g. mean global cerebral blood flow: standardised mean difference-0.71, 95% CI -1.12, -0.30). These cerebral blood flow differences were attenuated by excluding studies in dementia or that lacked age-matching. Four longitudinal studies (n = 1079) gave differing results, e.g., more baseline white matter hyperintensity predated falling cerebral blood flow (3.9 years, n = 575); cerebral blood flow was low in regions that developed white matter hyperintensity (1.5 years, n = 40). Cerebral blood flow is lower in subjects with more white matter hyperintensity cross-sectionally, but evidence for falling cerebral blood flow predating increasing white matter hyperintensity is conflicting. Future studies should be longitudinal, obtain more white matter data, use better age-correction and stratify by clinical diagnosis.

  16. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.

    Directory of Open Access Journals (Sweden)

    William Ruger Porter

    Full Text Available Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange. Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana was investigated using a differential-contrast, dual-vascular injection (DCDVI technique and high-resolution X-ray microcomputed tomography (μCT. Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory

  17. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.

    Science.gov (United States)

    Porter, William Ruger; Witmer, Lawrence M

    2015-01-01

    Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body) as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange). Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana) was investigated using a differential-contrast, dual-vascular injection (DCDVI) technique and high-resolution X-ray microcomputed tomography (μCT). Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory tissue temperature

  18. Morphologic study of the blood vessels of the superior cervical ganglion of the albino rat.

    Science.gov (United States)

    DePace, D M

    1981-01-01

    Blood vessels of the rat superior cervical ganglion were examined by both light and electron microscopy. Direct blood supply to the superior cervical ganglion was derived from a capsular plexus of vessels. Intraganglionic vessels were for the most part capillaries. Some of these capillaries appeared dilated and sinusoidal. Although the ganglion did not seem to be densely vascularized, there was sufficient distribution to accommodate the nerve cell bodies of the ganglion. Individual capillaries served groups of neurons. Occasionally, capillary loops could be observed to surround single neuron perikarya. Ultrastructural studies revealed the presence of two types of capillaries. The majority of the capillaries of the rat superior cervical ganglion demonstrated a continuous, non-fenestrated endothelium. Typical junctional complexes were found on abutting endothelial surfaces. Endothelial flaps and microvilli were also observed on the luminal surface of some of the vessels. Numerous micropinocytotic vesicles were observed on both the luminal and abluminal surfaces of the endothelium. A small number of capillaries demonstrated a fenestrated endothelium. In both types of capillaries there was a basement membrane and an extracellular space containing collagen. Perikaryal cytoplasm was separated from the extracellular space by a thick layer of satellite cell cytoplasm.

  19. An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images

    Directory of Open Access Journals (Sweden)

    Rasha Al Shehhi

    2016-01-01

    Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

  20. In Vivo μPIV Measurements of Blood Flow in Small Vessels of a Rat Model.

    Science.gov (United States)

    Wei, Timothy; Conner, Nadine; Russell, John; Legac, Paul

    2007-11-01

    Ongoing research at the University of Wisconsin Medical School is addressing the effects of perfusion of glottal tissue on voice production. Building on the approach developed by Gharib's group at CalTech for embryonic zebra fish, we have modified μPIV to measure flow in capillaries and small blood vessels in a live rat model. In lieu of seeding particles, the DPIV correlation algorithm tracks the motion of red blood cells moving through these vessels. The methodology will be presented along with a video sequence showing measurements made from muscle tissue laid nominally flat on a microscope stage. Challenges of measurements in three-dimensional geometries, i.e. the throat, will be discussed.

  1. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    Science.gov (United States)

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  2. [Which is right? "Theory of channel" or "Theory of blood vessels"].

    Science.gov (United States)

    Liu, Cheng-Zhong

    2006-10-01

    The ancient medical science of Jingmai (Channel or blood vessel) applied the running sensation along channels of the so-called "Mai" to diagnose and treat diseases. Unfortunately, this had been lost in the Han Dynasty. Related information is recorded in the official history; there are related evidences in the unearthed Mai shu (The Book of Channel) and "Mairen (The Statue of Channel)", including the rediscovery and modern researches on the running sensation along channels; the successful cases of diagnosis and treatment by the method of running sensation along channels. The scholars supported the theory of blood vessel query the above ideas, which need to assemble large numbers of researches of the theory of channel to resolve the problems.

  3. A SURVEY OF RETINA BASED DISEASE IDENTIFICATION USING BLOOD VESSEL SEGMENTATION

    Directory of Open Access Journals (Sweden)

    P Kuppusamy

    2016-11-01

    Full Text Available The colour retinal photography is one of the most essential features to identify the confirmation of various eye diseases. The iris is primary attribute to authenticate the human. This research work presents the survey and comparison of various blood vessel related feature identification, segmentation, extraction and enhancement methods. Additionally, this study is observed the various databases performance for storing the images and testing in minimal time. This paper is also provides the better performance techniques based on the survey.

  4. First two cases of living related liver transplantation with complicated anatomy of blood vessels in Beijing

    OpenAIRE

    Wu, Wen-Han; Wan, Yuan-Lian; Lee, Long; Yang, Yin-Mo; Huang, Yan-Ting; Chen, Chao-Long; Fan, Sheung-Tat

    2004-01-01

    Aim: Living related liver transplantation (LRLT) has been developed in response to the paediatric organ donor shortage. Though it has been succeeded in many centers worldwide, the safety of the donor is still a major concern, especially in donors with anatomy variation. We succeeded in performing the first two cases of living related liver transplantation with complicated anatomy of blood vessels as a way to overcome cadaveric organ shortage in Beijing. Methods: Two patients, with congenital ...

  5. Effect of Electrical Stimulation on Blood Flow Velocity and Vessel Size

    Science.gov (United States)

    Jin, Hee-Kyung; Hwang, Tae-Yeon; Cho, Sung-Hyoun

    2017-01-01

    Abstract Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters. Forty-five healthy adult male and female subjects were studied. Bipolar adhesive pad electrodes were used to stimulate the autonomic nervous system at the thoracic vertebrae 1-4 levels for 20 min. Using Doppler ultrasonography, blood flow was measured to determine velocity and vessel size before, immediately after, and 30 min after electrical stimulation. Changes in blood flow velocity were significantly different immediately and 30 min after stimulation. The interaction between intervention periods and groups was significantly different between the exercise and pain stimulation groups immediately after stimulation (p<0.05). The vessel size was significantly different before and 30 min after stimulation (p<0.05). Imbalances in the sympathetic nervous system, which regulates balance throughout the body, may present with various symptoms. Therefore, in the clinical practice, the parameters of electrical stimulation should be selectively applied in accordance with various conditions and changes in form.

  6. Endovascular Electrodes for Electrical Stimulation of Blood Vessels for Vasoconstriction – a Finite Element Simulation Study

    Science.gov (United States)

    Kezurer, Noa; Farah, Nairouz; Mandel, Yossi

    2016-08-01

    Hemorrhagic shock accounts for 30–40 percent of trauma mortality, as bleeding may sometimes be hard to control. Application of short electrical pulses on blood vessels was recently shown to elicit robust vasoconstriction and reduction of blood loss following vascular injury. In this study we present a novel approach for vasoconstriction based on endovascular application of electrical pulses for situations where access to the vessel is limited. In addition to ease of access, we hypothesize that this novel approach will result in a localized and efficient vasoconstriction. Using computer modeling (COMSOL Multiphysics, Electric Currents Module), we studied the effect of endovascular pulsed electrical treatment on abdominal aorta of pigs, and compared the efficiency of different electrodes configurations on the electric field amplitude, homogeneity and locality when applied on a blood vessel wall. Results reveal that the optimal configuration is the endovascular approach where four electrodes are used, spaced 13 mm apart. Furthermore, computer based temperature investigations (bio-heat model, COMSOL Multiphysics) show that the maximum expected temperature rise is of 1.2 degrees; highlighting the safety of the four endovascular electrodes configuration. These results can aid in planning the application of endovascular pulsed electrical treatment as an efficient and safe vasoconstriction approach.

  7. Nitric oxide control of lower vertebrate blood vessels by vasomotor nerves.

    Science.gov (United States)

    Donald, John A; Broughton, Brad R S

    2005-10-01

    In mammals, much is understood about the endothelial and neural NO control mechanisms in the vasculature. In contrast, NO control of blood vessels in lower vertebrates is poorly understood, with the majority of research focusing on the presence of an endothelial NO system; however, its presence remains controversial. This study examined the mechanisms by which NO regulates the large blood vessels of non-mammalian vertebrates. In all species examined, the arteries and veins contained a plexus of NOS-positive perivascular nerves that included nerve bundles and fine, varicose nerve terminals. However, in the large arteries and veins of various species of fishes and amphibians, no anatomical evidence was found for endothelial NOS using both NADPH-diaphorase and eNOS immunohistochemistry. In contrast, perinuclear NOS staining was readily apparent in blue-tongue lizard, pigeon and rat, which suggested that eNOS first appeared in reptiles. Physiological analysis of NO signalling in the vascular smooth muscle of short-finned eel and cane toad could not find any evidence for endothelial NO signalling. In contrast, it appears that activation of the nitrergic vasomotor nerves is responsible for NO control of the blood vessels.

  8. Endovascular Electrodes for Electrical Stimulation of Blood Vessels for Vasoconstriction - a Finite Element Simulation Study.

    Science.gov (United States)

    Kezurer, Noa; Farah, Nairouz; Mandel, Yossi

    2016-08-18

    Hemorrhagic shock accounts for 30-40 percent of trauma mortality, as bleeding may sometimes be hard to control. Application of short electrical pulses on blood vessels was recently shown to elicit robust vasoconstriction and reduction of blood loss following vascular injury. In this study we present a novel approach for vasoconstriction based on endovascular application of electrical pulses for situations where access to the vessel is limited. In addition to ease of access, we hypothesize that this novel approach will result in a localized and efficient vasoconstriction. Using computer modeling (COMSOL Multiphysics, Electric Currents Module), we studied the effect of endovascular pulsed electrical treatment on abdominal aorta of pigs, and compared the efficiency of different electrodes configurations on the electric field amplitude, homogeneity and locality when applied on a blood vessel wall. Results reveal that the optimal configuration is the endovascular approach where four electrodes are used, spaced 13 mm apart. Furthermore, computer based temperature investigations (bio-heat model, COMSOL Multiphysics) show that the maximum expected temperature rise is of 1.2 degrees; highlighting the safety of the four endovascular electrodes configuration. These results can aid in planning the application of endovascular pulsed electrical treatment as an efficient and safe vasoconstriction approach.

  9. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability.

    Directory of Open Access Journals (Sweden)

    Miwa Sato

    Full Text Available We developed a microfluidic model of microcirculation containing both blood and lymphatic vessels for examining vascular permeability. The designed microfluidic device harbors upper and lower channels that are partly aligned and are separated by a porous membrane, and on this membrane, blood vascular endothelial cells (BECs and lymphatic endothelial cells (LECs were cocultured back-to-back. At cell-cell junctions of both BECs and LECs, claudin-5 and VE-cadherin were detected. The permeability coefficient measured here was lower than the value reported for isolated mammalian venules. Moreover, our results showed that the flow culture established in the device promoted the formation of endothelial cell-cell junctions, and that treatment with histamine, an inflammation-promoting substance, induced changes in the localization of tight and adherens junction-associated proteins and an increase in vascular permeability in the microdevice. These findings indicated that both BECs and LECs appeared to retain their functions in the microfluidic coculture platform. Using this microcirculation device, the vascular damage induced by habu snake venom was successfully assayed, and the assay time was reduced from 24 h to 30 min. This is the first report of a microcirculation model in which BECs and LECs were cocultured. Because the micromodel includes lymphatic vessels in addition to blood vessels, the model can be used to evaluate both vascular permeability and lymphatic return rate.

  10. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Rose Kyrtsos

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ deposition and the presence of neurofibrillary tangles (NFTs within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  11. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S

    2015-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  12. Automatic segmentation of blood vessels from retinal fundus images through image processing and data mining techniques

    Indian Academy of Sciences (India)

    R Geetharamani; Lakshmi Balasubramanian

    2015-09-01

    Machine Learning techniques have been useful in almost every field of concern. Data Mining, a branch of Machine Learning is one of the most extensively used techniques. The ever-increasing demands in the field of medicine are being addressed by computational approaches in which Big Data analysis, image processing and data mining are on top priority. These techniques have been exploited in the domain of ophthalmology for better retinal fundus image analysis. Blood vessels, one of the most significant retinal anatomical structures are analysed for diagnosis of many diseases like retinopathy, occlusion and many other vision threatening diseases. Vessel segmentation can also be a pre-processing step for segmentation of other retinal structures like optic disc, fovea, microneurysms, etc. In this paper, blood vessel segmentation is attempted through image processing and data mining techniques. The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification algorithm and second level classification using C4.5 enhanced with bagging techniques. Association of every pixel against the feature vector necessitates Big Data analysis. The proposed methodology was evaluated on a publicly available database, STARE. The results reported 95.05% accuracy on entire dataset; however the accuracy was 95.20% on normal images and 94.89% on pathological images. A comparison of these results with the existing methodologies is also reported. This methodology can help ophthalmologists in better and faster analysis and hence early treatment to the patients.

  13. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels.

    Science.gov (United States)

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-02-15

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.

  14. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging

    Science.gov (United States)

    Meiburger, K. M.; Nam, S. Y.; Chung, E.; Suggs, L. J.; Emelianov, S. Y.; Molinari, F.

    2016-11-01

    Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  <  0.05) when comparing two anatomic locations on the same day and when considering the same anatomic location at two separate times (i.e. before and after burn surgery). The study demonstrates an

  15. Embolization: critical thrombus height, shear rates, and pulsatility. Patency of blood vessels.

    Science.gov (United States)

    Basmadjian, D

    1989-11-01

    The present article builds on elementary fluid dynamics and previous analyses by the author to delineate approximate boundaries of mural thrombus height Hp, maximum shear rate gamma Max, and flow pulsatility beyond which thrombi are subject to either very high or very low probabilities of embolization. A thrombus height of approximately 0.1 mm emerges as a critical dividing line: Below it, the maximum embolizing shear stress tau s is independent of thrombus height and varies only linearly with shear rate. Above it, tau s quickly approaches a strong quadratic dependence on both thrombus height and shear rate: tau s approximately (Hp gamma)2, significantly increasing the likelihood of an embolizing event. By contrast, convective-diffusive removal of blood components during the initial stages of thrombus formation varies only weakly with gamma 1/3 in all but the smallest vessels. These maximum embolizing stresses are due principally to fluid drag. Acceleration (pulsatile) forces only begin to make their presence felt at gamma less than 500 s-1 and reach parity with fluid drag at gamma approximately 10 s-1, i.e., at a level where the presence of pulsatility is questionable. The results are used to provide maps of domains with high and low probabilities of an embolytic event and of vessel patency. The maps reveal that relatively modest changes in shear rate and/or vessel lumen can cause shifts from high to low likelihood of vessel patency, opening up possible ways of controlling blockage by manipulation of these variables.

  16. Drug and light dose responses to focal photodynamic therapy of single blood vessels in vivo

    Science.gov (United States)

    Khurana, Mamta; Moriyama, Eduardo H.; Mariampillai, Adrian; Samkoe, Kimberley; Cramb, David; Wilson, Brian C.

    2009-11-01

    As part of an ongoing program to develop two-photon (2-γ) photodynamic therapy (PDT) for treatment of wet-form age-related macular degeneration (AMD) and other vascular pathologies, we have evaluated the reciprocity of drug-light doses in focal-PDT. We targeted individual arteries in a murine window chamber model, using primarily the clinical photosensitizer Visudyne/liposomal-verteporfin. Shortly after administration of the photosensitizer, a small region including an arteriole was selected and irradiated with varying light doses. Targeted and nearby vessels were observed for a maximum of 17 to 25 h to assess vascular shutdown, tapering, and dye leakage/occlusion. For a given end-point metric, there was reciprocity between the drug and light doses, i.e., the response correlated with the drug-light product (DLP). These results provide the first quantification of photosensitizer and light dose relationships for localized irradiation of a single blood vessel and are compared to the DLP required for vessel closure between 1-γ and 2-γ activation, between focal and broad-beam irradiation, and between verteporfin and a porphyrin dimer with high 2-γ cross section. Demonstration of reciprocity over a wide range of DLP is important for further development of focal PDT treatments, such as the targeting of feeder vessels in 2-γ PDT of AMD.

  17. Observation of flow variation in capillaries of artificial blood vessel by producing microbubble aggregations.

    Science.gov (United States)

    Masuda, Kohji; Shigehara, Nobuhiko; Koda, Ren; Watarai, Nobuyuki; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2012-01-01

    Microbubbles form their aggregations between the neighboring microbubbles by the effect of secondary Bjerknes force under ultrasound exposure. However, because of the difficulty to reproduce a capillary-mimicking artificial blood vessel, the behavior of aggregations in a capillary has not been predicted. Thus we prepared artificial blood vessels including a capillary model, which was made of poly(vinyl alcohol) (PVA) by grayscale lithography method, with minimum diameter of the path of 0.5 mm. By using this model we investigated the possibility of artificial embolization, where the microbubble aggregations might block entire vessels not to penetrate flow in downstream. Confirming that the sizes of flown aggregation were greater than the section area of the minimum path in the capillary model, we investigated the probability of path block in it. As the results we confirmed the probability increased in proportion to sound pressure and inversely to flow velocity. We are going to investigate with more kinds of parameters to enhance the possibility of artificial embolization.

  18. Surgical anatomy of the retroperitoneal spaces, Part III: Retroperitoneal blood vessels and lymphatics.

    Science.gov (United States)

    Mirilas, Petros; Skandalakis, John E

    2010-02-01

    In this article, we discuss the surgical anatomy of the blood vessels and the lymphatic vessels and lymph nodes found in the retroperitoneum. Retroperitoneal blood vessels include the aorta and all its branches--parietal and visceral--from the diaphragm to the pelvis, and the inferior vena cava and its tributaries. The retroperitoneal lymphatics form a very rich and extensive chain. As a general rule, lymphatics follow the arteries and named lymph nodes are found at the root of the arteries. Retroperitoneal nodes of the abdomen comprise the inferior diaphragmatic nodes and the lumbar nodes. The latter are classified as left lumbar (aortic), intermediate (interaorticovenous), and right lumbar (caval). These nodes surround the aorta and the inferior vena cava. Around the aorta lie the paraortic nodes, preaortic nodes (include celiac, superior mesenteric, inferior mesenteric nodes collecting lymph from the splanchna supplied by the homonymous arteries), and retroaortic nodes. Similarly, around the vena cava lie the paracaval, precaval, and retrocaval nodes. Pelvic nodes include the common iliac, external and internal iliac, obturator, and sacral nodes.

  19. In vivo bioimaging as a novel strategy to detect doxorubicin-induced damage to gonadal blood vessels.

    Directory of Open Access Journals (Sweden)

    Hadas Bar-Joseph

    Full Text Available INTRODUCTION: Chemotherapy may induce deleterious effects in normal tissues, leading to organ damage. Direct vascular injury is the least characterized side effect. Our aim was to establish a real-time, in vivo molecular imaging platform for evaluating the potential vascular toxicity of doxorubicin in mice. METHODS: Mice gonads served as reference organs. Mouse ovarian or testicular blood volume and femoral arterial blood flow were measured in real-time during and after doxorubicin (8 mg/kg intravenously or paclitaxel (1.2 mg/kg administration. Ovarian blood volume was imaged by ultrasound biomicroscopy (Vevo2100 with microbubbles as a contrast agent whereas testicular blood volume and blood flow as well as femoral arterial blood flow was imaged by pulse wave Doppler ultrasound. Visualization of ovarian and femoral microvasculature was obtained by fluorescence optical imaging system, equipped with a confocal fiber microscope (Cell-viZio. RESULTS: Using microbubbles as a contrast agent revealed a 33% (P<0.01 decrease in ovarian blood volume already 3 minutes after doxorubicin injection. Doppler ultrasound depicted the same phenomenon in testicular blood volume and blood flow. The femoral arterial blood flow was impaired in the same fashion. Cell-viZio imaging depicted a pattern of vessels' injury at around the same time after doxorubicin injection: the wall of the blood vessels became irregular and the fluorescence signal displayed in the small vessels was gradually diminished. Paclitaxel had no vascular effect. CONCLUSION: We have established a platform of innovative high-resolution molecular imaging, suitable for in vivo imaging of vessels' characteristics, arterial blood flow and organs blood volume that enable prolonged real-time detection of chemotherapy-induced effects in the same individuals. The acute reduction in gonadal and femoral blood flow and the impairment of the blood vessels wall may represent an acute universal doxorubicin

  20. Comparison between PVHIS on the MRI and the permeability of brain blood vessels in elderly patients

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Katsuhiko; Tanaka, Yuriko; Kubo, Hideki; Takagi, Yasushi; Tachikawa, Shinzo (Omotemachi Hospital, Tachikawa General Hospital, Tokyo (Japan)); Katsunuma, Hideyo

    1989-11-01

    The degree of PVHIS (periventricular high intensity signal) on the MRI was composed with the permeability of brain blood vessels using the cerebrospinal fluid (CSF)/serum ratio for albumin, and the CSF/serum ratio for IgG in elderly patients. The 47 elderly patients (mean age=79.9) were divided into three groups: (1) Mild group (20 cases, M:6, F:14, mean age=75.8), (2) Moderate group (18 cases, M:7, F:11, mean age=82.6), (3) Severe group (9 cases, M:2, F:7, mean age=82.9), in accordance with the degree of PVHIS on the MRI. The MRI was operated at a field strength of 0.22 tesla. The pulse sequence (used on all patients) had a repetition times (TR) of 2,000 msec and a time to echo (TE) of 40 msec. The levels of albumin and IgG in the serum and CSF were measured. The CSF/serum ratio for albumin was used of analyze the permeability of the brain blood vessels in each group. There was no significant difference in the level of the serum albumin, the CSF albumin, the serum IgG, the CSF IgG and the CSF/serum ratio for IgG among the three groups. The same was found to be true for the IgG index which indicates the synthesis of immunoglobulin in the central nervous system. However, there was a statistically significant difference (p<0.05) in the CSF/serum ratio for albumin between groups (1) and (3). The increased CSF/serum ratio for albumin in the severe group indicated there were confluent lesions involving the entire extent of the periventriular white matter on the MRI. This suggested an increased permeability of brain blood vessels which revealed the dysfunction of the blood brain barrier due to affected cerebral endothelial cells in capillaries. (author).

  1. Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels.

    Science.gov (United States)

    Dasgupta, Subhashish; Banerjee, Rupak K; Hariharan, Prasanna; Myers, Matthew R

    2011-02-01

    Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.

  2. Mathematical Models and Numerical Simulations for the Blood Flow in Large Vessels

    Directory of Open Access Journals (Sweden)

    Titus PETRILA

    2012-12-01

    Full Text Available We are proposing a non-Newtonian, Cross type rheological model for the blood flow, under the conditions of an unsteady flow regime connected with the rhythmic pumping of the blood by the heart. We admit the incompressibility and homogeneity of the blood while its flow is laminar and the exterior body forces are neglected. We take also into account the viscoelastic behavior of the vessel walls. The mathematical equations and the appropriate boundary conditions are considered in cylindrical (axisymmetric coordinates. Numerical experiments in case of stenosed artery and in artery with aneurysm (using COMSOL Multiphysics 3.3 are made. The variation of the wall shear stress, which is believed to have a special importance in the rupture of aneurysms, is calculated using both a Newtonian and a non-Newtonian model.

  3. Comparison of the number of gingival blood vessels between type 2 diabetes mellitus and chronic periodontitis patients: An immunohistological study

    OpenAIRE

    Gautami Subhadra Penmetsa; Satyanarayana Baddam; Ravikanth Manyam; Chinni Doraswamy Dwarakanath

    2015-01-01

    Background: The relationship between diabetes and periodontitis has been studied for more than 50 years and is generally agreed that the periodontal disease is more prevalent in diabetic patients compared to nondiabetics. Vascular changes like increased thickness of basement membrane in small vessels has been reported in diabetic patients, but the quantity of blood vessels in gingiva of diabetic patients has not been discussed much. The aim of this study was to compare the number of blood ves...

  4. [Case report with multiple variations of blood vessels originating from the fossa axillaris].

    Science.gov (United States)

    Papanchev, V; Krustev, D; Krustev, N

    2003-01-01

    In the course of a dissection of a male's cadaver, fixed in formol carbol solution, we identified the following arterial variations: A) Regio axillaris dextra: a musculi teretis major (9 cm long); a. musculi subscapularis (of insignificant calibre and length); a. thoracica lateralis accessoria prima (10 cm long, with a course along the surface of m. subscapularis); a. thoracica lateralis accessoria secunda (25 cm long, with a course within the conjunctive tissue of the axilla); B) Regio axillaris sinistra: a musculi subcapularis prima et secunda (of insignificant calibre and length); a. musculi teretis major (9 cm long); a. thoracica lateralis accessoria secunda (20 cm long); a. thoracica lateralis accessoria tertia (25 cm long); All three additional arteria had a course along the surface of m. serratis anterior. We called the identified vessels after the name of the muscle blood-supplied by them. Only the vessels ending in m. serratus anterior did we call aa. thoracicae laterales accessoriae.

  5. Application of a modified regularization procedure for estimating oxygen tension in large retinal blood vessels

    Science.gov (United States)

    Yildirim, Isa; Ansari, Rashid; Samil Yetik, I.; Shahidi, Mahnaz

    2010-03-01

    Phosphorescence lifetime measurement based on a frequency domain approach is used to estimate oxygen tension in large retinal blood vessels. The classical least squares (LS) estimation was initially used to determine oxygen tension indirectly from intermediate variables. A spatial regularized least squares (RLS) method was later proposed to reduce the high variance of oxygen tension estimated by LS method. In this paper, we provide a solution using a modified RLS (MRLS) approach that utilizes prior knowledge about retinal vessels oxygenation based on expected oxygen tension values in retinal arteries and veins. The performance of MRLS method was evaluated in simulated and experimental data by determining the bias, variance, and mean absolute error (MAE) of oxygen tension measurements and comparing these parameters with those derived with the use of LS and RLS methods.

  6. [Molecular mechanism for the establishment of blood-vessel gateway for immune cells in the CNS.

    Science.gov (United States)

    Murakami, Masaaki

    2017-01-01

    We have been studying about the molecular mechanism responsible for the establishment of the blood-vessel gateway through which immune cells enter the CNS. We have discovered three kinds of gateways in a multiple sclerosis model, EAE, based on the neural stimulations and named them the gravity-gateway reflex, electric-gateway reflex, and pain-gateway reflex, respectively. All gateway reflexes are involved in specific crosstalk between sensory-sympathetic pathways. For example, in the gravity-gateway reflex, gravity-mediated sensory stimulation via the soleus muscles activates fifth lumber(L5)dorsal loot ganglions to activate L5 sympathetic ganglions, which express norepinephrine at specific vessels of the L5 cord. We explain these three types of gateway reflexes in this chapter.

  7. Beta-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Sato, Ayumi; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-01-01

    We investigated the effects of epinephrine and dopamine on retinal blood vessels in streptozotocin (STZ, 80 mg/kg, i.p.)-treated rats and age-matched control rats to determine whether diabetes mellitus alters the retinal vascular responses to circulating catecholamines. Experiments were performed 6-8 weeks after treatment with STZ or the vehicle. The fundus images were captured with the digital fundus camera system for small animals we developed and diameters of retinal blood vessels contained in the digital images were measured. Epinephrine increased the diameters of retinal blood vessels, but the vasodilator responses were reduced in diabetic rats. Dopamine produced a biphasic retinal vascular response with an initial vasoconstriction followed by a vasodilation. The vasoconstrictor effects of dopamine on retinal arterioles were enhanced in diabetic rats, whereas the difference between the two groups was abolished by treatment with propranolol. The vasodilator effect of isoproterenol, but not of the activator of adenylyl cyclase colforsin, on retinal blood vessels was reduced in diabetic rats. No difference in vasoconstriction of retinal blood vessels to phenylephrine between non-diabetic and diabetic rats was observed. The vasodilator responses of retinal blood vessels to 1,1-dimethyl-4-phenylpiperazinium, a ganglionic nicotinic receptor agonist, were also attenuated in diabetic rats. These results suggest that diabetes mellitus alters the retinal vascular responses to circulating catecholamines and the impairment of vasodilator responses mediated by beta-adrenoceptors contributes to the alteration.

  8. Bioprinting of artificial blood vessels: current approaches towards a demanding goal.

    Science.gov (United States)

    Hoch, Eva; Tovar, Günter E M; Borchers, Kirsten

    2014-11-01

    Free-form fabrication techniques, often referred to as '3D printing', are currently tested with regard to the processing of biological and biocompatible materials in general and for fabrication of vessel-like structures in particular. Such computer-controlled methods assemble 3D objects by layer-wise deposition or layer-wise cross-linking of materials. They use, for example, nozzle-based deposition of hydrogels and cells, drop-on-demand inkjet-printing of cell suspensions with subsequent cross-linking, layer-by-layer cross-linking of synthetic or biological polymers by selective irradiation with light and even laser-induced deposition of single cells. The need of vessel-like structures has become increasingly crucial for the supply of encapsulated cells for 3D tissue engineering, or even with regard to future application such as vascular grafts. The anticipated potential of providing tubes with tailored branching geometries made of biocompatible or biological materials pushes future visions of patient-specific vascularized tissue substitutions, tissue-engineered blood vessels and bio-based vascular grafts. We review here the early attempts of bringing together innovative free-form manufacturing processes with bio-based and biodegradable materials. The presented studies provide many important proofs of concepts such as the possibility to integrate viable cells into computer-controlled processes and the feasibility of supplying cells in a hydrogel matrix by generation of a network of perfused channels. Several impressive results in the generation of complex shapes and high-aspect-ratio tubular structures demonstrate the potential of additive assembly methods. Yet, it also becomes obvious that there remain major challenges to simultaneously match all material requirements in terms of biological functions (cell function supporting properties), physicochemical functions (mechanical properties of the printed material) and process-related (viscosity, cross

  9. In Silico Magnetic Nanocontainers Navigation in Blood Vessels: A Feedback Control Approach.

    Science.gov (United States)

    Do, Ton Duc; Noh, Yeongil; Kim, Myeong Ok; Yoon, Jungwon

    2016-06-01

    Magnetic nanoparticles (MNPs) are recently used in a drug delivery system to pass the blood brain barrier. However, because the magnetic force acting on particles is proportional to their volumes, as the size of particles is small, the large magnetic field is required to produce enough magnetic force for overcoming the hydrodynamic drag force as well as other forces in blood vessels. Other difficulties for controlling MNPs are the complicated behavior of hydrodynamic drag force and uncertain factors in their dynamics. Therefore, open-loop control methods cannot guarantee guiding every MNP to the correct location. Considering these challenges, this paper introduces a feedback control approach for magnetic nanoparticles (MNPs) in blood vessels. To the best of our knowledge, this is the first time feedback controller that is designed for MNPs without aggregation. Simulation studies in MATLAB and real-time verifications on a physical model in COMSOL-MATLAB interface are performed to prove the feasibility of the proposed approach. It is shown that the proposed control scheme can accurately and effectively navigate the MNP to the correct path with feasible hardware supports.

  10. Correlation mapping method of OCT for visualization blood vessels in brain

    Science.gov (United States)

    Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.

    2013-11-01

    The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.

  11. Effect of combined VEGF165/ SDF-1 gene therapy on vascular remodeling and blood perfusion in cerebral ischemia.

    Science.gov (United States)

    Hu, Guo-Jie; Feng, Yu-Gong; Lu, Wen-Peng; Li, Huan-Ting; Xie, Hong-Wei; Li, Shi-Fang

    2016-12-16

    OBJECTIVE Therapeutic neovascularization is a promising strategy for treating patients after an ischemic stroke; however, single-factor therapy has limitations. Stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) proteins synergistically promote angiogenesis. In this study, the authors assessed the effect of combined gene therapy with VEGF165 and SDF-1 in a rat model of cerebral infarction. METHODS An adenoviral vector expressing VEGF165 and SDF-1 connected via an internal ribosome entry site was constructed (Ad- VEGF165-SDF-1). A rat model of middle cerebral artery occlusion (MCAO) was established; either Ad- VEGF165-SDF-1 or control adenovirus Ad- LacZ was stereotactically microinjected into the lateral ventricle of 80 rats 24 hours after MCAO. Coexpression and distribution of VEGF165 and SDF-1 were examined by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence. The neurological severity score of each rat was measured on Days 3, 7, 14, 21, and 28 after MCAO. Angiogenesis and vascular remodeling were evaluated via bromodeoxyuridine and CD34 immunofluorescence labeling. Relative cerebral infarction volumes were determined by T2-weighted MRI and triphenyltetrazolium chloride staining. Cerebral blood flow, relative cerebral blood volume, and relative mean transmit time were assessed using perfusion-weighted MRI. RESULTS The Ad- VEGF165-SDF-1 vector mediated coexpression of VEGF165 and SDF-1 in multiple sites around the ischemic core, including the cortex, corpus striatum, and hippocampal granular layer. Coexpression of VEGF165 and SDF-1 improved neural function, reduced cerebral infarction volume, increased microvascular density and promoted angiogenesis in the ischemic penumbra, and improved cerebral blood flow and perfusion. CONCLUSIONS Combined VEGF165 and SDF-1 gene therapy represents a potential strategy for improving vascular remodeling and recovery of neural function after cerebral

  12. Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy

    Science.gov (United States)

    Park, YongKeun; Best, Catherine; Auth, Thorsten; Gov, Nir S.; Safran, Samuel; Popescu, Gabriel

    2011-02-01

    We have quantitatively and systemically measured the morphologies and dynamics of fluctuations in human RBC membranes using a full-field laser interferometry technique that accurately measures dynamic membrane fluctuations. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates nonequilibrium dynamic fluctuations in the RBC membrane and that these fluctuations are highly correlated with specific regions in the biconcave shape of RBCs. Spatial analysis reveals that these nonequilibrium membrane fluctuations are enhanced at the scale of the spectrin mesh size. Our results indicate the presence of dynamic remodeling in the RBC membrane cortex powered by ATP, which results in nonequilibrium membrane fluctuations.

  13. Effects of Scopolamine on Blood Vessels in Rabbit Ear after Sympathetic and Sensory Denervation

    Institute of Scientific and Technical Information of China (English)

    刘书勤; 臧伟进; 成亮; 李增利; 于晓江; 李宝平

    2004-01-01

    Objectives To investigate the effects and involved mechanisms of scopolamine (Scop) on rabbit ear blood vessels. Methods Rabbit ear blood vessels were desympathetic and desensory innervation with surgical operation. Diameters of dorsal auricular arterial trunks in vivo were measured with a pair of compasses and the ruler in a dissecting microscope, and effluents from isolated ear under constant perfusion pressure were recorded with a digital drop-recorder. Results Intramuscular injection of Scop 0.1 mg/kg made the diameter of denerved dorsal auricular arterial trunks, as well as that of innerved ones, significantly increased. Scop by itself, at the maximal concentration (Cmax) of 3 μM, 30 μM and 300 μM, did not alter the effluent flow from the isolated denervated rabbit ear, but chlorpromazine (CPZ), at Cmax of 1 μM, acetylcholine (ACh), 0.25μM, all significantly increased the effluent flow, and norepinephrine (NE), 0.1μM, significantly decreased the effluent. Scop, 3 μM, did not affect ACh (0.25μM)-induced the increase of effluent flow, but Scop,30μM, alleviated the increase. Scop, 3μM, did not affect NE (0.1 μM)-induced the decrease of effluent flow, but Scop, 10, 30 and 100 μM, significantly alleviated the decrease. Conclusions The study suggests that Scop has no direct vasodilator effect. The vasodilator effect of Scop is not due to the blockade of muscarinic receptor. However, Scop can dilate blood vessels contracted by α1-adrenoceptor activation.

  14. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels

    Institute of Scientific and Technical Information of China (English)

    YI Hou-Hui; FAN Li-Juan; YANG Xiao-Feng; CHEN Yan-Yan

    2008-01-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to eliminate many diseases.Here the effect of the rolling massage on the particle moving property in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the particle moving behaviour depends on the rolling velocity, the distance between particle position and rolling position. The average values, including particle translational velocity and angular velocity, increase as the rolling velocity increases almost linearly. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  15. THE STEADY/PULSATILE FLOW AND MACROMOLECULAR TRANSPORT IN T-BIFURCATION BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    李丁; 温功碧

    2003-01-01

    A numerical analysis of the steady and pulsatile, macromolecular( such as lowdensity lipopotein ( LDL ), Albumin ) transport in T-bifurcation was proposed. Theinfluence of Reynolds number and mass flow ratio etc. parameters on the velocity field andmass transport were calculated. The computational results predict that the blood flow factorsaffect the macromolecular distribution and the transport across the wall, it shows thathemodynamic play an important role in the process of atherosclerosis . The LDL and Albuminconcentration on the wall varies most greatly in flow bifurcation area where the wall shearstress varies greatly at the branching vessel and the atherosclerosis often appears there.

  16. A Pulsatile Flow Phantom for Image-Guided HIFU Hemostasis of Blood Vessels

    Science.gov (United States)

    Greaby, Robyn; Vaezy, Shahram

    2005-03-01

    A pulsatile flow phantom for studying ultrasound image-guided acoustic hemostasis in a controlled environment has been developed. An ex vivo porcine carotid artery was attached to the phantom and embedded in a visually and ultrasonically transparent gel. Heparinized porcine blood was pumped through the phantom. Power-Doppler and B-mode ultrasound were used to remotely target the HIFU focus to the site of a needle puncture. In nine trials, complete hemostasis was achieved after an average HIFU application of 55 +/- 34 seconds. The vessels remained patent after treatment. With this phantom, it will be possible to do controlled studies of ultrasound image-guided acoustic hemostasis.

  17. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    Science.gov (United States)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  18. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion

    Science.gov (United States)

    Ubezio, Benedetta; Blanco, Raquel Agudo; Geudens, Ilse; Stanchi, Fabio; Mathivet, Thomas; Jones, Martin L; Ragab, Anan; Bentley, Katie; Gerhardt, Holger

    2016-01-01

    Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning. DOI: http://dx.doi.org/10.7554/eLife.12167.001 PMID:27074663

  19. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  20. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  1. A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering.

    Science.gov (United States)

    Badhe, Ravindra V; Bijukumar, Divya; Chejara, Dharmesh R; Mabrouk, Mostafa; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Kondiah, Pierre P D; Pillay, Viness

    2017-02-10

    A composite chitosan-gelatin macroporous hydrogel-based scaffold with bi-layered tubular architecture was engineered by solvent casting-co-particulate leaching. The scaffold constituted an inner macroporous layer concealed by a non-porous outer layer mimicking the 3D matrix of blood vessels with cellular adhesion and proliferation. The scaffold was evaluated for its morphological, physicochemical, physicomechanical and biodurability properties employing SEM, FTIR, DSC, XRD, porositometry, rheology and texture analysis. The fluid uptake and biodegradation in the presence of lysozymes was also investigated. Cellular attachment and proliferation was analysed using human dermal fibroblasts (HDF-a) seeded onto the scaffold and evaluated by MTT assay, SEM, and confocal microscopy. Results demonstrated that the scaffold had a desirable tensile strength=95.81±11kPa, elongation at break 112.5±13%, porosity 82% and pores between 100 and 230μm, 50% in vitro biodegradation at day 16 and proliferated fibroblasts over 20 days. These results demonstrate that scaffold may be an excellent tubular archetype for blood vessel tissue engineering.

  2. Protective role of a novel human erythrocyte-derived depressing factor on blood vessels in rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The protective role of a human erythrocyte-derived depressing factor (EDDF) on blood vessels was evaluated. The experiments were carried out on 25male Wistar rats aged 6-8 weeks, which were divided into control (n = 8), calcium overload (n = 8) and NG-L-nitro-arginine hypertensive model groups (L-NNA,n = 9), respectively. The isolated vascular ring perfusion assay, two-photon laser scanning fluorescence microscopy (TPM) and transmitted electron microscope were used to examine the effect of EDDF on vascular function and ultrastructure. Results showed that the contractile response of calcium overload rats and L-NNA rats to phenylephrine (PE) was significantly enhanced compared with that of the control (P < 0.05), and EDDF (10-3 g @mL-1) remarkably decreased the vascular contractile response of control's and calcium overload rats (P < 0.05),while EDDF had no effect on that of L-NNA rats. EDDF also alleviated the ultrastructural lesion of aorta VSMC in calcium overload rats by easing the abnormal in the nucleus, mitochondrion and other organell. It is concluded that EDDF could efficiently protect blood vessels against injury by influencing Ca2+ transport and ameliorating the lesion of VSMC, and further supported the hypothesis that the NO-cGMP pathway might contribute to the vasodilation and partially antihypertensive mechanism of EDDF.``

  3. An Original Approach for Quantification of Blood Vessels on the Whole Tumour Section

    Directory of Open Access Journals (Sweden)

    Nga Tran Kim

    2003-01-01

    Full Text Available Relative abundance of tumour angiogenesis has been shown to be of clinical relevance in cancers of various locations such as the ovary. Nevertheless, several problems are encountered when quantifying tumour microvessels: (i as many other tumour markers, vascularity pattern is often heterogeneous within the tumour mass and even within the same histological section. As a consequence, an adequate acquisition method must be developed for accurate field sampling. (ii Manual microvessel counting is long, tedious and subject to poor reproducibility. Introduction in routine practice requires a fast, reproducible and reliable automatic image processing. In this study we present an original procedure combining a slide scanner image acquisition and a fully automatic image analysis sequence. The slide scanner offers the advantage of recording an image of the whole histological section for subsequent automatic blood vessel detection and hot spot area location. Microvessel density and surface fraction were measured for the whole section as well as within hot spots. Different immunostaining methods were tested in order to optimise the procedure. Moreover, the method proposed was submitted to a quality control procedure, with reference to interactive identification of microvessels at scanner level. This experiment showed that 93 to 97% of blood vessels were detected, according to the staining protocol used. Colour figures can be viewed on http://www.esacp.org/acp/2003/25‐2/kim.htm.

  4. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos.

    Science.gov (United States)

    Takase, Yuta; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2013-12-01

    To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo-wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink-infused embryos were further subjected to histological sections, and double stained with antibodies including QH-1 (quail), α smooth muscle actin (αSMA), and PECAM-1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter-labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)-lectin and Rhodamine-dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink-infused embryos visualized fine vascular structures of both embryo proper and extra-embryonic plexus in a Z-stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals.

  5. The effect of complex exercise rehabilitation program on body composition, blood pressure, blood sugar, and vessel elasticity in elderly women with obesity

    Science.gov (United States)

    Lee, Eun-Ok; Lee, Kwon-Ho; Kozyreva, Olga

    2013-01-01

    The purpose of this study is to identify what kind of effects complex exercise rehabilitation program has on body composition of female, blood pressure, blood sugar, blood vessel elasticity and find more effective complex exercise program for elderly females. The subjects are selected 30 females applicants in exercise program in City of G and not restricted in mobility to perform the exercise without any particular disorders. Exercise program is a combination of aerobic and strength training with different ratio, for the first 6 months focused on strength training complex exercise, and for next 6 months focused on aerobic exercise. Except for strength training and aerobic exercise, durations for strength, rest, and wrapping-up are equal. The frequency of experiments is 90 min each, 2 times per a week. Body composition, blood pressure, and blood vessel elasticity are tested pre and post experiment to compare the effectiveness of both complex exercises. As results, in the complex exercise program focused on strength training, weight, percent body fat, fat mass, waist hip ratio, systolic blood pressure, and diastolic pressure increased. Blood vessel elasticity maintained its level or slightly decreased. In the complex exercise focused on aerobic exercise, weight, percent body fat, fat mass, waist hip ratio, systolic pressure, and diastolic pressure decreased. Blood vessel elasticity on left foot and right foot are slightly different. Therefore, aerobic exercise is more effective than strength training for old obese females. PMID:24409428

  6. Onset of hypertension during pregnancy is associated with long-term worse blood pressure control and adverse cardiac remodeling.

    Science.gov (United States)

    Mesquita, Roberto F; Reis, Muriel; Beppler, Ana Paula; Bellinazzi, Vera Regina; Mattos, Sandra S; Lima-Filho, José L; Cipolli, José A; Coelho-Filho, Otavio R; Pio-Magalhães, José A; Sposito, Andrei C; Matos-Souza, José R; Nadruz, Wilson

    2014-11-01

    Up to 20% of women with hypertensive pregnancy disorders might persist with chronic hypertension. This study compared clinical and echocardiographic features between women whose hypertension began as hypertensive pregnancy disorders (PH group) and women whose diagnosis of hypertension did not occur during pregnancy (NPH group). Fifty PH and 100 NPH women were cross-sectionally evaluated by clinical, laboratory, and echocardiography analysis, and the groups were matched by duration of hypertension. PH exhibited lower age (46.6 ± 1.4 vs. 65.3 ± 1.1 years; P < .001), but higher systolic (159.8 ± 3.9 vs. 148.0 ± 2.5 mm Hg; P = .009) and diastolic (97.1 ± 2.4 vs. 80.9 ± 1.3 mm Hg; P < .001) blood pressure than NPH, although used more antihypertensive classes (3.4 ± 0.2 vs. 2.6 ± 0.1; P < .001). Furthermore, PH showed higher left ventricular wall thickness and increased prevalence of concentric hypertrophy than NPH after adjusting for age and blood pressure. In conclusion, this study showed that PH may exhibit worse blood pressure control and adverse left ventricular remodeling compared with NPH.

  7. 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch: Investigation of Non-Newtonian Characteristics of Human Blood

    CERN Document Server

    Sultanov, Renat A; Engelbrekt, Brent; Blankenbecler, Richard

    2008-01-01

    Methods of Computational Fluid Dynamics are applied to simulate pulsatile blood flow in human vessels and in the aortic arch. The non-Newtonian behaviour of the human blood is investigated in simple vessels of actual size. A detailed time-dependent mathematical convergence test has been carried out. The realistic pulsatile flow is used in all simulations. Results of computer simulations of the blood flow in vessels of two different geometries are presented. For pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and widely used method in literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, wall sear stress distribution, is found in the region of the aortic arch. We consider this result as theoretical evidence that supports existing clinical observations and those models not using non-Newtonian treatment underestimate the risk of disru...

  8. Ultrasonic imaging of foreign inclusions and blood vessels through thick skull bones.

    Science.gov (United States)

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Ahmed, Zaki; Wydra, Adrian; Maeva, Elena; Malyarenko, Eugene; Maev, Roman

    2015-03-01

    We report a new progress in the development of a portable ultrasonic transcranial imaging system, which is expected to significantly improve the clinical utility of transcranial diagnostic ultrasound. When conventional ultrasonic phased array and Doppler techniques are applied through thick skull bones, the ultrasound field is attenuated, deflected, and defocused, leading to image distortion. To address these deficiencies, the ultrasonic transcranial imaging system implements two alternative ultrasonic methods. The first method improves detection of small foreign objects, such as bone fragments, pieces of shrapnel, or bullets, lodged in the brain tissue. Using adaptive beamforming, the method compensates for phase aberration induced by the skull and refocuses the distorted ultrasonic field at the desired location. The second method visualizes the blood flow through intact human skull using ultrasonic speckle reflections from the blood cells, platelets, or contrast agents. By analyzing these random temporal changes, it is possible to obtain 2D or 3D blood flow images, despite the adverse influence of the skull. Both methods were implemented on an advanced open platform phased array controller driving linear and matrix array probes. They were tested on realistic skull bone and head phantoms with foreign inclusions and blood vessel models.

  9. Physiological remodelling of the maternal uterine circulation during pregnancy.

    Science.gov (United States)

    Mandala, Maurizio; Osol, George

    2012-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodelling of the entire maternal uterine vasculature. The main focus of this MiniReview is to provide information on upstream (pre-placental) maternal uterine vascular remodelling that facilitates gestational increases in uterine blood flow. Consideration of the three-dimensional pattern of remodelling (circumferential enlargement versus axial elongation), changes in vessel biomechanical properties, and underlying mechanisms [shear stress, nitric oxide, vascular endothelial growth factor (VEGF)/placental growth factor (PlGF), the renin-angiotensin system] and pathways (local versus systemic; venoarterial exchange) are provided using the rat as the principal animal model, although findings from other species are incorporated wherever possible to provide a comparative perspective. The process of maternal gestational uterine vascular remodelling involves a number of cellular processes and mechanisms, including trophoblast invasion, hyperplasia and hypertrophy, and changes in extracellular matrix composition. In addition, changes in cellular function, e.g. the secretory and contractile properties of smooth muscle and an up-regulation of endothelial vasodilatory influences may contribute to uteroplacental blood flow increases through changes in tone as well as in structure. Future studies aimed at better understanding the inter-relationship between changes in vessel structure (remodelling) and function (reactivity) would likely generate new mechanistic insights into the fascinating process of maternal gestational uterine vascular adaptation and provide a more physiological perspective of the underlying cellular processes involved in its regulation.

  10. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection.

    Science.gov (United States)

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-12-22

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute lung inflammation, we demonstrated that intravenously (iv) infused NPs made from denatured bovine serum albumin (BSA) were specifically internalized by activated neutrophils, and subsequently, the neutrophils containing NPs migrated across blood vessels into inflammatory tissues. When neutrophils were depleted using anti-Gr-1 in a mouse, the transport of albumin NPs across blood vessel walls was robustly abolished. Furthermore, it was found that albumin nanoparticle internalization did not affect neutrophil mobility and functions. Administration of drug-loaded albumin NPs markedly mitigated the lung inflammation induced by LPS (lipopolysaccharide) or infection by Pseudomonas aeruginosa. These results demonstrate the use of an albumin nanoparticle platform for in situ targeting of activated neutrophils for delivery of therapeutics across the blood vessel barriers into diseased sites. This study demonstrates our ability to hijack neutrophils to deliver nanoparticles to targeted diseased sites.

  11. Fractals and fractal dimension of systems of blood vessels: An analogy between artery trees, river networks, and urban hierarchies

    CERN Document Server

    Chen, Yanguang

    2015-01-01

    An analogy between the fractal nature of networks of arteries and that of systems of rivers has been drawn in the previous works. However, the deep structure of the hierarchy of blood vessels has not yet been revealed. This paper is devoted to researching the fractals, allometric scaling, and hierarchy of blood vessels. By analogy with Horton-Strahler's laws of river composition, three exponential laws have been put forward. These exponential laws can be reconstructed and transformed into three linear scaling laws, which can be named composition laws of blood vessels network. From these linear scaling laws it follows a set of power laws, including the three-parameter Zipf's law on the rank-size distribution of blood vessel length and the allometric scaling law on the length-diameter relationship of blood vessels in different orders. The models are applied to the observed data on human beings and animals early given by other researchers, and an interesting finding is that human bodies more conform to natural r...

  12. Differentiation of smooth muscle progenitor cells in peripheral blood and its application in tissue engineered blood vessels

    Institute of Scientific and Technical Information of China (English)

    Shang-zhe XIE; Ning-tao FANG; Shui LIU; Ping ZHOU; Yi ZHANG; Song-mei WANG; Hong-yang GAO; Luan-feng PAN

    2008-01-01

    Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from peripheral blood, may offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. Methods: SPCs were isolated from 5-ml fresh rat peripheral blood by density-gradient centrifugation and cultured for 3 weeks in endothelial growth medium-2-MV (EGM-2-MV) medium containing platelet-derived growth factor-BB (PDGF BB). Before seeded on the synthesized scaffold, SPC-derived smooth muscle outgrowth cell (SOC) phenotypes were assessed by immuno-fluorescent staining, Western blot analysis, and reverse transcription polymerase chain reaction (RT-PCR). The cells were seeded onto the silk fibroin-modified poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SF-PHBHHx) scaffolds by 6×104 cells/cm'2 and cultured under the static con-dition for 3 weeks. The growth and proliferation of the seeded cells on the scaffold were analyzed by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope (SEM), and 4,6-diamidino-2-phenylindole (DAPI) staining. Results: SOCs displayed specific "hill and valley" morphology, expressed the specific markers of the SMC lineage: protein, and extracellular matrix components elastin and matrix Gla protein (MGP), as well as vascular endothelial growth factor (VEGF). After seeded on the SF-PHBHHx scaffold, the cells showed excellent metabolic activity and proliferation. Conclusion: SPCs isolated from peripheral blood can be differentiated into the SMCs in vitro and have an impressive growth potential in the biodegradable synthesized scaffold. Thus, SPCs may be a promising cell source for constructing TEBVs.

  13. Maturation of blood vessels by haematopoietic stem cells and progenitor cells: involvement of apelin/APJ and angiopoietin/Tie2 interactions in vessel caliber size regulation.

    Science.gov (United States)

    Takakura, Nobuyuki; Kidoya, Hiroyasu

    2009-06-01

    Apelin is a recently-isolated bioactive peptide from bovine gastric extract. The gene encodes a protein of 77 amino acids, which can generate two active polypeptides, long (42-77) and short (65-77). Both peptides ligate and activate APJ, a G protein-coupled receptor expressed in the cardiovascular and central nervous systems. Although an essential role for the apelin/APJ system in blood vessel formation has been reported in Xenopus, its precise function in mammals is unclear. Blood vessel tube formation is accomplished by two main mechanisms: 1) single cell hollowing, in which a lumen forms within the cytoplasm of a single endothelial cell (EC), and 2) cord hollowing in which a luminal cavity is created de novo between ECs in a thin cylindrical cord. Molecular control of either single cell or cord hollowing has not been precisely determined. Angiopoietin-1 (Ang1) has been reported to induce enlargement of blood vessels. Apelin is produced from ECs upon activation of Tie2, a cognate receptor of Ang1, expressed on ECs. It has been suggested that apelin induces cord hollowing by promoting proliferation and aggregation/assembly of ECs. During angiogenesis, haematopoietic stem cells (HSCs) and progenitor cells (HPCs) are frequently observed in the perivascular region. They produce Ang1 and induce migration of ECs, resulting in a fine vascular network. Moreover, HSCs/HPCs can induce apelin production from ECs. Therefore, this review article posits that HSCs/HPCs regulate caliber size of blood vessels via apelin/APJ and Angiopoietin/Tie2 interactions.

  14. Effect of Intensive Blood Pressure Control on Cardiovascular Remodeling in Hypertensive Patients with Nephrosclerosis

    Directory of Open Access Journals (Sweden)

    Otelio Randall

    2013-01-01

    Full Text Available Pulse pressure (PP, a marker of arterial system properties, has been linked to cardiovascular (CV complications. We examined (a association between unit changes of PP and (i composite CV outcomes and (ii development of left-ventricular hypertrophy (LVH and (b effect of mean arterial pressure (MAP control on rate of change in PP. We studied 1094 nondiabetics with nephrosclerosis in the African American Study of Kidney Disease and Hypertension. Subjects were randomly assigned to usual MAP goal (102–107 mmHg or a lower MAP goal (≤92 mmHg and randomized to beta-blocker, angiotensin converting enzyme inhibitor, or calcium channel blocker. After covariate adjustment, a higher PP was associated with increased risk of CV outcome (RR = 1.28, CI = 1.11–1.47, P<0.01 and new LVH (RR = 1.26, CI = 1.04–1.54, P=0.02. PP increased at a greater rate in the usual than in lower MAP groups (slope ± SE: 1.08 ± 0.15 versus 0.42 ± 0.15 mmHg/year, P=0.002, but not by the antihypertensive treatment assignment. Observations indicate that control to a lower MAP slows the progression of PP, a correlate of cardiovascular remodeling and complications, and may be beneficial to CV health.

  15. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H., E-mail: steve.alexander@nottingham.ac.uk

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  16. Multi-detector spiral CT study of the relationships between pulmonary ground-glass nodules and blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Li, Ming; Ge, Xiaojun; Ren, Qingguo; Hua, Yanqing [Huadong Hospital Fudan University, Department of Radiology, Shanghai (China); Zheng, Xiangpeng [Huadong Hospital Fudan University, Department of Radiation Oncology, Shanghai (China); Chen, Yan [Huadong Hospital Fudan University, Department of Pathology, Shanghai (China); Lv, Fangzhen [Huadong Hospital Fudan University, Department of Thoracic Surgery, Shanghai (China)

    2013-12-15

    To investigate the relationships between pulmonary ground-glass nodules (GGN) and blood vessels and their diagnostic values in differentiating GGNs. Multi-detector spiral CT imaging of 108 GGNs was retrospectively reviewed. The spatial relationships between GGNs and supplying blood vessels were categorized into four types: I, vessels passing by GGNs; II, intact vessels passing through GGNs; III, distorted, dilated or tortuous vessels seen within GGNs; IV, more complicated vasculature other than described above. Relationship types were correlated to pathologic and/or clinical findings of GGNs. Of 108 GGNs, 10 were benign, 24 preinvasive nodules and 74 adenocarcinomas that were pathologically proven. Types I, II, III and IV vascular relationships were observed in 9, 58, 21 and 20 GGNs, respectively. Type II relationship was the dominating relationship for each GGN group, but significant differences were shown among them. Correlation analysis showed strong correlation between invasive adenocarcinoma and type III and IV relationships. Subgroup analysis indicated that type III was more commonly seen in IAC with comparison to type IV more likely seen in MIA. Different GGNs have different relationships with vessels. Understanding and recognising characteristic GGN-vessel relationships may help identify which GGNs are more likely to be malignant. (orig.)

  17. The Effect of Silver Nanofibers on the Deformation Properties of Blood Vessels: Towards the Development of New Nanotechnologies to Prevent Rupture of Aneurysms

    Directory of Open Access Journals (Sweden)

    Miguel Gonzalez

    2014-01-01

    Full Text Available An aneurysm is the result of a widening or ballooning of a portion of a blood vessel. The rupture of an aneurysm occurs when the mechanical stress acting on the inner wall exceeds the failure strength of the blood vessel. We propose an innovative approach to prevent the rupture of an aneurysm based on the use of nanotechnology to improve the strength of the blood vessel. We present results on the effect of silver nanofibers on the resistance toward deformation of blood vessels. The silver nanofibers are grown on the surface of the blood vessels. The nanofibers are 120±30 nm in diameter and 2.7±0.8 μm in length. The deformation per applied force of blood vessels was found to decrease from 0.15 m/N in control blood vessels to 0.003 m/N in blood vessels treated with the nanofibers. This represents an increase in the resistance towards deformation of a factor of 50. The increase in the resistance towards deformation is clinically significant since blood pressure increases by factors slightly larger than one in the human body. Treatment of blood vessels with silver nanofibers is a potential translational clinical tool for preventing rupture of aneurysms in a clinical setting.

  18. The Influence for Heart and Blood Vessel of Resperdone%利培酮对心血管的影响

    Institute of Scientific and Technical Information of China (English)

    丁智平; 戴兴海; 廖慧珍

    2002-01-01

    Objective To research the influence of the Risperidone for heart and blood vessel and to contral for Clozapine. Method Schizophrenic patients who were in hospital and conform to diagnostic criteria of CCMD- 2- R were been divided Risperidone group and Clozapine group. Two group patients were been examined EKG before and after treatment one、two、three months. Results The influence for heart and blood vessel of Risperidone group were mainly Sinus bradycardia and T wave change but lower for Clozapine group. The influence was associated with the time of taking the drugs Conclusion There was influence on heart and blood vessel of Risperidone but the extend of influencc was lower for Clozapine and must give rise to pay attention.

  19. Ultrastructural changes in blood vessels in epidermal growth factor treated experimental cutaneous wound model.

    Science.gov (United States)

    Kılıçaslan, Seda M Sarı; Cevher, Sule Coşkun; Peker, Emine G Güleç

    2013-11-01

    This study investigates the impact of epidermal growth factor (EGF) on blood vessels, specifically on the development of intussusceptive angiogenesis in cutaneous wound healing. Excisional wounds were formed on both sides of the medulla spinalis in dorsal location of the rats. The control and EGF-treated groups were divided into two groups with respect to sacrifice day: 5 d and 7 d. EGF was topically applied to the EGF-treated group once a day. The wound tissue was removed from rats, embedded in araldite and paraffin, and then examined under transmission electron and light microscopes. The ultrastructural signs of intussusceptive angiogenesis, such as intraluminal protrusion of endothelial cells and formation of the contact zone of opposite endothelial cells, were observed in the wound. Our statistical analyses, based on light microscopy observations, also confirm that EGF treatment induces intussusceptive angiogenesis. Moreover, we found that induction of EGF impact on intussusceptive angiogenesis is higher on the 7th day of treatment than on the 5th day. This implies that the duration of EGF treatment is important. This research clarifies the effects of EGF on the vessels and proves that EGF induces intussusceptive angiogenesis, being a newer model with respect to sprouting type.

  20. [Injuries to blood vessels near the heart caused by central venous catheters].

    Science.gov (United States)

    Abram, J; Klocker, J; Innerhofer-Pompernigg, N; Mittermayr, M; Freund, M C; Gravenstein, N; Wenzel, V

    2016-11-01

    Injuries to blood vessels near the heart can quickly become life-threatening and include arterial injuries during central venous puncture, which can lead to hemorrhagic shock. We report 6 patients in whom injury to the subclavian artery and vein led to life-threatening complications. Central venous catheters are associated with a multitude of risks, such as venous thrombosis, air embolism, systemic or local infections, paresthesia, hemothorax, pneumothorax, and cervical hematoma, which are not always immediately discernible. The subclavian catheter is at a somewhat lower risk of catheter-associated sepsis and symptomatic venous thrombosis than approaches via the internal jugular and femoral veins. Indeed, access via the subclavian vein carries a substantial risk of pneumo- and hemothorax. Damage to the subclavian vein or artery can also occur during deliberate and inadvertent punctures and result in life-threatening complications. Therefore, careful consideration of the access route is required in relation to the patient and the clinical situation, to keep the incidence of complications as low as possible. For catheterization of the subclavian vein, puncture of the axillary vein in the infraclavicular fossa is a good alternative, because ultrasound imaging of the target vessel is easier than in the subclavian vein and the puncture can be performed much further from the lung.

  1. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    Science.gov (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery.

  2. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array

    Science.gov (United States)

    Toi, M.; Asao, Y.; Matsumoto, Y.; Sekiguchi, H.; Yoshikawa, A.; Takada, M.; Kataoka, M.; Endo, T.; Kawaguchi-Sakita, N.; Kawashima, M.; Fakhrejahani, E.; Kanao, S.; Yamaga, I.; Nakayama, Y.; Tokiwa, M.; Torii, M.; Yagi, T.; Sakurai, T.; Togashi, K.; Shiina, T.

    2017-01-01

    Noninvasive measurement of the distribution and oxygenation state of hemoglobin (Hb) inside the tissue is strongly required to analyze the tumor-associated vasculatures. We developed a photoacoustic imaging (PAI) system with a hemispherical-shaped detector array (HDA). Here, we show that PAI system with HDA revealed finer vasculature, more detailed blood-vessel branching structures, and more detailed morphological vessel characteristics compared with MRI by the use of breast shape deformation of MRI to PAI and their fused image. Morphologically abnormal peritumoral blood vessel features, including centripetal photoacoustic signals and disruption or narrowing of vessel signals, were observed and intratumoral signals were detected by PAI in breast cancer tissues as a result of the clinical study of 22 malignant cases. Interestingly, it was also possible to analyze anticancer treatment-driven changes in vascular morphological features and function, such as improvement of intratumoral blood perfusion and relevant changes in intravascular hemoglobin saturation of oxygen. This clinical study indicated that PAI appears to be a promising tool for noninvasive analysis of human blood vessels and may contribute to improve cancer diagnosis. PMID:28169313

  3. Comparison of the number of gingival blood vessels between type 2 diabetes mellitus and chronic periodontitis patients: An immunohistological study

    Science.gov (United States)

    Penmetsa, Gautami Subhadra; Baddam, Satyanarayana; Manyam, Ravikanth; Dwarakanath, Chinni Doraswamy

    2015-01-01

    Background: The relationship between diabetes and periodontitis has been studied for more than 50 years and is generally agreed that the periodontal disease is more prevalent in diabetic patients compared to nondiabetics. Vascular changes like increased thickness of basement membrane in small vessels has been reported in diabetic patients, but the quantity of blood vessels in gingiva of diabetic patients has not been discussed much. The aim of this study was to compare the number of blood vessels in gingiva between chronic periodontitis (CP) patients, CP with diabetes (type 2), and normal healthy gingiva. Materials and Methods: The study included 75 patients, divided into three groups of 25 patients each-Group I with healthy periodontium (HP), Group II with CP, and Group III with CP with diabetes mellitus (CPDM). Gingival biopsies were obtained from the subjects undergoing crown lengthening procedure for Group I, and in patients with CP and in CPDM biopsies were collected from teeth undergoing extraction. Sections were prepared for immune histochemical staining with CD34. Results: Difference was observed in the average number of blood vessels when compared between HP, CP, and CPDM groups. Statistical significant difference was observed when the HP and CP groups and HP and CPDM groups were compared. Conclusion: The results of the study indicated that the number of blood vessels in gingival connective tissue is significantly higher in CP and CPDM patients. PMID:26015666

  4. Comparison of the number of gingival blood vessels between type 2 diabetes mellitus and chronic periodontitis patients: An immunohistological study

    Directory of Open Access Journals (Sweden)

    Gautami Subhadra Penmetsa

    2015-01-01

    Full Text Available Background: The relationship between diabetes and periodontitis has been studied for more than 50 years and is generally agreed that the periodontal disease is more prevalent in diabetic patients compared to nondiabetics. Vascular changes like increased thickness of basement membrane in small vessels has been reported in diabetic patients, but the quantity of blood vessels in gingiva of diabetic patients has not been discussed much. The aim of this study was to compare the number of blood vessels in gingiva between chronic periodontitis (CP patients, CP with diabetes (type 2, and normal healthy gingiva. Materials and Methods: The study included 75 patients, divided into three groups of 25 patients each-Group I with healthy periodontium (HP, Group II with CP, and Group III with CP with diabetes mellitus (CPDM.Gingival biopsies were obtained from the subjects undergoing crown lengthening procedure for Group I, and in patients with CP and in CPDM biopsies were collected from teeth undergoing extraction. Sections were prepared for immune histochemical staining with CD34. Results: Difference was observed in the average number of blood vessels when compared between HP, CP, and CPDM groups. Statistical significant difference was observed when the HP and CP groups and HP and CPDM groups were compared. Conclusion: The results of the study indicated that the number of blood vessels in gingival connective tissue is significantly higher in CP and CPDM patients.

  5. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach.

    Science.gov (United States)

    Ercolani, Enrico; Del Gaudio, Costantino; Bianco, Alessandra

    2015-08-01

    Vascular tissue engineering is a relevant research field aimed at elaborating and proposing innovative solutions to overcome the drawbacks related to the use of conventional blood vessel substitutes, especially referring to small-diameter grafts. For this aim, electrospinning can be regarded as a valuable technique to produce novel scaffolds with several functional characteristics that can be usefully tailored for the application discussed here. The reproduction of the natural extracellular matrix obtained by processing bioresorbable polymers, either functionalized or not, is driving the biomedical research towards technical solutions that can lead to an actual therapeutic improvement. In this context, this paper reviews those studies focused on the selection of suitable biomaterials for vascular applications, their microstructure, the cell response to polymeric fibres and the strategies considered so far to modify and therefore enhance the performance of final electrospun scaffolds.

  6. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping

    Science.gov (United States)

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-08-01

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED.

  7. Weakly swirling flow in a model of blood vessel with stenosis: Numerical and experimental study

    Directory of Open Access Journals (Sweden)

    Yakov A. Gataulin

    2015-12-01

    Full Text Available Investigation of weakly swirling flow in a model of a blood vessel with asymmetrical stenosis has been performed using both experimental flow measurement techniques (ultrasound Doppler and computational fluid dynamics methods. A special attention is paid to getting data for the length of the reverse-flow zone occurring past the stenosis. It has been established that the laminar steady-state flow model is acceptable for numerical analysis of flow past the given-geometry stenosis at Reynolds number values less than 300. At higher values of this parameter, application of the semi-empirical k-ω SST turbulence model is preferable. It has been shown that flow swirl can lead to an increase of the reverse-flow zone.

  8. Ultrastructural analysis of small blood vessels in skin biopsies in CADASIL

    Directory of Open Access Journals (Sweden)

    Lačković Vesna

    2008-01-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is an inherited small- and medium-artery disease of the brain caused by mutation of the Notch3 gene. Very often, this disease is misdiagnosed. We examined skin biopsies in two members of the first discovered Serbian family affected by CADASIL. Electron microscopy showed that skin blood vessels of both patients contain numerous deposits of granular osmiophilic material (GOM around vascular smooth muscle cells (VSMCs. We observed degeneration of VSMCs, reorganization of their cytoskeleton and dense bodies, disruption of myoendothelial contacts, and apoptosis. Our results suggest that the presence of GOM in small skin arteries represents a specific marker in diagnosis of CADASIL.

  9. Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage

    Institute of Scientific and Technical Information of China (English)

    Yi Hou-Hui; Yang Xiao-Feng; Wang Cai-Feng; Li Hua-Bing

    2009-01-01

    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.

  10. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping.

    Science.gov (United States)

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-08-31

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED.

  11. [Efferent innervation of pulmonary blood vessels and bronchi in rat (an immunohistochemical study)].

    Science.gov (United States)

    Chumasov, E I; Voronchikhin, P A; Korzhevskiĭ, D É

    2012-01-01

    In this investigation the peculiarities of innervation of bronchi and blood vessels of the lung were studied in 20 rats using immunohistochemical demonstration of synaptophysin and alpha-actin. The results obtained have showen that the densest innervation is typical for bronchial walls, particularly, for the muscular lamina. Synaptophysin-immunoreactive terminals (SFIT) were detected in the bronchi in close association with both circular bundles of smooth muscle cells and microganglia. Dense network of SFIT was found in the pulmonary vein--in its middle tunic formed by cardiomyocytes. In contrast to the bronchi and pulmonary vein, large branches of the pulmonary artery contained no SFIT. We briefly discuss the problem of the origin of the nerve fibers described and their functions and suggest that SFIT are formed by efferent fibers (axons) of neurons arising from either the intrapulmonary parasympathetic ganglia.

  12. Renin inhibition improves cardiac function and remodeling after myocardial infarction independent of blood pressure

    NARCIS (Netherlands)

    D. Westermann (Dirk); A. Riad (Alexander); O. Lettau (Olga); A.J.M. Roks (Anton); K. Sawatis (Konstantinos); P.M. Becher (Peter Moritz); F. Escher (Felicitas); A.H.J. Danser (Jan); H.P. Schultheiss (Heinz-Peter); C. Tschöpe (Carsten)

    2008-01-01

    textabstractPharmacological renin inhibition with aliskiren is an effective antihypertensive drug treatment, but it is currently unknown whether aliskiren is able to attenuate cardiac failure independent of its blood pressure-lowering effects. We investigated the effect of aliskiren on cardiac remod

  13. Electrospun Polycaprolactone Scaffolds for Small-Diameter Tissue Engineered Blood Vessels

    Science.gov (United States)

    Lee, Carol Hsiu-Yueh

    Cardiovascular disease is the leading cause of death in the United States with many patients requiring coronary artery bypass grafting. The current standard is using autografts such as the saphenous vein or intimal mammary artery, however creating a synthetic graft could eliminate this painful and inconvenient procedure. Large diameter grafts have long been established with materials such as DacronRTM and TeflonRTM, however these materials have not proved successful in small-diameter (biodegradable polymer (polycaprolactone) we utilize our expertise in electrospinning and femtosecond laser ablation to create a novel tri-layered tissue engineered blood vessel containing microchannels. The benefits of creating a tri-layer is to mimic native arteries that contain an endothelium to prevent thrombosis in the inner layer, aligned smooth muscle cells in the middle to control vasodilation and constriction, and a mechanically robust outer layer. The following work evaluates the mechanical properties of such a graft (tensile, fatigue, burst pressure, and suture retention strength), the ability to rapidly align cells in laser ablated microchannels in PCL scaffolds, and the biological integration (co-culture of endothelial and smooth muscle cells) with electrospun PCL scaffolds. The conclusions from this work establish that the electrospun tri-layers provide adequate mechanical strength as a tissue engineered blood vessel, that laser ablated microchannels are able to contain the smooth muscle cells, and that cells are able to adhere to PCL fibers. However, future work includes adjusting microchannel dimensions to properly align smooth muscle cells along with perfect co-cultures of endothelial and smooth muscle cells on the electrospun tri-layer.

  14. First two cases of living related liver transplantation with complicated anatomy of blood vessels in Beijing

    Institute of Scientific and Technical Information of China (English)

    Wen-Han Wu; Yuan-Lian Wan; Long Lee; Yin-Mo Yang; Yan-Ting Huang; Chao-Long Chen; Sheung-Tat Fan

    2004-01-01

    AIM: Living related liver transplantation (LRLT) has been developed in response to the paediatric organ donor shortage.Though it has been succeeded in many centers worldwide,the safety of the donor is still a major concern, especially in donors with anatomy variation. We succeeded in performing the first two cases of living related liver transplantation with complicated anatomy of blood vessels as a way to overcome cadaveric organ shortage in Beijing.METHODS: Two patients, with congenital liver fibrosis and congenital biliary atresia were performed with living donor liver transplantation in our hospital and then followed up from November 12 to December 13, 2001. The two living donors, mother and father, were healthy aged 34 and 35years. One right lobe (segment Ⅴ, Ⅵ, Ⅶ, Ⅷ) and one left lateral lobe (segment Ⅱ and Ⅲ) were used. The grafts weighed 394 g and 300 g. The ratio of graft weight to the standard liver volume (SLV) of donors was 68% and 27%.The graft weight to recipient body weight ratio was 3.2%and 4.4%. The graft weight to recipient estimated standard liver mass (ESLM) ratio was 63% and 85%. The two donors had complicated blood vessel variation.RESULTS: Two patients undergone living donor liver transplantation had good results. Abnormal liver function with high bilirubin level appeared in a few days after operation, but liver function returned to normal one month after operation with bilirubin level almost decreased to near normal. No bleeding, thrombosis, infection and bile leakage occurred. One had an acute rejection and recovered.The two donors recovered in two weeks. One had slight fever because of a little collection in abdomen and recovered after paracentesis and drainage.CONCLUSION: Living donor liver transplantation has been proved to be a good way that offers a unique opportunity of getting a timely liver graft as a response to shortage of pediatric donors, though it could be a technically difficult operation if there is anatomical

  15. SDF-1 controls the muscle and blood vessel formation of the somite.

    Science.gov (United States)

    Abduelmula, Aisha; Huang, Ruijin; Pu, Qin; Tamamura, Hirokazu; Morosan-Puopolo, Gabriela; Brand-Saberi, Beate

    2016-01-01

    Stromal-cell-derived factor-1 (SDF-1), the only ligand of the chemokine receptor CXCR4, is involved in skeletal muscle development. However, its role in the proliferation, differentiation and migration of somite cells is not well understood. Here, we investigated its function during somite development in chicken embryos by using gain-of-function and loss-of-function experiments. Overexpression of SDF-1 was performed by electroporating SDF-1 constructs into the ventrolateral part of the somite, or by injecting SDF-1-expressing cells into the somites of stages HH14-16 chicken embryos. We found that enhanced SDF-1 signaling induced cell proliferation in the somite. This resulted in an increase in number of both myotomal and endothelial cells. In contrast, inhibition of SDF-1/CXCR4 signaling led to a reduction of myotomal cells. Injection of SDF-1 producing cells into the somite induced ectopic localization of myotomal cells in the sclerotome. Although many SDF-1-expressing somite cells colonized the limb, only a few of them developed into muscle cells. This resulted in a reduction of the limb muscle mass. This means that most myogenic progenitors were stopped on their migration towards the limb due to the high concentration of the SDF-1 signal in the somite. Most of the SDF-1-expressing somite cells found in the limb were of endothelial cell fate and they contributed to the increase in limb blood vessels. These results reveal that SDF-1 promotes the proliferation of both myogenic and angiogenic progenitor cells of the somite and controls myotome formation. Furthermore, SDF-1 controls muscle and blood vessel formation in the limb in different ways.

  16. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels.

    Directory of Open Access Journals (Sweden)

    Zifu Zhang

    Full Text Available Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13-15 (HH13-15. A total of 80 embryos were injected and 48 G0 chimeras (60% were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR, indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%. We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1% were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7% were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13-15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.

  17. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels.

    Science.gov (United States)

    Zhang, Zifu; Sun, Peng; Yu, Fuxian; Yan, Li; Yuan, Fang; Zhang, Wenxin; Wang, Tao; Wan, Zhiyi; Shao, Qiang; Li, Zandong

    2012-01-01

    Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP) transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13-15 (HH13-15). A total of 80 embryos were injected and 48 G0 chimeras (60%) were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR), indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%). We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1%) were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7%) were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13-15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.

  18. Use of the Structure of Blood Vessel for Detection of Brain Aneurysm and Route Search to Brain Aneurysm

    Directory of Open Access Journals (Sweden)

    Toshihide Miyagi

    2013-08-01

    Full Text Available In this research, we constructed functions that are necessary for the operation simulation system which assists medical students to inhibit brain aneurysm from exploding. The system reported in this paper is "detection of blood vessels", "detection of brain aneurysm" and "route planning to brain aneurysm". Not only the detection method but also the method to reduce the miss detection is realized for the detection of blood vessel. Finally, the future work will be shown including construction of head model consisting of artery, vein, brain and cranium.

  19. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation

    Directory of Open Access Journals (Sweden)

    Shih Tzu-Ching

    2010-03-01

    Full Text Available Abstract Background Pennes Bio Heat Transfer Equation (PBHTE has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions. Methods In this paper, a countercurrent blood vessel network (CBVN model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels. Results This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model delivers the

  20. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance.

    Science.gov (United States)

    Mohammed, Rabab A A; Ellis, Ian O; Mahmmod, Ali M; Hawkes, E Claire; Green, Andrew R; Rakha, Emad A; Martin, Stewart G

    2011-06-01

    Basal and triple-negative breast cancer phenotypes are characterised by unfavourable biological behaviour and outcome. Although certain studies have examined their pathological and molecular profile, the vascular characteristics of lymphatic and blood vessels have not been examined. Immunohistochemical staining with podoplanin, CD34 and CD31 was used to examine lymphatic and microvessel density, as well as vascular invasion in 197 basal-like and in 99 triple-negative breast tumours and compared against 200 non-basal and 334 non-triple-negative cases. All specimens were lymph node negative. Vascular invasion was identified as blood or lymphatic vascular invasion by the differential expression of markers. All measurements were correlated with clinicopathological features and prognosis. No significant difference was detected between the basal and triple-negative groups in terms of lymphatic or microvessel density or vascular invasion. However, both the basal and the triple-negative groups showed significantly higher microvessel density than did the non-basal and non-triple-negative groups (P=0.017 and Pcontrols. Interestingly, vascular invasion, almost entirely lymphatic invasion, was detected in 27% of the basal and in 26% of the triple-negative groups with no significant difference in comparison with control groups. In both basal and triple negatives, vascular invasion was associated with poorer survival by univariate and multivariate analyses. The 20-year overall survival rate in basal-like tumours was 55% in vascular invasion-positive cases compared with 73% in vascular invasion-negative tumours (P=0.012), and 46% in triple-negative vascular invasion-positive compared with 79% in vascular invasion-negative tumours (P=0.001). Basal-like vs non-basal-like and triple-negative vs non-triple-negative tumours have similar vascular characteristics in terms of lymphatic vessel density and vascular invasion but higher microvessel density, suggesting that such groups may

  1. [In vitro study of regulation of shear stress on antithrombogenic potentials of endothelialized polyurethane small diameter artificial blood vessel].

    Science.gov (United States)

    Yang, Zhen; Tao, Jun; Wang, Jiemei; Tu, Chang; Feng, Lianqiang; Pan, Shirong; Ma, Hong

    2008-06-01

    This study was designed to investigate the changes of prostaglandin I2 (PGI2) and nitric oxide (NO) secreted by endothelialized polyurethane small diameter artificial blood vessel. The peripheral blood mononuclear cells of healthy adult were separated and induced into endothelial progenitor cells (EPCs), which were identified by the methods of discrepancy microphage and fluorescent immunology labeling. After the induced cells being seeded on the polyurethane small-diameter artificial vessels, the endothelialized polyurethane small diameter artificial blood vessels were divided into four different experimental groups, including stationary group, low-flow shear stress group (5 dynes/cm2), medium-flow shearstress group (15 dynes/cm2), and high-flow shear stress group (25 dynes/cm2). Then, the levels of 6-ketoprostaglandin F1alpha (6-keto-PGF1alpha) and NO of different time were measured by enzyme-linked immunosorbent assay and nitrate reductase methods. The peripheral blood mononuclear cells differentiated into EPCs. They presented typical "spindie-shaped" appearance, and they were positively labeled by fluorescent acetylated-LDL, lectin, FLK-1 and vWF. Shear stress enhanced the production of NO and 6-keto-PGF1alpha by EPCs in a dose-dependent manner. Therefore, shear stress increases the secretion of NO and PGI2 by EPC, which suggests that shear stress can improve the antithrombogenic potentials of endothelialized polyurethane small diameter artificial blood vessel.

  2. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  3. Rapid remodeling of airway vascular architecture at birth.

    Science.gov (United States)

    Ni, Amy; Lashnits, Erin; Yao, Li-Chin; Baluk, Peter; McDonald, Donald M

    2010-09-01

    Recent advances have documented the development of lung vasculature before and after birth, but less is known of the growth and maturation of airway vasculature. We sought to determine whether airway vasculature changes during the perinatal period and when the typical adult pattern develops. On embryonic day 16.5 mouse tracheas had a primitive vascular plexus unlike the adult airway vasculature, but instead resembling the yolk sac vasculature. Soon after birth (P0), the primitive vascular plexus underwent abrupt and extensive remodeling. Blood vessels overlying tracheal cartilage rings regressed from P1 to P3 but regrew from P4 to P7 to form the hierarchical, segmented, ladder-like adult pattern. Hypoxia and HIF-1α were present in tracheal epithelium over vessels that survived but not where they regressed. These findings reveal the plasticity of airway vasculature after birth and show that these vessels can be used to elucidate factors that promote postnatal vascular remodeling and maturation.

  4. Aging in blood vessels. Medicinal agents FOR systemic arterial hypertension in the elderly.

    Science.gov (United States)

    Rubio-Ruiz, María Esther; Pérez-Torres, Israel; Soto, María Elena; Pastelín, Gustavo; Guarner-Lans, Verónica

    2014-11-01

    Aging impairs blood vessel function and leads to cardiovascular disease. The mechanisms underlying the age-related endothelial, smooth muscle and extracellular matrix vascular dysfunction are discussed. Vascular dysfunction is caused by: (1) Oxidative stress enhancement. (2) Reduction of nitric oxide (NO) bioavailability, by diminished NO synthesis and/or augmented NO scavenging. (3) Production of vasoconstrictor/vasodilator factor imbalances. (4) Low-grade pro-inflammatory environment. (5) Impaired angiogenesis. (6) Endothelial cell senescence. The aging process in vascular smooth muscle is characterized by: (1) Altered replicating potential. (2) Change in cellular phenotype. (3) Changes in responsiveness to contracting and relaxing mediators. (4) Changes in intracellular signaling functions. Systemic arterial hypertension is an age-dependent disorder, and almost half of the elderly human population is hypertensive. The influence of hypertension on the aging cardiovascular system has been studied in models of hypertensive rats. Treatment for hypertension is recommended in the elderly. Lifestyle modifications, natural compounds and hormone therapies are useful for initial stages and as supporting treatment with medication but evidence from clinical trials in this population is needed. Since all antihypertensive agents can lower blood pressure in the elderly, therapy should be based on its potential side effects and drug interactions.

  5. Characterization of Imidazoline Receptors in Blood Vessels for the Development of Antihypertensive Agents

    Directory of Open Access Journals (Sweden)

    Mei-Fen Chen

    2014-01-01

    Full Text Available It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R may reduce the blood pressure in spontaneously hypertensive rats (SHRs. Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s. Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.

  6. Characterization of imidazoline receptors in blood vessels for the development of antihypertensive agents.

    Science.gov (United States)

    Chen, Mei-Fen; Tsai, Jo-Ting; Chen, Li-Jen; Wu, Tung-Pi; Yang, Jia-Jang; Yin, Li-Te; Yang, Yu-Lin; Chiang, Tai-An; Lu, Han-Lin; Wu, Ming-Chang

    2014-01-01

    It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP) channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.

  7. AGE-RELATED FEATURES OF PERIPHERAL BLOOD MARKERS IN CHILDREN AND YOUNG ADULTS WITH NORMAL AND PATHOLOGICAL REMODELING OF BONE TISSUE

    Directory of Open Access Journals (Sweden)

    M. V. Dvornichenko

    2016-01-01

    Full Text Available Activities of total alkaline phosphatase (TALP and its bone isoform (BALP was greater in groups of children and adolescents in the late posttraumatic period (pattern of reparative bone remodeling and scoliosis (pathological bone remodeling, than in the control (healthy children and adolescents. The content of collagen type I degradation products (CrossLaps peripheral blood practically was unchanged. Examined group with posttraumatic period had high activity of tartrate-resistant acid phosphatase form (TRACP. TALP activity reached minimum values in all the studied groups. In the process of children growing to 15–18 years old, as compared to 7–10 years old, reducing activity of remodeling was observed under physiological (healthy donors and reparative osteogenesis. It’s changes was recorded by significant decrease of the studied indicators. On the contrary, children 15–18 years old with scoliosis had maximum of the imbalance (activation/inhibition of various signs of osteogenesis of resorptive/synthetic bone processes. Also, for this group we discovered decrease osteocalcin concentration of 4 times in comparison with the group children of 7–10 years old. The detected growth of the correlations number in the correlation matrix of bone remodeling markers in case of scoliosis proposes the reduction of adaptation reserve of 15–18 years old adolescents, suffering from dysplasia of connective tissue. Thus, the pathophysiological and clinical significance of distant markers of bone metabolism screening in peripheral blood the is ambiguous. The interpretation of these indicators is difficult and largely depends on the clinical situation and age of patients. This requires improving the diagnostic approach to assess physiological and pathological remodeling of bone tissue by means of biochemical blood indicators. 

  8. In Vitro Model of Physiological and Pathological Blood Flow with Application to Investigations of Vascular Cell Remodeling.

    Science.gov (United States)

    Elliott, Winston; Scott-Drechsel, Devon; Tan, Wei

    2015-11-03

    Vascular disease is a common cause of death within the United States. Herein, we present a method to examine the contribution of flow dynamics towards vascular disease pathologies. Unhealthy arteries often present with wall stiffening, scarring, or partial stenosis which may all affect fluid flow rates, and the magnitude of pulsatile flow, or pulsatility index. Replication of various flow conditions is the result of tuning a flow pressure damping chamber downstream of a blood pump. Introduction of air within a closed flow system allows for a compressible medium to absorb pulsatile pressure from the pump, and therefore vary the pulsatility index. The method described herein is simply reproduced, with highly controllable input, and easily measurable results. Some limitations are recreation of the complex physiological pulse waveform, which is only approximated by the system. Endothelial cells, smooth muscle cells, and fibroblasts are affected by the blood flow through the artery. The dynamic component of blood flow is determined by the cardiac output and arterial wall compliance. Vascular cell mechano-transduction of flow dynamics may trigger cytokine release and cross-talk between cell types within the artery. Co-culture of vascular cells is a more accurate picture reflecting cell-cell interaction on the blood vessel wall and vascular response to mechanical signaling. Contribution of flow dynamics, including the cell response to the dynamic and mean (or steady) components of flow, is therefore an important metric in determining disease pathology and treatment efficacy. Through introducing an in vitro co-culture model and pressure damping downstream of blood pump which produces simulated cardiac output, various arterial disease pathologies may be investigated.

  9. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug

    Directory of Open Access Journals (Sweden)

    Lin CY

    2012-04-01

    Full Text Available Chung-Yin Lin1*, Hsiao-Ching Tseng1*, Heng-Ruei Shiu1, Ming-Fang Wu2, Cheng-Ying Chou3, Win-Li Lin1,41Institute of Biomedical Engineering, 2Laboratory Animal Center, 3Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan; 4Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan*These authors contributed equally to this workAbstract: Ultrasound (US sonication with microbubbles (MBs has the potential to disrupt blood vessels and enhance the delivery of drugs into the sonicated tissues. In this study, mouse ear tumors were employed to investigate the therapeutic effects of US, MBs, and pegylated liposomal doxorubicin (PLD on tumors. Tumors started to receive treatments when they grew up to about 15 mm3 (early stage with injection of PLD 10 mg/kg, or up to 50 mm3 (medium stage with PLD 6 (or 4 mg/kg. Experiments included the control, PLD alone, PLD + MBs + US, US alone, and MBs + US groups. The procedure for the PLD + MBs + US group was that PLD was injected first, MB (SonoVue injection followed, and then US was immediately sonicated on the tumor. The results showed that: (1 US sonication with MBs was always able to produce a further hindrance to tumor growth for both early and medium-stage tumors; (2 for the medium-stage tumors, 6 mg/kg PLD alone was able to inhibit their growth, while it did not work for 4 mg/kg PLD alone; (3 with the application of MBs + US, 4 mg/kg PLD was able to inhibit the growth of medium-stage tumors; (4 for early stage tumors after the first treatment with a high dose of PLD alone (10 mg/kg, the tumor size still increased for several days and then decreased (a biphasic pattern; (5 MBs + US alone was able to hinder the growth of early stage tumors, but unable to hinder that of medium stage tumors. The results of histological examinations and blood perfusion measurements indicated that the application of MBs + US disrupts the tumor blood

  10. Angioplasty and stenting for severe vertebral artery oriifce stenosis:effects on cerebellar function remodeling veriifed by blood oxygen level-dependent functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Zhiwei Li; Peng Xie

    2014-01-01

    Vertebral artery oriifce stenting may improve blood supply of the posterior circulation of the brain to regions such as the cerebellum and brainstem. However, previous studies have mainly focused on recovery of cerebral blood lfow and perfusion in the posterior circulation after inter-ventional therapy. This study examined the effects of functional recovery of local brain tissue on cerebellar function remodeling using blood oxygen level-dependent functional magnetic reso-nance imaging before and after interventional therapy. A total of 40 Chinese patients with severe unilateral vertebral artery oriifce stenosis were enrolled in this study. Patients were equally and randomly assigned to intervention and control groups. The control group received drug treat-ment only. The intervention group received vertebral artery oriifce angioplasty and stenting+identical drug treatment to the control group. At 13 days after treatment, the Dizziness Handicap Inventory score was compared between the intervention and control groups. Cerebellar function remodeling was observed between the two groups using blood oxygen level-dependent function-al magnetic resonance imaging. The improvement in dizziness handicap and cerebellar function was more obvious in the intervention group than in the control group. Interventional therapy for severe vertebral artery oriifce stenosis may effectively promote cerebellar function remodeling and exert neuroprotective effects.

  11. Immune modulation of resistance artery remodelling.

    Science.gov (United States)

    Schiffrin, Ernesto L

    2012-01-01

    Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.

  12. [Coronary artery blood flow velocity non-invasively measured using a vessel-tracking pulsed Doppler system].

    Science.gov (United States)

    Tateishi, O; Aizawa, O; Okamura, T; Yoshida, T; Furuhata, H; Seo, Y; Iinuma, K; Shiki, E

    1988-09-01

    A newly-developed noninvasive method was used to measure left coronary blood flow during phantom experiments. Two techniques were used in which: (1) the sample position can always be set in a fluctuating vessel using a wall echo-tracking method with a phase-locked-loop, and (2) the Doppler reference signal was generated separately synchronous with the wall echo signal. These techniques were combined, using a commercially available pulsed Doppler apparatus (SSH-40B: Toshiba). Basic experiments were performed using a blood vessel phantom to verify the validity of these systems. Blood flow velocity in the fluctuating tube could be measured clearly using a vessel-tracking method. The blood flow velocity of the left anterior descending artery was measured in three normal subjects and in seven patients from the third intercostal space along the left sternal border. The velocity pattern was characterized by a crescendo-decrescendo shape in diastole. The peak velocity which appeared in diastole ranged from 19 to 69 cm/sec, with no difference by disease entity. However, in all cases, the blood flow velocity signals were marred by extraneous signals, making it impossible to measure blood flow velocity during systole. Further improvement of the system is mandatory in order to use this flowmeter clinically.

  13. Hypoxia-inducible factor and vascular endothelial growth factor in the neuroretina and retinal blood vessels after retinal ischemia

    DEFF Research Database (Denmark)

    Håkansson, Gisela; Gesslein, Bodil; Gustafsson, Lotta

    2010-01-01

    Retinal ischemia arises from circulatory failure. As the retinal blood vessels are key organs in circulatory failure, our aim was to study the retinal vasculature separately from the neuroretina to elucidate the role of hypoxia-inducible factor (HIF) 1α and 1β and vascular endothelial growth factor...

  14. MRA Images Identification of the Artery Blood Vessel of the Knee with SOM LVQ Neural Networks as Auxiliary.

    Science.gov (United States)

    Huang, Hung-Chun; Chien, Chia-Hung; Shih, Ting-Fang; Chong, Fok-Ching

    2005-01-01

    The ways of angiography are divided into two kinds at present: the invasive type and the non invasive type. Because the magnetic resonance angiography (MRA) has advantages of the non invasive type, thus people can accept MRA more easily. Presently, to diagnoses for the initial stage triage of the blood vessel on clinic by MRA mostly. We to be allowed to see clearly that the shape of lower limb artery which like the dendrite and the blood vessel is thick from the trunk to the thin branch, also we can see the narrow embolism and the blocked place through MRA. This study is aiming at the image of artery of blood vessel by MRA assay, and is attempting to use two-dimensional structure of SOM and LVQ to make out topologies for the shape of artery of blood vessel. We expect that MRA could be useful tools for earlier on the quick triage and auxiliary diagnosis of doctors. By actual examples truly prove that patients after peripheral arterial occlusive disease (PAOD) treatment can diagnose effectively, shorten the time of patients waiting for reports and improve the whole efficiency of the medical treatment system.

  15. Association of body composition and blood pressure categories with retinal vessel diameters in primary school children.

    Science.gov (United States)

    Imhof, Katharina; Zahner, Lukas; Schmidt-Trucksäss, Arno; Hanssen, Henner

    2016-06-01

    Alterations in retinal vessel diameters have been shown to be predictive of cardiovascular risk in adults and children. The aim of our study was to examine the association of body composition and blood pressure (BP) categories with retinal vessel diameters in school children. We examined anthropometric parameters, BP and retinal arteriolar (CRAE) and venular (CRVE) diameters as well as the arteriolar-to-venular diameter ratio (AVR) in 391 children (age: 7.3, s.d. 0.4). Differences between the lowest and highest BP quartiles indicated that higher systolic and diastolic BP were associated with narrower CRAE (P<0.001 for both). Children in the highest weight quartile had narrower CRAE compared with the lowest quartile (P=0.05). In the regression analysis, systolic and diastolic BP were associated with arteriolar narrowing (-0.4 measuring units (mu) per mm Hg, 95% confidence interval: [-0.6; -0.3] and -0.6 mu per mm Hg [-0.7; -0.4], respectively; P<0.001 for both). An independent association was found for diastolic BP only. Compared with normotensives (NT; 74.4% of cohort), arteriolar narrowing was already seen in children categorized as pre-hypertensive (PHT) (11.5% of cohort), which was similar to HT children (14.1% of cohort) (NT: mean 207.2 [205.6; 208.7] mu; PHT: 201.7 [197.8; 205.7] mu; HT: 199.7 [196.2; 203.3] mu; P=0.01 for PHT vs. NT and P<0.001 for HT vs. NT in systolic BP). Our results suggest that systolic and diastolic BP are main determinants of retinal arteriolar diameters; and therefore, microvascular health in young children. Pre-hypertension seems to be associated with retinal microvascular alterations early in life.

  16. A new resorbable device for ligation of blood vessels - A pilot study

    Directory of Open Access Journals (Sweden)

    Borg Niklas

    2011-07-01

    Full Text Available Abstract Background During surgery, controlled haemostasis to prevent blood loss is vital for a successful outcome. It can be difficult to ligate vessels located deep in the abdomen. A device that is easy to use and enables secure ligatures could be beneficial. Cable ties made of nylon have been used for ligation but the non-resorbable material caused tissue reactions. The objective of this study was to use a resorbable material to construct a device with a self-locking mechanism and to test its mechanical strength and ligation efficiency. Methods The device was manufactured by injection moulding of polydioxanone, a resorbable polymer used for suture materials. Polydioxanone with inherent viscosities of 1.9 dL/g and 1.3 dL/g were tested. The device consisted of a perforated flexible band which could be pulled through a case with a locking mechanism. After a first version of the device had been tested, some improvements were made. The locking case was downsized, corners were rounded off, the band was made thicker and the mould was redesigned to produce longer devices. Tensile tests were performed with the second version. The first version of the device was used to ligate the ovarian pedicle in a euthanized dog and to test echogenicity of the device with ultrasound. Compression of vessels of the ovarian pedicle was examined by histology. Both versions of the device were tested for haemostasis of and tissue grip on renal arteries in six anaesthetised pigs. Results The tensile strength of the flexible band of the devices with inherent viscosity of 1.9 dL/g was 50.1 ± 5.5 N (range 35.2-62.9 N, n = 11 and the devices with inherent viscosity of 1.3 dL/g had a tensile strength of 39.8 ± 8.1 N (range 18.6-54.2 N, n = 11. Injection moulding of the polymer with lower inherent viscosity resulted in a longer flow distance. Both versions of the device had an effective tissue grip and complete haemostasis of renal arteries was verified. The device attached

  17. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-01

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  18. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-18

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  19. Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser.

    Science.gov (United States)

    Giglio, Nicholas C; Hutchens, Thomas C; Perkins, William C; Latimer, Cassandra; Ward, Arlen; Nau, William H; Fried, Nathaniel M

    2014-03-01

    Suture ligation with subsequent cutting of blood vessels to maintain hemostasis during surgery is time consuming and skill intensive. Energy-based electrosurgical and ultrasonic devices are often used to replace sutures and mechanical clips to provide rapid hemostasis and decrease surgery time. Some of these devices may create undesirably large collateral zones of thermal damage and tissue necrosis, or require separate mechanical blades for cutting. Infrared lasers are currently being explored as alternative energy sources for vessel sealing applications. In a previous study, a 1470-nm laser was used to seal vessels 1 to 6 mm in diameter in 5 s, yielding burst pressures of ∼500  mmHg. The purpose of this study was to provide vessel sealing times comparable with current energy-based devices, incorporate transection of sealed vessels, and demonstrate high vessel burst pressures to provide a safety margin for future clinical use. A 110-W, 1470-nm laser beam was transmitted through a fiber and beam shaping optics, producing a 90-W linear beam 3.0 by 9.5 mm for sealing (400  W/cm2), and 1.1 by 9.6 mm for cutting (1080  W/cm2). A two-step process sealed and then transected ex vivo porcine renal vessels (1.5 to 8.5 mm diameter) in a bench top setup. Seal and cut times were 1.0 s each. A burst pressure system measured seal strength, and histologic measurements of lateral thermal spread were also recorded. All blood vessels tested (n=55 seal samples) were sealed and cut, with total irradiation times of 2.0 s and mean burst pressures of 1305±783  mmHg. Additional unburst vessels were processed for histological analysis, showing a lateral thermal spread of 0.94±0.48  mm (n=14 seal samples). This study demonstrated that an optical-based system is capable of precisely sealing and cutting a wide range of porcine renal vessel sizes and, with further development, may provide an alternative to radiofrequency- and ultrasonic-based vessel sealing devices.

  20. Renovascular hypertension causes cerebral vascular remodeling

    Institute of Scientific and Technical Information of China (English)

    Yamei Tang; Xiangpen Li; Yi Li; Qingyu Shen; Xiaoming Rong; Ruxun Huang; Ying Peng

    2011-01-01

    Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that the vascular network was sparse. The arterioles of the RHRs at 10 weeks had smaller lumen diameters, but thicker vessel walls with hyalinosis formation compared with control animals. The endothelial cell membrane appeared damaged, and microthrombus formed. After ischemia, the infarction size was larger in RHRs than in control animals. These results suggest that cerebral arterioles in RHRs underwent structural remodeling. High blood pressure may aggravate the severity of brain injury in cerebral ischemia and affect the recovery of ischemia.

  1. [A new objective clinical method in the evaluation of the status of blood flow in conjunctival vessels].

    Science.gov (United States)

    Polunin, G S; Pirogova, E P; Iarovaia, L D

    1989-01-01

    The suggested method for assessment of the blood aggregation characteristics in the conjunctival vessels is based on microdensitometry of the blood stream microphotographs. The method permits a graphic recording of the blood stream. The potentialities of the developed technique have been studied in comparison of the blood aggregation in patients with diabetic retinopathy and in normal subjects. The data evidence an increased coagulation activity of the blood in patients with diabetes mellitus vs. normal subjects, this correlating with the biochemical findings in examinations of these patients' hemostasis. The clinical method for assessment of the blood aggregation characteristics may be useful for the prognosis of the course of various diseases and for monitoring the treatment efficacy.

  2. Effect of loading-dose ticagrelor on coronary blood flow, left ventricular remodeling and myocardial enzyme spectrum in patients with acute myocardial infarction after interventional therapy

    Institute of Scientific and Technical Information of China (English)

    Xiao-Rui Xie; Pu Yang

    2016-01-01

    Objective:To study the effect of loading-dose ticagrelor on coronary blood flow, left ventricular remodeling and myocardial enzyme spectrum in patients with acute myocardial infarction after interventional therapy.Methods: A total of 86 patients with acute myocardial infarction who received emergency PCI in our hospital between May 2013 and May 2016 were selected and randomly divided into two groups, ticagrelor group received perioperative ticagrelor therapy and clopidogrel group received perioperative clopidogrel therapy. After PCI, coronary blood flow reperfusion was evaluated, serum myocardial remodeling indexes and myocardial enzymes were determined, and cardiac color Doppler ultrasonography was conducted to determine the cardiac function indexes.Results:TIMI grading and TMPG grading of ticagrelor group after PCI were significantly higher than those of clopidogrel group; serum MMP9, BNP, CITP, PICP, PIIINP, CK, CK-MB, cTnI and cTnT content of ticagrelor group 24h after operation were significantly lower than those of clopidogrel group; LVEDD, LVSED and LVMI of ticagrelor group 2 weeks after operation were significantly lower than those of clopidogrel group while LVEF was significantly higher than that of clopidogrel group.Conclusion:Peri-PCI loading-dose ticagrelor can improve coronary blood perfusion and reduce ventricular remodeling and myocardial injury in patients with acute myocardial infarction.

  3. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.

    Science.gov (United States)

    Sriram, Krishna; Tsai, Amy G; Cabrales, Pedro; Meng, Fantao; Acharya, Seetharama A; Tartakovsky, Daniel M; Intaglietta, Marcos

    2012-06-15

    We studied the extreme hemodilution to a hematocrit of 11% induced by three plasma expanders: polyethylene glycol (PEG)-conjugated albumin (PEG-Alb), 6% 70-kDa dextran, and 6% 500-kDa dextran. The experimental component of our study relied on microelectrodes and cardiac output to measure both the rheological properties of plasma-expander blood mixtures and nitric oxide (NO) bioavailability in vessel walls. The modeling component consisted of an analysis of the distribution of wall shear stress (WSS) in the microvessels. Our experiments demonstrated that plasma expansion with PEG-Alb caused a state of supraperfusion with cardiac output 40% above baseline, significantly increased NO vessel wall bioavailability, and lowered peripheral vascular resistance. We attributed this behavior to the shear thinning nature of blood and PEG-Alb mixtures. To substantiate this hypothesis, we developed a mathematical model of non-Newtonian blood flow in a vessel. Our model used the Quemada rheological constitutive relationship to express blood viscosity in terms of both hematocrit and shear rate. The model revealed that the net effect of the hemodilution induced by relatively low-viscosity shear thinning PEG-Alb plasma expanders is to reduce overall blood viscosity and to increase the WSS, thus intensifying endothelial NO production. These changes act synergistically, significantly increasing cardiac output and perfusion due to lowered overall peripheral vascular resistance.

  4. Identification of RSK and TTK as Modulators of Blood Vessel Morphogenesis Using an Embryonic Stem Cell-Based Vascular Differentiation Assay

    Directory of Open Access Journals (Sweden)

    Lamis Hammoud

    2016-10-01

    Full Text Available Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens.

  5. Molecular Dynamics Simulation of Soft Grains: Malaria-Infected Red Blood Cells Motion within Obstructed 2-D Capillary Vessel

    CERN Document Server

    Haris, Luman; Haryanto, Freddy; Viridi, Sparisoma

    2013-01-01

    Molecular dynamics has been widely used to numerically solve equation of motion of classical many-particle system. It can be used to simulate many systems including biophysics, whose complexity level is determined by the involved elements. Based on this method, a numerical model had been constructed to mimic the behaviour of malaria-infected red blood cells within capillary vessel. The model was governed by three forces namely Coulomb force, normal force, and Stokes force. By utilizing two dimensional four-cells scheme, theoretical observation was carried out to test its capability. Although the parameters were chosen deliberately, all of the quantities were given arbitrary value. Despite this fact, the results were quite satisfactory. Combined with the previous results, it can be said that the proposed model were sufficient enough to mimic the malaria-infected red blood cells motion within obstructed capillary vessel. Keywords: molecular dynamics, two-dimensional model, red-blood cell motion, malaria

  6. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development.

    Science.gov (United States)

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Koifman, Naama; Shimoni, Eyal; Rechav, Katya; Arraf, Alaa A; Schultheiss, Thomas M; Talmon, Yeshayahu; Zelzer, Elazar; Weiner, Stephen; Addadi, Lia

    2016-02-01

    During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself.

  7. Development of a dynamic in vitro model of a stented blood vessel to evaluate the effects of stent strut material selection and surface coating on smooth muscle cell response

    Science.gov (United States)

    Winn, Bradley Huegh

    Cardiovascular disease is the leading cause of mortality in The United States and Europe, accounting for approximately half of all deaths. The most common form of cardiovascular disease is atherosclerosis, which is characterized by the formation of fatty atheromatous plaques that can grow to occlude the vessel lumen, thus causing ischemia distal to the occlusion. This is commonly treated using balloon angioplasty, which is usually done in conjunction with the deployment of a stent. Stent deployment helps hold the vessel open following the local injury caused by balloon inflation and prevents elastic recoil and subsequent negative remodeling. Stenting has been shown to significantly reduce restenosis rates from approximately 20-50% without a stent to about 10-30% with stent deployment. However, restenosis still remains the main cause of long-term stent failure. In basic terms, a balloon angioplasty procedure is a forceful displacement of an atherosclerotic lesion serving to widen the vessel lumen to increase blood flow. This procedure causes stretching of the vessel wall, tears in the atherosclerotic plaques, and general damage to the vessel in turn signaling a complex cascade of thrombosis, inflammation, intimal thickening, and vascular remodeling. Stent deployment also further complicates the immunological response by triggering a foreign body response from the implantation of a biomaterial into the body. When performing an angioplasty procedure, particularly in conjunction with stent deployment, a certain degree of vascular injury is inevitable. However, the initial injury can be further complicated by the body's local reaction to the implanted biomaterial, the severity of which can ultimately dictate the degree of restenosis and subsequently affect procedural success. The proliferative response of VSMCs to the various afore mentioned stimuli results in the formation of often copious amounts of neointimal tissue, generally known as intimal hyperplasia. The

  8. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers.

    Science.gov (United States)

    Ralston, E; Lu, Z; Biscocho, N; Soumaka, E; Mavroidis, M; Prats, C; Lømo, T; Capetanaki, Y; Ploug, T

    2006-12-01

    Skeletal muscle fibers contain hundreds to thousands of nuclei which lie immediately under the plasmalemma and are spaced out along the fiber, except for a small cluster of specialized nuclei at the neuromuscular junction. How the nuclei attain their positions along the fiber is not understood. Here we show that the nuclei are preferentially localized near blood vessels (BV), particularly in slow-twitch, oxidative fibers. Thus, in rat soleus muscle fibers, 81% of the nuclei appear next to BV. Lack of desmin markedly perturbs the distribution of nuclei along the fibers but does not prevent their close association with BV. Consistent with a role for desmin in the spacing of nuclei, we show that denervation affects the organization of desmin filaments as well as the distribution of nuclei. During chronic stimulation of denervated muscles, new BV form, along which muscle nuclei align themselves. We conclude that the positioning of nuclei along muscle fibers is plastic and that BV and desmin intermediate filaments each play a distinct role in the control of this positioning.

  9. MODIFICATION OF THE NUSS PROCEDURE-PREVENTION OF INJURIES OF THE HEART AND MAJOR BLOOD VESSELS

    Directory of Open Access Journals (Sweden)

    Mirko Žganjer

    2012-09-01

    Full Text Available Objective: The Nuss procedure is a widely accepted technique for correcting pectus excavatum. Unfortunately, fatal complications such as cardiac perforation and injury of the great blood vessels have been noticed in a few patients.We modified original Nuss technique to be simpler and lessdangerous.Methods: We modified Nuss procedure with the sternal elevation to improve sternal depression. Modified Nuss procedure was carried out by applying metal lifter raise sterum until the patient starts to raise from the operating table. The space behind sternum is now wider, and surgeryhas become safer with less probability of injuries intrathoracic organs. We compared 46 patients operated by the original Nuss method (taking into account the data from the literature on complications of the original method on a large series of patients with 54 patients operated by a modified Nuss method.Results: Before lifting the sternum depth of the deformity was between 2.9 and 6.2 cm (mean 5.4 cm, and the increase were between 1.5 and 4.0 cm (mean 2.8 cm. The difference of 2.6 cm is large enough, and the width of introducer and bars are about 3 mm for securely passed along the chest.Conclusions: A modified method of treating pectus excavatum is safer, better and with fewer complications than the original method of Nuss.

  10. Possible bi-directional link between ETA receptors and protein kinase C in rat blood vessels

    Directory of Open Access Journals (Sweden)

    A. M. Northover

    1995-01-01

    Full Text Available Possible links have been investigated between activation of protein kinase C (PKC and endothelin (ET production by small blood vessels. Perfusion pressures were recorded from rat isolated mesenteric artery, with or without the small intestine attached, before and after addition to the perfusate of either ET-1, ET-3 or the PKC activator 12-deoxyphorbol 13-phenylacetate (DOPPA. Rises in perfusion pressure in response to ET-1 (10−8 Mor DOPPA (10−6 M were reduced significantly by pre-treatment with either the ETA receptor antagonist PD151242 (10−6 M or the PKC inhibitor Ro 31-8220 (10−6 M. ET-3 (10−8 M had a significant, albeit small, effect only when the gut was still attached to the mesentery. Inthis latter preparation ET-1 and DOPPA increased the permeability of villi microvessels to colloidal carbon in the perfusate. This effect of DOPPA was reduced by pre-treatment with either PD151242 or Ro 31-8220, but the effects of ET-1 were reduced significantly only by Ro 31-8220. ET-3 (10−8 M was without effect. The results suggest a possible bi-directional link between ETA receptors and PKC in the intestinal vasculature.

  11. Infrared tomography for diagnostic imaging of port wine stain blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The objective of this work is the development of Infrared Tomography (IRT) for detecting and characterizing subsurface chromophores in human skin. Characterization of cutaneous chromophores is crucial for advances in the laser treatment of pigmented lesions (e.g., port wine stain birthmarks and tatoos). Infrared tomography (IRT) uses a fast infrared focal plane array (IR-FPA) to detect temperature rises in a substrate induced by pulsed radiation. A pulsed laser is used to produce transient heating of an object. The temperature rise, due to the optical absorption of the pulsed laser light, creates an increase in infrared emission which is measured by the IR-FPA. Although the application of IRT to image subsurface cracks due to metal fatigue is a topic of great interest in the aircraft industry, the application to image subsurface chromophores in biological materials is novel. We present an image recovery method based on a constrained conjugate gradient algorithm that has obtained the first ever high quality images of port wine blood vessels.

  12. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.

    Science.gov (United States)

    Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

    2014-06-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented.

  13. Investigation of source-detector separation optimization for an implantable perfusion and oxygenation sensor for liver blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Akl, Tony [Texas A& M University; Cote, Gerard L. [Texas A& M University; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA; Ericson, Milton Nance [ORNL

    2011-01-01

    An implanted system is being developed to monitor transplanted liver health during the critical 7-10 day period posttransplantation. The unit will monitor organ perfusion and oxygen consumption using optically-based probes placed on both the inflow and outflow blood vessels, and on the liver parenchymal surface. Sensing probes are based on a 3- wavelength LED source and a photodiode detector. Sample diffuse reflectance is measured at 735, 805, and 940 nm. To ascertain optimal source-to-photodetector spacing for perfusion measurement in blood vessels, an ex vivo study was conducted. In this work, a dye mixture simulating 80% blood oxygen saturation was developed and perfused through excised porcine arteries while collecting data for various preset probe source-to-photodetector spacings. The results from this study demonstrate a decrease in the optical signal with decreasing LED drive current and a reduction in perfusion index signal with increasing probe spacing. They also reveal a 2- to 4-mm optimal range for blood vessel perfusion probe source-to-photodetector spacing that allows for sufficient perfusion signal modulation depth with maximized signal to noise ratio (SNR). These findings are currently being applied to guide electronic configuration and probe placement for in vivo liver perfusion porcine model studies.

  14. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Hiroki, E-mail: hteraoka@rakuno.ac.jp [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ogawa, Akira [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Kubota, Akira [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Stegeman, John J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Peterson, Richard E. [School of Pharmacy, University of Wisconsin, Madison, WI (United States); Hiraga, Takeo [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan)

    2010-08-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR{sup -/-} mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and {beta}-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish.

  15. Integrin-α5β1 is not required for mural cell functions during development of blood vessels but is required for lymphatic-blood vessel separation and lymphovenous valve formation.

    Science.gov (United States)

    Turner, Christopher J; Badu-Nkansah, Kwabena; Crowley, Denise; van der Flier, Arjan; Hynes, Richard O

    2014-08-15

    Integrin α5β1 is essential for vascular development but it remains unclear precisely where and how it functions. Here, we report that deletion of the gene encoding the integrin-α5 subunit (Itga5) using the Pdgfrb-Cre transgenic mouse line, leads to oedema, haemorrhage and increased levels of embryonic lethality. Unexpectedly, these defects were not caused by loss of α5 from Pdgfrb-Cre expressing mural cells (pericytes and vascular smooth muscle cells), which wrap around the endothelium and stabilise blood vessels, nor by defects in the heart or great vessels, but were due to abnormal development of the lymphatic vasculature. Reminiscent of the pathologies seen in the human lymphatic malformation, fetal cystic hygroma, α5 mutants display defects both in the separation of their blood and lymphatic vasculature and in the formation of the lymphovenous valves. As a consequence, α5-deficient mice develop dilated, blood-filled lymphatic vessels and lymphatic capillaries that are ectopically covered with smooth muscle cells. Analysis of the expression of Pdgfrb during lymphatic development suggests that these defects probably arise from loss of α5β1 integrin in subsets of specialised Prox1(+)Pdgfrb(+) venous endothelial cells that are essential for the separation of the jugular lymph sac from the cardinal vein and formation of the lymphovenous valve leaflets.

  16. Dual beam Doppler FD-OCT system with integrated Dynamic Vessel Analyzer and rotatable beams to measure total retinal blood flow

    Science.gov (United States)

    Doblhoff-Dier, Veronika; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold

    2014-03-01

    We present a method capable of measuring the total retinal blood flow in arteries and veins based on dual beam Fourierdomain Doppler optical coherence tomography (OCT) in combination with a fundus camera based Dynamic Vessel Analyzer. Incorporating a Dynamic vessel analyzer into the system not only gives a live image of the fundus - it also allows determining the vessels' diameter precisely during the OCT measurement, which is necessary for the determination of the blood flow. While dual beam systems with fixed detection plane allow only vessels with certain orientations to be measured, the detection plane of our system can be rotated by 90°. This ensures that the blood's velocity can be measured in all vessels around the optic nerve head. The results of the total blood flow measurements are in the same range as previously published data. Additionally, the high degree of conformity between the measured venous and arterial flow corroborated the system's validity. For larger vessels, the logarithmic values of vessel diameter and blood flow were found to be related linearly with a regression coefficient of around 3, which is in accordance with Murray's law. For smaller vessels (diameter below 60 μm), the values diverge from the linear dependence. The high sensitivity and the good agreement with published data suggest a high potential for examining the retinal blood flow in patients with ocular diseases.

  17. NUMERICAL SIMULATION OF HEMODYNAMICS IN THE HOST BLOOD VESSEL AND MICROVASCULAR NETWORK GENERATED FROM TUMOR-INDUCED ANGIOGENESIS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gai-ping; WU Jie; XU Shi-xiong; COLLINS M.W.; JIANG Yu-ping; WANG Jian

    2006-01-01

    Numerical simulation of hemodynamics under the combined effects of both the host blood vessel and the microvascular network,which is based on a 2-D tumor inside and outside vascular network generated from a discrete mathematical model of tumor-induced angiogenesis, is performed systemically. And a "microvascular network-transport across microvascular network-flow in interstitium" model is developed to study the flow in solid tumor. Simulations are carried out to examine the effects of the variations of the inlet Reynolds number in the host blood vessel, the hydraulic conductivity of the microvascular wall, and interstitial hydraulic conductivity coefficient on the fluid flow in tumor microcirculation. The results are consistent with data obtained in terms of physiology. These results may provide some theoretical references and the bases for further clinical experimental research.

  18. Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling

    Science.gov (United States)

    Alastrué, V.; Martínez, M. A.; Doblaré, M.; Menzel, A.

    2009-01-01

    A fully three-dimensional anisotropic elastic model for vascular tissue modelling is presented here. The underlying strain energy density function is assumed to additively decouple into volumetric and deviatoric contributions. A straightforward isotropic neo-Hooke-type law is used to model the deviatoric response of the ground substance, whereas a micro-structurally or rather micro-sphere-based approach will be employed to model the contribution and distribution of fibres within the biological tissue of interest. Anisotropy was introduced by means of the use of von Mises orientation distribution functions. Two different micro-mechanical approaches—a, say phenomenological, exponential ansatz, and a worm-like-chain-based formulation—are applied to the micro-fibres and illustratively compared. The passage from micro-structural contributions to the macroscopic response is obtained by a computational homogenisation scheme, namely numerical integration over the surface of the individual micro-spheres. The algorithmic treatment of this integration is discussed in detail for the anisotropic problem at hand, so that several cubatures of the micro-sphere are tested in order to optimise the accuracy at reasonable computational cost. Moreover, the introduced material parameters are identified from simple tension tests on human coronary arterial tissue for the two micro-mechanical models investigated. Both approaches are able to recapture the experimental data. Based on the identified sets of parameters, we first discuss a homogeneous deformation in simple shear to evaluate the models' response at the micro-structural level. Later on, an artery-like two-layered tube subjected to internal pressure is simulated by making use of a non-linear finite element setting. This enables to obtain the micro- and macroscopic responses in an inhomogeneous deformation problem, namely a blood vessel representative boundary value problem. The effect of residual stresses is additionally

  19. About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter

    Directory of Open Access Journals (Sweden)

    Лев Николаевич Катюхин

    2014-12-01

    Full Text Available It is proposed a physiological and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in capillaries using the profile analyses of osmotic deformability of red blood cells. It was shown the dose-dependent change of the erythrocytes deformability in the stage of isotropic spheres after forming artificial water pores (nystatin and occlusion (PbCl2 of available pores. The Sigma-effect reducing of hematocrit and viscosity in a shear flow of blood through the vessels of a small diameter was conditioned by the interchange of liquid phase between the erythrocyte and the plasma.

  20. BLOOD VESSELS IN GANGLIA IN HUMAN ESOPHAGUS MIGHT EXPLAIN THE HIGHER FREQUENCY OF MEGAESOPHAGUS COMPARED WITH MEGACOLON

    Directory of Open Access Journals (Sweden)

    Sheila Jorge Adad

    2014-12-01

    Full Text Available This study aimed to determine the existence of blood vessels within ganglia of the myenteric plexus of the human esophagus and colon. At necropsy, 15 stillborns, newborns and children up to two years of age, with no gastrointestinal disorders, were examined. Rings of the esophagus and colon were analyzed and then fixed in formalin and processed for paraffin. Histological sections were stained by hematoxylin-eosin, Giemsa and immunohistochemistry for the characterization of endothelial cells, using antibodies for anti-factor VIII and CD31. Blood vessels were identified within the ganglia of the myenteric plexus of the esophagus, and no blood vessels were found in any ganglia of the colon. It was concluded that the ganglia of the myenteric plexus of the esophagus are vascularized, while the ganglia of the colon are avascular. Vascularization within the esophageal ganglia could facilitate the entrance of infectious agents, as well as the development of inflammatory responses (ganglionitis and denervation, as found in Chagas disease and idiopathic achalasia. This could explain the higher frequency of megaesophagus compared with megacolon.

  1. Morphological evaluation of the cerebral blood vessels in the late gestation fetal sheep following hypoxia in utero.

    Science.gov (United States)

    Baburamani, Ana A; Lo, Camden; Castillo-Melendez, Margie; Walker, David W

    2013-01-01

    Hypoxia can significantly contribute to the development of permanent brain injury in the term neonate; however the response of cerebral blood vessels is not well understood. This study aimed to quantitatively measure vascular density and morphology using laminin immunohistochemistry as a marker of blood vessels, and determine the effects of a single, severe bout of hypoxia (umbilical cord occlusion, UCO) late in gestation on the developing cerebrovasculature in fetal sheep. At 124-126 days gestation singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10 min UCO or sham UCO (n=5) occurred at 132 days gestation. Fetal brains were collected at 24 h (n=5) or 48 h (n=4) after UCO for vascular density and morphology analysis of laminin immunohistochemistry. 48 h following a single, brief bout of severe hypoxia late in gestation decreased vascular density was seen in the caudate nucleus and no changes in vascular morphology occurred. However closer analysis revealed a significant shift in the frequency of smaller (≤10 μm) to larger (≤100 μm) perimeter blood vessels in periventricular and subcortical white matter. Close examination of the frequency distribution of vascular perimeter highlights that alterations in vascular morphology persist in the near term fetal brain for up to 48 h following a brief (10 min) hypoxia in white but not gray matter. These findings suggest that the near term brain may still be vulnerable to white matter injury following in utero hypoxia.

  2. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S.

    2015-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain. PMID:26448331

  3. Enhanced nestin expression and small blood vessels in human pituitary adenomas.

    Science.gov (United States)

    Perez-Millan, María Inés; Berner, Silvia Inés; Luque, Guillermina María; De Bonis, Cristian; Sevlever, Gustavo; Becu-Villalobos, Damasia; Cristina, Carolina

    2013-09-01

    The role of angiogenesis in human pituitary tumor progression is questioned. Our aim was to characterize the morphologic changes that occur in the vasculature of pituitary adenomas, in correlation with the expression of nestin, a protein found in endothelial cells of newly formed vessels of developing organs. We also evaluated the relation of angiogenic markers and nestin with Ki-67 index. Immunohistochemical studies were performed on paraffin embedded samples of 47 pituitary adenomas and six normal pituitaries. We determined microvessel density (number of CD31+ or CD34+ vessels per square millimetre), vascular area (cumulative area occupied by vessels), average vessel size, and further classified vessels as small ( 100 μm2). We correlated the above parameters with nestin expression and Ki-67 index. Lower vascular area compared to normal tissue was found in adenomas (p vessels than control pituitaries (p controls, so that nestin positive area was significantly higher in tumors. Furthermore, nestin area correlated positively with the % of small vessels. Ki-67 correlated neither with vascular area nor with nestin expression. In human pituitary tumors there was a predominance of small capillaries in correlation with increased expression of the progenitor marker nestin. We suggest that angiogenesis is an active process in these tumors, in spite of their low total vascular area when compared to normal pituitaries.

  4. microRNAs and Cardiovascular Remodeling.

    Science.gov (United States)

    Ono, Koh

    2015-01-01

    Heart failure (HF) is associated with significant morbidity and mortality attributable largely to structural changes in the heart and with associated cardiac dysfunction. Remodeling is defined as alteration of the mass, dimensions, or shape of the heart (termed cardiac or ventricular remodeling) and vessels (vascular remodeling) in response to hemodynamic load and/or cardiovascular injury in association with neurohormonal activation. Remodeling may be described as physiologic or pathologic; alternatively, remodeling may be classified as adaptive or maladaptive. The importance of remodeling as a pathogenic mechanism has been controversial because factors leading to remodeling as well as the remodeling itself may be major determinants of patients' prognosis. The basic mechanisms of cardiovascular remodeling, and especially the roles of microRNAs in HF progression and vascular diseases, will be reviewed here.

  5. Prognostic heterogeneity of diastolic abnormalities along left ventricular remodeling continuum according to survival rates and laser polarimetry of blood

    Science.gov (United States)

    Boychuk, T. M.; Ivashchuk, O. I.; Kolomoiets, M. Y.; Mikhaliev, K. O.; Chursina, T. Y.

    2012-01-01

    The results of examination of 35 arterial hypertension and coronary heart disease patients are presented. The clinical, paraclinical and echocardiographic examinations were performed, and the parameters of prognosis (survival) according to Seattle Heart Failure Model, as well as the optical (polarimetric) properties of erythrocytic suspension were determined. The group of patients under examination was stratified by patterns of remodeling of left ventricle (LV). It was determined that increasing of anisotropy of erythrocytic suspension along LV remodeling patterns continuum correlates with aggravation of structural and functional state of LV and is associated with unfavorable prognosis.

  6. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels.

    Directory of Open Access Journals (Sweden)

    Bostjan Markelc

    Full Text Available Electropermeabilization/electroporation (EP provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT, cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels.

  7. Evaluation of Mast Cell and Blood Vessel Density in Inflammatory Periapical Lesions

    Directory of Open Access Journals (Sweden)

    Safoura Seifi

    2012-01-01

    Full Text Available Introduction: Radicular cystsand periapical granulomas are the most common periapical inflammatory lesions. However, the role of cellular immunity and microvessels in their pathogenesis remains unknown. The aim of this study was to evaluate the mast cell density (MCD, mircovessel density (MVD and investigating the correlation between their densities with each other in the above mentioned lesions.Materials & Methods: In this descriptive cross-sectional study, 40 paraffin blocks of mentioned lesions were selected from achieves of School of Dentistry, Babol University of Medical Sciences. Three sections were prepared from each block and stained by hematoxylin-eosin, toluidine blue, and immunohistochemically for CD34 to determine the score of inflammation, presence of mast cells and degranulatedmast cells (DMCs, and MVD, respectively. The correlation between MCD and either inflammatory infiltrate or MVD was evaluated. Data analyzed by t student, Mann-Whitney and Spearman test.Results: Mast cells were present in all periapical inflammatory lesions; 15.4±14.8 for MCD, 7.2±6.1 for DMCs, and the ratio of DMCs to total number of MCs was 0.354±0.166 and 14.8+4.44 for blood vessel density in radicular cyst and 8.52±6.75, 2.91±2.1, 0.196±0.194 and 13±8.02 in periapical granulomas, respectively. There was a positive correlation between MCD and MVD in radicular cyst (P=0.03, r=0.341, but not in periapical granulomas (P=0.6, r=0.124. MCD and MVD increased with the score of inflammation in radicular cyst (P=0.001, r=0.7 and periapical granuloma (P=0.012, r=0.54.Conclusion: Mast cells and microvessels play a role in pathogenesis of periapical inflammatory lesions. In this study, the density of mast cells and DMCs in radicular cyst was higher than periapical granulomas, but no difference was observed regarding MVD in periapical inflammatory lesions. It seems that the relationship between MCD and MVD is different based on the clinical stage of periapical

  8. Measurement of meningeal blood vessel diameter in vivo with a plug-in for ImageJ.

    Science.gov (United States)

    Fischer, Michael J M; Uchida, Sae; Messlinger, Karl

    2010-09-01

    Changes in blood vessel diameter can be measured manually, but this is time-consuming and often impractical. For automatic measurement commercial solutions are available, but the proprietary algorithms and their potential shortcomings are not known to the user. We present an approach with a CCD camera for image acquisition combined with free and open source ImageJ software for offline analysis. A subtraction image allows for the evaluation of the diameter changes throughout the field of view. A full width at half-maximum algorithm plug-in was written to measure the vessel diameter. For a given line across a vessel, the results of five measurements with parallel shifts throughout an image stack are copied to the clipboard. For validation of this method an established in vivo model was used, namely vascular changes in the rat dura mater, reflecting the activity of the afferent neurons. Vasoconstriction of the meningeal arterioles induced by local electrical stimulation of the dura was inhibited by intravenous administration of the adrenoceptor antagonist phentolamine and amplified by the CGRP receptor antagonist olcegepant. The described methods allow the user to quickly evaluate vessel diameter changes in the whole acquired field at any selected position.

  9. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients

    DEFF Research Database (Denmark)

    Thuesen, A D; Lyngsø, K S; Rasmussen, L

    2017-01-01

    AIM: Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain...... and mammary blood vessels. METHODS: Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. RESULTS......: The P/Q-type antagonist ω-agatoxin IVA (10(-8) mol L(-1) ) and the T-type calcium blocker mibefradil (10(-7) mol L(-1) ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased...

  10. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing.

    Science.gov (United States)

    Velazquez, Omaida C

    2007-06-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo but also for repair of wounded tissue in the adult. An imbalance in angiogenesis (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound-healing disorders. This review focuses on the central role of the growth of new blood vessels in ischemic and diabetic wound healing and defines the most current nomenclature that describes the neovascularization process in wounds. There are now two well-defined, distinct, yet interrelated processes for the formation of postnatal new blood vessels, angiogenesis, and vasculogenesis. Reviewed are recent new data on vasculogenesis that promise to advance the field of wound healing.

  11. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    Science.gov (United States)

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  12. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  13. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    Science.gov (United States)

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra

    2016-10-04

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  14. [A comparative study on the responses of blood vessels of oral mucosa to thermal stimulation in dentulous and edentulous subjects].

    Science.gov (United States)

    Naitoh, T; Torii, K; Kobayashi, Y

    1989-08-01

    The purpose of this experiment was to clarify the characteristic changes of vasculature in edentulous alveolar mucosa and the effect of wearing a complete denture during sleep. Thermal stimulations were applied to the oral mucosa of five normal subjects and five completely edentulous patients and the responses of blood vessels were observed using both Impedance Plethysmography (IMP) and Reflection Photoelectric Plethysmography (RPP). Quantitative comparisons were made between edentulous patients and dentulous normal subjects, and between patients wearing complete dentures during sleep and those who do not. The following results were obtained. 1) The responses of blood vessels were divided into four groups. Type 1 showed dilatation in IMP and RPP. Type 2 showed dilatation but had late initial rising in IMP. Type 3 showed initial contraction in either or both IMP and RPP, and followed by dilatation few seconds later. Type 4 showed no changes in RPP but dilatation in IMP. 2) There was definite difference between edentulous and dentulous subjects in the frequency of exhibition of each type. Especially for the edentulous patients type 4 was observed in all stimulation temperature. 3) For the dentulous subjects there were more cases showing responses of RPP in digital apex than those do not. This was most conspicuous at the 50 degrees C stimulation. However for the edentulous patients there were about equal number of each cases. 4) The responses of blood vessels for both dentulous and edentulous subjects became greater and blood volume increased both with time at each temperature and as the stimulation temperature were raised. However the increase in the response was greater for the edentulous patients when the stimulation temperature was raised from 0 degrees C to 50 degrees C. 5) The responses of blood vessels became greater after two weeks when complete dentures were worn during sleep at night. And when dentures were not worn during sleep the responses decreased to a

  15. Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection.

    Science.gov (United States)

    Ding, Wen-Ge; Yan, Wei-hong; Wei, Zhao-Xiang; Liu, Jin-Bo

    2012-07-01

    In the present study, we examined intraosseous blood vessel parameters of the tibial metaphysis in mice using microcomputed tomography (µCT) to investigate the relationship between post-nerve-injury osteoporosis and local intraosseous blood vessel volume and number. Mice were randomly divided into groups receiving spinal cord injury (SCI), sciatic nerve resection group (NX), or intact controls (30 mice/group). Four weeks after surgery, mice were perfused with silicone and the distribution of intraosseous blood vessels analyzed by μCT. The bone density, μCT microstructure, biomechanical properties, and the immunohistochemical and biochemical indicators of angiogenesis were also measured. The SCI group showed significantly reduced tibial metaphysis bone density, μCT bone microstructure, tibial biomechanical properties, indicators of angiogenesis, and intraosseous blood vessel parameters compared to the NX group. Furthermore, the spinal cord-injured mice exhibited significantly decreased intraosseous blood vessel volume and number during the development of osteoporosis. In conclusion, these data suggest that decreased intraosseous blood vessel volume and number may play an important role in the development of post-nerve-injury osteoporosis.

  16. The use of BDNF to enhance the patency rate of small-diameter tissue-engineered blood vessels through stem cell homing mechanisms.

    Science.gov (United States)

    Zeng, Wen; Wen, Can; Wu, Yangxiao; Li, Li; Zhou, Zhenhua; Mi, Jianhong; Chen, Wen; Yang, Mingcan; Hou, Chunli; Sun, Jiansen; Zhu, Chuhong

    2012-01-01

    The patency rate of small-diameter tissue-engineered blood vessels is the determinant for their application in coronary artery bypass grafting. The coronary artery is innervated by vagus nerves. The origin of vagus nerves is rich in brain-derived neurotrophic factors (BDNF). We have investigated whether BDNF could improve the patency rate of small-diameter tissue-engineered blood vessels through promoting stem cell homing and paracrine activity. In vitro, we isolated early and late endothelial progenitor cells (EPCs) and found BDNF could promote single clone formation and paracrine function of EPCs, and could also induce the proliferation, migration and differentiation of late EPCs. BDNF could enhance the capturing of EPCs in parallel-plate flow chamber. Flow cytometric analysis and laser-scanning confocal microscope showed BDNF could enhance the mobilization and homing of C57BL/6 mouse EPCs after wire injury. Based on it, BDNF was coupled to the lumen surface of the blood vessel matrix material incubated with collagen through SPDP to construct BDNF-modified small-diameter tissue-engineered blood vessel. The blood vessel patency rate was significantly higher than that of control group 8 weeks after implantation in rats and the endothelialization level was superior to control. These results demonstrate that BDNF can effectively improve patency of small-diameter tissue-engineered blood vessels through stem cell homing and paracrine, and it is expected to play an important role in the construction of substitutes for coronary artery bypass grafting.

  17. An approach to automatic blood vessel image registration of microcirculation for blood flow analysis on nude mice.

    Science.gov (United States)

    Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Wu, Tung-Hsin; Lin, Yang-Hsien; Huang, Tzung-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2011-04-01

    Image registration is often a required and a time-consuming step in blood flow analysis of large microscopic video sequences in vivo. In order to obtain stable images for blood flow analysis, frame-to-frame image matching as a preprocessing step is a solution to the problem of movement during image acquisition. In this paper, microscopic system analysis without fluorescent labelling is performed to provide precise and continuous quantitative data of blood flow rate in individual microvessels of nude mice. The performance properties of several matching metrics are evaluated through simulated image registrations. An automatic image registration programme based on Powell's optimisation search method with low calculation redundancy was implemented. The matching method by variance of ratio is computationally efficient and improves the registration robustness and accuracy in practical application of microcirculation registration. The presented registration method shows acceptable results in close requisition to analyse red blood cell velocities, confirming the scientific potential of the system in blood flow analysis.

  18. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection

    Directory of Open Access Journals (Sweden)

    Baldellou Maribel

    2009-03-01

    Full Text Available Abstract Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive and inactive (CD105/Flt-1 minus (n=5 micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC was examined following oxygen-glucose deprivation (OGD. Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM, matrix metalloproteinase-2 (MMP-2, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, hepatocyte growth factor-alpha (HGF-alpha, monocyte chemottractant protein-1 (MCP-1 and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these

  19. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels

    CERN Document Server

    Wang, Tong; Xing, Zhongwen

    2016-01-01

    Blood exhibits a heterogeneous nature of hematocrit, velocity, and effective viscosity in microcapillaries. Microvascular bifurcations have a significant influence on the distribution of the blood cells and blood flow behavior. This paper presents a simulation study performed on the two-dimensionalmotions and deformation of multiple red blood cells in microvessels with diverging and converging bifurcations. Fluid dynamics and membrane mechanics were incorporated. Effects of cell shape, hematocrit, and deformability of the cell membrane on rheological behavior of the red blood cells and the hemodynamics have been investigated. It was shown that the blood entering the daughter branch with a higher flow rate tended to receive disproportionally more cells. The results also demonstrate that red blood cells in microvessels experienced lateral migration in the parent channel and blunted velocity profiles in both straight section and daughter branches, and this effect was influenced by the shape and the initial posit...

  20. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2016-11-28

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.Oncogene advance online publication, 28 November 2016; doi:10.1038/onc.2016.421.

  1. Effectiveness of Visualisations for Detection of Errors in Segmentation of Blood Vessels

    NARCIS (Netherlands)

    Schooten, van B.W.; Dijk, van E.M.A.G.; Suinesiaputra, A.; Reiber, J.H.C.

    2010-01-01

    Vascular disease diagnosis often requires a precise segmentation of the vessel lumen. When 3D (Magnetic Resonance Angiography, MRA, or Computed Tomography Angiography, CTA) imaging is available, this can be done automatically, but occasional errors are inevitable. So, the segmentation has to be chec

  2. Oxidative injury to blood vessels and glia of the pre-laminar optic nerve head in human glaucoma.

    Science.gov (United States)

    Feilchenfeld, Zac; Yücel, Yeni H; Gupta, Neeru

    2008-11-01

    Glaucoma is a leading cause of irreversible world blindness. Oxidative damage and vascular injury have been implicated in the pathogenesis of this disease. The purpose of this study was to determine in human primary open angle glaucoma whether oxidative injury occurs in pre-laminar optic nerve blood vessels and glial cells. Following IRB approval, sections from post-mortem primary open angle glaucoma eyes (n=5) with mean age of 77 +/- 9 yrs (+/-SD) were compared to normal control eyes (n=4) with mean age 70 +/- 9 yrs (Eye Bank of Canada). Immunostaining with nitrotyrosine, a footprint for peroxynitrite-mediated injury, was performed and sections were double-labeled with markers for vascular endothelial cells, perivascular smooth muscle cells, and astrocytes with CD34, smooth muscle actin (SMA), and glial fibrillary acidic protein (GFAP), respectively. Immunostaining was captured in a masked fashion using confocal microscopy, and defined regions of interest for blood vessels and glial tissue. Intensity measurements of supra-threshold area in pixels as percent of the total number of pixels were calculated using ImageJ (NIH) and compared using two-tailed Mann-Whitney nonparametric tests between glaucoma and control groups. Colocalization coefficients with cell-specific markers were determined and compared with random coefficients of correlation. Increased nitrotyrosine immunoreactivity was observed in pre-laminar optic nerve head blood vessels of primary open angle glaucoma eyes compared to controls and this difference was statistically significant (1.35 +/- 1.11% [+/-SD] vs. 0.01 +/- 0.01%, P=0.016). NT-immunoreactivity was also increased in the glial tissue surrounding the pre-laminar optic nerve head in the glaucoma group and compared to controls, and this difference was statistically significant (18.37 +/-12.80% vs. 0.08 +/- 0.04%, P=0.016). Colocalization studies demonstrated nitrotyrosine staining in vascular endothelial and smooth muscle cells, in addition to

  3. Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling.

    Directory of Open Access Journals (Sweden)

    Flavia M Souza-Smith

    Full Text Available OBJECTIVE: Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs in diabetic (db/db and control (Db/db mice. METHODS: Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively. RESULTS: Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1 in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling. CONCLUSIONS: These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries.

  4. Mesenteric Resistance Arteries in Type 2 Diabetic db/db Mice Undergo Outward Remodeling

    Science.gov (United States)

    Souza-Smith, Flavia M.; Katz, Paige S.; Trask, Aaron J.; Stewart, James A.; Lord, Kevin C.; Varner, Kurt J.; Vassallo, Dalton V.; Lucchesi, Pamela A.

    2011-01-01

    Objective Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice. Methods Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively. Results Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling. Conclusions These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries. PMID:21829729

  5. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell.

    Science.gov (United States)

    Nakamachi, Eiji; Uchida, Takahiro; Kuramae, Hiroyuki; Morita, Yusuke

    2014-08-01

    In this study, we developed a multi-scale finite element (FE) analysis code to obtain the stress and strain that occurred in the smooth muscle cell (SMC) at micro-scale, which was seeded in the real fabricated braid fibril artificial blood vessel. This FE code can predict the dynamic response of stress under the blood pressure loading. We try to establish a computer-aided engineering (CAE)-driven scaffold design technique for the blood vessel regeneration. Until now, there occurred the great progresses for the endothelial cell activation and intima layer regeneration in the blood vessel regeneration study. However, there remains the difficulty of the SMC activation and media layer regeneration. Therefore, many researchers are now studying to elucidate the fundamental mechanism of SMC activation and media layer regeneration by using the biomechanical technique. As the numerical tool, we used the dynamic-explicit FE code PAM-CRASH, ESI Ltd. For the material models, the nonlinear viscoelastic constitutive law was adapted for the human blood vessel, SMC and the extra-cellular matrix, and the elastic law for the polyglycolic acid (PGA) fiber. Through macro-FE and micro-FE analyses of fabricated braid fibril tubes by using PGA fiber under the combined conditions of the orientation angle and the pitch of fiber, we searched an appropriate structure for the stress stimulation for SMC functionalization. Objectives of this study are indicated as follows: 1. to analyze the stress and strain of the human blood vessel and SMC, and 2. to calculate stress and strain of the real fabricated braid fibril artificial blood vessel and SMC to search an appropriate PGA fiber structure under combined conditions of PGA fiber numbers, 12 and 24, and the helical orientation angles of fiber, 15, 30, 45, 60, and 75 degrees. Finally, we found a braid fibril tube, which has an angle of 15 degree and 12 PGA fibers, as a most appropriate artificial blood vessel for SMC functionalization.

  6. At-vessel mortality and blood biochemical status of elasmobranchs caught in an Australian commercial longline fishery

    Directory of Open Access Journals (Sweden)

    Paul A. Butcher

    2015-01-01

    Full Text Available This study investigates mortality of sharks in a commercial longline fishery in Australia. To examine the rate and biological, environmental and technological factors contributing to at-vessel mortality, four setlines with 120 gangions possessing ‘hook timers’ were deployed daily (for 7h and 14h using conventional gears from two commercial fishing vessels during 2013. A total of 689 animals across 22 species and including 18 elasmobranchs were landed. For the five species (Carcharhinus spp., and one genus (Sphyrna spp where there were sufficient numbers for analysis, generalised linear mixed models showed that species and the elapsed time spent on the line after hooking were the strongest predictors of at-vessel mortality, with spinner (Carcharhinus brevipinna, blacktip (C. limbatus and hammerhead (Sphyrna spp sharks exhibiting the highest death rates. The variables which best explained mortality, included: (i sex of the caught sharks, and the interaction between species with (ii capture depth, and (iii the elapsed time spent on the line after hooking. For the subset of dusky (C. obscurus and sandbar (C. plumbeus sharks examined for physiological status at the point of capture, very few of the 13 chosen blood analytes varied significantly. Given the observed high mortality rates and stress associated with the time spent on the line after capture, operational changes to reduce these adverse impacts should be considered. Even simple changes such as shorter soak times could considerably mitigate these impacts.

  7. [Pulsatile flow model with elastic blood vessels for duplex ultrasound studies].

    Science.gov (United States)

    Petrick, J; Schlief, R; Zomack, M; Langholz, J; Urbank, A

    1992-12-01

    Using ultrasound duplex technique flow phenomena in patients' circulation can be examined. For the interpretation of these examinations it is necessary to have extensive knowledge on flow influencing parameters. This can be easily obtained from simplified flow models. This article describes the components of a flow model that allows examination of ultrasonic contrast media flowing through an artificial heart and vessel mimicking tubes. The artificial heart is the drive which pumps a water glycerol cellulose mixture through the circulation in a pulsatile manner. The shape of the ventricle, the compliance of the aorta, the viscosity of the flow medium and the wall elasticity of the examination vessel were taken into account. The attenuation caused by the surrounding tissue is simulated by a variable layer of castor oil. The flow model is suitable to produce flow profiles that are very similar to physiological profiles.

  8. Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels

    Science.gov (United States)

    Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon

    2017-04-01

    Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo.

  9. Effect of gravitation stress and hypokinesia on blood vessels of the testicle

    Science.gov (United States)

    Palazhchenko, E. F.

    1979-01-01

    Rabbits were exposed to single maximum endurable stresses of cranio-caudal direction, hypokinesia for periods of one to eight weeks, and hypokinesia followed by gravitation stresses. The stresses caused dilatation of vessels, greater sinuosity, and occasional ruptures of the walls and extravasation. The greater part of the capillaries were dilated; the greatest part constricted. In hypokinesia there was an increasing atrophy of the testes. Significant results are reported.

  10. Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease

    OpenAIRE

    Heye, Anna K.; Thrippleton, Michael J; Chappell, Francesca M; Valdés Hernández, Maria del C.; Armitage, Paul A.; Makin, Stephen D.; Muñoz Maniega, Susana; Sakka, Eleni; Flatman, Peter W.; Dennis, Martin S.; Wardlaw, Joanna M.

    2016-01-01

    Dietary salt intake and hypertension are associated with increased risk of cardiovascular disease including stroke. We aimed to explore the influence of these factors, together with plasma sodium concentration, in cerebral small vessel disease (SVD). In all, 264 patients with nondisabling cortical or lacunar stroke were recruited. Patients were questioned about their salt intake and plasma sodium concentration was measured; brain tissue volume and white-matter hyperintensity (WMH) load were m...

  11. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  12. VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels.

    Science.gov (United States)

    Cariboni, Anna; Davidson, Kathryn; Dozio, Elena; Memi, Fani; Schwarz, Quenten; Stossi, Fabio; Parnavelas, John G; Ruhrberg, Christiana

    2011-09-01

    Gonadotropin-releasing hormone (GnRH) neurons are neuroendocrine cells that are born in the nasal placode during embryonic development and migrate through the nose and forebrain to the hypothalamus, where they regulate reproduction. Many molecular pathways that guide their migration have been identified, but little is known about the factors that control the survival of the migrating GnRH neurons as they negotiate different environments. We previously reported that the class 3 semaphorin SEMA3A signals through its neuropilin receptors, NRP1 and NRP2, to organise the axons that guide migrating GnRH neurons from their birthplace into the brain. By combining analysis of genetically altered mice with in vitro models, we show here that the alternative neuropilin ligand VEGF164 promotes the survival of migrating GnRH neurons by co-activating the ERK and AKT signalling pathways through NRP1. We also demonstrate that survival signalling relies on neuronal, but not endothelial, NRP1 expression and that it occurs independently of KDR, the main VEGF receptor in blood vessels. Therefore, VEGF164 provides survival signals directly to developing GnRH neurons, independently of its role in blood vessels. Finally, we show that the VEGF164-mediated neuronal survival and SEMA3A-mediated axon guidance cooperate to ensure that migrating GnRH neurons reach the brain. Thus, the loss of both neuropilin ligands leads to an almost complete failure to establish the GnRH neuron system.

  13. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery.

    Science.gov (United States)

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-11-15

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues.

  14. New aspects of vascular remodelling: the involvement of all vascular cell types.

    Science.gov (United States)

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  15. Linear IgA bullous disease with possible immunoreactivity to the basement membrane zone and dermal blood vessels

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2014-01-01

    Full Text Available Introduction: Linear IgA bullous dermatosis (LAD is an immunobullous disorder, in which IgA antibodies are deposited along the basement membrane zone (BMZ of the skin in a linear pattern. The cause of this disease is unknown, but the eruption may occur more commonly in association with certain medications. Case report: A 61 year old woman presented with blisters in the axillae and legs, with pain, itching and swelling. She was taking many medications for other conditions such diabetes and obesity. Tense blisters were seen, primarily on the legs and accompanied by some ankle swelling. Methods: Skin biopsies for hematoxylin and eosin (H&E examination, as well as for direct immunofluorescence (DIF, and immunohistochemistry (IHC studies were performed. Results: The H&E examination revealed a subepidermal blister, with small numbers of lymphocytes, neutrophils and eosinophils noted within the blister lumen. The dermis also displayed a mild, superficial, perivascular infiltrate of lymphocytes and histiocytes; eosinophils and neutrophils were also noted. DIF and IHC studies confirmed the diagnosis of linear IgA (LAD at the BMZ. However, in addition to immunoglobulin A, we also observed deposits of IgA, IgM, IgG, IgD, Kappa, Lambda, Complement/C3c, C1q, fibrinogen and albumin around upper dermal blood vessels. Conclusions: LAD has been most commonly associated with medication intake; the most common DIF immune response is the presence of linear IgA at the BMZ. However, here we found additional reactivity to against dermal blood vessels. Because the patient is affected by diabetes mellitus, it is difficult to know if the observed vascular reactivity was associated with the diabetes or solely an immune reaction to the vessels. Based on our findings, we encourage searching for vascular reactivity in cases of LAD.

  16. Usefulness of dilated blood vessels in the tumor periphery for assessing the invasion depth of small-sized depressed colorectal cancer.

    Science.gov (United States)

    Hashimoto, Rintaro; Matsuda, Tomoki; Hamamoto, Hidetaka; Yamaoka, Hajime; Nakahori, Masato; Chonan, Akimichi

    2016-06-01

    The relationship between dilated blood vessels in the tumor periphery and the tumor invasion depth is unclear. Therefore, the present study aimed to clarify the relationship between dilated blood vessels and the invasion depth of small-sized (<30 mm) colorectal cancer (CRC), and its implications on endoscopic treatment.We performed a single-arm observational study of the diagnostic accuracy of the existence of dilated vessels in the tumor periphery of CRC lesions as an indicator of submucosal deep (SM-d, ≥1000 μm) carcinomas. Lesions were classified into two groups based on the existence of dilated vessels by two experienced endoscopists. The clinicopathological features, invasion depth, and lymphovascular invasion/poorly differentiated clusters were analyzed in all resected specimens.Four hundred and two consecutive small-sized CRC lesions were included. The dilated vessels were observed in 96/402 (24%) lesions, and most of them (93/96) were found in depressed lesions. In depressed lesions, the histopathological diagnosis of the dilated vessels group showed SM-d or deeper invasion in 84/93 (90%) cases, whereas 3/20 (15%) had SM-d invasion in the nondilated vessels group (P < 0.001). When the dilated vessels were used as an indicator of SM-d or deeper invasion in depressed lesions, the sensitivity was 95.6%, specificity was 66.7%, and accuracy was 90.2%. No correlation was observed between the existence of dilated vessels and the lesion site, lesion diameter, and lymphovascular invasion/poorly differentiated cluster.The existence of dilated blood vessels in the tumor periphery suggests SM-d or deeper invasion in depressed lesions.

  17. Investigation of Blood Flow and the Effect of Vasoactive Substances in Cutaneous Blood Vessels of "Xenopus Laevis"

    Science.gov (United States)

    Škorjanc, Aleš; Belušic, Gregor

    2015-01-01

    In the present study, a preparation of frog skin was presented, which can be used to demonstrate the basic concepts of blood flow regulation in a very clear and attractive way to high school and university students. In a freshly euthanized "Xenopus," a patch of abdominal skin was exposed from the internal side and viewed with a USB…

  18. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.

  19. Multi-Layer Mechanical Model of Glagov Remodeling in Coronary Arteries: Differences between In-Vivo and Ex-Vivo Measurements.

    Directory of Open Access Journals (Sweden)

    Pak-Wing Fok

    Full Text Available When blood vessels undergo remodeling because of the buildup of atherosclerotic plaque, it is thought that they first undergo compensatory or outward remodeling, followed by inward remodeling: the lumen area stays roughly constant or increases slightly and then decreases rapidly. The second phase of remodeling is supposed to start after the plaque burden exceeds about 40%. These changes in the vessel were first observed by S. Glagov who examined cross-sections of coronary arteries at different stages of the disease. In this paper, we use a mathematical model based on growth and elasticity theory to verify the main aspects of Glagov's result. However, both our model and curve-fitting to the data suggest that the critical stenosis is around 20% rather than 40%. Our model and data from the PROSPECT trial also show that Glagov remodeling is qualitatively different depending on whether measurements are taken ex-vivo or in-vivo. Our results suggest that the first outward phase of "Glagov remodeling" is largely absent for in-vivo measurements: that is, the lumen area always decreases as plaque builds up. We advocate that care must be taken when infering how in-vivo vessels remodel from ex-vivo data.

  20. C-reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy.

    Science.gov (United States)

    Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pesić, Milica; Stanković Babić, Gordana; Milenković, Svetislav; Risimić, Dijana

    2014-08-20

    The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.

  1. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    Science.gov (United States)

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  2. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering.

    Science.gov (United States)

    Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara

    2013-01-01

    Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.

  3. Detergent-Enzymatic Decellularization of Swine Blood Vessels: Insight on Mechanical Properties for Vascular Tissue Engineering

    Science.gov (United States)

    Pellegata, Alessandro F.; Asnaghi, M. Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara

    2013-01-01

    Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at −80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering. PMID:23865072

  4. Detergent-Enzymatic Decellularization of Swine Blood Vessels: Insight on Mechanical Properties for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alessandro F. Pellegata

    2013-01-01

    Full Text Available Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at −80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young’s modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.

  5. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    Science.gov (United States)

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in

  6. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    Directory of Open Access Journals (Sweden)

    Huishi Toh

    Full Text Available Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5 and later (E15.5-17.5 developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with

  7. C - reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Sonja Predrag Cekic

    2014-08-01

    Full Text Available The aim of the study was to investegate the correlation between the levels of CRP and YKL-40 in blood samples with morphometric parameters of retinal blood vessels in patients with diabetic retinopathy.Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA.Morphmetric analysis was performed with ImageJ software (http://rsbweb.nih.gov/ij/ for digital retinal photography. We measured the number, diameter of retinal blood vessels in five different parts concentric to the optic disc. Differences between the morphometric parameters and the blood test analysis results were evaluated using the Student’s t – test. One Way ANOVA was used to establish the significance of differences.CRP and YKL-40 levels were moderately higher in the group of patients with severe diabetic retinopathy. Levels of YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy.Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.

  8. In vivo μPIV measurements of blood velocity in small vessels of a rat model

    Science.gov (United States)

    Leong, Chia Min; Russell, John; Connor, Nadine; Honkanen, Markus; Wei, Timothy

    2009-11-01

    Aging-related muscular changes have been shown to affect voice production. There is correlation between muscular changes and changes in capillary hemodynamics and structure with aging. Alterations in oxygen transport to cells and tissues at the capillary level has been hypothesized as one of the key factors that causes muscular changes thus voice production. Since oxygen transport is related to hemodynamics, we start by measuring blood velocity in capillaries of cremaster muscle of a living rat. The μPIV technique is adapted for measuring blood velocity where red blood cells are used as `seeding particles'. The accuracy of the μPIV measurements are determined by comparison with results obtained using other techniques such as particle tracking velocimetry (PTV). Finally, challenges in measuring flow through three-dimensional larynx geometry will be discussed.

  9. Nanostructural haemocompatible coatings for the internal side of artificial blood vessels

    Science.gov (United States)

    Trembecka-Wojciga, K.; Major, R.; Lackner, J. M.; Butruk-Raszeja, B.; Sanak, M.; Major, B.

    2016-03-01

    The main goal of the work was to elaborate low thrombogenicity of surface inside tube-like elements for cardiovascular system support by combination of low-temperature glow discharge and hydrogel coatings to inhibit blood-clotting cascade activation. A large share of amorphous phase silicon was observed in the microstructure analysis. The crystalline elements were uniformly distributed in the amorphous structure. Combination of low thickness, the proper microstructure and density of the coatings provided a highly flexible nature of the whole system. The blood-material interaction was analyzed in vitro in dynamic conditions by using a designed and fabricated novel blood flow simulator. Coatings deposited by the glow discharge expressed good hemocopatibile properties. The use of hydrogel coatings did not reduce coagulation parameter. Hydrogel coatings did not improve the hemocompatibility of the surface modified with carbon based coatings. Modification of surface with hydrogel resulted in further increased risk of hemolysis.

  10. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord.

    Science.gov (United States)

    Madigan, Nicolas N; Chen, Bingkun K; Knight, Andrew M; Rooney, Gemma E; Sweeney, Eva; Kinnavane, Lisa; Yaszemski, Michael J; Dockery, Peter; O'Brien, Timothy; McMahon, Siobhan S; Windebank, Anthony J

    2014-11-01

    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels

  11. Large particulate allergens can elicit mast cell-mediated anaphylaxis without exit from blood vessels as efficiently as do small soluble allergens.

    Science.gov (United States)

    LiHua, Li; Yoshikawa, Soichiro; Ohta, Takuya; Horiguchi, Kayo; Kawano, Yohei; Ohtsu, Hiroshi; Yamanishi, Yoshinori; Karasuyama, Hajime

    2015-11-06

    Anaphylaxis is a rapid-onset, life-threatening allergic reaction in that IgE, mast cells and histamine are commonly involved. It can be experimentally induced in IgE-sensitized animals by intravenous injection of corresponding allergens, and the sign of anaphylactic reaction can be detected within minutes after allergen challenge. However, it remains puzzling why the anaphylactic reaction can be initiated in vivo so quickly, considering that allergens are delivered into the blood circulation while mast cells reside within peripheral tissues but not in the blood circulation. To address this issue, we compared two different forms of the same allergen, small soluble and large particulate ones, in their ability to induce anaphylaxis in IgE-sensitized mice. In contrast to our expectation, particulate allergens could induce anaphylaxis as quickly and efficiently as did soluble allergens, even though they remained inside of blood vessels. In vivo imaging analysis suggested the direct interaction of intravascular particulate allergens and perivascular mast cells across the capillary wall. Taken together with previous report that perivascular mast cells can capture IgE in the blood circulation by extending cell processes across the vessel wall, our findings imply that blood-circulating allergens, regardless of their size, can stimulate mast cells without exit from blood vessels, by means of cross-linking IgE on mast cell processes inserted into the vessel lumen, and hence initiate anaphylactic reaction so quickly.

  12. BLOOD VESSELS SEGMENTATION BY RADIAL GRADIENT SYMMETRY METHOD VIA DIFFERENT THRESHOLD VALUES

    Directory of Open Access Journals (Sweden)

    Kumar Parasuraman

    2015-02-01

    Full Text Available A Key identifier for some diseases such as arteriosclerosis, hypertension, macular edema, diabetes mellitus, and the recognition qualities of geometrical changes in retinal veins and supply routes are recognized by Retinal Vein morphology and might be connected to a mixed carrier of clinical studies. Extraction of the retinal veins is a help to see all the more about its morphology and will give a superior wellspring of data for contemplating the different related diseases. Two of the significant issues in the extraction of retinal veins are the vicinity of a wide assortment of vessel widths and inhomogeneous foundation of the retina. Machine based dissection for computerized extraction of veins in retinal images will help eye mind pro's screen bigger populaces for vessel variations from the norm. In this extend a technique for robotized extraction of fundus pictures of the retinal vein is introduced. This paper displays another strategy for vein recognition in computerized retinal pictures. In this system first separating is carried out utilizing reciprocal channel to uproot the commotions in the picture and second, differentiates the fundus picture into red, green and blue channels. Third, Kirsch's format with spatial separating is utilized to discover the beginning and bearing of the veins and for smoothing the limits. Fourth, the veins are fragmented by applying threshold values and by utilizing outspread radial symmetry strategy. These segmentations are looked at against manual estimations and between imaging strategies. Its adequacy and strength with distinctive picture conditions, together with its smoothness and quick usage, make this vein division proposal suitable for retinal picture workstation examination, for example, computerized screening for right on time diabetic retinopathy discovery.

  13. Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels

    NARCIS (Netherlands)

    Mountrakis, L.; Lorenz, E.; Hoekstra, A.G.

    2013-01-01

    Despite the importance of platelets in the formation of a thrombus, their transport in complex flows has not yet been studied in detail. In this paper we simulated red blood cells and platelets to explore their transport behaviour in aneurysmal geometries. We considered two aneurysms with different

  14. Compliance of Ischemic State Tissue on Stem Cells Derived Angiology for Secondary Blood Flow Remodeling%干细胞源性血管重建缺血态组织血供的临床研究

    Institute of Scientific and Technical Information of China (English)

    高雪; 曾希云; 杨镛

    2012-01-01

    Objective To investigate the biological mechanism about autologous peripheral blood stem cell transplantation (ABSCT) derived neovascularization to lead and perfect the effect of ischemic state tissue of secondary blood flow remodeling. Methods Forty-two patients with critical limbs ischemia and 42 limbs in all from Mar. 2005 to Dec. 2005 in Yunnan Provincial Center of Vascular Surgery were selected, who treated by endovascular repair and ABSCT at the first flow reconstruction and the secondary flow reconstruction, respectively. The preoperative and postoperative effect degrees of limbs regional blood flow from cutaneous covering, blood vessel, and blood were measured by multifunction monitoring device, dopplor ultrasound monitoring device, percutem oxygen partial pressure (TcPO2) monitoring device and digital subtraction angiography (DSA). The follow-up time was in four year after ABSCT. Results After ABSCT, the pain, cold or cool, and rest pain of leg were relieved The distance of intermittent claudica-tion after ABSCT was longer than that before ABSCT [ (1 600. 3 ± 310. 1) m versus (520. 3 ± 160. 6) m, F=5. 84, P< 0. 05]. The foot pain and limbs insensible feeling easement rates were 100% after ABSCT. Compared with before ABSCT,the objective effect indexes of limbs regional blood flow after ABSCT were significantly improved [skin temperature index: 1.63 + 0.31 versus \\.22±0. 23,F=4. 69,P<0. 05; TcPO2: (37. 61+9. 52) mmHg versus (30. 63+4. 54) mmHg, F=5.72,P<0. 05; ankle-brachium index: 0. 93 + 0. 23 versus 0. 33 + 0. 24, F=6. 72, P<0. 05; photoplethys-mography index: 0. 81+0. 12 versus 0. 23±0. 05, F=5. 68, P<0. 05; saturation of blood oxygen: (79.44±20.42) % versus(42.43+10.41) %,F=5.68,P<0.05; DSAscore: 1.34±0.23 versus0.21±0.03,F=4. 89,.P<0.05]. Conclusions The results strongly suggest that the ABSCT can promote blood flow remodeling in limbs ischemia, and stem cells derived neovascularization can significantly offer effective and permanent blood flow

  15. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Directory of Open Access Journals (Sweden)

    Birgit Huber

    2016-04-01

    Full Text Available Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM, biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors.

  16. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Science.gov (United States)

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576

  17. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.

    Science.gov (United States)

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E M; Kluger, Petra J; Borchers, Kirsten

    2016-04-20

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap(®) technology by the authors.

  18. Simultaneous demonstration of mast cells and blood vessels by the combined method CD34--alcian blue-safranin in lip tumors.

    Science.gov (United States)

    Gaje, Puşa; Bocan, Viorica; Cîmpean, Anca Maria; Izvernariu, D A; Streian, Felicia; Raica, M

    2007-01-01

    The aim of the study was to evaluate the mast cell-blood vessel relationship using double staining CD34/AAS. Sections from 14 cases with lip tumors have been stained with Hematoxylin-Eosin. On additional sections from each case, we highlighted blood vessels by immunohistochemistry for CD34 antigen using the method LSAB2-HRP/DAB, followed by alcian blue-safranin stain for mast cells. We quantified the density, distribution and the mast cell types as well as the correlation with the number of blood vessels. All cases have been positive for both staining. We observed a significant correlation between the number of vessels and the mast cells (p = 0.003). In one case, we observed the mast cells stained with safranin (red), the vascular density being less than the mast cells density. Our results confirmed the data from the literature with respect to the large number of mast cells observed in the malignant tumors. The increased vascular density together with the mast cell density suggests a correlation between these two elements in the tumor angiogenesis, possibly though the VEGF secretion. The CD34/AAS stain is a quick and simple method and it allows an optimal correlation between the number of mast cells and blood vessels on the same section. The type of mast cells correlated with microvessel density is a powerful argument towards the involvement of the mast cells in the tumor angiogenesis of the malignances of the lips.

  19. 经编人造血管编织设备的研究现状%The Research Status of Warp Knitting Equipment for Artiifcial Blood Vessel

    Institute of Scientific and Technical Information of China (English)

    曹清林

    2014-01-01

    The study on artificial blood vessel mainly takes four aspects into consideration, namely the material, structure design, manufacturing of fundamental elements and relevant post-processing method. The manufacturing of fundamental elements and the development of relevant knitting equipment are essential for producing artificial blood vessels. This paper analyzed and compared several kinds of manufacturing methods and relevant knitting equipment for making fundamental elements of artificial blood vessels. In view of the effect of clinical application, artificial blood vessels manufactured by warp knitting machines have been widely applied in actual clinics. Besides, this paper also introduced the products of two domestic artificial blood vessel producers, analyzed their structural characteristics and displayed some physical samples of artificial blood vessel.%对人造血管的研究涉及4个方面的问题,即人造血管的材料、结构设计、基础结构件的制造和后处理方法,其中,基础结构件的制造及相应编织设备的开发是生产人造血管的关键。文章对目前使用的几种人造血管基础结构件制备方法及相应设备进行了分析、比较,根据临床应用中的效果,经编人造血管在实际临床中应用得较为广泛。对国内两家生产经编人造血管厂家的产品进行了介绍,分析了各自的结构特点,并展示了编织的人造血管实物。

  20. Time-dependent effects of castration on the bladder function and histological changes in the bladder and blood vessels.

    Science.gov (United States)

    Magari, Tomohiro; Shibata, Yasuhiro; Arai, Seiji; Kashiwagi, Bunzo; Suzuki, Keiji; Suzuki, Kazuhiro

    2014-01-01

    We examined the effect of androgens on bladder blood flow (BBF), bladder function and histological changes in castrated male rats. Male Wistar rats were classified into unoperated group (control group), groups castrated at the age of 8 weeks (group 8wPC) and groups castrated at the age of 4 weeks (group 4wPC). Each rat was used at the age of 20 weeks. BBF was measured using fluorescent microspheres. Bladder cystometry was performed without anesthesia or restraint; the bladder was first irrigated with saline and then with 0.25% acetic acid (AA) solution. Maximum voiding pressure and voiding interval were measured. The bladder and iliac artery were histologically examined for differences in smooth muscle and quantity of collagen fiber to analyze the effect of castration on the smooth muscle content. No differences were noted in BBF following castration. The voiding intervals for all groups were shortened (P control group (Pcontrol group (Pblood vessels.

  1. CLASSICAL AREAS OF PHENOMENOLOGY: Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage

    Science.gov (United States)

    Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing

    2009-07-01

    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.

  2. The corn snake yolk sac becomes a solid tissue filled with blood vessels and yolk-rich endodermal cells

    Science.gov (United States)

    Elinson, Richard P.; Stewart, James R.

    2014-01-01

    The amniote egg was a key innovation in vertebrate evolution because it supports an independent existence in terrestrial environments. The egg is provisioned with yolk, and development depends on the yolk sac for the mobilization of nutrients. We have examined the yolk sac of the corn snake Pantherophis guttatus by the dissection of living eggs. In contrast to the familiar fluid-filled sac of birds, the corn snake yolk sac invades the yolk mass to become a solid tissue. There is extensive proliferation of yolk-filled endodermal cells, which associate with a meshwork of blood vessels. These novel attributes of the yolk sac of corn snakes compared with birds suggest new pathways for the evolution of the amniote egg. PMID:24402715

  3. Reflection-mode photoacoustic microscopy using a hollow focused ultrasound transducer for in vivo imaging of blood vessels

    Institute of Scientific and Technical Information of China (English)

    Yuan Yi; Yang Si-Hua

    2012-01-01

    A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the system resolution.The axial and lateral resolutions of the system are measured to be~32 μm and~58 μm,respectively.Ex vivo and in vivo modes are tested to validate the imaging capability of the photoacoustic microscope.The adjacent vein and artery can be seen clearly from the reconstructed photoacoustic images.The results demonstrate that the reflectionmode photoacoustic microscope can be used for high-resolution imaging of micro-blood vessels,which would be of great benefit for monitoring the neovascularization in tumor angiogenesis.

  4. Investigating the effect of excess caffeine exposure on placental angiogenesis using chicken 'functional' placental blood vessel network.

    Science.gov (United States)

    Ma, Zheng-Lai; Wang, Guang; Lu, Wen-Hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-02-01

    It is now known that over-consumption of caffeine by pregnant mothers could have detrimental effects on normal fetal development. However, it remains obscure how caffeine's harmful effect impacts directly or indirectly on the developing embryo/fetus through damaging placenta development. In this study, we demonstrated the morphological similarities between the yolk sac and chorioallantoic membranes (CAM) of chick embryos and the villi of the mammalian placenta. Using the chick yolk sac and the CAM as a model, we found that 5-15 µmol per egg of caffeine exposure inhibited angiogenesis. Under the same condition, cell proliferation in extraembryonic mesoderm was reduced while apoptosis was enhanced. Semi-quantitative RT-PCR analysis revealed that caffeine treatment down-regulated VEGF, VEGFR2, PIGF, IGF2 and NRP1 expression, but up-regulated Ang1 and Ang2 expression. We performed in situ hybridization to show VE-cadherin expression and as to demonstrate the blood vessels in the CAM and yolk sac membranes. This distribution of the VE-cadherin(+) blood vessels was determined to be reduced after caffeine treatment. Furthermore, MDA activity was induced after caffeine exposure, but GSH-PX activity was inhibited after caffeine exposure; SOD activity was unchanged as compared with the control. In summary, our results suggest that caffeine exposure could negatively impact on angiogenesis in the chick yolk sac and CAM by targeting angiogenesis-related genes. Some of these genes are also involved in regulating excess ROS generation. The results implied that the negative impact of caffeine on fetal development was partly attributed to impaired placental angiogenesis.

  5. The structural and functional effects of fine particulate matter from cooking oil fumes on rat umbilical cord blood vessels.

    Science.gov (United States)

    Zhu, Xiaoxia; Hou, Lijuan; Zhang, Jian; Yao, Cijiang; Liu, Ying; Zhang, Chao; Xu, Yachun; Cao, Jiyu

    2016-08-01

    A growing body of epidemiological evidence has supported the association between maternal exposure to airborne fine particulate matter (PM2.5) during pregnancy and adverse pregnancy outcomes. However, the specific biological mechanisms implicated in the causes of adverse pregnancy outcomes are not well defined. In this study, a pregnant rat model of exposure to different doses of cooking oil fumes (COFs)-derived PM2.5 by tail intravenous injection in different pregnant stages was established. The results indicated that exposure to COFs-derived PM2.5 was associated with adverse pregnancy outcomes, changed the structure of umbilical cord blood vessels, decreased the diameter and lumen area, and increased wall thickness. What's more, a significant increase of maximum contraction tension was observed in the early pregnancy high-dose exposure group and pregnant low-dose exposure group compared to the control group. Based on the maximum contraction tension, acetylcholine (ACh) did not induce vasodilation but caused a dose-dependent constriction, and there were significant differences in the two groups compared to the control group. Exposure to COFs-derived PM2.5 impaired the vasomotor function of umbilical veins by affecting the expression of NO and ET-1. This is the first study that evaluated the association of risk of adverse pregnancy outcomes and pregnant rats exposed to COFs-derived PM2.5 and primarily explored the potential mechanisms of umbilical cord blood vessels injury on a rat model. More detailed vitro and vivo studies are needed to further explore the mechanism in the future.

  6. MAPK and pro-inflammatory mediators in the walls of brain blood vessels following cerebral ischemia

    OpenAIRE

    Maddahi, Aida

    2012-01-01

    INTRODUCTION Stroke is a serious neurological disease which may lead to death and severe disability [1, 2]. There are two major types of stroke: ischemic and hemorrhagic stroke. Both are associated with disruption of blood flow to a part of the brain with rapid depletion of cellular energy and oxygen, resulting in ionic disturbances and eventually neuronal cell death [3]. The pathologic process that develops after stroke is divided into acute (within hours), sub-acute (hours to days), ...

  7. Surgical manipulation of major blood vessels invaded by retroperitoneal tumors%腹膜后肿瘤累及腹部大血管的处理

    Institute of Scientific and Technical Information of China (English)

    田文

    2009-01-01

    腹膜后肿瘤出现症状就诊时,肿瘤通常发展的比较大且多已累及重要血管.腹膜后肿瘤所累及重要血管外科处理的关键是提高肿瘤切除率.首先应用CT、MRI及数字减影血管造影等影像学方法 判断腹膜后肿瘤所累及重要血管的情况.良好显露为控制和处理血管出血创造了必要条件,增加了手术安全性.血管阻断前应行局部或全身肝素化,有些重要的血管需行修复和重建.自体血管的使用已日渐成熟,人工血管和补片的使用为手术提供了便利.重建时要注意恢复血管功能及防止血管损伤和术后血栓形成.%When the retroperitoneal tumor patients with clinic symptoms seek medical treatment, the tumors are usually large and involve major blood vessels. The correct surgical manipulation of major blood vessels invaded by retroperitoneal tumors is important to raise the resection rate. The examination of CT, MRI and DSA (digital subtration angiography) can help preoperative evaluation and preparation for major blood vessels resection and reconstruction. Good vessel exposing plays a necessary part in vessel resection and reconstruction. Before controling bleeding and vessel reconstruction, local or systemic heparinization should be necessary. Some important vessels need to repair and reconstruction. Now using autologous blood vessels for vessel reconstruction has been more common, artificial blood vessels and mesh greatly facilitate reconstruction. It should be paid attention to vascular function reconstruction, preventing postoperative vascular injury and thrombosis.

  8. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  9. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    Directory of Open Access Journals (Sweden)

    Montree Chaichanyut

    2016-01-01

    Full Text Available This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C. The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm, approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.

  10. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    Science.gov (United States)

    Chaichanyut, Montree

    2016-01-01

    This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model. PMID:27642364

  11. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.

    Science.gov (United States)

    Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun

    2015-07-16

    Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam.

  12. Hard X-ray in-line outline imaging for blood vessels: first generation synchrotron radiation without contrast agents in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: Phase-contrast X-ray imaging which reduces radiation exposure, is a promising technique for observing the inner structures of biological soft tissues without the aid of contrast agents.The present study intends to depict blood vessels of rabbits and human livers with hard X-ray in-line out line imaging without contrast agents using synchrotron radiation. Methods: All samples were fixed with formalin and sliced into 6 mm sections. The imaging experiments were performed with Fuji-IX80 films on the 4W1A light beam of the first generation synchrotron radiation in Beijing, China. The device of the ex periment, which supplies a maximum light spot size of 20× 10 mm was similar to that of in-line holography. The photon energy was set at 8 KeV and high quality imagines were obtained by altering the distance between the sample and the film. Results: The trees of rabbit-liver blood vessels and the curved vessels of the cirrhotic human liver were revealed on the images, where vessels < 20 μm in diameter were differentiated. Conclusion: These results show that the blood vessels of liver samples can be revealed by using hard X-ray in-line outline imaging with the first generation synchrotron radiation without contrast agents.

  13. Biofluid mechanical studies in models of blood vessels and some applications

    Science.gov (United States)

    Liepsch, D.

    1996-05-01

    Lasers are used in a wide variety of medical applications. While laser catheters have beem developed for highly accurate velocity measurement, these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  14. A multicomponent bioactive tissue-engineered blood vessel: Fabrication, mechanical evaluation and biological evaluation with physiological-relevant conditions

    Science.gov (United States)

    Bonani, Walter

    The high long-term failure rate of synthetic vascular grafts in the replacement of small vessels is known to be associated with the lack of physiological signals to vascular cells causing adverse hemodynamic, inflammatory or coagulatory events. Current studies focus on developing engineered vascular devices with ability of directing cell activity in vitro and in vivo for tissue regeneration. It is also known that controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing cell activities in vitro and in vivo for tissue regeneration. To address the mechanical and biological problems associated with graft materials, we demonstrated a degradable polyester-fibroin composite tubular scaffolds which shows well-integrated nanofibrous structure, endothelial-conducive surface and anisotropic mechanical property, suitable as engineered vascular constructs. Tissue regeneration needs not only functional biomolecules providing signaling cues to cells and guide tissue remodeling, but also an adequate modality of molecule delivery. In fact, healthy tissue formation requires specific signals at well-defined place and time. To develop scaffolds with multi-modal presentation of biomolecules, we patterned electrospun nanofibers over the thickness of the 3-dimensional scaffolds by programming the deposition of interpenetrating networks of degradable polymers poly(a-caprolactone) and poly(lactide-co-glycolide) acid in tailored proportion. Fluorescent model molecules, drug and growth factors were embedded in the polymeric fibers with different techniques and release profiles were obtained and discussed. Fabrication process resulted in precise gradient patterns of materials and functional biomolecules throughout the thickness of the scaffold. These graded materials showed programmable spatio-temporal control over the release. Molecule release profiles on each side of the scaffolds were used to determine the separation efficiency of molecule

  15. Simulation of balloon angioplasty in residually stressed blood vessels-Application of a gradient-enhanced fibre damage model.

    Science.gov (United States)

    Polindara, César; Waffenschmidt, Tobias; Menzel, Andreas

    2016-08-16

    In this contribution we study the balloon angioplasty in a residually stressed artery by means of a non-local gradient-enhanced fibre damage model. The balloon angioplasty is a common surgical intervention used to extend or reopen narrowed blood vessels in order to restore the continuous blood flow in, for instance, atherosclerotic arteries. Inelastic, i.e. predominantly damage-related and elastoplastic processes are induced in the artery during its inflation resulting in an irreversible deformation. As a beneficial consequence, provided that the inelastic deformations do not exceed a specific limit, higher deformations can be obtained within the same pressure level and a continuous blood flow can be guaranteed. In order to study the mechanical response of the artery in this scenario, we make use of the non-local gradient-enhanced model proposed in Waffenschmidt et al. (2014). In this contribution, we extend this model to make use of an incompressible format in connection with a Q1Q1P0 finite element implementation. The residual stresses in the artery are also taken into account following the framework presented in Waffenschmidt (2015). From the results it becomes apparent that, when the artery is subjected to radial stresses beyond the physiological range, damage evolution is triggered in the collagen fibres. The impact of the residual stresses on the structural response and on the circumferential stress distribution along the thickness of the arterial wall is also studied. It is observed that the residual stresses have a beneficial effect on the mechanical response of the arterial wall.

  16. N-epsilon-(carboxymethyl)lysine depositions in intramyocardial blood vessels in human and rat acute myocardial infarction - A predictor or reflection of infarction?

    NARCIS (Netherlands)

    A. Baidoshvili; P.A.J. Krijnen; K. Kupreishvili; C. Ciurana; W. Bleeker; R. Nijmeijer; C.A. Visser; F.C. Visser; C.J.L.M. Meijer; W. Stooker; L. Eijsman; V.W.M. van Hinsbergh; C.E. Hack; H.W.M. Niessen; C.G. Schalkwijk

    2006-01-01

    Objective - Advanced glycation end products ( AGEs), such as N-epsilon-( carboxymethyl) lysine ( CML), are implicated in vascular disease. We previously reported increased CML accumulation in small intramyocardial blood vessels in diabetes patients. Diabetes patients have an increased risk for acute

  17. Remote non-invasive stereoscopic imaging of blood vessels: first in-vivo results of a new multispectral contrast enhancement technology

    NARCIS (Netherlands)

    Wieringa, F.P.; Mastik, F.; Cate, F.J. ten; Neumann, H.A.M.; Steen, A.F.W. van der

    2006-01-01

    We describe a contactless optical technique selectively enhancing superficial blood vessels below variously pigmented intact human skin by combining images in different spectral bands. Two CMOS-cameras, with apochromatic lenses and dual-band LED-arrays, simultaneously streamed Left (L) and Right (R)

  18. 改良小口径人工血管的血液相容性研究*%The Study of the Modified Small-caliber Artificial Blood Vessel

    Institute of Scientific and Technical Information of China (English)

    李辉; 陈群清; 李少彬; 闫玉生

    2013-01-01

    Objective:To research the hemocompatibility of the modified small-caliber artificial blood vessel(the combined blood vessel). Method:To produce a combined blood vessel with a small-caliber expanded polytetrafluoroethylene vessel coated by silk fibroin film,which sulfonated by low temperature plasma treatment,to evaluated the hemocompatibility and safety of the combined blood vessel including dynamic cruor time test, recalcification time,and the hemolysis test.Result:Hemolytic test indicated that the vascular hemolysis was 4.5%,in line with the requirements of materials hemolytic.The average value of absorbance-clotting time of the combined blood vessel was higher than that of the control blood vessel,and declined more slowly.The recalcification time of the combined blood vessel was significantly longer than that of control blood vessel(610.06±37.65 vs 450.00±32.18 seconds,P<0.01).Conclusion:Form this experiment,we demonstrate the combined blood vessel has a good hemocompatibility.%  目的:研究改良小口径人工血管的血液相容性。方法:将丝素蛋白膜涂覆于聚四氟乙烯小口径人工血管内侧壁,采用等离子体技术对涂覆后的小口径人工血管磺酸化,制成改良小口径人工血管;改良小口径人工血管的溶血相关安全性以体外溶血实验检测,同时行动态凝血、复钙实验评价复合血管血液相容性。结果:溶血试验提示复合血管的溶血率为4.5%,符合材料溶血要求;动态凝血中根据各时间点吸光度平均值可见复合血管组吸光度整体位于普通血管之上,且下降趋势较缓,经历时间较长,与普通血管相比,其抗凝血性能较好;复钙实验中复合血管组平均时间为(450.00±32.18)s,小于对照组平均时间(610.06±37.65)s,两样本t检验提示P=0.000,提示两者差异有统计学意义。结论:改良小口径人工血管具有良好的血液相容性。

  19. Evaluation of sildenafil pressurized metered dose inhalers as a vasodilator in umbilical blood vessels of chicken egg embryos.

    Science.gov (United States)

    Sawatdee, Somchai; Hiranphan, Phetai; Laphanayos, Kampanart; Srichana, Teerapol

    2014-01-01

    Sildenafil citrate is a selective phosphodiesterase-5 inhibitor used for the treatment for erectile dysfunction and pulmonary hypertension. The delivery of sildenafil directly to the lung could have several advantages over conventional treatments for pulmonary hypertension because of the local delivery, a more rapid onset of response, and reduced side effects. The major problem of sildenafil citrate is its limited solubility in water. Sildenafil citrate was complexed with cyclodextrins (CDs) to enhance its water solubility prior to development as an inhaled preparation. Four sildenafil citrate inhaled formulations were prepared with the aid of HP-β-CD (#1), α-CD (#2) and γ-CD (#3) and their effects were compared with the formulations without CDs (#4). The sildenafil citrate pressurized metered dose inhalers (pMDI) used ethanol as a solvent, PEG400 as a stabilizing agent, sorbitan monooleate as a surfactant and HFA-134a as a propellant. All formulations consisted of sildenafil citrate equivalent to a sildenafil content of 20μg/puff. These products were evaluated according to a standard guideline of inhalation products. Vasodilation testing was performed to investigate the efficacy of sildenafil pMDIs in relieving a vasoconstricted umbilical blood vessel of the chicken egg embryo. The sildenafil contents of the pMDI formulations #1-#3 were within the acceptance criteria (80-120%). The emitted doses (ED) were 102.3±11.5%, the fine particle fractions (FPF) were 60.5±5.6% and the mass median aerodynamic diameters (MMAD) were 2.3±0.3μm. The vasodilatory activity of those formulations reduced umbilical blood pressure by 67.1-73.7% after treatment by intravenous injection whereas only a 50.1-58.0% reduced blood pressure was obtained after direct spraying of the sildenafil pMDI containing CDs. With sildenafil formulations of a pMDI without CD the blood pressure was reduced by only 39.0% (P-valuevessels of chicken egg embryos after spraying sildenafil-CDs pMDIs was

  20. Blood flow and microgravity

    Science.gov (United States)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  1. Time-dependent effects of castration on the bladder function and histological changes in the bladder and blood vessels

    Institute of Scientific and Technical Information of China (English)

    Tomohiro Magari; Yasuhiro Shibata; Seiji Arai; Bunzo Kashiwagi; Keiji Suzuki; Kazuhiro Suzuki

    2014-01-01

    We examined the effect of androgens on bladder blood lfow (BBF), bladder function and histological changes in castrated male rats. Male Wistar rats were classiifed into unoperated group (control group), groups castrated at the age of 8 weeks (group 8wPC) and groups castrated at the age of 4 weeks (group 4wPC). Each rat was used at the age of 20 weeks. BBF was measured using lfuorescent microspheres. Bladder cystometry was performed without anesthesia or restraint;the bladder was ifrst irrigated with saline and then with 0.25%acetic acid (AA) solution. Maximum voiding pressure and voiding interval were measured. The bladder and iliac artery were histologically examined for differences in smooth muscle and quantity of collagen ifber to analyze the effect of castration on the smooth muscle content. No differences were noted in BBF following castration. The voiding intervals for all groups were shortened (P<0.001) following AA irrigation. No signiifcant difference was noted in the maximum voiding pressure. Histological changes were observed in bladder and iliac artery. Smooth muscle/collagen ratio at the bladder was lower in groups 8wPC and 4wPC compared to the control group (P<0.01), while that at the iliac artery was decreased in group 4wPC compared to the control group (P<0.001). In conclusion, our ifndings indicate that castration does not alter BBF, but leads to histological changes in the bladder as well as its associated blood vessels.

  2. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.

    Science.gov (United States)

    Mata, Karina M; Li, Wei; Reslan, Ossama M; Siddiqui, Waleed T; Opsasnick, Lauren A; Khalil, Raouf A

    2015-11-15

    Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT

  3. A complex immune response in halo nevi correlates with immune reactivity on infiltrated melanocytes, adjacent hair follicles and blood vessels

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2014-10-01

    Full Text Available Introduction: A clinical “halo nevus” is a benign melanocytic-neoplasm, often exhibiting spontaneous involution. A characteristic clinical feature is depigmentation of the surrounding skin, and a centripetal progression of the tumor regression phenomenon. Case Report: An 18 year old male consulted the dermatologist for changes in color of an asymptomatic mole. Materials and Methods: A clinical evaluation was performed, and skin biopsies were obtained for hematoxylin and eosin (H&E review, and for immunohistochemical (IHC studies including CD3, CD4, CD8, CD20, CD68, CD99, myeloid/histiocyte antigen, S-100, PNL2 and SOX-10. Results: A neoplastic process was identified on H&E examination, located along the dermal/epidermal junction and within the dermis. The neoplasm was composed of nests, cords and strands of benign melanocytes, with infiltrating lymphocytes. IHC staining demonstrated a strong pattern of positivity with all of the IHC antibodies within, infiltrating and surrounding the primary neoplastic process. In addition, evidence of the primary tumor immune response was noted around surrounding blood vessels and hair follicles, and on adjacent epidermal melanocytes. Conclusions: In the present study, we demonstrate by histopathologic and immunologic evidence that lymphocytes are primarily responsible for halo nevus tumor regression. Moreover, the immune response involves not only CD8 positive T lymphocytes, but a larger spectrum of B and T lineage lymphocytes. Thus, the immunologic foundations of halo nevus regression are likely of greater complexity than previously determined..

  4. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels.

    Science.gov (United States)

    Maes, Christa; Kobayashi, Tatsuya; Selig, Martin K; Torrekens, Sophie; Roth, Sanford I; Mackem, Susan; Carmeliet, Geert; Kronenberg, Henry M

    2010-08-17

    During endochondral bone development, the first osteoblasts differentiate in the perichondrium surrounding avascular cartilaginous rudiments; the source of trabecular osteoblasts inside the later bone is, however, unknown. Here, we generated tamoxifen-inducible transgenic mice bred to Rosa26R-LacZ reporter mice to follow the fates of stage-selective subsets of osteoblast lineage cells. Pulse-chase studies showed that osterix-expressing osteoblast precursors, labeled in the perichondrium prior to vascular invasion of the cartilage, give rise to trabecular osteoblasts, osteocytes, and stromal cells inside the developing bone. Throughout the translocation, some precursors were found to intimately associate with invading blood vessels, in pericyte-like fashion. A similar coinvasion occurs during endochondral healing of bone fractures. In contrast, perichondrial mature osteoblasts did not exhibit perivascular localization and remained in the outer cortex of developing bones. These findings reveal the specific involvement of immature osteoblast precursors in the coupled vascular and osteogenic transformation essential to endochondral bone development and repair.

  5. Dietary saffron reduced the blood pressure and prevented remodeling of the aorta in L-NAME-induced hypertensive rats

    Directory of Open Access Journals (Sweden)

    Zohreh Nasiri

    2015-11-01

    Full Text Available Objective(s:The aim of this study was to investigate the effects of nutritional saffron (Crocus sativus L. stigma hydroalcoholic extract on blood pressure (BP and histology of the aorta in normotensive and hypertensive rats. Materials and Methods:   Saffron (200 mg/kg/day was given orally for 5 weeks to normotensive and hypertensive rats. Hypertension was induced by NG-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg/day administration in drinking water, and BP was measured weekly. Histological examination of the thoracic aorta included staining with hematoxylin and eosin, orcein, and periodic acid Schiff methods. Results:  Saffron had no effect on normotensive rats, but on hypertensive rats, prevented BP elevation form the third week of treatment (P

  6. [The comparative role of computed tomography and magnetic resonance imaging in the diagnosis of extracapsular spread of malignant lymphomatous masses invading blood vessels].

    Science.gov (United States)

    Dobrovolskiene, Laima; Griniûtë, Rasa

    2003-01-01

    Aim of the study was to search for an optimal method an of investigation in diagnosis of extracapsular spread of the malignant lymphomas and invading the blood vessels. In the period of 1998 to 2002, 81 patients with malignant lymphomas with coverage of neck and body areas were examined in the Department of Tomography of Kaunas University of Medicine Hospital. It was performed by computed tomography (CT) and magnetic resonance imaging (MRI), with or without iv. application of contrast media. The data were processed with SPSS 10.1 (Statistical package for Social Sciences 10.1 for Windows), including application of chi(2), t-test. Specificity, sensitivity and diagnostic accuracy of CT and MRI methods were calculated and compared according to recommendations by Gefland D. W. and Ott D. J., 1985. Diagnosis of extracapsular spread of the lymphomatous tissue and invading the blood vessels was best performed by MR method (specificity, sensitivity, accuracy in this case 91-95%). Bolus CT angiography because of low resolution in the range of soft tissues, insufficient opacification of blood vessels with contrast medium and differences in blood flow was not informative enough (specificity, sensitivity, accuracy in this case 80-85%).

  7. Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study.

    Science.gov (United States)

    Bartel, H; Lametschwandtner, A

    2000-08-01

    Structural changes of the ventral velum of Xenopus laevis tadpoles from late prometamorphosis (stage 58) to the height of metamorphic climax (stage 62) were examined by light and transmission electron microscopy. Special emphasis was given to the blood vessel regression. Early changes of velar capillaries were formation of luminal and abluminal endothelial cell processes, vacuolation, and cytoplasmic and nuclear chromatin condensation. At the height of metamorphic climax, transmission electron microscopy revealed apoptotic endothelial cells with nuclear condensation and fragmentation, intraluminal bulging of rounded endothelial cells which narrowed or even plugged the capillary, and different stages of endothelial cell detachment ('shedding') into the vessel lumen. These changes explain the 'miniaturisation' of the velar microvascular bed as well as the typical features found in resin-casts of regressing velar vessels which have been observed in a previous scanning electron microscopy study of the ventral velum.

  8. New Technique for Automatic Segmentation of Blood Vessels in CT Scan Images of Liver Based on Optimized Fuzzy C-Means Method

    Directory of Open Access Journals (Sweden)

    Katayoon Ahmadi

    2016-01-01

    Full Text Available Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C-means (FCM method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of ​​class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA is applied for segmentation of liver’s blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments.

  9. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites].

    Science.gov (United States)

    Savik, Z F; Rokhlenko, K D

    1981-01-01

    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  10. Bone, blood vessels, and muscle detection algorithm and creating database based on dynamic and non-dynamic multi-slice CT image of head and neck

    Science.gov (United States)

    Shabbir Ahamed, Mohammed; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Iwasaki, Hirokazu

    2007-03-01

    Nowadays, dental CT images play more and more important roles in oral clinical applications. Our research is important particularly in the field of dentistry. We are using non-dynamic and dynamic CT image for our research. We are creating our database of bone, blood vessels and muscles of head and neck. This database contains easy case and difficult case of head and neck's bone, blood vessels and muscle. There are lots of difficult cases in our database. Teeth separation and condylar process separation is difficult case. External carotid artery has many branches and they are attached with vain so it is difficult to separate. All muscle threshold value is same and they are attaching with each other so muscle separation is very difficult. These databases also contain different age's patients. For this reason our database becomes an important tool for dental students and also important assets for diagnosis. After completion our database we can link it with other dental application.

  11. Short-Term Blood Pressure Variability Relates to the Presence of Subclinical Brain Small Vessel Disease in Primary Hypertension.

    Science.gov (United States)

    Filomena, Josefina; Riba-Llena, Iolanda; Vinyoles, Ernest; Tovar, José L; Mundet, Xavier; Castañé, Xavier; Vilar, Andrea; López-Rueda, Antonio; Jiménez-Baladó, Joan; Cartanyà, Anna; Montaner, Joan; Delgado, Pilar

    2015-09-01

    Blood pressure (BP) variability is associated with stroke risk, but less is known about subclinical cerebral small vessel disease (CSVD). We aimed to determine whether CSVD relates to short-term BP variability independently of BP levels and also, whether they improve CSVD discrimination beyond clinical variables and office BP levels. This was a cohort study on asymptomatic hypertensives who underwent brain magnetic resonance imaging and 24-hour ambulatory BP monitoring. Office and average 24-hour, daytime and nighttime BP levels, and several metrics of BP variability (SD, weighted SD, coefficient of variation, and average real variability [ARV]) were calculated. Definition of CSVD was based on the presence of lacunar infarcts and white matter hyperintensity grades. Multivariate analysis and integrated discrimination improvement were performed to assess whether BP variability and levels were independently associated with CSVD and improved its discrimination. Four hundred eighty-seven individuals participated (median age, 64; 47% women). CSVD was identified in 18.9%, related to age, male sex, diabetes mellitus, use of treatment, ambulatory BP monitoring-defined BP levels, and ARV of systolic BP at any period. The highest prevalence (33.7%) was found in subjects with both 24-hour BP levels and ARV elevated. BP levels at any period and ARV (24 hours and nocturnal) emerged as independent predictors of CSVD, and discrimination was incrementally improved although not to a clinically significant extent (integrated discrimination improvement, 5.31%, 5.17% to 5.4%). Ambulatory BP monitoring-defined BP levels and ARV of systolic BP relate to subclinical CSVD in hypertensive individuals.

  12. High glucose induces the expression of osteopontin in blood vessels in vitro and in vivo.

    Science.gov (United States)

    Li, Tianjia; Ni, Leng; Liu, Xinnong; Wang, Zhanqi; Liu, Changwei

    2016-11-11

    Osteopontin (OPN) is involved in mineral metabolism and the inflammatory response while diabetes mellitus is associated with severe and extensive vascular calcification. Therefore, we speculated that OPN could be a key factor in the calcification and dysfunction of blood vessels exposed to high glucose. To identify the relationship between high glucose and OPN, we used high glucose medium to stimulate smooth muscle cells (SMCs) and vascular endothelial cells (VECs) in vitro and diabetic rats for in vivo analyses. As assessed by flow cytometry and western blots, SMC and VEC apoptosis levels increased with high glucose. Potassium and calcium uptake by cells were also increased with high glucose. These findings demonstrated the relationship between mineral metabolism and high glucose. Western blot and quantitative real time polymerase chain reaction analyses demonstrated that OPN increased in vitro with high glucose stimulation. The inflammatory factor ICAM1 and the inhibitory phosphorylation of endothelial nitric-oxide synthase (eNOS) (Thr495) were also upregulated by high glucose. In contrast, the anti-inflammatory factor Nrf2 and the activating phosphorylation of eNOS (Ser1177) were downregulated. Similar to the change of OPN, phosphorylated P38 was increased with high glucose. SB203580, an inhibitor of P38 phosphorylation, downregulated the expression of OPN and related inflammatory factors. Additionally, OPN was increased in the aortas and plasma of diabetic rats. In conclusion, our findings demonstrate that high glucose can induce the expression of OPN, which may be a key factor in the calcification and dysfunction of the vascular wall in diabetes.

  13. 人工血管材料血液相容性及表面改性%Hemocompatibility and surface modification of artificial blood vessel materials

    Institute of Scientific and Technical Information of China (English)

    何艳平; 马德春; 李磊; 张丽; 郑爽; 董可欣

    2015-01-01

    BACKGROUND:Artificial blood vessels made from synthetic materials are the most commonly used blood vessel substitutes. How to improve the patency of the blood vessels and the compatibility of artificial blood vessel materials is in the focus of research in recent years. OBJECTIVE:To review the biocompatibility and hemocompatiblity of artificial blood vessel materials, and to summarize a number of new methods and viewpoints appearing in international biomaterial and blood interaction research in recent years. METHODS: Wanfang database, Chinese Journal Ful-text Database and PubMed database were retrieved by the first author for relevant articles published from 2001 to 2014, using the key words of “artificial blood vessels, biomaterials” in Chinese and English, respectively. RESULTS AND CONCLUSION: Research on the hemocompatibility of materials, although after many years, is stil in the exploratory stage. There are many factors influencing material hemocompatibility, and in addition to the inherent blood components, surface and interface characteristics of the materials play a decisive role. Currently, surface and interface features optimization and modification has become an important way to improve the blood compatibility, but the existing evaluation system appears to have some problems, such as the selection and quantitative evaluation of sensitive indicators and positive control materials. Therefore, to develop artificial materials with good hemocompatibility and to establish rational and high-efficient blood compatibility evaluation system stil need further studies.%背景:人工血管取于合成材料,是最常用的血管代用品,如何提高血管的通畅性和人工血管材料的相容性是在近年来人工血管研究的重点。目的:综述人工血管材料的生物相容性和血液相容性,归纳近年来国际在生物材料和血液相互作用研究方面出现的一些新方法和视点。方法:由第一作者用计算机检

  14. IgG BULLOUS PEMPHIGOID WITH ANTIBODIES TO IgD, DERMAL BLOOD VESSELS, ECCRINE GLANDS AND THE ENDOMYSIUM OF MONKEY ESOPHAGUS

    Directory of Open Access Journals (Sweden)

    Abreu Velez Ana Maria

    2011-04-01

    Full Text Available Context: Bullous pemphigoid is mediated by autoantibodies primarily targeting two structural proteins of basement membrane hemidesmosomes, BP180 (BPAG2; collagen XVII and BP230 (BPAG1. Case Report: A 70-year-old Caucasian male patient was evaluated for a seven day history of multiple itching, erythematous blisters on his extremities. Biopsies for hematoxylin and eosin examination, direct immunofluorescence and indirect immunofluorescence (including salt split skin analysis were performed. Results: Hematoxylin and eosin examination demonstrated a subepidermal blister. Within the blister lumen, numerous eosinophils and lymphocytes were noted. Direct and indirect immunofluorescence revealed linear deposits of IgG, Complement/C3 and fibrinogen at the basement membrane zone of the skin and surrounding selected dermal blood vessels and sweat glands. Positive intracytoplasmic staining for anti-human IgD was noted in most of the epidermis, as well as surrounding some dermal blood vessels. Indirect immunofluorescence utilizing monkey esophagus substrate demonstrated strong positivity within the endomysium for IgG antibodies. Conclusion: We report a unique case of bullous pemphigoid with reactivity to eccrine sweat glands, and selected dermal blood vessels. In addition, the observed reactivity of anti-human IgD, and of IgG to monkey esophagus endomysium warrant further investigation.

  15. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  16. PDGFRα plays a crucial role in connective tissue remodeling.

    Science.gov (United States)

    Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo

    2015-12-07

    Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.

  17. VASCULAR REMODELING AND HEART RATE VARIABILITY IN DIFFERENT ANTIHYPERTENSIVE THERAPIES

    Directory of Open Access Journals (Sweden)

    E. D. Golovanova

    2008-01-01

    Full Text Available Aim. To study the effect of the long-term antihypertensive monotherapy with indapamide (Arifon Retard, 1,5 mg/d, metoprolol tartrate (Egilok Retard, 50 mg/d and combined therapy with indapamide and perindopril (Noliprel Forte, 1 tab/d: perindopril 4 mg and indapamide 1,25 mg on pulse wave velocity (PWV, cardio-ankle vascular index (CAVI and the sympathetic system activity.Material and methods. 88 patients, aged 30-59 y.o. (32 normotensive patients, 56 with arterial hypertension [HT] of 1-2 grades were examined. Biological age (BA was determined by the linear regression and the vascular wall age (VWA was estimated with the use of volume sphygmography (“VaSera-1000”, “Fucuda Denshi”, Japan. 39 patients with HT were randomized into 3 parallel groups with studied therapies lasted for 6 months. PWV, CAVI of the vessels of elastic, muscular and mixed types, blood pressure, measured in upper and lower extremities and heart rate variability (HRV were determined before and at the end of the therapies.Results. BA and VWA were elevated in all of patients with HT as compared with normotensive patients. The reduction in PWV and CAVI of the vessels of elastic and mixed types, HRV increase were found in patients with Arifon Retard monotherapy. Monotherapy with metoprolol significantly improved HVR without any influence on the vascular remodeling. Noliprel Forte significantly decreased in blood pressure in the upper and lower extremities, PWV and CAVI of the vessels of all types, decreased in VWA and increased in parasympathetic drive.Conclusion. Long-term therapy with Arifon Retard and Noliprel Forte resulted in decrease in vascular remodeling and increase in HRV simultaneously with significant antihypertensive effect in patients with HT. Metoprolol low doses therapy resulted in normalization of autonomic drive independently on antihypertensive action.

  18. Maternal uterine vascular remodeling during pregnancy.

    Science.gov (United States)

    Osol, George; Mandala, Maurizio

    2009-02-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms.

  19. Blood Thinners

    Science.gov (United States)

    If you have some kinds of heart or blood vessel disease, or if you have poor blood flow to your brain, your doctor may recommend that you take a blood thinner. Blood thinners reduce the risk of heart ...

  20. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    Science.gov (United States)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  1. Impact of thermodilution-derived coronary blood flow patterns after percutaneous coronary intervention on mid-term left ventricular remodeling in patients with ST elevation myocardial infarction.

    Science.gov (United States)

    Sumiyoshi, Akinori; Fujii, Kenichi; Fukunaga, Masashi; Shibuya, Masahiko; Imanaka, Takahiro; Kawai, Kenji; Miki, Kojiro; Tamaru, Hiroto; Horimatsu, Tetsuo; Saita, Ten; Nishimura, Machiko; Masuyama, Tohru; Ishihara, Masaharu

    2017-01-01

    We recently reported the coronary thermodilution curve can be evaluated by analyzing the thermodilution curve obtained from a pressure sensor/thermistor-tipped guidewire, and presence of a bimodal-shaped thermodilution curve following primary percutaneous coronary intervention (pPCI) in ST-segment elevation myocardial infarction (STEMI) patients was associated with worse outcomes. This study evaluated whether the bimodal-shaped thermodilution curve predicts left ventricular (LV) remodeling after STEMI. The coronary thermodilution curve patterns were evaluated for 75 patients treated by pPCI for their first STEMI using a pressure sensor/thermistor-tipped guidewire, and classified into the three groups according to the thermodilution curve shape: narrow unimodal (n = 39), wide unimodal (n = 26), and bimodal pattern (n = 10). Echocardiography was performed at baseline and 6 months after STEMI. LV remodeling was defined as a >20 % increase in LV end-diastolic volumes (LVEDV). LVEDV at 6-month follow-up was greater in the bimodal group than in the other groups (p remodeling was highest in the bimodal group than in the narrow and wide unimodal groups (60, 12, and 15 %, respectively; p = 0.003). Multivariate analysis revealed a bimodal-shaped thermodilution curve as an independent predictor of the prevalence of LV remodeling. A bimodal-shaped thermodilution curve is associated with LV remodeling after STEMI. This easily assessable coronary thermodilution curve pattern is useful to predict mid-term LV remodeling for STEMI patients at the catheterization laboratory.

  2. Correlations Between the Density of Tryptase Positive Mast Cells (DMCT and that of New Blood Vessels (CD105+ in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Micu Gianina Viorica

    2016-06-01

    Full Text Available Mast cells proteases, tryptase and chymase are directly involved in the growth and progression of solid tumors due to their important role in tumor angiogenesis. We examined the density of tryptase positive mast cells and the mean density of new blood vessels in gastric malignant tumors of patients with and without Helicobacter pylori infection, using immunohistochemical staining for tryptase (for mast cells and CD 105 (for new vessels. Tryptase and CD 105 expression was detected in gastrectomy specimens. In this study, mast cell density correlates with angiogenesis and the growth and progression of gastric cancer. It also shows that the participation of Helicobacter pylori infection in the growth and progress of gastric neoplasia is due to an increase of peritumoral angiogenesis, with subsequent local and distant tumor spread and perivascular growth, but without perineural and nodal involvement.

  3. "Sausage-string" appearance of arteries and arterioles can be caused by an instability of the blood vessel wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Beierholm, Ulrik; Mikkelsen, Rene

    2002-01-01

    in vascular wall tension. Despite much research, the mechanisms underlying the sausage pattern have remained unknown. Here we present an anisotropic model of the vessel wall and show that the sausage pattern can arise because of an instability of the vessel wall. The model reproduces many of the key features...... phenomenon. Experimental data suggest that the structural changes induced by the instability may cause secondary damage to the wall of small arteries and arterioles in the form of endothelial hyperpermeability followed by local fibrinoid necrosis of the vascular wall....

  4. Vessel Operating Units (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  5. 小口径人工血管支架材料:问题与前景%Small-caliber artificial blood vessels:problems and prospects

    Institute of Scientific and Technical Information of China (English)

    徐志伟; 谭燕; 吴昊; 李温斌

    2014-01-01

    BACKGROUND:Long-term patency rate of smal-caliber artificial blood vessels is stil the most important issue to be solved. OBJECTIVE:To review the materials and fabrication technologies of smal-caliber artificial blood vessels as wel as endothelialization of smal-caliber artificial blood vessels. METHODS:A computer-based search of PubMed (2000-2013) and Wanfang database (2003-2013) was done for relevant articles using the key words of“smal-caliber, vascular graft, electrospun, layer-by-layer assembly, endothelialization”in English and Chinese, respectively. A total of 125 articles were retrieved, and final y, 41 were included for further analysis. RESULTS AND CONCLUSION:At present, smal-caliber vascular graft materials include natural biological materials, biodegradable polymers, composite materials and xenogeneic biomaterials. Preparation technologies of smal-caliber artificial blood vessels mainly include electrospinning, self-assembly, rapid prototyping, and gel spinning. Numerous methods can elicit endothelialization of smal-caliber artificial blood vessels, but each method has its flaws and cannot ensure long-term patency radical y. With the development and diversification of preparation technologies and in-depth study of endothelialization of vascular prostheses, the long-term patency of smal-caliber artificial blood vessels wil gradual y be resolved.%背景:小口径人工血管移植后远期通畅率的问题仍然是目前亟待解决的首要问题。  目的:综述小口径人工血管支架材料及制备工艺、小口径人工血管的内皮化研究进展。  方法:应用计算机检索Pubmed数据库(2000至2013年)和万方数据库(2003至2013年)相关文献,中文检索词为“人工血管,小口径,制备,静电纺丝,自组装,内皮化”;英文检索词为“smal-caliber,vascular graft,electrospun,layer-by-layer assembly,endothelialization”。共检索到文献125篇,保留其中41篇进行总

  6. IgG/IgE bullous pemphigoid with CD45 lymphocytic reactivity to dermal blood vessels, nerves and eccrine sweat glands

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu-Velez

    2010-01-01

    Full Text Available Context: Bullous pemphigoid (BP, the most common autoimmune blistering disease, is mediated by autoantibodies. BP primarily affects the elderly and is characterized by the development of urticarial plaques surmounted by subepidermal blisters, and the deposition of immunoglobulins and complement at the basement membrane zone (BMZ of the skin. BP is immunologically characterized by the development of autoantibodies targeting two structural proteins of the hemidesmosomes, BP180 (collagen XVII and BP230 (BPAG1. Case Report: A 63 -year-old Caucasian female patient was evaluated for a 4 day history of several itching, erythematous blisters on her extremities. Biopsies for hematoxylin and eosin (H&E examination, as well as Periodic acid-Schiff (PAS, immunohistochemistry (IHC and direct immunofluorescence (DIF analysis were performed. Results: H&E demonstrated a subepidermal blister, with partial re-epithelialization of the blister floor. Within the blister lumen, numerous neutrophils were present, with occasional eosinophils and lymphocytes also noted. Within the dermis, a mild, superficial, perivascular and periadnexal infiltrate of lymphocytes, histiocytes and occasional eosinophils was identified, with mild perivascular leukocytoclastic debris. The PAS stain was positive at the BMZ, and around selected blood vessels, nerves and sweat glands. DIF revealed linear deposits of IgG and Complement/C3 and fibrinogen at the BMZ, and around selected dermal nerves, blood vessels and sweat glands. Strong granular deposits of IgE were also observed, colocalizing with monoclonal antibodies to Collagen IV (CIV. By IHC, positive CD45 staining of lymphocytes was seen surrounding selected dermal blood vessels, eccrine sweat glands, and nerves. Conclusion : The patient displayed IgG, IgE, and fibrinogen autoantibodies against the BMZ, as well as around some dermal nerves and sweat glands; their binding in the skin could trigger complement activation. In addition, the

  7. Microsurgical treatment of infected extremities after blood vessel prosthesis%人工血管移植感染的显微外科治疗

    Institute of Scientific and Technical Information of China (English)

    左中男; 于绍斌; 左熙; 靳高峰; 杜永军; 杜学亮; 黎德规

    2009-01-01

    目的 报道人工血管移植感染显微外科治疗的临床疗效. 方法 从1998年1月至2008年12月,应用健侧肢体血管桥式交叉供血营养患肢治疗人工血管移植感染8例,其中股动、静脉4例.腘动、静脉2例,腋动、静脉2例. 结果 术后随访3年,所有肢体血液供应良好,肢体外形及功能恢复. 结论 应用健侧肢体血管桥式交叉供血营养患肢可有效恢复人工血管移植后感染肢体的血液供应,降低截肢率.%Objective To report the clinical effects of microsurgery in treatment of infected extremities after blood vessel prosthesis were transplanted.Methods From Jan.1998 to Dec.2008,8 cases of major vascular injuries in extremities were blood-supplied by cross bridge vascular anastomosis from uninjured extremities,including 4 cases of femoral artery and vein,2 cases of popliteal artery and vein,and 2 cases of brachial artery and vein. Results After 3 years of follow-up,blood circulation of infected extremities were reestablished in each of 8 cases,as well as function and appearance recovered.Conclusion The procedure of cross bridge vascular anastomosis from uninjured extremities may efficiently restitute the blood supply of the infected extremities after blood vessel prosthesis were transplanted,and decrease the rate of amputation.

  8. Effect of silver nanoparticles and hydroxyproline, administered in ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos

    DEFF Research Database (Denmark)

    Beck, Iwona; Hotowy, Anna; Sawosz, Ewa

    2015-01-01

    It has been considered that concentrations of certain amino acids in the egg are not sufficient to fully support embryonic development of modern broilers. In this study we evaluated embryo growth and development with particular emphasis on one of the major components of connective tissue, collage......, in particular, the complex of AgHyp significantly increased blood vessel size, cartilage collagen fibre lattice size and bundle thickness. The general conclusion from this study is that AgHyp treatment may help to build a stronger and longer lasting form of collagen fibres....

  9. Data for the inhibition effects of recombinant lamprey CRBGP on the tube formation of HUVECs and new blood vessel generation in CAM models

    Directory of Open Access Journals (Sweden)

    Qi Jiang

    2016-03-01

    Full Text Available In the present data article, lamprey cysteine-rich buccal gland protein (CRBGP which belongs to cysteine-rich secretory proteins (CRISPs family was recombinant and expressed in Rosetta blue cells. After identification, the recombinant protein was purified through affinity chromatograph. The inhibition effects of recombinant lamprey CRBGP (rL-CRBGP on tube formation of human umbilical vein endothelial cells (HUVECs and new blood vessel generation in chick chorioallantoic membrane (CAM models were analyzed. This paper contains data related to research concurrently published in “Anti-angiogenic activities of CRBGP from buccal glands of lampreys (Lampetra japonica” [1].

  10. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels

    Science.gov (United States)

    Yi, Hou-Hui; Fan, Li-Juan; Yang, Xiao-Feng; Chen, Yan-Yan

    2008-09-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to eliminate many diseases. Here the effect of the rolling massage on the particle moving property in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the particle moving behaviour depends on the rolling velocity, the distance between particle position and rolling position. The average values, including particle translational velocity and angular velocity, increase as the rolling velocity increases almost linearly. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  11. Effects of atorvastatin on vascular remodeling in spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    葛长江; 胡申江; 武垚森; 陈乃云

    2003-01-01

    Objective: To investigate the structural changes of aorta, and evaluate the effects of atorvastatin on the remodeling of thoracic aorta in spontaneously hypertensive rats(SHR). Methods: Twelve eight-week-old SHR were randomized into atorvastatin treated group(ATV group, n=6) and distilled water group(DW group, n=6); Wistar-Kyoto rats(WKY) were used as normal controls. Atorvastatin was administered to ATV group for 10 weeks by gavage in mixture with distilled water(1 ml); the latter two groups were given the same amount of distilled water by gavage for 10 weeks. Systolic blood pressure of caudal artery was examined before and after treatment, and serum concentrations of total cholesterol, triglycerides and HDL-C were measured. Wall thickness, media thickness, medial cross-sectional area and lumen diameter of thoracic aorta were assessed with computed video processing. Results: Systolic blood pressure in ATV group was markedly lower than that in DW group(P0.05). Conclusion: Vascular structural changes of aorta are due to the alteration of the vessel wall in early stage of SHR. Atorvastatin can markedly improve vascular remodeling.

  12. Effects of atorvastatin on vascular remodeling in spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    葛长江; 胡申江; 武垚森; 陈乃云

    2003-01-01

    Objective: To investigate the structural changes of aorta, and evaluate the effects of atorvastatinon the remodeling of thoracic aorta in spontaneously hypertensive rats(SHR) . Methods : Twelve eight-week-old SHR were randomized into atorvastatin treated group( ATV group, n = 6) and distilled water group( DW group, n = 6) ; Wistar-Kyoto rats(WKY) were used as normal controls. Atorvastatin was administered to ATV group for 10 weeks by gavage in mixture with distilled water( 1ml) ; the latter two groups were given the same amount of distilled water by gavage for 10 weeks. Systolic blood pressure of caudal artery was examined before and after treatment, and serum concentrations of total cholesterol, triglycerides and HDL-C were measured.Wall thickness, media thickness, medial cross-sectional area and lumen diameter of thoracic aorta were assessed with computed video processing. Results: Systolic blood pressure in ATV group was markedly lower than that in DW group( P 0.05 ). Conclusion : Vascular structural changes of aorta are due to the alteration of the vessel wall in early stage of SHR. Atorvastatin can markedly improve vascular remodeling.

  13. From Newborn to Senescence Morphological and Functional Remodeling Leads to Increased Contractile Capacity of Arteries.

    Science.gov (United States)

    Ivic, Ivan; Vamos, Zoltan; Cseplo, Peter; Koller, Akos

    2017-04-01

    Aging induces substantial morphological and functional changes in vessels. We hypothesized that due to morphological remodeling the total contractile forces of arteries increase, especially in older age as a function of age. Mean arterial blood pressure of rats and morphological and functional characteristics of isolated carotid arteries rats, from newborn to senescent, were assessed. The arterial blood pressure of rats increased significantly from 0.25 to the age of 6 months, and then it reached a level, which was maintained until age of 30 months. Wall lumen and wall thickness increased with age, mostly due to media (smooth muscle) thickening, whereas wall tension gradually reduced with age. Contractions of arteries to nonreceptor-mediated vasomotor agent (KCl, 60mM) increased in three consecutive age groups, whereas contractility first increased (until 2 months), then it did not change further with aging. Norepinephrine-induced contractions initially increased in young age and then did not change further in older age. These findings suggest that during normal aging due to remodeling of arterial wall (smooth muscle) the contractile capacity of arteries increases, which seems to be independent from systemic blood pressure. Thus, arterial remodeling can favor the development of increased circulatory resistance in older age.

  14. [EFFICACY OF STANDARD TWO-YEAR COMPREHENSIVE THERAPY TO ACHIEVE TARGET BLOOD PRESSURE AND REGRESSION DEGREES OF REMODELING OF THE LEFT VENTRICULAR HYPERTROPHY IN PATIENTS AFTER ACUTE MYOCARDIAL INFARCTION WITH COMORBID HYPERTENSION].

    Science.gov (United States)

    Denesiuk, E V

    2015-01-01

    The study involved 23 men after acute myocardial infarction (AMI) with comorbid arterial hypertension (AH). Mean age of patients was 56.7 years. Recurrent myocardial infarction was determined in 38.4%, cardiac failure I-III functional classes--100% of the cases. All patients underwent clinical examination, electrocardiography and echocardiography, blood lipid profile. Standard comprehensive treatment for two years included an perindopril 5-10 mg/day, beta-blocker bisoprolol--5-10 mg/day, antisclerotic drug atorvastatin--20 mg/day and aspirin--75 mg/day. The patients after treatment was determined by a gradual increase towards the target of AT at 3, 6 and 12 to 24 months. Concentric left ventricular hypertrophy (LVH) before treatment was determined in 47.8%, eccentric--in 52.2% of patients. In the study of degrees of LVH I (initial) the extent to treatment was determined by 4.3%, II (moderate)--26.1%, III (large)--at 69.6%, indicating the development of cardiac remodeling. After the treatment was determined by marked reduction III (large) degree and transfer it in the II (moderate) and I (small) degree of left ventricular hypertrophy due to more or less pronounced changes remodeling left ventricular. The obtained data allow a more detailed and adequately assess the structural and functional outcome variables and determine the regression of myocardial hypertrophy in the background to achieve target blood pressure, which is important in practical cardiology.

  15. The use of fractal dimension analysis in estimation of blood vessels shape in transplantable mammary adenocarcinoma in Wistar rats after photodynamic therapy combined with cysteine protease inhibitors.

    Science.gov (United States)

    Jurczyszyn, Kamil; Osiecka, Beata J; Ziółkowski, Piotr

    2012-01-01

    Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT.

  16. The Use of Fractal Dimension Analysis in Estimation of Blood Vessels Shape in Transplantable Mammary Adenocarcinoma in Wistar Rats after Photodynamic Therapy Combined with Cysteine Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    Kamil Jurczyszyn

    2012-01-01

    Full Text Available Fractal dimension analysis (FDA is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT with cystein proteases inhibitors (CPI on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT.

  17. Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology.

    Directory of Open Access Journals (Sweden)

    Eleni Tseliou

    Full Text Available Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI to assess structural and physiological outcomes. Vehicle-infused animals served as controls. Single-vessel stop-flow and continuous-flow intracoronary infusion revealed equivalent effects on scar size and function. Sequential infusion into each of the three major coronary vessels under stop-flow or continuous-flow conditions revealed equal efficacy, but less elevation of necrotic biomarkers with continuous-flow delivery. In addition, multi-vessel delivery resulted in enhanced global and regional tissue function compared to a triple-vessel placebo-treated group. The functional benefits after global cell infusion were accompanied histologically by minimal inflammatory cellular infiltration, attenuated regional fibrosis and enhanced vessel density in the heart. Sequential multi-vessel non-occlusive delivery of CDCs is safe and provides enhanced preservation of left ventricular function and structure. The current findings provide preclinical validation of the delivery method currently undergoing clinical testing in the Dilated cardiomYopathy iNtervention With Allogeneic MyocardIally-regenerative Cells (DYNAMIC trial of CDCs in heart failure patients.

  18. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.

    Science.gov (United States)

    Kabinejadian, Foad; Ghista, Dhanjoo N

    2012-09-01

    We have recently developed a novel design for coronary arterial bypass surgical grafting, consisting of coupled sequential side-to-side and end-to-side anastomoses. This design has been shown to have beneficial blood flow patterns and wall shear stress distributions which may improve the patency of the CABG, as compared to the conventional end-to-side anastomosis. In our preliminary computational simulation of blood flow of this coupled sequential anastomoses design, the graft and the artery were adopted to be rigid vessels and the blood was assumed to be a Newtonian fluid. Therefore, the present study has been carried out in order to (i) investigate the effects of wall compliance and non-Newtonian rheology on the local flow field and hemodynamic parameters distribution, and (ii) verify the advantages of the CABG coupled sequential anastomoses design over the conventional end-to-side configuration in a more realistic bio-mechanical condition. For this purpose, a two-way fluid-structure interaction analysis has been carried out. A finite volume method is applied to solve the three-dimensional, time-dependent, laminar flow of the incompressible, non-Newtonian fluid; the vessel wall is modeled as a linearly elastic, geometrically non-linear shell structure. In an iteratively coupled approach the transient shell equations and the governing fluid equations are solved numerically. The simulation results indicate a diameter variation ratio of up to 4% and 5% in the graft and the coronary artery, respectively. The velocity patterns and qualitative distribution of wall shear stress parameters in the distensible model do not change significantly compared to the rigid-wall model, despite quite large side-wall deformations in the anastomotic regions. However, less flow separation and reversed flow is observed in the distensible models. The wall compliance reduces the time-averaged wall shear stress up to 32% (on the heel of the conventional end-to-side model) and somewhat

  19. Unusual origin and potentially hazardous course of the major blood vessels in neck – A clinically relevant rare case

    Directory of Open Access Journals (Sweden)

    Rastogi R

    2010-04-01

    Full Text Available We present a rare case of aberrant left brachiocephalic vein and brachiocephalic artery, which crosses the trachea in the neck obliquely and closely related to lower border of thyroid gland. If not noticed while performing open or percutaneous dilatational tracheostomy or other neck surgeries, trauma to these vessel and subsequent hemorrhage can occur and may be fatal. Vascular compression of the airway causing obstructive symptoms can also occur due to this anomaly. In this report the case is presented along with its clinical significance.

  20. Blood (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Blood KidsHealth > For Parents > Blood A A A What's ... about the mysterious, life-sustaining fluid called blood. Blood Basics Two types of blood vessels carry blood ...

  1. Remodeling of Tumor Stroma and Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna; Ganss, Ruth, E-mail: ganss@waimr.uwa.edu.au [Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Perth 6000 (Australia)

    2012-03-27

    Solid tumors are intrinsically resistant to therapy. Cancer progression occurs when tumor cells orchestrate responses from diverse stromal cell types such as blood vessels and their support cells, inflammatory cells, and fibroblasts; these cells collectively form the tumor microenvironment and provide direct support for tumor growth, but also evasion from cytotoxic, immune and radiation therapies. An indirect result of abnormal and leaky blood vessels in solid tumors is high interstitial fluid pressure, which reduces drug penetration, but also creates a hypoxic environment that further augments tumor cell growth and metastatic spread. Importantly however, studies during the last decade have shown that the tumor stroma, including the vasculature, can be modulated, or re-educated, to allow better delivery of chemotherapeutic drugs or enhance the efficiency of active immune therapy. Such remodeling of the tumor stroma using genetic, pharmacological and other therapeutic approaches not only enhances selective access into tumors but also reduces toxic side effects. This review focuses on recent novel concepts to modulate tumor stroma and thus locally increase therapeutic efficacy.

  2. Extracellular-purine metabolism in blood vessels (part I). Extracellular-purine level in blood of patients with abdominal aortic aneurysm.

    Science.gov (United States)

    Lecka, Joanna; Molski, Stanislaw; Komoszynski, Michal

    2010-09-01

    Adenosine and adenosine derivatives are the main regulators of purinoceptors (P1 and P2) mediated hemostasis and blood pressure. Since impaired hemostasis and high blood pressure lead to atherosclerosis and to the development of aneurysm, in this study we tested and compared the concentration of extracellular purines (e-purines) in the blood in of patients having abdominal aortic aneurysm with that from healthy volunteers. Whereas adenine nucleosides and nucleotides level in human blood plasma was analysed using reverse phase high performance liquid chromatography (HPLC), cholesterol concentration was estimated by an enzymatic assay. We did not find any correlation between e-purines concentration and the age of healthy volunteers. Furthermore, the sum level of e-purines (ATP, ADP, AMP, adenosine, and inosine) in the control group did not exceed 70 microM, while it was nearly two-fold higher in the blood of patients having abdominal aortic aneurysm, (123 microM). In a special case of people with Leriche Syndrome, a disease characterized by deep atherosclerotic changes, the e-purines level had further increased. Additionally, we also report typical atherosclerotic changes in the aorta using histological assays as well as total cholesterol rise. The significant rise in cholesterol concentration in the blood of the patients with abdominal aortas aneurysm, compared with the control groups, was not unique since 23% of the healthy people also exceeded the normal level of cholesterol. Therefore, our results strongly indicate that the estimation of e-purines concentration in the blood may serve as another indicator of atherosclerosis and warrant further consideration as a futuristic diagnostic tool.

  3. The effect of maternal malnutrition during lactation on the endometrial ERalpha expression, collagen type, and blood vessels in the rats offspring at puberty.

    Science.gov (United States)

    Bittencourt Brasil, Flávia; Silva Faria, Tatiane; Barcellos Sampaio, Francisco José; da Fonte Ramos, Cristiane

    2010-01-01

    The aim of this manuscript was to evaluate the effects of maternal protein-energy-restriction and energy restriction during lactation on endometrial collagen and blood vessels, uterus Eralpha expression, and estradiol serum levels in the rats offspring at puberty. At parturition, dams were grouped as: control group (C), with free access to standard rat chow containing 23% protein and 17,038.7 KJ/Kg; protein-energy restricted group (PER), with free access to formulated chow containing 8% protein but made isoenergetic to the C diet (17,038.7 KJ/Kg); and energy-restricted group (ER), which received standard rat chow containing 23% protein based on the mean ingestion of the PER group corresponding to 60% of that consumed by the control group. After weaning, all female pups had free access to standard laboratory chow until puberty, when they were killed at the diestrum stage. The uterine ERalpha expression was determined by Western-Blot and estradiol serum levels by radioimmunoassay. Endometrial collagen and blood vessels were quantified by stereology. The volumetric density of blood vessels (C = 70.7 +/- 2.2; PER = 29.2 +/- 2.4; ER = 32.3 +/- 3.6; P < 0.001) and endometrial collagen (C = 31.1 +/- 1; PER = 26.9 +/- 1.0; ER = 26.5 +/- 0.7; P < 0.05) were significantly reduced in both malnourished groups. The ER group presented higher estradiol serum levels (C = 69.2 +/- 6.4; PER = 73.4 +/- 5.5; ER = 101.0 +/- 5.4; P < 0.01) in relation to C and PER groups. ERalpha expression was greater in both malnourished groups (C = 0.11 +/- 0.02; PER = 0.41 +/- 0.12; ER = 0.35 +/- 0.03; P < 0.05). In conclusion, maternal malnutrition during lactation caused changes in endometrial angiogenesis, collagen deposition, and Eralpha expression in female offspring that will appear in puberty and could affect the reproductive biology of the female offspring.

  4. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    -type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...

  5. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.

    Science.gov (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S

    2016-12-01

    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations.

  6. Direct observation of liposome uptake by leukocytes in vivo in skin blood vessels using intravital fluorescence microscopy

    Science.gov (United States)

    Devoisselle, Jean-Marie; Mordon, Serge R.; Begu, Sylvie; Desmettre, Thomas

    2000-04-01

    This study aimed to observe liposome uptake by leukocytes in vivo. The study was performed on skin by using a dorsal skin-fold chamber implanted in golden hamsters using intravital microscopy. 5,6-CF-encapsulated PEGylated liposomes were injected intravenously. The skin microcirculation was observed with an intravital Eclipse E800 Nikon microscope fitted with a Xenon light source and an epi-fluorescence assembly. An ultra-high sensitivity video-camera mounted on the microscope projected the image onto a monitor, and the images were recorded for playback analysis with a digital video cassette recorder. An acute inflammatory response was obtained by removing one complete layer of skin and the underlying fascia and avascular tissue on the opposing side of the flap corresponding to an area equivalent to the window aperture. Using these model and set-up, leukocyte rolling and adhesion were easily observed and the entry of PEGylated liposomes into hamster blood leukocytes was studied for a period of 6 hours. PEGylated liposomes were clearly identified alone inside the blood flow and inside the leukocytes as soon as the inflammatory reaction appeared. This study shows for the first time that blood leukocytes in their natural milieu of whole blood are capable of interacting with, and taking up liposomes. This observation is in accordance with previous in vitro studies.

  7. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress.

    Science.gov (United States)

    Yang, Hongying; Fan, Shourui; Song, Dianping; Wang, Zhuo; Ma, Shungao; Li, Shuqing; Li, Xiaohong; Xu, Mian; Xu, Min; Wang, Xianmo

    2013-02-01

    The aim of this study was to investigate pathophysiological alterations and oxidative stress in various stages of streptozotocin (STZ)‑induced diabetes mellitus (DM) in rats. Male Sprague-Dawley rats (120) were randomized into DM and control groups. Body mass, plasma glucose, glycated hemoglobin (HbA1c), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels, as well as aldose reductase (AR) activities, in brain tissue and serum were determined. Electron microscopy was used to observe neuron and vessel changes in the brain. In STZ‑treated rats, blood glucose, low density lipoproteins, triglycerides and total cholesterol levels increased 1.43‑3.0‑fold and high density lipoprotein, HbA1c and insulin sensitivity index increased 1.1‑1.23‑fold compared with control. At week 16 following treatment, DM rat serum H2O2 concentration was increased, indicating oxidative stress and mRNA levels of GPx and SOD were 2‑fold higher than the control. Protein GPx and SOD levels were reduced (Pblood vessels in the DM rat brains became increasingly abnormal over time with altered Golgi bodies, mitochondria and endoplasmic reticulum cisterns, concurrent with SOD inactivation and AR protein accumulation. Disease progression in rats with STZ‑induced DM included brain pathologies with vascular and neuron cell abnormalities, associated with the reduction of SOD, CAT and GPx activities and also AR accumulation.

  8. On the bifurcation of blood vessels--Wilhelm Roux's doctoral thesis (Jena 1878)--a seminal work for biophysical modelling in developmental biology.

    Science.gov (United States)

    Kurz, H; Sandau, K; Christ, B

    1997-02-01

    Wilhelm Roux's doctoral thesis described the relationship between the angle and diameter of bifurcating blood vessels. We have re-read this work in the light of biophysics and developmental biology and found two remarkable aspects hidden among a multitude of observations, rules and exceptions to these rules. First, the author identified the major determinants involved in vascular development; genetics, cybernetics, and mechanics; moreover, he knew that he could not deal with the genetic and regulatory aspects, and could hardly treat the mechanical part adequately. Second, he was deeply convinced that the laws of physics determine the design of organisms, and that a necessity for optimality was inherent in development. We combined the analysis of diameter relationships with the requirement for optimality in a stochastic biophysical model, and concluded that a constant wall-stress condition could define a minimum wall-tissue optimum during arterial development. Hence, almost 120 years after Wilhelm Roux's pioneering work, our model indicates one possible way in which physical laws have determined the evolution of regulatory and structural properties in vessel wall development.

  9. Application and biocompatibility of a new absorbable magnesium alloy stent in blood vessels%新型可吸收镁合金支架在血管内应用及生物相容性

    Institute of Scientific and Technical Information of China (English)

    赵辉; 雷民

    2016-01-01

    BACKGROUND: In vivo animal experiments have found that magnesium al oy stents can be completely degraded in a slow, orderly and non-toxic manner fol owing the vascular remodeling. OBJECTIVE: To investigate the applied effect and biocompatibility of a new type of magnesium al oy stent in blood vessels. METHODS: Forty-two crossbreed dogs were implanted with absorbable magnesium al oy stents via the coronary artery or left femoral artery. At days 1, 3, 5 and weeks 1, 2, 3, 4 after implantation, coronary or femoral artery angiography, inflammatory factor detection and morphological analysis targeting intimal hyperplasia were performed. RESULTS AND CONCLUSION: At 1 day after implantation, the stents had the complete shape and were ful y extended; at 3 days after implantation, the stents were degraded partial y; at 1 week after implantation, the stents were degraded completely. Within 1-3 weeks after implantation, the levels of tumor necrosis factor α, interleukin-6 and interleukin-8 continued to decrease. At 2 and 3 weeks after implantation, the target vessels presented with mild intimal hyperplasia. As time went on, the hyperplasia area increased gradual y, and the percentage of intimal hyperplasia increased gradual y. Blood magnesium concentration remained unchanged before and after stent implantation. The results show that the new absorbable magnesium al oy stent can be completely degraded within 1 week after stent implantation and has good biocompatibility.%背景:动物体内实验发现,可吸收镁合金支架随着血管结构重塑的完成,可通过缓慢、有序、无毒害降解方式在体内完全降解。目的:探讨新型血管内可吸收镁合金支架在血管内的应用效果及生物相容性。方法:取42只防疫杂种犬,均于冠状动脉或者左侧股动脉置入可吸收镁合金支架,置入后1 d、3 d、5 d、1周、2周、3周、4周,进行冠状动脉或股动脉造影、炎性因子检测及靶血管内膜增生面

  10. Study of Polymer Scaffold Materials for Tissue-engineered Blood Vessels%组织工程血管高分子生物支架研究进展

    Institute of Scientific and Technical Information of China (English)

    曹西迎

    2011-01-01

    可替代自体血管的组织工程血管已应用于心血管疾病临床治疗.传统人工血管免疫排斥、吻合口增生、血栓等因素阻碍其临床应用与发展.随着组织工程血管技术的发展,高分子生物支架赋予人工血管再生潜能,即种子细胞的种植、黏附、增殖,随之支架适时降解,最终新血管形成.可见,组织工程血管的发展需要良好组织相容性高分子生物支架材料及新型支架制作技术.现就近年来组织工程血管高分子生物支架材料及制作工艺研究新进展予以综述.%Tissue-engineered blood vessels replacing autologous blood vessels have been used in the clinical treatment for cardiovascular disorders.Immune rejections, anastomotic hyperplasia, and thrombosis impair the clinical use and development of conventional artificial blood vessels.With the technolgoical development of tissue-engineered blood vessels, polymer biomaterial scaffolds render the regenerative potential of artificial blood vessels,namely,the seeding,adhesion,and proliferation of seed cells degrade the scaffolds in an appropriate manner,resulting in the neoangiogenesis.It is concluded that the development of tissue-engineered blood vessels requires a high histocompatible polymer bioscaffold material and a new scaffold preparation technique.This article reviews the advances in tissue-engineered polymer bioscaffold material and scaffold preparation technique.

  11. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Pier Andrea Nicolosi

    2016-01-01

    Full Text Available Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc. The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

  12. High-Yield Method for Isolation and Culture of Endothelial Cells from Rat Coronary Blood Vessels Suitable for Analysis of Intracellular Calcium and Nitric Oxide Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Nistri Silvia

    2002-01-01

    Full Text Available We describe here a method for isolating endothelial cells from rat heart blood vessels by means of coronary microperfusion with collagenase. This methods makes it possible to obtain high amounts of endothelial cells in culture which retain the functional properties of their in vivo counterparts, including the ability to uptake fluorescently-labeled acetylated low-density lipoproteins and to respond to vasoactive agents by modulating intracellular calcium and by upregulating intrinsic nitric oxide generation. The main advantages of our technique are: (i good reproducibility, (ii accurate sterility that can be maintained throughout the isolation procedure and (iii high yield of pure endothelial cells, mainly due to microperfusion and temperature-controlled incubation with collagenase which allow an optimal distribution of this enzyme within the coronary vascular bed.

  13. Increased bilateral expression of α1-adrenoceptors on peripheral nerves, blood vessels and keratinocytes does not account for pain or neuroinflammatory changes after distal tibia fracture in rats.

    Science.gov (United States)

    Drummond, E S; Dawson, L F; Finch, P M; Li, W; Guo, T-Z; Kingery, W S; Drummond, P D

    2014-12-05

    In certain forms of nerve injury and inflammation, noradrenaline augments pain via actions on up-regulated α1-adrenoceptors (α1-ARs). The aim of this study was to use immunohistochemistry to examine α1-AR expression on peripheral neurons, cutaneous blood vessels and keratinocytes after distal tibia fracture and cast immobilization, a model of complex regional pain syndrome type 1. We hypothesized that there would be increased α1-AR expression on neurons and keratinocytes in the injured limb in comparison to the contralateral unaffected limb after distal tibia fracture, in association with inflammatory changes and pain. α1-AR expression was increased on plantar keratinocytes, dermal blood vessels and peripheral nerve fibers at 16weeks after injury both in the fractured and contralateral uninjured limb. Similar changes were seen in controls whose limb had been immobilized in a cast for 4weeks but not fractured. Neurofilament 200 (NF200), a marker of myelinated neurons, and calcitonin gene-related peptide (CGRP), a neuropeptide involved in neuro-inflammatory signaling, decreased 4weeks after fracture and casting but then increased at the 16-week time point. As some of these changes were also detected in the contralateral hind limb, they probably were triggered by a systemic response to fracture and casting. Soon after the cast was removed, intraplantar injections of the α1-AR antagonist prazosin released local vasoconstrictor tone but had no effect on pain behaviors. However, systemic injection of prazosin inhibited behavioral signs of pain, suggesting that fracture and/or casting triggered an up-regulation of α1-ARs in central nociceptive pathways that augmented pain. Together, these findings indicate that α1-AR expression increases in the hind limbs after distal tibia fracture and cast immobilization. However, these peripheral increases do not contribute directly to residual pain.

  14. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  15. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry.

    Science.gov (United States)

    Antoine, Elizabeth; Buchanan, Cara; Fezzaa, Kamel; Lee, Wah-Keat; Rylander, M Nichole; Vlachos, Pavlos

    2013-01-01

    Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV) measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.

  16. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Elizabeth Antoine

    Full Text Available Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.

  17. 人造血管在维持血液透析患者中的应用和护理方法%Application and nursing method of artificial blood vessel in maintenance hemodialysis patients

    Institute of Scientific and Technical Information of China (English)

    杨波; 刘晓玲

    2016-01-01

    Objective:To explore the application and nursing methods of artificial blood vessel in maintenance hemodialysis patients.Methods:2 cases of hemodialysis patients who were treated with artificial blood vessels were selected.We observed the internal fistula situation of the artificial blood vessels,and to explore the corresponding nursing methods.Results:2 cases of internal fistula in artificial blood vessels were unobstructed;the blood flow remained at 200~280 mL/min;there were no postoperative complications occurred.Conclusion:The application of artificial blood vessels in maintenance hemodialysis patients has significant effect.It can protect the normal circulation of blood effectively,and it has less complications.%目的:探讨人造血管在维持血液透析患者中的应用和护理方法。方法:收治使用人造血管进行透析患者2例,观察患者人造血管的内瘘情况,并探讨相应的护理方法。结果:2例患者的人造血管内瘘全部通畅,血流量保持在200~280 mL/min,术后无并发症发生。结论:人造血管在维持血液透析患者中的应用效果显著,能有效保障血液的正常流转,并发症少。

  18. Using non-linear analogue of Nyquist diagrams for analysis of the equation describing the hemodynamics in blood vessels near pathologies

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.; Chupakhin, A. P.

    2016-06-01

    This article considers method of describing the behaviour of hemodynamic parameters near vascular pathologies. We study the influence of arterial aneurysms and arteriovenous malformations on the vascular system. The proposed method involves using generalized model of Van der Pol-Duffing to find out the characteristic behaviour of blood flow parameters. These parameters are blood velocity and pressure in the vessel. The velocity and pressure are obtained during the neurosurgery measurements. It is noted that substituting velocity on the right side of the equation gives good pressure approximation. Thus, the model reproduces clinical data well enough. In regard to the right side of the equation, it means external impact on the system. The harmonic functions with various frequencies and amplitudes are substituted on the right side of the equation to investigate its properties. Besides, variation of the right side parameters provides additional information about pressure. Non-linear analogue of Nyquist diagrams is used to find out how the properties of solution depend on the parameter values. We have analysed 60 cases with aneurysms and 14 cases with arteriovenous malformations. It is shown that the diagrams are divided into classes. Also, the classes are replaced by another one in the definite order with increasing of the right side amplitude.

  19. H型高血压与心脑血管疾病关系的研究进展%Research progress of H type hypertension and disease of heart head blood-vessel

    Institute of Scientific and Technical Information of China (English)

    谭志辉

    2015-01-01

    High blood pressure accompany increased homocysteine (Hcy) or H type hypertension is very common in clinic. High blood pressure and high homocysteine (HHcy) coexistence can promote a significantly increased risk of disease of heart head blood-vessel. In this paper, Hcy metabolism, causes of increased Hcy, H type hypertension and disease of heart head blood-vessel treatment HHcy, research progress are reviewed.%高血压伴同型半胱氨酸(Hcy)增高即H型高血压在临床上很常见,高血压与高Hcy(HHcy)共存时可使心脑血管疾病的风险显著增加。本研究对Hcy代谢、引起Hcy增多的因素、H型高血压与心脑血管疾病关系及HHcy治疗的研究进展进行综述。

  20. Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours

    Directory of Open Access Journals (Sweden)

    Ho Karyn S

    2012-12-01

    Full Text Available Abstract Background Human tumour xenografts in immune compromised mice are widely used as cancer models because they are easy to reproduce and simple to use in a variety of pre-clinical assessments. Developments in nanomedicine have led to the use of tumour xenografts in testing nanoscale delivery devices, such as nanoparticles and polymer-drug conjugates, for targeting and efficacy via the enhanced permeability and retention (EPR effect. For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model. In pre-clinical breast cancer xenograft models, cells are commonly introduced via injection either orthotopically (mammary fat pad, MFP or ectopically (subcutaneous, SC, and the organ environment experienced by the tumour cells has been shown to influence their behaviour. Methods To evaluate xenograft models of breast cancer in the context of EPR, both orthotopic MFP and ectopic SC injections of MDA-MB-231-H2N cells were given to NOD scid gamma (NSG mice. Animals with matched tumours in two size categories were tested by injection of a high molecular weight dextran as a model nanocarrier. Tumours were collected and sectioned to assess dextran accumulation compared to liver tissue as a positive control. To understand the cellular basis of these observations, tumour sections were also immunostained for endothelial cells, basement membranes, pericytes, and lymphatic vessels. Results SC tumours required longer development times to become size matched to MFP tumours, and also presented wide size variability and ulcerated skin lesions 6 weeks after cell injection. The 3 week MFP tumour model demonstrated greater dextran accumulation than the size matched 5 week SC tumour model (for P  Conclusions Dextran accumulation and immunostaining results suggest that small MFP tumours best replicate the vascular permeability required to observe the EPR effect

  1. Analytical model of solutions of (2+1)-D heat convection equations in a shape memory alloy device immersed in a blood vessel

    Science.gov (United States)

    Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad

    2015-02-01

    We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the

  2. Contrast enhancement of subcutaneous blood vessel images by means of visible and near-infrared hyper-spectral imaging

    Science.gov (United States)

    Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2009-02-01

    Visualization of subcutaneous veins is very difficult with the naked eye, but important for diagnosis of medical conditions and different medical procedures such as catheter insertion and blood withdrawal. Moreover, recent studies showed that the images of subcutaneous veins could be used for biometric identification. The majority of methods used for enhancing the contrast between the subcutaneous veins and surrounding tissue are based on simple imaging systems utilizing CMOS or CCD cameras with LED illumination capable of acquiring images from the near infrared spectral region, usually near 900 nm. However, such simplified imaging methods cannot exploit the full potential of the spectral information. In this paper, a new highly versatile method for enhancing the contrast of subcutaneous veins based on state-of-the-art high-resolution hyper-spectral imaging system utilizing the spectral region from 550 to 1700 nm is presented. First, a detailed analysis of the contrast between the subcutaneous veins and the surrounding tissue as a function of wavelength, for several different positions on the human arm, was performed in order to extract the spectral regions with the highest contrast. The highest contrast images were acquired at 1100 nm, however, combining the individual images from the extracted spectral regions by the proposed contrast enhancement method resulted in a single image with up to ten-fold better contrast. Therefore, the proposed method has proved to be a useful tool for visualization of subcutaneous veins.

  3. 血液净化血管通路的护理进展%The nursing progress of blood vessel of blood purification

    Institute of Scientific and Technical Information of China (English)

    许敏昭

    2010-01-01

    With the development of blood purification technology, transplantation fistula and artificial fistula with synthetic materials were used. Nursing was the first messengers to maintain vascular access, their careful observation and standardized nursing care could reduce and prevent complications. But the physical condition of patients, medical equipment and nursing of vascular access operation were the research direction.%血管通路的发展伴随着血液净化技术的进步,经历了一个相当漫长的时期,随着血液净化技术的不断进步和提高,移植血管内瘘和高分子合成材料制成的人造血管内瘘被使用,护士是维护血管通路的第一使者,护士细致的观察和规范的护理,能减少和预防并发症的发生.但患者身体条件,医疗器材及护理操作是护理血管通路研究的方向.

  4. Phantom with Pulsatile Arteries to Investigate the Influence of Blood Vessel Depth on Pulse Oximeter Signal Strength

    Directory of Open Access Journals (Sweden)

    Hunor Santha

    2012-01-01

    Full Text Available This paper describes a three-layer head phantom with artificial pulsating arteries at five different depths (1.2 mm, 3.7 mm, 6.8 mm, 9.6 mm and 11.8 mm. The structure enables formation of spatially and temporally varying tissue properties similar to those of living tissues. In our experiment, pressure pulses were generated in the arteries by an electronically controlled pump. The physical and optical parameters of the layers and the liquid in the artificial arteries were similar to those of real tissues and blood. The amplitude of the pulsating component of the light returning from the phantom tissues was measured at each artery depth mentioned above. The build-up of the in-house-developed pulse oximeter used for performing the measurements and the physical layout of the measuring head are described. The radiant flux generated by the LED on the measuring head was measured to be 1.8 mW at 910 nm. The backscattered radiant flux was measured, and found to be 0.46 nW (0.26 ppm, 0.55 nW (0.31 ppm, and 0.18 nW (0.10 ppm for the 1.2 mm, 3.7 mm and 6.8 mm arteries, respectively. In the case of the 9.6 mm and 11.8 mm arteries, useful measurement data were not obtained owing to weak signals. We simulated the phantom with the arteries at the above-mentioned five depths and at two additional ones (2.5 mm and 5.3 mm in depth using the Monte Carlo method. The measurement results were verified by the simulation results. We concluded that in case of 11 mm source-detector separation the arteries at a depth of about 2.5 mm generate the strongest pulse oximeter signal level in a tissue system comprising three layers of thicknesses: 1.5 mm (skin, 5.0 mm (skull, and > 50 mm (brain.

  5. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    Science.gov (United States)

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling.

  6. White Blood Cell Disorders

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  7. A Thermofluid Analysis of the Magnetic Nanoparticles Enhanced Heating Effects in Tissues Embedded with Large Blood Vessel during Magnetic Fluid Hyperthermia

    Directory of Open Access Journals (Sweden)

    Koustov Adhikary

    2016-01-01

    Full Text Available The thermal effect developed due to the heating of magnetic nanoparticles (MNPs in presence of external magnetic field can be precisely controlled by the proper selection of magnetic absorption properties of the MNPs. The present paper deals with the numerical simulation of temperature field developed within or outside the tumor, in the presence of an external alternating magnetic field, using a thermofluidic model developed using ANSYS FLUENT®. A three-layer nonuniform tissue structure with one or two blood vessels surrounding the tumor is considered for the present simulation. The results obtained clearly suggest that the volumetric distribution pattern of MNPs within the tumor has a strong influence on the temperature field developed. The linear pattern of volumetric distribution has a strong effect over the two other types of distribution considered herein. Various other important factors like external magnetic field intensity, frequency, vascular congestion, types of MNP material, and so forth are considered to find the influence on the temperature within the tumor. Results show that proper selection of these parameters has a strong influence on the desired therapeutic temperature range and thus it is of utmost importance from the efficacy point of view of magnetic fluid hyperthermia (MFH.

  8. The Sustained Delivery of Resveratrol or a Defined Grape Powder Inhibits New Blood Vessel Formation in a Mouse Model of Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Mozhgan Rezaie Kanavi

    2014-10-01

    Full Text Available The objective of this study was to determine whether resveratrol or a defined, reconstituted grape powder can attenuate the formation of new blood vessels in a mouse model of choroidal neovascularization (CNV. To accomplish this objective, C57BL/6J mice were randomized into control or treatment groups which received either resveratrol or grape powder by daily oral gavage, resveratrol or grape powder delivered ad libitum through the drinking water, or resveratrol by slow release via implanted osmotic pumps. A laser was used to rupture Bruch’s membrane to induce CNV which was then detected in sclerochoroidal eyecups stained with antibodies against intercellular adhesion molecule-2. CNV area was measured using fluorescence microscopy and Image J software. Ad libitum delivery of both resveratrol and grape powder was shown to significantly reduce the extent of CNV by 68% and 57%, respectively. Parallel experiments conducted in vitro demonstrated that resveratrol activates p53 and inactivates Akt/protein kinase B in choroidal endothelial cells, contributing to its anti-proliferative and anti-migratory properties. In addition resveratrol was shown to inhibit the formation of endothelial cell networks, augmenting its overall anti-angiogenic effects. The non-toxic nature of resveratrol makes it an especially attractive candidate for the prevention and/or treatment of CNV.

  9. AUTOMATIC RETINAL VESSEL TORTUOSITY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Nidhal Khdhair El Abbadi

    2013-01-01

    Full Text Available Retinal vascular vessels have the role to indicate the retinal diseases and for systematic diseases when there are any abnormalities in retinal vascular pattern. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e., how curved or kinked a blood vessel, either vein or artery, appears along its course. In this study we suggest a novel mask filter to track the blood vessel along its course and measuring the blood vessels tortuosity over the entire human retinal vessel network in fundus eye image, by using the arc to chord ratio. The suggested algorithm tested with straight and curve hand drawing lines and gives high accurate results.

  10. Blood

    Science.gov (United States)

    ... Also, blood is either Rh-positive or Rh-negative. So if you have type A blood, it's either A positive or A negative. Which type you are is important if you need a blood transfusion. And your Rh factor could be important ...

  11. Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes

    DEFF Research Database (Denmark)

    Acevedo, Nathalie; Reinius, Lovisa E; Vitezic, Morana;

    2015-01-01

    the dynamics of DNA methylation. Serial blood samples were collected at 3, 6, 12, 24, 36, 48 and 60 months after birth in ten healthy girls born in Finland and participating in the Type 1 Diabetes Prediction and Prevention Study. DNA methylation was measured using the HumanMethylation450 BeadChip. RESULTS......: After filtering for the presence of polymorphisms and cell-lineage-specific signatures, 794 CpG sites showed significant DNA methylation differences as a function of age in all children (41.6% age-methylated and 58.4% age-demethylated, Bonferroni-corrected P value ... performing DNA methylation studies in children....

  12. Remodeling A School Shop?

    Science.gov (United States)

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  13. Experimental Study on Tang Mai Ning for Preventing and Treating Diabetic Complication of Blood Vessels%糖脉宁防治糖尿病血管并发症的实验研究

    Institute of Scientific and Technical Information of China (English)

    邓晓明; 韩崇旭; 李继成; 李国栋; 翟绍忠

    2001-01-01

    To study the Effection on Tong Mai Ning for preventing and treating diabetic complications of blood vessel,we perfuse stomach of DM rats induced by STZ with Tang Mai Ning (2kg/kg*d) in 8 weeks. Results show that Tang Mai Ning can decrease the levels of blood sugar,blood lipid,blood viscosity and blood endothelin,increase the activity of the SOD and decease the levels of the LPO in tissues of heart and kidney, and can prevent kidney frome pathologic change. Conclusion:Tang Mai Ning may effectively prohibit diabetic complication of blood vessels.%用复方中药制剂糖脉宁2g/kg*d灌胃连续8周,观察其对STZ所致糖尿病大鼠的影响。结果:糖脉宁除具有一定降血糖作用外,还具有降血脂,降低血黏度及血浆ET水平,提高心、肾组织SOD活性,降低LPO水平的作用,并可防止肾组织病理改变发生。结论:糖脉宁对防治糖尿病血管并发症是十分有益的。

  14. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading.

    Science.gov (United States)

    Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger

    2014-03-01

    Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.

  15. The Changes of Retinal and Choroidal Blood Vessels of Congenital Glaucoma in Rabbits%兔先天性青光眼网络膜血管改变

    Institute of Scientific and Technical Information of China (English)

    张阳; 盖春柳; 徐洪斌; 马崇泽; 杨英

    2001-01-01

    Objective To investigate the ef fect of glaucoma on rabbitretinal and choroidal circulation.Methods Congenita l glaucoma group was composed of 5rabbits(7 eyes) of 24 months old,weighed 3.5 -4kg; control group: 10 rabbits with the same age; animal model group: 10 rabbits of 2 months old, weighted 2kg, its hyper tension developed by perfusing the anterior chamber with normal saline. Through the fundus photos and flash visual evoked potential (FVEP), we observed the sh apes of retinal and choroidal blood vessels, and the changes of FVEP. Flash electroretinogram (FERG) was used in the man -made acute hypertension rabbits.Results Compared with the control group, the retinal and choroidal vessel endings of co ngenital glaucoma rabbits were obviously decreased. In man-made acute hypertens i on rabbits, acute elevation of intraocular pressure (IOP) firstly caused the is chemia of retinal and choroidal vessel endings, with the large blood vessels thinned, even the blood flow discontinued. FVEP P100 latent period: con trol (83 ±9) ms, congenital glaucoma (112±14) ms, the difference was significant (p<0 .0 1) ; man-made acute hypertension: (69±5) ms before the elevation of IOP, (81 ±7 ) ms at 60-80mmHg, the wave was similar to a line at 100-130mmHg, (82±8)ms at 2 hours after IOP was restored to normal. FERG changed abruptly before and after the hypertention.Conclusion Glaucoma may ef fect the retinal and choroidal circulation, and cause the changes of FVEP and FERG .%目的 研究青光眼对视网膜脉络膜血液循环的影响。方法 选24月龄、体重3.5~4kg的先天性青光眼大耳白兔5只(7只眼),选10只同龄大耳白兔作为对照组。另选10只2月龄、体重2kg大耳白兔前房内灌注生理盐水制成急性高眼压模型。对三组兔进行眼底照像、闪光视诱发电位(FVEP)检查,观察视网膜脉络膜血管形态和FVEP的变化。对人工急性高眼压组还进行了闪光视

  16. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension.

    Science.gov (United States)

    Schiffrin, Ernesto L

    2015-12-04

    This review summarizes my lecture for the 2015 Distinguished Scientist Award from the Canadian Society of Clinical Investigation, and is based mainly on studies in my laboratory on the mechanisms of remodelling of small arteries in experimental animal and human hypertension and on treatments that lower blood pressure and improve structure and function of resistance vessels. Small resistance arteries undergo either inward eutrophic or hypertrophic remodelling, which raises blood pressure and impairs tissue perfusion. These vascular changes are corrected by some antihypertensive drugs, which may lead to improved outcomes. Vasoconstriction, growth, oxidative stress and inflammation are some of the mechanisms, within the vascular wall, that can be beneficially affected by antihypertensive agents. These antihypertensive-sensitive mechanisms are reviewed in this review, together with the inflammatory and immune mechanisms that may participate in hypertension and associated cardiovascular injury. Molecular studies, based on this research, will hopefully identify novel diagnostic and therapeutic targets, which will improve our ability to prevent and treat hypertension and cardiovascular disease.

  17. Cells involved in extracellular matrix remodeling after acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Larissa Ferraz [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Mataveli, Fábio D’Aguiar [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Mader, Ana Maria Amaral Antônio; Theodoro, Thérèse Rachell [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Justo, Giselle Zenker; Pinhal, Maria Aparecida da Silva [Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2015-07-01

    Evaluate the effects of VEGF{sub 165} gene transfer in the process of remodeling of the extracellular matrix after an acute myocardial infarct. Wistar rats were submitted to myocardial infarction, after the ligation of the left descending artery, and the left ventricle ejection fraction was used to classify the infarcts into large and small. The animals were divided into groups of ten, according to the size of infarcted area (large or small), and received or not VEGF{sub 165} treatment. Evaluation of different markers was performed using immunohistochemistry and digital quantification. The primary antibodies used in the analysis were anti-fibronectin, anti-vimentin, anti-CD44, anti-E-cadherin, anti-CD24, anti-alpha-1-actin, and anti-PCNA. The results were expressed as mean and standard error, and analyzed by ANOVA, considering statistically significant if p≤0.05. There was a significant increase in the expression of undifferentiated cell markers, such as fibronectin (protein present in the extracellular matrix) and CD44 (glycoprotein present in the endothelial cells). However, there was decreased expression of vimentin and PCNA, indicating a possible decrease in the process of cell proliferation after treatment with VEGF{sub 165}. Markers of differentiated cells, E-cadherin (adhesion protein between myocardial cells), CD24 (protein present in the blood vessels), and alpha-1-actin (specific myocyte marker), showed higher expression in the groups submitted to gene therapy, compared to non-treated group. The value obtained by the relation between alpha-1-actin and vimentin was approximately three times higher in the groups treated with VEGF{sub 165}, suggesting greater tissue differentiation. The results demonstrated the important role of myocytes in the process of tissue remodeling, confirming that VEGF{sub 165} seems to provide a protective effect in the treatment of acute myocardial infarct.

  18. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to vitamin K2 and contribution to the normal function of the heart and blood vessels (ID 125, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    and blood vessels. The food constituent that is the subject of the claim, vitamin K2, is sufficiently characterised. The claimed effect, contribution to the normal function of the heart and blood vessels, is a beneficial physiological effect. The proposed target population is the general population...... for confounders, and that the evidence provided for a proposed mechanism is weak. On the basis of the data presented, the Panel concludes that a cause and effect relationship has not been established between the dietary intake of vitamin K2 and contribution to the normal function of the heart and blood vessels....

  19. The redox state of transglutaminase 2 controls arterial remodeling

    DEFF Research Database (Denmark)

    van den Akker, Jeroen; VanBavel, Ed; van Geel, Remon

    2011-01-01

    While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates......, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG......2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited...

  20. Biological and mechanical evaluation of the small-diameter tissue-engineered blood vessels matrix%小口径组织工程血管基质材料的生物学和力学评价

    Institute of Scientific and Technical Information of China (English)

    谭菊; 曾文; 周静婷; 李刚; 张晓彦; 朱楚洪

    2014-01-01

    Objective To develop a small-diameter tissue-engineered blood vessels which possesses normal blood vessels physiological structure, good biocompatibility, and mechanical properties. And it was evaluated by mechanical and biological of national standard of medi-cal transfusion material. Methods The bio-derived material were regarded as the ground substance, and it was evaluated by mechanical and biological of national standard after composite modification. Results The axial and radial tensile stress of the blood vessel was 23. 14 N and 36. 79 N respectively, and it was greater than the standard 7. 5N. The tensile rate of the axial and radial was 95. 19% and 80. 24% respec-tively, which were higher than the standard value 20%. The suture strength of the blood vessel was 13. 71 N, which was conform to the me-chanical requirement. Mainly used blood vessels or its extracts to detect the pH of the blood vessels is in the scope of control deionized water pH (7. 5 ± 1. 5);the hemolysis rate was 1. 3972% which was less than 5%;the whole blood coagulation time was 50% longer than the con-trol level, and there was no stimulation after intradermal injection. Conclusion With bio-derived material as the ground substance and com-positely modified, this kind od blood vessels is conform to the mechanical and biological of national standard, and it has the potential of clini-cal application which could play an important role in the replacement therapy of small-diameter vascular xenografts.%目的:研制一种具备正常血管的生理结构和良好的生物相容性,而且具有血管力学特性的小口径组织工程血管基质材料,并按医用输血材料的力学及生物学国家标准评价。方法以去细胞生物衍生材料作为基质,按照国家标准对其进行力学和生物学评价。结果血管的轴向、径向拉伸应力分别为23.14 N和36.79 N,均大于标准规定的7.5 N;拉伸率分别为95.19%和80.24%,大于标准规定的20%

  1. High-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis

    Institute of Scientific and Technical Information of China (English)

    Xian-Jin Zhu; Wu Wang; Zun-Jing Liu

    2016-01-01

    Objective:To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis.Date Sources:We retrieved information from PubMed database up to December 2015,using various search terms including vessel wall imaging (VWI),high-resolution magnetic resonance imaging,intracranial arterial stenosis,black blood,and intracranial atherosclerosis.Study Selection:We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI.We organized this data to explain the value of VWI in clinical application.Results:VWI with black blood technique could provide high-quality images with submillimeter voxel size,and display both the vessel wall and lumen of intracranial artery simultaneously.Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening,enhancement,and vessel remodeling on VWI.This technique could be used for determining causes of stenosis,identification of stroke mechanism,risk-stratifying patients,and directing therapeutic management in clinical practice.In addition,a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy.Conclusions:This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management.

  2. Effect of polytetrafluoroethylene artificial blood vessels on platelet aggregation and its cytocompatibility%聚四氟乙烯人工血管对血小板聚集的影响及细胞相容性

    Institute of Scientific and Technical Information of China (English)

    姜正明; 陈魁; 胡彩娜

    2016-01-01

    背景:聚四氟乙烯人工血管是临床常用的医用材料,但其具体的基础研究内容尚未完善。目的:观察聚四氟乙烯人工血管对血小板聚集的作用及细胞相容性。方法:①对血小板聚集的作用:检测聚四氟乙烯人工血管的凝血时间、复钙时间。将生理盐水、蒸馏水及聚四氟乙烯人工血管分别加入兔红细胞悬液中,计算溶血率;②细胞生物相容性:将SD大鼠原代心肌细胞分别接种于普通玻璃爬片与聚四氟乙烯人工血管片上,3 d后,检测细胞乳酸脱氢酶释放;5 d后,检测细胞增殖。结果与结论:①聚四氟乙烯人工血管对兔血的动态凝血时间、复钙时间没有影响;聚四氟乙烯人工血管的溶血率为2.3%;②与接种于普通玻璃爬片上的心肌细胞相比,接种于聚四氟乙烯人工血管片上的心肌细胞增殖及乳酸脱氢酶释放无明显变化;③结果表明,聚四氟乙烯人工血管血小板聚集无影响,具有良好的血液相容性与细胞相容性。%BACKGROUND:Polytetrafluoroethylene artificial blood vessels have been extensively used in clinic. However, there is stil a lack of basic study on it. OBJECTIVE:To observe the effect of polytetrafluoroethylene artificial blood vessels on platelet aggregation and its cytocompatibility. METHODS:Effect on platelet aggregation:Dynamic platelet clotting time and plasma recalcification time were detected. Normal saline, distil ed water and polytetrafluoroethylene artificial blood vessels were added into the rabbit red cel suspensions, respectively, to count the hemolysis ratio. Cytocompatibility:Primary myocardial cel s from Sprague-Dawley rats were respectively seeded onto the common round coverslip and polytetrafluoroethylene artificial blood vessels, and the lactate deshydrogenase release and cel proliferation were detected at 3 and 5 days, respectively. RESULTS AND CONCLUSION:Polytetrafluoroethylene artificial

  3. The mouse retina in 3D: quantification of vascular growth and remodeling.

    Science.gov (United States)

    Milde, Florian; Lauw, Stephanie; Koumoutsakos, Petros; Iruela-Arispe, M Luisa

    2013-12-01

    The mouse retina has become a prominent model for studying angiogenesis. The easy access and well-known developmental progression have significantly propelled our ability to examine and manipulate blood vessels in vivo. Nonetheless, most studies have restricted their evaluations to the superficial plexus (an upper vascular layer in contact with the vitreous). Here we present experimental data and quantification for the developmental progression of the full retina including the intermediate and deeper plexus that sprouts from the superficial layer. We analyze the origin and advancement of vertical sprouting and present the progression of vascular perfusion within the tissue. Furthermore, we introduce the use of Minkowsky functionals to quantify remodeling in the superficial and deeper plexus. The work expands information on the retina towards a 3D structure. This is of particular interest, as recent data have demonstrated differential effects of gene deletion on the upper and deeper plexus, highlighting the concept of distinct operational pathways during sprouting angiogenesis.

  4. Nicotine effect on bone remodeling during orthodontic tooth movement: Histological study in rats

    Directory of Open Access Journals (Sweden)

    Ricardo Lima Shintcovsk

    2014-04-01

    Full Text Available Introduction: Nicotine is harmful to angiogenesis, osteogenesis and synthesis of collagen. Objective: The aim of this study was to investigate the effect of nicotine on bone remodeling during orthodontic movement in rats. Methods: Eighty male Wistar rats were randomly divided into three groups: Group C (control, group CM (with orthodontic movement and group NM (nicotine with orthodontic movement groups. The animals comprising groups C and CM received 0.9% saline solution while group NM received nicotine solution (2 mg/kg. A nickel-titanium closed-coil spring was used to induce tooth movement. The animals were euthanized and tissue specimens were processed histologically. We quantified blood vessels, Howship's lacunae and osteoclast-like cells present in the tension and compression areas of periodontal ligaments. The extent of bone formation was evaluated under polarized light to determine the percentage of immature/mature collagen. Results: We observed lower blood vessel densities in the NM group in comparison to the CM group, three (p < 0.001 and seven (p < 0.05 days after force application. Osteoclast-like cells and Howship's lacunae in the NM group presented lower levels of expression in comparison to the CM group, with significant differences on day 7 (p < 0.05 for both variables and day 14 (p < 0.05 for osteoclast-like cells and p < 0.01 for Howship's lacunae. The percentage of immature collagen increased in the NM group in comparison to the CM group with a statistically significant difference on day 3 (p < 0.05, day 7 (p < 0.001, day 14 (p < 0.001 and day 21 (p < 0.001. Conclusions: Nicotine affects bone remodeling during orthodontic movement, reducing angiogenesis, osteoclast-like cells and Howship's lacunae, thereby delaying the collagen maturation process in developed bone matrix.

  5. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model.

    Science.gov (United States)

    Chiew, Geraldine Giap Ying; Fu, Afu; Low, Kar Perng; Luo, Kathy Qian

    2015-06-08

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy.

  6. Research on the Effect of Two Methods of Pressing Blood Vessel after Withdrawing the Needle%静脉输液拔针后两种不同按压方法比较

    Institute of Scientific and Technical Information of China (English)

    李琼; 王小平

    2014-01-01

    目的通过比较两种不同的按压方式来探讨静脉输液拔针后最佳方法,以便最大限度地减少出血及皮下瘀血,减轻患者痛苦,保护静脉血管。方法采用自身前后对照,对117例患者分别用4指按压法和握手式4指按压法进行静脉输液拔针后按压效果的观察,评价皮肤出血、皮下瘀血的发生情况。结果4指按压法与握手式4指按压法比较,出血发生率分别为7.98豫,0.85豫;瘀血发生率分别为7.12豫和0.85豫,其差异具有统计学意义(<0.01),患者更易接受握手式4指按压法。结论静脉输液拔针后使用握手式4指按压法比4指按压法能更有效地减少皮肤出血及皮下瘀血的发生,且患者乐于接受。%Objective To explore which method is more ef ective and easily accepted by patients through contrasting the method of pressing blood vessel with four fingers and the method of pressing blood vessel with four fingers holding the hand.To minimize subcutaneous blood stasis and bleeding, relieve pain, protect their veins. Methods 117cases were observed by serf-control study after withdrawing the needle.The occurrence of bleeding and petechia was evaluated.Results In the method of pressing blood vessel with four fingers and the method of pressing blood vessel with four fingers holding the hand.the occurrence rates of bleeding were 7.98%and 0.85%,and the occurrence rates of petechia were 7.12% and 0.85% respectively.There was a significant dif erence between the occurrences of bleeding and petechial ( <0.01).The patients preferred to the method of pressing blood vessel with four fingers holding the hand. Conclusion Adopting the method of pressing blood vessel with four fingers after withdrawing the needle could reduce the occurrence of bleeding and petechia more ef ectively and is bet er accepted by patients.

  7. Extraction of blood vessel tree in retinal image based on improved PCNN%一种基于改进的PCNN的视网膜血管树提取方法

    Institute of Scientific and Technical Information of China (English)

    姚畅; 陈后金; 荆涛; 郝晓莉; 李志林; 杨娜

    2011-01-01

    According to the characteristics of dynamic firing of pulse coupled neural network (PCNN) and the regional configuration of retinal blood vessel network, a new blood vessel tree extraction method based on improved PCNN (IPCNN) is proposed. Firstly, the two-dimensional Gaussian matched filter is used to enhance the retinal image: Then the blood vessel network is segmented by IPCNN. Finally, the vessel tree is obtained via analyzing the region connectivity and using the length filtering. The experiments implemented on the public Hoover database and clinical images indicate that the proposed method outperforms the traditional threshold method and traditional PCNN method on resisting lack-segmentation and over-segmentation,and outperforms the Hoover algorithm on branch vessels extraction and algorithm effectiveness. It is significant for the clinic diagnosis with more practical values.%根据脉冲耦合神经网络(PCNN)动态点火特性和视网膜血管网络区域结构特征,提出了一种基于改进型PCNN(IPCNN)的视网膜血管树提取方法。该方法对二维高斯匹配滤波预处理增强后的眼底图像运用IPCNN分割出增强图像的血管网络,然后对分割得到的血管网络结合区域连通性特征,采用长度滤波算子滤除噪声,提取出最终的血管树。通过在Hoover眼底图像库和临床图像中的实验结果表明,该方法在抵抗欠分割和过分割方面要明显优于传统阈值法和传统PCNN法;在血管分支的提取和算法的有效性方面要明显优于Hoover算法,对于临床应用具有较好的参考价值。

  8. Research on the effect of the different method of pressing blood vessel in intravenous injection after withdrawing the needle%静脉输液拔针后不同按压方法的效果观察

    Institute of Scientific and Technical Information of China (English)

    王艳杰; 姬萍

    2008-01-01

    Objective To explore which method is more effective and easily accepted by patients through contrasting the method of pressing blood vessel with four fingers and the meihod of pressing blood vessel with four fingers holding the hand.Methods In this study,to learn which method is better accepted by patients,194 cases were observed by seff-control stuay after withdrawing the needle.The Occurrence of bleeding and petechia Was evaluated.Results In the method of pressing blood vessel with four fingers and the method of pressing blood vessel with four fingers holding the hand,the occurrence rates of bleeding were 10.3 1%and 0.52%.and tlle occurrence rates of petechia were 9.28%and 0.52%,respectively.There wag a significant differenee between the occurrences of bleeding and petechia(P<0.01).The patients preferred to the method of pressing blood vessel with four fingers holding the hand.Conclusions Adopting the method of pressing blood vessel with four fingers after withdrawing the needle could reduce the occurrence of bleeding and petechia more effectively and is better accepted by patients.%目的 比较4指按压法和握式4指按压法的止血效果,探讨静脉输液拔针后最佳的按压止血方法 和病人容易接受的方法 .方法 采用自身对照法,对194例病人分别用4指按压法和握式4指按压法进行静脉输液拔针后按压效果的观察,评价皮肤出血、皮下淤血的发生情况,了解病人更容易接受哪一种按压方法 .结果 4指按压法与握式4指按压法比较,出血发生率分别为10.31%和0.52%,淤血发生率分别为9.28%和0.52%,均有统计学意义(P<0.01).病人更喜欢握式4指按压法.结论 静脉输液拔针后使用握式4指按压法能更效地减少皮血出血及皮下淤血的发生皮情况,且病人乐于接受.

  9. Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling.

    Science.gov (United States)

    Wilson, Christopher W; Ye, Weilan

    2014-01-01

    The ability of blood vessels to sense and respond to stimuli such as fluid flow, shear stress, and trafficking of immune cells is critical to the proper function of the vascular system. Endothelial cells constantly remodel their cell-cell junctions and the underlying cytoskeletal network in response to these exogenous signals. This remodeling, which depends on regulation of the linkage between actin and integral junction proteins, is controlled by a complex signaling network consisting of small G proteins and their various downstream effectors. In this commentary, we summarize recent developments in understanding the small G protein RAP1 and its effector RASIP1 as critical mediators of endothelial junction stabilization, and the relationship between RAP1 effectors and modulation of different subsets of endothelial junctions.   The vasculature is a dynamic organ that is constantly exposed to a variety of signaling stimuli and mechanical stresses. In embryogenesis, nascent blood vessels form via a process termed vasculogenesis, wherein mesodermally derived endothelial precursor cells aggregate into cords, which subsequently form a lumen that permits trafficking of plasma and erythrocytes. (1)(,) (2) Angiogenesis occurs after establishment of this primitive vascular network, where new vessels sprout from existing vessels, migrate into newly expanded tissues, and anastomose to form a functional and complex circulatory network. (1)(,) (2) In the mouse, this process occurs through the second half of embryogenesis and into postnatal development in some tissues, such as the developing retinal vasculature. (3) Further, angiogenesis occurs in a variety of pathological conditions, such as diabetic retinopathy, age-related macular degeneration, inflammatory diseases such as rheumatoid arthritis, wound healing, and tumor growth. (1)(,) (2)(,) (4) Both vasculogenesis and angiogenesis are driven through signaling by vascular endothelial growth factor (VEGF), and therapeutic

  10. A fault-Tolerant Routing Algorithm for WSN Based on Imitating Human Blood Vessel%基于仿人体血管路径WSN故障容错路由算法研究

    Institute of Scientific and Technical Information of China (English)

    余成波; 李洪兵

    2011-01-01

    In order to enhance fault tolerance and transmission stability of WSN, as well as the load balance of network, a fault tolerant routing algorithm imitating human blood vessel is presented for WSN. Through studying the properties of human blood vessel paths and introducing them into fault tolerance routing design, static clustering based on energy consumption load balance is done after the network nodes in different hierarchical regions are marked with different grades. Best Worst Ant System (BWAS), an improved ant colony algorithm, is used to generate the paths and calculate the pheromones of the paths, and then create the path selection probability. So the topology route imitating blood vessel structure is established. Both the theory and simulatton results show that this algorithm has good performance.%为提高无线传感器网络(WSN)故障容错性和传输稳定性,实现网络负载均衡,提出了一种仿人体血管路径的WSN故障容错路由算法.通过研究人体血管路径特性,将其引入到WSN故障容错路由设计中,在对网络节点分区域进行等级标定的基础上实行能耗均衡的静态分簇;运用改进的蚁群算法生成节点路径并计算各路径信息素值,以确定传输路径选择概率并建立仿血管拓扑结构路由.理论与仿真结果表明,此算法具有良好的性能.

  11. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany.

    Science.gov (United States)

    Cadena, Edwin

    2016-01-01

    The Eocene (∾48 Ma) Messel Pit in Germany is a UNESCO World Heritage Site because of its exceptionally preserved fossils, including vertebrates, invertebrates, and plants. Messel fossil vertebrates are typically characterized by their articulated state, and in some cases the skin, hair, feathers, scales and stomach contents are also preserved. Despite the exceptional macroscopic preservation of Messel fossil vertebrates, the microstructural aspect of these fossils has been poorly explored. In particular, soft tissue structures such as hair or feathers have not been chemically analyzed, nor have bone microstructures. I report here the preservation and recovery of osteocyte-like and blood vessel-like microstructures from the bone of Messel Pit specimens, including the turtles Allaeochelys crassesculpta and Neochelys franzeni, the crocodile Diplocynodon darwini, and the pangolin Eomanis krebsi. I used a Field Emission Scanning Electron Microscope (FESEM) and a Phenom ProX desktop scanning electron microscope (LOT-QuantumDesign) equipped with a thermionic CeB6 source and a high sensitivity multi-mode backscatter electron (BSE) for microscopical and elemental characterization of these bone microstructures. Osteocyte-like and blood vessel-like microstructures are constituted by a thin layer (∾50 nm thickness), external and internal mottled texture with slightly marked striations. Circular to linear marks are common on the external surface of the osteocyte-like microstructures and are interpreted as microbial troughs. Iron (Fe) is the most abundant element found in the osteocyte-like and blood vessel-like microstructures, but not in the bone matrix or collagen fibril-like microstructures. The occurrence of well-preserved soft-tissue elements (at least their physical form) establishes a promising background for future studies on preservation of biomolecules (proteins or DNA) in Messel Pit fossils.

  12. A software application for comparing large numbers of high resolution MALDI-FTICR MS spectra demonstrated by searching candidate biomarkers for glioma blood vessel formation

    Directory of Open Access Journals (Sweden)

    Smitt Peter

    2008-03-01

    Full Text Available Abstract Background A Java™ application is presented, which compares large numbers (n > 100 of raw FTICR mass spectra from patients and controls. Two peptide profile matrices can be produced simultaneously, one with occurrences of peptide masses in samples and another with the intensity of common peak masses in all the measured samples, using the peak- and background intensities of the raw data. In latter way, more significantly differentially expressed peptides are found between groups than just using the presence or absence in samples of common peak masses. The software application is tested by searching angiogenesis related proteins in glioma by comparing laser capture micro dissected- and enzymatic by trypsin digested tissue sections. Results By hierarchical clustering of the presence-absence matrix, it appears that proteins, such as hemoglobin alpha and delta subunit, fibrinogen beta and gamma chain precursor, tubulin specific chaperone A, epidermal fatty acid binding protein, neutrophil gelatinase-associated lipocalin precursor, peptidyl tRNA hydrolase 2 mitochondrial precursor, placenta specific growth hormone, and zinc finger CCHC domain containing protein 13 are significantly different expressed in glioma vessels. The up-regulated proteins in the glioma vessels with respect to the normal vessels determined by the Wilcoxon-Mann-Whitney test on the intensity matrix are vimentin, glial fibrillary acidic protein, serum albumin precursor, annexin A5, alpha cardiac and beta actin, type I cytoskeletal 10 keratin, calcium binding protein p22, and desmin. Peptide masses of calcium binding protein p22, Cdc42 effector protein 3, fibronectin precursor, and myosin-9 are exclusively present in glioma vessels. Some peptide fragments of non-muscular myosin-9 at the C-terminus are strongly up-regulated in the glioma vessels with respect to the normal vessels. Conclusion The less rigorous than in general used commercial propriety software de

  13. Anatomic study of intramuscular nerve and blood vessel in forearm muscles:an anatomical study%前臂肌内神经血管构筑的解剖学研究

    Institute of Scientific and Technical Information of China (English)

    陈刚; 江华; 林子豪; 刘安堂; 党瑞山; 沈辉

    2008-01-01

    Objective To study the distribution of intramuscular nerve and blood vessels in forearm muscles and to discuss the possibility of dividing the forearm muscles into independent functional units.Methods ①The muscles were dissected in 10 forearms from 5 fresh adult human cadavers and stained with the Sihler's nerve staining;②The blood vessels were studied in eight forearm muscles from 4 fresh adult human cadavers with irrigation of a mixture of 30% barium sulfate and gelatin from brachial artery and then X-photographed.All pictures were compared to study the intramuscular distribution of nerve and blood vessels.Results The intramuscular nerve branches were stained purple-black and visualized clearly.The muscles were classified into three types according to the distribution characters of intramuscular nerve and blood vessels.And the types of muscles could be further subdivided into a and b subtypes.Conclusion According to the neurovascular distribution,the forearm muscles in type Ⅱ a and type Ⅲ a can be divided into independent function units for muscle functional transplantation.%目的 观察前臂肌内神经血管分布特点,并进行分类;探讨前臂诸肌被分割为若干个功能单位的可能性.方法 ①解剖并完整游离5具新鲜成年尸体的10侧前臂诸肌,经改良的Sihler's染色法行肌内神经的染色;②4具新鲜成年尸体的8侧上肢,经肱动脉灌注含30%硫酸钡的乳胶混悬液后,解剖游离每块肌肉并行X线钼靶摄片,研究前臂各肌血管的分布,比较其与肌内神经的关系.结果 经改良的Sihler's染色法后肌肉呈无色透明胶冻状,清晰町见神经在肌内的分布,依肌内神经血管分布的特点将前臂肌分为3型,各型再分为a、b 2个亚型.结论 前臂肌中Ⅱ a型肌肉和Ⅲa型肌肉,可被分为不同的独立功能单位(肌亚单位),供部分肌肉移植重建功能.

  14. State of integral remodeling parameters of target organs in patients with essential hypertension and obesity.

    Science.gov (United States)

    Kochueva, M; Sukhonos, V; Shalimova, A; Psareva, V; Kirichenko, N

    2014-06-01

    Arterial hypertension combined with obesity is a very common form of comorbid disease in most countries all over the world. The combination of these diseases is characterized by mutual burdening of remodelling processes in important target organs, what greatly increases the risk of cardiovascular complications and death. The mechanisms of injury progression to vital organs in essential hypertension (EH) and obesity have some common features. The most important risk factors of target organs damage are hemodynamic and neurohumoral: inflammatory, effectors of the renin- angiotensin-aldosterone system, insulin resistance and others. Polyethiologic remodelling, lack of knowledge concerning violations in structural and functional status of important target organs and mechanisms of the interactions of their progression with this comorbidity require further study of these issues. The objective of the study was the comparative study of the state of integral indicators of structural and functional state of the heart, blood vessels and liver in patients with EH second stage with normal body weight and with concomitant obesity I and II degrees. This study found that the presence of obesity I and II in patients with EH stage II is associated with the concentric type of left ventricular hypertrophy, saved by its ejection fraction and impaired diastolic filling processes. For the patients with EH in the early stages of obesity the following characteristics are quite typical: considerable increase of intima media thickness in the carotid arteries, increasing the stiffness in the main arteries and liver parenchyma, impaired of the functional state of endothelial.

  15. Spice up the hypertension diet - curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension

    Directory of Open Access Journals (Sweden)

    Janega Pavol

    2011-10-01

    Full Text Available Abstract Background Increase of blood pressure is accompanied by functional and morphological changes in the vascular wall. The presented study explored the effects of curcuma and black pepper compounds on increased blood pressure and remodeling of aorta in the rat model of experimental NO-deficient hypertension. Methods Wistar rats were administered for 6 weeks clear water or L-NAME (40 mg/kg/day dissolved in water, piperine (20 mg/kg/day, curcumin (100 mg/kg/day or their combination in corn oil by oral gavage. The systolic blood pressure was measured weekly. Histological slices of thoracic aorta were stained with hematoxylin and eosin, Mallory's phosphotungstic acid hematoxylin (PTAH, orcein, picrosirius red and van Gieson staining and with antibodies against smooth muscle cells actin. Microscopic pictures were digitally processed and morphometrically evaluated. Results The increase of blood pressure caused by L-NAME was partially prevented by piperine and curcumin, but the effect of their combination was less significant. Animals with hypertension had increased wall thickness and cross-sectional area of the aorta, accompanied by relative increase of PTAH positive myofibrils and decrease of elastin, collagen and actin content. Piperine was able to decrease the content of myofibrils and slightly increase actin, while curcumin also prevented elastin decrease. The combination of spices had similar effects on aortic morphology as curcumin itself. Conclusions Administration of piperine or curcumin, less their combination, is able to partially prevent the increase of blood pressure caused by chronic L-NAME administration. The spices modify the remodeling of the wall of the aorta induced by hypertension. Our results show that independent administration of curcumin is more effective in preventing negative changes in blood vessel morphology accompanying hypertensive disease.

  16. Wnt-responsive cancer stem cells are located close to distorted blood vessels and not in hypoxic regions in a p53-null mouse model of human breast cancer.

    Science.gov (United States)

    Vadakkan, Tegy J; Landua, John D; Bu, Wen; Wei, Wei; Li, Fuhai; Wong, Stephen T C; Dickinson, Mary E; Rosen, Jeffrey M; Lewis, Michael T; Zhang, Mei

    2014-07-01

    Cancer stem cells (CSCs, or tumor-initiating cells) may be responsible for tumor formation in many types of cancer, including breast cancer. Using high-resolution imaging techniques, we analyzed the relationship between a Wnt-responsive, CSC-enriched population and the tumor vasculature using p53-null mouse mammary tumors transduced with a lentiviral Wnt signaling reporter. Consistent with their localization in the normal mammary gland, Wnt-responsive cells in tumors were enriched in the basal/myoepithelial population and generally located in close proximity to blood vessels. The Wnt-responsive CSCs did not colocalize with the hypoxia-inducible factor 1α-positive cells in these p53-null basal-like tumors. Average vessel diameter and vessel tortuosity were increased in p53-null mouse tumors, as well as in a human tumor xenograft as compared with the normal mammary gland. The combined strategy of monitoring the fluorescently labeled CSCs and vasculature using high-resolution imaging techniques provides a unique opportunity to study the CSC and its surrounding vasculature.

  17. Effect of Different Styles of Coronary Heart Disease and Its Risk Factors on Cardiac Remodeling and Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Wang Xuelihong; Guo Xuewei; Ma Yushan; Su Shuangshan; Guo Xiangyu

    2006-01-01

    was significantly decreased, and LVd and LM increased in AMI patients with antecedent hypertension, compared to patients without hypertension(P<0.001). Conclusions Effects of different styles of CHD and different regions of AMI on left ventricular remodeling and cardiac function are different. Myocardial infarction, especially Aa and Aa+Ai, is one of the most important causes of left ventricular remodeling and cardiac dysfunction.Multiple vessel stenosis and systolic blood pressure at the onset of myocardial infarction reduce LVEF in AMI patients. Antecedent hypertension may accelerate the effect of AMI on cardiac remodeling and dysfunction.Therefore primary and secondary preventions of CHD are critical for protecting heart from remodeling and dysfunction.

  18. 多普勒血流检查评价下肢动脉旁路术流出道的价值%Doppler ultrasound assess outlets in lower extremity arterias treated by blood vessel prosthesis

    Institute of Scientific and Technical Information of China (English)

    周晗; 吴庆华; 陈忠; 罗小云; 张煜亚; 杨培

    2009-01-01

    目的 探讨多普勒血流检查中节段性压力比值对评估下肢动脉硬化闭塞症患者远端动脉流出道的应用价值,以对人工血管旁路术适应证的选择提供参考.方法 回顾性分析北京安贞医院血管外科1998--2005年收治的166例下肢动脉硬化闭塞症行人工血管旁路术患者的资料,分析流出道节段性压力比值差值等与人工血管通畅率相关的因素,比较人工血管通畅组与阻塞组术前流出道节段性压力比值差值的差异.结果 流出道的节段性压力比值差值是影响人工血管术后通畅率危险程度最高的相关因素之一.人工血管通畅组与阻塞组流出道节段性压力比值差值分别为0.12±0.09和0.24±0.14,两组间比较,差异有统计学意义(P=0.001).人工血管通畅组流出道的节段性压力比值差值的95%可信区间为(0,0.27).结论 多普勒血流检查是一种量化的检查方法,节段性压力比值差值的区间范围可以作为临床上评价流出道及预测手术通畅率的参考.%Objective To explore segmantal blood pressure ratio in Doppler ultrasound in the evaluation of distal outlets in lower extremity atherosclerosis ocllusion patients undergoing blood vessel prosthesis and provide references to surgical indications. Methods A review research was made on 166 lower extremity atherosclerosis ocllusion patients receiving blood vessel prosthesis therapy in Anzhen hospital in 1998--2005. We analyzed related factors including segmantal blood pressure ratio to potency rate, evaluated the difference of segmantal blood pressure ratio between groups in which the blood vessel prosthesis was patent and that it was not. Results The difference of segmantal blood pressure ratio of outlet is one of the highest risk among risk factors. The Mean ± SDs of segmantal blood pressure ratio of outlet in patent and obstructed groups were 0. 12±0. 09 and 0. 24±0. 14 respectively. The difference of segmantal blood pressure

  19. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  20. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  1. BIOMECHANICAL REMODELING OF BIODEGRADABLE SMALL-DIAMETER VASCULAR GRAFTS IN SITU

    Directory of Open Access Journals (Sweden)

    T. V. Glushkova

    2016-01-01

    Full Text Available Aim: to evaluate the biomechanical remodeling of polymer grafts modified with vascular endothelial growth factor (VEGF after implantation into rat abdominal aorta.Materials and methods. Vascular grafts of2 mmdiameter were fabricated by electrospinning from polycaprolactone (PCL and a mixture of poly (3-hydroxybutyrate-co-3-hydroxyvalerate and PCL. The grafts were modified with VEGF by biphasic electrospinning. Morphology of the grafts was assessed by scanning electron microscopy. Physico-mechanical properties of PCL and PHBV/PCL grafts were estimated using uniaxial tensile test and physiological circulating system equipped with state-of-theart ultrasound vascular wall tracking system. Physico-mechanical testing of PCL/VEGF and PHBV/PCL/VEGF was performed before and after implantation into rat abdominal aorta for 6 months. The modeling of coronary artery bypass grafting (CABG was performed by finite element analysis for modified grafts.Results. Durability of PCL and PHBV/PCL grafts did not differ from that of human internal mammary artery; however, elasticity and stiffness of these grafts were higher compared to internal mammary artery. Viscoelastic properties of the grafts were comparable to those of native blood vessels. Modification of the grafts with VEGF reduced material stiffness. Six months postimplantation, PCL/VEGF and PHBV/PCL/VEGF were integrated with aortic tissue that induced changes in the physico-mechanical properties of the grafts similar to the native vessel. Biomechanical modeling confirmed the functioning of modified grafts in bypass position for CABG.Conclusion. PCL/VEGF and PHBV/PCL/VEGF grafts have satisfactory physico-mechanical properties and can be potentially used in the reconstruction of blood vessels

  2. Remodeling with the sun

    Energy Technology Data Exchange (ETDEWEB)

    Bodzin, S. [ed.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar h