WorldWideScience

Sample records for blood pool imaging

  1. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection

    International Nuclear Information System (INIS)

    Rahmer, J; Gleich, B; Borgert, J; Antonelli, A; Sfara, C; Magnani, M; Tiemann, B; Weizenecker, J

    2013-01-01

    Magnetic particle imaging (MPI) is a new medical imaging approach that is based on the nonlinear magnetization response of super-paramagnetic iron oxide nanoparticles (SPIOs) injected into the blood stream. To date, real-time MPI of the bolus passage of an approved MRI SPIO contrast agent injected into the tail vein of living mice has been demonstrated. However, nanoparticles are rapidly removed from the blood stream by the mononuclear phagocyte system. Therefore, imaging applications for long-term monitoring require the repeated administration of bolus injections, which complicates quantitative comparisons due to the temporal variations in concentration. Encapsulation of SPIOs into red blood cells (RBCs) has been suggested to increase the blood circulation time of nanoparticles. This work presents first evidence that SPIO-loaded RBCs can be imaged in the blood pool of mice several hours after injection using MPI. This finding is supported by magnetic particle spectroscopy performed to quantify the iron concentration in blood samples extracted from the mice 3 and 24 h after injection of SPIO-loaded RBCs. Based on these results, new MPI applications can be envisioned, such as permanent 3D real-time visualization of the vessel tree during interventional procedures, bleeding monitoring after stroke, or long-term monitoring and treatment control of cardiovascular diseases. (paper)

  2. The values of myocardial tomography imaging and gated cardiac blood pool imaging in detecting left ventricular aneurysm

    International Nuclear Information System (INIS)

    Zhu Mei; Pan Zhongyun; Li Jinhui

    1992-01-01

    The sensitivity and specificity of myocardial tomography imaging and gated cardiac blood-pool imaging in detecting LVA were studied in 36 normal subjects and 68 patients with myocardial infarction. The sensitivities of exercise and rest myocardial imaging in detecting LVA were 85% and 77.3% respectively. The specificity of both is 95.5%. The sensitivity of cinema display, phase analysis and left ventricular phase shift in evaluating LVA were 86.7%, 86.7%, 100% respectively. Their specificity were all 100%. It is concluded that blood pool imaging is of choice for the diagnosis of LVA, and that myocardial imaging could also demonstrate LVA during diagnosing myocardial infarction

  3. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  4. Use of blood-pool imaging in evaluation of diffuse activity patterns in technetium-99m pyrophosphate myocardial scintigraphy.

    Science.gov (United States)

    Cowley, M J; Mantle, J A; Rogers, W J; Russell, R O; Rackley, C E; Logic, J R

    1979-06-01

    It has been suggested that diffuse Tc-99m pyrophosphate precordial activity may be due to persistent blood-pool activity in routine delayed views during myocardial imaging. To answer this question, we reviewed myocardial scintigrams recorded 60--90 min following the injection of 12--15 mCi of Tc-99m pyrophosphate for the presence of diffuse precordial activity, and compared these with early images of the blood pool in 265 patients. Diffuse activity in the delayed images was identified in 48 patients: in 20 with acute myocardial infarction and in 28 with no evidence of it. Comparison of these routine delayed images with early views of the blood pool revealed two types of patterns. In patients with acute infarction, 95% had delayed images that were distinguishable from blood pool either because the activity was smaller than the early blood pool, or by the presence of localized activity superimposed on diffuse activity identical to blood pool. In those without infarction, 93% had activity distribution in routine delayed views matching that in the early blood-pool images. The usefulness of the diffuse TcPPi precordial activity in myocardial infarction is improved when early blood-pool imaging is used to exclude persistence of blood-pool activity as its cause. Moreover, it does not require additional amounts of radioactivity nor complex computer processing, a feature that may be of value in the community hospital using the technique to "rule out" infarction 24--72 hr after onset of suggestive symptoms.

  5. Use of blood-pool imaging in evaluation of diffuse activity patterns in technetium-99m pyrophosphate myocardial scintigraphy

    International Nuclear Information System (INIS)

    Cowley, M.J.; Mantle, J.A.; Rogers, W.J.; Russell, R.O. Jr.; Rackley, C.E.; Logic, J.R.

    1979-01-01

    It has been suggested that diffuse 99m Tc pyrophosphate precordial activity may be due to persistent blood-pool activity in routine delayed views during myocardial imaging. To answer this question, we reviewed myocardial scintigrams recorded 60 to 90 min following the injection of 12 to 15 mCi of 99m Tc pyrophosphate for the presence of diffuse precordial activity, and compared these with early images of the blood pool in 265 patients. Diffuse activity in the delayed images was identified in 48 patients: in 20 with acute myocardial infarction and in 28 with no evidence of it. Comparison of these routine delayed images with early views of the blood pool revealed two types of patterns. In patients with acute infarction, 95% had delayed images that were distinguishable from blood pool either because the activity was smaller than the early blood pool, or by the presence of localized activity superimposed on diffuse activity identical to blood pool. In those without infarction, 93% had activity distribution in routine delayed views matching that in the early blood-pool images. The usefulness of the diffuse TcPPi precordial activity in myocardial infarction is improved when early blood-pool imaging is used to exclude persistence of blood-pool activity as its cause. Moreover, it does not require additional amounts of radioactivity nor complex computer processing, a feature that may be of value in the community hospital using the technique to rule out infarction 24 to 72 hr after onset of suggestive symptoms

  6. 18F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats.

    Science.gov (United States)

    Matsusaka, Yohji; Nakahara, Tadaki; Takahashi, Kazuhiro; Iwabuchi, Yu; Nishime, Chiyoko; Kajimura, Mayumi; Jinzaki, Masahiro

    2017-12-01

    Red blood cells (RBCs) labeled with single-photon emitters have been clinically used for blood-pool imaging. Although some PET tracers have been introduced for blood-pool imaging, they have not yet been widely used. The present study investigated the feasibility of labeling RBCs with 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG) for blood-pool imaging with PET. RBCs isolated from venous blood of rats were washed with glucose-free phosphate-buffered saline and labeled with 18 F-FDG. To optimize labeling efficiency, the effects of glucose deprivation time and incubation (labeling) time with 18 F-FDG were investigated. Post-labeling stability was assessed by calculating the release fraction of radioactivity and identifying the chemical forms of 18 F in the released and intracellular components of 18 F-FDG-labeled RBCs incubated in plasma. Just after intravenous injection of the optimized autologous 18 F-FDG-labeled RBCs, dynamic PET scans were performed to evaluate in vivo imaging in normal rats and intraabdominal bleeding models (temporary and persistent bleeding). The optimal durations of glucose deprivation and incubation (labeling) with 18 F-FDG were 60 and 30 min, respectively. As low as 10% of 18 F was released as the form of 18 F-FDG from 18 F-FDG-labeled RBCs after a 60-min incubation. Dynamic PET images of normal rats showed strong persistence in the cardiovascular system for at least 120 min. In the intraabdominal bleeding models, 18 F-FDG-labeled RBC PET visualized the extravascular blood clearly and revealed the dynamic changes of the extravascular radioactivity in the temporary and persistent bleeding. RBCs can be effectively labeled with 18 F-FDG and used for blood-pool imaging with PET in rats.

  7. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  8. Evaluation of factor analysis and other functional images in exercise gated blood-pool study

    International Nuclear Information System (INIS)

    Matsunari, Ichiro; Bunko, Hisashi; Nakajima, Kenichi; Taki, Junichi; Shiire, Yasushi; Hisada, Kinichi

    1990-01-01

    Factor analysis, a new method of functional imaging, has been applied to cardiovascular nuclear medicine. Because of the difficulty of its interpretation, it has not been popular as a method for detecting abnormal wall motion. The purpose of this study was to evaluate the usefulness of factor analysis in exercise gated blood-pool study in patients with ischemic heart disease. In our factor analysis, left ventricular region of interest (LVROI) was extracted to exclude the surrounding radioactivities. The new method was compared with the conventional factor analysis using whole region (whole ROI method), and the other functional images, i.e. stroke volume, ejection fraction and phase images. At first we tried 3-factor analysis of the LVROI method, which resulted in many uninterpretable factors. Whereas in 2-factor analysis no uninterpretable factors were extracted. In comparison with cine-mode display, the LVROI method with 2-factor analysis showed the best sensitivity (85%) and specificity (100%). In exercise gated blood-pool study, it became easier to detect abnormal wall motion by comparing the factor image at exercise with resting image. In conclusion, the 2-factor analysis using the LVROI method greatly improved the limitation of conventional factor analysis, and will be useful in detecting wall motion abnormality in patients with ischemic heart disase. (author)

  9. Dynamic circular buffering: a technique for equilibrium gated blood pool imaging.

    Science.gov (United States)

    Vaquero, J J; Rahms, H; Green, M V; Del Pozo, F

    1996-03-01

    We have devised a software technique called "dynamic circular buffering" (DCB) with which we create a gated blood pool image sequence of the heart in real time using the best features of LIST and FRAME mode methods of acquisition/processing. The routine is based on the concept of independent "agents" acting on the timing and position data continuously written into the DCB. This approach allows efficient asynchronous operation on PC-type machines and enhanced capability on systems capable of true multiprocessing and multithreading.

  10. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  11. Patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy as assessed with gated blood pool imaging

    International Nuclear Information System (INIS)

    Spies, S.M.; Parikh, S.R.; Spies, W.G.; Zimmer, A.M.; Silverstein, E.A.

    1989-01-01

    Clinical concern over significant cardiotoxicity of commonly employed chemotherapeutic regimens is a common indication for gated blood pool imaging. The authors have undertaken a review of 102 patients referred for such evaluation during a 14-month period. Ventricular ejection fractions, cine displays, and phase analysis were performed on each patient study. Approximately one-third of the cases showed significant abnormalities in wall motion or global ejection fraction. Many abnormal cases had isolated left ventricular findings, while fewer had isolated right ventricular findings. Left ventricular wall motion abnormalities were often focal. The patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy are diverse, and awareness of the various possibilities is important for accurate clinical assessment of these patients

  12. Dynamic arrythmia filtration for gated blood pool imaging: Validation against list - Mode technique

    International Nuclear Information System (INIS)

    Juni, J.E.; Wallis, J.; Rocchini, A.; Wu-Connolly, L.

    1985-01-01

    Normal resting heart rate variation distort the diastolic portions of time-activity curves (TACs) generated from gated blood pool (GBP) images. This alters calculated measures of diastolic function e.g. peak filling rate (PFR). The authors compared diastolic filling parameters obtained by two methods of arrythmia removal, list-mode (LM) acquisition and a new approach, dynamic arrythima filtration (DAF). LM acquisition techniques reject beats of unusual cycle length, thus reducing the TAC distortions caused by heart rate variation but is time consuming and requires large amounts of disk storage. In DAF systems data is evaluated for cycle length in real-time and accepted or rejected immediately according to preset, operator determined cycle-length criteria, thus eliminating the need for post-processing of data and for large mass data storage. The authors prospectively determined EF, time to end-systole (TES), PFR, ad TPFR on 25 GBP patients. Camera and ECG data were sent simultaneously to 2 computers. One acquired data via LM and the other by DAF. Fluctuations in heart rate during GBP acquisition may cause errors in calculation of filling parameters. Both LM and DAF remove cycles of unusual length. DAF is less time consuming and technically demanding than LM and provides results which correlate closely with those obtained by LM

  13. Morphology of drying blood pools

    Science.gov (United States)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  14. Assessment of cardiac blood pool imaging in patients with left ventricular outflow tract stenosis

    International Nuclear Information System (INIS)

    Nakamura, Yutaka; Ono, Yasuo; Kohata, Tohru; Tsubata, Shinichi; Kamiya, Tetsuroh.

    1993-01-01

    We performed cardiac blood pool imagings with Tc-99m at rest and during supine ergometer exercise to evaluate left ventricular performance in 14 patients with left ventricular outflow tract stenosis. All catheterized patients were divided into two subgroups: 8 patients with peak systolic left ventricular to descending aortic pressure gradients of less than 50 mmHg (LPG group) and 6 patients with peak systolic gradients of more than 50 mmHg (HPG group). Control group included 10 patients without stenotic coronary lesions after Kawasaki disease. Left ventricular ejection fraction (LVEF) was obtained as systolic index; both filling fraction during the first third of diastole (1/3FF) and mean filling rate during the first third of diastole (1/3FR mean) were obtained as diastolic indices. None of the patients had abnormal findings on 201 Tl imaging. LVEF at rest in HPG group was significantly higher than those in control group, but LVEF in HPG group did not increase after exercise. It increased significantly in control group and LPG group. 1/3 FF in HPG group was significantly lower not only at rest but also during exercise. 1/3 FR mean at rest was not different significantly among the 3 groups. However, 1/3FR mean during exercise in LPG group was significantly lower; and 1/3 FR mean during exercise was significantly lower in HPG group than LPG group. The ratio of left ventricular muscular mass to left ventricular end-diastolic volume (M/V) calculated from left ventricular cineangiograms was different significantly among the 3 groups. The M/V ratio showed a correlation with LVEF and 1/3 FF both at rest and during exercise. These results would indicate that systolic function was impaired on exercise in severe left ventricular outflow tract stenosis and diastolic function was impaired on exercise in mild and severe left ventricular outflow tract stenosis. This may correlate with left ventricular hypertrophy and interaction of systolic function. (author)

  15. Assessment of cardiac blood pool imaging in patients with left ventricular outflow tract stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yutaka (Tajimi City Hospital, Gifu (Japan)); Ono, Yasuo; Kohata, Tohru; Tsubata, Shinichi; Kamiya, Tetsuroh

    1993-09-01

    We performed cardiac blood pool imagings with Tc-99m at rest and during supine ergometer exercise to evaluate left ventricular performance in 14 patients with left ventricular outflow tract stenosis. All catheterized patients were divided into two subgroups: 8 patients with peak systolic left ventricular to descending aortic pressure gradients of less than 50 mmHg (LPG group) and 6 patients with peak systolic gradients of more than 50 mmHg (HPG group). Control group included 10 patients without stenotic coronary lesions after Kawasaki disease. Left ventricular ejection fraction (LVEF) was obtained as systolic index; both filling fraction during the first third of diastole (1/3FF) and mean filling rate during the first third of diastole (1/3FR mean) were obtained as diastolic indices. None of the patients had abnormal findings on [sup 201]Tl imaging. LVEF at rest in HPG group was significantly higher than those in control group, but LVEF in HPG group did not increase after exercise. It increased significantly in control group and LPG group. 1/3 FF in HPG group was significantly lower not only at rest but also during exercise. 1/3 FR mean at rest was not different significantly among the 3 groups. However, 1/3FR mean during exercise in LPG group was significantly lower; and 1/3 FR mean during exercise was significantly lower in HPG group than LPG group. The ratio of left ventricular muscular mass to left ventricular end-diastolic volume (M/V) calculated from left ventricular cineangiograms was different significantly among the 3 groups. The M/V ratio showed a correlation with LVEF and 1/3 FF both at rest and during exercise. These results would indicate that systolic function was impaired on exercise in severe left ventricular outflow tract stenosis and diastolic function was impaired on exercise in mild and severe left ventricular outflow tract stenosis. This may correlate with left ventricular hypertrophy and interaction of systolic function. (author).

  16. A Giant Hepatic Hemangioma Complicated by Kasabach-Merritt Syndrome: Findings of Tc-99m RBC Scintigraphy and SPECT Including a Total Body Blood Pool Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yim, Chang Yeol [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2009-02-15

    Kasabach-Merritt syndrome (KMS) consists of thrombocytopenia, microangiopathic hemolytic anemia, and localized consumption coagulopathy that develops within vascular hemangioma. This syndrome may also be associated with occult hemangiomas located at various sites. Tc-99m RBC scintigraphy and SPECT have proven to be reliable for confirming or excluding hemangioma. Total body blood pool imaging study during the scintigraphy also provides a means of screening for occult lesions. The authors report the case of a 29-year-old man who presented with a giant hepatic hemangioma complicated by KMS, and underwent Tc-99m RBC scintigraphy and SPECT including a total body blood pool imaging study.

  17. Cardiac blood pool emission tomography

    International Nuclear Information System (INIS)

    Itti, R.; Philippe, L.; Lorgeron, J.M.; Charbonnier, B.; Raynaud, P.; Brochier, M.

    1983-01-01

    After blood pool labeling using technetium-99m, a series of cardiac pictures is acquired during the rotation of a gamma-camera about the patient. Computer processing leads to reconstruction of various tomographic slices from the original planar projection. Electrocardiographic gating selects the different phases of the cardiac cycle. Individual slices through the left ventricular region are added in order to provide ''thick'' slices on which global and regional parameters of the left ventricular function can be determined. Due to the proportionality existing between count rates and labeled blood volumes, any geometrical model can be avoided. The delineation of regions of interest for count integration is made easier due to the absence of superimposition of structures; no correction for background is necessary. Tomography thus appears to be more consistent and more accurate than the classical methods using planar projections. In addition, right ventricular morphological and kinetic studies can be performed in the same conditions as for the left ventricle [fr

  18. Usefulness of diastolic phase index by gated cardiac blood pool imaging in patients with left ventricular hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa; Honda, Minoru

    1983-09-01

    To assess the left ventricular (LV) diastolic filling rate in patients with LV hypertrophy, we analyzed LV time activity curves obtained from gated cardiac blood pool imaging. Gated cardiac blood pool imaging with Tc-99m were obtained at rest in 20 normal subjects, 20 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with hypertensive hypertrophy (HT). As systolic indices we obtained LV ejection fraction (EF) and mean first third ejection rate (1/3 ER/sub mean/). And as diastolic indices, mean filling rate during the first third of diastole (1/3 FR/sub mean/) and maximal filling rate during the whole diastole (FRmax) were calculated. LVEF and 1/3 ER/sub mean/ in patients with HT were not different significantly from normal, but those in patients with HCM were significantly greater than normal, besides 1/3 ER/sub mean/ in patients with HCM was greater than that in HT. Among diastolic phase indices, FRmax was not different significantly between 3 groups, but 1/3 FR/sub mean/ in HCM (1.47 +- 0.30 sec/sup 1/) and HT (1.34 +- 0.38 sec/sup 1/) was significantly lower than normal (2.10 +- 0.27 sec/sup 1/). Abnormal 1/3 FR/sub mean/ (<1.56 sec/sup 1/) was found in 65% of HCM and 80% of HT. Besides, in patients with HCM, 10 patients who had exertional dyspnea and anginal chest pain (NYHA Class II or III) showed significantly lower 1/3 FR/sub mean/ values than 10 patients without symptoms (1.25 +- 0.15 sec/sup 1/ vs 1.70 +- 0.25 sec/sup 1/. 1/3 FR/sub mean/ did not correlated well with LV wall thickness (summation of septal and posterior wall thickness) which was measured by ecohocardiography. But the ratio of 1/3 FR/sub mean/ to 1/3 ER/sub mean/ correlated well (r=-0.77 wall thickness in patients with LV hypertrophy. (J.P.N.).

  19. A new 99mTc-red blood cell labeling procedure for cardiac blood pool imaging: Clinical results

    International Nuclear Information System (INIS)

    Kelbaek, H.; Buelow, K.; Aldershvile, J.; Moegelyang, J.; Nielsen, S.L.; Copenhagen Univ.

    1989-01-01

    The first clinical results of a new 99m Tc-red blood cell labeling procedure avoiding cell centrifugation are presented. One ml heparinized blood samples were incubated with small amounts of a stannous kit. By titration studies, ideal quantities of sodium hypochlorite for oxidation of extracellular tin and of EDTA as stabilizer of the label were found. The Cl - concentration and pH of the labeled blood were acceptable, and EDTA increased labeling yield and stability determined in vitro by a few percent. The new procedure gave a slightly higher labeling yield than a current technique using centrifugation of cells. Labeling efficiency expressed as cell bound/total activity was 96.6%±1.3% in healthy subjects and 95.5%±2.2% in cardiac patients and remained high for 2 h after reinjection. The biological halflife of labeled cells following the new procedure was 11-12 h rendering it suitable for serial determinations of radionuclide cardiography. (orig.)

  20. Cardiac cine MRI: Comparison of 1.5 T, non-enhanced 3.0 T and blood pool enhanced 3.0 T imaging

    International Nuclear Information System (INIS)

    Gerretsen, S.C.; Versluis, B.; Bekkers, S.C.A.M.; Leiner, T.

    2008-01-01

    Introduction: Cardiac cine imaging using balanced steady state free precession sequences (bSSFP) suffers from artefacts at 3.0 T. We compared bSSFP cardiac cine imaging at 1.5 T with gradient echo imaging at 3.0 T with and without a blood pool contrast agent. Materials and methods: Eleven patients referred for cardiac cine imaging underwent imaging at 1.5 T and 3.0 T. At 3.0 T images were acquired before and after administration of 0.03 mmol/kg gadofosveset. Blood pool signal-to-noise ratio (SNR), temporal variations in SNR, ejection fraction and myocardial mass were compared. Subjective image quality was scored on a four-point scale. Results: Blood pool SNR increased with more than 75% at 3.0 T compared to 1.5 T (p < 0.001); after contrast administration at 3.0 T SNR increased with 139% (p < 0.001). However, variations in blood pool SNR at 3.0 T were nearly three times as high versus those at 1.5 T in the absence of contrast medium (p < 0.001); after contrast administration this was reduced to approximately a factor 1.4 (p = 0.21). Saturation artefacts led to significant overestimation of ejection fraction in the absence of contrast administration (1.5 T: 44.7 ± 3.1 vs. 3.0 T: 50.7 ± 4.2 [p = 0.04] vs. 3.0 T post contrast: 43.4 ± 2.9 [p = 0.55]). Subjective image quality was highest for 1.5 T (2.8 ± 0.3), and lowest for non-enhanced 3.0 T (1.7 ± 0.6; p = 0.006). Conclusions: GRE cardiac cine imaging at 3.0 T after injection of the blood pool agent gadofosveset leads to improved objective and subjective cardiac cine image quality at 3.0 T and to the same conclusions regarding cardiac ejection fraction compared to bSSFP imaging at 1.5 T

  1. Equilibrium blood pool scanning in the evaluation of hemophilic arthropathy

    International Nuclear Information System (INIS)

    Spies, S.; Green, D.; Rana, N.A.; Milgram, J.W.; Mintzer, R.

    1978-01-01

    Arthropathy was evaluated in six patients with severe hemophilia (factor VIII<1%) using the technique of blood pool scanning. Employing an in vivo method for erythrocyte labelling with technetium-99m, a dynamic perfusion sequence was obtained using a scintillation camera over the joint(s) to be examined. Subsequently, equilibrium blood pool images of the joints were obtained to determine regional blood volume. In young patients with repeated episodes of acute hemarthrosis, increased vascularity and increased blood pool in the affected joints were demonstrated. In older patients with fixed, contracted joints and degenerative arthropathy, vascularity and regional blood volume were not abnormal. Blood pool scanning is a safe, non-invasive technique that augments the clinical and radiographic examination of the joints. The method is helpful in distinguishing acute joint bleeding from chronic synovitis and arthritis, and may prove useful in selecting patients for synovectomy. (author)

  2. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Science.gov (United States)

    Salamon, Johannes; Hofmann, Martin; Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; Vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald

    2016-01-01

    In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  3. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Directory of Open Access Journals (Sweden)

    Johannes Salamon

    Full Text Available In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI / magnetic resonance imaging (MRI road map approach and an MPI-guided approach using a blood pool tracer.A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4 was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography.Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide.4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  4. The predictive value of additional late blood pool imaging to the three-phase bone scan in the diagnosis of reflex sympathetic dystrophy in hemiplegic patients.

    Science.gov (United States)

    Okudan, Berna; Celik, Canan; Serttas, Seyfi; Ozgirgin, Neşe

    2005-12-01

    Reflex sympathetic dystrophy (RSD) is a relative common sequel after hemiplegia. The diagnosis of RSD in hemiplegic patients presents difficult clinical problems, as the symptoms and signs of RSD are not specific and RSD may be due to reasons other than hemiplegia. Bone scintigraphy has been routinely used for the diagnosis of RSD; however, the optimal acquisition protocols, diagnostic patterns and the utility of quantitation are controversial. This prospective study was conducted to demonstrate the higher predictive value of an additional late blood pool image to the three-phase bone scan compared to the regular three-phase bone scans in RSD patients associated with hemiplegia. Thirty-four RSD patients were enrolled into the study. Bone scans according to the new protocol were obtained for all patients. Those patients with either negative or positive bone scans with no evidence of RSD were followed for 6 months. The patients had positive bone scan findings and were symptomatic at the time of the study. Of these, seven patients (58.3%) subsequently became symptomatic and five patients (41.7%) remained asymptomatic at 6 months. None of the patients with negative bone scans had symptoms of RSD on presentation except one case. We conclude that the addition of a late blood pool image increases the predictive value and has an impact on initiating early treatment in asymptomatic patients.

  5. Parametric tomography of the cardiac blood pool

    International Nuclear Information System (INIS)

    Meyer, M.; Schwartz, K.D.

    1990-01-01

    In nuclear cardiology image processing is performed usually in 3 of 4 dimensions. ECG-gated SPECT (GSPECT) would make it possible to obtain all 4 dimensions of space and time during one examination, but its duration as well as radiation dose is limited resulting in a low signal-to-noise ratio. Sensitive feature extractions from the amount of data are necessary, e.g. Fourier filtering or extracting isovolumetric intervals. The relatively large amount of calculations and storage requirements often handicaps tomographic ventriculography because a high number of sections have to be processed and the temporal resolution is limited. A new list-mode oriented tomographic algorithm demands less storage and fewer calculations: The Fourier coefficient extraction and the filtered back projection, both of which are linear operations, could be interchanged in the case of thoracic SPECT. The feature extraction algorithm process internal list-mode heart cycles for discrimination of invalid cycles, for end-diastolic and end-systolic synthesis as well as for Fourier analysis of the first harmonic in 10 ms steps. Reconstruction operations are applied also to modified distribution matrices of Fourier coefficients. By only processing 4 spatial matrix sequences (end-diastolic and end-systolic images, amplitude and phase values) parametric tomography becomes practicable and could be also performed by a minicomputer with 64 KByte memory in addition to the possibilities of the planar left ventricular gated imaging. If there are 3 or more processors available a complete feature extraction on-the-fly will be possible. The numerical algorithms were tested with respect to stable reconstructions by phantoms. First results of a patient examination are used to explore effective display techniques, and preliminary modes are demonstrated. It is the purpose of this study to obtain additional information about the gated planar cardiac blood pool imaging in the field of SPECT. (author)

  6. In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist

    Science.gov (United States)

    Kaul, Michael Gerhard; Mummert, Tobias; Jung, Caroline; Salamon, Johannes; Khandhar, Amit P.; Ferguson, R. Matthew; Kemp, Scott J.; Ittrich, Harald; Krishnan, Kannan M.; Adam, Gerhard; Knopp, Tobias

    2017-05-01

    Optimizing tracers for individual imaging techniques is an active field of research. The purpose of this study was to perform in vitro and in vivo magnetic particle imaging (MPI) measurements using a new monodisperse and size-optimized tracer, LS-008, and to compare it with the performance of Resovist, the standard MPI tracer. Magnetic particle spectroscopy (MPS) and in vitro MPI measurements were performed in concerns of concentration and amount of tracer in a phantom. In vivo studies were carried out in healthy FVB mice. The first group (n  =  3) received 60 µl LS-008 (87 mM) and the second (n  =  3) diluted Resovist of the same concentration and volume. Tracer injections were performed with a syringe pump during a dynamic MPI scan. For anatomic referencing MRI was applied beforehand of the MPI measurements. Summing up MPS examinations and in vitro MPI experiments, LS-008 showed better sensitivity and spatial resolution than Resovist. In vivo both tracers can visualize the propagation of the bolus through the inferior vena cava. MPI with LS-008 did show less temporal fluctuation artifacts and the pulsation of blood due to respiratory and cardiac cycle was detectable. With LS-008 the aorta was distinguishable from the caval vein while with Resovist this failed. A liver vessel and a vessel structure leading cranially could only be observed with LS-008 and not with Resovist. Beside these structural advantages both tracers showed very different blood half-life. For LS-008 we found 88 min. Resovist did show a fast liver accumulation and a half-life of 13 min. Only with LS-008 the perfusion fraction in liver and kidney was measureable. MPI for angiography can be significantly improved by applying more effective tracers. LS-008 shows a clear improvement concerning the delineation while resolving a larger number of vessels in comparison to Resovist. Therefore, in aspects of quality and quantity LS-008 is clearly favorable for angiographic and

  7. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee [Chonbuk National University Medical School, Chonju (Korea, Republic of)

    2005-02-15

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera.

  8. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    International Nuclear Information System (INIS)

    Sohn, Myung Hee

    2005-01-01

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera

  9. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    Directory of Open Access Journals (Sweden)

    Stefan Hindel

    Full Text Available The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles

  10. Nonstationary temporal Wiener filtering of gated blood pool studies

    International Nuclear Information System (INIS)

    King, M.A.; Miller, T.R.; Doherty, P.W.; Bianco, J.A.

    1985-01-01

    Temporal filtering of dynamic images can significantly improve the image quality of gated blood pool (GBP) studies and serves as a necessary preprocessing step in the formation of cardiac functional images based on derivatives of pixel time activity curves. Generally, either linear combination of the frames, or a simple frequency domain low pass filter have been employed. The work described in this paper introduces the Wiener temporal filter which adjusts to match the temporal characteristic of the image at each pixel. For temporal data degraded by signal-dependent Poisson noise, the frequency domain form of the filter is presented. Use of nonstationary temporal Wiener filtering was found to improve the quality of cines formed from GBP studies and yielded better separation of cardiac from non-cardiac regions in functional images the peak ejection and filling rates

  11. Radiosynoviorthesis in hemophilic arthropathy: pathologic blood pool imaging on pre-therapeutic bone scintigraphy is not a predictor of treatment success

    Energy Technology Data Exchange (ETDEWEB)

    Sabet, Amir [University Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany); University Hospital, Department of Nuclear Medicine, Bonn (Germany); Strauss, Andreas Christian; Schmolders, Jan; Bornemann, Rahel; Pennekamp, Peter Hans [University of Bonn, Department of Orthopaedics and Trauma Surgery, Bonn (Germany); Sabet, Amin; Biersack, Hans Juergen [University Hospital, Department of Nuclear Medicine, Bonn (Germany); Oldenburg, Johannes [University of Bonn, Department of Experimental Hematology and Transfusion Medicine, Bonn (Germany); Ezziddin, Samer [University Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany); Saarland University, Department of Nuclear Medicine, Homburg (Germany)

    2017-03-15

    Increased articular {sup 99m}Tc MDP uptake on blood pool imaging (BPI) of patients with rheumatologic conditions is indicative of active inflammatory changes, and has been suggested as a strong predictor of response to radiosynoviorthesis (RSO). In this study, we aimed to assess the value of pretreatment BPI positivity (i.e. scintigraphic-apparent hyperemia) for successful RSO in hemophilic arthropathy. Thirty-four male patients with painful hemophilic arthropathy underwent RSO after failure of conservative treatment. Treated joints comprised the knee in eight, elbow in five, and ankle in 21 patients. Pretreatment triple-phase bone scintigraphy showed hyperemic joints (pathologic BPI) in 17 patients, whereas 17 patients had no increased tracer uptake on BPI. Response to RSO was evaluated 6 months post-treatment by measuring changes in intensity of arthralgia according to the visual analog scale (VAS), bleeding frequency, and range of motion. The association between hyperemia (pathologic BPI) and treatment outcome was examined using nonparametric tests for independent samples. Clinically evident pain relief occurred in 26 patients (76.5 %), and the mean VAS decreased from 7.7 ± 1.1 to 4.6 ± 2.7 (p < 0.001). Joint bleeding frequency (hemarthrosis) decreased from 4.5 ± 0.6 to 2.1 ± 0.4 during the first 6 months after RSO (p < 0.001). For both parameters (pain relief and bleeding frequency), patients experienced a similar benefit from RSO regardless of pretreatment BPI: arthralgia (p = 0.312) and frequency of hemarthrosis (p = 0.396). No significant improvement was observed for range of motion, but it was significantly more restricted in hyperemic joints both before (p = 0.036) and after treatment (p = 0.022). Hemophilic arthropathy can be effectively treated with RSO regardless of pre-therapeutic BPI. Patients in whom articular hyperemia is not detectable by scintigraphy may have similar (outstanding) outcomes, and thus should not be excluded from treatment. (orig.)

  12. Clinical usefullness of ECG-triggered single photon emission comuter tomography of blood-pool

    International Nuclear Information System (INIS)

    Eilles, Chr.; Boerner, W.; Strauss, P.; Gerhards, W.; Reiners, Ch.

    1982-01-01

    ECT allows direct measurement of the volume of an organ and imaging without disturbing background-superposition. This makes ECT to an useful instrument for ECG-gated blood-pool imaging. Acquisition is made after the injection of 25 mCi Tc-99m HSA with a rotating Anger-Camera-System. ECG-gated imaging is done for each projection; herewith 50-70 cycles per projection are added according to the phase of the heart-cycle. Transversal-Sections of the heart are reconstructed with filtered-back-projection. For each slice a representative cycle, consisting of 10-16 frames, is computed. As shown by our group before a good quality of the reconstructed images can be obtained. Comparison is made with the results of the ECG-gated blood-pool-ECT, the results of the conventional blood-pool-studies and with the results of Laevo-Cardiography. (Author)

  13. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    Tomographic multi-gated blood pool scintigraphy (TMUGA) is a widely available method which permits simultaneous assessment of right and left ventricular ejection fractions. However, the widespread clinical use of this technique is impeded by the lack of segmentation methods dedicated to an automatic analysis of ventricular activities. In this study we evaluated how a watershed algorithm succeeds in providing semi-automatic segmentation of ventricular activities in order to measure right and left ejection fractions by TMUGA. The left ejection fractions of 30 patients were evaluated both with TMUGA and with planar multi-gated blood pool scintigraphy (PMUGA). Likewise, the right ejection fractions of 25 patients were evaluated with first-pass scintigraphy (FP) and with TMUGA. The watershed algorithm was applied to the reconstructed slices in order to group together the voxels whose activity came from one specific cardiac cavity. First, the results of the watershed algorithm were compared with manual drawing around left and right ventricles. Left ejection fractions evaluated by TMUGA with the watershed procedure were not significantly different (p=0.30) from manual outlines whereas a small but significant difference was found for right ejection fractions (p=0.004). Then right and left ejection fractions evaluated by TMUGA (with the semi-automatic segmentation procedure) were compared with the results obtained by FP or PMUGA. Left ventricular ejection fractions evaluated by TMUGA showed an excellent correlation with those evaluated by PMUGA (r=0.93; SEE=5.93%; slope=0.99; intercept = 4.17%). The measurements of these ejection fractions were significantly higher with TMUGA than with PMUGA (P<0.01). The interoperator variability for the measurement of left ejection fractions by TMUGA was 4.6%. Right ventricular ejection fractions evaluated by TMUGA showed a good correlation with those evaluated by FP (r = 0.81; SEE = 6.68%; slope = 1.00; intercept = 0.85%) and were not

  14. Magnetic resonance angiography with blood-pool contrast agents: future applications

    International Nuclear Information System (INIS)

    Fink, C.; Goyen, M.; Lotz, J.

    2007-01-01

    Blood pool agents remain in the intravascular space for a longer time period. Therefore the optimal imaging window for vascular structures is widened to about 30 minutes. Gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany) is the first blood-pool contrast agent approved in Europe for contrast-enhanced magnetic resonance angiography (MRA) of vessels in the abdomen, pelvis and lower extremity in adults. Other possible applications of blood-pool agents are now being considered, such as assessment of venous thromboembolism, coronary artery disease or sinus venous thrombosis. Perfusion MR imaging holds promise for detecting lung perfusion defects with higher spatial resolution and reduced scan time compared with radionuclide scintigraphy. In coronary artery disease, blood-pool agents enable a substantial increase in the quality of coronary artery imaging. Quantitative myocardial perfusion and myocardial viability seem to be possible, although modifications in protocols and sequence design are necessary for optimal results. Other novel applications of blood-pool agents include monitoring of inflammatory changes in systemic lupus erythematosus and evaluation of tumour invasion into lymph nodes and more reliable assessment of cerebral venous and sinus thrombosis. (orig.)

  15. Clinical comparison of cardiac blood pool visualization with technetium-99m red blood cells labeled in vivo and with technetium-99m human serum albumin

    International Nuclear Information System (INIS)

    Thrall, J.H.; Freitas, J.E.; Swanson, D.; Rogers, W.L.; Clare, J.M.; Brown, M.L.; Pitt, B.

    1978-01-01

    Technetium-99m red blood cells (Tc-RBC) labeled by an in vivo technique were compared with two preparations of Tc-99m human serum albumin (HSA) for cardiac blood-pool imaging. Relative distribution of the tracers was analyzed on end-diastolic frames of gated blood-pool studies and on whole-body (head to mid-thigh) anterior pinhole images. The Tc-RBC demonstrated greater relative percentage localization in the cardiac blood pool, higher target-to-background ratios in the left ventricle, and less liver concentration. For cardiac blood-pool imaging, Tc-RBC labeled by the in vivo approach appears to be superior to the two Tc-HSA preparations studied

  16. Detection of soft tissue pathology on the blood pool phase of bone scans

    International Nuclear Information System (INIS)

    Raimondo, A.J.; Turner, H.A.; Kitchener, M.I.

    1999-01-01

    Full text: It is important to optimize information obtained from isotope bone scanning in musculoskeletal imaging. Although important at all times, it is especially imperative in the current climate of health services rationalization, capping of imaging expenditure and the promotion of newer modalities that are increasingly versatile and sensitive for imaging the musculoskeletal system. Careful attention must be paid to the blood flow and blood pool images, to visualize soft tissue as well as bony pathology. A series of cases and images will be presented that demonstrated blood pool pathology that was not appreciated on delayed imaging, or where reliance only on the delayed images would have led to an incorrect diagnosis. These include the detection of tendonitis, tenosynovitis, bursitis, muscle tears and soft tissue neoplasms, including neuromas. In cases where the bone scan cannot provide a definitive diagnosis, it will at least direct the referring clinician to the most appropriate confirmatory diagnostic imaging modality, thus reinforcing the value that isotope imaging provides in musculoskeletal medicine

  17. Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a single injection of a blood pool contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Hansch, Andreas; Neumann, Steffi; Baltzer, Pascal; Waginger, Matthias; Kaiser, Werner A.; Mentzel, Hans-Joachim [Friedrich-Schiller-University Jena, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Betge, Stefan; Poehlmann, Gunther [Friedrich-Schiller-University Jena, Department of Internal Medicine I, Jena (Germany); Pfeil, Alexander; Wolf, Gunter [Friedrich-Schiller-University Jena, Department of Internal Medicine III, Jena (Germany); Boettcher, Joachim [SRH Klinikum Gera, Institute of Diagnostic and Interventional Radiology, Gera (Germany)

    2011-02-15

    Agreement rate between magnetic resonance imaging (MRI) and Doppler ultrasound (DUS) for the detection of deep vein thrombosis (DVT) in the lower extremities was attempted by using the intravascular MRI contrast agent gadofosveset trisodium. The potential of this method to detect pulmonary embolism (PE) was also evaluated. Forty-three consecutive inpatients with ultrasound-confirmed DVT but no clinical signs of PE were prospectively enrolled in this feasibility study. MRI was performed after a single injection of gadofosveset trisodium. The pulmonary arteries were imaged using a 3D Fast Low Angle Shot (FLASH) gradient recalled echo sequence. Additionally, pulmonary arteries, abdominal veins, pelvic and leg veins were imaged using a fat-suppressed 3D gradient echo Volume Interpolated Breath-hold Examination (VIBE FS). Gadofosveset trisodium-enhanced MRI detected more thrombi in the pelvic region, upper leg and lower leg than the initial DUS. In addition, PE was detected in 16 of the 43 DVT patients (37%). This study shows the feasibility of a combined protocol for the MRI diagnosis of DVT and PE using gadofosveset trisodium. This procedure is not only more sensitive in detecting DVT compared to standard DUS, but is also able to detect PE in asymptomatic patients. (orig.)

  18. Dried blood spots of pooled samples for RHD gene screening in blood donors of mixed ancestry.

    Science.gov (United States)

    Silva-Malta, M C F; Araujo, N C Fidélis; Vieira, O V Neves; Schmidt, L Cayres; Gonçalves, P de Cassia; Martins, M Lobato

    2015-10-01

    In this study, we present a strategy for RHD gene screening based on real-time polymerase chain reaction (PCR) using dried blood spots of pooled samples. Molecular analysis of blood donors may be used to detect RHD variants among the presumed D-negative individuals. RHD genotyping using pooled samples is a strategy to test a large number of samples at a more reasonable cost. RHD gene detection based on real-time PCR using dried blood spots of pooled samples was standardised and used to evaluate 1550 Brazilian blood donors phenotyped as RhD-negative. Positive results were re-evaluated by retesting single samples using real-time PCR and conventional multiplex PCR to amplify five RHD-specific exons. PCR-sequence-specific primers was used to amplify RHDψ allele. We devised a strategy for RHD gene screening using dried blood spots of five pooled samples. Among 1550 serologically D-negative blood donors, 58 (3.74%) had the RHD gene. The non-functional RHDψ allele was detected in 47 samples (3.02%). The present method is a promising strategy to detect the RHD gene among presumed RhD-negative blood donors, particularly for populations with African ancestry. © 2015 British Blood Transfusion Society.

  19. Gated blood pool studies with a single probe - clinical validity

    International Nuclear Information System (INIS)

    Loesel, E.; Hoffmann, G.

    1981-01-01

    The global volume alterations of the heart can be estimated non-invasively by means of the radiocardiographic function analysis developed by Hoffmann and Kleine. Since the failing heart with its functional disturbances demonstrates a pathological volume behaviour under physical exercise, it is possible to use these characteristics to differentiate between the intact heart and the failing heart by registration of the global volume alterations. The gated blood pool technique combined with the registration of the intraventricular pressure pulse by means of a Swan-Ganz flow-directed catheter enables demonstration of ventricular stroke work as a pressure-volume loop (work diagram). Its shape indicates whether the ventricle has to perform mainly pressure work or volume work. Myocardial failure is altering the basic conditions of the heart. The work diagram of the failing heart is significantly different from that of the intact human heart. It is shifted in its pressure-volume coordinates according to an increase of EDV and ESV and the rise of the filling pressure. Case demonstrations reveal the global volume behaviour of the heart under varying conditions: resting and physical exercise, drug influence on the intact and failing heart. (orig.) [de

  20. Combined respiratory and cardiac triggering improves blood pool contrast-enhanced pediatric cardiovascular MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Newman, Beverley; Chan, Frandics P.; Alley, Marcus T.

    2011-01-01

    Contrast-enhanced cardiac MRA suffers from cardiac motion artifacts and often requires a breath-hold. This work develops and evaluates a blood pool contrast-enhanced combined respiratory- and ECG-triggered MRA method. An SPGR sequence was modified to enable combined cardiac and respiratory triggering on a 1.5-T scanner. Twenty-three consecutive children referred for pediatric heart disease receiving gadofosveset were recruited in HIPAA-compliant fashion with IRB approval and informed consent. Children underwent standard non-triggered contrast-enhanced MRA with or without suspended respiration. Additionally, a free-breathing-triggered MRA was acquired. Triggered and non-triggered studies were presented in blinded random order independently to two radiologists twice. Anatomical structure delineation was graded for each triggered and non-triggered acquisition and the visual quality on triggered MRA was compared directly to that on non-triggered MRA. Triggered images received higher scores from each radiologist for all anatomical structures on each of the two reading sessions (Wilcoxon rank sum test, P < 0.05). In direct comparison, triggered images were preferred over non-triggered images for delineating cardiac structures, with most comparisons reaching statistical significance (binomial test, P < 0.05). Combined cardiac and respiratory triggering, enabled by a blood pool contrast agent, improves delineation of most anatomical structures in pediatric cardiovascular MRA. (orig.)

  1. Evaluation of portable blood glucose meters using canine and feline pooled blood samples.

    Science.gov (United States)

    Mori, A; Oda, H; Onozawa, E; Shono, S; Takahashi, T; Yamashita, S; Fujimoto, H; Sako, T

    2016-12-01

    This study evaluated the accuracy and reproducibility of a human portable blood glucose meter (PBGM) for canine and feline whole blood. Reference plasma glucose values (RPGV) were concurrently measured using glucose oxidation methods. Fifteen healthy dogs and 6 healthy cats were used for blood sampling. Blood glucose concentrations and hematocrits were adjusted using pooled blood samples for our targeted values. A positive correlation between the PBGM and RPGV was found for both dogs (y = 0.877, x = -24.38, r = 0.9982, n = 73) and cats (y = 1.048, x = -27.06, r = 0.9984, n = 69). Acceptable results were obtained in error grid analysis between PBGM and RPGV in both dogs and cats; 100% of these results were within zones A and B. Following ISO recommendations, a PBGM is considered accurate if 95% of the measurements are within ± 15 mg/dl of the RPGV when the glucose concentration is cats (39%, 27 of 69 cats). Blood samples with high hematocrits induced lower whole blood glucose values measured by the PBGM than RPGV under hypoglycemic, normoglycemic, and hyperglycemic conditions in both dogs and cats. Therefore, this device is not clinically useful in dogs and cats. New PBGMs which automatically compensate for the hematocrit should be developed in veterinary practice.

  2. ECG-gated blood pool tomography in the determination of left ventricular volume, ejection fraction, and wall motion

    International Nuclear Information System (INIS)

    Underwood, S.R.; Ell, P.J.; Jarritt, P.H.; Emanuel, R.W.; Swanton, R.H.

    1984-01-01

    ECG-gated blood pool tomography promises to provide a ''gold standard'' for noninvasive measurement of left ventricular volume, ejection fraction, and wall motion. This study compares these measurements with those from planar radionuclide imaging and contrast ventriculography. End diastolic and end systolic blood pool images were acquired tomographically using an IGE400A rotating gamma camera and Star computer, and slices were reconstructed orthogonal to the long axis of the heart. Left ventricular volume was determined by summing the areas of the slices, and wall motion was determined by comparison of end diastolic and end systolic contours. In phantom experiments this provided an accurate measurement of volume (r=0.98). In 32 subjects who were either normal or who had coronary artery disease left ventricular volume (r=0.83) and ejection fraction (r=0.89) correlated well with those using a counts based planar technique. In 16 of 18 subjects who underwent right anterior oblique X-ray contrast ventriculography, tomographic wall motion agreed for anterior, apical, and inferior walls, but abnormal septal motion which was not apparent by contrast ventriculography, was seen in 12 subjects tomographically. All 12 had disease of the left anterior descending coronary artery and might have been expected to have abnormal septal motion. ECG-gated blood pool tomography can thus determine left ventricular volume and ejection fraction accurately, and provides a global description of wall motion in a way that is not possible from any single planar image

  3. Whole-body magnetic resonance angiography with blood-pool agents

    International Nuclear Information System (INIS)

    Kramer, H.; Morana, G.

    2007-01-01

    Although often asymptomatic, peripheral arterial disease (PAD) is associated with significant morbidity in a large proportion of patients. Atherosclerosis is the underlying pathology in many instances, involving the whole arterial tree. Whole-body magnetic resonance angiography (MRA) permits rapid, non-invasive and accurate evaluation of the entire vascular system and can be used for both diagnostic purposes and monitoring of vascular involvement in diseases such as diabetes, Marfan's syndrome and Takayasu arteritis. MRA has been used successfully in the identification of high-grade stenosis in PAD, abnormalities of the ileocaval veins and carotid plaque imaging. Carotid disease is significantly correlated with severe coronary artery disease and renal artery atherosclerosis. Symptomatic lesions in one vascular bed are often related to additional asymptomatic atherosclerotic lesions in other vascular regions. MRA may be advantageous over computed tomographic angiography because it can be performed with contrast media virtually devoid of serious toxicity and without utilization of ionizing radiation. Display of the entire arterial vasculature can be achieved in < 90 s, with excellent sensitivity and specificity. Recent technological advances, such as parallel imaging and the implementation of dedicated matrix coils, have further increased image quality, and in combination with the blood-pool contrast agents, such as gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany), extended imaging time, higher spatial resolution and larger anatomical coverage can be achieved. (orig.)

  4. Whole-body magnetic resonance angiography with blood-pool agents

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, H. [Inst. for Clinical Radiology, Univ. Hospital Munich, Munich (Germany); Morana, G. [Radiological Dept., Hospital Ca' Foncello, Treviso (Italy)

    2007-03-15

    Although often asymptomatic, peripheral arterial disease (PAD) is associated with significant morbidity in a large proportion of patients. Atherosclerosis is the underlying pathology in many instances, involving the whole arterial tree. Whole-body magnetic resonance angiography (MRA) permits rapid, non-invasive and accurate evaluation of the entire vascular system and can be used for both diagnostic purposes and monitoring of vascular involvement in diseases such as diabetes, Marfan's syndrome and Takayasu arteritis. MRA has been used successfully in the identification of high-grade stenosis in PAD, abnormalities of the ileocaval veins and carotid plaque imaging. Carotid disease is significantly correlated with severe coronary artery disease and renal artery atherosclerosis. Symptomatic lesions in one vascular bed are often related to additional asymptomatic atherosclerotic lesions in other vascular regions. MRA may be advantageous over computed tomographic angiography because it can be performed with contrast media virtually devoid of serious toxicity and without utilization of ionizing radiation. Display of the entire arterial vasculature can be achieved in < 90 s, with excellent sensitivity and specificity. Recent technological advances, such as parallel imaging and the implementation of dedicated matrix coils, have further increased image quality, and in combination with the blood-pool contrast agents, such as gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany), extended imaging time, higher spatial resolution and larger anatomical coverage can be achieved. (orig.)

  5. [Reference values for the blood coagulation tests in Mexico: usefulness of the pooled plasma from blood donors].

    Science.gov (United States)

    Calzada-Contreras, Adriana; Moreno-Hernández, Manuel; Castillo-Torres, Noemi Patricia; Souto-Rosillo, Guadalupe; Hernández-Juárez, Jesús; Ricardo-Moreno, María Tania; Sánchez-Fernández, Maria Guadalupe de Jesús; García-González, América; Majluf-Cruz, Abraham

    2012-01-01

    The blood coagulation system maintains the blood in a liquid state and bleeding and thrombosis are the manifestations of its malfunction. Blood coagulation laboratory evaluates the physiology of this system. To establish both, the reference values for several tests performed at the blood coagulation laboratory as well as the utility of the pooled plasma to perform these assays. MATERIAL AND: In this descriptive, cross-sectional, randomized study, we collected plasma from Mexican Mestizos. Each pooled plasma was prepared with the plasma from at least 20 blood donors. We performed screening and special tests and the Levey-Jennings graphs were built and interpreted after each pass. Results of the tests were analyzed and their distribution was established using the Kolmogorov-Smirnov test. To establish the reference values we used 95% confidence intervals. We collected 72 pooled plasmas. The distribution for PT, APTT, and TT tests was abnormal. Although the PT test showed a bimodal distribution it was normal for factor VII. The reference values for the hemostatic, anticoagulant, and fibrinolytic factors were different from those suggested by the manufacturers. We established the reference values for the blood coagulation tests in the adult Mexican population. We have shown that the pooled plasma must be used for the screening tests. We suggest that each clinical laboratory should establish its own reference values (at least for the screening tests). To reach this objective, we encourage the use of the pooled plasma.

  6. Slower lower limb blood pooling in young women with orthostatic intolerance.

    Science.gov (United States)

    Lindenberger, Marcus; Länne, Toste

    2015-01-01

    What is the central question of this study? Orthostatic stress is mostly caused by venous blood pooling in the lower limbs. Venous distension elicits sympathetic responses, and increased distension speed enhances the cardiovascular response. We examine whether lower limb blood pooling rate during lower body negative pressure is linked to orthostatic intolerance. What is the main finding and its importance? A similar amount of blood was pooled in the lower limb, but at a slower rate in women who developed signs of orthostatic intolerance. The difference in blood pooling rate increased with orthostatic stress and was most prominent at a presyncope-inducing level of lower body negative pressure. The findings have implications for the pathophysiology as well as treatment of orthostatic intolerance. Vasovagal syncope is common in young women, but its aetiology remains elusive. Orthostatic stress-induced lower limb blood pooling is linked with central hypovolaemia and baroreceptor unloading. Venous distension in the arm elicits a sympathetic response, which is enhanced with more rapid distension. Our aim was to study both the amount and the speed of lower limb pooling during orthostatic stress and its effects on compensatory mechanisms to maintain cardiovascular homeostasis in women with orthostatic intolerance. Twenty-seven healthy women, aged 20-27 years, were subjected to a lower body negative pressure (LBNP) of 11-44 mmHg. Five women developed symptoms of vasovagal syncope (orthostatic intolerant) and were compared with the remaining women, who tolerated LBNP well (orthostatic tolerant). Lower limb blood pooling, blood flow and compensatory mobilization of venous capacitance blood were measured. Lower body negative pressure induced equal lower limb blood pooling in both groups, but at a slower rate in orthostatic intolerant women (e.g. time to 50% of total blood pooling, orthostatic intolerant 44 ± 7 s and orthostatic tolerant 26 ± 2 s; P intolerant women (P = 0

  7. Blood pooling in extrathoracic veins after glossopharyngeal insufflation

    DEFF Research Database (Denmark)

    Mijacika, Tanja; Frestad, Daria; Kyhl, Kasper

    2017-01-01

    Purpose: Trained breath-hold divers hyperinflate their lungs by glossopharyngeal insufflation (GPI) to prolong submersion time and withstand lung collapse at depths. Pulmonary hyperinflation leads to profound hemodynamic changes. Methods: Thirteen divers performed preparatory breath-holds followed...... fluid extravasation. Conclusions: GPI leads to heart and pulmonary vessel compression, resulting in redistribution of blood to extrathoracic capacitance veins proximal to venous valves. This is partially reversed by the onset of involuntary breathing movements....

  8. Effect of solvent/detergent-treated pooled plasma on fibrinolysis in reconstituted whole blood.

    Science.gov (United States)

    Saadah, Nicholas H; van der Meer, Pieter F; Brinkman, Herm Jan M; de Korte, Dirk; Bontekoe, Ido J; Korsten, Herbert H; Middelburg, Rutger A; van der Bom, Johanna G; Schipperus, Martin R

    2017-10-01

    Hyperfibrinolysis has been observed in patients heavily transfused with solvent/detergent-treated pooled plasma (S/D plasma). We compared coagulation and fibrinolytic variables in blood containing S/D plasma with blood containing fresh-frozen plasma (FFP), with and without α2-antiplasmin or tranexamic acid (TXA) supplementation. Whole blood samples were reconstituted from red blood cells, platelet (PLT) concentrates, and varying mixtures of FFP and S/D plasma. Hematocrit and PLT count of reconstituted whole blood samples were varied. For a subset of runs, α2-antiplasmin or TXA was added to S/D plasma whole blood samples. Thromboelastography (TEG) analysis was performed to assess 50% clot lysis time (CLT 50% ), maximum amplitude (MA), and initial clotting time (R-time). The change in CLT 50% of whole blood as the plasma compartment transitions from FFP to S/D plasma was -52% (95% confidence interval [CI], -60% to -45%; p plasma in whole blood. α2-Antiplasmin and TXA restored clot lysis time in S/D plasma whole blood. Whole blood with S/D plasma has shorter clot lysis times in vitro compared to whole blood with FFP. α2-Antiplasmin and TXA restore clot lysis time of S/D plasma whole blood to that of FFP whole blood. Clinicians should be aware of the decreased clot lysis time associated with S/D plasma transfusion. © 2017 AABB.

  9. Frequency characteristics of temporal filters used in ECG gated blood pool scintigraphy

    International Nuclear Information System (INIS)

    Futamura, Yoshihiro; Furuta, Toshiya; Shimokata, Tatsuyuki; Sakakura, Kazuyoshi; Sakurai, Junichi; Senda, Minoru

    1984-01-01

    The purpose of this study is to assess the frequency characteristics of several temporal filters used in ECG gated blood pool scintigraphy and to apply the temporal filters to the image processing. The three following filters were analyzed; (1) X'sub(n) = 1/4.Xsub(n-1) + 1/2.Xsub(n) + 1/4.Xsub(n+1) (2) X'sub(n) = 1/10.Xsub(n-2) + 1/5.Xsub(n-1) + 2/5.Xsub(n) + 1/5.Xsub(n+1) + 1/10.Xsub(n+2) (3) f(x) = a 0 + Σsub(m=1)sup(j)asub(m)sin(mx+αsub(m)) where X'n is the averaged pixel count of the n-th frame and Xn is a pixel count of n-th frame. The last equation is Fourier transformation. Sinusoidal waves were generated in the digital computer in order to assess the frequency characteristics of the filters. The sinusoidal waves were sampled by 3,200 Hz and one frame was created by one hundred sampling points. One cycle was composed of thirty two frames as usually used in the gated blood pool study. At the discrete sampling of the sinusoidal waves, the amplitude ratio of input to output signal was almost flat up to 3 Hz. But the ratio oscillated above 3 Hz. This oscillation was created by the discrete sampling and was regarded as the newly produced noise. By using the first filter, the amplitude ratio of input to output was almost flat up to 2 Hz. But above 3 Hz, the amplitude ratio was less than 1 and the cut-off frequency was 7 Hz. By using the second filter the amplitude ratio was already less than 1 at 1 Hz and the cut-off frequency was 5 Hz. By the third filter, the amplitude ratio was almost flat up to 5 Hz and then gradually decreased above 5 Hz. All filters damped the noises created by the discrete sampling of the sinusoidal waves. The third filter had the excellent frequency characteristics. The reasons were (1) the distortion of the output wave was small because of the flat amplitude ratio, and (2) the noises were eliminated by filtering with an abrupt high frequency cut-off. (J.P.N.)

  10. Frequency characteristics of temporal filters used in ECG gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Futamura, Yoshihiro; Furuta, Toshiya; Shimokata, Tatsuyuki; Sakakura, Kazuyoshi; Sakurai, Junichi; Senda, Minoru (Meitetsu Hospital, Nagoya (Japan))

    1984-07-01

    The purpose of this study is to assess the frequency characteristics of several temporal filters used in ECG gated blood pool scintigraphy and to apply the temporal filters to the image processing. The three following filters were analyzed; (1) X'sub(n) = 1/4.Xsub(n-1) + 1/2.Xsub(n) + 1/4.Xsub(n+1) (2) X'sub(n) = 1/10.Xsub(n-2) + 1/5.Xsub(n-1) + 2/5.Xsub(n) + 1/5.Xsub(n+1) + 1/10.Xsub(n+2) (3) f(x) = a/sub 0/ + ..sigma..sub(m=1)sup(j)asub(m)sin(mx+..cap alpha..sub(m)) where X'n is the averaged pixel count of the n-th frame and Xn is a pixel count of n-th frame. The last equation is Fourier transformation. Sinusoidal waves were generated in the digital computer in order to assess the frequency characteristics of the filters. The sinusoidal waves were sampled by 3,200 Hz and one frame was created by one hundred sampling points. One cycle was composed of thirty-two frames as usually used in the gated blood pool study. At the discrete sampling of the sinusoidal waves, the amplitude ratio of input to output signal was almost flat up to 3 Hz. But the ratio oscillated above 3 Hz. This oscillation was created by the discrete sampling and was regarded as the newly produced noise. By using the first filter, the amplitude ratio of input to output was almost flat up to 2 Hz. But above 3 Hz, the amplitude ratio was less than 1 and the cut-off frequency was 7 Hz. By using the second filter the amplitude ratio was already less than 1 at 1 Hz and the cut-off frequency was 5 Hz. By the third filter, the amplitude ratio was almost flat up to 5 Hz and then gradually decreased above 5 Hz. All filters damped the noises created by the discrete sampling of the sinusoidal waves. The third filter had the excellent frequency characteristics. The reasons were (1) the distortion of the output wave was small because of the flat amplitude ratio, and (2) the noises were eliminated by filtering with an abrupt high frequency cut-off.

  11. Abdominal blood pool scintigraphy in the management of acute or intermittent gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Kalff, V.; Kelly, M.J.; Dudley, F.; Metz, G.

    1983-01-01

    Gastrointestinal blood pool scintigraphy, using a modified in-vivo blood cell labelling technique with technetium-99, is a new, easily performed, non-invasive procedure. It is valuable in screening patients with acute or intermittent gastrointestinal blood loss in whom duodenoscopic and sigmoidoscopic findings are unhelpful. This paper reviews the value of this scintigraphic technique over the first eight months of its use in a major teaching hospital, and compares the results with other published data. If used and interpreted appropriately, scintigraphy is sensitive in detecting and localizing the bleeding site, and is very helpful in indicating the optimal timing of emergency contrast angiography

  12. Relaxivity of blood pool contrast agent depends on the host tissue as suggested by semianalytical simulations

    DEFF Research Database (Denmark)

    Jensen, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    Concentration of MRI contrast agents (CA) is commonly determined indirectly using their relaxation effect. In quantitative perfusion studies, the change in the relaxation following a bolus passage is converted into concentrations assuming identical relaxivities for tissue and blood. Simulations...... presented in this study demonstrate that the relaxivity of blood pool CA depends significantly on both the host tissue and the pulse sequence, in agreement with previous experiments. In particular, the relaxation effect of Gd-based CA in brain tissues is several-fold larger than in bulk blood. The results...

  13. Effect of pool length on blood lactate, heart rate, and velocity in swimming.

    Science.gov (United States)

    Keskinen, O P; Keskinen, K L; Mero, A A

    2007-05-01

    Exercise testing in water has been used to follow the progression of conditioning during regular training in swimmers. The present study examined the effects of pool length in eleven male swimmers on a set of 5 x 200-m freestyle swims with increasing speed from submaximal to maximal. Mean velocity of swimming, blood lactate and heart rate were examined in both 25-m and 50-m pools. Turning benefit as a marker for turning skill was measured separately by a underwater video system (speed difference between pre- and post-turning) during short all-out swims. Maximum force during swimming was measured in tethered swimming and explosive strength of leg extensor muscles was evaluated by a counter movement jump. The significantly higher (p=0.033 - 0.000) blood lactate values for the 50-m pool as compared to the 25-m pool were found at each point of swimming velocity versus blood lactate curve. The highest post-test lactate level was 7.36 +/- 1.47 mmol x l (-1) in the short course and 8.24 +/- 1.55 mmol x l (-1) (p=0.033) in the long course. The maximum swimming velocity was significantly greater (4.5 %) in the 25-m pool swimming (1.38 +/- 0.11 m x s (-1) vs. 1.32 +/- 0.12 m x s (-1); p=0.000). The heart rate values were significantly (p=0.020 - 0.000) lower in the short course than in the long course at all points of submaximal velocity with a mean difference of 7.3 +/- 0.7 bpm. Heart rate was equal (172 +/- 14 vs. 172 +/- 14 bpm) after the maximum swims in both short and long course. The turning benefit in the short maximum swim was 0.12 +/- 0.05 m x s (-1) (8.1 +/- 3.2 %), correlating positively with the difference in maximal swimming velocity between the short and long-pool swims (r = 0.59; p = 0.029), with the maximum force during tethered swimming (r=0.75; p=0.004) and with the vertical jumping height in the counter movement jump (r=0.55; p=0.039). We conclude that the pool length has a strong effect on blood lactate concentration and heart rate with greater swimming

  14. Evaluation of blood signal in cardiac MR imaging using ''black-blood'' technique

    International Nuclear Information System (INIS)

    Nakanishi, Tadashi; Yamada, Takayuki; Tamura, Akihisa; Miyasaka, Kenji; Kohata, Minako; Ono, Chiaki; Kajima, Toshio; Ito, Katsuhide

    1999-01-01

    Degradation of image quality encountered in cardiac imaging has been attributed to flowing blood signal in the ventricular cavity. To solve this problem, a sequence in which a pair of selective and non-selective inversion pulse in used for a preparation pulse, has been proposed. However, even with this sequence we frequently observed the signal in the blood pool caused by blood itself rather than blood flow. In this article, we investigated the characteristics of those signals. Five healthy normal volunteers and 13 patients with ischemic heart disease were scanned with a 1.5-tesla MR imager. Breath-hold ECG gated fast spin echo with the pair of inversion pulses was performed to obtain cardiac images with T 2 contrast. Typical blood signal appeared as inhomogeneous high intense band adjacent to inner surface of left ventricular apex. At ventricular base, no such signal was encountered even at akinetic myocardium in patients with old myocardial infarction. This signal was observed in all volunteers and 39% of patients. Decrease of TR resulting from tachycardia tended to reduce the blood signal in the left ventricular cavity. Thicker slice section and selective inversion pulse tended to increase the blood signal. Recognition of the signal is essential to differentiate true myocardial infarcts from blood signal, although bright blood imaging like gradient echo or thinner section can partly be helpful. (author)

  15. Radionuclide-determined change in pulmonary blood volume with exercise. Improved sensitivity of multigated blood-pool scanning in detecting coronary-artery disease

    International Nuclear Information System (INIS)

    Okada, R.D.; Pohost, G.M.; Kirshenbaum, H.D.; Kushner, F.G.; Boucher, C.A.; Block, P.C.; Strauss, H.W.

    1979-01-01

    To assess the clinical usefulness of radionuclide-determined changes in pulmonary blood volume in patients with or without substantial coronary-artery disease, we determined the ratio of pulmonary blood volume at rest as compared with that during exercise. We used multigated blood-pool images obtained at rest and during supine exercise to determine the blood-volume ratio in patients subsequently undergoing coronary arteriography for evaluation of chest pain. Exercise tests were performed by use of a submaximal-workload protocol, although all tests were limited according to each patient's symptoms. The mean exercise/rest pulmonary-blood-volume ratios were lower for persons without coronary-artery disease (0.94 +- 0.06 [S.D.], 10 patients) and for those with disease confined to the right coronary artery (0.99 +- 0.12, five patients), as compared with all others with coronary-artery disease (1.14 +- 0.15, 37 patients) (P < 0.01). A pulmonary-blood-volume ratio equal to or greater than 1.06 had a sensitivity of 79%. Patients with coronary-artery disease not confined to the right coronary artery usually show an increase in pulmonary blood volume during supine exercise. No such change occurs in persons without coronary-artery disease

  16. Ventricular function during the acute rejection of heterotopic transplanted heart: Gated blood pool studies

    International Nuclear Information System (INIS)

    Valette, H.; Bourguignon, M.H.; Desruennes, M.; Merlet, P.; Le Guludec, D.; Syrota, A.

    1991-01-01

    Twenty patients who had undergone a heterotopic heart transplant were studied prospectively to determine the relationship between rejection and ventricular dysfunction assessed from gated blood pool studies. A fully automated method for detecting ventricular edges was implemented; its success rate for the grafted left and right ventricles was 94% and 77%, respectively. The parameters, peak ejection and filling rates, were calculated pixel per pixel using a two-harmonic Fourier algorithm and then averaged over the ventricular region of interest. Peak filling and ejection rates were closely related with the severity of the rejection, while the left ventricular ejection fraction was not. Peak filling rates of both ventricles were the indices closely related to the presence of moderate rejection. Despite the low number of patients, these data suggested that gated blood pool derived indices of ventricular function are associated with ventricular dysfunction resulting from myocarditis rejection. Radionuclide ventriculography provides parametric data which are accurate and reliable for the diagnosis of rejection. (orig.)

  17. Alterations of the blood pool in the femoral head before and after renal transplantation

    International Nuclear Information System (INIS)

    Hamaguchi, Hiroyuki; Fujioka, Mikihiro; Inoue, Shigehiro; Shibatani, Masahiko; Kubo, Toshikazu; Kubota, Takao; Ushijima, Yo; Nishimura, Tsunehiko

    2003-01-01

    The pathogenesis of idiopathic osteonecrosis of the femoral head (ION) is thought to be an ischemic event. The purpose of this study is to investigate alterations of the blood pool in the femoral head before and after renal transplantation. After renal transplantation, all patients received the same immunosuppressive therapy: corticosteroids, cyclosporin-A, and azathioprine. We performed 3-phase bone scintigraphy on 16 renal allograft recipients within 1 week before renal transplantation, and between week 4 and 9 after renal transplantation. Regions of interest (ROI) were assigned bilaterally in the femoral head, diaphysis, and soft tissue. The head-to-diaphysis ratios (HD ratios) were then calculated. Idiopathic osteonecrosis of the femoral head occurred in 2 femoral heads of 1 patient. The HD ratio before renal transplantation (mean HD±SD, 1.52±0.30) and the HD ratio after renal transplantation (1.28±0.30) were significantly different (P=0.000024). The HD ratios before and after renal transplantation were significantly different, indicating that the administration of steroids diminished the blood pool in the femoral head. A low HD ratio before renal transplantation revealed a poor blood pool in the femoral head, which may be a risk factor for ION. (author)

  18. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  19. Gene expression changes in blood RNA after swimming in a chlorinated pool.

    Science.gov (United States)

    Salas, Lucas A; Font-Ribera, Laia; Bustamante, Mariona; Sumoy, Lauro; Grimalt, Joan O; Bonnin, Sarah; Aguilar, Maria; Mattlin, Heidi; Hummel, Manuela; Ferrer, Anna; Kogevinas, Manolis; Villanueva, Cristina M

    2017-08-01

    Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m 3 for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m 3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies. Copyright © 2017. Published by Elsevier B.V.

  20. Manage your blood sugar (image)

    Science.gov (United States)

    Checking your blood sugar levels often and writing down the results will tell you how well you are managing your diabetes so you ... possible. The best times to check your blood sugar are before meals and at bedtime. Your blood ...

  1. High-throughput, image-based screening of pooled genetic-variant libraries.

    Science.gov (United States)

    Emanuel, George; Moffitt, Jeffrey R; Zhuang, Xiaowei

    2017-12-01

    We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in individual cells. We achieve genotyping by introducing barcoded genetic variants into cells as pooled libraries and reading the barcodes out using massively multiplexed fluorescence in situ hybridization. To demonstrate the power of image-based pooled screening, we identified brighter and more photostable variants of the fluorescent protein YFAST among 60,000 variants.

  2. Influence of circulating antigen on blood pool activity of a radioiodinated monoclonal antibody

    International Nuclear Information System (INIS)

    Zalutsky, M.R.; Knapp, R.C.; Bast, R.C. Jr.

    1988-01-01

    Athymic mice with and without circulating CA 125 antigen were injected with 0.1-100 μg of 131 I-labeled OC 125 F(ab') 2 antibody fragment. Both the blood clearance of 131 I activity and the change in serum CA 125 were monitored over 24 h. Influence of CA 125 on blood pool activity could be avoided only at the 100 μg dose. In patient studies, circulating CA 125 levels decreased for the first 2 h after injection of OC 125 F(ab') 2 but generally returned to preinjection levels shortly thereafter. In vitro binding studies using the sera from patients injected with 131 I-labeled OC 125 F(ab') 2 suggest that circulating CA 125 could interfere with the tumor uptake of the labeled antibody. (author)

  3. Automatic measurements of local ventricular parameters using gated blood-pool emission tomography

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Caderas de Kerleau, C.; Rossi, M.

    2005-01-01

    This paper describes a new method designed to improve the accuracy of the assessment of systolic and diastolic parameters from noisy regional time-activity curves, both for the right and the left ventricle. First, we explain how it is possible to derive local time-activity curves from segmented gated-blood pool tomographic acquisitions. The new method is based on the computation of a suitable deformation of a reference time-activity-curve. This paper describes how this reference curve is transformed to approximate the acquired data with a smooth, noise-free time-activity curve from which relevant clinical parameters can be derived. One may remind and illustrate the main results dealing with the validation studies of this new method achieved on simulated data and by comparison with multi-harmonic reconstructions. Last, some clinical examples are proposed to illustrate the potentials of this method. The deformable model used in this paper provides accurate assessment of systolic (time of end systole, amplitude, peak ejection rate) or diastolic parameters (peak filling rate) both for planar and tomographic gated blood pool studies. Further clinical studies are now necessary to compare the results of this model with those achieved with usual multi-harmonic fits, and to evaluate its interest in the assessment of rhythmic heart diseases or in the prognosis of heart failure. (author)

  4. Hypertrophic cardiomyopathy. Evaluation by gated cardiac blood pool scanning. [/sup 99m/Tc tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, G.M.; Vignola, P.A.; McKusick, K.E.; Block, P.C.; Myers, G.S.; Walker, H.J.; Copen, D.L.; Dinsmore, T.E.

    1977-01-01

    The gated radionuclide cardiac blood pool scan (GCS) can be used to visualize the entire profile of the interventricular septum and left ventricular contraction. Twenty-two patients with hypertrophic cardiomyopathy, nine with valvular aortic stenosis and six normals, underwent echocardiography and GCS. All patients with hypertrophic cardiomyopathy had asymmetric septal hypertrophy and 14 of 22 had resting systolic anterior motion of the anterior leaflet of the mitral valve on echocardiogram. In eight patients with aortic stenosis with adequate echocardiograms, two had asymmetric septal hypertrophy and none had systolic anterior motion. The GCS demonstrated disproportionate upper septal thickening in 11; septal flattening in 16; cavity obliteration in 17; and a filling defect in the region of the left ventricular outflow tract in 16 of the 22 patients with hypertrophic cardiomyopathy. In the nine patients with valvular aortic stenosis, two demonstrated septal flattening, two cavity obliteration, two an outflow tract defect, and none disproportionate upper septal thickening. Both patients with cavity obliteration demonstrated asymmetric septal hypertrophy on echocardiogram. One normal control patient had septal flattening. Thus the gated cardiac blood pool scan provides an atraumatic technique for the evaluation of patients with hypertrophic cardiomyopathy which complements the echocardiogram.

  5. Comparison of blood pool and extracellular gadolinium chelate for functional MR evaluation of vascular thoracic outlet syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ruth P., E-mail: ruthplim74@gmail.com [New York University School of Medicine, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, 660 1st Avenue, New York, NY 10016 (United States); Austin Health, Department of Radiology, Heidelberg, Victoria 3084 (Australia); The University of Melbourne, School of Medicine, Parkville, Victoria 3010 (Australia); Bruno, Mary, E-mail: mary.bruno@nyumc.org [New York University School of Medicine, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, 660 1st Avenue, New York, NY 10016 (United States); Rosenkrantz, Andrew B., E-mail: Andrew.rosenkrantz@nyumc.org [New York University School of Medicine, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, 660 1st Avenue, New York, NY 10016 (United States); Kim, Danny C., E-mail: danny.kim@nyumc.org [New York University School of Medicine, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, 660 1st Avenue, New York, NY 10016 (United States); Mulholland, Thomas, E-mail: Thomas.mulholland@nyumc.org [New York University School of Medicine, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, 660 1st Avenue, New York, NY 10016 (United States); Kwon, Jane, E-mail: jane.kwon@nyumc.org [New York University School of Medicine, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, 660 1st Avenue, New York, NY 10016 (United States); Palfrey, Amy P., E-mail: amy.pastva10@stjohns.edu [St John' s University, Department of Psychology, 8000 Utopia Parkway, Jamaica-Queens, NY 11439 (United States); Ogedegbe, Olugbenga, E-mail: Olugbenga.Ogedegbe@nyumc.org [New York University School of Medicine, Clinical and Translational Science Institute, 227 E30th St, 8th Floor, New York, NY 10016 (United States)

    2014-07-15

    Objective: To compare performance of single-injection blood pool agent (gadofosveset trisodium, BPA) against dual-injection extracellular contrast (gadopentetate dimeglumine, ECA) for MRA/MRV in assessment of suspected vascular TOS. Materials and methods: Thirty-one patients referred for vascular TOS evaluation were assessed with BPA (n = 18) or ECA (n = 13) MRA/MRV in arm abduction and adduction. Images were retrospectively assessed for: image quality (1 = non-diagnostic, 5 = excellent), vessel contrast (1 = same signal as muscle, 4 = much brighter than muscle) and vascular pathology by two independent readers, with a separate experienced reader providing reference assessment of vascular pathology. Results: Median image quality was diagnostic or better (score ≥3) for ECA and BPA at all time points, with BPA image quality superior at abduction late (BPA 4.5, ECA 4, p = 0.042) and ECA image quality superior at adduction-early (BPA 4.5; ECA 4.0, p = 0.018). High qualitative vessel contrast (mean score ≥3) was observed at all time points with both BPA and ECA, with superior BPA vessel contrast at abduction-late (BPA 3.97 ± 0.12; ECA 3.73 ± 0.26, p = 0.007) and ECA at adduction-early (BPA 3.42 ± 0.52; ECA 3.96 ± 0.14, p < 0.001). Readers readily identified arterial and venous pathology with BPA, similar to ECA examinations. Conclusion: Single-injection BPA MRA/MRV for TOS evaluation demonstrated diagnostic image quality and high vessel contrast, similar to dual-injection ECA imaging, enabling identification of fixed and functional arterial and venous pathology.

  6. Influence of sample pool on interference pattern in defocused interferometric particle imaging.

    Science.gov (United States)

    Zhang, Hongxia; Zhou, Ye; Liu, Jing; Jia, Dagong; Liu, Tiegen

    2017-04-01

    Particles widely exist in various fields. In practical experiments, sometimes it is necessary to dissolve particles in water in a sample pool. This article proposes two typical layouts of the sample pool in defocused interferometric particle imaging (IPI). Layout I is the sample pool surface perpendicular to the incident light and layout II is the sample pool surface perpendicular to the scattered light. For layout I, the scattered light of the particles does not keep symmetric at the meridional and sagittal planes after being refracted by the sample pool surface, and elliptical interference patterns are formed at the defocused IPI image plane. But for layout II, the scattered light keeps symmetric after being refracted, and circular interference patterns are formed. Aimed at the two sample pool layouts, the ray-tracing software ZEMAX was used to simulate the spot shape of particles at different defocus distances. Furthermore, its effect on the ellipticity of the interference pattern with the tilt angle of the sample pool is analyzed. The relative error of the axis ratio for layout I does not exceed 9.2% at different defocus distances. The experimental results have good agreement with the theoretical analyses, and it indicates that layout II is more reasonable for the IPI system.

  7. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    Science.gov (United States)

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p 3D printers with good quality and accurate representation of the virtual 3D models. We recommend using BP segmentation with either MRA or bSSFP source datasets to create virtual 3D models for 3D printing. Desktop 3D printers can offer good quality printed models with accurate representation of anatomic detail.

  8. Assessment of myocardial perfusion abnormality and hibernating myocardium by gated blood pool and exercise-stress thallium tomographies after successful coronary angioplasty

    International Nuclear Information System (INIS)

    Hashimoto, Akiyoshi; Nakata, Tomoaki; Tsuchihashi, Kazufumi

    1993-01-01

    Cardiac function and myocardial perfusion were assessed by exercise-stress thallium SPECT and resting gated blood pool SPECT techniques before and after 47 successful coronary angioplasties. Thallium perfusion was analyzed visually and quantitatively in stress and resting studies. Left ventricular ejection fraction (LVEF) and peak filling rate (PFR) were calculated and regional wall motion was scored by amplitude and phase images in radionuclide planar and tomographic imagings. The thallium redistribution in delayed or resting SPECTs was more sensitive (87%) for detecting myocardial ischemia compared to symptoms (36%) and ECG changes (60%). An exercise capacity, LVEF, PFR, and the scores of perfusion and regional wall motion were improved significantly after coronary angioplasty. Stress thallium and gated blood pool SPECTs showed the improvements of myocardial perfusion in 159 (79%) of 201 segments and regional wall motion in 47 (51%) of 92 segments, respectively. These results suggest that the combined use of stress thallium SPECT, gated blood pool planar and SPECT techniques can contribute not only to the assessment of the efficacy of coronary angioplasty but also to detecting the mismatching of myocardial perfusion and contraction ('myocardial hibernation') in infarct-related myocardial lesions. (author)

  9. Left ventricular function assessed by multi-gated blood pool single photon emission computed tomography with [sup 99m]Tc

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Ken-ichi; Narita, Michihiro; Kurihara, Tadashi (Sumitomo Hospital, Osaka (Japan))

    1992-01-01

    To evaluate the usefulness of gated blood pool single photon emission computed tomography with [sup 99m]Tc (gated SPECT) for assessing left ventricular (LV) function, we performed gated SPECT in 2 normal subjects and 18 patients including 13 with ischemic heart disease, 3 with hypertrophic cardiomyopathy and 2 with dilated cardiomyopathy. LV end-diastolic volume (LVEDV), LV ejection fraction (LVEF) and regional wall motion obtained by gated SPECT were compared with the results of contrast left ventriculography (contrast LVG), echocardiography and planar multigated blood pool imaging (planar blood pool). After the patients' red blood cells were labelled with 30 mCi (1,110 MBq) [sup 99m]Tc in vivo, gated SPECT was performed in each of 32 projections through a 360 degree arc for each of the cardiac cycle divided into 16. From these images, the left ventricular vertical long-axis image, the horizontal long-axis and short-axis images were reconstructed. To calculate LVEDV, we used serial short-axis images which were composed of LV. To define LV and left atrial borders, we used amplitude images and cinematic displays of the vertical long-axis image. The level of the optimal cut for delineating the LV border was determined from the volume-cut-level-graph at each background activity, which was constructed by a phantom study. LV wall motion by gated SPECT was compared with the results of contrast LVG according to segmental analysis. LVEDV obtained by gated SPECT showed an excellent linear correlation with LVEDV calculated by echocardiography (r=0.98) and by contrast LVG (r=0.89). LVEF as determined by gated SPECT correlated well with the results obtained by the planar blood pool (r=0.94) and by contrast LVG (r=0.94). The visual interpretation of regional wall motion according to gated SPECT agreed with that determined by contrast LVG. We concluded that gated SPECT is a reliable method for assessing LV function. (author).

  10. Integrating atlas and graph cut methods for right ventricle blood-pool segmentation from cardiac cine MRI

    Science.gov (United States)

    Dangi, Shusil; Linte, Cristian A.

    2017-03-01

    Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  11. Diabetes and blood pressure (image)

    Science.gov (United States)

    People with diabetes have a higher risk for heart attacks and strokes. Your doctor or nurse should check your blood pressure ... People with diabetes have a higher risk for heart attacks and strokes. Your doctor or nurse should check your blood pressure ...

  12. Right-sided phase abnormalities on gated blood pool ventriculography: Demonstration of six different patterns

    International Nuclear Information System (INIS)

    Bahar, R.H.; Abdel-Dayem, H.M.; Ziada, G.; Al-Suhali, A.; Constantinides, C.; Nair, K.M.

    1986-01-01

    Phase pattern abnormalities on multiple gated blood pool ventriculography are better reported for the left ventricle (LV) than for the right side of the heart. In a study of 92 patients who also underwent contrast ventriculography, the authors identified six different patterns of right-sided phase abnormalities and their causes: right bundle-branch block, causing delayed phase in the entire right ventricle (RV); ischemic right coronary artery disease, causing delayed phase in the inferior RV wall; pericardial effusion, causing an L-shaped area of delayed phase to the right of the septum and below the LV; pulmonary hypertension, causing delayed phase in the pulmonary infundibulum; tricuspid regurgitation, causing a crescentic area of delayed phase around and below the right RV and extending below the LV as well, and atrial septal defect causing an abnormally large auricular phase

  13. Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data

    Directory of Open Access Journals (Sweden)

    Borja Rodríguez-Cuenca

    2014-03-01

    Full Text Available Bodies of water, particularly swimming pools, are land covers of high interest. Their maintenance involves energy costs that authorities must take into consideration. In addition, swimming pools are important water sources for firefighting. However, they also provide a habitat for mosquitoes to breed, potentially posing a serious health threat of mosquito-borne disease. This paper presents a novel semi-automatic method of detecting swimming pools in urban environments from aerial images and LIDAR data. A new index for detecting swimming pools is presented (Normalized Difference Swimming Pools Index that is combined with three other decision indices using the Dempster–Shafer theory to determine the locations of swimming pools. The proposed method was tested in an urban area of the city of Alcalá de Henares in Madrid, Spain. The method detected all existing swimming pools in the studied area with an overall accuracy of 99.86%, similar to the results obtained by support vector machines (SVM supervised classification.

  14. Images of Blood in American Cinema

    DEFF Research Database (Denmark)

    Rødje, Kjetil

    Through studying images of blood in film from the mid-1950s to the end of the 1960s, this path-breaking book explores how blood as an (audio)visual cinematic element went from predominately operating as a signifier, providing audiences with information about a film’s plot and characters, to incre......Through studying images of blood in film from the mid-1950s to the end of the 1960s, this path-breaking book explores how blood as an (audio)visual cinematic element went from predominately operating as a signifier, providing audiences with information about a film’s plot and characters......, to increasingly operating in terms of affect, potentially evoking visceral and embodied responses in viewers. Using films such as The Return of Dracula, The Tingler, Blood Feast, Two Thousand Maniacs, Color Me Blood Red, Bonnie and Clyde, and The Wild Bunch, Rødje takes a novel approach to film history...

  15. Evaluation of Various Cardiac Indices and ROC Analysis in Coronary Artery Disease Employing Resting ECG Gated Blood Pool Scan

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lee, Dong Soo; Kim, Sang Eun; Chung, June Key; Lee, Myung Chul; Park, Young Bae; Seo, Jung Don; Lee, Young Woo; Koh, Chang Soon

    1992-01-01

    Gated blood pool scan is frequently used for evaluating the change in cardiac function in various cardiac diseases. But resting gated blood pool scan using only LVEF as a cardiac index has been consistently shown to have a low sensitivity, which is about 50%, in detecting coronary artery disease. So it is recommended to compare exercise gated blood pool scan to resting gated blood pool scan. Exercise tests, however, are not always possible, especially in patients with musculoskeletal diseases, recent myocardial infarction and in elderly persons. We studied the usefulness of resting gated blood pool scan using multiple indices in evaluating the patients with coronary artery disease. Studied cases were 185 patients with coronary artery disease (angina pectoris 31, myocardial infarction 154) and 25 normals with low likelihood of coronary artery disease. We used 99m Tc-labeled RBC, 740 MBq labeled by in vivo method. The data were evaluated by Micro DELTA computer program. The results were as following: 1) The ejection rates (PER, AER) and filling rates (PFR, AFR) were different in normals and patients with angina pectoris or myocardial infarction. 2) Mean phase angle, ejection rates and filling rates could separate normals from coronary artery disease patients with normal LVEF. 3) Regional ejection fraction was decreased at the site of the infarct in patients with myocardial infarction. 4) Peak filling rate was the most detectable index in evaluation of cardiac function in patients with coronary artery disease. 5) The threshold at 1.5 standard deviation of normal range was considered as the most reliable cut-off value from ROC analysis. These data suggest that the resting gated blood pool scan has an important role in the evaluation of cardiac functional changes using various cardiac indices in patients with coronary artery disease.

  16. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  17. Feature representation of RGB-D images using joint spatial-depth feature pooling

    DEFF Research Database (Denmark)

    Pan, Hong; Olsen, Søren Ingvor; Zhu, Yaping

    2016-01-01

    using the depth cue and pools features simultaneously in 2D image plane and along the depth direction. By combining the JSDP with standard feature extraction and feature encoding modules, we outperform state-of-the-art methods on benchmarks for RGB-D object classification, detection and scene......Recent development in depth imaging technology makes acquisition of depth information easier. With the additional depth cue, RGB-D cameras can provide effective support for many RGB-D perception tasks beyond traditional RGB information. However, current feature representation based on RGB-D images...... utilizes depth information only to extract local features, without considering it to improve robustness and discriminability of the feature representation by merging depth cues into feature pooling. Spatial pyramid model (SPM) has become the standard protocol to split a 2D image plane into sub...

  18. Images of Blood in American Cinema

    DEFF Research Database (Denmark)

    Rødje, Kjetil

    Through studying images of blood in film from the mid-1950s to the end of the 1960s, this path-breaking book explores how blood as an (audio)visual cinematic element went from predominately operating as a signifier, providing audiences with information about a film’s plot and characters......, to increasingly operating in terms of affect, potentially evoking visceral and embodied responses in viewers. Using films such as The Return of Dracula, The Tingler, Blood Feast, Two Thousand Maniacs, Color Me Blood Red, Bonnie and Clyde, and The Wild Bunch, Rødje takes a novel approach to film history...

  19. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  20. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps.

    Science.gov (United States)

    Chu, Haiyan; Puchulu-Campanella, Estela; Galan, Jacob A; Tao, W Andy; Low, Philip S; Hoffman, Joseph F

    2012-07-31

    The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal-membrane complex. These pools of ATP are known to directly fuel both the Na(+)/K(+) and Ca(2+) pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na(+)/K(+) or Ca(2+) pump phosphoproteins (E(Na)-P and E(Ca)-P, respectively) from bulk [γ-(32)P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N(3)-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N(3)-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool's architecture can be photolabeled. With the aid of an antibody to N(3)-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.

  1. Pulmonary capillary wedge pressure, as inferred from lung areas in gated blood-pool scintigrams: concise communication

    International Nuclear Information System (INIS)

    Urbina, A.; Okada, R.D.; Palacios, I.; Osbakken, M.; Strauss, H.W.

    1981-01-01

    To determine whether the apex-to-base distribution of pulmonary blood volume, as obtained from gated cardiac blood-pool scans, could be used as a noninvasive method to estimate mean pulmonary capillary wedge pressure (PCWP), gated blood-pool scans were analyzed in 77 patients who also had PCWP measurements at cardiac catheterization. Ten of these patients had gated cardiac blood-pool scans and PCWP measurements both at rest and during exercise. The apex-to-base distribution of pulmonary blood volume was determined from the end-systolic frame of the left anterior oblique view by placing equal-sized regions of interest over the apex and base of the right lung. The ratio of apex counts over base counts (A/B ratio) was considered abnormal if greater than unity. The mean A/B ratio was 1.15 +/- 0.27 (1 s.d.) for the 32 studies associated with an abnormal mean PCWP (greater than 12 mm Hg). The mean A/B ratio was 0.85 +/- 0.23 for the 55 studies associated with a normal mean PCWP (p less than 0.01 comparing normal group with abnormal). The sensitivity of the A/B ratio for a mean PCWP greater than 12 mm Hg was 81%R (26/32). The specificity of the A/B ratio for a mean PCWP greater than or equal to 12 mm Hg was 89% (49/55). Thus, noninvasive determination of the pulmonary apex-to-base ratio from gated cardiac blood-pool scans appears to differentiate subjects with normal and abnormal mean pulmonary capillary wedge pressures

  2. Welding deviation detection algorithm based on extremum of molten pool image contour

    Science.gov (United States)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  3. Images of Blood in American Cinema

    DEFF Research Database (Denmark)

    Rødje, Kjetil

    , to increasingly operating in terms of affect, potentially evoking visceral and embodied responses in viewers. Using films such as The Return of Dracula, The Tingler, Blood Feast, Two Thousand Maniacs, Color Me Blood Red, Bonnie and Clyde, and The Wild Bunch, Rødje takes a novel approach to film history...... by following one (audio)visual element through an exploration that traverses established standards for film production and reception. This study does not heed distinctions regarding to genres (horror, western, gangster) or models of film production (exploitation, independent, studio productions) but rather......Through studying images of blood in film from the mid-1950s to the end of the 1960s, this path-breaking book explores how blood as an (audio)visual cinematic element went from predominately operating as a signifier, providing audiences with information about a film’s plot and characters...

  4. Images of Blood in American Cinema

    DEFF Research Database (Denmark)

    Rødje, Kjetil

    by following one (audio)visual element through an exploration that traverses established standards for film production and reception. This study does not heed distinctions regarding to genres (horror, western, gangster) or models of film production (exploitation, independent, studio productions) but rather......Through studying images of blood in film from the mid-1950s to the end of the 1960s, this path-breaking book explores how blood as an (audio)visual cinematic element went from predominately operating as a signifier, providing audiences with information about a film’s plot and characters...

  5. Evaluation of latent cardiac disease in diabetic patients with Tl-201 exercise myocardial scintigram and blood pool scintigram

    International Nuclear Information System (INIS)

    Miyashita, Takeo; Kasai, Ryutaro; Ikebe, Nobuhiko; Nagai, Yoshikazu; Yamasawa, Ikuhiro; Ibukiyama, Chiharu; Notoya, Yoko

    1990-01-01

    To find latent heart disease in diabetic patients, 142 diabetic patients were divided into 4 groups: (1) no hypertension and normal ECG (DM group); (2) hypertension recognized clinically (HT group); (3) myocardial damage on ECG (MD group); (4) group associated with the previous 2 (HT+MD group). In all groups Tl-201 exercise myocardial scintigrams and blood pool scintigrams were taken for comparative analysis. Positive rates of SPECT were 27.7% (23/83) in the DM group, 30.0% (9/30) in the HT group, 50.0% (6/12) in the MD group, and 70.6% (12/17) in the HT+MD group. The rate in the HT+MD group was significantly higher than in that of the DM and HT groups (p<0.001, p<0.01). Blood pool scintigrams revealed that in the HT+MD group, as compared with the normal control group, both 1/3 FF and PFR were significantly depressed, in addition to significant TPF prolongation in the former (p<0.001, p<0.05, p<0.05). These findings suggest that in diabetic patients hypertension and myocardial damage would lead to a high incidence of abnormality in SPECT and left ventricular rapid filling dysfunction. This indicate a high incidence of latent cardiac disease which can be recognized in diabetic patients by stress myocardial and blood pool scintigrams. (author)

  6. HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2016-06-01

    Full Text Available In this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the sparse subspace clustering (SSC model is extended to nonlinear manifolds, which can better explore the complex nonlinear structure of hyperspectral images (HSIs and obtain a much more accurate representation coefficient matrix. Secondly, through the spatial max pooling operation, the spatial contextual information is integrated to obtain a smoother clustering result. Through experiments, it is verified that the KSSC-SMP algorithm is a competitive clustering method for HSIs and outperforms the state-of-the-art clustering methods.

  7. Gated blood-pool SPECT assessment of Wolff-Parkinson-White syndromes before and after radiofrequency ablation of accessory pathways

    International Nuclear Information System (INIS)

    Bontemps, L.; Ben Brahim, H.; Kraiem, T.; Chevalier, P.; Kirkorian, G.; Touboul, P.; Itti, R.

    1997-01-01

    Radiofrequency (RF) ablation of accessory pathways in Wolff-Parkinson-White (WPW) syndrome is supposed to be less aggressive than fulguration while providing excellent results. The aims of our study were therefore the evaluation of the functional results of this therapy in terms of left or right ejection fractions and its effects on the contraction synchronism between both ventricular chambers, derived from bi-ventricular Fourier phase histograms. A consecutive series of 44 patients has been investigated within 48 hours before and after RF therapy: 14 patients had right sided WPW and 30 patients left sided WPW. Only patients for whom RF treatment was considered as a success have been included in the study. Gated blood pool tomography has been performed in order to localize the site of pre-excitation and to build-up the phase histograms for both ventricles, and planar gated imaging has been used for right and left ejection fraction determination. Functional results demonstrate the absence of deleterious effect of RF on ventricular contraction and rather a slight increase of ejection fractions, with a more statistically significant difference for left WPW (LVEF = 62.2 % before RF vs 64.4 % after RF; p = 0.02) than for right WPW (RVEF = 36.3 % before RF vs 39.7 after RF; p = 0.16). Phase analysis, on the contrary, show only significant differences for right WPW, with a noticeable decrease of the pre-excitation (left-to-right phase difference 14.4 deg before RF vs 7.5 deg after RF; p = 0.03) and a significant reduction of the right ventricular phase dispersion (right phase standard deviation 26.5 deg before RF vs 19.0 deg after RF; p = 0.03). For left WPW no measurable differences can be demonstrated in the basal state and it is suggested to use stimulation techniques in order to enhance the competition between the normal and accessory conduction pathways. (authors)

  8. A Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processing

    Science.gov (United States)

    2009-01-01

    Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed segmentation framework that consists of an integration of several digital image processing algorithms. Twenty microscopic blood images were tested, and the proposed framework managed to obtain 92% accuracy for nucleus segmentation and 78% for cytoplasm segmentation. The results indicate that the proposed framework is able to extract the nucleus and cytoplasm region in a WBC image sample. PMID:19517206

  9. [Single-donor (apheresis) platelets and pooled whole-blood-derived platelets--significance and assessment of both blood products].

    Science.gov (United States)

    Hitzler, Walter E

    2014-01-01

    The transfusion efficacy of ATK, which contain fully functional platelets, is beyond all doubt. The equivalence of ATK and PTK has been subject of many studies. Some of those studies show the superiority of ATK's, while others do not, but there have been no studies that demonstrated a superiority of PTK's. The superiority of platelets stored in plasma and in third generation additive solution was demonstrated in clinical studies; therefore, it cannot be said that all the platelet concentrates on the German market are equivalent in efficacy. Of decisive importance, above all, is the risk of transfusion-transmitted infections with known pathogens, or those not yet discovered. This risk is different for ATK compared to PTK. Taking this difference in risk and the difference in donor exposure of transfused patients into account, it can definitely be said that ATK and PTK are not equivalent. In 2012, the Robert-Koch-Institute (RKI) published a mathematical risk model for different platelet concentrates and assessed the risk of transmitting known pathogens such as HIV, HCV, and HBV. The risk was higher for PTK compared to ATK. The relative risks for PTK derived from 4BCs were 2.2 (95%--CI: 2.1-2.4) for HIV, 2.7 (95%--CI: 2.5-3.0) for HCV, and 2.2 (95%--CI: 2.8-3.7) for HBV. At the present time, these are the relative risks of transfusion-transmitted infections with the traditional pathogens for PTK compared to ATK. In addition to the RKI assessed risks, there is the theoretical risk of a new, unknown agent, transmitted through blood exposure. The magnitude of this risk is hardly predictable for PTK. The experience gathered so far, especially in the last three decades, with the emergence of HIV, prions, and West Nil virus, shows that the biological nature of a next transfusion-transmissible infectious agent cannot be predictable. This agent, if we think at a conventional sexually transmissible agent with nucleic acid and long latent period, would spread first in areas with

  10. Half a decade of mini-pool nucleic acid testing: Cost-effective way for improving blood safety in India

    Directory of Open Access Journals (Sweden)

    Shivaram Chandrashekar

    2014-01-01

    Full Text Available Background and Objectives: It is well established that Nucleic acid testing (NAT reduces window phase of transfusion transmissible infections (TTI and helps improve blood safety. NAT testing can be done individually or in pools. The objectives of this study were to determine the utility, feasibility and cost effectiveness of an in-house minipool-NAT(MP-NAT. Materials and Methods: Blood donors were screened by history, tested by ELISA and sero-negative samples were subjected to an in-house NAT by using reverse transcriptase-polymerase chain reaction (RT-PCR. Testing was done in mini-pools of size eight (8. Positive pools were repeated with individual samples. Results: During the study period of Oct 2005-Sept 2010 (5 years all blood donors (n=53729 were screened by ELISA. Of which 469 (0.87% were positive for HIV-1, HBV or HCV. Sero-negative samples (n=53260 were screened by in-house MP-NAT. HIV-NAT yield was 1/53260 (n=1 and HBV NAT yield (n=2 was 1/26630. Conclusion: NAT yield was lower than other India studies possibly due to the lower sero-reactivity amongst our donors. Nevertheless it intercepted 9 lives including the components prepared. The in-house assay met our objective of improving blood safety at nominal cost and showed that it is feasible to set up small molecular biology units in medium-large sized blood banks and deliver blood within 24-48 hours. The utility of NAT (NAT yield will vary based on the donor population, the type of serological test used, the nature of kit employed and the sensitivity of NAT test used. The limitations of our in-house MP-NAT consisted of stringent sample preparation requirements, with labor and time involved. The benefits of our MP-NAT were that it acted as a second level of check for ELISA tests, was relatively inexpensive compared to ID-NAT and did not need sophisticated equipment.

  11. Jugular venous pooling during lowering of the head affects blood pressure of the anesthetized giraffe

    DEFF Research Database (Denmark)

    Brøndum, E.; Hasenkam, John Michael; Secher, Niels H.

    2009-01-01

    How blood flow and pressure to the giraffe's brain are regulated when drinking remains debated. We measured simultaneous blood flow, pressure, and cross-sectional area in the carotid artery and jugular vein of five anesthetized and spontaneously breathing giraffes. The giraffes were suspended...... unchanged. Cardiac output was reduced by 30%, CVP decreased to -1 +/- 2 mmHg (P blood in the veins. When the head was raised, the jugular...... veins collapsed and blood was returned to the central circulation, and CVP and cardiac output were restored. The results demonstrate that in the upright-positioned, anesthetized giraffe cerebral blood flow is governed by arterial pressure without support of a siphon mechanism and that when the head...

  12. Effect of R-CHOP chemotherapy on liver and mediastinal blood pool (18)F-FDG standardized uptake values in patients with non-Hodgkin's lymphoma.

    Science.gov (United States)

    Kaya, Bugra; Dostbil, Zeki; Ismailoglu, Murat; Tasdemir, Bekir; Sahin, Ozlem

    2015-01-01

    We aimed to investigate the impact of chemotherapy on (18)F-FDG uptake in the liver and mediastinal blood pool (MBP) among patients with non-Hodgkin's lymphoma. Twenty-three patients with NHL underwent baseline, interim, and postchemotherapy (18)F-FDG PET/CT. SUVmax and SUVmean values of the liver and MBP at imaging time were compared statistically. We did not find any significant differences between the liver and mediastinum SUVmean and SUVmax values (P>.05). Our study demonstrates that the (18)F-FDG uptake in the liver and MBP are not significantly affected by R-CHOP chemotherapy in patients with NHL. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Prognostic Significance of Hyponatremia in Acute Intracerebral Hemorrhage: Pooled Analysis of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Studies.

    Science.gov (United States)

    Carcel, Cheryl; Sato, Shoichiro; Zheng, Danni; Heeley, Emma; Arima, Hisatomi; Yang, Jie; Wu, Guojun; Chen, Guofang; Zhang, Shihong; Delcourt, Candice; Lavados, Pablo; Robinson, Thompson; Lindley, Richard I; Wang, Xia; Chalmers, John; Anderson, Craig S

    2016-07-01

    To determine the association of hyponatremia at presentation with clinical and imaging outcomes in patients with acute intracerebral hemorrhage. Retrospective pooled analysis of prospectively collected data from 3,243 participants of the pilot and main phases of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trials 1 and 2 (international, multicenter, open, blinded endpoint, randomized controlled trials designed to assess the effects of early intensive blood pressure lowering in patients with acute intracerebral hemorrhage). Clinical hospital sites in 21 countries. Patients with predominantly mild-moderate severity of spontaneous intracerebral hemorrhage within 6 hours of onset and elevated systolic blood pressure (150-220 mm Hg) were included in the study. Patients were assigned to receive intensive (target systolic blood pressure, < 140 mm Hg within 1 hr) or guideline-recommended (target systolic blood pressure, < 180 mm Hg) blood pressure-lowering therapy. Presentation hyponatremia was defined as serum sodium less than 135 mEq/L. The primary outcome was death at 90 days. Multivariable logistic regression was used to assess the association of hyponatremia with important clinical events. Of 3,002 patients with available data, 349 (12%) had hyponatremia. Hyponatremia was associated with death (18% vs 11%; multivariable-adjusted odds ratio, 1.81; 95% CI, 1.28-2.57; p < 0.001) and larger baseline intracerebral hemorrhage volume (multivariable adjusted, p = 0.046) but not with baseline perihematomal edema volume nor with growth of intracerebral hemorrhage or perihematomal edema during the initial 24 hours. Hyponatremia at presentation is associated with increased mortality in patients with predominantly deep and modest volume intracerebral hemorrhage through mechanisms that seem independent of growth in intracerebral hemorrhage or perihematomal edema.

  14. 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Christian; Ley, Sebastian; Puderbach, Michael; Plathow, Christian; Kauczor, Hans-Ulrich [Department of Radiology, Innovative Cancer Diagnostic and Therapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg (Germany); Bock, Michael [Department of Medical Physics in Radiology, Innovative Cancer Diagnostic and Therapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg (Germany)

    2004-07-01

    The purpose of this study was to assess the feasibility of contrast-enhanced 3D perfusion MRI and MR angiography (MRA) of pulmonary embolism (PE) in pigs using a single injection of the blood pool contrast Gadomer. PE was induced in five domestic pigs by injection of autologous blood thrombi. Contrast-enhanced first-pass 3D perfusion MRI (TE/TR/FA: 1.0 ms/2.2 ms/40 ; voxel size: 1.3 x 2.5 x 4.0 mm{sup 3}; TA: 1.8 s per data set) and high-resolution 3D MRA (TE/TR/FA: 1.4 ms/3.4 ms/40 ; voxel size: 0.8 x 1.0 x 1.6 mm{sup 3}) was performed during and after a single injection of 0.1 mmol/kg body weight of Gadomer. Image data were compared to pre-embolism Gd-DTPA-enhanced MRI and post-embolism thin-section multislice CT (n=2). SNR measurements were performed in the pulmonary arteries and lung. One animal died after induction of PE. In all other animals, perfusion MRI and MRA could be acquired after a single injection of Gadomer. At perfusion MRI, PE could be detected by typical wedge-shaped perfusion defects. While the visualization of central PE at MRA correlated well with the CT, peripheral PE were only visualized by CT. Gadomer achieved a higher peak SNR of the lungs compared to Gd-DTPA (21{+-}8 vs. 13{+-}3). Contrast-enhanced 3D perfusion MRI and MRA of PE can be combined using a single injection of the blood pool contrast agent Gadomer. (orig.)

  15. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  16. Jugular venous pooling during lowering of the head affects blood pressure of the anesthetized giraffe.

    Science.gov (United States)

    Brøndum, E; Hasenkam, J M; Secher, N H; Bertelsen, M F; Grøndahl, C; Petersen, K K; Buhl, R; Aalkjaer, C; Baandrup, U; Nygaard, H; Smerup, M; Stegmann, F; Sloth, E; Ostergaard, K H; Nissen, P; Runge, M; Pitsillides, K; Wang, T

    2009-10-01

    How blood flow and pressure to the giraffe's brain are regulated when drinking remains debated. We measured simultaneous blood flow, pressure, and cross-sectional area in the carotid artery and jugular vein of five anesthetized and spontaneously breathing giraffes. The giraffes were suspended in the upright position so that we could lower the head. In the upright position, mean arterial pressure (MAP) was 193 +/- 11 mmHg (mean +/- SE), carotid flow was 0.7 +/- 0.2 l/min, and carotid cross-sectional area was 0.85 +/- 0.04 cm(2). Central venous pressure (CVP) was 4 +/- 2 mmHg, jugular flow was 0.7 +/- 0.2 l/min, and jugular cross-sectional area was 0.14 +/- 0.04 cm(2) (n = 4). Carotid arterial and jugular venous pressures at head level were 118 +/- 9 and -7 +/- 4 mmHg, respectively. When the head was lowered, MAP decreased to 131 +/- 13 mmHg, while carotid cross-sectional area and flow remained unchanged. Cardiac output was reduced by 30%, CVP decreased to -1 +/- 2 mmHg (P blood in the veins. When the head was raised, the jugular veins collapsed and blood was returned to the central circulation, and CVP and cardiac output were restored. The results demonstrate that in the upright-positioned, anesthetized giraffe cerebral blood flow is governed by arterial pressure without support of a siphon mechanism and that when the head is lowered, blood accumulates in the vein, affecting MAP.

  17. Radionuclide ventriculography (equilibrium gated blood pool scanning) - its present clinical position and recent developments

    International Nuclear Information System (INIS)

    Adam, W.E.; Clausen, M.; Hellwig, D.; Henze, E.; Bitter, F.

    1988-01-01

    Myocardial scanning (MS) and radionuclide ventriculography (RNV) aim in two completely different directions: RNV tries to image heart motion, that is, mechanical (pump) function, and therefore belongs to the group of first-order functional imaging (FI, imaging mechanical function), whereas MS is based on myocardial metabolism, and therefore can be attributed to third-order functional imaging (metabolism). This statement is relevant for the assessment of the clinical position of RNV: Third-order (metabolism) functional imaging is the domain of nuclear medicine (NM), whereas first-order FI has to face the competition of alternative noninvasive procedures such as ultrasound (US), digital subtraction angiography (DSA), computer tomography (CT), and nuclear magnetic resonance (NMR). The domain of RNV includes stages two (acute infarction) and three (postinfarction period) of coronary arterial disease (CAD). The advantageous combination of quantitative data on global, left ventricular (LV) function and imaging of regional motion ensures the superiority of RNV over US. However, RNV is inferior to MS in physical examinations in the preinfarction stage of CAD, whereas US is clearly inferior to both NM procedures. Recent progress could be attained by gated SPECT (GASPECT). A proposal is presented for simplification of this time-consuming procedure. Technetium-labeled isonitriles offer the chance for the combination of 'perfusion-motion' imaging of the myocardium. However, even standard RNV offers new possibilities. The multitude of parameters produced by quantitation has not yet been exploited completely. This can be done by discriminant analysis. The computer finds out an optimal subset from the whole set of parameters for the solution of a significant clinical problem. The software 'learns' to find the 'label' of a special pathognomonic entity. This computer work is supported by a relational data bank (Oracle) and an optical disk. (orig./MG)

  18. Use of pooled blood plasmas in the assessment of fouling resistance

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Rodriguez-Emmenegger, Cesar; Surman, František; Riedel, Tomáš; Bologna Alles, A.; Brynda, Eduard

    2014-01-01

    Roč. 4, č. 5 (2014), s. 2318-2321 ISSN 2046-2069 R&D Projects: GA MŠk EE2.3.30.0029; GA ČR GAP106/12/1451; GA ČR GAP205/12/1702; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : blood plasma * fouling * biomaterials Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.840, year: 2014

  19. MRT of experimental liver abscesses - comparison of a new blood pool contrast agent with gadolinium-DTPA

    International Nuclear Information System (INIS)

    Dick, A.; Adam, G.; Spuentrup, E.; Prescher, A.; Muehler, A.; Guenther, R.W.

    1996-01-01

    Purpose: In an experimental pyogenic liver abscess model, the signal intensities were compared intraindividually and interindividually after the application of a new blood pool contrast agent, 24-gadolinium-DTPA (diethylenetriamine-pentaacetic acid) cascade polymer, and after the application of gadopentetate dimeglumine. Methods: In 20 rabbits with experimentally induced liver abscesses, the relative signal intensities of the liver, abscess centre, abscess wall and portal vein were assessed before and between 30 seconds and 60 minutes after injection of a 25 μmol/kg dose of gadolinium polymer and of 100 μmol/kg of gadolinium-DTPA, respectively. Measurements were performed at 1.5 Tesla, using a head coil and a Flash-2-D sequence. Results: The interindividual comparison (unpaired T-test, p [de

  20. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  1. MR angiography of collateral arteries in a hind limb ischemia model: comparison between blood pool agent Gadomer and small contrast agent Gd-DTPA.

    Directory of Open Access Journals (Sweden)

    Karolien Jaspers

    Full Text Available The objective of this study was to compare the blood pool agent Gadomer with a small contrast agent for the visualization of ultra-small, collateral arteries (diameter0.10. Inter-observer variation was 24% and 18% for Gadomer and Gd-DTPA, respectively. In conclusion, blood pool agent Gadomer improved vessel conspicuity compared to Gd-DTPA. Steady-state MRA can be considered as an excellent non-invasive alternative to intra-arterial XRA for the visualization of ultra-small collateral arteries.

  2. Assessing the performance of multiplexed tandem PCR for the diagnosis of pathogenic genotypes of Theileria orientalis using pooled blood samples from cattle.

    Science.gov (United States)

    Gebrekidan, Hagos; Gasser, Robin B; Stevenson, Mark A; McGrath, Sean; Jabbar, Abdul

    2017-02-01

    Oriental theileriosis caused by multiple genotypes of Theileria orientalis is an important tick-borne disease of bovines. Here, we assessed the performance of an established multiplexed tandem PCR (MT-PCR) for the diagnosis of the two recognized, pathogenic genotypes (chitose and ikeda) of T. orientalis in cattle using pooled blood samples. We used a total of 265 cattle blood samples, which were divided into two groups according to previous MT-PCR results for individual samples. Samples in group 1 (n = 155) were from a herd with a relatively high prevalence of T. orientalis infection; and those in group 2 (n = 110) were from four herds with a low prevalence. For group 1, 31 and 15 batches of five- and ten-pooled samples (selected at random), respectively, were formed. For group 2, 22 and 11 batches of five- and ten-pooled samples (selected at random), respectively, were formed. DNAs from individual pooled samples in each batch and group were then tested by MT-PCR. For group 1, the apparent prevalences estimated using the 31 batches of five-pooled samples (97%) and 15 batches of ten-pooled samples (100%) were significantly higher compared with individual samples (75%). For group 2, higher apparent prevalences (9% and 36%) were also recorded for the 22 and 11 batches of pooled samples, respectively, compared with individual samples (7%). Overall, the average infection intensity recorded for the genotypes of chitose and ikeda were considerably lower in pooled compared with individual samples. The diagnostic specificities of MT-PCR were estimated at 95% and 94%, respectively, when batches of five- and ten-pooled samples were tested, and 94% for individual samples. The diagnostic sensitivity of this assay was estimated at 98% same for all individual, five- and ten-pooled samples. This study shows that screening batches of five- and ten-pooled blood samples from cattle herds are similar to those obtained for individual samples, and, importantly, that the reduced cost

  3. Evaluation of left ventricular function during exercise in patients with ischemic heart disease using multigated blood pool scintigraphy

    International Nuclear Information System (INIS)

    Ohmori, Yoshiaki; Kanoh, Yasushi; Shiotani, Hideyuki; Fujitani, Kazuhiro; Fukuzaki, Hisashi; Kajiya, Teishi; Nakashima, Yoshiharu; Maeda, Kazumi.

    1985-01-01

    Multigated blood pool scintigraphy (exercise RI ventriculography) and exercise stress thallium-201 myocardial scintigraphy were performed in 44 ischemic heart disease (IHD) patients (16 with angina pectoris and 28 with old myocardial infarction) and 11 healthy persons. Furthermore, blood circulation was examined in 38 of the subjects. Work load was significantly greater, and the number of diseased vessels and the incidence of indicators for transient ischemia during exercise were significantly lower in the group with a remarkably increased left ventricular ejection fraction (EF) during exercise than in the group with a remarkably decreased EF. In the group with unchanged EF, reginal left ventricular wall movement could be assessed using phase analysis. In IHD patients with a remarkably decreased EF at rest, EF was scarcely changed during exercise, and indicators for transient ischemia were not observed frequently. There was a highly significnat correlation between EF during exercise and pulmonary artery wedge pressure or cardiac index during exercise, suggesting that EF is a noninvasive indicator for coronary circulation during exercise. Exercise RI ventriculography was considered useful for evaluating the physiology of IHD. (Namekawa, K.)

  4. PCR-based pooling of dried blood spots for detection of malaria parasites: optimization and application to a cohort of Ugandan children.

    Science.gov (United States)

    Hsiang, Michelle S; Lin, Michael; Dokomajilar, Christian; Kemere, Jordan; Pilcher, Christopher D; Dorsey, Grant; Greenhouse, Bryan

    2010-10-01

    Sensitive, high-throughput methods to detect malaria parasites in low-transmission settings are needed. PCR-based pooling strategies may offer a solution. We first used laboratory-prepared samples to compare 2 DNA extraction and 4 PCR detection methods across a range of pool sizes and parasite densities. Pooled Chelex extraction of DNA, followed by nested PCR of cytochrome b, was the optimal strategy, allowing reliable detection of a single low-parasitemic sample (100 parasites/μl) in pool sizes up to 50. This PCR-based pooling strategy was then compared with microscopy using 891 dried blood spots from a cohort of 77 Ugandan children followed for 2 years in an urban setting of low endemicity. Among 419 febrile episodes, 35 cases of malaria were detected using the PCR-based pooling strategy and 40 cases using microscopy. All five cases of malaria not detected by PCR were from samples stored for >2 years with parasitemia of parasites using dried blood spots offers a sensitive and efficient approach for malaria surveillance in low-transmission settings, enabling improved detection of asymptomatic submicroscopic infections and dramatic savings in labor and costs.

  5. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    through image processing and data mining techniques. Retinal image data, which is given as input for data mining process is considered as Big Data since every pixel forms a tuple. Blood vessel network is segmented through color space conversion and channel extraction, image pre-processing, Gabor filtering, application ...

  6. A study evaluating of the dependence of the clinical usefulness on the use of a half-time acquisition factor in a multiple-gated blood-pool (MUGA) scan using Tc-99 m

    Science.gov (United States)

    Lee, Dong-Hun; Jung, Woo-Young; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan; Yeo, Hwa-Yeon

    2012-12-01

    This study evaluated the clinical usefulness of reducing the scan time based on a comparative analysis of the left ventricular cardiac ejection fraction of a full-time image in a gated cardiac blood-pool scan by using the half-time image obtained by applying an image processing technique and using the results from a blind test conducted by radiologists. Fifty patients who underwent a multiple-gated blood-pool (MUGA) scan at the Nuclear Medicine Department of ASAN Medical Center from June 20 to August 14, 2011 were enrolled in this study. Images of the left anterior oblique (LAO) view were obtained continuously in full time (6,000 kcts) and half time (3,000 kcts) in the same posture. The obtained images were used to calculate the left ventricular cardiac ejection fraction 10 times in the full-time image, the half-time image obtained without applying an image processing technique, and the half-time image obtained by applying an image processing technique. To evaluate the cardiac ejection fraction under the same conditions, we set the regions of interest (ROIs) of the left ventricle and the background radioactivity to be the automated ROIs on the same X and Y axes. According to the results of quantitative analyses of the cardiac ejection fraction, the mean ± standard deviation value for the full-time image, the half-time image obtained without applying an image processing technique, and the half-time images obtained by applying an image processing technique were 69.1 ± 7.6%, 68.2 ± 8.4%, and 68.7 ± 8.0%, respectively. The cardiac ejection fraction did not show any significant difference (p > 0.05). For a qualitative analysis, a blinding test was conducted with two radiologists. According to the test results, when the examination was conducted for cardiac wall motion of the left ventricle, no difference was found between the full-time and half-time images obtained by applying an image processing technique.

  7. Ventricular emptying performance in patients with tetralogy of Fallot; Assessment with Fourier analysis of gated blood-pool data

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kan; Maeda, Hisato; Nakagawa, Tsuyoshi; Ito, Tsunao; Yamaguchi, Nobuo; Matsuda, Akira (Mie Univ., Tsu (Japan). School of Medicine)

    1989-12-01

    Comparison of emptying patterns between left and right ventricles (LV, RV) was performed with Fourier analysis of gated blood-pool data in patients with tetralogy of Fallot (TF). Using global time-activity curves, the phase and amplitude at the first-harmonic component of Fourier series were calculated and emptying patterns of both ventricles were evaluated by phase difference {l brace}D(phase)=RV phase minus LV phase{r brace} and RV/LV amplitude ratio {l brace}R(amp){r brace}. In 20 patients with normal cardiac function, D(phase) was minimal (mean 2.0{plus minus}6.6 degrees) and R(amp) was less than 1.0 (mean 0.60{plus minus}0.19). In 11 patients with TF, D(phase) was significantly larger than normal, with a mean value of 24.3{plus minus}10.0 degrees (p<0.01) and became greater in a reversed proportion to the ratio of the pulmonary-to-systemic blood flow (p<0.01). In all but one cases with TF, R(amp) was greater than 1.0 with a mean value of 1.4{plus minus}0.4, significantly larger than normal (p<0.001). Furthermore, using time-activity curves approximated by terms up to the 3rd-harmonic component, the temporal difference in emptying patterns between both ventricles was investigated. In TF cases, the time from end-diastole to minimum count (T2) was significantly larger in RV than in LV (p<0.001). The elongated T2 interval of RV seemed to play an important role in producing RV phase lag. Thus, this non-invasive method is valuable for pathophysiologic investigation of patients with TF and can be of help in estimating the severity of their disease. (author).

  8. The effect of varying the acquisition angle on processing and ejection fractions in gated blood pool studies

    International Nuclear Information System (INIS)

    Hughes, K.; Schults, C.G.; Trinh, T.

    2002-01-01

    Full text: Suboptimal ventricular definition has been blamed for difficulties in processing and variations in Ejection Fraction (EF). Clinical patients had Gated Blood Pool Studies (GBPS) performed by one of two operators, ensuring good left ventricular separation and definition. With patient consent, another study was acquired with the camera angle altered in the caudal or septal plane. Using GE Entegra GBPS Software, which allows some operator involvement in modifying the automated systolic and diastolic regions, the studies were analysed by eight 'blinded' technologists. Analyses of optimal and suboptimal acquisitions were compared. The mean, standard deviation (SD) and coefficient of variation (CV%) were determined for each patient's set of EFs. There was no significant difference in the means of the optimal and suboptimal groups (61.2% and 61.7%). One third of the suboptimal studies acquired gave a mean EF that differed by more than 5% from the Optimal' mean. The average CV of all analyses was 4.5%. The optima] group CV 4.7% (septal 4.6%/caudal 4.8%) and the suboptimal group CV 4.3% (septal 4.5%/caudal 4.2%). The analysis demonstrates that precision of processing GBPS is not affected when the study is acquired at a suboptimal angle. Although most EF results are reliable when acquired at a suboptimal angle, approximately one third will produce an EF that varies from the optimal result by more than 5%. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  9. White blood cell count - series (image)

    Science.gov (United States)

    ... the hand. The puncture site is cleaned with antiseptic, and a tourniquet (an elastic band) or blood ... or young child: The area is cleansed with antiseptic and punctured with a sharp needle or a ...

  10. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    .... Diazepam has been shown to induce unihemispheric slow waves (USW), therefore we used functional imaging of dolphins with and without diazepam to observe hemispheric differences in brain metabolism and blood flow...

  11. Three-dimensional photoacoustic imaging of blood vessels in tissue

    NARCIS (Netherlands)

    Hoelen, C.G.A.; de Mul, F.F.M.; Pongers, R.; Dekker, A.

    1998-01-01

    We applied photoacoustics as a tissue tomography technique for the detection of blood concentrations, e.g., angiogenesis around tumors. We imaged blood vessels in highly scattering samples, using 532-nm light, to depths of ,1 cm. The samples were real tissue (chicken breast) or 10% dilutions of

  12. Prognostic Significance of Hyponatremia in Acute Intracerebral Hemorrhage: Pooled Analysis of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Studies

    NARCIS (Netherlands)

    Carcel, C.; Sato, S.; Zheng, D.; Heeley, E.; Arima, H.; Yang, J.; Wu, G.; Chen, G.; Zhang, S.; Delcourt, C; Lavados, P.; Robinson, T.; Lindley, R.I.; Wang, X.; Chalmers, J.; Anderson, C.S.; Klijn, C.J.M.; et al.,

    2016-01-01

    OBJECTIVES: To determine the association of hyponatremia at presentation with clinical and imaging outcomes in patients with acute intracerebral hemorrhage. DESIGN: Retrospective pooled analysis of prospectively collected data from 3,243 participants of the pilot and main phases of the Intensive

  13. Efficient leukocyte segmentation and recognition in peripheral blood image.

    Science.gov (United States)

    Shirazi, Syed H; Umar, Arif Iqbal; Naz, Saeeda; Razzak, Muhammad I

    2016-05-18

    Blood cell count, also known as differential count of various types of blood cells, provides valuable information in order to assess variety of diseases like AIDS, leukemia and blood cancer. Manual techniques are still used in diseases diagnosis that is very lingering and tedious process. However, machine based automatic analysis of leukocyte is a powerful tool that could reduce the human errors, improve the accuracy, and minimize the required time for blood cell analysis. However, leukocyte segmentation is a challenging process due to the complexity of the blood cell image; therefore, this task remains unresolved issue in the blood cell segmentation. The aim of this work is to develop an efficient leukocyte cell segmentation and classification system. This paper presents an efficient strategy to segment cell images. This has been achieved by using Wiener filter along with Curvelet transform for image enhancement and noise elimination in order to elude false edges. We have also used combination of entropy filter, thresholding and mathematical morphology for obtaining image segmentation and boundary detection, whereas we have used back-propagation neural network for leukocyte classification into its sub classes. As a result, the generated segmentation results are fruitful in a sense that we have overcome the problem of overlapping cells. We have obtained 100%, 96.15%, 92.30%, 92.30% and 96.15% accuracy for basophil, eosinophil, monocyte, lymphocyte and neutrophil respectively.

  14. Quantitative imaging of coronary blood flow

    Directory of Open Access Journals (Sweden)

    Adam M. Alessio

    2010-04-01

    Full Text Available Adam M. Alessio received his PhD in Electrical Engineering from the University of Notre Dame in 2003. During his graduate studies he developed tomographic reconstruction methods for correlated data and helped construct a high-resolution PET system. He is currently a Research Assistant Professor in Radiology at the University of Washington. His research interests focus on improved data processing and reconstruction algorithms for PET/CT systems with an emphasis on quantitative imaging. Erik Butterworth recieved the BA degree in Mathematics from the University of Chicago in 1977. Between 1977 and 1987 he worked as a computer programmer/analyst for several small commercial software firms. Since 1988, he has worked as a software engineer on various research projects at the University of Washington. Between 1988 and 1993 he developed a real-time data aquisition for the analysis of estuarine sediment transport in the department of Geophysics. Between 1988 and 2002 he developed I4, a system for the display and analysis of cardic PET images in the department of Cardiology. Since 1993 he has worked on physiological simulation systems (XSIM from 1993 to 1999, JSim since 1999 at the National Simulation Resource Facility in Cirulatory Mass Transport and Exchange, in the Department of Bioengineering. His research interests include simulation systems and medical imaging. James H. Caldwell, MD, University of Missouri-Columbia 1970, is Professor of Medicine (Cardiology and Radiology and Adjunct Professor of Bioengineering at the University of Washington School of Medicine and Acting Head, Division of Cardiology and Director of Nuclear Cardiology for the University of Washington Hospitals, Seattle WA, USA. James B. Bassingthwaighte, MD, Toronto 1955, PhD Mayo Grad Sch Med 1964, was Professor of Physiology and of Medicine at Mayo Clinic until 1975 when he moved to the University of Washington to chair Bioengineering. He is Professor of Bioengineering and

  15. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    Energy Technology Data Exchange (ETDEWEB)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. (Harvard-Med)

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  16. [Pooled Umbilical Cord Blood Plasma for Culturing UCMSC and Ex Vivo Expanding Umbilical Cord Blood CD34⁺ Cells].

    Science.gov (United States)

    Wu, Jie-Ying; Lu, Yan; Chen, Jin-Song; Wu, Shao-Qing; Tang, Xue-Wei; Li, Yan

    2015-08-01

    To investigate the feasibility of umbilical cord blood plasma (UCP) as a replacement for fetal bovine serum (FBS) for culturing mesenchymal stem cells (MSC) derived from umbilical cord, and to observe the supporting effects of these cells (served as a feeder layer) on ex vivo expanding of human umbilical cord blood CD34(+) cells. Umbilical cord blood (UCB) units were suitable if the Guangzhou cord blood bank donor selection criteria strictly were fulfilled. UCP were ready to use after the collection from the plasma depletion/reduction during the processing and pooling of suitable UCB units (at least 30 units were screened for pathogens and microorganisms, and qualified). Umbilical cord mesenchymal stem cells (UCMSC) were harvested from the umbilical cord tissue of health full-term newborns after delivery by enzyme digestion and divided into 3 groups: group 1 and 2 were cultured in the presence of DMEM/F12 containing either FBS or UCP; and group 3 was cultured in serum-free medium (StemPro® MSC SFM CTS™). Morphology, proliferation and surface marker expression were examined by flow cytometry, and the differentiation toward adipogenic and osteogenic lineages was used for investigating the effect of media on UCMSC after 3-5 passages. Next, the cells cultured in the three different media were cryopreserved and thawed, then prepared as feeder layers with the name of UCMSC(FBS), UCMSC(UCP), and UCMSC(SFM), respectively. The CD34⁺ cells were separated from UCB by magnetic activated cell sorting (MACS) and divided into 4 groups cultured in StemPro(-34) SFM medium added with hematopoietic cytokine combination (StemSpan® CC100). The control group included only CD34⁺ cells as group A (blank control) and experimental groups included UCMSC(FBS) + CD34⁺ cells as group B, UCMSC(UCP) + CD34⁺ cells as group C, UCMSC(SFM) + CD34⁺ cells as group D, and cells in all groups were cultured ex vivo for 7 days. The nucleated cell (NC) number was counted by cell counter, CD34

  17. Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging

    Science.gov (United States)

    Mallidi, Srivalleesha; Karpiouk, Andrei B.; Aglyamov, Salavat R.; Sethuraman, Shriram; Emelianov, Stanislav Y.

    2007-02-01

    In many clinical and research applications including cancer diagnosis, tumor response to therapy, reconstructive surgery, monitoring of transplanted tissues and organs, and quantitative evaluation of angiogenesis, sequential and quantitative assessment of microcirculation in tissue is required. In this paper we present an imaging technique capable of spatial and temporal measurements of blood perfusion through microcirculation. To demonstrate the developed imaging technique, studies were conducted using phantoms with modeled small blood vessels of various diameters positioned at different depths. A change in the magnitude of the photoacoustic signal was observed during vessel constriction and subsequent displacement of optically absorbing liquid present in the vessels. The results of the study suggest that photoacoustic, ultrasound and strain imaging could be used to sequentially monitor and qualitatively assess blood perfusion through microcirculation.

  18. Detection of Blood Vessels in Retinal Fundus Images

    Directory of Open Access Journals (Sweden)

    Faraz Oloumi

    2014-07-01

    Full Text Available Detection of blood vessels in retinal fundus images is an important initial step in the development of systems for computer-aided diagnosis of pathologies of the eye. In this study, we perform multifeature analysis for the detection of blood vessels in retinal fundus images. The vessel detection techniques implemented include multiscale vesselness measures, Gabor filters, line operators, and matched filters. The selection of an appropriate threshold is crucial for accurate detection of retinal blood vessels. We evaluate an adaptive threshold selection method along with several others for this purpose. We also propose a postprocessing technique for removal of false-positive pixels around the optic nerve head. Values of the area under the receiver operating haracteristic curve of up to $0.961$ were obtained using the $20$ test images of the DRIVE database.

  19. Identification and red blood cell automated counting from blood smear images using computer-aided system.

    Science.gov (United States)

    Acharya, Vasundhara; Kumar, Preetham

    2018-03-01

    Red blood cell count plays a vital role in identifying the overall health of the patient. Hospitals use the hemocytometer to count the blood cells. Conventional method of placing the smear under microscope and counting the cells manually lead to erroneous results, and medical laboratory technicians are put under stress. A computer-aided system will help to attain precise results in less amount of time. This research work proposes an image-processing technique for counting the number of red blood cells. It aims to examine and process the blood smear image, in order to support the counting of red blood cells and identify the number of normal and abnormal cells in the image automatically. K-medoids algorithm which is robust to external noise is used to extract the WBCs from the image. Granulometric analysis is used to separate the red blood cells from the white blood cells. The red blood cells obtained are counted using the labeling algorithm and circular Hough transform. The radius range for the circle-drawing algorithm is estimated by computing the distance of the pixels from the boundary which automates the entire algorithm. A comparison is done between the counts obtained using the labeling algorithm and circular Hough transform. Results of the work showed that circular Hough transform was more accurate in counting the red blood cells than the labeling algorithm as it was successful in identifying even the overlapping cells. The work also intends to compare the results of cell count done using the proposed methodology and manual approach. The work is designed to address all the drawbacks of the previous research work. The research work can be extended to extract various texture and shape features of abnormal cells identified so that diseases like anemia of inflammation and chronic disease can be detected at the earliest.

  20. Holographic laser Doppler imaging of pulsatile blood flow

    Science.gov (United States)

    Bencteux, Jeffrey; Pagnoux, Pierre; Kostas, Thomas; Bayat, Sam; Atlan, Michael

    2015-06-01

    We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

  1. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  2. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  3. Finite-element modeling of time-dependent sodium exchange across the hollow fiber of a hemodialyzer by coupling with a blood pool model.

    Science.gov (United States)

    Ravagli, Enrico; Grandi, Elena; Rovatti, Paolo; Severi, Stefano

    2016-11-11

    Hollow fiber models describe the exchange of solutes between blood and dialysate across the membrane of a single fiber of the hemodialysis filter (hemodialyzer). This work aims to develop a new approach to simulate the solute exchange in a hollow fiber in a dynamic and realistic way. Sodium was chosen as our solute of interest due to its importance in hemodialysis as an osmotic regulator. A 2-dimensional (2D) hollow fiber model based on the finite element method (FEM) is coupled to a simple blood pool model to dynamically update the concentration of the solute entering the dialyzer. The resulting coupled model maintains the geometrical detail of the 2D fiber representation and gains a dynamic, blood-side inlet solute concentration. In vitro dialysis sessions were carried out for model validation, by implementing a combination of blood volume loss and/or sodium concentration steps. Plasmatic sodium concentration was recorded by blood gas sampling. Dialysate inlet and outlet conductivities were continuously recorded. Simulated plasmatic sodium concentration was compared with data from the blood gas samples. A mean error of 1.76 ± 1.03 mM was found for the complete dataset, along with a 3.87 mM maximum error. The simulated outlet dialysate sodium concentration was compared with the recorded outlet dialysate conductivity: a very high correlation was found on the whole dataset (R2 = 0.992). Coupling our FEM hollow fiber model to a simple blood pool model proved to be an effective approach for dynamical analysis of the properties of the hemodialyzer.

  4. Indium-111 labelled pooled human immunoglobulin imaging to monitor the efficacy of specific therapy for Pneumocystis carinii pneumonia

    International Nuclear Information System (INIS)

    Buscombe, J.R.; Khalkhali, I.; Mason, G.R.; Rauh, D.; Meatherall, J.; Oyen, W.J.G.; Corstens, F.H.M.

    1994-01-01

    Functional imaging is ideally suited to monitoring the effect of specific therapy on disease processes. In this pilot study five patients with AIDS and Pneumocystis carinii pneumonia (PCP) were imaged with Indium-111 labelled pooled human immunoglobulin ( 111 In-HIG) during infection and after therapy for PCP. The lung activity of 111 In-HIG, measured as a lung/heart ratio, was calculated in a study performed during infection with PCP and after therapy. In all five patients the lung/heart ratio of 111 In-HIG was reduced after treatment. The mean reduction in heart/lung ratio was 27% (range 12%-53%). If these results are confirmed by a larger study, 111 In-HIG will be useful in monitoring the response of PCP to therapy in patients with AIDS. (orig.)

  5. Proposta do uso de pool de sangue total como controle interno de qualidade em hematologia Proposal for the use of a pool of whole blood as internal quality control in hematology

    Directory of Open Access Journals (Sweden)

    Carina Daniele Schons

    2010-06-01

    Full Text Available INTRODUÇÃO: A confiabilidade dos resultados do laboratório é garantida pela realização do controle de qualidade, que tem como funções básicas análise, pesquisa e prevenção da ocorrência de erros laboratoriais por meio de programas que abrangem tanto o controle interno quanto o externo. OBJETIVO: Propor a padronização de utilização de pool de sangue total como controle interno de qualidade no setor de hematologia. MÉTODO: Foram selecionadas amostras de sangue total, colhidas com ácido etilenodiaminotetracético (EDTA, de mesmos grupo sanguíneo e fator Rh, livres de interferentes, como hemólise, lipemia e icterícia. De um total de 30 ml de sangue total, obtiveram-se três alíquotas de 10 ml cada, às quais foram adicionados, respectivamente, 0 ml (sem adição, 1 ml e 5 ml de glicerol (conservante. As amostras foram avaliadas em contador automático ADVIA® 60. Após determinação dos valores de média e DP, todas as amostras foram avaliadas por um período de 45 dias úteis para confecção do gráfico de Levey-Jennings e verificação da estabilidade da amostra. RESULTADO E CONCLUSÃO: Podemos verificar que o pool de sangue total, preparado de acordo com a metodologia proposta, não apresenta estabilidade necessária para sua utilização, como controle interno alternativo no setor de hematologia.INTRODUCTION: The reliability of laboratory results is ensured by the implementation of quality control, which has basic functions, such as analysis, research and prevention of laboratory errors through programs that encompass both internal and external control. OBJECTIVE: To propose a standard method to use pooled whole blood as internal quality control in the Hematology division. METHOD: The selected whole blood samples were collected with EDTA, belonged to the same blood group and Rh factor and did not present interfering factors, such as hemolysis, lipemia and icterus. From a total of 30 ml of whole blood it was obtained 3

  6. White blood cell counting analysis of blood smear images using various segmentation strategies

    Science.gov (United States)

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  7. Peripheral blood smear image analysis: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Emad A Mohammed

    2014-01-01

    Full Text Available Peripheral blood smear image examination is a part of the routine work of every laboratory. The manual examination of these images is tedious, time-consuming and suffers from interobserver variation. This has motivated researchers to develop different algorithms and methods to automate peripheral blood smear image analysis. Image analysis itself consists of a sequence of steps consisting of image segmentation, features extraction and selection and pattern classification. The image segmentation step addresses the problem of extraction of the object or region of interest from the complicated peripheral blood smear image. Support vector machine (SVM and artificial neural networks (ANNs are two common approaches to image segmentation. Features extraction and selection aims to derive descriptive characteristics of the extracted object, which are similar within the same object class and different between different objects. This will facilitate the last step of the image analysis process: pattern classification. The goal of pattern classification is to assign a class to the selected features from a group of known classes. There are two types of classifier learning algorithms: supervised and unsupervised. Supervised learning algorithms predict the class of the object under test using training data of known classes. The training data have a predefined label for every class and the learning algorithm can utilize this data to predict the class of a test object. Unsupervised learning algorithms use unlabeled training data and divide them into groups using similarity measurements. Unsupervised learning algorithms predict the group to which a new test object belong to, based on the training data without giving an explicit class to that object. ANN, SVM, decision tree and K-nearest neighbor are possible approaches to classification algorithms. Increased discrimination may be obtained by combining several classifiers together.

  8. Peripheral blood smear image analysis: A comprehensive review.

    Science.gov (United States)

    Mohammed, Emad A; Mohamed, Mostafa M A; Far, Behrouz H; Naugler, Christopher

    2014-01-01

    Peripheral blood smear image examination is a part of the routine work of every laboratory. The manual examination of these images is tedious, time-consuming and suffers from interobserver variation. This has motivated researchers to develop different algorithms and methods to automate peripheral blood smear image analysis. Image analysis itself consists of a sequence of steps consisting of image segmentation, features extraction and selection and pattern classification. The image segmentation step addresses the problem of extraction of the object or region of interest from the complicated peripheral blood smear image. Support vector machine (SVM) and artificial neural networks (ANNs) are two common approaches to image segmentation. Features extraction and selection aims to derive descriptive characteristics of the extracted object, which are similar within the same object class and different between different objects. This will facilitate the last step of the image analysis process: pattern classification. The goal of pattern classification is to assign a class to the selected features from a group of known classes. There are two types of classifier learning algorithms: supervised and unsupervised. Supervised learning algorithms predict the class of the object under test using training data of known classes. The training data have a predefined label for every class and the learning algorithm can utilize this data to predict the class of a test object. Unsupervised learning algorithms use unlabeled training data and divide them into groups using similarity measurements. Unsupervised learning algorithms predict the group to which a new test object belong to, based on the training data without giving an explicit class to that object. ANN, SVM, decision tree and K-nearest neighbor are possible approaches to classification algorithms. Increased discrimination may be obtained by combining several classifiers together.

  9. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  10. Increased cerebral blood flow in preeclampsia with magnetic resonance imaging

    NARCIS (Netherlands)

    Zeeman, Gerda G.; Hatab, MR; Twickler, DM

    2004-01-01

    Objective: The purpose of this study was to compare third trimester and nonpregnant cerebral blood flow of women with preeclampsia to normotensive control subjects with the use of magnetic resonance imaging techniques. Study design: Nine normotensive pregnant women and 12 untreated women with

  11. Warburg revisited: imaging tumour blood flow and metabolism.

    Science.gov (United States)

    Miles, K A; Williams, R E

    2008-03-25

    In the 1930s, Otto Warburg reported that anaerobic metabolism of glucose is a fundamental property of all tumours, even in the presence of an adequate oxygen supply. He also demonstrated a relationship between the degree of anaerobic metabolism and tumour growth rate. Today, this phenomenon forms the basis of tumour imaging with fluorodeoxyglucose positron emission tomography (FDG-PET). More recently, Folkman has demonstrated that malignant growth and survival are also dependent on tumour vascularity which is increasingly evaluated in vivo using techniques such as contrast enhanced computed tomography or magnetic resonance imaging (MRI). Although it is reasonable to hypothesise that the metabolic requirements of tumours are mirrored by alterations in tumour haemodynamics, the relationship between tumour blood flow and metabolism is in fact complex. A well-developed tumour vascular supply is required to ensure a sufficient delivery of glucose and oxygen to support the metabolism essential for tumour growth. However, an inadequate vascularisation of tumour will result in hypoxia, a factor that is known to stimulate anaerobic metabolism of glucose. Thus, the balance between tumour blood flow and metabolism will be an important indicator of the biological status of a tumour and hence the tumour's likely progression and response to treatment. This article reviews the molecular biology of tumour vascularisation and metabolism, relating these processes to currently available imaging techniques while summarising the imaging studies that have compared tumour blood flow and metabolism. The potential for vascular metabolic imaging to assess tumour aggression and sub-classify treatment response is highlighted.

  12. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  13. Image classification of unlabeled malaria parasites in red blood cells.

    Science.gov (United States)

    Zheng Zhang; Ong, L L Sharon; Kong Fang; Matthew, Athul; Dauwels, Justin; Ming Dao; Asada, Harry

    2016-08-01

    This paper presents a method to detect unlabeled malaria parasites in red blood cells. The current "gold standard" for malaria diagnosis is microscopic examination of thick blood smear, a time consuming process requiring extensive training. Our goal is to develop an automate process to identify malaria infected red blood cells. Major issues in automated analysis of microscopy images of unstained blood smears include overlapping cells and oddly shaped cells. Our approach creates robust templates to detect infected and uninfected red cells. Histogram of Oriented Gradients (HOGs) features are extracted from templates and used to train a classifier offline. Next, the ViolaJones object detection framework is applied to detect infected and uninfected red cells and the image background. Results show our approach out-performs classification approaches with PCA features by 50% and cell detection algorithms applying Hough transforms by 24%. Majority of related work are designed to automatically detect stained parasites in blood smears where the cells are fixed. Although it is more challenging to design algorithms for unstained parasites, our methods will allow analysis of parasite progression in live cells under different drug treatments.

  14. Shear wave elastography imaging for detecting malignant lesions of the liver: a systematic review and pooled meta-analysis.

    Science.gov (United States)

    Jiao, Yang; Dong, Fajin; Wang, Hui; Zhang, Lei; Xu, Jinfeng; Zheng, Jing; Fan, Haibo; Gan, Hanjing; Chen, Lixin; Li, Min

    2017-01-31

    To investigate the clinical utility of shear wave elastography (SWE) imaging in the identification of malignant and benign lesions of the liver lesions by conducting a meta-analysis. The Cochrane library, Embase and Pubmed were searched for relevant studies with publication data through February 2016. Studies evaluating the diagnostic accuracy of SWE in the identification of malignant and benign lesions of the liver using SWE technology were selected. The cytology, histology or clinical imaging was used as the reference standard. The pooled sensitivity, specificity, diagnostic odds ratio, likelihood ratio, and the area under hierarchical summary receiver operating characteristic curve (HSROC) were used to examine the diagnostic accuracy. A total of 9 cohort studies involving 1046 liver lesions (malignant 679) from 968 patients were identified. All of the 9 studies were prospective studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of SWE in differentiating malignant and benign liver lesions were 82.2% (95% CI: 73.4-88.5), 80.2% (95% CI: 73.3-85.7), 4.159 (95% CI: 2.899-5.966), 0.222 (95% CI: 0.140-0.352), and 18.749 (95% CI: 8.746-40.195), respectively. The area under the HSROC curve was 87% (95% CI: 84-90).  This meta-analysis indicates that SWE is useful in evaluating the stiffness of liver lesions and in differentiating between malignant and benign lesions. Due to the high sensitivity, specificity, and diagnostic odds ratio, SWE can be considered as a useful complement to conventional ultrasonography.

  15. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization...

  16. Imaging of blood plasma coagulation at supported lipid membranes.

    Science.gov (United States)

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Automatic measurements of local ventricular parameters using gated blood-pool emission tomography; Extraction automatique des parametres fonctionnels ventriculaires locaux en tomoventriculographie isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Mariano-Goulart, D.; Caderas de Kerleau, C.; Rossi, M. [Centre Hospitalier Universitaire Lapeyronie, 34 - Montpellier (France)

    2005-03-01

    This paper describes a new method designed to improve the accuracy of the assessment of systolic and diastolic parameters from noisy regional time-activity curves, both for the right and the left ventricle. First, we explain how it is possible to derive local time-activity curves from segmented gated-blood pool tomographic acquisitions. The new method is based on the computation of a suitable deformation of a reference time-activity-curve. This paper describes how this reference curve is transformed to approximate the acquired data with a smooth, noise-free time-activity curve from which relevant clinical parameters can be derived. One may remind and illustrate the main results dealing with the validation studies of this new method achieved on simulated data and by comparison with multi-harmonic reconstructions. Last, some clinical examples are proposed to illustrate the potentials of this method. The deformable model used in this paper provides accurate assessment of systolic (time of end systole, amplitude, peak ejection rate) or diastolic parameters (peak filling rate) both for planar and tomographic gated blood pool studies. Further clinical studies are now necessary to compare the results of this model with those achieved with usual multi-harmonic fits, and to evaluate its interest in the assessment of rhythmic heart diseases or in the prognosis of heart failure. (author)

  18. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats

    Directory of Open Access Journals (Sweden)

    Xavier Remesar

    2015-07-01

    Full Text Available Background and objectives. Red blood cells (RBC are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet.Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids.Results. The absence of ω3-PUFA in RBC extracts (but not in plasma suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA (and, in general, of insaturation. Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources.Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool.

  19. Predictive value of T2-weighted imaging and contrast-enhanced MR imaging in assessing myometrial invasion in endometrial cancer: a pooled analysis of prospective studies

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lian-Ming [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Renji Hospital, Shanghai (China); Wayne State University, Department of Radiology, Detroit, MI (United States); Xu, Jian-Rong; Gu, Hai-Yan; Hua, Jia [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Renji Hospital, Shanghai (China); Haacke, E.M.; Hu, Jiani [Wayne State University, Department of Radiology, Detroit, MI (United States)

    2013-02-15

    To obtain diagnostic performance values of T2-weighted imaging (T2WI) and contrast-enhanced magnetic resonance imaging (CE-MRI) in the prediction of myometrial invasion in patients with endometrial cancer. Databases including MEDLINE and EMBASE were searched for relevant original articles published from January1995 to March 2012. Pooled estimation data were obtained by statistical analysis. Eleven articles (548 patients) were included. For assessing any myometrial involvement, the pooled sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for CE-MRI were 0.81 (95% CI, 0.72, 0.88), 0.72 (95% CI, 0.64, 0.79), 0.65 (95% CI, 0.56, 0.73) and 0.85 (95% CI, 0.78, 0.91); for T2WI, they were 0.87 (95% CI, 0.78, 0.94), 0.58 (95% CI, 0.47, 0.69), 0.64 (95% CI, 0.54, 0.73), 0.84 (95% CI, 0.73, 0.92) respectively. The pooled specificity of CE-MRI (0.72) was significantly higher than T2WI (0.58) (P < 0.05). For assessing deep myometrial involvement, there was no statistically significant difference between CE-MRI and T2WI, (P > 0.05). CE-MRI has a good diagnostic performance in the prediction of any myometrial invasion and is superior to T2WI. But its PPV is somewhat suboptimal. For assessing deep myometrial involvement, its NPV appears relative high and negative findings strongly suggest an absence of deep myometrial involvement, which can guide therapeutic decision-making. (orig.)

  20. Functional imaging of dolphin brain metabolism and blood flow.

    Science.gov (United States)

    Ridgway, Sam; Houser, Dorian; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-08-01

    This report documents the first use of magnetic resonance images (MRIs) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep. Diazepam has been shown to induce unihemispheric slow waves (USW), therefore we used functional imaging of dolphins with and without diazepam to observe hemispheric differences in brain metabolism and blood flow. MRIs were used to register functional brain scans with single photon emission computed tomography (SPECT) and positron emission tomography (PET) in trained dolphins. Scans using SPECT revealed unihemispheric blood flow reduction following diazepam doses greater than 0.55 mg kg(-1) for these 180-200 kg animals. Scans using PET revealed hemispheric differences in brain glucose consumption when scans with and without diazepam were compared. The findings suggest that unihemispheric reduction in blood flow and glucose metabolism in the hemisphere showing USW are important features of unihemispheric sleep. Functional scans may also help to elucidate the degree of hemispheric laterality of sensory and motor systems as well as in neurotransmitter or molecular mechanisms of unihemispheric sleep in delphinoid cetaceans. The findings also demonstrate the potential value of functional scans to explore other aspects of dolphin brain physiology as well as pathology.

  1. Intraoperative multi-exposure speckle imaging of cerebral blood flow.

    Science.gov (United States)

    Richards, Lisa M; Kazmi, Sm Shams; Olin, Katherine E; Waldron, James S; Fox, Douglas J; Dunn, Andrew K

    2017-09-01

    Multiple studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable cerebral blood flow monitoring technique during neurosurgery. However, the quantitative accuracy and sensitivity of LSCI is limited, and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study ( n = 8) recorded multiple exposure times from the same cortical tissue area spanning 0.5-20 ms, and evaluated images individually as single-exposure LSCI and jointly using the MESI model. This study demonstrated that the MESI estimates provided the broadest flow sensitivity for sampling the flow magnitude in the human brain, closely followed by the shorter exposure times. Conservation of flow analysis on vascular bifurcations was used to validate physiological accuracy, with highly conserved flow estimates (flow changes after tissue cautery. Results from this study demonstrate that intraoperative MESI can be performed with high quantitative accuracy and sensitivity for cerebral blood flow monitoring.

  2. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Maynard, Scott; Hejl, Anne-Mette; Dinh, Tran Thuan Son

    2015-01-01

    AIMS: Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics...... and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. METHODS: PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants...... on adjustments for gender and/or age. CONCLUSIONS: This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD....

  3. The Minho Word Pool: Norms for imageability, concreteness, and subjective frequency for 3,800 Portuguese words.

    Science.gov (United States)

    Soares, Ana Paula; Costa, Ana Santos; Machado, João; Comesaña, Montserrat; Oliveira, Helena Mendes

    2017-06-01

    Words are widely used as stimuli in cognitive research. Because of their complexity, using words requires strict control of their objective (lexical and sublexical) and subjective properties. In this work, we present the Minho Word Pool (MWP), a dataset that provides normative values of imageability, concreteness, and subjective frequency for 3,800 (European) Portuguese words-three subjective measures that, in spite of being used extensively in research, have been scarce for Portuguese. Data were collected with 2,357 college students who were native speakers of European Portuguese. The participants rated 100 words drawn randomly from the full set for each of the three subjective indices, using a Web survey procedure (via a URL link). Analyses comparing the MWP ratings with those obtained for the same words from other national and international databases showed that the MWP norms are reliable and valid, thus providing researchers with a useful tool to support research in all neuroscientific areas using verbal stimuli. The MWP norms can be downloaded along with this article or from http://p-pal.di.uminho.pt/about/databases .

  4. The Agreement Between Blood Pool - Delayed Bone Scintigraphy and Tc-99m Human Immunoglobulin G (HIG Scintigraphy in the Determination of the Presence and Severity of Inflammatory Arthritis

    Directory of Open Access Journals (Sweden)

    Gulizar Kacar

    2011-08-01

    Full Text Available Objective: In this study, it was aimed to investigate the agreement between early phase of bone scintigraphy – human immunoglobulin scintigraphy (EPBS-HIG and late phase bone scintigraphy – HIG (LPBS-HIG in the determination of the presence and also the severity of inflammatory arthritis. Material and Methods: Twenty-eight patients (23 female, 5 male; between 19 to 80 years of age with inflammatory arthritis were included in the study. Tc-99m HIG and blood pool/late phase bone scintigraphies were performed in all patients. In scintigraphic examinations, the joints were scored with the degree of accumulation of the radiopharmaceutical by the semiquantitative analysis (0=Background activity, 1=Faint uptake, 2=Moderate uptake, 3=Marked uptake which is called as visually active joint score as severity index of the disease. To estimate the agreement between EPBS – HIG and LPBS - HIG in the determination of the presence and severity of inflammatory arthritis, 2x2 kappa coefficients were calculated. Results: Our results showed good agreement between EPBS - HIG for the presence of inflammation (kappa: 0.72 but not for the severity of the disease (kappa: 0.29, poor agreement between LPBS - HIG for both the presence (kappa: 0.51 and severity (kappa: 0.01 of inflammatory arthritis. Conclusion: The blood pool scintigraphy could be used in the investigation of the presence of inflammatory arthritis because the good agreement with HIG and the lower cost but not for the severity of the disease. (MIRT 2011;20:45-51

  5. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images.

    Science.gov (United States)

    Arslan, Salim; Ozyurek, Emel; Gunduz-Demir, Cigdem

    2014-06-01

    Computer-based imaging systems are becoming important tools for quantitative assessment of peripheral blood and bone marrow samples to help experts diagnose blood disorders such as acute leukemia. These systems generally initiate a segmentation stage where white blood cells are separated from the background and other nonsalient objects. As the success of such imaging systems mainly depends on the accuracy of this stage, studies attach great importance for developing accurate segmentation algorithms. Although previous studies give promising results for segmentation of sparsely distributed normal white blood cells, only a few of them focus on segmenting touching and overlapping cell clusters, which is usually the case when leukemic cells are present. In this article, we present a new algorithm for segmentation of both normal and leukemic cells in peripheral blood and bone marrow images. In this algorithm, we propose to model color and shape characteristics of white blood cells by defining two transformations and introduce an efficient use of these transformations in a marker-controlled watershed algorithm. Particularly, these domain specific characteristics are used to identify markers and define the marking function of the watershed algorithm as well as to eliminate false white blood cells in a postprocessing step. Working on 650 white blood cells in peripheral blood and bone marrow images, our experiments reveal that the proposed algorithm improves the segmentation performance compared with its counterparts, leading to high accuracies for both sparsely distributed normal white blood cells and dense leukemic cell clusters. © 2014 International Society for Advancement of Cytometry.

  6. Critical appraisal and pooled analysis of telmisartan alone or in combination with hydrochlorothiazide for achieving blood pressure goals

    Directory of Open Access Journals (Sweden)

    Satoshi Morimoto

    2010-06-01

    Full Text Available Satoshi Morimoto, Nobuyuki Takahashi, Tatsuyori Morita, Kazunori Someya, Nagaoki Toyoda, Toshiji IwasakaSecond Department of Internal Medicine, Kansai Medical University 2-3-1, Shinmachi, Hirakata, Osaka 573-1191, JapanAbstract: Rigid control of blood pressure (BP is essential to prevent cardiovascular disease. However, only about 40% of hypertensive patients undergoing pharmacological intervention with a single agent achieve their BP goals in contemporary clinical practice. Combined therapy using currently available agents is effective in maximizing treatment outcome, although it raises medical costs and decreases the drug compliance rate. To overcome such negative consequences, a combination tablet containing an angiotensin II receptor blocker (ARB with a small dose of hydrochlorothiazide (HCTZ is now available on the international market, including Japan. This article briefly describes the unique properties of telmisartan, a highly selective ARB for the angiotensin II type 1 receptor, including its long-acting characteristics and recent prospective multicenter randomized clinical trials, followed by a description of a newly-introduced combination tablet in Japan, which contains telmisartan and HCTZ. This article also reviews its safety and efficacy based on currently available evidence. Finally, evidence comparing telmisartan/HCTZ with other combination therapies is presented.Keywords: angiotensin II receptor blocker, ARB, blood pressure, hypertension, diuretics, PPAR-γ

  7. Fourier analysis of multi-gated cardiac blood-pool data in patients with congenital heart diseases, (2). Assessment of diseases with complex cardiac anomalies, especially tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kan; Maeda, Hisato; Yamaguchi, Nobuo; Nakamura, Kazuyoshi; Matsumura, Kaname; Nakagawa, Tsuyoshi; Sakurai, Minoru; Aoki, Kenzo

    1985-04-01

    The clinical usefulness of Fourier analysis of multi-gated cardiac blood-pool data was evaluated in 18 subjects with normal cardiac functions and 14 patients with complex cardiac anomalies (ten with tetralogy of Fallot, two with tricuspid atresia (TA), one with double-outlet right ventricle (DORV), and one with Ebstein's anomaly (EA)). Using global ventricular time-activity curves, the phase and amplitude at fundamental frequency were calculated, and emptying patterns of the left and right ventricles (LV, RV) were evaluated by phase difference (D(phase)=RV phase minus LV phase) and amplitude ratio of RV to LV (R(amp)). In patients with TOF, mean values of D (phase) and R(amp) were 25.3 +- 10.5 degrees and 13.5 +- 0.49 respectively and significantly larger than those of normal subjects. D (phase) became larger in inverse proportion to the ratio of pulmonary-to-systemic blood flow and there was an inverse linear correlation between these two variables. On visual interpretation of functional images, the dynamic property of hypoplastic ventricles could be easily estimated in patients with TA or DORV. In a case with EA, the atrialized RV was shown clearly as a hypokinetic, atrial phase area. This method is valuable for pathophysiologic investigation of diseases with complex cardiac anomalies. (author).

  8. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  9. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  10. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  11. Vernal Pools

    Data.gov (United States)

    California Department of Resources — This is a polygon layer representing existing vernal pool complexes in California's Central Valley, as identified and mapped by Dr. Robert F. Holland. The purpose of...

  12. ROC Analysis of Visual Assessments Made in Gated Blood Pool Scans of Patients with Coronary Artery Disease

    International Nuclear Information System (INIS)

    Lee, Kyung Han; Choi, Yoon Ho; Lee, Bum Woo; Moon, Dae Hyuk; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Koong, Sung Soo

    1989-01-01

    Visual assessment of regional wall motion abnormality (RWMA) by gated blood pol scan (GBPS) serves as an useful parameter in thc diagnosis, functional evaluation, and follow up in various clinical settings, but are still subject to some inherent limitations. On important problem may be the interobserver as well as intraobsever variation that may well be present due to the subjective nature of the interpretations. This study was carried out to determine the reliability and reproducibility of visual assessments made in GBPSs, and to observe the degree to which the results would be influenced by observer variation. Fifty two patients with coronary heart disease had resting GBPS and contrast ventriculography within 4 days apart. Contrast ventriculography showed normal wall motion in 6 patients and the remaining 46 had RWMA in one or more segments. The anterior and left anterolateral views of all 52 GBPSs were analyzed by three independent observers, who selected from 5 scales, their level of confidence that there was RWMA in that segment. Receiver operating characteristic (ROC) curves for each analysis was plotted and the area under the curve (θ) was used as a parameter representing each observer's performance in his interpretations. The findings of contract ventriculographies were used as the standard for RWMA. The apical and inferoapical segments showed the best correlation with contrast ventriculography (θ=0.90-.094, 0.81-0.94, respectively), and the inferior wall showed the poorest correlation (θ=0.70-0.74). The interpretations of the inferior, septal, apical and posteroinferior, segments showed no difference between the observers, but there was significantly better performance in assessment by observer A compared to that by B or C for the anterolateral segments (θ=0.87, 0.78, 0.76, respectively, p<0.01 for A vs B, p<0,05 for A vs C), as well as when all segments were considered altogether (θ=0,88, 0.83, 0.82, respectively, both p<0 05). This was also true for

  13. Chagas Parasite Detection in Blood Images Using AdaBoost

    Directory of Open Access Journals (Sweden)

    Víctor Uc-Cetina

    2015-01-01

    Full Text Available The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With this method, we get 100% and 93.25% of sensitivity and specificity, respectively. A ROC comparison with the method most commonly used for the detection of malaria parasites based on support vector machines (SVM is also provided. Our experimental work shows mainly two things: (1 Chagas parasites can be detected automatically using machine learning methods with high accuracy and (2 AdaBoost + SVM provides better overall detection performance than AdaBoost or SVMs alone. Such results are the best ones known so far for the problem of automatic detection of Chagas parasites through the use of machine learning, computer vision, and image processing methods.

  14. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2008-01-01

    Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...... speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present...

  15. Chemical contrast observed in thermal images of blood-stained fabrics exposed to steam.

    Science.gov (United States)

    O'Brien, Wayne L; Boltin, Nicholas D; Lu, Zhenyu; Cassidy, Brianna M; Belliveau, Raymond G; Straub, Emory J; DeJong, Stephanie A; Morgan, Stephen L; Myrick, M L

    2015-09-21

    Thermal imaging is not ordinarily a good way to visualize chemical contrast. In recent work, however, we observed strong and reproducible images with chemical contrasts on blood-stained fabrics, especially on more hydrophobic fabrics like acrylic and polyester.

  16. Assessment of left ventricular ejection fraction by gated blood pool scintigraphy on early and late phase from the onset of acute myocardial infarction

    International Nuclear Information System (INIS)

    Nakashima, Yoshiharu; Fukuzaki, Hisashi; Minamiji, Katsumi; Kida, Toru; Okada, Toshio; Yamada, Shigenobu; Goto, Takeshi; Maeda, Kazumi; Yoshida, Yutaka.

    1984-01-01

    To evaluate the change of left ventricular function after the onset of acute myocardial infarction, gated blood pool scintigraphy was performed in 19 patients on early and late phase (6 days and 1 month on the average). There was a difference in left ventricular ejection fraction (LVEF) between patients with anterior and inferior myocardial infarction. Patients with anterior infarction indicated low value of LVEF (31+-7%) on acute phase and its value was increased on chronic phase (37+-8%), whereas patients with inferior infarction had higher value of LVEF not only on acute phase but also on chronic phase (54+-9%→57+-10%), than those with anterior infarction. Left ventricular volume was larger in anterior group than in inferior group and tended to become smaller on chronic phase. In 4 of 10 cases with anterior infarction, a significant improvement of LVEF was found from 28+-6% to 43+-5%, but in 6 cases LVEF was unchanged during the same period. In 3 cases out of improved group, it was demonstrated angiographically that the collateral vessels were developed. It was, thus, suggested that collateral vessels may play an important role in the recovery of myocardial ischemia and wall motion abnormality in the marginal zone of infarcted area. From these results, we concluded that left ventricular function changed serially in most patients from the early phase to the late phase after the onset of acute myocardial infarction. (author)

  17. Blood vessel classification into arteries and veins in retinal images

    Science.gov (United States)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  18. Pool scrubbing

    International Nuclear Information System (INIS)

    Lopez-Jimenez, J.; Herranz, J.; Escudero, M.J.; Espigares, M.M.; Peyres, V.; Polo, J.; Kortz, Ch.; Koch, M.K.; Brockmeier, U.; Unger, H.; Dutton, L.M.C.; Smedley, Ch.; Trow, W.; Jones, A.V.; Bonanni, E.; Calvo, M.; Alonso, A.

    1996-12-01

    The Source Term Project in the Third Frame Work Programme of the European Union Was conducted under and important joined effort on pool scrubbing research. CIEMAT was the Task Manager of the project and several other organizations participated in it: JRC-Ispra, NNC Limited, RUB-NES and UPM. The project was divided into several tasks. A peer review of the models in the pool scrubbing codes SPARC90 and BUSCA-AUG92 was made, considering the different aspects in the hydrodynamic phenomenology, particle retention and fission product vapor abortions. Several dominant risk accident sequences were analyzed with MAAP, SPARC90 and BUSCA-AUG92 codes, and the predictions were compared. A churn-turbulent model was developed for the hydrodynamic behaviour of the pool. Finally, an experimental programme in the PECA facility of CIEMAT was conducted in order to study the decontamination factor under jet injection regime, and the experimental observations were compared with the SPARC and BUSCA codes. (Author)

  19. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  20. Three-dimensional visualization of myocardial motion and blood flow with cine-MR images

    International Nuclear Information System (INIS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro; Mikami, Taisei; Kitabatake, Akira.

    1997-01-01

    This paper describes a three-dimensional (3D) reconstruction and presentation method to visualize myocardial motion and blood flow in a heart using cine-MR (magnetic resonance) images. Firstly, the region of myocardium and blood were segmented with certain threshold gray values. Secondly, some slices were interpolated linearly to reconstruct a 3D static image. Finally, a 3D dynamic image was presented with displaying the 3D static images sequentially. The experimental results indicate that this method enables to visualize not only normal but also abnormal blood flow in cine-mode. (author)

  1. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  2. Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm.

    Science.gov (United States)

    Chhatbar, Pratik Y; Kara, Prakash

    2013-01-01

    Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature.

  3. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    Science.gov (United States)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  4. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  5. Assessment of left ventricular filling in various heart disease, especially in ischemic heart disease, by ECG-gated cardiac blood pool scintigraphy

    International Nuclear Information System (INIS)

    Nakagawa, Hiroaki

    1986-01-01

    Using ECG-gated cardiac blood pool scintigraphy (BPS), left ventricular (LV) diastolic function was evaluated in various heart disease, especially in ischemic heart disease (IHD). LV function indices (2 systolic and 9 diastolic) were obtained from LV time activity curve derived from BPS. Among various diastolic indices, peak filling rate (PFR) and 2 other indices were significantly influenced by heart rate (HR), so corrected values for HR were used for this study. Various degrees of disturbance in diastolic filling were found in many cases without systolic impairment. According to the mechanism responsible for diastolic impairment, LV time activity curve showed a characteristic pattern. In IHD, filling disturbance in early diastole was observed before the impairment of systolic contraction developed, so it was thought to be an early predictor of cardiac failure. In the scar region of myocardial infarction (MI), decrease in regional ejection fraction and asynchrony in wall motion were shown, and these resulted in marked deterioration of early diastolic filling. On the other hand in angina pectoris (AP), such systolic disorders were not shown in the ischemic region perfused by stenotic coronary artery, although the disturbance of regional filling was found. The exercise capacity in AP was more related to the impairment in diastolic function at resting state than in systolic function, and furthermore the reserve of diastolic function as well as of systolic function was shown to be an important determinant of exercise capacity in AP. As HR increased, increase of PFR and decrease in time to peak filling was found, which was thought to be a sort of compensation for the shortening diastolic time due to increase in HR during exercise. Such compensation was decreased in AP with reduced exercise capacity. (J.P.N.)

  6. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging.

    Science.gov (United States)

    Li, Bo; Li, Hao; Kong, Hanjing; Dong, Li; Zhang, Jue; Fang, Jing

    2017-05-01

    In this study, we sought to demonstrate the blood suppression performance, image quality and morphological measurements for compressed sensing (CS) based simultaneous 3D black- and gray-blood imaging sequence (CS-siBLAG) in carotid vessel wall MR imaging. Seven healthy volunteers and five patients were recruited. Healthy subjects underwent five CS-siBLAG scans with 1, 2, 3, 4 and 5-fold accelerations. Signal-to-tissue ratio (STR) and contrast-to-tissue ratio (CTR) were computed as the measures of flowing signal suppression performance and the image quality for black-blood imaging of the technique. Vessel lumen area (LA) and wall area (WA) were compared between fully sampled acquisition and each accelerated acquisition. Patients underwent three CS-siBLAG scans with 1, 3 and 5-fold accelerations as well as a 3D time of flight (3D TOF) scan. Two radiologists reviewed the under-sampled black- and gray-blood image quality. STR and CTR values obtained with 2 to 5-fold accelerations were not significantly different from those with full acquisition. LA and WA measured at 2×, 3×, 4× and 5× were all highly correlated to the corresponding values at 1×. For patients imaging, two radiologists both found that the dual-contrast images at 3× acceleration exhibited comparable image quality to that of the fully sampled acquisition, and that the images at 5× exhibited slightly blurred vessel wall and outer vessel wall boundaries. By combining the CS under-sampling pattern and reconstruction, pseudo-centric phase encoding order and dual blood contrast sequences, this technique provides spatially registered black- and gray-blood images and excellent visualization for vessel wall imaging and gray-blood imaging in a short scan time. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Blood-brain barrier permeability imaging using perfusion computed tomography

    Directory of Open Access Journals (Sweden)

    Avsenik Jernej

    2015-06-01

    Full Text Available Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases.

  8. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    Science.gov (United States)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  9. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    Science.gov (United States)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  10. Testing a new surfactant in a widely-used blood mimic for ultrasound flow imaging.

    Science.gov (United States)

    Zhou, Xiaowei; Hoskins, Peter R

    2017-11-01

    A blood-mimicking fluid developed by Ramnarine et al. has been widely used in flow phantoms for ultrasound flow imaging research, and it has also been cited by IEC 61685 as a reference for making blood-mimicking fluid.However, the surfactant material Synperonic N in this blood-mimicking fluid recipe is phased out from the European market due to environmental issues. The aim of this study is to test whether Synperonic N can be substituted by biodegradable Synperonic A7 in making blood-mimicking fluid for ultrasound flow imaging research. A flow phantom was fabricated to test the blood-mimicking fluid with Synperonic N and Synperonic A7 as surfactants separately. Doppler images and velocity data were collected using a clinical ultrasound scanner under constant and pulsatile flows; and images and measured velocities were compared. It was found that both blood mimics can provide exactly the same images under spectral Doppler ultrasound and colour Doppler ultrasound in terms of their image qualities. The maximum velocities under constant flow were measured by the spectral Doppler ultrasound as 0.4714 ± 0.001 m.s -1 and 0.4644 ± 0.001 m.s -1 for blood-mimicking fluid with Synperonic N and blood-mimicking fluid with Synperonic A7, respectively. Measured velocities using the two different blood-mimicking fluids were statistically different ( p  material in making the blood-mimicking fluid for ultrasound flow imaging research.

  11. Evaluation of right ventricular function using gated equilibrium blood pool radionuclide ventriculography in patients with congenital volume and pressure overload late after surgical repair

    International Nuclear Information System (INIS)

    Hirata, Nobuaki; Sakakibara, Tetsuo; Watanabe, Shinichiro; Nomura, Fumikazu; Akamatsu, Hiroki; Matsumura, Yasushi; Yamamoto, Kazuhiro; Sasaki, Jiro; Kodama, Kazuhisa

    1991-01-01

    The effects of congenital right ventricular pressure and volume overload were studied in 3 patients with pulmonary stenosis, 7 with atrial septal defect and 6 with atrial septal defect plus pulmonary stenosis late after successful surgical correction. Gated equilibrium blood pool radionuclide ventriculography was used to measure right ventricular function at rest and during exercise and to compare it with eight normal subjects. Right ventricular ejection fractions at rest and during exercise were measured to be 61±9% and 66±13%, respectively, in the group with pulmonary stenosis, 49±7% and 54±8% in the group with atrial septal defect, and 65±13% and 69±13% in the group with atrial septal defect plus pulmonary stenosis. The values in the groups with pulmonary stenosis and atrial septal defect plus pulmonary stenosis were significantly higher than the control subjects (45±5% and 51±5%, p<0.01). The peak filling rate at rest and during exercise was also significantly higher in the groups with pulmonary stenosis and atrial septal defect plus pulmonary stenosis than in controls (at rest, 2.72±0.72, 2.53±0.94 vs. 1.64±0.24 p<0.05; during exercise, 4.38±1.23, 4.13±1.18 vs. 2.25±0.62, p<0.01). When patients with right ventricular systolic pressure equal to or greater than left ventricular systolic pressure and those with right ventricular systolic pressure less than left ventricular systolic pressure were compared, the right ventricular ejection fraction and peak filling rate were greater with the higher pressure at rest (71±10% and 3.12±0.81% vs. 55±3% and 2.30±0.27, p<0.05) and during exercise (75±11% and 4.86±1.01 vs. 59±3% and 2.61±0.35, p<0.05). Postoperative right ventricular hyperfunction may be due to preoperative pressure, but not volume, overload. (author)

  12. Understanding the decline of mean systolic blood pressure in Japan: an analysis of pooled data from the National Nutrition Survey, 1986-2002.

    Science.gov (United States)

    Ikeda, Nayu; Gakidou, Emmanuela; Hasegawa, Toshihiko; Murray, Christopher J L

    2008-12-01

    To assess the relationships between the observed drop in mean systolic blood pressure (SBP) in Japan in 1986-2002 and the use of antihypertensive treatment and lifestyle factors. A nationally representative sample of 90,554 men and 101,903 women aged 20 years and over was obtained from pooled data of annual cross-sectional surveys in Japan during 1986-2002. Using two-stage least squares with an instrumental variable, we examined the association between SBP and antihypertensive medication and lifestyle factors, including body mass index (BMI), physical activity, alcohol consumption, cigarette smoking and dietary salt intake. In the surveys, regular exercise was defined as exercise for more than 30 minutes at a time more than twice a week for over 1 year. Current smoking was defined as either daily or occasional cigarette use. Current drinking was defined as an intake of more than one standard cup of Japanese sake, one large bottle of regular beer, or one double measure of whisky at a time more than three times a week. Changes in mean predicted SBP in each sex and age group between 1986 and 2002 were decomposed into the respective contributions of these explanatory variables. Age-specific means of predicted SBP declined during this period by 1.8 (95% confidence interval, CI: 1.2-2.5) to 3.0 (95% CI: 2.4-3.6) mmHg in men and 3.7 (95% CI: 3.4-4.1) to 5.1 (95% CI: 4.5-5.7) mmHg in women. These reductions were partly explained by the increased use of medications across all sex and age groups and decreased mean BMI in women in their 30s and 40s. The contributions of treatment effects increased with age. Elevated mean BMI in men and elderly women offset part of the decline of their mean SBP. Declining mean SBP in Japan between 1986 and 2002 was partly attributable to the increased use of antihypertensive medications, especially in the older population, and lowered mean BMI in young women. However, a substantial part of the decline was left unexplained and needs to be

  13. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants

    NARCIS (Netherlands)

    Zhou, Bin; Bentham, James; Di Cesare, Mariachiara; Bixby, Honor; Danaei, Goodarz; Cowan, Melanie J.; Paciorek, Christopher J.; Singh, Gitanjali; Hajifathalian, Kaveh; Bennett, James E.; Taddei, Cristina; Bilano, Ver; Carrillo-Larco, Rodrigo M.; Djalalinia, Shirin; Khatibzadeh, Shahab; Lugero, Charles; Peykari, Niloofar; Zhang, Wan Zhu; Lu, Yuan; Stevens, Gretchen A.; Riley, Leanne M.; Bovet, Pascal; Elliott, Paul; Gu, Dongfeng; Ikeda, Nayu; Jackson, Rod T.; Joffres, Michel; Kengne, Andre Pascal; Laatikainen, Tiina; Lam, Tai Hing; Laxmaiah, Avula; Liu, Jing; Miranda, J. Jaime; Mondo, Charles K.; Neuhauser, Hannelore K.; Sundstrom, Johan; Smeeth, Liam; Soric, Maroje; Woodward, Mark; Ezzati, Majid; Abarca-Gomez, Leandra; Abdeen, Ziad A.; Rahim, Hanan Abdul; Abu-Rmeileh, Niveen M.; Acosta-Cazares, Benjamin; Adams, Robert; Aekplakorn, Wichai; Afsana, Kaosar; Aguilar-Salinas, Carlos A.; Agyemang, Charles; Ahmadvand, Alireza; Ahrens, Wolfgang; Al Raddadi, Rajaa; Al Woyatan, Rihab; Ali, Mohamed M.; Alkerwi, Ala'a; Aly, Eman; Amouyel, Philippe; Amuzu, Antoinette; Andersen, Lars Bo; Anderssen, Sigmund A.; Angquist, Lars; Anjana, Ranjit Mohan; Ansong, Daniel; Aounallah-Skhiri, Hajer; Araujo, Joana; Ariansen, Inger; Aris, Tahir; Arlappa, Nimmathota; Aryal, Krishna; Arveiler, Dominique; Assah, Felix K.; Assuncao, Maria Cecilia F.; Avdicova, Maria; Azevedo, Ana; Azizi, Fereidoun; Babu, Bontha V.; Bahijri, Suhad; Balakrishna, Nagalla; Bandosz, Piotr; Banegas, Jose R.; Barbagallo, Carlo M.; Barcelo, Alberto; Barkat, Amina; Barros, Aluisio J. D.; Barros, Mauro V.; Bata, Iqbal; Batieha, Anwar M.; Baur, Louise A.; Beaglehole, Robert; Ben Romdhane, Habiba; Benet, Mikhail; Benson, Lowell S.; Bernabe-Ortiz, Antonio; Bernotiene, Gailute; Bettiol, Heloisa; Bhagyalaxmi, Aroor; Bharadwaj, Sumit; Bhargava, Santosh K.; Bi, Yufang; Bikbov, Mukharram; Bjerregaard, Peter; Bjertness, Espen; Bjokelund, Cecilia; Blokstra, Anneke; Bo, Simona; Bobak, Martin; Boeing, Heiner; Boggia, Jose G.; Boissonnet, Carlos P.; Bongard, Vanina; Braeckman, Lutgart; Brajkovich, Imperia; Branca, Francesco; Breckenkamp, Juergen; Brenner, Hermann; Brewster, Lizzy M.; Bruno, Graziella; Bueno-de-Mesquita, H. B. (as); Bugge, Anna; Burns, Con; Bursztyn, Michael; de Leon, Antonio Cabrera; Cameron, Christine; Can, Gunay; Candido, Ana Paula C.; Capuano, Vincenzo; Cardoso, Viviane C.; Carlsson, Axel C.; Carvalho, Maria J.; Casanueva, Felipe F.; Casas, Juan-Pablo; Caserta, Carmelo A.; Chamukuttan, Snehalatha; Chan, Angelique W.; Chan, Queenie; Chaturvedi, Himanshu K.; Chaturvedi, Nishi; Chen, Chien-Jen; Chen, Fangfang; Chen, Huashuai; Chen, Shuohua; Chen, Zhengming; Cheng, Ching-Yu; Dekkaki, Imane Cherkaoui; Chetrit, Angela; Chiolero, Arnaud; Chiou, Shu-Ti; Chirita-Emandi, Adela; Cho, Belong; Cho, Yumi; Chudek, Jerzy; Cifkova, Renata; Claessens, Frank; Clays, Els; Concin, Hans; Cooper, Cyrus; Cooper, Rachel; Coppinger, Tara C.; Costanzo, Simona; Cottel, Dominique; Cowell, Chris; Craig, Cora L.; Crujeiras, Ana B.; Cruz, Juan J.; D'Arrigo, Graziella; d'Orsi, Eleonora; Dallongeville, Jean; Damasceno, Albertino; Dankner, Rachel; Dantoft, Thomas M.; Dauchet, Luc; de Backer, Guy; de Gaetano, Giovanni; de Henauw, Stefaan; de Smedt, Delphine; Deepa, Mohan; Dehghan, Abbas; Delisle, Helene; Deschamps, Valerie; Dhana, Klodian; Di Castelnuovo, Augusto F.; Dias-da-Costa, Juvenal Soares; Diaz, Alejandro; Dickerson, Ty T.; Do, Ha T. P.; Dobson, Annette J.; Donfrancesco, Chiara; Donoso, Silvana P.; Doering, Angela; Doua, Kouamelan; Drygas, Wojciech; Dulskiene, Virginija; Dzakula, Aleksandar; Dzerve, Vilnis; Dziankowska-Zaborszczyk, Elzbieta; Eggertsen, Robert; Ekelund, Ulf; El Ati, Jalila; Ellert, Ute; Elosua, Roberto; Erasmus, Rajiv T.; Erem, Cihangir; Eriksen, Louise; Escobedo-de la Pena, Jorge; Evans, Alun; Faeh, David; Fall, Caroline H.; Farzadfar, Farshad; Felix-Redondo, Francisco J.; Ferguson, Trevor S.; Fernandez-Berges, Daniel; Ferrante, Daniel; Ferrari, Marika; Ferreccio, Catterina; Ferrieres, Jean; Finn, Joseph D.; Fischer, Krista; Foeger, Bernhard; Foo, Leng Huat; Forslund, Ann-Sofie; Forsner, Maria; Fortmann, Stephen P.; Fouad, Heba M.; Francis, Damian K.; Franco, Maria do Carmo; Franco, Oscar H.; Frontera, Guillermo; Fuchs, Flavio D.; Fuchs, Sandra C.; Fujita, Yuki; Furusawa, Takuro; Gaciong, Zbigniew; Gareta, Dickman; Garnett, Sarah P.; Gaspoz, Jean-Michel; Gasull, Magda; Gates, Louise; Gavrila, Diana; Geleijnse, Johanna M.; Ghasemian, Anoosheh; Ghimire, Anup; Giampaoli, Simona; Gianfagna, Francesco; Giovannelli, Jonathan; Goldsmith, Rebecca A.; Goncalves, Helen; Gonzalez Gross, Marcela; Gonzalez Rivas, Juan P.; Gottrand, Frederic; Graff-Iversen, Sidsel; Grafnetter, Dusan; Grajda, Aneta; Gregor, Ronald D.; Grodzicki, Tomasz; Grontved, Anders; Gruden, Grabriella; Grujic, Vera; Guan, Ong Peng; Gudnason, Vilmundur; Guerrero, Ramiro; Guessous, Idris; Guimaraes, Andre L.; Gulliford, Martin C.; Gunnlaugsdottir, Johanna; Gunter, Marc; Gupta, Prakash C.; Gureje, Oye; Gurzkowska, Beata; Gutierrez, Laura; Gutzwiller, Felix; Hadaegh, Farzad; Halkjaer, Jytte; Hambleton, Ian R.; Hardy, Rebecca; Harikumar, Rachakulla; Hata, Jun; Hayes, Alison J.; He, Jiang; Hendriks, Marleen Elisabeth; Henriques, Ana; Hernandez Cadena, Leticia; Herqutanto, N. N.; Herrala, Sauli; Heshmat, Ramin; Hihtaniemi, Ilpo Tapani; Ho, Sai Yin; Ho, Suzanne C.; Hobbs, Michael; Hofman, Albert; Dinc, Gonul Horasan; Hormiga, Claudia M.; Horta, Bernardo L.; Houti, Leila; Howitt, Christina; Htay, Thein Thein; Htet, Aung Soe; Hu, Yonghua; Maria Huerta, Jose; Husseini, Abdullatif S.; Huybrechts, Inge; Hwalla, Nahla; Iacoviello, Licia; Iannone, Anna G.; Ibrahim, M. Mohsen; Ikram, M. Arfan; Irazola, Vilma E.; Islam, Muhammad; Ivkovic, Vanja; Iwasaki, Masanori; Jacobs, Jeremy M.; Jafar, Tazeen; Jamrozik, Konrad; Janszky, Imre; Jasienska, Grazyna; Jelakovic, Bojan; Jiang, Chao Qiang; Johansson, Mattias; Jonas, Jost B.; Jorgensen, Torben; Joshi, Pradeep; Juolevi, Anne; Jurak, Gregor; Juresa, Vesna; Kaaks, Rudolf; Kafatos, Anthony; Kalter-Leibovici, Ofra; Kamaruddin, Nor Azmi; Kasaeian, Amir; Katz, Joanne; Kauhanen, Jussi; Kaur, Prabhdeep; Kavousi, Maryam; Kazakbaeva, Gyulli; Keil, Ulrich; Boker, Lital Keinan; Keinanen-Kiukaanniemi, Sirkka; Kelishadi, Roya; Kemper, Han C. G.; Kersting, Mathilde; Key, Timothy; Khader, Yousef Saleh; Khalili, Davood; Khang, Young-Ho; Khaw, Kay-Tee; Kiechl, Stefan; Killewo, Japhet; Kim, Jeongseon; Klumbiene, Jurate; Kolle, Elin; Kolsteren, Patrick; Korrovits, Paul; Koskinen, Seppo; Kouda, Katsuyasu; Koziel, Slawomir; Kristensen, Peter Lund; Krokstad, Steinar; Kromhout, Daan; Kruger, Herculina S.; Kubinova, Ruzena; Kuciene, Renata; Kuh, Diana; Kujala, Urho M.; Kula, Krzysztof; Kulaga, Zbigniew; Kumar, R. Krishna; Kurjata, Pawel; Kusuma, Yadlapalli S.; Kuulasmaa, Kari; Kyobutungi, Catherine; Lachat, Carl; Landrove, Orlando; Lanska, Vera; Lappas, Georg; Larijani, Bagher; Laugsand, Lars E.; Le, Nguyen Bao Khanh; Le, Tuyen D.; Leclercq, Catherine; Lee, Jeannette; Lee, Jeonghee; Lehtimaki, Terho; Lekhraj, Rampal; Leon-Munoz, Luz M.; Levitt, Naomi S.; Li, Yanping; Lilly, Christa L.; Lim, Wei-Yen; Fernanda Lima-Costa, M.; Lin, Hsien-Ho; Lin, Xu; Linneberg, Allan; Lissner, Lauren; Litwin, Mieczyslaw; Lorbeer, Roberto; Lotufo, Paulo A.; Eugenio Lozano, Jose; Luksiene, Dalia; Lundqvist, Annamari; Lunet, Nuno; Lytsy, Per; Ma, Guansheng; Ma, Jun; Machado-Coelho, George L. L.; Machi, Suka; Maggi, Stefania; Magliano, Dianna J.; Majer, Marjeta; Makdisse, Marcia; Malekzadeh, Reza; Malhotra, Rahul; Rao, Kodavanti Mallikharjuna; Malyutina, Sofia; Manios, Yannis; Mann, Jim I.; Manzato, Enzo; Margozzini, Paula; Marques-Vidal, Pedro; Marrugat, Jaume; Martorell, Reynaldo; Mathiesen, Ellisiv B.; Matijasevich, Alicia; Matsha, Tandi E.; Mbanya, Jean Claude N.; Posso, Anselmo J. Mc Donald; McFarlane, Shelly R.; McGarvey, Stephen T.; McLachlan, Stela; McLean, Rachael M.; McNulty, Breige A.; Khir, Amir Sharifuddin Md; Mediene-Benchekor, Sounnia; Medzioniene, Jurate; Meirhaeghe, Aline; Meisinger, Christa; Menezes, Ana Maria B.; Menon, Geetha R.; Meshram, Indrapal I.; Metspalu, Andres; Mi, Jie; Mikkel, Kairit; Miller, Jody C.; Francisco Miquel, Juan; Jaime Miranda, J.; Misigoj-Durakovic, Marjeta; Mohamed, Mostafa K.; Mohammad, Kazem; Mohammadifard, Noushin; Mohan, Viswanathan; Yusoff, Muhammad Fadhli Mohd; Moller, Niels C.; Molnar, Denes; Momenan, Amirabbas; Monyeki, Kotsedi Daniel K.; Moreira, Leila B.; Morejon, Alain; Moreno, Luis A.; Morgan, Karen; Moschonis, George; Mossakowska, Malgorzata; Mostafa, Aya; Mota, Jorge; Motlagh, Mohammad Esmaeel; Motta, Jorge; Muiesan, Maria L.; Mueller-Nurasyid, Martina; Murphy, Neil; Mursu, Jaakko; Musil, Vera; Nagel, Gabriele; Naidu, Balkish M.; Nakamura, Harunobu; Namsna, Jana; Nang, Ei Ei K.; Nangia, Vinay B.; Narake, Sameer; Maria Navarrete-Munoz, Eva; Ndiaye, Ndeye Coumba; Neal, William A.; Nenko, Ilona; Nervi, Flavio; Nguyen, Nguyen D.; Nguyen, Quang Ngoc; Nieto-Martinez, Ramfis E.; Niiranen, Teemu J.; Ning, Guang; Ninomiya, Toshiharu; Nishtar, Sania; Noale, Marianna; Noboa, Oscar A.; Noorbala, Ahmad Ali; Norat, Teresa; Noto, Davide; Al Nsour, Mohannad; O'Reilly, Dermot; Oh, Kyungwon; Olinto, Maria Teresa A.; Oliveira, Isabel O.; Omar, Mohd Azahadi; Onat, Altan; Ordunez, Pedro; Osmond, Clive; Ostojic, Sergej M.; Otero, Johanna A.; Overvad, Kim; Owusu-Dabo, Ellis; Paccaud, Fred Michel; Padez, Cristina; Pahomova, Elena; Pajak, Andrzej; Palli, Domenico; Palmieri, Luigi; Panda-Jonas, Songhomitra; Panza, Francesco; Papandreou, Dimitrios; Parnell, Winsome R.; Parsaeian, Mahboubeh; Pecin, Ivan; Pednekar, Mangesh S.; Peer, Nasheeta; Peeters, Petra H.; Peixoto, Sergio Viana; Pelletier, Catherine; Peltonen, Markku; Pereira, Alexandre C.; Marina Perez, Rosa; Peters, Annette; Petkeviciene, Janina; Pham, Son Thai; Pigeot, Iris; Pikhart, Hynek; Pilav, Aida; Pilotto, Lorenza; Pitakaka, Freda; Plans-Rubio, Pedro; Polakowska, Maria; Polasek, Ozren; Porta, Miquel; Portegies, Marileen L. P.; Pourshams, Akram; Pradeepa, Rajendra; Prashant, Mathur; Price, Jacqueline F.; Puiu, Maria; Punab, Margus; Qasrawi, Radwan F.; Qorbani, Mostafa; Radic, Ivana; Radisauskas, Ricardas; Rahman, Mahfuzar; Raitakari, Olli; Raj, Manu; Rao, Sudha Ramachandra; Ramos, Elisabete; Rampal, Sanjay; Rangel Reina, Daniel A.; Rasmussen, Finn; Redon, Josep; Reganit, Paul Ferdinand M.; Ribeiro, Robespierre; Riboli, Elio; Rigo, Fernando; de Wit, Tobias F. Rinke; Ritti-Dias, Raphael M.; Robinson, Sian M.; Robitaille, Cynthia; Rodriguez-Artalejo, Fernando; Rodriguez-Villamizar, Laura A.; Rojas-Martinez, Rosalba; Rosengren, Annika; Rubinstein, Adolfo; Rui, Ornelas; Sandra Ruiz-Betancourt, Blanca; Russo Horimoto, Andrea R. V.; Rutkowski, Marcin; Sabanayagam, Charumathi; Sachdev, Harshpal S.; Saidi, Olfa; Sakarya, Sibel; Salanave, Benoit; Salazar Martinez, Eduardo; Salmeron, Diego; Salomaa, Veikko; Salonen, Jukka T.; Salvetti, Massimo; Sanchez-Abanto, Jose; Sans, Susana; Santos, Diana; Santos, Ina S.; dos Santos, Renata Nunes; Santos, Rute; Saramies, Jouko L.; Sardinha, Luis B.; Margolis, Giselle Sarganas; Sarrafzadegan, Nizal; Saum, Kai-Uwe; Savva, Savvas C.; Scazufca, Marcia; Schargrodsky, Herman; Schneider, Ione J.; Schultsz, Constance; Schutte, Aletta E.; Sen, Abhijit; Senbanjo, Idowu O.; Sepanlou, Sadaf G.; Sharma, Sanjib K.; Shaw, Jonathan E.; Shibuya, Kenji; Shin, Dong Wook; Shin, Youchan; Siantar, Rosalynn; Sibai, Abla M.; Santos Silva, Diego Augusto; Simon, Mary; Simons, Judith; Simons, Leon A.; Sjotrom, Michael; Skovbjerg, Sine; Slowikowska-Hilczer, Jolanta; Slusarczyk, Przemyslaw; Smith, Margaret C.; Snijder, Marieke B.; So, Hung-Kwan; Sobngwi, Eugene; Soderberg, Stefan; Solfrizzi, Vincenzo; Sonestedt, Emily; Song, Yi; Sorensen, Thorkild I. A.; Jerome, Charles Sossa; Soumare, Aicha; Staessen, Jan A.; Starc, Gregor; Stathopoulou, Maria G.; Stavreski, Bill; Steene-Johannessen, Jostein; Stehle, Peter; Stein, Aryeh D.; Stergiou, George S.; Stessman, Jochanan; Stieber, Jutta; Stoeckl, Doris; Stocks, Tanja; Stokwiszewski, Jakub; Stronks, Karien; Strufaldi, Maria Wany; Sun, Chien-An; Sung, Yn-Tz; Suriyawongpaisal, Paibul; Sy, Rody G.; Tai, E. Shyong; Tammesoo, Mari-Liis; Tamosiunas, Abdonas; Tang, Line; Tang, Xun; Tanser, Frank; Tao, Yong; Tarawneh, Mohammed Rasoul; Tarqui-Mamani, Carolina B.; Taylor, Anne; Theobald, Holger; Thijs, Lutgarde; Thuesen, Betina H.; Tjonneland, Anne; Tolonen, Hanna K.; Topbas, Murat; Topor-Madry, Roman; Jose Tormo, Maria; Torrent, Maties; Traissac, Pierre; Trichopoulos, Dimitrios; Trichopoulou, Antonia; Trinh, Oanh T. H.; Trivedi, Atul; Tshepo, Lechaba; Tulloch-Reid, Marshall K.; Tuomainen, Tomi-Pekka; Turley, Maria L.; Tynelius, Per; Tzourio, Christophe; Ueda, Peter; Ugel, Eunice; Ulmer, Hanno; Uusitalo, Hannu M. T.; Valdivia, Gonzalo; Valvi, Damaskini; van der Schouw, Yvonne T.; van Herck, Koen; van Rossem, Lenie; van Valkengoed, Irene G. M.; Vanderschueren, Dirk; Vanuzzo, Diego; Vatten, Lars; Vega, Tomas; Velasquez-Melendez, Gustavo; Veronesi, Giovanni; Verschuren, W. M. Monique; Verstraeten, Roosmarijn; Victora, Cesar G.; Viet, Lucie; Viikari-Juntura, Eira; Vineis, Paolo; Vioque, Jesus; Virtanen, Jyrki K.; Visvikis-Siest, Sophie; Viswanathan, Bharathi; Vollenweider, Peter; Vrdoljak, Ana; Vrijheid, Martine; Wade, Alisha N.; Wagner, Aline; Walton, Janette; Mohamud, Wan Nazaimoon Wan; Wang, Ming-Dong; Wang, Qian; Wang, Ya Xing; Wannamethee, S. Goya; Wareham, Nicholas; Wederkopp, Niels; Weerasekera, Deepa; Whincup, Peter H.; Widhalm, Kurt; Widyahening, Indah S.; Wiecek, Andrzej; Wijga, Alet H.; Wilks, Rainford J.; Willeit, Peter; Williams, Emmanuel A.; Wilsgaard, Tom; Wojtyniak, Bogdan; Wong, Tien Yin; Wong-McClure, Roy A.; Woo, Jean; Wu, Aleksander Giwercman; Wu, Frederick C.; Wu, Shou Ling; Xu, Haiquan; Yan, Weili; Yang, Xiaoguang; Ye, Xingwang; Yiallouros, Panayiotis K.; Yoshihara, Akihiro; Younger-Coleman, Novie O.; Yusoff, Ahmad F.; Zambon, Sabina; Zdrojewski, Tomasz; Zeng, Yi; Zhao, Dong; Zhao, Wenhua; Zheng, Yingffeng; Zhu, Dan; Zimmermann, Esther; Zuniga Cisneros, Julio

    2017-01-01

    Background Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood

  14. Worldwide trends in blood pressure from 1975 to 2015 : a pooled analysis of 1479 population-based measurement studies with 19·1 million participants

    NARCIS (Netherlands)

    Zhou, B.; Bentham, James; Di Cesare, Mariachiara; Bixby, Honor; Danaei, Goodarz; Cowan, Melanie J.; Paciorek, Christopher J.; Singh, Gitanjali; Hajifathalian, Kaveh; Bennett, James E.; Taddei, Cristina; Bilano, Ver; Carrillo-Larco, Rodrigo M.; Djalalinia, Shirin; Khatibzadeh, Shahab; Lugero, Charles; Peykari, Niloofar; Zhang, Wan Zhu; Lu, Yuan; Stevens, Gretchen A.; Riley, Leanne M.; Bovet, Pascal; Elliott, Paul; Gu, Dongfeng; Ikeda, Nayu; Jackson, Rod T.; Joffres, Michel; Kengne, Andre Pascal; Laatikainen, Tiina; Lam, Tai Hing; Laxmaiah, Avula; Liu, Jing; Miranda, J. Jaime; Mondo, Charles K.; Neuhauser, Hannelore K.; Sundström, Johan; Smeeth, Liam; Sorić, Maroje; Woodward, Mark; Ezzati, Majid; Abarca-Gómez, Leandra; Abdeen, Ziad A.; Rahim, Hanan Abdul; Abu-Rmeileh, Niveen M.; Acosta-Cazares, Benjamin; Adams, Robert; Aekplakorn, Wichai; Afsana, Kaosar; Aguilar-Salinas, Carlos A.; Agyemang, Charles; Ahmadvand, Alireza; Ahrens, Wolfgang; Al Raddadi, Rajaa; Al Woyatan, Rihab; Ali, Mohamed M.; Alkerwi, Ala'a; Aly, Eman; Amouyel, Philippe; Amuzu, Antoinette; Andersen, Lars Bo; Anderssen, Sigmund A.; Ängquist, Lars; Anjana, Ranjit Mohan; Ansong, Daniel; Aounallah-Skhiri, Hajer; Araújo, Joana; Ariansen, Inger; Aris, Tahir; Arlappa, Nimmathota; Aryal, Krishna; Arveiler, Dominique; Assah, Felix K.; Assunção, Maria Cecília F.; Avdicová, Mária; Azevedo, Ana; Azizi, Fereidoun; Babu, Bontha V.; Bahijri, Suhad; Balakrishna, Nagalla; Bandosz, Piotr; Banegas, José R.; Barbagallo, Carlo M.; Barceló, Alberto; Barkat, Amina; Barros, Aluisio J.D.; Barros, Mauro V.; Bata, Iqbal; Batieha, Anwar M.; Baur, Louise A.; Beaglehole, Robert; Romdhane, Habiba Ben; Benet, Mikhail; Benson, Lowell S.; Bernabe-Ortiz, Antonio; Bernotiene, Gailute; Bettiol, Heloisa; Bhagyalaxmi, Aroor; Bharadwaj, Sumit; Bhargava, Santosh K.; Bi, Yufang; Bikbov, Mukharram; Bjerregaard, Peter; Bjertness, Espen; Björkelund, Cecilia; Blokstra, Anneke; Bo, Simona; Bobak, Martin; Boeing, Heiner; Boggia, Jose G.; Boissonnet, Carlos P.; Bongard, Vanina; Braeckman, Lutgart; Brajkovich, Imperia; Branca, Francesco; Breckenkamp, Juergen; Brenner, Hermann; Brewster, Lizzy M.; Bruno, Graziella; Bueno-de-Mesquita, H B As; Bugge, Anna; Burns, Con; Bursztyn, Michael; de León, Antonio Cabrera; Cacciottolo, Joseph; Cameron, Christine; Can, Günay; Cândido, Ana Paula C.; Capuano, Vincenzo; Cardoso, Viviane C.; Carlsson, Axel C.; Carvalho, Maria J.; Casanueva, Felipe F.; Casas, Juan-Pablo; Caserta, Carmelo A.; Chamukuttan, Snehalatha; Chan, Angelique W.; Chan, Queenie; Chaturvedi, Himanshu K.; Chaturvedi, Nishi; Chen, Chien-Jen; Chen, Fangfang; Chen, Huashuai; Chen, Shuohua; Chen, Zhengming; Cheng, Yu Ching; Dekkaki, Imane Cherkaoui; Chetrit, Angela; Chiolero, Arnaud; Chiou, Shu Ti; Chirita-Emandi, Adela; Cho, Belong; Cho, Yumi; Chudek, Jerzy; Cifkova, Renata; Claessens, Frank; Clays, Els; Concin, Hans; Cooper, Cyrus; Cooper, Rachel; Coppinger, Tara C.; Costanzo, Simona; Cottel, Dominique; Cowell, Chris; Craig, Cora L.; Crujeiras, Ana B.; Cruz, Juan J.; D'Arrigo, Graziella; d'Orsi, Eleonora; Dallongeville, Jean; Damasceno, Albertino; Danaei, Goodarz; Dankner, Rachel; Dantoft, Thomas M.; Dauchet, Luc; De Backer, Guy; De Bacquer, Dirk; de Gaetano, Giovanni; De Henauw, Stefaan; De Smedt, Delphine; Deepa, Mohan; Dehghan, Abbas; Delisle, Hélène; Deschamps, Valérie; Dhana, Klodian; Di Castelnuovo, Augusto F.; Dias-da-Costa, Juvenal Soares; Diaz, Alejandro; Dickerson, Ty T.; Do, Ha T.P.; Dobson, Annette J.; Donfrancesco, Chiara; Donoso, Silvana P.; Döring, Angela; Doua, Kouamelan; Drygas, Wojciech; Dulskiene, Virginija; Džakula, Aleksandar; Dzerve, Vilnis; Dziankowska-Zaborszczyk, Elzbieta; Eggertsen, Robert; Ekelund, Ulf; El Ati, Jalila; Ellert, Ute; Elliott, Paul; Elosua, Roberto; Erasmus, Rajiv T.; Erem, Cihangir; Eriksen, Louise; Escobedo-de la Peña, Jorge; Evans, Alun; Faeh, David; Fall, Caroline H.; Farzadfar, Farshad; Felix-Redondo, Francisco J.; Ferguson, Trevor S.; Fernández-Bergés, Daniel; Ferrante, Daniel; Ferrari, Marika; Ferreccio, Catterina; Ferrieres, Jean; Finn, Joseph D.; Fischer, Krista; Föger, Bernhard; Foo, Leng Huat; Forslund, Ann Sofie; Forsner, Maria; Fortmann, Stephen P.; Fouad, Heba M.; Francis, Damian K.; do Carmo Franco, Maria; Franco, Oscar H.; Frontera, Guillermo; Fuchs, Flavio D.; Fuchs, Sandra C.; Fujita, Yuki; Furusawa, Takuro; Gaciong, Zbigniew; Gareta, Dickman; Garnett, Sarah P.; Gaspoz, Jean-Michel; Gasull, Magda; Gates, Louise; Gavrila, Diana; Geleijnse, Johanna M.; Ghasemian, Anoosheh; Ghimire, Anup; Giampaoli, Simona; Gianfagna, Francesco; Giovannelli, Jonathan; Goldsmith, Rebecca A.; Gonçalves, Helen; Gross, Marcela Gonzalez; González Rivas, Juan P.; Gottrand, Frederic; Graff-Iversen, Sidsel; Grafnetter, Dušan; Grajda, Aneta; Gregor, Ronald D.; Grodzicki, Tomasz; Grøntved, Anders; Gruden, Grabriella; Grujic, Vera; Gu, Dongfeng; Guan, Ong Peng; Gudnason, Vilmundur; Guerrero, Ramiro; Guessous, Idris; Guimaraes, Andre L.; Gulliford, Martin C.; Gunnlaugsdottir, Johanna; Gunter, Marc J.; Gupta, Prakash C.; Gureje, Oye; Gurzkowska, Beata; Gutierrez, Laura; Gutzwiller, Felix; Hadaegh, Farzad; Halkjær, Jytte; Hambleton, Ian R.; Hardy, Rebecca; Harikumar, Rachakulla; Hata, Jun; Hayes, Alison J.; He, Jiang; Hendriks, Marleen Elisabeth; Henriques, Ana; Cadena, Leticia Hernandez; Herrala, Sauli; Heshmat, Ramin; Hihtaniemi, Ilpo Tapani; Ho, Sai Yin; Ho, Suzanne C.; Hobbs, Michael; Hofman, Albert; Dinc, Gonul Horasan; Hormiga, Claudia M.; Horta, Bernardo Lessa; Houti, Leila; Howitt, Christina; Htay, Thein Thein; Htet, Aung Soe; Hu, Yonghua; Huerta, José María; Husseini, Abdullatif S.; Huybrechts, Inge; Hwalla, Nahla; Iacoviello, Licia; Iannone, Anna G.; Ibrahim, M. Mohsen; Ikram, M. Arfan; Irazola, Vilma E.; Islam, Muhammad; Ivkovic, Vanja; Iwasaki, Masanori; Jackson, Rod T.; Jacobs, Jeremy M.; Jafar, Tazeen; Jamrozik, Konrad; Janszky, Imre; Jasienska, Grazyna; Jelakovic, Bojan; Jiang, Chao Qiang; Joffres, Michel; Johansson, Mattias; Jonas, Jost B; Jørgensen, Torben; Joshi, Pradeep; Juolevi, Anne; Jurak, Gregor; Jureša, Vesna; Kaaks, Rudolf; Kafatos, Anthony; Kalter-Leibovici, Ofra; Kamaruddin, Nor Azmi; Kasaeian, Amir; Katz, Joanne; Kauhanen, Jussi; Kaur, Prabhdeep; Kavousi, Maryam; Kazakbaeva, Gyulli; Keil, Ulrich; Boker, Lital Keinan; Keinänen-Kiukaanniemi, Sirkka; Kelishadi, Roya; Kemper, Han C.G.; Kengne, Andre Pascal; Kersting, Mathilde; Key, Timothy J.; Khader, Yousef Saleh; Khalili, Davood; Khang, Young Ho; Khaw, Kay Tee; Kiechl, Stefan; Killewo, Japhet; Kim, Jeongseon; Klumbiene, Jurate; Kolle, Elin; Kolsteren, Patrick; Korrovits, Paul; Koskinen, Seppo; Kouda, Katsuyasu; Koziel, Slawomir; Kristensen, Peter Lund; Krokstad, Steinar; Kromhout, Daan; Kruger, Herculina S.; Kubinova, Ruzena; Kuciene, Renata; Kuh, Diana; Kujala, Urho M.; Kula, Krzysztof; Kulaga, Zbigniew; Krishna Kumar, R.; Kurjata, Pawel; Kusuma, Yadlapalli S.; Kuulasmaa, Kari; Kyobutungi, Catherine; Laatikainen, Tiina; Lachat, Carl; Lam, Tai Hing; Landrove, Orlando; Lanska, Vera; Lappas, Georg; Larijani, Bagher; Laugsand, Lars E.; Laxmaiah, Avula; Le Nguyen Bao, Khanh; Le, Tuyen D.; Leclercq, Catherine; Lee, Jeannette; Lee, Jeonghee; Lehtimäki, Terho; Lekhraj, Rampal; León-Muñoz, Luz M.; Levitt, Naomi S.; Li, Yanping; Lilly, Christa L.; Lim, Wei-Yen; Lima-Costa, M. Fernanda; Lin, Hsien Ho; Lin, Xu; Linneberg, Allan; Lissner, Lauren; Litwin, Mieczyslaw; Lorbeer, Roberto; Lotufo, Paulo A.; Lozano, José Eugenio; Luksiene, Dalia; Lundqvist, Annamari; Lunet, Nuno; Lytsy, Per; Ma, Guansheng; Ma, Jun; Machado-Coelho, George L.L.; Machi, Suka; Maggi, Stefania; Magliano, Dianna J.; Majer, Marjeta; Makdisse, Marcia; Malekzadeh, Reza; Malhotra, Rahul; Rao, Kodavanti Mallikharjuna; Malyutina, Sofia; Manios, Yannis; Mann, Jim I.; Manzato, Enzo; Margozzini, Paula; Marques-Vidal, Pedro; Marrugat, Jaume; Martorell, Reynaldo; Mathiesen, Ellisiv B.; Matijasevich, Alicia; Matsha, Tandi E.; Mbanya, Jean Claude N.; McDonald Posso, Anselmo J.; McFarlane, Shelly R.; McGarvey, Stephen T.; McLachlan, Stela; McLean, Rachael M.; McNulty, Breige A.; MdKhir, Amir Sharifuddin; Mediene-Benchekor, Sounnia; Medzioniene, Jurate; Meirhaeghe, Aline; Meisinger, Christa; Menezes, Ana Maria B.; Menon, Geetha R.; Meshram, Indrapal I.; Metspalu, Andres; Mi, Jie; Mikkel, Kairit; Miller, Jody C.; Miquel, Juan-Francisco; Mišigoj-Durakovic, Marjeta; Mohamed, Mostafa K.; Mohammad, Kazem; Mohammadifard, Noushin; Mohan, Viswanathan; Mohd Yusoff, Muhammad Fadhli; Møller, Niels C.; Molnár, Dénes; Momenan, Amirabbas; Mondo, Charles K.; Monyeki, Kotsedi Daniel K.; Moreira, Leila B.; Morejon, Alain; Moreno, Luis A.; Morgan, Karen; Moschonis, George; Mossakowska, Malgorzata; Mota, Jorge; Mostafa, Aya; Motlagh, Mohammad Esmaeel; Motta, Jorge; Muiesan, Maria L.; Müller-Nurasyid, Martina; Murphy, Neil; Mursu, Jaakko; Musil, Vera; Nagel, Gabriele; Naidu, Balkish M.; Nakamura, Harunobu; Námešná, Jana; Nang, Ei Ei K.; Nangia, Vinay B.; Narake, Sameer; Navarrete-Muñoz, Eva Maria; Ndiaye, Ndeye Coumba; Neal, William A.; Nenko, Ilona; Nervi, Flavio; Nguyen, Nguyen D.; Nguyen, Quang Ngoc; Nieto-Martínez, Ramfis E.; Niiranen, Teemu J.; Ning, Guang; Ninomiya, Toshiharu; Nishtar, Sania; Noale, Marianna; Noboa, Oscar A.; Noorbala, Ahmad Ali; Norat, Teresa; Noto, Davide; Al Nsour, Mohannad; O'Reilly, Dermot; Oh, Kyungwon; Olinto, Maria Teresa A.; Oliveira, Isabel O.; Omar, Mohd Azahadi; Onat, Altan; Ordunez, Pedro; Osmond, Clive; Ostojic, Sergej M.; Otero, Johanna A.; Overvad, Kim; Owusu-Dabo, Ellis; Paccaud, Fred Michel; Padez, Cristina; Pahomova, Elena; Pajak, Andrzej; Palli, Domenico; Palmieri, Luigi; Panda-Jonas, Songhomitra; Panza, Francesco; Papandreou, Dimitrios; Parnell, Winsome R.; Parsaeian, Mahboubeh; Pecin, Ivan; Pednekar, Mangesh S.; Peer, Nasheeta; Peeters, Petra H.; Peixoto, Sergio Viana; Pelletier, Catherine; Peltonen, Markku; Pereira, Alexandre C.; Pérez, Rosa Marina; Peters, Annette; Petkeviciene, Janina; Pham, Son Thai; Pigeot, Iris; Pikhart, Hynek; Pilav, Aida; Pilotto, Lorenza; Pitakaka, Freda; Plans-Rubió, Pedro; Polakowska, Maria; Polašek, Ozren; Porta, Miquel; Portegies, Marileen L.P.; Pourshams, Akram; Pradeepa, Rajendra; Prashant, Mathur; Price, Jacqueline F.; Puiu, Maria; Punab, Margus; Qasrawi, Radwan F.; Qorbani, Mostafa; Radic, Ivana; Radisauskas, Ricardas; Rahman, Mahfuzar; Raitakari, Olli T.; Raj, Manu; Rao, Sudha Ramachandra; Ramachandran, Ambady; Ramos, Elisabete; Rampal, Sanjay; Rangel Reina, Daniel A.; Rasmussen, Finn; Redon, Josep; Reganit, Paul Ferdinand M.; Ribeiro, Robespierre; Riboli, Elio; Rigo, Fernando; Rinke de Wit, Tobias F.; Ritti-Dias, Raphael M.; Robinson, Sian M.; Robitaille, Cynthia; Rodríguez-Artalejo, Fernando; del Cristo Rodriguez-Perez, María; Rodríguez-Villamizar, Laura A.; Rojas-Martinez, Rosalba; Rosengren, Annika; Rubinstein, Adolfo; Rui, Ornelas; Ruiz-Betancourt, Blanca Sandra; Russo Horimoto, Andrea R.V.; Rutkowski, Marcin; Sabanayagam, Charumathi; Sachdev, Harshpal S.; Saidi, Olfa; Sakarya, Sibel; Salanave, Benoit; Martinez, Eduardo Salazar; Salmerón, Diego; Salomaa, Veikko; Salonen, Jukka T.; Salvetti, Massimo; Sánchez-Abanto, Jose; Sans, Susana; Santos, Diana; Santos, Ina S.; dos Santos, Renata Nunes; Santos, Rute; Saramies, Jouko L.; Sardinha, Luis B.; Margolis, Giselle Sarganas; Sarrafzadegan, Nizal; Saum, Kai Uwe; Savva, Savvas C.; Scazufca, Marcia; Schargrodsky, Herman; Schneider, Ione J.; Schultsz, Constance; Schutte, Aletta E.; Schutte, Aletta E.; Sen, Abhijit; Senbanjo, Idowu O.; Sepanlou, Sadaf G.; Sharma, Sanjib K.; Shaw, Jonathan E.; Shibuya, Kenji; Shin, Dong Wook; Shin, Youchan; Siantar, Rosalynn; Sibai, Abla M.; Santos Silva, Diego Augusto; Simon, Mary; Simons, Judith; Simons, Leon A; Sjöström, Michael; Skovbjerg, Sine; Slowikowska-Hilczer, Jolanta; Slusarczyk, Przemyslaw; Smith, Margaret C.; Snijder, Marieke B.; So, Hung Kwan; Sobngwi, Eugène; Söderberg, Stefan; Solfrizzi, Vincenzo; Sonestedt, Emily; Song, Yi; Sørensen, Thorkild I A; Soric, Maroje; Jérome, Charles Sossa; Soumare, Aicha; Staessen, Jan A.; Starc, Gregor; Stathopoulou, Maria G.; Stavreski, Bill; Steene-Johannessen, Jostein; Stehle, Peter; Stein, Aryeh D.; Stergiou, George S.; Stessman, Jochanan; Stieber, Jutta; Stöckl, Doris; Stocks, Tanja; Stokwiszewski, Jakub; Stronks, Karien; Strufaldi, Maria Wany; Sun, Chien An; Sung, Yn Tz; Suriyawongpaisal, Paibul; Sy, Rody G.; Tai, E. Shyong; Tammesoo, Mari Liis; Tamosiunas, Abdonas; Tang, Line; Tang, Xun; Tao, Yong; Tanser, Frank; Tarawneh, Mohammed Rasoul; Tarqui-Mamani, Carolina B.; Taylor, Anne; Theobald, Holger; Thijs, Lutgarde; Thuesen, Betina Heinsbek; Tjonneland, Anne; Tolonen, Hanna K.; Tolstrup, Janne S.; Topbas, Murat; Topór-Madry, Roman; Tormo, María José; Torrent, Maties; Traissac, Pierre; Trichopoulos, Dimitrios; Trichopoulou, Antonia; Trinh, Oanh T.H.; Trivedi, Atul; Tshepo, Lechaba; Tulloch-Reid, Marshall K.; Tuomainen, Tomi-Pekka; Tuomilehto, Jaakko; Turley, Maria L.; Tynelius, Per; Tzourio, Christophe; Ueda, Peter; Ugel, Eunice; Ulmer, Hanno; Uusitalo, Hannu M.T.; Valdivia, Gonzalo; Valvi, Damaskini; van der Schouw, Yvonne T.; Van Herck, Koen; van Rossem, Lenie; Van Valkengoed, Irene G M; Vanderschueren, Dirk; Vanuzzo, Diego; Vatten, Lars; Vega, Tomas; Velasquez-Melendez, Gustavo; Veronesi, Giovanni; Verschuren, W. M.Monique; Verstraeten, Roosmarijn; Victora, Cesar G.; Viet, Lucie; Viikari-Juntura, Eira; Vineis, Paolo; Vioque, Jesus; Virtanen, Jyrki K.; Visvikis-Siest, Sophie; Viswanathan, Bharathi; Vollenweider, Peter; Voutilainen, Sari; Vrdoljak, Ana; Vrijheid, Martine; Wade, Alisha N.; Wagner, Aline; Walton, Janette; Wan Mohamud, Wan Nazaimoon; Wang, Ming Dong; Wang, Qian; Wang, Ya Xing; Wannamethee, S. Goya; Wareham, Nicholas J.; Wederkopp, Niels; Weerasekera, Deepa; Whincup, Peter H.; Widhalm, Kurt; Widyahening, Indah S.; Wijga, Alet H; Wiecek, Andrzej; Wilks, Rainford J.; Willeit, Johann; Willeit, Peter; Williams, Emmanuel A.; Wilsgaard, Tom; Wojtyniak, Bogdan; Wong, Tien-Yin; Wong-McClure, Roy A.; Woo, Jean; Woodward, Mark; Woodward, Mark; Wu, Aleksander Giwercman; Wu, Frederick C.; Wu, Shou Ling; Xu, Haiquan; Yan, Weili; Yang, Xiaoguang; Ye, Xingwang; Yiallouros, Panayiotis K.; Yoshihara, Akihiro; Younger-Coleman, Novie O.; Yusoff, Ahmad F.; Yusoff, Muhammad Fadhli M.; Zambon, Sabina; Zdrojewski, Tomasz; Zeng, Yi-Xin; Zeng, Yi-Xin; Zhao, Dong; Zhao, Wenhua; Zheng, Yingffeng; Zimmermann, Esther; Cisneros, Julio Zuñiga; Zhu, Dan

    2017-01-01

    Background Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood

  15. Worldwide trends in blood pressure from 1975 to 2015 : a pooled analysis of 1479 population-based measurement studies with 19.1 million participants

    NARCIS (Netherlands)

    Zhou, Bin; Bentham, James; Di Cesare, Mariachiara; Bixby, Honor; Danaei, Goodarz; Cowan, Melanie J.; Paciorek, Christopher J.; Singh, Gitanjali M; Hajifathalian, Kaveh; Bennett, James E.; Taddei, Cristina; Bilano, Ver; Carrillo-Larco, Rodrigo M.; Djalalinia, Shirin; Khatibzadeh, Shahab; Lugero, Charles; Peykari, Niloofar; Zhang, Wan Zhu; Lu, Yuan; Stevens, Gretchen A.; Riley, Leanne M.; Bovet, Pascal; Elliott, Paul; Gu, Dongfeng; Ikeda, Nayu; Jackson, Rod T.; Joffres, Michel; Kengne, Andre-Pascal; Laatikainen, Tiina; Lam, Tai Hing; Laxmaiah, Avula; Liu, Jing; Miranda, J. Jaime; Mondo, Charles K.; Neuhauser, Hannelore K.; Sundstrom, Johan; Smeeth, Liam; Soric, Maroje; Woodward, Mark; Ezzati, Majid; Abarca-Gomez, Leandra; Abdeen, Ziad A.; Rahim, Hanan Abdul; Abu-Rmeileh, Niveen Me; Acosta-Cazares, Benjamin; Adams, Robert; Aekplakorn, Wichai; Afsana, Kaosar; Aguilar-Salinas, Carlos A; Agyemang, Charles; Ahmadvand, Alireza; Ahrens, Wolfgang; Al-Raddadi, Rajaa; Al Woyatan, Rihab; Karamat Ali, Mohamed Hanief; Alkerwi, Ala'a; Aly, Eman; Amouyel, Philippe; Amuzu, Antoinette; Andersen, Lars Bo; Anderssen, Sigmund A.; Angquist, Lars; Anjana, Ranjit Mohan; Ansong, Daniel; Aounallah-Skhiri, Hajer; Araujo, Joana; Ariansen, Inger; Aris, Tahir; Arlappa, Nimmathota; Aryal, Krishna; Arveiler, Dominique; Assah, Felix K.; Assuncao, Maria Cecilia F.; Avdicova, Maria; Azevedo, Ana; Azizi, Fereidoun; Babu, Bontha V.; Bahijri, Suhad; Balakrishna, Nagalla; Bandosz, Piotr; Banegas, Jose R.; Barbagallo, Carlo M.; Barcelo, Alberto; Barkat, Amina; Barros, Aluisio J. D.; Barros, Mauro V.; Bata, Iqbal; Batieha, Anwar M.; Baur, Louise A.; Beaglehole, Robert; Ben Romdhane, Habiba; Benet, Mikhail; Benson, Lowell S.; Bernabe-Ortiz, Antonio; Bernotiene, Gailute; Bettiol, Heloisa; Bhagyalaxmi, Aroor; Bharadwaj, Sumit; Bhargava, Santosh K.; Bi, Yufang; Bikbov, Mukharram; Bjerregaard, Peter; Bjertness, Espen; Bjokelund, Cecilia; Blokstra, Anneke; Bo, Simona; Bobak, Martin; Boeing, Heiner; Boggia, Jose G.; Boissonnet, Carlos P.; Bongard, Vanina; Bovet, Pascal; Braeckman, Lutgart; Brajkovich, Imperia; Branca, Francesco; Breckenkamp, Juergen; Brenner, Hermann; Brewster, Lizzy M.; Bruno, Graziella; Bueno-de-Mesquita, H. B(as).; Bugge, Anna; Burns, Con; Bursztyn, Michael; de Leon, Antonio Cabrera; Cameron, Christine; Can, Gunay; Candido, Ana Paula C.; Capuano, Vincenzo; Cardoso, Viviane C.; Carlsson, Axel C.; Carvalho, Maria J.; Casanueva, Felipe F.; Casanueva, Felipe F.; Casas, Juan Pablo; Caserta, Carmelo A.; Chamukuttan, Snehalatha; Chan, Angelique W.; Chan, Queenie; Chaturvedi, Himanshu K.; Chaturvedi, Nishi; Chen, Chien-Jen; Chen, Fangfang; Chen, Huashuai; Chen, Shuohua; Chen, Zhengming; Cheng, Yu-Ching; Dekkaki, Imane Cherkaoui; Chetrit, Angela; Chiolero, Arnaud; Chiou, Shu-Ti; Chirita-Emandi, Adela; Cho, Belong; Cho, Yumi; Chudek, Jerzy; Cifkova, Renata; Claessens, Frank; Clays, Els; Concin, Hans; Cooper, Cyrus; Cooper, Rachel; Coppinger, Tara C.; Costanzo, Simona; Cottel, Dominique; Cowell, Chris T.; Craig, Cora L.; Crujeiras, Ana B.; Cruz Moreno, Juan; D'Arrigo, Graziella; d'Orsi, Eleonora; Dallongeville, Jean; Damasceno, Albertino; Danaei, Goodarz; Dankner, Rachel; Dantoft, Thomas M.; Dauchet, Luc; De Backer, Guy; de Gaetano, Giovanni; De Henauw, Stefaan; De Smedt, Delphine; Deepa, Mohan; Dehghan, Abbas; Delisle, Helene; Deschamps, Valerie; Dhana, Klodian; Di Castelnuovo, Augusto F.; Dias-da-Costa, Juvenal Soares; Diaz, Alejandro; Dickerson, Ty T.; Djalalinia, Shirin; Do, Ha T. P.; Dobson, Annette J.; Donfrancesco, Chiara; Donoso, Silvana P.; Doering, Angela; Doua, Kouamelan; Drygas, Wojciech; Dulskiene, Virginija; Dzakula, Aleksandar; Dzerve, Vilnis; Dziankowska-Zaborszczyk, Elzbieta; Eggertsen, Robert; Ekelund, Ulf; El Ati, Jalila; Ellert, Ute; Elliott, Paul; Elosua, Roberto; Erasmus, Rajiv T.; Erem, Cihangir; Eriksen, Louise; Escobedo-de la Pena, Jorge; Evans, Alun; Faeh, David; Fall, Caroline H.; Farzadfar, Farshad; Felix-Redondo, Francisco J.; Ferguson, Trevor S.; Fernandez-Berges, Daniel; Ferrante, Daniel; Ferrari, Marika; Ferreccio, Catterina; Ferrieres, Jean; Finn, Joseph D.; Fischer, Krista; Foeger, Bernhard; Foo, Leng Huat; Forslund, Ann-Sofie; Forsner, Maria; Fortmann, Stephen P.; Fouad, Heba M.; Francis, Damian K.; Franco, Maria do Carmo; Franco, Oscar H.; Frontera, Guillermo; Fuchs, Flavio D.; Fuchs, Sandra C.; Fujita, Yuki; Furusawa, Takuro; Gaciong, Zbigniew; Gareta, Dickman; Garnett, Sarah P.; Gaspoz, Jean-Michel; Gasull, Magda; Gates, Louise; Gavrila, Diana; Geleijnse, Johanna M.; Ghasemian, Anoosheh; Ghimire, Anup; Giampaoli, Simona; Gianfagna, Francesco; Giovannelli, Jonathan; Goldsmith, Rebecca A.; Goncalves, Helen; Gonzalez Gross, Marcela; Gonzalez Rivas, Juan P.; Gottrand, Frederic; Graff-Iversen, Sidsel; Grafnetter, Dusan; Grajda, Aneta; Gregor, Ronald D.; Grodzicki, Tomasz; Grontved, Anders; Gruden, Grabriella; Grujic, Vera; Gu, Dongfeng; Guan, Ong Peng; Gudnason, Vilmundur; Guerrero, Ramiro; Guessous, Idris; Guimaraes, Andre L.; Gulliford, Martin C.; Gunnlaugsdottir, Johanna; Gunter, Marc; Gupta, Prakash C.; Gureje, Oye; Gurzkowska, Beata; Gutierrez, Laura; Gutzwiller, Felix; Hadaegh, Farzad; Halkjaer, Jytte; Hambleton, Ian R.; Hardy, Rebecca; Harikumar, Rachakulla; Hata, Jun; Hayes, Alison J.; He, Jiang; Hendriks, Marleen Elisabeth; Henriques, Ana; Hernandez Cadena, Leticia; Herqutanto,; Herrala, Sauli; Heshmat, Ramin; Hihtaniemi, Ilpo Tapani; Ho, Sai Yin; Ho, Suzanne C.; Hobbs, Michael; Hofman, Albert; Dinc, Gonul Horasan; Hormiga, Claudia M.; Horta, Bernardo Lessa; Houti, Leila; Howitt, Christina; Htay, Thein Thein; Htet, Aung Soe; Hu, Yonghua; Maria Huerta, Jose; Husseini, Abdullatif S.; Huybrechts, Inge; Hwalla, Nahla; Iacoviello, Licia; Iannone, Anna G.; Ibrahim, M. Mohsen; Ikram, M. Arfan; Irazola, Vilma E.; Islam, Muhammad; Ivkovic, Vanja; Iwasaki, Masanori; Jackson, Rod T.; Jacobs, Jeremy M.; Jafar, Tazeen H.; Jamrozik, Konrad; Janszky, Imre; Jasienska, Grazyna; Jelakovic, Bojan; Jiang, Chao Qiang; Johansson, Mattias; Jonas, Jost B; Jorgensen, Torben; Joshi, Pradeep; Juolevi, Anne; Jurak, Gregor; Juresa, Vesna; Kaaks, Rudolf; Kafatos, Anthony; Kalter-Leibovici, Ofra; Kamaruddin, Nor Azmi; Kasaeian, Amir; Katz, Joanne; Kauhanen, Jussi; Kaur, Prabhdeep; Kavousi, Maryam; Kazakbaeva, Gyulli; Keil, Ulrich; Boker, Lital Keinan; Keinanen-Kiukaanniemi, Sirkka; Kelishadi, Roya; Kemper, Han C. G.; Kengne, Andre-Pascal; Kersting, Mathilde; Key, Timothy; Khader, Yousef Saleh; Khalili, Davood; Khang, Young-Ho; Khaw, Kay Tee; Kiechl, Stefan; Killewo, Japhet; Kim, Jeongseon; Klumbiene, Jurate; Kolle, Elin; Kolsteren, Patrick; Korrovits, Paul; Koskinen, Seppo; Kouda, Katsuyasu; Koziel, Slawomir; Kristensen, Peter Lund; Krokstad, Steinar; Kromhout, Daan; Kruger, Herculina S.; Kubinova, Ruzena; Kuciene, Renata; Kuh, Diana; Kujala, Urho M.; Kula, Krzysztof; Kulaga, Zbigniew; Kumar, R. Krishna; Kurjata, Pawel; Kusuma, Yadlapalli S.; Kuulasmaa, Kari; Kyobutungi, Catherine; Laatikainen, Tiina; Lachat, Carl; Landrove, Orlando; Lanska, Vera; Lappas, Georg; Larijani, Bagher; Laugsand, Lars E.; Laxmaiah, Avula; Khanh Le Nguyen Bao,; Le, Tuyen D.; Leclercq, Catherine; Lee, Jeannette Jen-Mai; Lee, Jeonghee; Lehtimaki, Terho; Lekhraj, Rampal; Leon-Munoz, Luz M.; Levitt, Naomi S.; Li, Yanping; Lilly, Christa L.; Lim, Wei-Yen; Fernanda Lima-Costa, M.; Lin, Hsien-Ho; Lin, Xu; Linneberg, Allan; Lissner, Lauren; Litwin, Mieczyslaw; Liu, Jing; Lorbeer, Roberto; Lotufo, Paulo A.; Eugenio Lozano, Jose; Luksiene, Dalia; Lundqvist, Annamari; Lunet, Nuno; Lytsy, Per; Ma, Guansheng; Ma, Jun; Machado-Coelho, George L. L.; Machi, Suka; Maggi, Stefania; Magliano, Dianna J.; Majer, Marjeta; Makdisse, Marcia; Malekzadeh, Reza; Malhotra, Rahul; Rao, Kodavanti Mallikharjuna; Malyutina, Sofia; Manios, Yannis; Mann, Jim I.; Manzato, Enzo; Margozzini, Paula; Marques-Vidal, Pedro; Marrugat, Jaume; Martorell, Reynaldo; Mathiesen, Ellisiv B.; Matijasevich, Alicia; Matsha, Tandi E.; Mbanya, Jean Claude N.; Posso, Anselmo J. Mc Donald; McFarlane, Shelly R.; McFarlane, Shelly R.; McGarvey, Stephen Theodore; McLachlan, Stela; McLean, Rachael M.; McNulty, Breige A.; Khir, Amir Sharifuddin Md; Mediene-Benchekor, Sounnia; Medzioniene, Jurate; Meirhaeghe, Aline; Meisinger, Christa; Menezes, Ana Maria B.; Menon, Geetha R.; Meshram, Indrapal I.; Metspalu, Andres; Mi, Jie; Mikkel, Kairit; Miller, Jody C.; Francisco Miquel, Juan; Jaime Miranda, J.; Misigoj-Durakovic, Marjeta; Mohamed, Mostafa K.; Mohammad, Kazem; Mohammadifard, Noushin; Mohan, Viswanathan; Yusoff, Muhammad Fadhli Mohd; Moller, Niels C.; Molnar, Denes; Momenan, Amirabbas; Mondo, Charles K.; Monyeki, Kotsedi Daniel K.; Moreira, Leila B.; Morejon, Alain; Moreno, Luis A.; Morgan, Karen; Moschonis, George; Mossakowska, Malgorzata; Mostafa, Aya; Mota, Jorge; Motlagh, Mohammad Esmaeel; Motta, Jorge; Muiesan, Maria L.; Mueller-Nurasyid, Martina; Murphy, Neil; Mursu, Jaakko; Musil, Vera; Nagel, Gabriele; Naidu, Balkish M.; Nakamura, Harunobu; Namsna, Jana; Nang, Ei Ei K.; Nangia, Vinay B.; Narake, Sameer; Maria Navarrete-Munoz, Eva; Ndiaye, Ndeye Coumba; Neal, William A.; Nenko, Ilona; Nervi, Flavio; Neuhauser, Hannelore K.; Nguyen, Nguyen D.; Quang Ngoc Nguyen,; Nieto-Martinez, Ramfis E.; Niiranen, Teemu J.; Ning, Guang; Ninomiya, Toshiharu; Nishtar, Sania; Noale, Marianna; Noboa, Oscar A.; Noorbala, Ahmad Ali; Norat, Teresa; Noto, Davide; Al Nsour, Mohannad; O'Reilly, Dermot; Oh, Kyungwon; Olinto, Maria Teresa A.; Oliveira, Isabel O.; Omar, Mohd Azahadi; Onat, Altan; Ordunez, Pedro; Osmond, Clive; Ostojic, Sergej M.; Otero, Johanna A.; Overvad, Kim; Owusu-Dabo, Ellis; Paccaud, Fred Michel; Padez, Cristina; Pahomova, Elena; Pajak, Andrzej; Palli, Domenico; Palmieri, Luigi; Panda-Jonas, Songhomitra; Panza, Francesco; Papandreou, Dimitrios; Parnell, Winsome R.; Parsaeian, Mahboubeh; Pecin, Ivan; Pednekar, Mangesh S.; Peer, Nasheeta; Peeters, Petra H.; Peixoto, Sergio Viana; Pelletier, Catherine; Peltonen, Markku; Pereira, Alexandre C.; Marina Perez, Rosa; Peters, Annette; Petkeviciene, Janina; Peykari, Niloofar; Son Thai Pham,; Pigeot, Iris; Pikhart, Hynek; Pilav, Aida; Pilotto, Lorenza; Pitakaka, Freda; Plans-Rubio, Pedro; Polakowska, Maria; Polasek, Ozren; Porta, Miquel; Portegies, Marileen L. P.; Pourshams, Akram; Pradeepa, Rajendra; Prashant, Mathur; Price, Jacqueline F.; Puiu, Maria; Punab, Margus; Qasrawi, Radwan F.; Qorbani, Mostafa; Radic, Ivana; Radisauskas, Ricardas; Rahman, Mahfuzar; Raitakari, Olli; Raj, Manu; Rao, Sudha Ramachandra; Ramos, Elisabete; Rampal, Sanjay; Rangel Reina, Daniel A.; Rasmussen, Finn; Redon, Josep; Reganit, Paul Ferdinand M.; Ribeiro, Robespierre; Riboli, Elio; Rigo, Fernando; de Wit, Tobias F. Rinke; Ritti-Dias, Raphael M.; Robinson, Sian M.; Robitaille, Cynthia; Rodriguez-Artalejo, Fernando; Rodriguez-Villamizar, Laura A.; Rojas-Martinez, Rosalba; Rosengren, Annika; Rubinstein, Adolfo; Rui, Ornelas; Sandra Ruiz-Betancourt, Blanca; Russo Horimoto, Andrea R. V.; Rutkowski, Marcin; Sabanayagam, Charumathi; Sachdev, Harshpal S.; Saidi, Olfa; Sakarya, Sibel; Salanave, Benoit; Salazar Martinez, Eduardo; Salmeron, Diego; Salomaa, Veikko; Salonen, Jukka T.; Salvetti, Massimo; Sanchez-Abanto, Jose; Sans, Susana; Santos, Diana; Santos, Ina S.; dos Santos, Renata Nunes; Santos, Rute; Saramies, Jouko L.; Sardinha, Luis B.; Margolis, Giselle Sarganas; Sarrafzadegan, Nizal; Saum, Kai-Uwe; Savva, Savvas C.; Scazufca, Marcia; Schargrodsky, Herman; Schneider, Ione J. C.; Schultsz, Constance; Schutte, Aletta E.; Sen, Abhijit; Senbanjo, Idowu O.; Sepanlou, Sadaf G.; Sharma, Sanjib K.; Shaw, Jonathan E.; Shibuya, Kenji; Shin, Dong Wook; Shin, Youchan; Siantar, Rosalynn; Sibai, Abla M.; Santos Silva, Diego Augusto; Simon, Mary; Simons, Judith; Simons, Leon A.; Sjotrom, Michael; Skovbjerg, Sine; Slowikowska-Hilczer, Jolanta; Slusarczyk, Przemyslaw; Smeeth, Liam; Smith, Margaret C. M.; Snijder, Marieke B.; So, Hung-Kwan; Sobngwi, Eugene; Soderberg, Stefan; Solfrizzi, Vincenzo; Sonestedt, Emily; Song, Yi; Sorensen, Thorkild I. A.; Soric, Maroje; Jerome, Charles Sossa; Soumare, Aicha; Staessen, Jan A.; Starc, Gregor; Stathopoulou, Maria G.; Stavreski, Bill; Steene-Johannessen, Jostein; Stehle, Peter; Stein, Aryeh D.; Stergiou, George S.; Stessman, Jochanan; Stieber, Jutta; Stoeckl, Doris; Stocks, Tanja; Stokwiszewski, Jakub; Stronks, Karien; Strufaldi, Maria Wany; Sun, Chien-An; Sundstrom, Johan; Sung, Yn-Tz; Suriyawongpaisal, Paibul; Sy, Rody G.; Tai, E-Shyong; Tammesoo, Mari-Liis; Tamosiunas, Abdonas; Tang, Line; Tang, Xun; Tanser, Frank; Tao, Yong; Tarawneh, Mohammed Rasoul; Tarqui-Mamani, Carolina B.; Taylor, Anne W.; Theobald, Holger; Thijs, Lutgarde; Thuesen, Betina H.; Tjonneland, Anne; Tolonen, Hanna K.; Topbas, Murat; Topor-Madry, Roman; Jose Tormo, Maria; Torrent, Maties; Traissac, Pierre; Trichopoulos, Dimitrios; Trichopoulou, Antonia; Trinh, Oanh T. H.; Trivedi, Atul; Tshepo, Lechaba; Tulloch-Reid, Marshall K.; Tuomainen, Tomi-Pekka; Turley, Maria L.; Tynelius, Per; Tzourio, Christophe; Ueda, Peter; Ugel, Eunice; Ulmer, Hanno; Uusitalo, Hannu M. T.; Valdivia, Gonzalo; Valvi, Damaskini; van der Schouw, Yvonne T.; Van Herck, Koen; van Rossem, Lenie; van Valkengoed, Irene G. M.; Vanderschueren, Dirk; Vanuzzo, Diego; Vatten, Lars; Vega, Tomas; Velasquez-Melendez, Gustavo; Veronesi, Giovanni; Verschuren, W. Monique; Verstraeten, Roosmarijn; Victora, Cesar G.; Viet, Lucie; Viikari-Juntura, Eira; Vineis, Paolo; Vioque, Jesus; Virtanen, Jyrki K.; Visvikis-Siest, Sophie; Viswanathan, Bharathi; Vollenweider, Peter; Vrdoljak, Ana; Vrijheid, Martine; Wade, Alisha N.; Wagner, Aline; Walton, Janette; Mohamud, Wan Nazaimoon Wan; Wang, Ming-Dong; Wang, Qian; Wang, Ya Xing; Wannamethee, S. Goya; Wareham, Nicholas; Wederkopp, Niels; Weerasekera, Deepa; Whincup, Peter H.; Widhalm, Kurt; Widyahening, Indah S.; Wiecek, Andrzej; Wijga, Alet H.; Wilks, Rainford J.; Willeit, Peter; Williams, Emmanuel A.; Wilsgaard, Tom; Wojtyniak, Bogdan J.; Wong, Tien-Yin; Wong-McClure, Roy A.; Woo, Jean; Woodward, Mark; Wu, Aleksander Giwercman; Wu, Frederick C.; Wu, Shou Ling; Xu, Haiquan; Yan, Weili; Yang, Xiaoguang; Ye, Xingwang; Yiallouros, Panayiotis K.; Yoshihara, Akihiro; Younger-Coleman, Novie O.; Yusoff, Ahmad F.; Zambon, Sabina; Zdrojewski, Tomasz; Zeng, Yi; Zhao, Dong; Zhao, Wenhua; Zheng, Yingffeng; Zhu, Dan; Zimmermann, Esther; Zuniga Cisneros, Julio

    2017-01-01

    Background Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood

  16. The value of thyroid blood flow and static imaging for diagnosis of hashimotos disease

    International Nuclear Information System (INIS)

    Song Bangkun; Yang Jishen; Shen Dawei; Liu Bin; Xue Yuanming; Shi Jue

    1995-01-01

    The diagnostic value of the combination of thyroid blood flow and static imaging for Hashimotos disease are evaluated. Both thyroid blood flow and static imaging with 99m Tc was carried out in 108 Hashimotos disease proved by fine needle biopsy. 87% of them had markedly or slightly increased thyroid blood flow. On static imaging 89.8% showed active nonuniformity, among them, 16.7% was cold nodules. The 99m Tc uptake was normal in 66 (58.3%), decreased in 26 (26.9%), but only increased in 16, in them 4 accompanying hyperthyroidism. Thyroid blood flow and static imaging, a simple and convenient approach, combining with radioimmunoassay and clinical manifestation, can be used as routine diagnostic model

  17. Blood flow velocity imaging of malignant melanoma by micro multipoint laser Doppler velocimetry

    Science.gov (United States)

    Ishida, H.; Andoh, T.; Akiguchi, S.; Shirakawa, H.; Kobayashi, D.; Kuraishi, Y.; Hachiga, T.

    2010-09-01

    We have developed a laser Doppler velocimeter to measure blood flow, the micromultipoint laser Doppler velocimeter (μ-MLDV). This equipment can measure absolute velocity and, based on this, can display the course of blood vessels. In this study, we attempted to perform blood flow velocity imaging of malignant melanoma transplanted to the mouse ear. We found that blood flow velocity of the formed blood vessels originating in the melanoma was much greater than that of the capillary vessels in normal skin. Furthermore, the form of the tumor was clearly visible from the blood flow velocity image. These experimental results suggest that μ-MLDV has potential as a diagnostic method for distinguishing benign nevi from malignant melanomas.

  18. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    Science.gov (United States)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The

  19. Hyperspectral imaging for the age estimation of blood stains at the crime scene

    NARCIS (Netherlands)

    Edelman, Gerda; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2012-01-01

    The age estimation of blood stains can provide important information on the temporal aspects of a crime. As previously shown, visible spectroscopy of blood stains can successfully be used for their age estimation. In the present study we evaluated the feasibility to use hyperspectral imaging for

  20. Laser speckle contrast imaging for monitoring changes in microvascular blood flow

    DEFF Research Database (Denmark)

    Ambrus, Rikard; Strandby, Rune B.; Svendsen, Lars Bo

    2016-01-01

    BACKGROUND/AIMS: Microvascular blood flow is essential for healing and predicts surgical outcome. The aim of the current study was to investigate the relation between fluxes measured with the laser speckle contrast imaging (LSCI) technique and changes in absolute blood flow. In addition, we studied...

  1. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The ever-increasing demands in the field of medicine are being addressed by computational approaches in which Big Data analysis, image processing and data ... Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification ...

  2. Heat as a contrast agent to enhance thermal imaging of blood vessels

    Science.gov (United States)

    Case, Jason R.; Trammell, Susan R.; Young, Madison A.; Israel, Uriah; Crown, Michael X.

    2013-03-01

    In this study we test the feasibility of using low-cost LEDs to selectivity heat blood for enhanced thermal imaging of vascular structures. Applications of this new imaging technique include mapping blood vessels during surgeries such as tumor removal and vascular repair. In addition, this technique could potentially be used to determine the location of increased vascular density, and thus breast cancer tumors. Porcine blood, skeletal muscle, skin and fat were illuminated with LEDs that emit at 405 nm and 530 nm (near the blood absorption peaks) and the increase in temperature as a function of time was recorded using a thermal camera. In the studies with the 530 nm LED, blood heated more than other tissue types and the heating rate for the blood was significantly faster than other tissues. Illumination of blood with the 530 nm LED at low powers (tissue irradiance tissue. Illumination with the 405 nm LED produced large temperature changes (up to 15°C) at low LED powers (tissue irradiance muscle tissue was dependent on the skeletal muscle type, but most samples showed heating comparable to or larger than blood. This LED was not effective at selectively heating blood relative to the other tissue types. The results of the preliminary studies suggest that the best contrast can be achieved with pulsed 530 nm LED illumination and an image analysis method that highlights rapid changes in temperature.

  3. Recent advances in blood flow vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Udesen, Jesper

    2011-01-01

    been acquired using a commercial implementation of the method (BK Medical ProFocus Ultraview scanner). A range of other methods are also presented. This includes synthetic aperture imaging using either spherical or plane waves with velocity estimation performed with directional beamforming or speckle...... Medical 8804 transducer. This resulted in a relative standard deviation of 1.2% for a fully transverse flow. Plane wave imaging was also implemented on the RASMUS scanner and a 100 Hz frame rate was attained. Several vector velocity image sequences of complex flow were acquired, which demonstrates...

  4. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  5. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRls) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  6. An analysis of whole body tracer kinetics in dynamic PET studies with application to image-based blood input function extraction.

    Science.gov (United States)

    Huang, Jian; O'Sullivan, Finbarr

    2014-05-01

    In a positron emission tomography (PET) study, the local uptake of the tracer is dependent on vascular delivery and retention. For dynamic studies the measured uptake time-course information can be best interpreted when knowledge of the time-course of tracer in the blood is available. This is certainly true for the most established tracers such as 18F-Fluorodeoxyglucose (FDG) and 15O-Water (H2O). Since direct sampling of blood as part of PET studies is increasingly impractical, there is ongoing interest in image-extraction of blood time-course information. But analysis of PET-measured blood pool signals is complicated because they will typically involve a combination of arterial, venous and tissue information. Thus, a careful appreciation of these components is needed to interpret the available data. To facilitate this process, we propose a novel Markov chain model for representation of the circulation of a tracer atom in the body. The model represents both arterial and venous time-course patterns. Under reasonable conditions equilibration of tracer activity in arterial and venous blood is achieved by the end of the PET study-consistent with empirical measurement. Statistical inference for Markov model parameters is a challenge. A penalized nonlinear least squares process, incorporating a generalized cross-validation score, is proposed. Random effects analysis is used to adaptively specify the structure of the penalty function based on historical samples of directly measured blood data. A collection of arterially sampled data from PET studies with FDG and H2O is used to illustrate the methodology. These data analyses are highly supportive of the overall modeling approach. An adaptation of the model to the problem of extraction of arterial blood signals from imaging data is also developed and promising preliminary results for cerebral and thoracic imaging studies with FDG and H2O are obtained.

  7. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Steenbergen, Wiendelt; van Leeuwen, Ton

    2006-01-01

    Photoacoustic imaging is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophores such as hemoglobin in blood. For this technique, usually large and costly Q-switched Nd:YAG lasers are used. These lasers provide a pulse

  8. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...

  9. Non-invasive imaging of retinal blood flow in myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Willerslev, Anne; Hansen, Mathias M; Klefter, Oliver Niels

    2017-01-01

    . The retinopathy had resolved at follow-up in all patients. CONCLUSION: With non-invasive retinal imaging, we were able to demonstrate increased retinal venous blood velocity, increased retinal arterial blood oxygenation and normalization of intravascular reflectivity patterns after successful treatment......PURPOSE: To study the circulation in the retinal vessels in patients with blood dyscrasia due to myeloproliferative neoplasms using non-invasive retinal imaging. METHODS: Prospective consecutive case series of seven treatment-naïve patients with chronic myeloid leukaemia (n = 2), polycythemia vera...... (n = 4), essential thrombocytosis (n = 1) examined before and after cytoreductive treatment. We investigated retinal circulation with motion-contrast imaging, retinal oximetry and spectral-domain optical coherence tomography. RESULTS: Retinal venous blood velocity increased by 8.14% (CI95 3.67% to 12...

  10. Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease

    Science.gov (United States)

    Gorbach, Alexander M.; Ackerman, Hans C.; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F.; Cannon, Richard O.; Kato, Gregory J.

    2012-01-01

    Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh), an endothelium-independent vasodilator sodium nitroprusside (SNP), and a NOS inhibitor L-NMMA. Skin temperature measured by IR imaging increased in a dose-dependent manner to graded infusions of ACh (+1.1° C, p imaging correlated significantly with baseline forearm blood flow (31.8±0.2° C, 6.0±0.4 mL/min/100mL; r = 0.58, p = 0.003), and appeared to represent a novel biomarker of vascular function. It predicted a blunted blood flow response to SNP (r = −0.61, p = 0.002), and was independently associated with a marker of pulmonary artery pressure, as well as hemoglobin level, diastolic blood pressure, homocysteine, and cholesterol (R2 = 0.84, p imaging of agonist-stimulated cutaneous blood flow represents a less cumbersome alternative to plethysmography methodology. Measurement of baseline skin temperature by IR imaging may be a useful new marker of vascular risk in adults with SCD. PMID:22784510

  11. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.

    Science.gov (United States)

    Abdulhay, Enas; Mohammed, Mazin Abed; Ibrahim, Dheyaa Ahmed; Arunkumar, N; Venkatraman, V

    2018-02-17

    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using

  12. The study of SPECT cerebral blood flow and neuroreceptor imaging in depressive disorders

    International Nuclear Information System (INIS)

    Yuan Ling; Liu Jianzhong; Wu Zhifang

    2007-01-01

    The imaging methods of depressive disorders include structural imaging and functional imaging, the abnormal of cerebral structure in CT and MRI is neither significant nor specific, while the use of PET and SPECT provides depression study in-vivo about regional cerebral blood flow and central neurotransmitter and receptor's structure and function, which further have advanced research on aetiology, pathogenesis and therapy of' depressive disorders. (authors)

  13. Hyperspectral imaging of the crime scene for detection and identification of blood stains

    Science.gov (United States)

    Edelman, G. J.; van Leeuwen, T. G.; Aalders, M. C. G.

    2013-05-01

    Blood stains are an important source of information in forensic investigations. Extraction of DNA may lead to the identification of victims or suspects, while the blood stain pattern may reveal useful information for the reconstruction of a crime. Consequently, techniques for the detection and identification of blood stains are ideally non-destructive in order not to hamper both DNA and the blood stain pattern analysis. Currently, forensic investigators mainly detect and identify blood stains using chemical or optical methods, which are often either destructive or subject to human interpretation. We demonstrated the feasibility of hyperspectral imaging of the crime scene to detect and identify blood stains remotely. Blood stains outside the human body comprise the main chromophores oxy-hemoglobin, methemoglobin and hemichrome. Consequently, the reflectance spectra of blood stains are influenced by the composite of the optical properties of the individual chromophores and the substrate. Using the coefficient of determination between a non-linear least squares multi-component fit and the measured spectra blood stains were successfully distinguished from other substances visually resembling blood (e.g. ketchup, red wine and lip stick) with a sensitivity of 100 % and a specificity of 85 %. The practical applicability of this technique was demonstrated at a mock crime scene, where blood stains were successfully identified automatically.

  14. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    Medicine and Biology, Social Networking, Transaction analysis, Software defect analysis and many others. In this paper ..... r2008a and data mining techniques were implemented through Tanagra, an open source data mining tool. Experimental analysis is presented below. ... and the second image as test. Classification ...

  15. Magnetic resonance imaging of fluid levels in an aneurysmal bone cyst and in anticoagulated human blood

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, T.M.; Hamlin, D.J.; Fitzsimmons, J.R.

    1985-04-01

    Magnetic resonance imaging (MRI) demonstrated a fluid level within an aneurysmal bone cyst (ABC). Since the ABC contained gross blood at operation, an anticoagulated human blood sample was studied by MRI also, and a fluid level was again clearly visible. MRI pulse sequences emphasizing T/sub 1/ contrast showed the fluid levels most clearly in both the ABC and the blood. Sequences emphasizing T/sub 2/ contrast showed homogeneous, bright signals in the ABC and in the blood, with no visible fluid level in the ABC and a nearly invisible one in the blood. In the blood sample, the calculated plasma T/sub 1/ value was 1585 ms, and that of the red cells was 794 ms.

  16. Technical Note: Measurement of common carotid artery lumen dynamics using black-blood MR cine imaging.

    Science.gov (United States)

    Dai, Erpeng; Dong, Li; Zhang, Zhe; Li, Lyu; Zhang, Hui; Zhao, Xihai; Wang, Jinnan; Yuan, Chun; Guo, Hua

    2017-03-01

    To demonstrate the feasibility of measuring the common carotid artery (CCA) lumen dynamics using a black-blood cine (BB-cine) imaging method. Motion-sensitized driven-equilibrium (MSDE) prepared spoiled gradient sequence was used for the BB-cine imaging. CCAs of eleven healthy volunteers were studied using this method. Lumen dynamics, including lumen area evolution waveforms and distension values, were measured and evaluated by comparing this method with bright-blood cine (BrB-cine) imaging. Compared with the BrB-cine images, flow artifacts were effectively suppressed in the BB-cine images. BrB-cine images generally show larger lumen areas than BB-cine images. The lumen area waveforms and distension measurements from BB-cine imaging showed smaller variances among different subjects than BrB-cine imaging. The proposed BB-cine imaging technique can suppress the flow artifacts effectively and reduce the partial volume effects from the vessel wall. This might allow more accurate lumen dynamics measurements than traditional BrB-cine imaging, which may further be valuable for investigating biomechanical and functional properties of the cardiovascular system. © 2017 American Association of Physicists in Medicine.

  17. Hawaii ESI: POOLS (Anchialine Pool Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anchialine pools in Hawaii. Anchialine pools are small, relatively shallow coastal ponds that occur...

  18. Adaptive and automatic red blood cell counting method based on microscopic hyperspectral imaging technology

    Science.gov (United States)

    Liu, Xi; Zhou, Mei; Qiu, Song; Sun, Li; Liu, Hongying; Li, Qingli; Wang, Yiting

    2017-12-01

    Red blood cell counting, as a routine examination, plays an important role in medical diagnoses. Although automated hematology analyzers are widely used, manual microscopic examination by a hematologist or pathologist is still unavoidable, which is time-consuming and error-prone. This paper proposes a full-automatic red blood cell counting method which is based on microscopic hyperspectral imaging of blood smears and combines spatial and spectral information to achieve high precision. The acquired hyperspectral image data of the blood smear in the visible and near-infrared spectral range are firstly preprocessed, and then a quadratic blind linear unmixing algorithm is used to get endmember abundance images. Based on mathematical morphological operation and an adaptive Otsu’s method, a binaryzation process is performed on the abundance images. Finally, the connected component labeling algorithm with magnification-based parameter setting is applied to automatically select the binary images of red blood cell cytoplasm. Experimental results show that the proposed method can perform well and has potential for clinical applications.

  19. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  20. Evaluation of RI images of hepatic blood flow using Tc-99m PMT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hiromichi; Iwasaki, Naoya; Ichikawa, Kesato

    1988-03-01

    To evaluate the clinical significance of RI images of hepatic blood flow using Tc-99m-PMT, analysis of the RI images and estimation of hepatic blood flow were carried out in patients with various liver diseases (37 cases). After intravenous injection of Tc-99m-PMT, hepatic accumulation curve of ROI positioned at whole liver area and time activity curve of ROI positioned at celiac artery were obtained through scintillation camera images with the computer-analysed system. Hepatic blood flow coefficient (K) was calculated from the hepatic accumulation curve. Based on the differential curve calculated from the time activity curve, chronological images of arterial, portal, parenchymal and saturated parenchymal phases were obtained. Results ; 1) K was 0.50 + 0.04, 0.35 + 0.02 and 0.26 + 0.04/min in normal type, CH type and LC type respectively. These coefficients well correlated with clinical severity of hepatic diseases. 2) Perfusional phase images of the liver became poorer in accordance with progression of liver disease, while images of spleen, portal venous system and collateral channels were more clearly obtained in liver cirrhosis. This method was shown to have a potential to understanding of severity of liver disease and hepatic blood flow dynamics.

  1. Regional cerebral blood perfusion SPECT imaging in brain ischemic injury due to cerebral hemorrhage

    International Nuclear Information System (INIS)

    Zhang Chunyin; Chen Yue; Li Zuoxiao; Tan Hua; Li Xiaohong

    2006-01-01

    Objective: To explore the clinical value of SPECT perfusion imaging in brain ischemic injury due to cerebral hemorrhage before and after treatment. Methods: Sixty cases of cerebral hemorrhage were randomly divided into nimodipine treated group and routine treated group. The volume of primary ischemic focus, changes of regional cerebral blood perfusion around hematoma and other cerebral areas were observed by SPECT imaging. Results: Volume of the primary focus was reduced apparently in both groups, but much more in nimodipine treated group (P<0.01). Also the regional cerebral blood flow in ischemic focus and remote areas increased much more in nimodipine treated group than routine treated group (P< 0.01). Conclusions: Brain SPECT imaging can sensitively reflect the regional cerebral blood flow before and after treatment. Thereby, it is useful for therapeutic monitoring. (authors)

  2. Extraction of Nucleolus Candidate Zone in White Blood Cells of Peripheral Blood Smear Images Using Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Ramin Soltanzadeh

    2012-01-01

    Full Text Available The main part of each white blood cell (WBC is its nucleus which contains chromosomes. Although white blood cells (WBCs with giant nuclei are the main symptom of leukemia, they are not sufficient to prove this disease and other symptoms must be investigated. For example another important symptom of leukemia is the existence of nucleolus in nucleus. The nucleus contains chromatin and a structure called the nucleolus. Chromatin is DNA in its active form while nucleolus is composed of protein and RNA, which are usually inactive. In this paper, to diagnose this symptom and in order to discriminate between nucleoli and chromatins, we employ curvelet transform, which is a multiresolution transform for detecting 2D singularities in images. For this reason, at first nuclei are extracted by means of K-means method, then curvelet transform is applied on extracted nuclei and the coefficients are modified, and finally reconstructed image is used to extract the candidate locations of chromatins and nucleoli. This method is applied on 100 microscopic images and succeeds with specificity of 80.2% and sensitivity of 84.3% to detect the nucleolus candidate zone. After nucleolus candidate zone detection, new features that can be used to classify atypical and blast cells such as gradient of saturation channel are extracted.

  3. Evaluation of musculoskeletal sepsis with indium-111 white blood cell imaging

    International Nuclear Information System (INIS)

    Ouzounian, T.J.; Thompson, L.; Grogan, T.J.; Webber, M.M.; Amstutz, H.C.

    1987-01-01

    The detection of musculoskeletal sepsis, especially following joint replacement, continues to be a challenging problem. Often, even with invasive diagnostic evaluation, the diagnosis of infection remains uncertain. This is a report on the first 55 Indium-111 white blood cell (WBC) images performed in 39 patients for the evaluation of musculoskeletal sepsis. There were 40 negative and 15 positive Indium-111 WBC images. These were correlated with operative culture and tissue pathology, aspiration culture, and clinical findings. Thirty-eight images were performed for the evaluation of possible total joint sepsis (8 positive and 30 negative images); 17 for the evaluation of nonarthroplasty-related musculoskeletal sepsis (7 positive and 10 negative images). Overall, there were 13 true-positive, 39 true-negative, two false-positive, and one false-negative images. Indium-111 WBC imaging is a sensitive and specific means of evaluating musculoskeletal sepsis, especially following total joint replacement

  4. Hybrid image and blood sampling input function for quantification of small animal dynamic PET data

    International Nuclear Information System (INIS)

    Shoghi, Kooresh I.; Welch, Michael J.

    2007-01-01

    We describe and validate a hybrid image and blood sampling (HIBS) method to derive the input function for quantification of microPET mice data. The HIBS algorithm derives the peak of the input function from the image, which is corrected for recovery, while the tail is derived from 5 to 6 optimally placed blood sampling points. A Bezier interpolation algorithm is used to link the rightmost image peak data point to the leftmost blood sampling point. To assess the performance of HIBS, 4 mice underwent 60-min microPET imaging sessions following a 0.40-0.50-mCi bolus administration of 18 FDG. In total, 21 blood samples (blood-sampled plasma time-activity curve, bsPTAC) were obtained throughout the imaging session to compare against the proposed HIBS method. MicroPET images were reconstructed using filtered back projection with a zoom of 2.75 on the heart. Volumetric regions of interest (ROIs) were composed by drawing circular ROIs 3 pixels in diameter on 3-4 transverse planes of the left ventricle. Performance was characterized by kinetic simulations in terms of bias in parameter estimates when bsPTAC and HIBS are used as input functions. The peak of the bsPTAC curve was distorted in comparison to the HIBS-derived curve due to temporal limitations and delay in blood sampling, which affected the rates of bidirectional exchange between plasma and tissue. The results highlight limitations in using bsPTAC. The HIBS method, however, yields consistent results, and thus, is a substitute for bsPTAC

  5. High throughput imaging of blood smears using white light diffraction phase microscopy

    Science.gov (United States)

    Majeed, Hassaan; Kandel, Mikhail E.; Bhaduri, Basanta; Han, Kevin; Luo, Zelun; Tangella, Krishnarao; Popescu, Gabriel

    2015-03-01

    While automated blood cell counters have made great progress in detecting abnormalities in blood, the lack of specificity for a particular disease, limited information on single cell morphology and intrinsic uncertainly due to high throughput in these instruments often necessitates detailed inspection in the form of a peripheral blood smear. Such tests are relatively time consuming and frequently rely on medical professionals tally counting specific cell types. These assays rely on the contrast generated by chemical stains, with the signal intensity strongly related to staining and preparation techniques, frustrating machine learning algorithms that require consistent quantities to denote the features in question. Instead we opt to use quantitative phase imaging, understanding that the resulting image is entirely due to the structure (intrinsic contrast) rather than the complex interplay of stain and sample. We present here our first steps to automate peripheral blood smear scanning, in particular a method to generate the quantitative phase image of an entire blood smear at high throughput using white light diffraction phase microscopy (wDPM), a single shot and common path interferometric imaging technique.

  6. Modelling the influence of noise of the image sensor for blood cells recognition in computer microscopy

    Science.gov (United States)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.

    2017-12-01

    The first stage of diagnostics of blood cancer is the analysis of blood smears. The application of decision-making support systems would reduce the subjectivity of the diagnostic process and avoid errors, resulting in often irreversible changes in the patient's condition. In this regard, the solution of this problem requires the use of modern technology. One of the tools of the program classification of blood cells are texture features, and the task of finding informative among them is promising. The paper investigates the effect of noise of the image sensor to informative texture features with application of methods of mathematical modelling.

  7. Estimation of center line and diameter of brain blood vessel using three-dimensional blood vessel matching method with head three-dimensional CTA image

    International Nuclear Information System (INIS)

    Maekawa, Masashi; Shinohara, Toshihiro; Nakayama, Masato; Nakasako, Noboru

    2010-01-01

    To support and automate the brain blood vessel disease diagnosis, a novel method to obtain the center line and the diameter of a blood vessel is proposed with a three-dimensional head computed tomographic angiography (CTA) image. Although the line thinning processing with distance transform or gray information is generally used to obtain the blood vessel center line, this method is not essentially one to obtain the center line and tends to yield extra lines depending on CTA images. In this study, the center line of the blood vessel is obtained by tracing the vessel. The blood vessel is traced by sequentially estimating the center point and direction of the blood vessel. The center point and direction of the blood vessel are estimated by taking the correlation between the blood vessel and a solid model of the blood vessel that is designed by considering noise influence. In addition, the vessel diameter is also estimated by correlating the blood vessel and the blood vessel model of which the diameter is variable. The validity of the proposed method is confirmed by experimentally applied the proposed method to an actual three-dimensional head CTA image. (author)

  8. Crowdsourcing malaria parasite quantification: an online game for analyzing images of infected thick blood smears.

    Science.gov (United States)

    Luengo-Oroz, Miguel Angel; Arranz, Asier; Frean, John

    2012-11-29

    There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist's time. This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a

  9. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)

    2014-02-15

    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  10. Indocyanine green fluorescence imaging for evaluation of uterine blood flow in cynomolgus macaque.

    Directory of Open Access Journals (Sweden)

    Iori Kisu

    Full Text Available BACKGROUND: Uterine blood flow is an important factor in uterine viability, but the number of blood vessels required to maintain viability is uncertain. In this study, indocyanine green (ICG fluorescence imaging was used to examine uterine hemodynamics and vessels associated with uterine blood flow in cynomolgus macaque. METHODS: The uterus of a female cynomolgus macaque was cut from the vaginal canal to mimic a situation during trachelectomy or uterine transplantation surgery in which uterine perfusion is maintained only with uterine and ovarian vessels. Intraoperative uterine hemodynamics was observed using ICG fluorescence imaging under conditions in which various nutrient vessels were selected by clamping of blood vessels. A time-intensity curve was plotted using imaging analysis software to measure the T(max of uterine perfusion for selected blood vessel patterns. Open surgery was performed with the uterus receiving nutritional support only from uterine vessels on one side. The size of the uterus after surgery was monitored using transabdominal ultrasonography. RESULTS: The resulting time-intensity curves displayed the average intensity in the regions of the uterine corpus and uterine cervix, and in the entire uterus. Analyses of the uterine hemodynamics in the cynomolgus macaque showed that uterine vessels were significantly related to uterine perfusion (P=0.008, whereas ovarian vessels did not have a significant relationship (P=0.588. When uterine vessels were clamped, ovarian vessels prolonged the time needed to reach perfusion maximum. Postoperative transabdominal ultrasonography showed that the size of the uterus was not changed 2 months after surgery, with recovery of periodic menstruation. The cynomolgus macaque has got pregnant with favorable fetus well-being. CONCLUSION: Uterine vessels may be responsible for uterine blood flow, and even one uterine vessel may be sufficient to maintain uterine viability in cynomolgus macaque. Our

  11. Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools: CENTRAL Magnetic Resonance Imaging Randomized Controlled Trial.

    Science.gov (United States)

    Gepner, Yftach; Shelef, Ilan; Schwarzfuchs, Dan; Zelicha, Hila; Tene, Lilac; Yaskolka Meir, Anat; Tsaban, Gal; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Komy, Oded; Wolak, Arik; Chassidim, Yoash; Golan, Rachel; Avni-Hassid, Hila; Bilitzky, Avital; Sarusi, Benjamin; Goshen, Eyal; Shemesh, Elad; Henkin, Yaakov; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Ceglarek, Uta; Rudich, Assaf; Stampfer, Meir J; Shai, Iris

    2018-03-13

    We aimed to assess whether distinct lifestyle strategies can differentially affect specific body adipose depots. We performed an 18-month randomized controlled trial among 278 sedentary adults with abdominal obesity (75%) or dyslipidemia in an isolated workplace with a monitored provided lunch. Participants were randomized to isocaloric low-fat or Mediterranean/low-carbohydrate (MED/LC) diet+28 g walnuts/day with/without added moderate physical activity (PA; 80% aerobic; supervised/free gym membership). Overall primary outcome was body fat redistribution, and the main specific end point was visceral adipose tissue (VAT). We further followed the dynamics of different fat depots (deep and superficial subcutaneous, liver, pericardial, muscle, pancreas, and renal sinus) by magnetic resonance imaging. Of 278 participants (age, 48 years, 89% men, body mass index, 30.8 kg/m 2 ), 86% completed the trial with good adherence. The low-fat group preferentially decreased reported fat intake (-21.0% versus -11.5% for the MED/LC; P carbohydrates intake (-39.5% versus -21.3% for the low-fat group; P weight loss was indifferent, exercise attenuated the waist circumference rebound with the greatest effect in the MED/LC PA+ group ( P fats declines were higher than pancreatic and femur intermuscular fats (1% to 2%) loss. Independent of weight loss, PA + with either diet had a significantly greater effect on decreasing VAT (mean of difference, -6.67cm 2 ; 95% confidence interval, -14.8 to -0.45) compared with PA - . The MED/LC diet was superior to the low-fat diet in decreasing intrahepatic, intrapericardial, and pancreatic fats ( P fats were not differentially altered by lifestyle interventions but by weight loss per se. In multivariate models further adjusted for weight loss, losing VAT or intrahepatic fat was independently associated with improved lipid profile, losing deep subcutaneous adipose tissue with improved insulin sensitivity, and losing superficial subcutaneous adipose

  12. [Clinical application of automated digital image analysis for morphology review of peripheral blood leukocyte].

    Science.gov (United States)

    Xing, Ying; Yan, Xiaohua; Pu, Chengwei; Shang, Ke; Dong, Ning; Wang, Run; Wang, Jianzhong

    2016-03-01

    To explore the clinical application of automated digital image analysis in leukocyte morphology examination when review criteria of hematology analyzer are triggered. The reference range of leukocyte differentiation by automated digital image analysis was established by analyzing 304 healthy blood samples from Peking University First Hospital. Six hundred and ninty-seven blood samples from Peking University First Hospital were randomly collected from November 2013 to April 2014, complete blood cells were counted on hematology analyzer, blood smears were made and stained at the same time. Blood smears were detected by automated digital image analyzer and the results were checked (reclassification) by a staff with abundant morphology experience. The same smear was examined manually by microscope. The results by manual microscopic differentiation were used as"golden standard", and diagnostic efficiency of abnormal specimens by automated digital image analysis was calculated, including sensitivity, specificity and accuracy. The difference of abnormal leukocytes detected by two different methods was analyzed in 30 samples of hematological and infectious diseases. Specificity of identifying abnormalities of white blood cells by automated digital image analysis was more than 90% except monocyte. Sensitivity of neutrophil toxic abnormities (including Döhle body, toxic granulate and vacuolization) was 100%; sensitivity of blast cells, immature granulates and atypical lymphocytes were 91.7%, 60% to 81.5% and 61.5%, respectively. Sensitivity of leukocyte differential count was 91.8% for neutrophils, 88.5% for lymphocytes, 69.1% for monocytes, 78.9% for eosinophils and 36.3 for basophils. The positive rate of recognizing abnormal cells (blast, immature granulocyte and atypical lymphocyte) by manual microscopic method was 46.7%, 53.3% and 10%, respectively. The positive rate of automated digital image analysis was 43.3%, 60% and 10%, respectively. There was no statistic

  13. Nuclear imaging of hepatic impact injury on rabbits

    International Nuclear Information System (INIS)

    Jin Rongbing; Wen Jianliang; Tang Weijia; Ma Xiaolin

    2002-01-01

    Objective: To investigate the effect and clinic application value of nuclear imaging on hepatic impact experiment. Methods: Experimental rabbits were impact injured on liver with BIM-IV bio-impact machine. Liver imaging was performed with sodium phytate labeled by 99m Tc. Liver blood pool imaging was performed with labeled red blood cells. The results of imaging were similar with the results of anatomy. Results: There were significant difference between normal liver and injured liver. Radio diminution and defect were showed on injured liver areas in labeled hepatic cells. Many types of abnormal radioactivity distribution were observed in liver pool imaging. The results of liver imaging and liver blood pool imaging were corresponded to the results of anatomy. Conclusion: Changes of hepatic cell structures and function after injury could be showed by nuclear imaging. Nuclear imaging was valuable in determining injured liver position or injured degree

  14. Relationship between dynamic infrared thermal images and blood perfusion rate of the tongue in anaemia patients

    Science.gov (United States)

    Xie, Haiwei; Zhang, Yan

    2018-03-01

    The relationship between dynamic infrared (IR) thermal images and blood perfusion rate of the tongues of anaemia patients was investigated. Blood perfusion rates at multiple locations on the tongues of 62 anaemia patients and 70 control subjects were measured. For both groups of subjects, dynamic IR thermal images were also recorded within 16 s after the mouth opened. The results showed that the blood perfusion rates at different sites (apex, middle, left side and right side) on the tongues in anaemia patients (3.49, 3.71, 3.85 and 3.77 kg/s m-3) were significantly lower than those at the corresponding sites in control subjects (4.45, 4.66, 4.81 and 4.70 kg/s m-3). After the mouth opened, the tongue temperature decreased more rapidly in anaemia patients than in control subjects. To analyse the heat transfer mechanism, a transient heat transfer model of the tongue was developed. The tongue temperatures in anaemia patients and control subjects were calculated using this model and compared to the tongue temperatures measured by the IR thermal imager. The relationship between the tongue surface temperature and the tongue blood perfusion rate was analysed. The simulation results indicated that the low blood perfusion rate and the correlated changes in anaemia patients can cause faster temperature decreases of the tongue surface.

  15. Effect of blood glucose levels on image quality in 18F fluorodeoxyglucose scanning - a case report

    International Nuclear Information System (INIS)

    Szeto, E.; Keane, J.

    2000-01-01

    Full text: In December last year, a 71-year-old gentleman presented to the Nuclear Medicine Department at St Vincent's Hospital, Sydney for an FDG coincidence detection positron emission scan. The patient had cancer of the lung with a large lesion in the left upper lobe and a small lesion in the right middle lobe. On initial investigation, this patient had a blood sugar level of 17mmol/L which was eventually reduced to 6.7mmol/L just prior to scanning. The patient was then asked to return to be rescanned without his blood sugar levels being adjusted. Just prior to his second scan, his blood sugar level was 15.4mmollL. The aim of the initial scan being repeated was to see just how important a role blood sugar levels play in the quality of a Co Pet scan. The first scan showed excellent image quality while the repeated scan showed markedly inferior image quality due to unwanted soft tissue FDG uptake. In conclusion, blood sugar levels play a significant role in output image quality in FDG coincidence detection positron emission scanning. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging

    Science.gov (United States)

    Meiburger, K. M.; Nam, S. Y.; Chung, E.; Suggs, L. J.; Emelianov, S. Y.; Molinari, F.

    2016-11-01

    Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  burn surgery). The study demonstrates an approach to obtain quantitative characterization of the vascular network from 3D photoacoustic images without any exogenous contrast agent which can assess

  17. Erythrocyte Features for Malaria Parasite Detection in Microscopic Images of Thin Blood Smear: A Review

    Directory of Open Access Journals (Sweden)

    Salam Shuleenda Devi

    2016-12-01

    Full Text Available Microscopic image analysis of blood smear plays a very important role in characterization of erythrocytes in screening of malaria parasites. The characteristics feature of erythrocyte changes due to malaria parasite infection. The microscopic features of the erythrocyte include morphology, intensity and texture. In this paper, the different features used to differentiate the non- infected and malaria infected erythrocyte have been reviewed.

  18. Fast Blood Vector Velocity Imaging: Simulations and Preliminary In Vivo Results

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2007-01-01

    for each pulse emission. 2) The transmitted pulse consists of a 13 bit Barker code which is transmitted simultaneously from each transducer element. 3) The 2-D vector velocity of the blood is found using 2-D speckle tracking between segments in consecutive speckle images. III Results: The method was tested...

  19. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  20. The method of selection of leukocytes in images of preparations of peripheral blood and bone marrow

    Science.gov (United States)

    Zakharenko, Y. V.; Nikitaev, V. G.; Polyakov, E. V.; Seldyukov, S. O.

    2017-01-01

    Study of the segmentation method on the basis of histogram analysis for the selection of leukocytes in the images of blood and bone marrow in the diagnosis of acute leukemia was conducted in this paper. Method of filtering was offered to eliminate the artifacts, resulting from the selection of leukocytes.

  1. Multispectral Imaging Analysis of Circulating Tumor Cells in Negatively Enriched Peripheral Blood Samples.

    Science.gov (United States)

    Miller, Brandon; Lustberg, Maryam; Summers, Thomas A; Chalmers, Jeffrey J

    2017-01-01

    A variety of biomarkers are present on cells in peripheral blood of patients with a variety of disorders, including solid tumor malignancies. While rare, characterization of these cells for specific protein levels with the advanced technology proposed, will lead to future validation studies of blood samples as "liquid biopsies" for the evaluation of disease status and therapeutic response. While circulating tumor cells (CTCs) have been isolated in the blood samples of patients with solid tumors, the exact role of CTCs as clinically useful predictive markers is still debated. Current commercial technology has significant bias in that a positive selection technology is used that preassumes specific cell surface markers (such as EpCAM) are present on CTCs. However, CTCs with low EpCAM expression have been experimentally demonstrated to be more likely to be missed by this method. In contrast, this application uses a previously developed, technology that performs a purely negative enrichment methodology on peripheral blood, yielding highly enriched blood samples that contain CTCs as well as other, undefined cell types. The focus of this contribution is the use of multispectral imaging of epifluorescent, microscopic images of these enriched cells in order to help develop clinically relevant liquid biopsies from peripheral blood samples.

  2. Three-dimensional display of blood vessels and soft tissues with MR images

    International Nuclear Information System (INIS)

    Shiotani, Y.; Sato, H.; Machida, Y.; Yoshida, T.

    1988-01-01

    The authors developed a three-dimensional display technique for blood vessels related to soft tissues, using MR images generated by the three-dimensional Fourier transform method or multisection method. An application of this study for neurosurgery provided satisfactory results. In this paper they describe this display technique and its clinical practice, including procedures (1) to enhance blood vessels by nonlinear filter capable of detecting three-dimensional line patterns without losing the form of soft tissues, (2) to generate three-dimensional images by the numerical projection, and (3) to present three-dimensional display utilizing the dynamic or binocular parallex (animation display or stereoscopic display). This technique facilitates the recognition of the three-dimensional structure of blood vessels related to soft tissues

  3. Detection of blood oxygen level by noninvasive passive spectral imaging of skin

    Science.gov (United States)

    Gupta, Neelam; Ramella-Roman, Jessica C.

    2008-02-01

    A compact optical hyperspectral imager that can detect both spectral and polarization signatures was used for passive noninvasive imaging of human skin. This vibration-insensitive imager uses an acousto-optic tunable filter (AOTF) as a spectral selection element and an electronically tunable liquid crystal variable retarder (LCVR) as a polarization device. Such an imager is ideally suited to provide both agile spectral and polarization signatures and can be readily used for real time in vivo medical imaging applications. Operation of this imager and image acquisition is fully computer controlled. This imager covers visible to near-infrared (VNIR) region from 400 to 800 nm with a 10 nm spectral resolution at 600 nm and uses a TeO II AOTF with a 15×15 mm2 linear aperture and a 4.2° angular aperture. At each wavelength 640×480 images with two orthogonal polarization are captured and a total of 41 spectral images are collected to form an image cube. A commercial Si CCD camera was used along with off-the-shelf lenses, mirrors and irises. We carried out experiments with a human subject and controlled the blood perfusion in the individual arm and finger by using a pressure cuff and a rubber band, respectively. Images were captured by illuminating the subject with a white light lamp source and imaging it from a distance. When the hyperspectral image analysis was performed we could observe the effects of skin deoxygenation. In this paper we will described our instrument, the experimental setup, the images obtained and the analysis results.

  4. A thresholding based technique to extract retinal blood vessels from fundus images

    Directory of Open Access Journals (Sweden)

    Jyotiprava Dash

    2017-12-01

    Full Text Available Retinal imaging has become the significant tool among all the medical imaging technology, due to its capability to extract many data which is linked to various eye diseases. So, the accurate extraction of blood vessel is necessary that helps the eye care specialists and ophthalmologist to identify the diseases at the early stages. In this paper, we have proposed a computerized technique for extraction of blood vessels from fundus images. The process is conducted in three phases: (i pre-processing where the image is enhanced using contrast limited adaptive histogram equalization and median filter, (ii segmentation using mean-C thresholding to extract retinal blood vessels, (iii post-processing where morphological cleaning operation is used to remove isolated pixels. The performance of the proposed method is tested on and experimental results show that our method achieve an accuracies of 0.955 and 0.954 on Digital retinal images for vessel extraction (DRIVE and Child heart and health study in England (CHASE_DB1 databases respectively.

  5. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    Li Yuge; Gao Qinyi; Wang Shuang; Zhao Yong

    2008-01-01

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99 Tc m -ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99 Tc m -ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  6. A method to identify early ventricular dysfunction using resting gated blood pool scans (GBPS) in patients with coronary artery disease (CAD)

    International Nuclear Information System (INIS)

    Schwarzberg, R.J.; Seldin, D.W.; Johnson, L.L.; Alderson, P.O.

    1984-01-01

    To determine the sensitivity of regional 1st and 2nd time derivative (1DV, 2DV) images to assess ventricular function (VF) in CAD, the resting GBPS of 8 normal patients (pts) and 20 pts with CAD who had coronary angiography and contrast ventriculography (CV) were analyzed. The 1DV and 2DV of the systolic time-activity curve were determined for each left ventricular pixel in the GBPS. These values were displayed as functional images that were reviewed by three readers to determine the presence of regional abnormalities. No regional abnormalities were seen in the conventional GBPS or 1DV or 2DV images of the 8 normal pts. Regional GBPS and DV image abnormalities were seen in all 10 pts with CAD and abnormal wall motion by CV. The DV image abnormalities were in the distribution of 18/22 coronary arteries (CA) with ≥50% stenoses; 2 of these regions showed normal wall motion by CV and conventional GBPS. DV images were abnormal in 2/8 CAs without significant stenoses. In addition, regional DV image abnormalities were present in 9 of 10 pts with CAD who had normal wall motion and global ejection fraction by both CV and resting GBPS. These 10 pts showed regional abnormalities in the distribution of 13/15 CAs with significant stenoses and 2/15 CAs without such stenoses. The results suggest that time derivative functional images derived from resting GBPS provide a more sensitive means for detecting regional left ventricular dysfunction than several other current methods, especially in pts with mild CAD

  7. Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry

    Science.gov (United States)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan

    2007-01-01

    The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.

  8. Preanalytical considerations in detection of colorectal cancer in blood serum using Raman molecular imaging (Conference Presentation)

    Science.gov (United States)

    Treado, Patrick J.; Stewart, Shona D.; Smith, Aaron; Kirschner, Heather; Post, Christopher; Overholt, Bergein F.

    2016-03-01

    Colorectal cancer (CRC) is the third most common cancer in men and women in the United States. Raman Molecular Imaging (RMI) is an effective technique to evaluate human tissue, cells and bodily fluids, including blood serum for disease diagnosis. ChemImage Corporation, in collaboration with clinicians, has been engaged in development of an in vitro diagnostic Raman assay focused on CRC detection. The Raman Assay for Colorectal Cancer (RACC) exploits the high specificity of Raman imaging to distinguish diseased from normal dried blood serum droplets without additional reagents. Pilot Study results from testing of hundreds of biobank patient samples have demonstrated that RACC detects CRC with high sensitivity and specificity. However, expanded clinical trials, which are ongoing, are revealing a host of important preanalytical considerations associated with sample collection, sample storage and stability, sample shipping, sample preparation and sample interferents, which impact detection performance. Results from recent clinical studies will be presented.

  9. Total three-dimensional imaging of phase objects using defocusing microscopy: Application to red blood cells

    Science.gov (United States)

    Roma, P. M. S.; Siman, L.; Amaral, F. T.; Agero, U.; Mesquita, O. N.

    2014-06-01

    We introduce Defocusing Microscopy (DM), a bright-field optical microscopy technique able to perform total three-dimensional (3D) imaging of transparent objects. By total 3D imaging, we mean the determination of the actual shapes of the upper and lower surfaces of a phase object. We propose a methodology using DM and apply it to red blood cells subject to different osmolality conditions: hypotonic, isotonic, and hypertonic solutions. For each situation, the shapes of the upper and lower cell surface-membranes (lipid bilayer/cytoskeleton) are completely recovered, displaying the deformation of red blood cell (RBC) surfaces due to adhesion on the glass-substrate. The axial resolution of our technique allowed us to image surface-membranes separated by distances as small as 300 nm. Finally, we determine the volume, surface area, sphericity index, and RBC refractive index for each osmotic condition.

  10. Laser speckle-imaging of blood microcirculation in the brain cortex of laboratory rats in stress

    Science.gov (United States)

    Vilensky, M. A.; Semyachkina-Glushkovskaya, Oxana V.; Timoshina, P. A.; Kuznetsova, Jana V.; Semyachkin-Glushkovskii, I. A.; Agafonov, Dmitry N.; Tuchin, Valerii V.

    2012-06-01

    The results of experimental approbation of the method of laser full-field speckle-imaging for monitoring the changes in blood microcirculation state of the brain cortex of laboratory rats under the conditions of developing stroke and administration of vasodilating and vasoconstrictive agents are presented. The studies aimed at the choice of the optimal conditions of speckle-image formation and recording were performed and the software implementing an adaptive algorithm for processing the data of measurements was created. The transfer of laser radiation to the probed region of the biotissue was implemented by means of a silica-polymer optical fibre. The problems and prospects of speckle-imaging of cerebral microcirculation of blood in laboratory and clinical conditions are discussed.

  11. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping (abstract)

    Science.gov (United States)

    Rossow, Molly; Mantulin, William M.; Gratton, Enrico

    2009-04-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles-such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  12. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    International Nuclear Information System (INIS)

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-01-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  13. Analysis of blood flow dynamics in the abdominal aorta based on MR images

    International Nuclear Information System (INIS)

    Shimamura, Koumei; Tsubota, Kenichi; Ryu, Hiroshi; Sugimoto, Koichi; Haneishi, Hideaki

    2010-01-01

    Images of the abdominal aorta including peri-renal artery by PCMRA (phase contrast magnetic resonance angiography) were analyzed to calculate WSS (wall shear stress) and its OSI (oscillatory shear index) in order to visually elucidate the cause of aneurysm formation. PCMRA was conducted for acquisitions of vascular morphology in one cardiac cycle of a healthy male 30s with cardiac gating, and of blood flow rates from 3 directions. Images were median-filtered to reduce noises and regions of interest of rectangular parallelepiped were defined to involve the aorta. WSS, the parameter representing the intensity of friction stress to the vessel wall of blood flow, and OSI, the degree of oscillatory WSS change, were calculated firstly by the reported Snake model for the vessel morphology and then by applying its local information to blood flow rate information from 3 directions. Color-displayed images revealed that both WSS and OS were high at the highest incidental region of aortic aneurysm formation around the peri-renal artery. The finding was in good agreement with the result of computed bio-dynamic simulation that the strong WSS by elevated swirling of blood flow is generated at the region. Thus WSS and OS can be significant factors of aneurismal formation, which should be further confirmed from aspects of increased case number and precision. (T.T.)

  14. Method for Separation of Blood Vessels on the Three-Color Images of Biological Tissues

    Science.gov (United States)

    Lisenko, S. A.

    2017-07-01

    A new technology was developed to improve the visibility of blood vessels on images of tissues of hollow human organs(the alimentary tract and respiratory system) based on the relation between the color components of the image, the scattering properties of the tissue, and its hemoglobin content. A statistical operator was presented to convert the three-color image of the tissue into a parametric map objectively characterizing the concentration of hemoglobin in the tissue regardless of the illumination and shooting conditions. An algorithm for obtaining conversion parameters for image systems with known spectral characteristics was presented. An image of a multilayer multiple-scattering medium modeling bronchial tissue was synthesized and was used to evaluate the efficiency of the proposed conversion system. It was shown that the conversion made it possible to increase the contrast of the blood vessels by almost two orders of magnitude, to significantly improve the clarity of the display of their borders, and to eliminate almost completely the influence of background and nonuniform illumination of the medium in comparison with the original image.

  15. Widefield in vivo spectral and fluorescence imaging microscopy of microvessel blood supply and oxygenation

    Science.gov (United States)

    Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.

    2011-02-01

    Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.

  16. Fast and robust segmentation of white blood cell images by self-supervised learning.

    Science.gov (United States)

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Application of Blood-Brain Barrier Permeability Imaging in Global Cerebral Edema.

    Science.gov (United States)

    Ivanidze, J; Kallas, O N; Gupta, A; Weidman, E; Baradaran, H; Mir, D; Giambrone, A; Segal, A Z; Claassen, J; Sanelli, P C

    2016-09-01

    Blood-brain barrier permeability is not routinely evaluated in the clinical setting. Global cerebral edema occurs after SAH and is associated with BBB disruption. Detection of global cerebral edema using current imaging techniques is challenging. Our purpose was to apply blood-brain barrier permeability imaging in patients with global cerebral edema by using extended CT perfusion. Patients with SAH underwent CTP in the early phase after aneurysmal rupture (days 0-3) and were classified as having global cerebral edema or nonglobal cerebral edema using established noncontrast CT criteria. CTP data were postprocessed into blood-brain barrier permeability quantitative maps of PS (permeability surface-area product), K(trans) (volume transfer constant from blood plasma to extravascular extracellular space), Kep (washout rate constant of the contrast agent from extravascular extracellular space to intravascular space), VE (extravascular extracellular space volume per unit of tissue volume), VP (plasmatic volume per unit of tissue volume), and F (plasma flow) by using Olea Sphere software. Mean values were compared using t tests. Twenty-two patients were included in the analysis. Kep (1.32 versus 1.52, P cerebral edema compared with nonglobal cerebral edema while VE (0.81 versus 0.39, P cerebral edema. Kep is an important indicator of altered blood-brain barrier permeability in patients with decreased blood flow, as Kep is flow-independent. Further study of blood-brain barrier permeability is needed to improve diagnosis and monitoring of global cerebral edema. © 2016 by American Journal of Neuroradiology.

  18. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics

    Science.gov (United States)

    Bouchard, Matthew B.; Chen, Brenda R.; Burgess, Sean A.; Hillman, Elizabeth M. C.

    2009-01-01

    Camera-based optical imaging of the exposed brain allows cortical hemodynamic responses to stimulation to be examined. Typical multispectral imaging systems utilize a camera and illumination at several wavelengths, allowing discrimination between changes in oxy- and deoxyhemoglobin concentration. However, most multispectral imaging systems utilize white light sources and mechanical filter wheels to multiplex illumination wavelengths, which are slow and difficult to synchronize at high frame rates. We present a new LED-based system capable of high-resolution multispectral imaging at frame rates exceeding 220 Hz. This improved performance enables simultaneous visualization of hemoglobin oxygenation dynamics within single vessels, changes in vessel diameters, blood flow dynamics from the motion of erythrocytes, and dynamically changing fluorescence. PMID:19724566

  19. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  20. Blood

    Science.gov (United States)

    ... production of red blood cells, including: Iron deficiency anemia. Iron deficiency anemia is the most common type of anemia and ... inflammatory bowel disease are especially likely to have iron deficiency anemia. Anemia due to chronic disease. People with chronic ...

  1. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... by fitting a gamma-variate function to the data. The tissue concentration vs time curves were deconvoluted using an input function obtained by arterial sampling. RESULTS: The ratio of gray to white matter CBV (1.9-2.5) as well as the fractional increase in rCBV during hypercapnia (about 30%) was found...

  2. Low-dose myocardial blood flow imaging using 82Rb-PET (RUBILOW 2.0)

    DEFF Research Database (Denmark)

    Hoff, Camilla Molich; Tolbod, Lars Poulsen; Harms, Hans

    2017-01-01

    Aim: Relative and absolute measures of myocardial blood flow (MBF) can be derived from a 82Rb PET/CT scan using list mode data to extract static, gated and dynamic PET series. High doses of 82Rb are used to maximize image quality in especially static images. High doses require large eluate volumes...... deficit (TPD), ejection fraction (EF) and %-perfusion using the 17-segment model were calculated using commercially available software QPET (Cedars Sinai). Results: Five patients had to be excluded due to motion during STD (n=2) and LD (n=3). For the remaining patients, there was excellent correlation...

  3. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  4. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  5. Application of image flow cytometry for the characterization of red blood cell morphology

    Science.gov (United States)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  6. Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera

    Science.gov (United States)

    Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran

    2017-02-01

    Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.

  7. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)

    2017-04-15

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.

  8. Aneurysm treatment response prediction in follow up black blood magnetic resonance imaging. A case series study

    Science.gov (United States)

    Petridis, Athanasios K.; Suresh, Marian; Cornelius, Jan F.; Tortora, Angelo; Steiger, Hans Jakob; Turowski, Bernd; May, Rebecca

    2018-01-01

    Black blood magnetic resonance imaging (MRI)is a promising imaging tool in predicting aneurysm rupture. Could it be also valuable in evaluating the treatment effect of endovascular and conservative treated aneurysms? Two patients were treated with stent and coil and one with Aspirine (ASS). Correlation of treatment response and contrast enhancement of the aneurysm wall is examined. In the first case stenting failed to treat the aneurysm and contrast enhancement in the wall did never subside during follow up black blood MRI. In the second case the aneurysm responded well to stenting and decreased in size, which was correlating significantly with attenuation of contrast enhancement in black blood MRI. In the third case the aneurysm responded to ASS treatment by decreasing in size as shown in follow up MR-angiography and the contrast enhancement in its wall decreased after 8 months of therapy. Black blood MRI seems to be a promising tool not only in predicting aneurysms at risk of rupture, but also in observing treatment responses after endovascular procedures or even Aspirine administration. When contrast enhancement decreases, aneurysm treatment seems to be successful as can be shown in decreasing size in the follow up angiography. PMID:29619161

  9. Aneurysm treatment response prediction in follow up black blood magnetic resonance imaging. A case series study

    Directory of Open Access Journals (Sweden)

    Athanasios K. Petridis

    2018-03-01

    Full Text Available Black blood magnetic resonance imaging (MRIis a promising imaging tool in predicting aneurysm rupture. Could it be also valuable in evaluating the treatment effect of endovascular and conservative treated aneurysms? Two patients were treated with stent and coil and one with Aspirine (ASS. Correlation of treatment response and contrast enhancement of the aneurysm wall is examined. In the first case stenting failed to treat the aneurysm and contrast enhancement in the wall did never subside during follow up black blood MRI. In the second case the aneurysm responded well to stenting and decreased in size, which was correlating significantly with attenuation of contrast enhancement in black blood MRI. In the third case the aneurysm responded to ASS treatment by decreasing in size as shown in follow up MR-angiography and the contrast enhancement in its wall decreased after 8 months of therapy. Black blood MRI seems to be a promising tool not only in predicting aneurysms at risk of rupture, but also in observing treatment responses after endovascular procedures or even Aspirine administration. When contrast enhancement decreases, aneurysm treatment seems to be successful as can be shown in decreasing size in the follow up angiography.

  10. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing

    International Nuclear Information System (INIS)

    Gu Quan; Hayes-Gill, Barrie R.; Morgan, Stephen P.

    2008-01-01

    A 4x4 pixel array with analog on-chip processing has been fabricated within a 0.35 μm complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate ω 0.5 filter at the pixel level, this has been approximated using the ''roll off'' of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging

  11. Hyperspectral imaging and multivariate analysis in the dried blood spots investigations

    Science.gov (United States)

    Majda, Alicja; Wietecha-Posłuszny, Renata; Mendys, Agata; Wójtowicz, Anna; Łydżba-Kopczyńska, Barbara

    2018-04-01

    The aim of this study was to apply a new methodology using the combination of the hyperspectral imaging and the dry blood spot (DBS) collecting. Application of the hyperspectral imaging is fast and non-destructive. DBS method offers the advantage also on the micro-invasive blood collecting and low volume of required sample. During experimental step, the reflected light was recorded by two hyperspectral systems. The collection of 776 spectral bands in the VIS-NIR range (400-1000 nm) and 256 spectral bands in the SWIR range (970-2500 nm) was applied. Pixel has the size of 8 × 8 and 30 × 30 µm for VIS-NIR and SWIR camera, respectively. The obtained data in the form of hyperspectral cubes were treated with chemometric methods, i.e., minimum noise fraction and principal component analysis. It has been shown that the application of these methods on this type of data, by analyzing the scatter plots, allows a rapid analysis of the homogeneity of DBS, and the selection of representative areas for further analysis. It also gives the possibility of tracking the dynamics of changes occurring in biological traces applied on the surface. For the analyzed 28 blood samples, described method allowed to distinguish those blood stains because of time of apply.

  12. Technetium-99m white blood cell imaging: False-negative result in salmonella osteomyelitis associated with sickle cell disease

    International Nuclear Information System (INIS)

    Guze, B.H.; Hawkins, R.A.; Marcus, C.S.

    1989-01-01

    The authors report a case of sickle cell anemia associated osteomyelitis where the Tc-99m white blood cell imaging was negative, and bone imaging showed increased uptake in the region in question. The reasons for the possible false-negative image are discussed

  13. Technetium-99m white blood cell imaging: False-negative result in salmonella osteomyelitis associated with sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Guze, B.H.; Hawkins, R.A.; Marcus, C.S.

    1989-02-01

    The authors report a case of sickle cell anemia associated osteomyelitis where the Tc-99m white blood cell imaging was negative, and bone imaging showed increased uptake in the region in question. The reasons for the possible false-negative image are discussed.

  14. Multifunctional polyelectrolyte microcapsules as a contrast agent for photoacoustic imaging in blood.

    Science.gov (United States)

    Yashchenok, Alexey M; Jose, Jithin; Trochet, Philippe; Sukhorukov, Gleb B; Gorin, Dmitry A

    2016-08-01

    The polyelectrolyte microcapsules that can be accurate either visualized in biological media or in tissue would enhance their further in vivo application both as a carrier of active payloads and as a specific sensor. The immobilization of active species, for instance fluorescent dyes, quantum dots, metal nanoparticles, in polymeric shell enables visualization of capsules by optical imaging techniques in aqueous solution. However, for visualization of capsules in complex media an instrument with high contrast modality requires. Herein, we show for the first time photoacoustic imaging (PAI) of multifunctional microcapsules in water and in blood. The microcapsules exhibit greater photoacoustic intensity compare to microparticles with the same composition of polymeric shell presumably their higher thermal expansion. Photoacoustic intensity form microcapsules dispersed in blood displays an enhancement (2-fold) of signal compare to blood. Photoacoustic imaging of microcapsules might contribute to non-invasive carrier visualization and further their in vivo distribution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simple blood-feeding method for live imaging of gut tube remodeling in regenerating planarians.

    Science.gov (United States)

    Hosoda, Kazutaka; Morimoto, Mizuki; Motoishi, Minako; Nishimura, Osamu; Agata, Kiyokazu; Umesono, Yoshihiko

    2016-04-01

    Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well-visualized in living intact animals under normal bright-field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf-related gene (DjrafA) and mek-related gene (DjmekA) we identified both play a major role in the activation of extracellular signal-regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi-induced defects on gut tube remodeling in a time-saving initial screening using blood-feeding without immunohistochemical detection of the gut. Thus, this blood-feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians. © 2016 Japanese Society of Developmental Biologists.

  16. Three-dimensional echo-planar cine imaging of cerebral blood supply using arterial spin labeling.

    Science.gov (United States)

    Shrestha, Manoj; Mildner, Toralf; Schlumm, Torsten; Robertson, Scott Haile; Möller, Harald

    2016-12-01

    Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated. EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These "spokes" are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame. The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels. The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.

  17. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    Science.gov (United States)

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  18. Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

    Directory of Open Access Journals (Sweden)

    Reza Pourreza

    2010-09-01

    Full Text Available Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable available sub-vessel. To verify the detected sub-vessel, the maximum is compared with a predefined threshold. The verified sub-vessels are reconstructed using the Radon transform information. All detected and reconstructed sub-vessels are finally combined to make the final vessel tree. Results: The algorithm’s performance was evaluated numerically by applying it to 40 images of DRIVE database, a standard retinal image database. The vessels were extracted manually by two physicians. This database was used to test and compare the available and proposed algorithms for vessel detection in color fundus images. By comparing the output of the algorithm with the manual results, the two parameters TPR and FPR were calculated for each image and the average of TPRs and FPRs were used to plot the ROC curve. Discussion and Conclusion: Comparison of the ROC curve of this algorithm with other algorithms demonstrated the high achieved accuracy. Beside the high accuracy, the Radon transform which is integral-based makes the algorithm robust against noise.

  19. [Imaging Blood Flow and Pulsation of Retinal Vessels with Full-Field Swept-Source OCT].

    Science.gov (United States)

    Spahr, H; Hillmann, D; Hain, C; Pfäffle, C; Sudkamp, H; Franke, G; Koch, P; Hüttmann, G

    2016-12-01

    Optical coherence tomography (OCT) uses interference to image the retina with high axial resolution. In the last 25 years, new technologies have permitted a steady increase in imaging speed, which made it possible to enlarge the imaged field and to avoid motion artefacts. The speed and precision of retinal imaging is now limited by photodamage of the retina caused by the focused OCT beam and by the speed of the scanning mechanics. Full-field swept-source (FF-SS)-OCT decreases irradiance on the retina and dispenses moving parts by using a camera to acquire the full volume of the retina in parallel. Here we show that FF-SS-OCT is rapid and precise enough to image pulsation in the retina induced by the heart beat. Series of OCT volumes 1.8 × 0.7 mm wide and 1.8 mm deep were recorded in young volunteers over a few cycles of the heart beat. Morphology of the retinal vessels, blood flow and tissue motion as caused by vessel pulsation were calculated from the OCT data. FF-SS-OCT was able to visualise the main structures of the neuronal retina, including vessels and small capillaries and without any motion artefacts. Information on three different dynamic processes was obtained from only one recorded series of OCT volumes: pulsation of blood flow and blood pressure in retinal vessels as well as pulsation of the choroid. Delays between arterial and venous pulse and delay between pulsation in retinal and choroidal vessels were calculated. With a time resolution of 0.5 ms, FF-SS-OCT is able to visualise previously unmeasurably fast changes in the retina, including the propagation of pulse waves. Georg Thieme Verlag KG Stuttgart · New York.

  20. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique

    Science.gov (United States)

    Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.

    2014-03-01

    Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.

  1. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool contrast agent

    International Nuclear Information System (INIS)

    Fournier, Laure S.; Cuenod, Charles Andre; Bazelaire, Cedric de; Siauve, Nathalie; Frija, Guy; Clement, Olivier; Rosty, Christophe; Tran, Phuong Lan

    2004-01-01

    Macromolecular contrast-enhanced functional CT was performed to characterize early perfusion changes in hepatocellular carcinoma (HCC). Fourteen rats with chemically induced primary liver tumors ranging pathologically from hyperplasia to HCC and 15 control rats were investigated. Two dynamic CT scans using an experimental macromolecular contrast agent were performed on a single slice 11 and 18 weeks after tumor induction followed by pathological examination. A deconvolution mathematical model was applied, yielding the hepatic perfusion index (HPI), mean transit time (MTT), liver distribution volume (LDV) and arterial, portal and total blood flows (FA, FP, FT). Analysis was performed on one slice per rat, containing overall two hyperplasia, six dysplasia and 15 HCC. On the first scans, HCC at an early pathological stage had a low FP (-30%, P=0.002) but a normal arterial-portal balance. On the scan contemporary to pathology, HCC perfusion parameters showed an inversion of the arterial-portal balance (HPI +212%, P<0.0001), with a high FA (+56%, P=0.002) and a low FP (-69%, P<0.0001). Sensitivity and specificity of detection of HCC by perfusion CT were high (87 and 80%) on late scans; but also on the earlier scans (86 and 65%), even though only one (7%) was visible to the eye. Perfusion-CT allowed early detection of HCC. This technique could contribute in the detection and characterization of liver lesions in clinical studies. (orig.)

  2. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging

    Science.gov (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun

    2018-04-01

    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.

  3. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos

    Science.gov (United States)

    Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe

    2017-10-01

    Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.

  4. Estimation of lung volume and pulmonary blood volume from radioisotopic images

    International Nuclear Information System (INIS)

    Kanazawa, Minoru

    1989-01-01

    Lung volume and pulmonary blood volume in man were estimated from the radioisotopic image using single photon emission computed tomography (SPECT). Six healthy volunteers were studied in a supine position with normal and altered lung volumes by applying continuous negative body-surface pressure (CNP) and by positive end-expiratory pressure (PEEP). 99m Tc labeled human serum albumin was administered as an aerosol to image the lungs. The CNP caused the diaphragm to be lowered and it increased the mean lung tissue volume obtained by SPECT from 3.09±0.49 l for baseline to 3.67±0.62 l for 10 cmH 2 O (p 2 O (p 2 O), respectively. The PEEP also increased the lung tissue volume to 3.68±0.68 l for 10 cmH 2 O as compared with the baseline (p 2 O PEEP. The lung tissue volume obtained by SPECT showed a positive correlation with functional residual capacity measured by the He dilution method (r=0.91, p 99m Tc-labeled red blood cells. The L/H ratio decreased after either the CNP or PEEP, suggesting a decrease in the blood volume per unit lung volume. However, it was suggested that the total pulmonary blood volume increased slightly either on the CNP (+7.4% for 10 cmH 2 O, p 2 O,p<0.05) when we extrapolated the L/H ratio to the whole lungs by multiplying the lung tissue volume obtained by SPECT. We concluded that SPECT could offer access to the estimation of lung volume and pulmonary blood volume in vivo. (author)

  5. OCT imaging detection of brain blood vessels in mouse, based on semiconducting polymer nanoparticles.

    Science.gov (United States)

    Yang, Shaozhuang; Chen, Haobin; Liu, Liwei; Chen, Bingling; Yang, Zhigang; Wu, Changfeng; Hu, Siyi; Lin, Huiyun; Li, Buhong; Qu, Junle

    2017-11-20

    Optical Coherence Tomography (OCT) is a valuable technology that has been used to obtain microstructure images of tissue, and has several advantages, though its applications are limited in high-scattering tissues. Therefore, semiconducting polymer nanoparticles (SPNs) that possess strong absorption characteristics are applied to decrease light scattering in tissues and used as exogenous contrast agents for enhancing the contrast of OCT imaging detection. In this paper, we prepared two kinds of SPNs, termed PIDT-TBZ SPNs and PBDT-TBZ SPNs, as the contrast agents for OCT detection to enhance the signal. Firstly, we proved that they were good contrast agents for OCT imaging in agar-TiO 2 . After that, the contrast effects of these two SPNs were quantitatively analyzed, and then cerebral blood vessels were monitored by a home-made SD-OCT system. Finally, we created OCT images in vitro and in vivo with these two probes and performed quantitative analysis using the images. The results indicated that these SPNs created a clear contrast enhancement of small vessels in the OCT imaging process, which provides a basis for the application of SPNs as contrast agents for bioimaging studies.

  6. Single photon emission computed tomography imaging of cerebral blood flow, blood-brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats.

    Science.gov (United States)

    Garrigue, Philippe; Giacomino, Laura; Bucci, Chiara; Muzio, Valeria; Filannino, Maria A; Sabatier, Florence; Dignat-George, Françoise; Pisano, Pascale; Guillet, Benjamin

    2016-01-01

    Cerebral ischemia is a leading cause of disability worldwide and no other effective therapy has been validated to date than intravenous thrombolysis. In this context, many preclinical models have been developed and recent advances in preclinical imaging represent promising tools. Thus, we proposed here to characterize in vivo time profiles of cerebral blood flow, blood-brain barrier disruption and apoptosis following a transient middle cerebral artery occlusion in rats using SPECT/CT imaging. Rats underwent a 1-h middle cerebral artery occlusion followed by reperfusion. Cerebral blood flow, blood-brain barrier disruption and apoptosis were evaluated by SPECT/CT imaging using respectively (99m)Tc-HMPAO, (99m)Tc-DTPA and the experimental (99m)Tc-Annexin V-128, up to 14 days after middle cerebral artery occlusion. Histological evaluation of apoptosis has been performed using TUNEL method to validate the (99m)Tc-Annexin V-128 uptake. (99m)Tc-HMPAO cerebral blood flow evaluation showed hypoperfusion during occlusion, partially restored on days 4 and 7 and sustained up to 14 days after middle cerebral artery occlusion. (99m)Tc-DTPA SPECT/CT showed a blood-brain barrier disruption starting on day 1 post-middle cerebral artery occlusion, peaking on day 2, with barrier integrity totally restored on day 7. (99m)Tc-Annexin V-128 SPECT/CT imaging showed significant positive correlation with TUNEL immunohistochemistry and allowed ischemic-induced apoptosis to be detected from day 2 to day 7, peaking on day 3 after middle cerebral artery occlusion. Using SPECT/CT imaging, we showed that after transient middle cerebral artery occlusion in rat there was a sustained decrease in cerebral blood flow followed by blood-brain barrier disruption preceding meanwhile apoptosis. Rodent SPECT/CT imaging of cerebral blood flow, blood-brain barrier disruption and apoptosis appears to be an efficient tool for evaluating neuroprotective drugs and regenerative therapies against cerebral ischemia

  7. Rank-based pooling for deep convolutional neural networks.

    Science.gov (United States)

    Shi, Zenglin; Ye, Yangdong; Wu, Yunpeng

    2016-11-01

    Pooling is a key mechanism in deep convolutional neural networks (CNNs) which helps to achieve translation invariance. Numerous studies, both empirically and theoretically, show that pooling consistently boosts the performance of the CNNs. The conventional pooling methods are operated on activation values. In this work, we alternatively propose rank-based pooling. It is derived from the observations that ranking list is invariant under changes of activation values in a pooling region, and thus rank-based pooling operation may achieve more robust performance. In addition, the reasonable usage of rank can avoid the scale problems encountered by value-based methods. The novel pooling mechanism can be regarded as an instance of weighted pooling where a weighted sum of activations is used to generate the pooling output. This pooling mechanism can also be realized as rank-based average pooling (RAP), rank-based weighted pooling (RWP) and rank-based stochastic pooling (RSP) according to different weighting strategies. As another major contribution, we present a novel criterion to analyze the discriminant ability of various pooling methods, which is heavily under-researched in machine learning and computer vision community. Experimental results on several image benchmarks show that rank-based pooling outperforms the existing pooling methods in classification performance. We further demonstrate better performance on CIFAR datasets by integrating RSP into Network-in-Network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Image-based model of the spectrin cytoskeleton for red blood cell simulation

    Science.gov (United States)

    Stokes, David L.; Peskin, Charles S.

    2017-01-01

    We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton. PMID:28991926

  9. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Science.gov (United States)

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761

  10. Selection of the best features for leukocytes classification in blood smear microscopic images

    Science.gov (United States)

    Sarrafzadeh, Omid; Rabbani, Hossein; Talebi, Ardeshir; Banaem, Hossein Usefi

    2014-03-01

    Automatic differential counting of leukocytes provides invaluable information to pathologist for diagnosis and treatment of many diseases. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and classify them into their types: Neutrophil, Eosinophil, Basophil, Lymphocyte and Monocyte using features that pathologists consider to differentiate leukocytes. Features contain color, geometric and texture features. Colors of nucleus and cytoplasm vary among the leukocytes. Lymphocytes have single, large, round or oval and Monocytes have singular convoluted shape nucleus. Nucleus of Eosinophils is divided into 2 segments and nucleus of Neutrophils into 2 to 5 segments. Lymphocytes often have no granules, Monocytes have tiny granules, Neutrophils have fine granules and Eosinophils have large granules in cytoplasm. Six color features is extracted from both nucleus and cytoplasm, 6 geometric features only from nucleus and 6 statistical features and 7 moment invariants features only from cytoplasm of leukocytes. These features are fed to support vector machine (SVM) classifiers with one to one architecture. The results obtained by applying the proposed method on blood smear microscopic image of 10 patients including 149 white blood cells (WBCs) indicate that correct rate for all classifiers are above 93% which is in a higher level in comparison with previous literatures.

  11. Image-based model of the spectrin cytoskeleton for red blood cell simulation.

    Science.gov (United States)

    Fai, Thomas G; Leo-Macias, Alejandra; Stokes, David L; Peskin, Charles S

    2017-10-01

    We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.

  12. A reduced gastric corpus microvascular blood flow during Ivor-Lewis esophagectomy detected by laser speckle contrast imaging technique

    DEFF Research Database (Denmark)

    Ambrus, Rikard; Svendsen, Lars Bo; Secher, Niels H.

    2017-01-01

    BACKGROUND: Reduced microvascular blood flow is related to anastomotic insufficiency following esophagectomy, emphasizing a need for intraoperative monitoring of the microcirculation. This study evaluated if laser speckle contrast imaging (LSCI) was able to detect intraoperative changes in gastric...

  13. Rh blood phenotyping (D, E, e, C, c) microarrays using multichannel surface plasmon resonance imaging.

    Science.gov (United States)

    Pipatpanukul, Chinnawut; Takeya, Sasaki; Baba, Akira; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Kitpoka, Pimpun; Kunakorn, Mongkol; Srikhirin, Toemsak

    2018-04-15

    The application of Surface Plasmon Resonance Imaging (SPRi) for the detection of transmembrane antigen of the Rhesus (Rh) blood group system is demonstrated. Clinically significant Rh blood group system antigens, including D, C, E, c, and e, can be simultaneously identified via solid phase immobilization assay, which offers significant time savings and assay simplification. Red blood cells (RBCs) flowed through the micro-channel, where a suitable condition for Rh blood group detection was an RBC dilution of 1:10 with a stop-flow condition. Stop flow showed an improvement in specific binding compared to continuous flow. Rh antigens required a longer incubation time to react with the immobilized antibody than A and B antigens due to the difference in antigen type and their location on the RBC. The interaction between the immobilized antibodies and their specific antigenic counterpart on the RBC showed a significant difference in RBC removal behavior using shear flow, measured from the decay of the SPR signal. The strength of the interaction between the immobilized antibody and RBC antigen was determined from the minimum wall shear stress required to start the decay process in the SPR signal. For a given range of immobilized antibody surface densities, the Rh antigen possesses a stronger interaction than A, B, and AB antigens. Identification of 82 samples of ABO and Rh blood groups using SPRi showed good agreement with the standard micro-column agglutination technique. A wider coverage of antigenic recognition for RBC when using the solid phase immobilization assay was demonstrated for the RBC with the antigenic site located on the transmembrane protein of the clinically significant Rh antigen. Given the level of accuracy and precision, the technique showed potential for the detection of the Rh minor blood group system. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessment of atherosclerotic plaque inflammation can be improved by delayed time point FDG PET CT imaging

    DEFF Research Database (Denmark)

    Blomberg, Björn; Thomassen, Anders; Hildebrandt, Malene

    2013-01-01

    Objectives: Blood pool FDG activity can cloud the atherosclerotic plaque FDG signal. Over time, blood pool FDG activity declines. Therefore, delayed time point FDG PET CT imaging can potentially enhance the assessment of atherosclerotic plaque inflammation. Methods: Twelve healthy volunteers...... without traditional cardiovascular risk factors and three subjects with angina pectoris were prospectively assessed by dual time point 18-FDG PET CT imaging at 90 and 180 minutes after tracer injection. The ratio between aortic SUVmax and the blood pool SUVmean (TBR) was calculated to show the change...

  15. The image of the butcher (13th-20th): In search of respectability between corporate pride and blood concealment.

    OpenAIRE

    Leteux , Sylvain

    2015-01-01

    International audience; In most images that represent butchers in France since the Middle Ages, the animal’s blood and death are often eclipsed or softened, except for the realistic photographs of slaughterhouses in the 20th century. The will to conceal blood shows the butchers’ will to build an honourable image of themselves. This quest for respectability is obvious if you look at the ceremony clothes worn by butchers during civil and religious celebrations. In the 19th century, as the trade...

  16. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    Science.gov (United States)

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  18. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  19. Adaptable three-dimensional Monte Carlo modeling of imaged blood vessels in skin

    Science.gov (United States)

    Pfefer, T. Joshua; Barton, Jennifer K.; Chan, Eric K.; Ducros, Mathieu G.; Sorg, Brian S.; Milner, Thomas E.; Nelson, J. Stuart; Welch, Ashley J.

    1997-06-01

    In order to reach a higher level of accuracy in simulation of port wine stain treatment, we propose to discard the typical layered geometry and cylindrical blood vessel assumptions made in optical models and use imaging techniques to define actual tissue geometry. Two main additions to the typical 3D, weighted photon, variable step size Monte Carlo routine were necessary to achieve this goal. First, optical low coherence reflectometry (OLCR) images of rat skin were used to specify a 3D material array, with each entry assigned a label to represent the type of tissue in that particular voxel. Second, the Monte Carlo algorithm was altered so that when a photon crosses into a new voxel, the remaining path length is recalculated using the new optical properties, as specified by the material array. The model has shown good agreement with data from the literature. Monte Carlo simulations using OLCR images of asymmetrically curved blood vessels show various effects such as shading, scattering-induced peaks at vessel surfaces, and directionality-induced gradients in energy deposition. In conclusion, this augmentation of the Monte Carlo method can accurately simulate light transport for a wide variety of nonhomogeneous tissue geometries.

  20. A method of analysis of SPECT blood flow image data for comparison with computed tomography

    International Nuclear Information System (INIS)

    Mountz, J.M.

    1989-01-01

    A consistent method for the qualitative analysis of regional cerebral blood flow on single-photon emission computed tomography (SPECT) imaging has not yet been realized. Regional analysis usually refers an area of abnormal tracer uptake to another region of brain (e.g., the contralateral hemisphere), but region of interest size and analysis differ between investigators. In patients who have had a stroke, the flow deficit size on the SPECT image often appears much larger than the abnormality visualized on computed tomography (CT), and confounds attempts to differentiate between ''purely'' infarcted brain tissue, ischemic brain tissue, edema, or brain tissue having diminution of flow resulting from deafferentation. The author presents a method to determine a flow deficit volume that can be easily calculated from the SPECT image, which yields a volume size that is equivalent to a hypothetical volume having zero blood flow. The method of calculation is objective, independent of region of interest size, and provides a SPECT volume deficit that may be correlated with the CT volume deficit, thus helping to differentiate ''purely'' infarcted tissue from tissue having infarction, edema, ischemia, and deafferentation

  1. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    Science.gov (United States)

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  2. Automatic tracking and measurement of the motion of blood cells in microvessels based on analysis of multiple spatiotemporal images

    International Nuclear Information System (INIS)

    Chen, Yuan; Liu, Lei; Li, Hongjun; Zhao, Zhimin

    2011-01-01

    Automatic blood cell tracking and velocity measurement in microvessels is a crucial task in biomedical and physiological research. For the analysis of the motion of blood cells in microvessels, a commonly used method for blood cell tracking and velocity estimation is spatiotemporal image-based analysis. However, in the process of the spatiotemporal image generation, a single spatial path is used, i.e. the centreline, which is not suitable for many situations in which cells do not move strictly along the central axis of the microvessel. In this paper, we propose a new method for automatic tracking and measurement of the motion of blood cells in a microvessel based on multiple spatiotemporal images analysis. First, the proposed method adopts three spatial paths (the centreline, inner and outer contour of the microvessel) to generate three spatiotemporal images; then, the traces of blood cells in the spatiotemporal images are extracted and subsequently trace grouping and fusion processes are developed for tracking cell trajectories. For extracting traces in spatiotemporal images, a steerable filter is employed to enhance the traces in raw spatiotemporal images, and then the noise suppression function and orientation-filtering function are designed to extract trace candidates. In the subsequent grouping and fusion process, trace candidates are grouped by the proposed trace grouping rule, and then the trajectories are calculated by the proposed trace fusion approach. The results validate the proposed method for blood cell tracking and the accuracy for blood cell velocity measurement. Moreover, for the larger microvessels, we discuss the criterion of the number selection of the optimal spatial path by using both simulated and real experiments, and it can be used as the criterion for blood cell tracking in microvessels

  3. Methods of Blood Oxygen Level-Dependent Magnetic Resonance Imaging Analysis for Evaluating Renal Oxygenation

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI has recently been utilized as a noninvasive tool for evaluating renal oxygenation. Several methods have been proposed for analyzing BOLD images. Regional ROI selection is the earliest and most widely used method for BOLD analysis. In the last 20 years, many investigators have used this method to evaluate cortical and medullary oxygenation in patients with ischemic nephropathy, hypertensive nephropathy, diabetic nephropathy, chronic kidney disease (CKD, acute kidney injury and renal allograft rejection. However, clinical trials of BOLD MRI using regional ROI selection revealed that it was difficult to distinguish the renal cortico-medullary zones with this method, and that it was susceptible to observer variability. To overcome these deficiencies, several new methods were proposed for analyzing BOLD images, including the compartmental approach, fractional hypoxia method, concentric objects (CO method and twelve-layer concentric objects (TLCO method. The compartmental approach provides an algorithm to judge whether the pixel belongs to the cortex or medulla. Fractional kidney hypoxia, measured by using BOLD MRI, was negatively correlated with renal blood flow, tissue perfusion and glomerular filtration rate (GFR in patients with atherosclerotic renal artery stenosis. The CO method divides the renal parenchyma into six or twelve layers of thickness in each coronal slice of BOLD images and provides a R2* radial profile curve. The slope of the R2* curve associated positively with eGFR in CKD patients. Indeed, each method invariably has advantages and disadvantages, and there is generally no consensus method so far. Undoubtedly, analytic approaches for BOLD MRI with better reproducibility would assist clinicians in monitoring the degree of kidney hypoxia and thus facilitating timely reversal of tissue hypoxia.

  4. Multi-exposure speckle imaging of cerebral blood flow: a pilot clinical study (Conference Presentation)

    Science.gov (United States)

    Richards, Lisa M.; Kazmi, S. M. S.; Olin, Katherine E.; Waldron, James S.; Fox, Douglas J.; Dunn, Andrew K.

    2017-03-01

    Monitoring cerebral blood flow (CBF) during neurosurgery is essential for detecting ischemia in a timely manner for a wide range of procedures. Multiple clinical studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable, label-free CBF monitoring technique during neurosurgery. LSCI is an optical imaging method that provides blood flow maps with high spatiotemporal resolution requiring only a coherent light source, a lens system, and a camera. However, the quantitative accuracy and sensitivity of LSCI is limited and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study (n = 7) recorded multiple exposure times from the same cortical tissue area, and demonstrates that shorter exposure times (≤1 ms) provide the highest dynamic range and sensitivity for sampling flow rates in human neurovasculature. This study also combined exposure times using the MESI model, demonstrating high correlation with proper image calibration and acquisition. The physiological accuracy of speckle-estimated flow was validated using conservation of flow analysis on vascular bifurcations. Flow estimates were highly conserved in MESI and 1 ms exposure LSCI, with percent errors at 6.4% ± 5.3% and 7.2% ± 7.2%, respectively, while 5 ms exposure LSCI had higher errors at 21% ± 10% (n = 14 bifurcations). Results from this study demonstrate the importance of exposure time selection for LSCI, and that intraoperative MESI can be performed with high quantitative accuracy.

  5. Collaborative Car Pooling System

    OpenAIRE

    João Ferreira; Paulo Trigo; Porfírio Filipe

    2009-01-01

    This paper describes the architecture for a collaborative Car Pooling System based on a credits mechanism to motivate the cooperation among users. Users can spend the accumulated credits on parking facilities. For this, we propose a business model to support the collaboration between a car pooling system and parking facilities. The Portuguese Lisbon-s Metropolitan area is used as application scenario.

  6. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    Science.gov (United States)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  7. Infrared tomography for diagnostic imaging of port wine stain blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The objective of this work is the development of Infrared Tomography (IRT) for detecting and characterizing subsurface chromophores in human skin. Characterization of cutaneous chromophores is crucial for advances in the laser treatment of pigmented lesions (e.g., port wine stain birthmarks and tatoos). Infrared tomography (IRT) uses a fast infrared focal plane array (IR-FPA) to detect temperature rises in a substrate induced by pulsed radiation. A pulsed laser is used to produce transient heating of an object. The temperature rise, due to the optical absorption of the pulsed laser light, creates an increase in infrared emission which is measured by the IR-FPA. Although the application of IRT to image subsurface cracks due to metal fatigue is a topic of great interest in the aircraft industry, the application to image subsurface chromophores in biological materials is novel. We present an image recovery method based on a constrained conjugate gradient algorithm that has obtained the first ever high quality images of port wine blood vessels.

  8. Changes in regional cerebral blood flow after body image exposure in eating disorders.

    Science.gov (United States)

    Beato-Fernández, Luis; Rodríguez-Cano, Teresa; García-Vilches, Inmaculada; García-Vicente, Ana; Poblete-García, Victor; Castrejon, Angel Soriano; Toro, Josep

    2009-02-28

    Relationships of 'perceptual distortion' and 'cognitive evaluation' components of body image disturbances to brain activity were investigated. Changes in regional cerebral blood (rCBF) of nine patients with anorexia nervosa restrictive type (AN), 13 patients with bulimia nervosa purging type (BN) and 12 controls following three experiments with single photon emission computed tomography (SPECT) were compared: at rest, following a landscape video presentation (neutral stimulus), and after their filmed body image (positive stimulus) exposure. Body distortion was measured with the Silhouette test and body dissatisfaction with the Body Shape Questionnaire (BSQ). Patients with AN showed a hyperactivation of the left parietal and right superior frontal from neutral to positive stimulus. Patients with BN showed a hyperactivation of the right temporal and right occipital areas. Changes in BSQ responses were associated with changes in the right inferior frontal and right temporal rCBF, whereas changes in body distortion were related to the left parietal. The activation of the right temporal after the own body image exposure might be in accordance with the aversive events' response. Functional abnormalities in AN might be related to the storage of a distorted prototypical image of the body in the left parietal lobe.

  9. Cardiac PET Imaging of Blood Flow, Metabolism, and Function in Normal and Infarcted Rats

    Science.gov (United States)

    Lecomte, R.; Croteau, E.; Gauthier, M.-E.; Archambault, M.; Aliaga, A.; Rousseau, J.; Cadorette, J.; Leroux, J.-D.; Lepage, M. D.; Benard, F.; Bentourkia, M.

    2004-06-01

    The rat heart is an excellent model for the investigation of cardiac physiology and metabolism. It has been used extensively for ex vivo studies of the normal heart as well as for the study of various heart diseases. With the advent of dedicated high-resolution small animal PET scanners, it is now possible to transpose many of the cardiac studies routinely used in humans to the rat. These include the in vivo measurement of myocardial blood flow, metabolism, and function. Because these techniques are noninvasive, the same animal can be imaged repetitively, thus allowing for follow-up studies of disease progression and for the assessment of new therapeutic methods. In this work, we report on cardiac studies performed in normal and diseased rats using the Sherbrooke avalanche photodiode PET scanner, a small animal PET imaging device achieving 14 /spl mu/l volumetric spatial resolution with excellent image signal-to-noise ratio. The system also features flexible list-mode data acquisition, which allows dynamic studies to be resampled as desired for kinetic modeling. These cardiac PET imaging methods were used for the follow-up of infarcted rats submitted to experimental intramyocardial revascularization therapy.

  10. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Directory of Open Access Journals (Sweden)

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  11. Magnetic particle imaging for in vivo blood flow velocity measurements in mice

    Science.gov (United States)

    Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline

    2018-03-01

    Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s‑1 and those measured by MPI of 4.8  ±  1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.

  12. Pooling Objects for Recognizing Scenes without Examples

    NARCIS (Netherlands)

    Kordumova, S.; Mensink, T.; Snoek, C.G.M.

    2016-01-01

    In this paper we aim to recognize scenes in images without using any scene images as training data. Different from attribute based approaches, we do not carefully select the training classes to match the unseen scene classes. Instead, we propose a pooling over ten thousand of off-the-shelf object

  13. Automatic classification of atypical lymphoid B cells using digital blood image processing.

    Science.gov (United States)

    Alférez, S; Merino, A; Mujica, L E; Ruiz, M; Bigorra, L; Rodellar, J

    2014-08-01

    There are automated systems for digital peripheral blood (PB) cell analysis, but they operate most effectively in nonpathological blood samples. The objective of this work was to design a methodology to improve the automatic classification of abnormal lymphoid cells. We analyzed 340 digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96:150 chronic lymphocytic leukemia (CLL) cells, 100 hairy cell leukemia (HCL) cells, and 90 normal lymphocytes (N). We implemented the Watershed Transformation to segment the nucleus, the cytoplasm, and the peripheral cell region. We extracted 44 features and then the clustering Fuzzy C-Means (FCM) was applied in two steps for the lymphocyte classification. The images were automatically clustered in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was clustered again using FCM and texture features. The two new groups contained 83.3% of the N cells and 71.3% of the CLL cells, respectively. The approach has been able to automatically classify with high precision three types of lymphoid cells. The addition of more descriptors and other classification techniques will allow extending the classification to other classes of atypical lymphoid cells. © 2013 John Wiley & Sons Ltd.

  14. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization.

    Science.gov (United States)

    Pairleitner, H; Steiner, H; Hasenoehrl, G; Staudach, A

    1999-08-01

    To assess the feasibility of imaging low-velocity blood flow in adnexal masses by transvaginal three-dimensional power Doppler sonography, to analyze three-dimensional power Doppler sonography data sets with a new computer-assisted method and to test the reproducibility of the technique. A commercially available 5-MHz Combison 530 ultrasound system was used to perform three-dimensional power Doppler sonography transvaginally. A cube (= volume of interest) was defined enclosing the vessels of the cyst and the Cartesian characteristics were stored on a hard disk. This cube was analyzed using specially designed software. Five indices representing vascularization (the vascularization index (VI) or blood flow (the flow index (FI)) or both (the vascularization-flow index (VFI)) were calculated. The intraobserver repeatability of cube definition and scan repetition was assessed using Hartley's test for homogeneous variances. Interobserver agreement was assessed by the Pearson correlation coefficient. Imaging of vessels with low-velocity blood flow by three-dimensional power Doppler sonography and cube definition was possible in all adnexal massed studied. In some cases even induced non-vascular flow related to endometriosis was detected. The calculated F value with intraobserver repeated Cartesian file-saving ranged from 0 to 18.8, with intraobserver scan repetition from 4.74 to 24.8 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the calculated F value was 64. The interobserver correlation coefficient ranged between 0.83 and 0.92 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the correlation coefficient was less than 0.75. Vessels with low-velocity blood flow can be imaged using three-dimensional power Doppler sonography. Induced non-vascular flow was detected in endometriotic cyst fluid. Three-dimensional power Doppler sonography combined with the cube method gave reproducible information for all indices except VFI 2. These indices might prove to be a new predictor in all fields of

  15. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    Science.gov (United States)

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Peripheral blood mononuclear cells analysis in microfluidic flow by coherent imaging tools

    Science.gov (United States)

    Dannhauser, David; Rossi, Domenico; Memmolo, Pasquale; Causa, Filippo; Finizio, Andrea; Ferraro, Pietro; Netti, Paolo A.

    2017-06-01

    Cell of human blood stream are divided into two groups: Red Blood Cells (RBC) and White Blood Cells (WBC). RBC have a peculiar biconcave disk shape and they are responsible for the delivering of O2 and CO2 through the body. WBC are a more widespread class of cell ensuring immunity against pathogens. They can be divided in two main classes: granulocyte cells and A-granulocyte cells. Neutrophils, basophils and eosinophils belong to the granulocyte cell class, while lymphocytes and monocytes belong to A-granulocyte. Both in RBC and WBC, the intrinsic physical properties of a cell are indicators of cell condition and, furthermore, of the overall human body state. Thus, the accurate comprehension of the physiological structure of WBCs is fundamental to recognize diseases. Here we show the possibility to simple and straightforwardly characterize the physical properties of individual RBC and mononuclear WBC in a microfluidic context, using a wide angle light scattering apparatus and a corresponding theoretical simulation of Optical Signature (OS). A non-Newtonian polymer alignment solution for cell is used to ensure an individual cell alignment in the microfluidic flow, thus permitting a precise investigation. Additionally, Quantitative Phase Imaging (QPI) holographic measurements are performed to estimate cell morphometric features, such as their refractive index. We analyzed more than 200 WBCs and 100 RBCs of three different probands. Results showed distinct cell populations according to their measured dimensions and shape, which can be associated to the presence of RBC, lymphocytes and monocytes.

  17. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  18. Blood pressure and fasting lipid changes after 24 weeks’ treatment with vildagliptin: a pooled analysis in >2,000 previously drug-naïve patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Evans M

    2016-08-01

    Full Text Available Marc Evans,1 Anja Schweizer,2 James E Foley3 1Diabetes Resource Centre, Llandough Hospital, Cardiff, UK; 2Medical Affairs Cardio Metabolic, Novartis Pharma AG, Basel, Switzerland; 3Medical Affairs Cardio-Metabolic, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA Introduction: We have previously shown modest weight loss with vildagliptin treatment. Since body weight balance is associated with changes in blood pressure (BP and fasting lipids, we have assessed these parameters following vildagliptin treatment. Methods: Data were pooled from all double-blind, randomized, controlled, vildagliptin monotherapy trials on previously drug-naïve patients with type 2 diabetes mellitus who received vildagliptin 50 mg once daily (qd or twice daily (bid; n=2,108 and wherein BP and fasting lipid data were obtained. Results: Data from patients receiving vildagliptin 50 mg qd or bid showed reductions from baseline to week 24 in systolic BP (from 132.5±0.32 to 129.8±0.34 mmHg; P<0.0001, diastolic BP (from 81.2±0.18 to 79.6±0.19 mmHg; P<0.0001, fasting triglycerides (from 2.00±0.02 to 1.80±0.02 mmol/L; P<0.0001, very low density lipoprotein cholesterol (from 0.90±0.01 to 0.83±0.01 mmol/L; P<0.0001, and low density lipoprotein cholesterol (from 3.17±0.02 to 3.04±0.02 mmol/L; P<0.0001, whereas high density lipoprotein cholesterol increased (from 1.19±0.01 to 1.22±0.01 mmol/L; P<0.001. Weight decreased by 0.48±0.08 kg (P<0.001. Conclusion: This large pooled analysis demonstrated that vildagliptin shows a significant reduction in BP and a favorable fasting lipid profile that are associated with modest weight loss. Keywords: TG, HDL, LDL, body weight DPP-4 inhibitor, GLP-1 

  19. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  20. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    Science.gov (United States)

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the

  1. Coronary artery plaque imaging: Comparison of black-blood MRI and 64-multidetector computed tomography

    Directory of Open Access Journals (Sweden)

    Yi He

    2016-09-01

    Full Text Available Objective: To comparatively evaluate black-blood coronary arterial wall MRI and 64-multidetector computed tomography (64-MDCT for detection and classification of coronary artery plaques. Methods: We included 15 patients with confirmed coronary artery plaques in the proximal or middle segments of coronary arteries by 64-MDCT, who underwent black-blood coronary wall MRI at 1.5 T within 10 days. Cross-sectional coronary wall images were acquired using a 2D double-inversion-recovery, electrocardiograph-triggered, navigator-gated, fat-suppressed, turbo-spin-echo sequence on the coronary arteries with lesions from the ostium to the middle segment continuously without gap. The vessel cross-sectional area (CSA, luminal CSA, maximal wall thickness, plaque burden, contrast-to-noise ratio (CNR, and signal-to-noise ratio (SNR were measured in each slice and subsequently compared with computed tomography angiography (CTA images. CTA images were divided into 5-mm segments for side-by-side comparison with MRI. Results: Of the 15 patients, 12 were enrolled in the study. Coronary plaques were found in 46 slices on both CTA and MRI. Plaques were classified to 3 groups based on CTA: calcified plaques (n = 11, soft plaques (n = 23, and mixed plaques (n = 12. In MRI, the plaque burden, maximal wall thickness, SNR, and CNR in the coronary walls containing plaques were greater than in the normal coronary walls (0.83 ± 0.08 vs. 0.73 ± 0.08, 1.88 ± 0.51 vs. 1.51 ± 0.26 mm, 12.95 ± 2.78 vs. 9.93 ± 2.31, and 6.76 ± 2.52 vs. 3.89 ± 1.54, respectively; P < 0.05. The luminal CSA at the plaque was smaller than in normal coronary walls (2.50 ± 1.50 vs. 4.72 ± 2.28 mm2; P < 0.05. The SNR in the soft plaque was significantly greater than in calcified and mixed plaques (P < 0.05. Conclusions: Coronary wall MRI can identify coronary plaques in the proximal and middle segments and has the potential to differentiate plaque types based on

  2. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging.

    Science.gov (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun

    2018-04-15

    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765nm when excited at 704nm. The emission at 765nm responded differently to Cu 2+ and Mn 2+ ions, respectively. The BPN coordinated with Cu 2+ forming [BPNCu] 2+ complex with quenched emission, while Mn 2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu 2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu 2+ ions in serum with linear detection range of 0.45μM-36.30μM. Results indicate that BPN is a good sensor for the detection of Cu 2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Non-contrast enhanced MR venography using 3D fresh blood imaging (FBI). Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kenichi; Nitatori, Toshiaki; Inaoka, Sayuki; Takahara, Taro; Hachiya, Junichi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    2001-10-01

    This study examined the efficacy of 3D-fresh blood imaging (FBI) in patients with venous disease in the iliac region to lower extremity. Fourteen patients with venous disease were examined [8 deep venous thrombosis (DVT) and 6 varix] by 3D-FBI and 2D-TOF MRA. ALL FBI images and 2D-TOF images were evaluated in terms of visualization of the disease and compared with conventional X-ray venography (CV). The total scan time of 3D-FBI ranged from 3 min 24 sec to 4 min 52 sec. 3D-FBI was positive in all 23 anatomical levels in which DVT was diagnosed by CV (100% sensitivity) as well as 2D-TOF. The delineation of collateral veins was superior or equal to that of 2D-TOF. 3D-FBI allowed depiction of varices in five of six cases; however, in one case, the evaluation was limited because the separation of arteries from veins was difficult. The 3D-FBI technique, which allows iliac to peripheral MR venography without contrast medium within a short acquisition time, is considered clinically useful. (author)

  4. Gold-195m: a steady-state imaging agent for venography that gives blood velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dowsett, D.J.; Ennis, J.T.; Collum, C.T.; De Jong, R.B.J.

    1985-08-01

    Gold-195m has found applications in first-pass studies for investigating both right and left ventricular activity as well as lung transit. Owing to its reasonably short half-life of 30 sec the authors have found it particularly useful for imaging leg veins up to and including the inferior vena cava. Its short half-life prevents recirculation activity from appearing, so continuous perfusion into a superficial foot vein and application of ankle tourniquets yield a steady-state image of the deep veins, with particularly good resolution. Its decay pattern along a vessel is very sensitive to blood velocity, so measurement of activity at various points on a vein in a computer static image can give velocity values that reveal abnormalities due to partial or complete thrombosis. The radiation dosimetry of /sup 195m/Au used in this way is lower than contrast and technetium-99m macroaggregated albumin ((/sub 99m/Tc) MAA) venography, making it particularly useful for investigating deep vein thrombosis (DVT) in pregnancy.

  5. Gold-195m: a steady-state imaging agent for venography that gives blood velocity measurement

    International Nuclear Information System (INIS)

    Dowsett, D.J.; Ennis, J.T.; Collum, C.T.; De Jong, R.B.J.

    1985-01-01

    Gold-195m has found applications in first-pass studies for investigating both right and left ventricular activity as well as lung transit. Owing to its reasonably short half-life of 30 sec the authors have found it particularly useful for imaging leg veins up to and including the inferior vena cava. Its short half-life prevents recirculation activity from appearing, so continuous perfusion into a superficial foot vein and application of ankle tourniquets yield a steady-state image of the deep veins, with particularly good resolution. Its decay pattern along a vessel is very sensitive to blood velocity, so measurement of activity at various points on a vein in a computer static image can give velocity values that reveal abnormalities due to partial or complete thrombosis. The radiation dosimetry of /sup 195m/Au used in this way is lower than contrast and technetium-99m macroaggregated albumin ([/sub 99m/Tc] MAA) venography, making it particularly useful for investigating deep vein thrombosis (DVT) in pregnancy

  6. Vitamin D Pooling Project

    Science.gov (United States)

    The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.

  7. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  8. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dolmashkin, A A; Dubrovskii, V A; Zabenkov, I V [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation)

    2012-05-31

    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  9. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma

    2017-01-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis......, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal...... sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy (R(2 )= 0.64, p infrared spectroscopy oxygen saturation...

  10. Autologous blood injection to the temporomandibular joint: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Candirili, Celal; Yuece, Serdar; Cavus, Umut Yuecel; Akin, Kayihan; Cakir, Banu [Fatih University Hospital, Ankara (Turkmenistan)

    2012-03-15

    The aim of this study was to investigate the effect of the autologous blood injection (ABI) for chronic recurrent temporomandibular joint (TMJ) dislocation using magnetic resonance imaging (MRI). ABI was applied to 14 patients who had chronic recurrent TMJ dislocation. MRIs of the patients were taken and compared before and one month after the injection. All of the patients had no dislocations of their TMJs on clinical examination one month after the injection. In the pre-injection, unilateral or bilateral TMJ dislocations were observed on MRIs in all patients. One month after the injection, TMJ dislocations were not observed in MRI evaluation of any patients. A significant structural change that caused by ABI was not observed. The procedure was easy to perform and it caused no foreign body reaction. However, it was unclear how the procedure prevented the dislocation.

  11. Rapid multispectral endoscopic imaging system for near real-time mapping of the mucosa blood supply in the lung.

    Science.gov (United States)

    Fawzy, Yasser; Lam, Stephen; Zeng, Haishan

    2015-08-01

    We have developed a fast multispectral endoscopic imaging system that is capable of acquiring images in 18 optimized spectral bands spanning 400-760 nm by combining a customized light source with six triple-band filters and a standard color CCD camera. A method is developed to calibrate the spectral response of the CCD camera. Imaging speed of 15 spectral image cubes/second is achieved. A spectral analysis algorithm based on a linear matrix inversion approach is developed and implemented in a graphics processing unit (GPU) to map the mucosa blood supply in the lung in vivo. Clinical measurements on human lung patients are demonstrated.

  12. The relationship between spatial ability, cerebral blood flow and learning with dynamic images: A transcranial Doppler ultrasonography study.

    Science.gov (United States)

    Loftus, Jay J; Jacobsen, Michele; Wilson, Timothy D

    2018-02-01

    Determining the effect of dynamic images on learning is often limited to performance measures. This study explores the impact from the perspective of cerebral blood flow in the brain during learning. Performance and neurophysiological response in high and low spatial ability were compared during learning with dynamic images. Individuals with high spatial ability appear to be better suited to learn with complex images such as dynamic images that move in time and space. The results presented here suggest that spatial ability can help to determine the effectiveness of the media we use for teaching.

  13. Evaluation of cerebral blood flow, cerebral metabolism and cerebral function by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro; Naruse, Shoji; Horikawa, Yoshiharu; Ueda, Satoshi; Furuya, Seiichi.

    1995-01-01

    The magnetic resonance (MR) method has the unique potentiality of detecting cerebral metabolites, cerebral blood flow and brain functions in a noninvasive fashion. We have developed several MR techniques to detect these cerebral parameters with the use of clinical MRI scanners. By modifying the MR spectroscopy (MRS) technique, both 31 P- and 1 H-MRS data can be obtained from multiple, localized regions (multi-voxel method) of the brain, and the distribution of each metabolite in the brain can be readily visualized by metabolite mapping. The use of diffusion weighted images (DWI) permits visualization of the anisotropy of water diffusion in white matter, and based on the difference of diffusion coefficiency, the differential diagnosis between epidermoid tumor and arachnoid cyst can be made. By employing dynamic-MRI (Dyn-MRI) with Gd-DTPA administration, it is possible to examine the difference in blood circulation between brain tumor tissue and normal tissue, as well as among different types of brain tumors. By using magnetization transfer contrast (MTC) imaging, it has become possible to detect brain tumors, and with a small dose of Gd-DTPA, to visualize the vascular system. Functional MRI (fMRI) visualizes the activated brain by using conventional gradient echo technique on conventional MRI scanners. This method has the unique characteristic of detecting a brain function with high spatial and temporal resolution by using the intrinsic substance. Moreover, the localization of motor and sensory areas was detected by noninvasive means within few minutes. The fMRI procedure will be used in the future to analyze the higher and complex brain functions. In conclusion, multi-modality MR is a powerful technique that is useful for investigating the pathogenesis of many diseases, and provides a noninvasive analytic modality for studying brain function. (author)

  14. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    Directory of Open Access Journals (Sweden)

    Zafer Yavuz

    2017-01-01

    Full Text Available Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1 preprocessing stage in order to prepare dataset for segmentation; (2 an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3 a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM in order to get binary vessel map; and (4 a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems.

  15. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  16. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    Science.gov (United States)

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  17. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.

    Science.gov (United States)

    Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; Lovstakken, Lasse; Segers, Patrick

    2010-08-01

    rate were obtained along a scanline. The authors obtained a very good agreement between the flow and the distension as obtained from the FSI-US model and the reference FSI values. The wall application showed a high sensitivity of distension measurements to the measurement location, previously reported based on in vivo data. Interestingly, the model indicated that strong reflections between tissue transitions can potentially cloud a correct measurement. The flow imaging application demonstrated that maximum shear rate was underestimated for a relevant simulation setup. Moreover, given the difficulty of measuring near-wall velocities with ultrasound, maximal shear rate was obtained at a distance from the wall [0.812 mm for the anterior and 0.689 mm for the posterior side (9% distension case)]. However, ultrasound shear rates correlated well with the FSI ground truth for all distension degrees, suggesting that correction of the severe underestimation by ultrasound might be feasible in certain flow conditions. The authors demonstrated a simulation environment to validate and develop ultrasonic vascular imaging. An elaborate technique to integrate FSI and FIELD II ultrasound simulations was presented. This multiphysics simulation tool was applied to two imaging applications where distensible ultrasound phantoms are indispensable: Wall distension and shear rate measurement. Results showed that the method to couple fluid-structure interaction and ultrasound simulations provides realistic RF signals from the tissue and the blood pool.

  18. Dual-Wavelength Laser Speckle Contrast Imaging (dwLSCI Improves Chronic Measurement of Superficial Blood Flow in Hands

    Directory of Open Access Journals (Sweden)

    Lingke Zhang

    2017-12-01

    Full Text Available Laser speckle contrast imaging (LSCI has been widely used to determine blood flow and perfusion in biological tissues. The physical model of traditional LSCI ignores the effects of scattering property distribution in relation to speckle correlation time τc and blood flow v, which further results in biased estimation. In this study, we developed a dual-wavelength laser speckle contrast imaging (dwLSCI method and a portable device for imaging the blood flow and tissue perfusion in human hands. Experimental data showed that dwLSCI could retrieve the vein vasculatures under the surface skin, and it further provided accurate measurements of vein blood flow signals, tissue perfusion signals, and fingertip perfusion signals, which assist with assessments of rehabilitation therapy for stroke patients. Fingertip perfusion signals demonstrated better performance in early assessments, while vein blood flow signals assisted the Fugl–Meyer Assessment Scale (FMA and the Wolf Motor Function Test (WMFT behavior assessments. As a general noninvasive imaging method, dwLSCI can be applied in clinical studies related to hand functions combined with behavior assessments.

  19. Dual-Wavelength Laser Speckle Contrast Imaging (dwLSCI) Improves Chronic Measurement of Superficial Blood Flow in Hands

    Science.gov (United States)

    Zhang, Lingke; Ding, Li; Li, Miao; Zhang, Xiaoli; Su, Diansan; Jia, Jie; Miao, Peng

    2017-01-01

    Laser speckle contrast imaging (LSCI) has been widely used to determine blood flow and perfusion in biological tissues. The physical model of traditional LSCI ignores the effects of scattering property distribution in relation to speckle correlation time τc and blood flow v, which further results in biased estimation. In this study, we developed a dual-wavelength laser speckle contrast imaging (dwLSCI) method and a portable device for imaging the blood flow and tissue perfusion in human hands. Experimental data showed that dwLSCI could retrieve the vein vasculatures under the surface skin, and it further provided accurate measurements of vein blood flow signals, tissue perfusion signals, and fingertip perfusion signals, which assist with assessments of rehabilitation therapy for stroke patients. Fingertip perfusion signals demonstrated better performance in early assessments, while vein blood flow signals assisted the Fugl–Meyer Assessment Scale (FMA) and the Wolf Motor Function Test (WMFT) behavior assessments. As a general noninvasive imaging method, dwLSCI can be applied in clinical studies related to hand functions combined with behavior assessments. PMID:29206145

  20. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images

    Science.gov (United States)

    Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman

    2015-10-01

    This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.

  1. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  2. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images

    Science.gov (United States)

    Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman

    2015-01-01

    This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method. PMID:26450665

  3. Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT

    International Nuclear Information System (INIS)

    Struffert, Tobias; Kloska, Stephan; Engelhorn, Tobias; Doerfler, Arnd; Deuerling-Zheng, Yu; Boese, Jan; Zellerhoff, Michael; Schwab, Stefan

    2011-01-01

    We tested the hypothesis that Flat Detector computed tomography (FD-CT) with intravenous contrast medium would allow the calculation of whole brain cerebral blood volume (CBV) mapping (FD-CBV) and would correlate with multislice Perfusion CT (PCT). Twenty five patients were investigated with FD-CBV and PCT. Correlation of the CBV maps of both techniques was carried out with measurements from six anatomical regions from both sides of the brain. Mean values of each region and the correlation coefficient were calculated. Bland-Altman analysis was performed to compare the two different imaging techniques. The image and data quality of both PCT and FD-CBV were suitable for evaluation in all patients. The mean CBV values of FD-CBV and PCT showed only minimal differences with overlapping standard deviation. The correlation coefficient was 0.79 (p < 0.01). Bland-Altman analysis showed a mean difference of -0.077 ± 0.48 ml/100 g between FD-CBV and PCT CBV measurements, indicating that FD-CBV values were only slightly lower than those of PCT. CBV mapping with intravenous contrast medium using Flat Detector CT compared favourably with multislice PCT. The ability to assess cerebral perfusion within the angiographic suite may improve the management of ischaemic stroke and evaluation of the efficacy of dedicated therapies. (orig.)

  4. OPTIMAL RESOLUTION FOR AUTOMATIC QUANTIFICATION OF BLOOD VESSELS ON DIGITIZED IMAGES OF THE WHOLE CANCER SECTION

    Directory of Open Access Journals (Sweden)

    Ronan Françoise

    2011-05-01

    Full Text Available Discrepancies concerning the prognostic significance of cancer vascularization can be partly explained by biases due to quantification protocols. We recently recommended a swift, inexpensive and automatic analysis of 2,700 dpi slide scanner images of the whole immunostained sections. Another team, proposed, quite at the same time, to work at 4,000 dpi. The aim of the present paper is to check if information contained in images scanned at 2,700 and 4,000 dpi are relevant and equivalent, when compared to the low magnification of the microscope, in order to propose the best compromise between precision and time expense. To evaluate precisely the amount of information gained or lost according to the resolution used, we compared the number and size of blood vessel profiles, manually detected, on twenty one Hodgkin lymphoma acquired with a scanner (2,700 and 4,000 dpi and with a microscope (16,000 dpi. Results obtained at 4,000 dpi were equivalent to the estimation performed at microscopical level either by a biologist or a pathologist, while tiny vessels were lost at 2,700 dpi. Scanning whole histological sections at 4,000 dpi provides a relevant method for evaluating tumour vascularization, which can be easily automated and standardized.

  5. Correlation analysis of high precision blood flow imaging in secondary parathyroid function in maintenance hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Wen-Ze Du

    2016-12-01

    Full Text Available Objective: To investigate the value of high precision blood flow imaging (Fine-Flow in secondary parathyroid function (SHPT in patients with maintenance hemodialysis (MHD. Methods: A total of 95 MHD patients with SHPT in our hospital from January 2015 to June 2016 were selected as the research object. According to the Fine-Flow examination of parathyroid gland, 73 cases were divided into display group, 22 cases were not shown; Display group according to the hyperplasia of parathyroid diameter were divided into 1.5 cm group of 17 cases; display group according to the blood flow into the rich group of 41 cases, not rich group of 32 cases; according to whether calcification were divided into calcification group of 43 cases, non calcified group of 30 cases. CDFI was used for the anterior region of neck transverse and longitudinal scanning, check the thyroid and around the dorsal lobes.The size, echo, lesion number and blood flow were measured, parathyroid hormone (PTH, serum calcium (Ca, phosphorus (P, and calculate the Ca and P product (Ca×P were measured. Results: PTH and Ca of the display group were significantly higher than that of the non display group, and differences in P and Ca×P were not statistically significant; Parathyroid diameter >1.5 cm PTH levels were significantly higher than the other three groups, diameter 1-1.5 cm group and >1.5 cm group Ca, diameter Ca×P was higher than that in group <5 cm and 0.5-1.0 cm group, difference in P of four groups was not statistical significant; group PTH, P, abundant blood flow Ca×P were not significantly higher than the rich group, difference in P of two groups was no statistical significance; group Ca was significantly higher than that of calcification calcification group, differences in PTH, P, Ca×P of the two groups were not statistically significant. Conclusions: MHD patients with SHPT, parathyroid Fine-Flow display rate is high, and has the characteristic performance. Its operation is

  6. Dark blood versus bright blood T2* acquisition in cardiovascular magnetic resonance (CMR) for thalassaemia major (TM) patients: Evaluation of feasibility, reproducibility and image quality

    International Nuclear Information System (INIS)

    Liguori, Carlo; Di Giampietro, Ilenia; Pitocco, Francesca; De Vivo, Aldo Eros; Schena, Emiliano; Mortato, Luca; Pirro, Federica; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2014-01-01

    Objectives: To compare the effectiveness of dark blood (DB) versus bright blood (BB) sequences. To assess the intra and inter-observer variability and inter-study reproducibility between BB versus DB. To evaluate image quality level in the two sequences. Methods: In a setting of 138 patients we performed CMR using cardiac gated Gradient-multiecho single breath-hold BB and DB sequences in the middle ventricular septum. Each acquisition was repeated during the same exam. Truncation method was used to account for background noise. Image quality (IQ) was assessed using a 5 point grading scale and image analysis was conducted by 2 experienced observers. Results: Compared with the conventional BB acquisition, the coefficient of correlation and significance of the DB technique was superior for intra-observer reproducibility (p < 0.001), inter-observer reproducibility (p < 0.001) and inter-study reproducibility (p < 0.001). The variability is also lower for DB sequences for T2* values <14 ms. Assessment of artifacts showed a superior score for DB versus BB scans (4 versus 3, p < 0.001). Conclusions: Improvement in terms of inter observer and inter study variability using DB sequences was obtained. The greatest disparity between them was seen in inter-study reproducibility and higher IQ in DB was seen. Study demonstrates better performance of DB imaging compared to BB in presence of comparable effectiveness

  7. Dark blood versus bright blood T2* acquisition in cardiovascular magnetic resonance (CMR) for thalassaemia major (TM) patients: Evaluation of feasibility, reproducibility and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia; Pitocco, Francesca; De Vivo, Aldo Eros [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Mortato, Luca [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pirro, Federica [Department of Biomaging and Radiological Sciences, Catholic University of Sacred Herart, Largo A. Gemelli 1, 00135 Rome (Italy); Cianciulli, Paolo [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2014-01-15

    Objectives: To compare the effectiveness of dark blood (DB) versus bright blood (BB) sequences. To assess the intra and inter-observer variability and inter-study reproducibility between BB versus DB. To evaluate image quality level in the two sequences. Methods: In a setting of 138 patients we performed CMR using cardiac gated Gradient-multiecho single breath-hold BB and DB sequences in the middle ventricular septum. Each acquisition was repeated during the same exam. Truncation method was used to account for background noise. Image quality (IQ) was assessed using a 5 point grading scale and image analysis was conducted by 2 experienced observers. Results: Compared with the conventional BB acquisition, the coefficient of correlation and significance of the DB technique was superior for intra-observer reproducibility (p < 0.001), inter-observer reproducibility (p < 0.001) and inter-study reproducibility (p < 0.001). The variability is also lower for DB sequences for T2* values <14 ms. Assessment of artifacts showed a superior score for DB versus BB scans (4 versus 3, p < 0.001). Conclusions: Improvement in terms of inter observer and inter study variability using DB sequences was obtained. The greatest disparity between them was seen in inter-study reproducibility and higher IQ in DB was seen. Study demonstrates better performance of DB imaging compared to BB in presence of comparable effectiveness.

  8. Pool water cleaning facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro [Hitachi Ltd., Tokyo (Japan); Asano, Takashi

    1998-05-29

    Only one system comprising a suppression poor water cleaning system (SPCU) and a filtration desalting tower (F/D) is connected for a plurality of nuclear power plants. Pipelines/valves for connecting the one system of the SPCU pump, the F/D and the plurality of nuclear power plants are disposed, and the system is used in common with the plurality of nuclear power plants. Pipelines/valves for connecting a pipeline for passing SP water to the commonly used SPCU pump and a skimmer surge tank are disposed, and fuel pool water is cooled and cleaned by the commonly used SPCU pump and the commonly used F/D. The number of SPCU pumps and the F/D facilities can be reduced, and a fuel pool water cooling operation mode and a fuel pool water cleaning operation mode which were conducted by an FPC pump so far are conducted by the SPCU pump. (N.H.)

  9. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Elizabeth Antoine

    Full Text Available Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.

  10. Micro-PIV (micro particle image velocimetry) visualization of red blood cells (RBCs) sucked by a female mosquito

    International Nuclear Information System (INIS)

    Kikuchi, K; Mochizuki, O

    2011-01-01

    A mosquito's pump is a highly effective system in the small suction domain. To understand a mosquito's blood suction mechanism, we analysed the characteristics of red blood cells (RBCs) in human blood during and after suction by a female mosquito. Focussing on the flow patterns of the RBCs in human blood being sucked by a mosquito, we visualized blood flow by using a micro-particle image velocimetry (μ-PIV) system, which combines an optical microscope and a PIV method. In an ex vivo experiment, a female mosquito was supplied diluted blood at the tip of the proboscis. We examined the blood flow around the tip of the proboscis and observed that RBCs were periodically sucked towards a hole around the tip. The sucked RBCs then homogeneously flowed parallel to the inner surface of the proboscis without adhering to the wall. Furthermore, using a bioelectric recording system, we directly measured electrical signals generated during suction by the pump muscles located in the mosquito's head. We found that the electrical signal power was synchronized with the acceleration of the RBCs in the sucking phase. A histological stain method was adapted for the observation of the form and internal structure of RBCs in the mosquito. Although the blood flow analysis revealed that the RBCs underwent shear stress during suction, RBCs in the mosquito's stomach maintained their original shape

  11. Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager

    Science.gov (United States)

    Lin, Yuanqing; Lech, Gwen; Nioka, Shoko; Intes, Xavier; Chance, Britton

    2002-08-01

    This article focuses on optimizing the signal to noise ratio (SNR) of a three-wavelength light-emitting diode (LED) near-infrared continuous-wave (cw) imager and its application to in vivo muscle metabolism measurement. The shot-noise limited SNR is derived and calculated to be 2 x104 for the physiological blood concentrations of muscle. Aiming at shot-noise limited SNR performance and fast imaging, we utilize sample and hold circuits to reduce high-frequency noise. These circuits have also been designed to be parallel integrating, through which SNR of 2 x103 and 2 Hz imaging acquisition rate have been achieved when the probe is placed on a muscle model. The noise corresponds to 2 x10-4 optical density error, which suggests an in vitro resolution of 15. 4 nM blood volume and 46.8 nM deoxygenation changes. A 48 dB digital gain control circuit with 256 steps is employed to enlarge the dynamic range of the imager. We utilize cuff ischemia as a living model demonstration and its results are reported. The instrument is applied during exercise to measure the changes of blood volume and deoxygenation, which provides important information about muscle metabolism. We find that the primary source of noise encountered during exercise experiment is from the random motion of muscle. The results demonstrate that the LED cw imager is ideal for the noninvasive study of muscle metabolism.

  12. Intra-patient variability of FDG standardized uptake values in mediastinal blood pool, liver, and myocardium during R-CHOP chemotherapy in patients with diffuse large B- cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Jeong; Yi, Hyun Kyung; Lim, Chae Hong; Cho, Young Seok; Choi, Joon Young; Choe, Yeam Seong; Lee, Kyung Han; Moon, Seung Hwan [Dept. of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    {sup 18}F-fluorodeoxyglucose (FDG) PET/CT is useful for staging and evaluating treatment response in patients with diffuse large B-cell lymphoma (DLBCL). A five-point scale model using the mediastinal blood pool (MBP) and liver as references is a recommended method for interpreting treatment response. We evaluated the variability in standardized uptake values (SUVs) of the MBP, liver, and myocardium during chemotherapy in patients with DLBCL. We analyzed 60 patients with DLBCL who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) treatment and underwent baseline, interim, and final FDG PET/CT scans. The FDG uptakes of lymphoma lesions, MBP, liver, and myocardium were assessed, and changes in the MBP and liver SUV and possible associated factors were evaluated. The SUV of the liver did not change significantly during the chemotherapy. However, the SUV{sub mean} of MBP showed a significant change though the difference was small (p = 0.019). SUV{sub mean} of MBP and liver at baseline and interim scans was significantly lower in patients with advanced Ann Arbor stage on diagnosis. The SUV{sub mean} of the MBP and liver was negatively correlated with the volumetric index of lymphoma lesions in baseline scans (r = -0.547, p < 0.001; r = -0.502, p < 0.001). Positive myocardial FDG uptake was more frequently observed in interim and final scans than in the baseline scan, but there was no significant association between the MBP and liver uptake and myocardial uptake. The SUV of the liver was not significantly changed during R-CHOP chemotherapy in patients with DLBCL, whereas the MBP SUV of the interim scan decreased slightly. However, the SUV of the reference organs may be affected by tumor burden, and this should be considered when assessing follow-up scans. Although myocardial FDG uptake was more frequently observed after R-CHOP chemotherapy, it did not affect the SUV of the MBP and liver.

  13. Intra-patient variability of FDG standardized uptake values in mediastinal blood pool, liver, and myocardium during R-CHOP chemotherapy in patients with diffuse large B- cell lymphoma

    International Nuclear Information System (INIS)

    Kim, Soo Jeong; Yi, Hyun Kyung; Lim, Chae Hong; Cho, Young Seok; Choi, Joon Young; Choe, Yeam Seong; Lee, Kyung Han; Moon, Seung Hwan

    2016-01-01

    18 F-fluorodeoxyglucose (FDG) PET/CT is useful for staging and evaluating treatment response in patients with diffuse large B-cell lymphoma (DLBCL). A five-point scale model using the mediastinal blood pool (MBP) and liver as references is a recommended method for interpreting treatment response. We evaluated the variability in standardized uptake values (SUVs) of the MBP, liver, and myocardium during chemotherapy in patients with DLBCL. We analyzed 60 patients with DLBCL who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) treatment and underwent baseline, interim, and final FDG PET/CT scans. The FDG uptakes of lymphoma lesions, MBP, liver, and myocardium were assessed, and changes in the MBP and liver SUV and possible associated factors were evaluated. The SUV of the liver did not change significantly during the chemotherapy. However, the SUV mean of MBP showed a significant change though the difference was small (p = 0.019). SUV mean of MBP and liver at baseline and interim scans was significantly lower in patients with advanced Ann Arbor stage on diagnosis. The SUV mean of the MBP and liver was negatively correlated with the volumetric index of lymphoma lesions in baseline scans (r = -0.547, p < 0.001; r = -0.502, p < 0.001). Positive myocardial FDG uptake was more frequently observed in interim and final scans than in the baseline scan, but there was no significant association between the MBP and liver uptake and myocardial uptake. The SUV of the liver was not significantly changed during R-CHOP chemotherapy in patients with DLBCL, whereas the MBP SUV of the interim scan decreased slightly. However, the SUV of the reference organs may be affected by tumor burden, and this should be considered when assessing follow-up scans. Although myocardial FDG uptake was more frequently observed after R-CHOP chemotherapy, it did not affect the SUV of the MBP and liver

  14. Absolute Versus Relative Myocardial Blood Flow by Dynamic CT Myocardial Perfusion Imaging in Patients With Anatomic Coronary Artery Disease

    NARCIS (Netherlands)

    Wichmann, Julian L.; Meinel, Felix G.; Schoepf, U. Joseph; Lo, Gladys G.; Choe, Yeon Hyeon; Wang, Yining; Vliegenthart, Rozemarijn; Varga-Szemes, Akos; Muscogiuri, Giuseppe; Cannao, Paola M.; De Cecco, Carlo N.

    OBJECTIVE. The purpose of this study was to evaluate differences in the diagnostic accuracy of absolute and relative territorial myocardial blood flow (MBF) derived from stress dynamic CT myocardial perfusion imaging (MPI) for the detection of significant coronary artery stenosis. MATERIALS AND

  15. Repeatability of regional myocardial blood flow calculation in 82Rb PET imaging

    International Nuclear Information System (INIS)

    Knešaurek, Karin; Machac, Josef; Zhang, Zhuangyu

    2009-01-01

    We evaluated the repeatability of the calculation of myocardial blood flow (MBF) at rest and pharmacological stress, and calculated the coronary flow reserve (CFR) utilizing 82 Rb PET imaging. The aim of the research was to prove high repeatability for global MBF and CFR values and good repeatability for regional MBF and CFR values. The results will have significant impact on cardiac PET imaging in terms of making it more affordable and increasing its use. 12 normal volunteers were imaged at rest and during pharmacological stress, with 2220 MBq of 82 Rb each. A GE Advance PET system was used to acquire dynamic 50-frame studies. MBF was calculated with a 2-compartmental model using a modified PMOD program (PMOD; University Hospital Zurich, Zurich, Switzerland). Two differential equations, describing a 2-compartmental model, were solved by numerical integration and using Levenberg-Marquardt's method for fitting data. The PMOD program defines 16 standard segments and calculates myocardial flow for each segment, as well as average septal, anterior, lateral, inferior and global flow. Repeatability was evaluated according to the method of Bland and Altman. Global rest and stress MBF, as well as global CFR, showed very good repeatability. No significant differences were found between the paired resting global MBF (0.63 ± 0.13 vs. 0.64 ± 0.13 mL/min/g; mean difference, -1.0% ± 2.6%) and the stress global MBF (1.37 ± 0.23 vs. 1.37 ± 0.24; mean difference, 0.1% ± 2.3%). Global CFR was highly reproducible (2.25 ± 0.56 vs. 2.22 ± 0.54, P = not statistically significant; mean difference, 1.3% ± 14.3%). Repeatability coefficients for global rest MBF were 0.033 (5.2%) and stress MBF 0.062 (4.5%) mL/min/g. Regional rest and stress MBF and CFR have shown good reproducibility. The average per sector repeatability coefficients for rest MBF were 0.056 (8.5%) and stress MBF 0.089 (6.3%) mL/min/g, and average repeatability coefficient for CFR was 0.25 (10.6%). The results

  16. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  17. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  18. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance.

    Science.gov (United States)

    Chen, Alvin I; Balter, Max L; Maguire, Timothy J; Yarmush, Martin L

    2016-10-01

    This paper presents a portable imaging device designed to detect peripheral blood vessels for cannula insertion that are otherwise difficult to visualize beneath the skin. The device combines near infrared stereo vision, ultrasound, and real-time image analysis to map the 3D structure of subcutaneous vessels. We show that the device can identify adult forearm vessels and be used to guide manual insertions in tissue phantoms with increased first-stick accuracy compared to unassisted cannulation. We also demonstrate that the system may be coupled with a robotic manipulator to perform automated, image-guided venipuncture.

  19. Liquid sodium pool fires

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  20. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  1. Imaging experimental myocardial infarction with indium-111-labeled autologous leukocytes: effects of infarct age and residual regional myocardial blood flow

    International Nuclear Information System (INIS)

    Thakur, M.L.; Gottschalk, A.; Zaret, B.L.

    1979-01-01

    The external imaging patterns and the kinetics of infiltration of indium-111 labeled polymorphonuclear leukocytes (PMNs) occurring in the course of the inflammatory response associated with myocardial infarction were studied in dogs subjected to closed-chest anterior wall infarction. The effects of infarct age and regional residual myocardial blood flow upon PMN infiltration were investigated and quantified, and the capacity of indium-111 PMNs to image the experimental infarction was evaluated qualitatively. The epicardial accumulation of indium-111 PMNs occurred primarily in infarct zones with residual blood flow of 0.6 times normal and was maximal (14.8 +- 3.8 times normal) in the lowest blood flow zone (< 0.1 times normal). PMN accumulation in the endocardial infarct zones occurred in the regions with blood flow < 0.6 times normal and was maximal (26.8 +- 4.9 times normal) in the lowest blood flow zone. However, contrary to the maximal epicardial infiltration period, which occurred within the first 24 h after infarction, the maximal endocardial infiltration occurred at 72 hours after infarction. In both endocardium and epicardium, PMN uptake was minimal at 120 h after infarction. In vivo cardiac images were abnomal and revealed discrete, anatomically distinct areas of increased myocardial radioactivity uptake in the anterior wall of all dogs studied within 24 to 96 h after infarction. All images obtained 120 h after infarction were negative. Thus, indium-111 PMNs provide a noninvasive means of in vivo imaging of the inflammatory response to myocardial infarction and allow quantification of this response at a tissue level

  2. Advance prediction of mild cognitive impairment (MCI) using 99mTc-ECD SPECT brain blood flow imaging

    International Nuclear Information System (INIS)

    Kawasaki, Yohsuke

    2008-01-01

    Mild Cognitive Impairment (MCI) is considered as a precursor state of Alzheimer disease (AD). Single photon emission computed tomography (SPECT) brain blood flow imaging was investigated in MCI and it's relevance to the prognosis of MCI was evaluated in an attempt define the characteristics of brain blood flow imaging of MCI (amnestic MCI; aMCI) converting to AD. Ninety-two patients over 60 years old with amnesia were studied. 99m Tc-ethyl cysteinate dimer (ECD) SPECT brain blood flow examinations of the subject under drug-free conditions were conducted and imaging was analyzed according to the first clinical diagnosis. Patients given a diagnosis of MCI on the first clinical diagnosis, were examined again after 2 years and the SPECT imaging before 2 years previously was classified and analyzed. Of them, there were 35 MCI patients, converting of 13 AD patients (37.1%; aMCI), 10 MCI patients (28.6%; non-converter), 4 depression patients (11.4%; Depression type MCI (dMCI)), 1 Geriatric psychosis patient, but 7 patients dropped out. In the aMCI group, relative hypoperfusion was recognized in the posterior cingulate and the precuneus. In the dMCI group, relative hypoperfusion was recognized in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate. In the non-converter group, relative hypoperfusion was recognized in the basal forebrain. The hypoperfusion of the precuneus in aMCI, and the hypoperfusion of the right frontal lobe (DLPFC, dorsal-anterior cingulate) in dMCI were characteristic brain blood-flow abnormalities. We believe 99m Tc-ECD SPECT brain blood flow imaging to be useful in the diagnosis of aMCI and in the early detection of depression. (author)

  3. Meta-Analyses of Diagnostic Accuracy in Imaging Journals: Analysis of Pooling Techniques and Their Effect on Summary Estimates of Diagnostic Accuracy

    NARCIS (Netherlands)

    McGrath, Trevor A.; McInnes, Matthew D. F.; Korevaar, Daniël A.; Bossuyt, Patrick M. M.

    2016-01-01

    Purpose To determine whether authors of systematic reviews of diagnostic accuracy studies published in imaging journals used recommended methods for meta-analysis, and to evaluate the effect of traditional methods on summary estimates of sensitivity and specificity. Materials and Methods Medline was

  4. Welding pool measurement using thermal array sensor

    Science.gov (United States)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  5. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine.

    Science.gov (United States)

    Kazemi, Fatemeh; Najafabadi, Tooraj Abbasian; Araabi, Babak Nadjar

    2016-01-01

    Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is characterized by the accumulation of myeloid blasts in the bone marrow. Careful microscopic examination of stained blood smear or bone marrow aspirate is still the most significant diagnostic methodology for initial AML screening and considered as the first step toward diagnosis. It is time-consuming and due to the elusive nature of the signs and symptoms of AML; wrong diagnosis may occur by pathologists. Therefore, the need for automation of leukemia detection has arisen. In this paper, an automatic technique for identification and detection of AML and its prevalent subtypes, i.e., M2-M5 is presented. At first, microscopic images are acquired from blood smears of patients with AML and normal cases. After applying image preprocessing, color segmentation strategy is applied for segmenting white blood cells from other blood components and then discriminative features, i.e., irregularity, nucleus-cytoplasm ratio, Hausdorff dimension, shape, color, and texture features are extracted from the entire nucleus in the whole images containing multiple nuclei. Images are classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier with 10-fold cross validation technique. Classifier performance is evaluated by three parameters, i.e., sensitivity, specificity, and accuracy. Cancerous images are also classified into their prevalent subtypes by multi-SVM classifier. The results show that the proposed algorithm has achieved an acceptable performance for diagnosis of AML and its common subtypes. Therefore, it can be used as an assistant diagnostic tool for pathologists.

  6. Perception of body image of adolescents and of their parents in relation to the nutritional status and blood pressure.

    Science.gov (United States)

    Silveira Vieira, Raquel; Dal Bosco, Simone Morelo; Grave, Magali Trezinha Quevedo; Adami, Fernanda Scherer

    2015-04-01

    The perception of body image of adolescents is an instrument for nutritional assessment to health conditions. To verify the body image perception of adolescents and their parents in relation to nutritional status and blood pressure levels. Population-based study, and cross-sectional model, conducted with parents and adolescents aged 10-19 years old, in rural and urban zones in public schools. There was applied the Scale silhouettes for parents about the perception of the described body image and a question about the concern of the nutritional status of their children. There were verified the blood pressure, weight, height and waist circumference, the BMI (kg/m²) calculation of the adolescents, and the self-perceived body image. The data was expressed as average ± standard deviation and percentages. The sample consisted of 914 adolescents with a mean age of 13.12 ± 2.17 years, 56.8% female and 68.9% were eutrophic. As for blood pressure levels, 17.6% were classified in pre-hypertensive, 18.8% in stage 1 hypertension and 6% in stage 2. About the self-perception, 68% considered themselves being eutrophic and 64.75% of the parents classified their children as eutrophic. There was observed a direct and significant correlation among the body mass index, waist circumference, weight, systemic and diastolic blood pressure with the self-perception of the adolescents and the body image perceptions of the parents (pbody image perceptions of the adolescents and their respective parents. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images

    Directory of Open Access Journals (Sweden)

    Rasha Al Shehhi

    2016-01-01

    Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

  8. SPR imaging biosensor for the quantitation of fibronectin concentration in blood samples.

    Science.gov (United States)

    Sankiewicz, Anna; Romanowicz, Lech; Pyc, Marlena; Hermanowicz, Adam; Gorodkiewicz, Ewa

    2018-02-20

    The purpose of this study was presentation of a new biosensor capable of determination of fibronectin. This biosensor was based on the specific interaction of anti-fibronectin antibody produced in rabbit with fibronectin. The surface plasmon resonance imaging (SPRI) technique was used as a detecting method. Optimization and characterization properties of the biosensor were studied. The determination of fibronectin concentration in natural samples was done. The results were compared with a reference method (Enzyme-Linked Immunosorbent Assay-ELISA). The analytically useful dynamic response range of biosensor is between 5 and 400ngmL -1 . The detection limit is 1.5ngmL -1 and limit quantification is 5ngmL -1 . The proposed SPRI biosensor showed good selectivity for potential interferences. It was applied to determine fibronectin concentrations in plasma of healthy donors and of patients after thermal injury. Good correlations between results obtained using the SPRI biosensor and ELISA test (correlation coefficients for healthy donors 0.996, for patients 0.984) were obtained. The average fibronectin concentration of healthy donors was 140.5±24.6μgmL -1 and the average fibronectin concentration of patients was 601.5±72.1μgmL -1 , which was in agreement with results obtained by other investigators. The obtained results indicate that the developed biosensor may be a candidate for monitoring fibronectin concentration in blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pulmonary blood volume imaging with dual-energy computed tomography: Spectrum of findings

    Energy Technology Data Exchange (ETDEWEB)

    Hagspiel, K.D., E-mail: kdh2n@virginia.edu [Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia (United States); Flors, L.; Housseini, A.M.; Phull, A. [Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia (United States); Ali Ahmad, E. [Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia (United States); Department of Radiology, Minia University, Minia (Egypt); Bozlar, U.; Norton, P.T. [Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia (United States); Bonatti, H.J.R. [Department of Surgery, University of Virginia Health System, Charlottesville, Virginia (United States)

    2012-01-15

    Dual-energy (DE) pulmonary blood volume (PBV) computed tomography (CT) has recently become available on clinical CT systems. The underlying physical principle of DECT is the fact that the photoelectric effect is strongly dependent on the CT energies resulting in different degrees of x-ray attenuation for different materials at different energy levels. DECT thus enables the characterization and quantification of iodine within tissues via imaging at different x-ray energies and analysis of attenuation differences. Technical approaches to DECT include dual-source scanners acquiring two scans with different energy levels simultaneously, and single-source CT scanners using sandwich detectors or rapid voltage switching. DE PBV CT enables the creation of iodine maps of the pulmonary parenchyma. Experience to date shows that these studies can provide additional physiological information in patients with acute or chronic pulmonary embolism beyond the pure morphological assessment a standard CT pulmonary angiography (CTPA) provides. It appears also to be promising for the evaluation of patients with obstructive airways disease. This article reviews the physics and technical aspects of DE PBV CT as well as the appearance of normal and abnormal lung tissue on these studies. Special consideration is given to pitfalls and artefacts.

  10. Cerebral blood flow imaging by I-123 IMP and Tc-99m HM-PAO

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Koichi; Yoshikawa, Kyosan; Minoshima, Satoshi; Imaseki, Keiko; Arimizu, Noboru; Yamaura, Akira; Uematsu, Sadao

    1988-02-01

    SPECT studies with either N-isopropyl-p-(I-123)iodo- amphetamine (I-123 IMP) or Tc-99m hexamethyl propylene amine oxime (Tc-99m HM-PAO) were cuncurrently performed in 12 patients with brain disorders, comprising cerebral infarction (7), cerebral aneurysm (one), intracranial hemorrhage (3), and subdural hematoma (one). Whereas I-123 IMP was taken up gradually into the brain, the uptake of Tc-99m-HM-PAO in the brain reached the peak immediately after the iv injection, with 90% or more remaining constant by 15 min postinjection. On early SPECT images, a high uptake of I-123 IMP was observed in the lung, and the uptake of Tc-99m HM-PAO was observed as well in the soft tissue of cervical region. In all patients except for one, decreased rCBF was observed in the lesions on both I-123 and Tc-99m SPECT scans. Both of the radiopharmaceuticals were analogous in that decreased blood flow corresponded to cerebral lesions. (Namekawa, K).

  11. Indium-111 chloride imaging in the detection of infected prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Sayle, B.A.; Fawcett, H.D.; Wilkey, D.J.; Cierny, G. III; Mader, J.T.

    1985-07-01

    Thirty-three patients with painful joint prostheses and a suspicion of infection were imaged with (/sup 111/In)chloride. A final diagnosis was established by culture in 19. Of these, 12 were categorized as true positives and three as true negatives. There were two false-positive studies, occurring in patients with knee prostheses. In both, the culture was obtained by aspiration. The sensitivity was 86%, specificity 60%, and accuracy 79%. Seventeen of the proven cases had bone imaging prior to (/sup 111/In)chloride imaging. All 17 static images were positive and were not helpful in differentiating loosening from infection. Using increased uptake on the blood-pool image as a criteria for infection, the sensitivity was 89%, but the specificity was 0. Adding flow studies made little difference in interpreting the blood-pool images. This study shows that (/sup 111/In)chloride imaging is more accurate in evaluating infection in prosthesis than bone imaging.

  12. Attempts to Improve Absolute Quantification of Cerebral Blood Flow in Dynamic Susceptibility Contrast Magnetic Resonance Imaging: A Simplified T1-Weighted Steady-State Cerebral Blood Volume Approach

    International Nuclear Information System (INIS)

    Wirestam, R.; Knutsson, L.; Risberg, J.; Boerjesson, S.; Larsson, E.M.; Gustafson, L.; Passant, U.; Staahlberg, F.

    2007-01-01

    Background: Attempts to retrieve absolute values of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) have typically resulted in overestimations. Purpose: To improve DSC-MRI CBF estimates by calibrating the DSC-MRI-based cerebral blood volume (CBV) with a corresponding T1-weighted (T1W) steady-state (ss) CBV estimate. Material and Methods: 17 volunteers were investigated by DSC-MRI and 133Xe SPECT. Steady-state CBV calculation, assuming no water exchange, was accomplished using signal values from blood and tissue, before and after contrast agent, obtained by T1W spin-echo imaging. Using steady-state and DSC-MRI CBV estimates, a calibration factor K = CBV(ss)/CBV(DSC) was obtained for each individual. Average whole-brain CBF(DSC) was calculated, and the corrected MRI-based CBF estimate was given by CBF(ss) = KxCBF(DSC). Results: Average whole-brain SPECT CBF was 40.1±6.9 ml/min 100 g, while the corresponding uncorrected DSC-MRI-based value was 69.2±13.8 ml/mi 100 g. After correction with the calibration factor, a CBF(ss) of 42.7±14.0 ml/min 100 g was obtained. The linear fit to CBF(ss)-versus-CBF(SPECT) data was close to proportionality (R 0.52). Conclusion: Calibration by steady-state CBV reduced the population average CBF to a reasonable level, and a modest linear correlation with the reference 133Xe SPECT technique was observed. Possible explanations for the limited accuracy are, for example, large-vessel partial-volume effects, low post-contrast signal enhancement in T1W images, and water-exchange effects

  13. Radiolabeling human peripheral blood stem cells for positron emission tomography (PET imaging in young rhesus monkeys.

    Directory of Open Access Journals (Sweden)

    Alice F Tarantal

    Full Text Available These studies focused on a new radiolabeling technique with copper ((64Cu and zirconium ((89Zr for positron emission tomography (PET imaging using a CD45 antibody. Synthesis of (64Cu-CD45 and (89Zr-CD45 immunoconjugates was performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC was assessed in vitro (viability, population doubling times, colony forming units. hPBSC viability was maintained as the dose of (64Cu-TETA-CD45 increased from 0 (92% to 160 µCi/mL (76%, p>0.05. Radiolabeling efficiency was not significantly increased with concentrations of (64Cu-TETA-CD45 >20 µCi/mL (p>0.50. Toxicity affecting both growth and colony formation was observed with hPBSC radiolabeled with ≥40 µCi/mL (p0.05, and a trend towards increased radiolabeling efficiency was noted as the dose of (89Zr-Df-CD45 increased, with a greater level of radiolabeling with 160 µCi/mL compared to 0-40 µCi/mL (p<0.05. A greater than 2,000 fold-increase in the level of (89Zr-Df-CD45 labeling efficiency was observed when compared to (64Cu-TETA-CD45. Similar to (64Cu-TETA-CD45, toxicity was noted when hPBSC were radiolabeled with ≥40 µCi/mL (p<0.05 (growth, colony formation. Taken together, 20 µCi/mL resulted in the highest level of radiolabeling efficiency without altering cell function. Young rhesus monkeys that had been transplanted prenatally with 25×10(6 hPBSC expressing firefly luciferase were assessed with bioluminescence imaging (BLI, then 0.3 mCi of (89Zr-Df-CD45, which showed the best radiolabeling efficiency, was injected intravenously for PET imaging. Results suggest that (89Zr-Df-CD45 was able to identify engrafted hPBSC in the same locations identified by BLI, although the background was high.

  14. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  15. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow and oxygenation

    Directory of Open Access Journals (Sweden)

    Louis Gagnon

    2016-08-01

    Full Text Available Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1 interpretation of functional Magnetic Resonance Imaging (fMRI signals, and (2 investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These bottom-up models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  16. Pool gateway seal

    International Nuclear Information System (INIS)

    Starr, J.A.; Steinert, L.A.

    1983-01-01

    A device for sealing a gateway between interconnectable pools in a nuclear facility comprising a frame supporting a liquid impermeable sheet positioned in a u-shaped gateway between the pools. An inflatable tube carried in a channel in the periphery of the frame and adjoining the gateway provides a seal therebetween when inflated. A restraining arrangement on the bottom edge of the frame is releasably engagable with an adjacent portion of the gateway to restrict the movement of the frame in the u-shaped gateway upon inflation of the tube, thereby enhancing the seal. The impermeable sheet is formed of an elastomer and thus is conformable to a liquid permeable supportive wall upon application of liquid pressure to the side of the sheet opposite the wall

  17. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  18. CERN Electronics Pool presentations

    CERN Multimedia

    2011-01-01

    The CERN Electronics Pool has organised a series of presentations in collaboration with oscilloscope manufacturers. The last one will take place according to the schedule below.   Time will be available at the end of the presentation to discuss your personal needs. The Agilent presentation had to be postponed and will be organised later. -     Lecroy: Thursday, 24 November 2011, in 530-R-030, 14:00 to 16:30.

  19. Measurement of renal blood flow by 131I-labelled sodium iodohippurate imaging in a rat model of herpes encephalitis

    International Nuclear Information System (INIS)

    Cleator, G.M.; Klapper, P.E.; Lewis, A.G.; Sharma, H.L.; Smith, A.M.; Manchester Univ.

    1990-01-01

    Renal blood flow was assessed qualitatively over a 30 min period in a rat model of herpes encephalitis by extra-renal scintigraphic imaging following the injection of 131 I-labelled sodium iodohippurate. No significant differences were observed for renal blood flow in either kidney between (or within) infected and control groups. Our data suggest that kidney function is not compromised in this animal model of encephalitis. The results are discussed in the context of the development of a non-invasive protocol for the in vivo diagnosis of herpes encephalitis. (orig.)

  20. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis.

    Directory of Open Access Journals (Sweden)

    Seung Ah Lee

    Full Text Available Miniaturization of imaging systems can significantly benefit clinical diagnosis in challenging environments, where access to physicians and good equipment can be limited. Sub-pixel resolving optofluidic microscope (SROFM offers high-resolution imaging in the form of an on-chip device, with the combination of microfluidics and inexpensive CMOS image sensors. In this work, we report on the implementation of color SROFM prototypes with a demonstrated optical resolution of 0.66 µm at their highest acuity. We applied the prototypes to perform color imaging of red blood cells (RBCs infected with Plasmodium falciparum, a particularly harmful type of malaria parasites and one of the major causes of death in the developing world.

  1. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    International Nuclear Information System (INIS)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-01-01

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision

  2. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada); Wei, Lihui [Nordion, Inc., Ottawa, Ontario K2K 1X8 (Canada)

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  3. Functional neuroanatomy in depressed patients with sexual dysfunction: blood oxygenation level dependent functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jong Chul [Chonnam National Univ. Hospital, Kwangju (Korea, Republic of)

    2004-06-15

    To demonstrate the functional neuroanatomy associated with sexual arousal visually evoked in depressed males who have underlying sexual dysfunction using Blood Oxygenation Level Dependent-based fMRI. Ten healthy volunteers (age range 21-55: mean 32.5 years), and 10 depressed subjects (age range 23-51: mean 34.4 years, mean Beck Depression Inventory score of 39.6 {+-} 5.9, mean Hamilton Rating Scale Depression (HAMD)-17 score of 33.5 {+-} 6.0) with sexual arousal dysfunction viewed erotic and neutral video films during functional magnetic resonance imaging (fMRI) with 1.5 T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 oblique planes using gradient-echo EPI (flip angle/TR/TE=90 .deg. /6000 ms/50 ms). The visual stimulation paradigm began with 60 sec of black screen, 150 sec of neutral stimulation with a documentary video film, 30 sec of black screen, 150 sec of sexual stimulation with an erotic video film followed by 30 sec of black screen. The brain activation maps and their quantification were analyzed by SPM99 program. There was a significant difference of brain activation between two groups during visual sexual stimulation. In depressed subjects, the level of activation during the visually evoked sexual arousal was significantly less than that of healthy volunteers, especially in the cerebrocortical areas of the hypothalamus, thalamus, caudate nucleus, and inferior and superior temporal gyri. On the other hand, the cerebral activation patterns during the neutral condition in both groups showed no significant differences ({rho} < 0.01). This study is the first demonstration of the functional neuroanatomy of the brain associated with sexual dysfunction in depressed patients using fMRI. In order to validate our physiological neuroscience results, further studies that would include patients with other disorders and sexual dysfunction, and depressed patients without sexual dysfunction and their treatment response are needed.

  4. Functional neuroanatomy in depressed patients with sexual dysfunction: blood oxygenation level dependent functional MR imaging

    International Nuclear Information System (INIS)

    Yang, Jong Chul

    2004-01-01

    To demonstrate the functional neuroanatomy associated with sexual arousal visually evoked in depressed males who have underlying sexual dysfunction using Blood Oxygenation Level Dependent-based fMRI. Ten healthy volunteers (age range 21-55: mean 32.5 years), and 10 depressed subjects (age range 23-51: mean 34.4 years, mean Beck Depression Inventory score of 39.6 ± 5.9, mean Hamilton Rating Scale Depression (HAMD)-17 score of 33.5 ± 6.0) with sexual arousal dysfunction viewed erotic and neutral video films during functional magnetic resonance imaging (fMRI) with 1.5 T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 oblique planes using gradient-echo EPI (flip angle/TR/TE=90 .deg. /6000 ms/50 ms). The visual stimulation paradigm began with 60 sec of black screen, 150 sec of neutral stimulation with a documentary video film, 30 sec of black screen, 150 sec of sexual stimulation with an erotic video film followed by 30 sec of black screen. The brain activation maps and their quantification were analyzed by SPM99 program. There was a significant difference of brain activation between two groups during visual sexual stimulation. In depressed subjects, the level of activation during the visually evoked sexual arousal was significantly less than that of healthy volunteers, especially in the cerebrocortical areas of the hypothalamus, thalamus, caudate nucleus, and inferior and superior temporal gyri. On the other hand, the cerebral activation patterns during the neutral condition in both groups showed no significant differences (ρ < 0.01). This study is the first demonstration of the functional neuroanatomy of the brain associated with sexual dysfunction in depressed patients using fMRI. In order to validate our physiological neuroscience results, further studies that would include patients with other disorders and sexual dysfunction, and depressed patients without sexual dysfunction and their treatment response are needed

  5. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  6. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  7. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    International Nuclear Information System (INIS)

    Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten

    2015-01-01

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  8. Functional characterization of neotropical snakes peripheral blood leukocytes subsets: Linking flow cytometry cell features, microscopy images and serum corticosterone levels.

    Science.gov (United States)

    de Carvalho, Marcelo Pires Nogueira; Queiroz-Hazarbassanov, Nicolle Gilda Teixeira; de Oliveira Massoco, Cristina; Sant'Anna, Sávio Stefanini; Lourenço, Mariana Mathias; Levin, Gabriel; Sogayar, Mari Cleide; Grego, Kathleen Fernandes; Catão-Dias, José Luiz

    2017-09-01

    Reptiles are the unique ectothermic amniotes, providing the key link between ectothermic anamniotes fish and amphibians, and endothermic birds and mammals; becoming an important group to study with the aim of providing significant knowledge into the evolutionary history of vertebrate immunity. Classification systems for reptiles' leukocytes have been described by their appearance rather than function, being still inconsistent. With the advent of modern techniques and the establishment of analytical protocols for snakes' blood by flow cytometry, we bring a qualitative and quantitative assessment of innate activities presented by snakes' peripheral blood leukocytes, thereby linking flow cytometric features with fluorescent and light microscopy images. Moreover, since corticosterone is an important immunomodulator in reptiles, hormone levels of all blood samples were measured. We provide novel and additional information which should contribute to better understanding of the development of the immune system of reptiles and vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Large molten pool heat transfer

    International Nuclear Information System (INIS)

    1994-01-01

    This workshop on large molten pool heat transfer is composed of 5 sessions which titles are: feasibility of in-vessel core debris cooling; experiments on molten pool heat transfer; calculational efforts on molten pool convection; heat transfer to the surrounding water, experimental techniques; future experiments and ex-vessel studies (RASPLAV, TOLBIAC, BALI, SULTAN, CORVIS, VULCANO, CORINE programs)

  10. Imaging of Neuronal Activity in Awake Mice by Measurements of Flavoprotein Autofluorescence Corrected for Cerebral Blood Flow

    Directory of Open Access Journals (Sweden)

    Manami Takahashi

    2018-01-01

    Full Text Available Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.

  11. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET.

    Science.gov (United States)

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-Il; Bom, Hee-Seung

    2014-01-01

    In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (PPost-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation.

  12. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    Science.gov (United States)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  13. Prediction of pathologic staging with magnetic resonance imaging after preoperative chemoradiotherapy in rectal cancer: pooled analysis of KROG 10-01 and 11-02.

    Science.gov (United States)

    Lee, Jong Hoon; Jang, Hong Seok; Kim, Jun-Gi; Lee, Myung Ah; Kim, Dae Yong; Kim, Tae Hyun; Oh, Jae Hwan; Park, Sung Chan; Kim, Sun Young; Baek, Ji Yeon; Park, Hee Chul; Kim, Hee Cheol; Nam, Taek-Keun; Chie, Eui Kyu; Jung, Ji-Han; Oh, Seong Taek

    2014-10-01

    The reported overall accuracy of MRI in predicting the pathologic stage of nonirradiated rectal cancer is high. However, the role of MRI in restaging rectal tumors after neoadjuvant CRT is contentious. Thus, we evaluate the accuracy of restaging magnetic resonance imaging (MRI) for rectal cancer patients who receive preoperative chemoradiotherapy (CRT). We analyzed 150 patients with locally advanced rectal cancer (T3-4N0-2) who had received preoperative CRT. Pre-CRT MRI was performed for local tumor and nodal staging. All patients underwent restaging MRI followed by total mesorectal excision after the end of radiotherapy. The primary endpoint of the present study was to estimate the accuracy of post-CRT MRI as compared with pathologic staging. Pathologic T classification matched the post-CRT MRI findings in 97 (64.7%) of 150 patients. 36 (24.0%) of 150 patients were overstaged in T classification, and the concordance degree was moderate (k=0.33, prectal cancer patients who received preoperative CRT. The diagnostic accuracy of restaging MRI is relatively high in rectal cancer patients who achieved clinical downstaging after CRT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Noise contamination from PET blood sampling pump: Effects on structural MRI image quality in simultaneous PET/MR studies.

    Science.gov (United States)

    Bartlett, Elizabeth; DeLorenzo, Christine; Parsey, Ramin; Huang, Chuan

    2018-02-01

    To fully quantify PET imaging outcome measures, a blood sampling pump is often used during the PET acquisition. With simultaneous PET/MR studies, a structural magnetization-prepared rapid gradient-echo (MP-RAGE) may also be acquired while the pump is generating electromagnetic noise. This study investigated whether this noise contamination would be detrimental to the quantification of volume and cortical thickness measures obtained from automated segmentation of the MP-RAGE image. MP-RAGE T1w structural images were acquired for a phantom and 10 healthy volunteers (five female, 27.2 ± 5.1 y old) with the blood sampling pump and without. The white matter signal-to-noise ratio (SNR) was computed for all images. Region-wise cortical thickness and volume were extracted with Freesurfer 5.3.0. The phantom SNR and the white matter human subject SNR was degraded in the MP-RAGE images acquired with the pump (P = 0.005; white matter SNR: 43.9 and 50.8 with the pump and without). Intrasession, region-wise volume and cortical thickness estimates were significantly overestimated with the pump (percent difference: 1.14 ± 2.67% for volume (P = 0.0003) and 0.34 ± 1.59% (P = 0.02) for cortical thickness). Regions with percent differences greater than 5% between pump conditions were those close to tissue-air interfaces: entorhinal, frontal pole, parsorbitalis, temporal pole, and medial orbitofrontal. Synthetically adding Gaussian noise to the without pump MP-RAGE images yielded similar, significant detriments to cortical morphometry compared to without the pump. This study provides evidence that the use of PET blood sampling pumps may generate unstructured, Gaussian-distributed noise in MP-RAGE images that significantly alters the accuracy of Freesurfer-derived volume and cortical thickness estimates. While many cortical regions showed a percent difference of less than 1% with the pump, regions close to tissue-air interfaces, subject to larger susceptibility artifacts

  15. COLPEX - Cold Pool Experiment

    Science.gov (United States)

    Wells, H.; Price, J.; Horlacher, V.; Sheridan, P. F.; Vosper, S. B.; Brown, A. R.; Mobbs, S. D.; Ross, A. N.

    2009-04-01

    Planning has started towards designing a new field campaign aimed at studying the behaviour of the boundary layer over complex terrain. Of specific interest is the formation of cold-pools in valleys during stable night-time conditions. The field campaign will run continuously until the end of the winter in 2009/10. The experiment will make use of a wide variety of ground-based sensors including turbulence towers, automatic weather stations, Doppler lidar, radiation sensors and soil temperature probes. We also hope to deploy an instrumented car and a tethered balloon facility for limited periods. Data from the field campaign will be used for a number of purposes. Firstly, to increase our understanding of how the valley cold pools form and why, for instance, some valleys offer a more favourable environment for their formation than others. Secondly, to investigate the formation and dissipation of fog in complex terrain. Thirdly, the data set will also be used to help validate and develop the Met Office Unified Model at high resolution. An area for the experiment has been identified in the Shropshire/Powis area of the UK where a network of valleys and low hills exist with a typical valley width of ~1.5km and hill top to valley floor heights of 75-200m. 0m.

  16. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    Science.gov (United States)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  18. PulseCam: high-resolution blood perfusion imaging using a camera and a pulse oximeter.

    Science.gov (United States)

    Kumar, Mayank; Suliburk, James; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2016-08-01

    Measuring blood perfusion is important in medical care as an indicator of injury and disease. However, currently available devices to measure blood perfusion like laser Doppler flowmetry are bulky, expensive, and cumbersome to use. An alternative low-cost and portable camera-based blood perfusion measurement system has recently been proposed, but such camera-only system produces noisy low-resolution blood perfusion maps. In this paper, we propose a new multi-sensor modality, named PulseCam, for measuring blood perfusion by combining a traditional pulse oximeter with a video camera in a unique way to provide low noise and high-resolution blood perfusion maps. Our proposed multi-sensor modality improves per pixel signal to noise ratio of measured perfusion map by up to 3 dB and improves the spatial resolution by 2 - 3 times compared to best known camera-only methods. Blood perfusion measured in the palm using our PulseCam setup during a post-occlusive reactive hyperemia (PORH) test replicates standard PORH response curve measured using laser Doppler flowmetry device but with much lower cost and a portable setup making it suitable for further development as a clinical device.

  19. Relations between radiobiological hypoxia and nuclear magnetic resonance-imaged blood microcirculation in experimental tumors

    International Nuclear Information System (INIS)

    Koike, Sachiko; Ando, Koichi; Ikehira, Hiroo.

    1993-01-01

    Characteristics of hypoxic cells subjected to radiation were investigated and compared with those of microcirculation for two murine fibrosarcomas growing in C3H mice. Small NFSa tumors, growing in air-breathing mice, developed a radioresistant tail on the survival curve. The tail was indistinguishably parallel to a survival curve for an artificially hypoxic tumor. As the NFSa tumors increased in size, the hypoxic tail moved upward with no change of Do, resulting in increase of hypoxic fraction from 3.9% to 40%. The R1137 tumors had no radioresistant tail nor hypoxic fraction regardless of tumor size. However, large-sized R1137 tumors developed a significant number of radioresistant, hypoxic cells with an intermediate Do, and were effectively sensitized by administrating misonidazole before irradiation. Thus, the NFSa tumors were fractionally hypoxic, and the large R1137 tumors had intermediate hypoxia. Measurement of tumor microcirculation by gadolinium-enhanced nuclear magnetic resonance indicated that both blood flow and blood volume decreased significantly when the NFSa tumor grew large. Similar reduction in these microcirculation parameters was also observed for the R1137 tumor. The small-sized NFSa tumor had relatively larger blood volume and faster blood flow than the small-sized R1137 tumor. When large-sized tumors were compared to each other, the NFSa again had better blood flow than the R1137. However, the blood volume in the large-sized tumors was significantly (p<0.05) smaller for the NFSa tumor than for the R1137 tumor. It was concluded that blood flow could not be a single determinant for tumor hypoxia, and the difference between fractional hypoxia and intermediate hypoxia would be reflected in the ratio of blood flow to blood volume. (author)

  20. Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images.

    Science.gov (United States)

    Guibert, Romain; McLeod, Kristin; Caiazzo, Alfonso; Mansi, Tommaso; Fernández, Miguel A; Sermesant, Maxime; Pennec, Xavier; Vignon-Clementel, Irene E; Boudjemline, Younes; Gerbeau, Jean-Frédéric

    2014-01-01

    3D computational fluid dynamics (CFD) in patient-specific geometries provides complementary insights to clinical imaging, to better understand how heart disease, and the side effects of treating heart disease, affect and are affected by hemodynamics. This information can be useful in treatment planning for designing artificial devices that are subject to stress and pressure from blood flow. Yet, these simulations remain relatively costly within a clinical context. The aim of this work is to reduce the complexity of patient-specific simulations by combining image analysis, computational fluid dynamics and model order reduction techniques. The proposed method makes use of a reference geometry estimated as an average of the population, within an efficient statistical framework based on the currents representation of shapes. Snapshots of blood flow simulations performed in the reference geometry are used to build a POD (Proper Orthogonal Decomposition) basis, which can then be mapped on new patients to perform reduced order blood flow simulations with patient specific boundary conditions. This approach is applied to a data-set of 17 tetralogy of Fallot patients to simulate blood flow through the pulmonary artery under normal (healthy or synthetic valves with almost no backflow) and pathological (leaky or absent valve with backflow) conditions to better understand the impact of regurgitated blood on pressure and velocity at the outflow tracts. The model reduction approach is further tested by performing patient simulations under exercise and varying degrees of pathophysiological conditions based on reduction of reference solutions (rest and medium backflow conditions respectively). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Multimodal Imaging Reveals Improvement of Blood Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem Cells.

    Science.gov (United States)

    Gálisová, Andrea; Fábryová, Eva; Jirák, Daniel; Sticová, Eva; Lodererová, Alena; Herynek, Vít; Kříž, Jan; Hájek, Milan

    2017-02-01

    An artificial site for cell or pancreatic islet transplantation can be created using a polymeric scaffold, even though it suffers subcutaneously from improper vascularisation. A sufficient blood supply is crucial for graft survival and function and can be enhanced by transplantation of mesenchymal stem cells (MSCs). The purpose of this study was to assess the effect of syngeneic MSCs on neoangiogenesis and cell engraftment in an artificial site by multimodal imaging. MSCs expressing a gene for luciferase were injected into the artificial subcutaneous site 7 days after scaffold implantation. MRI experiments (anatomical and dynamic contrast-enhanced images) were performed on a 4.7-T scanner using gradient echo sequences. Bioluminescent images were acquired on an IVIS Lumina optical imager. Longitudinal examination was performed for 2 months, and one animal was monitored for 16 months. We confirmed the long-term presence (lasting more than 16 months) of viable donor cells inside the scaffolds using bioluminescence imaging with an optical signal peak appearing on day 3 after MSC implantation. When compared to controls, the tissue perfusion and vessel permeability in the scaffolds were significantly improved at the site with MSCs with a maximal peak on day 9 after MSC transplantation. Our data suggest that the maximal signal obtained by bioluminescence and magnetic resonance imaging from an artificially created site between 3 and 9 days after MSC transplantation can predict the optimal time range for subsequent cellular or tissue transplantation, including pancreatic islets.

  2. Assessment of cerebral blood flow reserve using blood oxygen level-dependent echo planar imaging after acetazolamide administration in patients post-STA-MCA anastomosis surgery

    International Nuclear Information System (INIS)

    Zenke, Kiichiro; Kusunoki, Katsusuke; Saito, Masahiro; Sadamoto, Kazuhiko; Ohta, Shinsuke; Kumon, Yoshiaki; Sakaki, Saburo; Nagasawa, Kiyoshi

    1998-01-01

    Recently, blood oxygen level-dependent (BOLD) echo planar imaging (EPI) has been used to estimate blood flow changes. Theoretically, a relative decrement of deoxyhemoglobin in cerebral blood supply induces a MR signal change after neuronal stimulation. In the present study, we have attempted to evaluate CBF reserve capacity by the BOLD EPI in patients who had undergone STA-MCA anastomosis surgery. Then, we compared with the signal intensity changes obtained by this procedure with the CBF changes by Xe-SPECT after acetazolamide administration. Six patients, post-STA-MCA anastomosis surgery, were studied. Pre-operatively, MR signal intensity and CBF, by Xe-SPECT, were increased in the intact side after acetazolamide administration in all patients, and MR signal intensities were decreased in low flow regions after acetazolamide administration in all four patients in whom so-called steal phenomenon was demonstrated by Xe-SPECT study. Post-operatively, poor response was shown after acetazolamide administration with both Xe-SPECT and BOLD EPI in the two patients who had unsuccessful anastomoses. In the successfully anastomosed patients, improved vascular reactivity was demonstrated on BOLD EPI after acetazolamide administration in 3 of 4 patients in whom an improvement of vascular reactivity was demonstrated on Xe-SPECT. In one patient, MRI studies were considered to have technical artifacts, because the MR signal intensity did not increase, even in the intact side after acetazolamide administration. In conclusion, BOLD EPI after acetazolamide administration is an useful procedure for the pre- and post-operative of vascular reserve in patients with ischemic stroke. (author)

  3. Cardiac MRI. T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nassenstein, K.; Nensa, F.; Schlosser, T.; Umutlu, L.; Lauenstein, T. [University Hospital Essen (Germany). Dept. of Diagnostic and Interventional Radiology and Neuroradiology; Bruder, O. [Elisabeth Hospital, Essen (Germany). Dept. of Cardiology and Angiology; Maderwald, S.; Ladd, M.E. [Duisburg-Essen Univ., Essen (Germany). Erwin L. Hahn Institute for Magnetic Resonance Imaging

    2014-02-15

    Purpose: To assess the diagnostic accuracy of T2 mapping for the detection of myocardial edema in acute myocardial infarction (AMI), and to compare this diagnostic accuracy with that of the current standard for myocardial edema imaging, which is T2w dark-blood TSE imaging. Materials and Methods: 29 patients with AMI were examined at 1.5 T. For the visualization of myocardial edema, T2 maps, calculated from three T2w SSFP images, and T2w dark-blood TSE images were acquired in standard short- and long-axis views. Cine SSFP images were acquired for the analysis of left ventricular (LV) function and late gadolinium enhancement images (LGE) for the visualization of myocardial necrosis. The T2 maps as well as the T2w dark-blood TSE images were evaluated twice independently from the cine SSFP and LGE images. The presence or absence of myocardial edema was rated visually for each LV segment. As the standard of reference, the infarct zone was defined based on the cine SSFP and the LGE images. Results: In this segment-based analysis, T2 mapping showed a sensitivity of 82 % and a specificity of 94 % for the detection of edema in the infarct zone. T2w dark-blood TSE imaging revealed a sensitivity of 50 % and a specificity of 98 %. T2 mapping showed a higher intra-rater agreement compared to T2w dark-blood TSE imaging ({kappa}: 0.87 vs. 0.76). Conclusions: T2 mapping allows for the visualization of myocardial edema in AMI with a high sensitivity and specificity, and features better diagnostic accuracy in terms of a higher sensitivity compared to T2w dark-blood TSE imaging. (orig.)

  4. Analysis of blood flow patterns in aortic aneurysm by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi

    1993-01-01

    Cine MRI (0.5 T) using rephased gradient echo technique was performed to study the patterns of blood flow in the aortic aneurysm of 16 patients with aortic aneurysm, and the data were compared with those of 5 healthy volunteers. In the transaxial section, the blood flow in normal aorta appeared as homogeneous high intensity during systole. On the other hand, the blood flow in the aneurysm appeared as inhomogeneous flow enhancement with flow void. In the sagittal scan, the homogeneous flow enhancement in a normal aorta was also observed during systole and its apex of flow enhancement was 'taper'. The blood flow patterns in the aneurysm were classified as 'irregular', 'zonal', 'eddy', and 'obscure' depending on the contrast of flow enhancement and flow void. Their apexes were 'taper' or 'round'. The blood flow patterns in the aneurysm were related to the size of aneurysm. In patients with a large size 'aneurysm, their flow patterns were 'eddy' or 'obscure' and the flow enhancement was 'round'. On the other hand, in patients with a small size aneurysm, their flow patterns were 'irregular' or 'zonal', and their flow enhancement was 'taper'. Though the exact mechanism of abnormal flow patterns in an aortic aneurysm remains to be determined, cine MRI gives helpful informations in assessing blood flow dynamics in the aneurysm. (author)

  5. A Pool of Distant Galaxies

    Science.gov (United States)

    2008-11-01

    Anyone who has wondered what it might be like to dive into a pool of millions of distant galaxies of different shapes and colours, will enjoy the latest image released by ESO. Obtained in part with the Very Large Telescope, the image is the deepest ground-based U-band image of the Universe ever obtained. It contains more than 27 million pixels and is the result of 55 hours of observations with the VIMOS instrument. A Sea of Galaxies ESO PR Photo 39/08 A Pool of Distant Galaxies This uniquely beautiful patchwork image, with its myriad of brightly coloured galaxies, shows the Chandra Deep Field South (CDF-S), arguably the most observed and best studied region in the entire sky. The CDF-S is one of the two regions selected as part of the Great Observatories Origins Deep Survey (GOODS), an effort of the worldwide astronomical community that unites the deepest observations from ground- and space-based facilities at all wavelengths from X-ray to radio. Its primary purpose is to provide astronomers with the most sensitive census of the distant Universe to assist in their study of the formation and evolution of galaxies. The new image released by ESO combines data obtained with the VIMOS instrument in the U- and R-bands, as well as data obtained in the B-band with the Wide-Field Imager (WFI) attached to the 2.2 m MPG/ESO telescope at La Silla, in the framework of the GABODS survey. The newly released U-band image - the result of 40 hours of staring at the same region of the sky and just made ready by the GOODS team - is the deepest image ever taken from the ground in this wavelength domain. At these depths, the sky is almost completely covered by galaxies, each one, like our own galaxy, the Milky Way, home of hundreds of billions of stars. Galaxies were detected that are a billion times fainter than the unaided eye can see and over a range of colours not directly observable by the eye. This deep image has been essential to the discovery of a large number of new galaxies

  6. Blood vessel segmentation in modern wide-field retinal images in the presence of additive Gaussian noise.

    Science.gov (United States)

    Asem, Morteza Modarresi; Oveisi, Iman Sheikh; Janbozorgi, Mona

    2018-07-01

    Retinal blood vessels indicate some serious health ramifications, such as cardiovascular disease and stroke. Thanks to modern imaging technology, high-resolution images provide detailed information to help analyze retinal vascular features before symptoms associated with such conditions fully develop. Additionally, these retinal images can be used by ophthalmologists to facilitate diagnosis and the procedures of eye surgery. A fuzzy noise reduction algorithm was employed to enhance color images corrupted by Gaussian noise. The present paper proposes employing a contrast limited adaptive histogram equalization to enhance illumination and increase the contrast of retinal images captured from state-of-the-art cameras. Possessing directional properties, the multistructure elements method can lead to high-performance edge detection. Therefore, multistructure elements-based morphology operators are used to detect high-quality image ridges. Following this detection, the irrelevant ridges, which are not part of the vessel tree, were removed by morphological operators by reconstruction, attempting also to keep the thin vessels preserved. A combined method of connected components analysis (CCA) in conjunction with a thresholding approach was further used to identify the ridges that correspond to vessels. The application of CCA can yield higher efficiency when it is locally applied rather than applied on the whole image. The significance of our work lies in the way in which several methods are effectively combined and the originality of the database employed, making this work unique in the literature. Computer simulation results in wide-field retinal images with up to a 200-deg field of view are a testimony of the efficacy of the proposed approach, with an accuracy of 0.9524.

  7. Comparison of benzodiazepine receptor and regional cerebral blood flow imagings of epileptiform foci in hippocampal kindled rabbits

    International Nuclear Information System (INIS)

    Kurokawa, Kenzo

    1993-01-01

    To compare the benzodiazepine (Bz) receptor imaging and regional cerebral blood flow (rCBF) imaging in the detection of epileptic foci, the distribution pattern of the Bz receptor and rCBF in hippocampal kindled rabbits was examined by a double tracer autoradiography using ethyl 7-[ 125 I]-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1, 5-a][1,4] benzodiazepine-3-carboxylate ( 125 I-Ro 16-0154) and 99m Tc-hexamethyl-propyleneamine oxime ( 99m Tc-HMPAO). In visual and quantitative analyses, 125 I-Ro 16-0154 accumulation in brain slices extracted after the completion of the kindling was markedly and extensively decreased in the kindled CA1 region mimicking a primary epileptic focus. 125 I-Ro 16-0154 accumulation was moderately decreased in the ipsilateral temporal lobe, dentate gyrus, CA2, CA4, and bilateral CA3 regions, regarded as the propagated sites of seizure discharges. 99m Tc-HMPAO accumulation was found to be decreased in the ipsilateral CA1, frontal, temporal and dentate gyri. However, the decrease was much more slight and less extensive than that in 125 I-Ro 16-0154 accumulation. These results suggest that Bz receptor imaging is much more sensitive in the detection of epileptic foci than rCBF imaging, and therefore that Bz receptor imaging is useful in clinical epilepsy. (author)

  8. Myocardial blood flow estimates from dynamic contrast-enhanced magnetic resonance imaging: three quantitative methods

    Science.gov (United States)

    Borrazzo, Cristian; Galea, Nicola; Pacilio, Massimiliano; Altabella, Luisa; Preziosi, Enrico; Carnì, Marco; Ciolina, Federica; Vullo, Francesco; Francone, Marco; Catalano, Carlo; Carbone, Iacopo

    2018-02-01

    Dynamic contrast-enhanced cardiovascular magnetic resonance imaging can be used to quantitatively assess the myocardial blood flow (MBF), recovering the tissue impulse response function for the transit of a gadolinium bolus through the myocardium. Several deconvolution techniques are available, using various models for the impulse response. The method of choice may influence the results, producing differences that have not been deeply investigated yet. Three methods for quantifying myocardial perfusion have been compared: Fermi function modelling (FFM), the Tofts model (TM) and the gamma function model (GF), with the latter traditionally used in brain perfusion MRI. Thirty human subjects were studied at rest as well as under cold pressor test stress (submerging hands in ice-cold water), and a single bolus of gadolinium weighing 0.1  ±  0.05 mmol kg‑1 was injected. Perfusion estimate differences between the methods were analysed by paired comparisons with Student’s t-test, linear regression analysis, and Bland–Altman plots, as well as also using the two-way ANOVA, considering the MBF values of all patients grouped according to two categories: calculation method and rest/stress conditions. Perfusion estimates obtained by various methods in both rest and stress conditions were not significantly different, and were in good agreement with the literature. The results obtained during the first-pass transit time (20 s) yielded p-values in the range 0.20–0.28 for Student’s t-test, linear regression analysis slopes between 0.98–1.03, and R values between 0.92–1.01. From the Bland–Altman plots, the paired comparisons yielded a bias (and a 95% CI)—expressed as ml/min/g—for FFM versus TM, ‑0.01 (‑0.20, 0.17) or 0.02 (‑0.49, 0.52) at rest or under stress respectively, for FFM versus GF, ‑0.05 (‑0.29, 0.20) or  ‑0.07 (‑0.55, 0.41) at rest or under stress, and for TM versus GF, ‑0.03 (‑0.30, 0.24) or  ‑0.09 (‑0.43, 0

  9. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  10. Microcirculatory Imaging in Cardiac Anesthesia: Ketanserin Reduces Blood Pressure But Not Perfused Capillary Density

    NARCIS (Netherlands)

    Elbers, Paul W. G.; Ozdemir, Alaattin; van Iterson, Mat; van Dongen, Eric P. A.; Ince, Can

    2009-01-01

    Objectives: It has become possible to image the human microcirculation at the bedside using sidestream dark field (SDF) imaging. This may help the clinician when correlation between global and microvascular hemodynamics may not be straightforward. Ketanserin, a serotonin and alpha-1 adrenoceptor

  11. Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.

    NARCIS (Netherlands)

    Nillesen, M.M.; Lopata, R.G.P.; Gerrits, I.H.; Kapusta, L.; Thijssen, J.M.; Korte, C.L. de

    2008-01-01

    The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired.

  12. In vivo measurement of longitudinal relaxation time of human blood by inversion-recovery fast gradient-echo MR imaging at 3T

    International Nuclear Information System (INIS)

    Shimada, Kazuki; Nagasaka, Tatsuo; Shidahara, Miho; Machida, Yoshio; Tamura, Hajime

    2012-01-01

    Accurate longitudinal relaxation time (T 1 ) of arterial blood is important in evaluating blood flow in tissue by arterial spin labeling magnetic resonance (MR) imaging. Few studies have reported the T 1 of human arterial blood in vivo, especially using 3-tesla MR imaging. T 1 values of human venous blood in vivo have been reported, but they differ from those measured in vitro. We aimed to evaluate the accurate T 1 of human arterial blood in vivo. We measured T 1 values of blood in 10 healthy volunteers in vivo using an inversion-recovery fast gradient-echo sequence and 3-tesla MR imaging unit. We also measured hematocrit (Hct) values of venous blood samples. After nonselective application of the inversion pulse using a body coil, we obtained MR imaging signals of arterial blood in the abdominal aorta. Similarly, we measured the signals of venous blood in the internal jugular vein. Inversion times varied between 200 and 5000 ms for imaging of the abdominal aorta and 200 and 2500 ms for imaging of the jugular vein. We also acquired signals without the inversion pulse. We estimated T 1 values from the data by nonlinear least squares fitting of a 3-parameter model. The T 1 value (mean±standard deviation) of arterial blood was 1779±80 ms and of venous blood, 1694±77 ms. The average Hct value was 0.47. The R 1 (=1/T 1 ) of arterial blood was related to the Hct value as: R 1 =(0.59±0.16)Hct + (0.29±0.07) (mean±standard error) s -1 . For the venous blood, R 1 =(0.70±0.11)Hct + (0.27±0.05) s -1 . We observed a T 1 of human arterial blood in vivo of 1779±80 ms at a mean hematocrit value of 0.47 as determined by 3T MR imaging; an even longer T 1 value is expected with a hematocrit value less than 0.47. (author)

  13. Preoperative diffusion tensor imaging-fiber tracking for facial nerve identification in vestibular schwannoma: a systematic review on its evolution and current status with a pooled data analysis of surgical concordance rates.

    Science.gov (United States)

    Savardekar, Amey R; Patra, Devi P; Thakur, Jai D; Narayan, Vinayak; Mohammed, Nasser; Bollam, Papireddy; Nanda, Anil

    2018-03-01

    OBJECTIVE Total tumor excision with the preservation of neurological function and quality of life is the goal of modern-day vestibular schwannoma (VS) surgery. Postoperative facial nerve (FN) paralysis is a devastating complication of VS surgery. Determining the course of the FN in relation to a VS preoperatively is invaluable to the neurosurgeon and is likely to enhance surgical safety with respect to FN function. Diffusion tensor imaging-fiber tracking (DTI-FT) technology is slowly gaining traction as a viable tool for preoperative FN visualization in patients with VS. METHODS A systematic review of the literature in the PubMed, Cochrane Library, and Web of Science databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and those studies that preoperatively localized the FN in relation to a VS using the DTI-FT technique and verified those preoperative FN tracking results by using microscopic observation and electrophysiological monitoring during microsurgery were included. A pooled analysis of studies was performed to calculate the surgical concordance rate (accuracy) of DTI-FT technology for FN localization. RESULTS Fourteen studies included 234 VS patients (male/female ratio 1:1.4, age range 17-75 years) who had undergone preoperative DTI-FT for FN identification. The mean tumor size among the studies ranged from 29 to 41.3 mm. Preoperative DTI-FT could not visualize the FN tract in 8 patients (3.4%) and its findings could not be verified in 3 patients (1.2%), were verified but discordant in 18 patients (7.6%), and were verified and concordant in 205 patients (87.1%). CONCLUSIONS Preoperative DTI-FT for FN identification is a useful adjunct in the surgical planning for large VSs (> 2.5 cm). A pooled analysis showed that DTI-FT successfully identifies the complete FN course in 96.6% of VSs (226 of 234 cases) and that FN identification by DTI-FT is accurate in 90.6% of cases (205 of 226

  14. Human parvovirus PARV4 in plasma pools of Chinese origin.

    Science.gov (United States)

    Ma, Y-Y; Guo, Y; Zhao, X; Wang, Z; Lv, M-M; Yan, Q-P; Zhang, J-G

    2012-10-01

    Human parvovirus 4 (PARV4) is present in blood and blood products. As the presence and levels of PARV4 in Chinese source plasma pools have never been determined, we implemented real-time quantitative PCR to investigate the presence of PARV4 in source plasma pools in China. Results showed that 26·15% (51/195) of lots tested positive for PARV4. The amounts of DNA ranged from 2·83 × 10(3) copies/ml to 2·35×10(7) copies/ml plasma. The high level of PARV4 in plasma pools may pose a potential risk to recipients. Further studies on the pathogenesis of PARV4 are urgently required. © 2012 The Author(s). Vox Sanguinis © 2012 International Society of Blood Transfusion.

  15. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Søndergaard, L; Møgelvang, J

    1995-01-01

    mL, NS), and left atrial volume (70 vs. 57 mL, P = .08) were normal or slightly increased. The right ejection fraction (68% vs. 53%, P fraction was slightly reduced (61% vs. 69%, NS). The central and arterial blood volume (CBV), assessed......Whether the central blood volume is reduced or expanded in cirrhosis is still under debate. Accordingly, the current study was undertaken to assess the volume of the heart cavities. Ten cirrhotic patients and matched controls had their right and left ventricular end-diastolic volumes (RVDV and LVDV...... as the cardiac output (CO) multiplied by the central circulation time, was significantly decreased (1.47 vs. 1.81 L, P blood volume (4.43 vs. 3.64 L, P

  16. Clinical research on quantitative imaging of cerebral blood flow using 123I-IMP

    International Nuclear Information System (INIS)

    Kinoshita, Hirofumi

    1987-01-01

    Cerebral blood flow measurement was performed using N-Isopropyl-p-( 123 I)-Iodoam-phetamine (IMP) and rotating gammacamera emission computed tomography (ECT), and a new quantitative profile curve was designed. There was a good correlation between the cerebral blood flow measured by intravenous Xe-133 method and that measured by IMP method in ten normal volunteers. IMP-ECT was performed in 40 patients with various cerebral diseases. The following results were obtained: 1. Minimum recognizable cerebral blood flow difference was 5 ml/100 g/min. 2. Quantitative redistribution was observed in approximately half of the cases which showed qualitative redistribution. 3. The incidence of crossed cerebellar diaschiasis was high among patients with significant cerebral disease (8 cases/10 cases). (author)

  17. Computerized infrared thermographic imaging and pulpal blood flow: Part 1. A protocol for thermal imaging of human teeth.

    Science.gov (United States)

    Kells, B E; Kennedy, J G; Biagioni, P A; Lamey, P J

    2000-09-01

    To observe the thermographic appearance of teeth and to develop a suitable protocol for imaging teeth in human subjects using modern thermographic imaging (TI) equipment in a thermologically controlled environment. The emissivity of enamel was investigated using an extracted incisor tooth. A total of 12 unrestored maxillary lateral incisors in six healthy patients were then imaged under rubber dam after a 20-min equilibration period and the thermographic data analysed using a dedicated software package. Recordings were made from standardized gingival and incisal sites on each tooth and the temperature gradient established for each tooth. Subsequently, a sequence of images of both maxillary central incisors in one patient was stored every 30 s during a 20-min equilibration period with and without an air-conditioning unit in operation. For the lateral incisors there was a consistent temperature gradient (mean 1.28 degrees C) from gingival area to incisal area and there were no statistically significant differences between right and left sides for the gingival site (t = 0.34, NS) or the incisal site (t = 0.62, NS). The air-conditioning unit had a rapid and profound cooling effect. With the air-conditioning disabled there was a mean tooth surface temperature increase of 1.1 degrees C from 0 to 5 min of the equilibration period and 0.3 degree C from 15 to 20 min. There was no significant difference in gingival or incisal temperatures between pairs of contralateral maxillary lateral incisors and a consistent temperature gradient existed from gingival to incisal areas of healthy maxillary lateral incisor teeth. The protocol described is suitable for TI of vital teeth. However, TI measured tooth surface temperature only which was extremely sensitive to air currents. A 15-min acclimatization period under rubber dam was adequate to allow stable tooth surface temperature measurement.

  18. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    Directory of Open Access Journals (Sweden)

    Hyeon Sik Kim

    2014-10-01

    Full Text Available Objective(s: In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF measurement by dynamic N-13 ammonia positron emission tomography (PET, we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years were reconstructed, using filtered back projection (FBP and ordered subset expectation maximization (OSEM methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR was calculated by noise and contrast recovery (CR. Stress and rest MBF and coronary flow reserve (CFR were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. Results: In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (PP=0.923 and 0.855 for readers 1 and 2, respectively. SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Conclusion: Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation. .

  19. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    International Nuclear Information System (INIS)

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-il; Bom, Hee-Seung

    2014-01-01

    In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM-2I, OSEM-4I, and OSEM-6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (P<0.001 for both readers). However, no significant difference of IQ was found between FBP and various numbers of iteration in OSEM (P=0.923 and 0.855 for readers 1 and 2, respectively). SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation

  20. Medical image of the week: pneumatosis intestinalis secondary to massive acute blood loss

    Directory of Open Access Journals (Sweden)

    Assar S

    2013-10-01

    Full Text Available The patient was a 32 year-old male with a past medical history significant for end stage liver disease secondary to severe alcoholism who was found with an altered mental status. In the emergency department, the patient divulged he had been throwing up blood clots in the preceding days. Shortly into his presentation he began throwing up voluminous bright red blood. Initial hemoglobin concentration was 2.8 mg/dL. CT scan of the abdomen revealed pneumatosis within the ascending colon, small bowel, and mesenteric veins. Despite massive transfusion efforts and two episodes of successful cardiac resuscitation the patient expired.

  1. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tao; Tsui, Benjamin M. W.; Li, Xin; Vranesic, Melin; Lodge, Martin A.; Gulaldi, Nedim C. M.; Szabo, Zsolt, E-mail: zszabo@jhmi.edu [Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287 (United States)

    2015-11-15

    Purpose: The radioligand {sup 11}C-KR31173 has been introduced for positron emission tomography (PET) imaging of the angiotensin II subtype 1 receptor in the kidney in vivo. To study the biokinetics of {sup 11}C-KR31173 with a compartmental model, the input function is needed. Collection and analysis of arterial blood samples are the established approach to obtain the input function but they are not feasible in patients with renal diseases. The goal of this study was to develop a quantitative technique that can provide an accurate image-derived input function (ID-IF) to replace the conventional invasive arterial sampling and test the method in pigs with the goal of translation into human studies. Methods: The experimental animals were injected with [{sup 11}C]KR31173 and scanned up to 90 min with dynamic PET. Arterial blood samples were collected for the artery derived input function (AD-IF) and used as a gold standard for ID-IF. Before PET, magnetic resonance angiography of the kidneys was obtained to provide the anatomical information required for derivation of the recovery coefficients in the abdominal aorta, a requirement for partial volume correction of the ID-IF. Different image reconstruction methods, filtered back projection (FBP) and ordered subset expectation maximization (OS-EM), were investigated for the best trade-off between bias and variance of the ID-IF. The effects of kidney uptakes on the quantitative accuracy of ID-IF were also studied. Biological variables such as red blood cell binding and radioligand metabolism were also taken into consideration. A single blood sample was used for calibration in the later phase of the input function. Results: In the first 2 min after injection, the OS-EM based ID-IF was found to be biased, and the bias was found to be induced by the kidney uptake. No such bias was found with the FBP based image reconstruction method. However, the OS-EM based image reconstruction was found to reduce variance in the subsequent

  2. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  3. A multivariate shape quantification approach for sickle red blood cell in patient-specific microscopy image data

    Science.gov (United States)

    Xu, Mengjia; Yang, Jinzhu; Zhao, Hong

    2017-07-01

    The morphological change of red blood cells(RBCs) plays an important role in revealing the biomechanical and biorheological characteristics of RBCs. Aiming to extract the shape indices for the sickle RBCs, an automated ex-vivo RBC shape quantification method is proposed. First, single RBC regions (ROIs) are extracted from raw microscopy image via an automatic hierarchical ROI extraction method. Second, an improved random walk method is used to detect the RBC outline. Finally, three types of RBC shape factors are calculated based on the elliptical fitting RBC contour. Experiments indicate that the proposed method can accurately segment the RBCs from the microscopy images with low contrast and prevent the disturbance of artifacts. Moreover, it can provide an efficient shape quantification means for diverse RBC shapes in a batch manner.

  4. Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics

    NARCIS (Netherlands)

    Edelman, Gerda J.; van Leeuwen, Ton G.; Aalders, Maurice C.

    2015-01-01

    The detection of latent traces is an important aspect of crime scene investigation. Blood stains on black backgrounds can be visualized using chemiluminescence, which is invasive and requires a darkened room, or near-infrared photography, for which investigators need to change filters manually to

  5. Model of large pool fires

    International Nuclear Information System (INIS)

    Fay, J.A.

    2006-01-01

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables

  6. Detection of rheumatoid arthritis in humans by fluorescence imaging

    Science.gov (United States)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  7. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats.

    Science.gov (United States)

    Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q

    2017-08-01

    Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.

  8. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice.

    Science.gov (United States)

    Chassidim, Yoash; Vazana, Udi; Prager, Ofer; Veksler, Ronel; Bar-Klein, Guy; Schoknecht, Karl; Fassler, Michael; Lublinsky, Svetlana; Shelef, Ilan

    2015-02-01

    A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability

  9. In Vitro Evaluation of a Novel Image Processing Device to Estimate Surgical Blood Loss in Suction Canisters.

    Science.gov (United States)

    Konig, Gerhardt; Waters, Jonathan H; Hsieh, Eric; Philip, Bridget; Ting, Vicki; Abbi, Gaurav; Javidroozi, Mazyar; Tully, Griffeth W; Adams, Gregg

    2018-02-01

    Clinicians are tasked with monitoring surgical blood loss. Unfortunately, there is no reliable method available to assure an accurate result. Most blood lost during surgery ends up on surgical sponges and within suction canisters. A novel Food and Drug Administration-cleared device (Triton system; Gauss Surgical, Inc, Los Altos, CA) to measure the amount of blood present on sponges using computer image analysis has been previously described. This study reports on performance of a complementary Food and Drug Administration-cleared device (Triton Canister System; Gauss Surgical, Inc, Los Altos, CA) that uses similar image analysis to measure the amount of blood in suction canisters. Known quantities of expired donated whole blood, packed red blood cells, and plasma, in conjunction with various amounts of normal saline, were used to create 207 samples representing a wide range of blood dilutions commonly seen in suction canisters. Each sample was measured by the Triton device under 3 operating room lighting conditions (bright, medium, and dark) meant to represent a reasonable range, resulting in a total of 621 measurements. Using the Bland-Altman method, the measured hemoglobin (Hb) mass in each sample was compared to the results obtained using a standard laboratory assay as a reference value. The analysis was performed separately for samples measured under each lighting condition. It was expected that under each separate lighting condition, the device would measure the various samples within a prespecified clinically significant Hb mass range (±30 g per canister). The limits of agreement (LOA) between the device and the reference method for dark (bias: 4.7 g [95% confidence interval {CI}, 3.8-5.6 g]; LOA: -8.1 g [95% CI, -9.7 to -6.6 g] to 17.6 g [95% CI, 16.0-19.1 g]), medium (bias: 3.4 g [95% CI, 2.6-4.1 g]; LOA: -7.4 g [95% CI, -8.7 to -6.1 g] to 14.2 g [95% CI, 12.9-15.5 g]), and bright lighting conditions (bias: 4.1 g [95% CI, 3.2-4.9 g]; LOA: -7.6 g [95% CI

  10. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection.

    Science.gov (United States)

    M, Soorya; Issac, Ashish; Dutta, Malay Kishore

    2018-02-01

    Glaucoma is an ocular disease which can cause irreversible blindness. The disease is currently identified using specialized equipment operated by optometrists manually. The proposed work aims to provide an efficient imaging solution which can help in automating the process of Glaucoma diagnosis using computer vision techniques from digital fundus images. The proposed method segments the optic disc using a geometrical feature based strategic framework which improves the detection accuracy and makes the algorithm invariant to illumination and noise. Corner thresholding and point contour joining based novel methods are proposed to construct smooth contours of Optic Disc. Based on a clinical approach as used by ophthalmologist, the proposed algorithm tracks blood vessels inside the disc region and identifies the points at which first vessel bend from the optic disc boundary and connects them to obtain the contours of Optic Cup. The proposed method has been compared with the ground truth marked by the medical experts and the similarity parameters, used to determine the performance of the proposed method, have yield a high similarity of segmentation. The proposed method has achieved a macro-averaged f-score of 0.9485 and accuracy of 97.01% in correctly classifying fundus images. The proposed method is clinically significant and can be used for Glaucoma screening over a large population which will work in a real time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Non-invasive investigation of lower limb revascularisation using resting thallium peripheral perfusion imaging

    International Nuclear Information System (INIS)

    Earnshaw, J.J.; Hopkinson, B.R.; Makin, G.S.; Hardy, J.G.

    1986-01-01

    Resting thallium thigh and calf imaging was performed in 11 patients with lower limb ischaemia before and after revascularisation. Eight patients had successful revascularisation but in the other three the procedure failed to improve the circulation. Despite symptomatic improvement and increases in ankle systolic pressures after successful revascularisation there was no change in thallium uptake. Thallium imaging was compared with radionuclide angiography and blood pool imaging in six patients. Radionuclide angiograms confirmed the presence of well developed collateral circulation in some patients with increased thallium uptake in the symptomatic limb and in all cases the angiograms were clinically useful. There was no correlation between thallium and blood pool images. Resting lower limb blood flow did not change after revascularisation and thallium peripheral perfusion imaging did not aid the assessment of the response to lower limb revascularisation. (orig.)

  12. Spent fuel storage pool and reactor well pool

    International Nuclear Information System (INIS)

    Fuchisawa, Hiroshi.

    1996-01-01

    An overflow device is disposed to a water draining channel communicating a spent fuel storage pool, a well pool and a cask cleaning pit, and a cleaning treatment system is connected to the cask cleaning pit. In addition, a tank chamber having an overflow device communicating with the well pool is disposed to the inside of the spent fuel storage pool, and a cleaning system is connected to the tank chamber. Namely, water overflow from the spent fuel storage pool and the well pool flows down to the cask cleaning pit directly, the water level can be kept to a predetermined value without disposing a skimmer serge tank, and the overflow water is transported to and cleaned in the cleaning treatment system. In addition, the overflow water flow to the tank chamber directly is transferred to and cleaned in the cleaning treatment system. The cost for the reactor building can be reduced, and interference with the building and adjustment for the steps upon installation of the skimmer serge tank are no more necessary to shorten the terms for the building construction. (N.H.)

  13. Ammonia blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003506.htm Ammonia blood test To use the sharing features on this page, ... Encephalopathy - ammonia; Cirrhosis - ammonia; Liver failure - ammonia Images Blood test References Chernecky CC, Berger BJ. Ammonia (NH3) - blood ...

  14. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries.

    Directory of Open Access Journals (Sweden)

    Philip Pearce

    Full Text Available During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations.

  15. Blood Capillary Length Estimation from Three-Dimensional Microscopic Data by Image Analysis and Stereology

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Mao, X. W.; Janáček, Jiří

    2013-01-01

    Roč. 19, č. 4 (2013), s. 898-906 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) ME09010; GA MŠk(CZ) LH13028; GA ČR(CZ) GAP108/11/0794 Institutional research plan: CEZ:AV0Z5011922 Institutional support: RVO:67985823 Keywords : capillaries * confocal microscopy * image analysis * length * rat brain * stereology Subject RIV: EA - Cell Biology Impact factor: 1.757, year: 2013

  16. Blood capillary length estimation from three-dimensional microscopic data by image analysis and stereology.

    Science.gov (United States)

    Kubínová, Lucie; Mao, Xiao Wen; Janáček, Jiří

    2013-08-01

    Studies of the capillary bed characterized by its length or length density are relevant in many biomedical studies. A reliable assessment of capillary length from two-dimensional (2D), thin histological sections is a rather difficult task as it requires physical cutting of such sections in randomized directions. This is often technically demanding, inefficient, or outright impossible. However, if 3D image data of the microscopic structure under investigation are available, methods of length estimation that do not require randomized physical cutting of sections may be applied. Two different rat brain regions were optically sliced by confocal microscopy and resulting 3D images processed by three types of capillary length estimation methods: (1) stereological methods based on a computer generation of isotropic uniform random virtual test probes in 3D, either in the form of spatial grids of virtual "slicer" planes or spherical probes; (2) automatic method employing a digital version of the Crofton relations using the Euler characteristic of planar sections of the binary image; and (3) interactive "tracer" method for length measurement based on a manual delineation in 3D of the axes of capillary segments. The presented methods were compared in terms of their practical applicability, efficiency, and precision.

  17. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues

    Science.gov (United States)

    Abdurashitov, Arkady; Bragina, Olga; Sindeeva, Olga; Sergey, Sindeev; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.

    2017-09-01

    Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 μm of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.

  18. ENERGY STAR Certified Pool Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Pool Pumps that are effective as of February 15,...

  19. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow

    Science.gov (United States)

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-01

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s-1, for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L

  20. Sustainability of common pool resources

    OpenAIRE

    Timilsina, Raja Rajendra; Kotani, Koji; Kamijo, Yoshio

    2017-01-01

    Sustainability has become a key issue in managing natural resources together with growing concerns for capitalism, environmental and resource problems. We hypothesize that the ongoing modernization of competitive societies, which we refer to as "capitalism," affects human nature for utilizing common pool resources, thus compromising sustainability. To test this hypothesis, we design and implement a set of dynamic common pool resource games and experiments in the following two types of Nepales...

  1. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  2. Pool impacts of Leidenfrost drop

    Science.gov (United States)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  3. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2017-12-05

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  4. Assessment of atherosclerotic plaque inflammation can be improved by delayed time point FDG PET CT imaging

    DEFF Research Database (Denmark)

    Blomberg, Björn; Thomassen, Anders; Hildebrandt, Malene

    2013-01-01

    Objectives: Blood pool FDG activity can cloud the atherosclerotic plaque FDG signal. Over time, blood pool FDG activity declines. Therefore, delayed time point FDG PET CT imaging can potentially enhance the assessment of atherosclerotic plaque inflammation. Methods: Twelve healthy volunteers...... without traditional cardiovascular risk factors and three subjects with angina pectoris were prospectively assessed by dual time point 18-FDG PET CT imaging at 90 and 180 minutes after tracer injection. The ratio between aortic SUVmax and the blood pool SUVmean (TBR) was calculated to show the change...... the data. Results: At 90 minutes, the aortic TBR was 2.072 ± 0.599. At 180 minutes, the aortic TBR significantly increased to 3.488 ± 1.138 (P = relationship was observed between aortic cSUV, aging (β = 0.019; t = 2.79; df = 12; P...

  5. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

    Science.gov (United States)

    He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian

    2015-09-01

    Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224 × 224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102 × faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.

  6. Characterization of pool evolution in Niamey degree (Niger) based on high resolution optical remote sensing data

    Science.gov (United States)

    Kallel, Abdelaziz; Zribi, Mehrez; Le Hégarat-Mascle, Sylvie; Massuel, Sylvain; Descroix, Luc

    2005-10-01

    The hydrology of the Sahel is characterised by the degradation of the drainage network that induces a lack of large watersheds. In the Niamey degree, different studies have shown the importance of pools in the hydrology of the region. It was shown that different processes such as evaporation or deep infiltration depend on the level of filling of the pools. During the last years, several observations have shown different evolutions of these pools in the Niamey degree. Our objectives in this paper are to identify the pools and their evolution. Our approach is based on high resolution optical remote sensing data, SPOT/HRV (20m) and SPOT5 (10m) images. This study uses a large data base of optical images (5 images in 1992, 1 image in 1994, 1 image in 1996 and 2 images in 2003). The identification approach is based on the NDVI coefficient calculated from Near Infrared and Red channels for each SPOT image. It is observed that the pools present the lowest values of NDVI in the studied optical images. The distribution of NDVI for pools is estimated for the different images, then a threshold is chosen to separate pools from the other types of land use. First, we observe the evolution of pool surface and their number in the monsoon period from June to November in 1992. It is clearly shown that the maximum of pool surface corresponds to August 1992. This result is well correlated with rainfall statistics. Second, the estimation of pool surface and number from 1992 to 2003 shows an increase of the pools, particularly in the tiger bush. This behaviour could be explained particularly by the increase of the surface runoff in the region.

  7. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation)

    Science.gov (United States)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer

    2016-03-01

    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  8. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton

    Directory of Open Access Journals (Sweden)

    Juan Nunez-Iglesias

    2018-02-01

    Full Text Available We present Skan (Skeleton analysis, a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.

  9. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton.

    Science.gov (United States)

    Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann

    2018-01-01

    We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.

  10. Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging

    International Nuclear Information System (INIS)

    Kumar, V.

    2005-01-01

    Infection imaging is complicated due to multitude of factors interfering with the design of radiopharmaceuticals. More than 3 decades ago, labeled leukocytes have been introduced for infection imaging and new radiopharmaceuticals have been emerging on regular basis. However, labeled leukocytes by in vivo and in vitro methods are very effective for diagnosing various lesions such as osteomyelitis, cellulitis, diabetic foot, Crohn's disease, inflammatory bowel disease and in distinguishing prosthetic infection from loosening of prosthesis. But in vitro labeling method using 1 11I n-oxine, 9 9mT c-HMPAO or 9 9mT c-stannous colloid have the inherent limitation of personnel safety risks of infection and cross contamination. To overcome these problems, attempts have been made to directly target leukocytes by in vivo labeling techniques. There are several receptors present on the leukocytes and the granulocytes, which can be targeted with suitable ligands. These will include anti-NCA90-Fab, murine MoAb IgG 1 that is cross-reactive to antigen 95 on neutrophils, anti-CD15 antigen and DPC-11870 that targets the leukotriene B4 receptors of granulocytes. In a new approach, 9 9mT c-labeled ciprofloxacin has been developed to directly target live bacteria to detect infection by in vivo method. This approach showed considerable promise in the preliminary studies but clinical trials showed limitations. Analogs of a natural mammalian antimicrobial agents, such as Ubiquicidin were successful in animal studies and have now entered clinical trials. 9 9mT c-labeled fluconazole (a fungal antibiotic) and labeled Chitinase (1 23I -ChiB E144Q), have been developed to detect fungal infection. The ability to distinguish between fungal and bacterial infection is considered important, as patients undergoing chemotherapy are prone to fungal infection. Undoubtedly, the new trends and new radiopharmaceuticals developed for infection and inflammation imaging have contributed towards a better

  11. Autoradiographic imaging of cerebral ischaemia using a combination of blood flow and hypoxic markers in an animal model

    International Nuclear Information System (INIS)

    Lythgoe, M.F.; Williams, S.R.; Wiebe, L.I.; McEwan, A.J.B.; Gordon, I.

    1997-01-01

    Current routine clinical techniques, including angiography and perfusional single-photon emission tomography, can be used to indicate problems in cerebral vascular supply and areas of cerebral hypoperfusion following a stroke, but cannot distinguish between ischaemic core and penumbra. In order to image specifically the penumbra, a method or indicator should be able to define areas with reduced blood flow, and a degree of metabolic compromise. In this context, the tissue could be regarded as hypoxic rather than ischaemic, and we have therefore chosen to investigate the potential of radio-labelled hypoxic markers in the study of ischaemia. In order to combine a hypoxic marker with a blood flow marker we used technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) and iodine-125 iodoazomycin arabinoside ( 125 I-IAZA), during cerebral ischaemia in the rat middle cerebral artery occlusion model. 99m Tc-HMPAO and 125 I-IAZA were injected simultaneously 2 h following occlusion of the middle cerebral artery, and 5 h before decapitation. Paired autoradiograms were produced and compared. Three distinct patterns emerged from the autoradiograms: slightly decreased perfusion with no uptake of the hypoxic marker indicating an area of misery perfusion; moderately decreased perfusion with concomitant uptake of iodoazomycin arabinoside, a region of hypoxia; and severely decreased perfusion with no retention of the hypoxic tracer. In conclusion, we present a new use for an imaging agent in the investigation of cerebral hypoxia. This agent, IAZA together with HMPAO, provides a means of separating the penumbra into regions of misery perfusion and hypoxia. The potential impact of this may be important in the clinical investigation of stroke. (orig.). With 3 figs

  12. Intrahepatic portal vein blood volume estimated by non-contrast magnetic resonance imaging for the assessment of portal hypertension.

    Science.gov (United States)

    Aguirre-Reyes, Daniel F; Sotelo, Julio A; Arab, Juan P; Arrese, Marco; Tejos, Rodrigo; Irarrazaval, Pablo; Tejos, Cristian; Uribe, Sergio A; Andia, Marcelo E

    2015-10-01

    To investigate the feasibility of estimating the portal vein blood volume that flows into the intrahepatic volume (IHPVBV) in each cardiac cycle using non-contrast MR venography technique as a surrogate marker of portal hypertension (PH). Ten patients with chronic liver disease and clinical symptoms of PH (40% males, median age: 54.0, range: 44-73 years old) and ten healthy volunteers (80% males, median age: 54.0, range: 44-66 years old) were included in this study. A non-contrast Triple-Inversion-Recovery Arterial-Spin-Labeling (TIR-ASL) technique was used to quantify the IHPVBV in one and two cardiac cycles. Liver (LV) and spleen volumes (SV) were measured by manual segmentation from anatomical MR images as morphological markers of PH. All images were acquired in a 1.5T Philips Achieva MR scanner. PH patients had larger SV (P=0.02) and lower liver-to-spleen ratio (P=0.02) compared with healthy volunteers. The median IHPVBV in healthy volunteers was 13.5cm(3) and 26.5cm(3) for one and two cardiac cycles respectively, whereas in PH patients a median volume of 3.1cm(3) and 9.0cm(3) was observed. When correcting by LV, the IHPVBV was significantly higher in healthy volunteers than PH patients for one and two cardiac cycles. The combination of morphological information (liver-to-spleen ratio) and functional information (IHPVBV/LV) can accurately identify the PH patients with a sensitivity of 90% and specificity of 100%. Results show that the portal vein blood volume that flows into the intrahepatic volume in one and two cardiac cycles is significantly lower in PH patients than in healthy volunteers and can be quantified with non-contrast MRI techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Balloon test occlusion of the internal carotid artery with stable xenon/CT cerebral blood flow imaging

    International Nuclear Information System (INIS)

    Erba, S.M.; Horton, J.A.; Latchaw, R.E.; Yonas, H.; Sekhar, L.; Schramm, V.; Pentheny, S.

    1988-01-01

    We describe a technique to predict preoperatively the safety of permanently occluding an internal carotid artery. The method was performed by imaging stable xenon cerebral blood flow (CBF) with the internal carotid artery both open and temporarily occluded with a nondetachable balloon on a double lumen Swan-Ganz catheter. Patients were those in whom we planned to sacrifice the internal carotid artery (those with giant or inaccessible aneurysms) or those in whom such a sacrifice was at least likely (those with skull base tumors). Patients were divided into three groups on the basis of a comparison of occluded and nonoccluded CBF values. Group-I patients had no significant change in CBF with internal carotid artery occlusion; group-II patients showed a symmetric decrease in CBF; and group-III patients had an asymmetric decrease in CBF, always greater on the occluded side. A fourth group clinically failed to tolerate even brief carotid occlusion. The internal carotid artery in one patients from group III was sacrificed at surgery: the size and shape of his postoperative infarct corresponded almost exactly to the area of asymmetrically decreased CBF on his occluded study. The data suggest that if surgery is likely to result in permanent occlusion of the internal carotid artery, then patients who are at risk for delayed neurologic injury due to a compromised cerebral blood flow should have arterial bypass grafts before such surgery is performed

  14. "Blood letting"-Self-phlebotomy in injecting anabolic-androgenic steroids within performance and image enhancing drug (PIED) culture.

    Science.gov (United States)

    Brennan, Rebekah; Wells, John; Van Hout, Marie Claire

    2018-03-05

    New evidence with regard to a previously undocumented practice - self phlebotomy, known as 'bloodletting' - incontemporary injecting performance and image enhancing drug (PIED) culture is the subject of this paper. While self phlebotomy has been evidenced in psychiatric patients previously, it was performed here in people who inject AAS as a self directed health care procedure. Data was collected from five publicly accessible internet discussion forums and coded using NVivo software. For the purposes of this study, posts in relation to bloodletting were extracted from the final set of records for analysis RESULTS: Motivation to perform bloodletting or to 'self - bleed' was largely grounded in experiencing symptoms of high blood pressure or a high red blood cell count (RBC).Instructions on how to perform bloodletting were found within discussion threads. This study is intended to provide the first snapshot of online communal activity around practice of self-phlebotomy or bloodletting amongst people who inject AAS. Further research in this area is warranted, and will be of benefit to healthcare workers, treatment providers and policy makers particularly as this relates to evidence informed and targeted harm reduction policies and effective public health interventions. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Martin J. Schmidt

    2017-08-01

    Full Text Available The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF was measured using free-hand regions of interest (ROI in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029 but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.

  16. Investigation of Hepatic Blood Perfusion by Laser Speckle Imaging and Changes of Hepatic Vasoactive Substances in Mice after Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Xiao-jing Song

    2014-01-01

    Full Text Available The study was conducted to observe the effect of electroacupuncture (EA on hepatic blood perfusion (HBP and vascular regulation. We investigated 60 male anesthetized mice under the following 3 conditions: without EA stimulation (control group; EA stimulation at Zusanli (ST36 group; EA stimulation at nonacupoint (NA group during 30 min. The HBP was measured using the laser speckle perfusion imaging (LSPI. The level of nitric oxide (NO, endothelin-1 (ET-1, and noradrenaline (NE in liver tissue was detected by biochemical methods. Results were as follows. At each time point, HBP increase in ST36 group was higher than that in the NA group in anesthetized mice. HBP gradually decreased during 30 min in control group. The level of NO in ST36 group was higher than that in NA group. The level of both ET-1 and NE was the highest in control group, followed by NA group and ST36 group. It is concluded that EA at ST36 could increase HBP possibly by increasing the blood flow velocity (BFV, changing vascular activity, increasing the level of NO, and inhibiting the level of ET-1 in liver tissue.

  17. Laser speckle contrast imaging of blood flow from anesthetized mice: correcting drifts in measurements due to breathing movements

    Science.gov (United States)

    Nogueira, Gesse E. C.; Ribeiro, Márcio A. C.; Campos, Juliane C.; Ferreira, Julio C. B.

    2015-06-01

    Background: Laser speckle contrast imaging allows non-invasive assessment of cutaneous blood flow. Although the technique is attractive to measure a quantity related to the skin blood flow (SBF) in anesthetized animal models, movements from breathing can mask the SBF signal. As a consequence, the measurement is overestimated because a variable amount of a DC component due to the breathing movements is added to the SBF signal. Objective: To evaluate a method for estimating the background level of the SBF signal, rejecting artefacts from breathing. Methods: A baseline correction method used for accurate DNA sequencing was evaluated, based on estimating the background level of a signal in small temporal sliding-windows. The method was applied to evaluate a mouse model of hindlimb ischemia. SBF signals from hindlimbs of anesthetized C57BL/6 mice (n=13) were registered. The mean SBF (Fi and Fc from ischemic and control hindlimbs) were computed from the registers and from the corresponding estimated background levels (Fib and Fcb from ischemic and control hindlimbs). Results: The mean values of the percentages (a measure of ischemia) MI = (Fi/Fc).100 and MIb = (Fib/Fcb).100 were computed to be 30+/-4% and 23+/-3% respectively (mean +/- SE). Evidences of statistical differences between both, ischemic and control hindlimbs, were obtained (pcorrupted SBF signal by breathing artefacts is feasible, allowing more accurate measurements.

  18. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    International Nuclear Information System (INIS)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B.

    1990-01-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct

  19. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B. (Veterans Affairs Medical Center, Lexington, KY (USA))

    1990-09-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct.

  20. Quantitative versus semiquantitative MR imaging of cartilage in blood-induced arthritic ankles: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Zhang, Ningning [Children' s Hospital, Department of Radiology, Beijing (China); Lundin, Bjorn [Skaane University Hospital and Lund University, University Hospital of Lund, Center for Medical Imaging and Physiology, Lund (Sweden); Hilliard, Pamela [The Hospital for Sick Children, Department of Rehabilitation Services, Toronto, ON (Canada); Man, Carina; Weiss, Ruth; Detzler, Garry [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Blanchette, Victor [The Hospital for Sick Children, Department of Hematology, Toronto, ON (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto, ON (Canada); Eckstein, Felix [Paracelsus Medical University, Institute of Anatomy and Musculoskeletal Research, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany); Sussman, Marshall S. [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); University Health Network, Department of Medical Imaging, Toronto, ON (Canada)

    2014-05-15

    Recent advances in hemophilia prophylaxis have raised the need for accurate noninvasive methods for assessment of early cartilage damage in maturing joints to guide initiation of prophylaxis. Such methods can either be semiquantitative or quantitative. Whereas semiquantitative scores are less time-consuming to be performed than quantitative methods, they are prone to subjective interpretation. To test the feasibility of a manual segmentation and a quantitative methodology for cross-sectional evaluation of articular cartilage status in growing ankles of children with blood-induced arthritis, as compared with a semiquantitative scoring system and clinical-radiographic constructs. Twelve boys, 11 with hemophilia (A, n = 9; B, n = 2) and 1 with von Willebrand disease (median age: 13; range: 6-17), underwent physical examination and MRI at 1.5 T. Two radiologists semiquantitatively scored the MRIs for cartilage pathology (surface erosions, cartilage loss) with blinding to clinical information. An experienced operator applied a validated quantitative 3-D MRI method to determine the percentage area of denuded bone (dAB) and the cartilage thickness (ThCtAB) in the joints' MRIs. Quantitative and semiquantitative MRI methods and clinical-radiographic constructs (Hemophilia Joint Health Score [HJHS], Pettersson radiograph scores) were compared. Moderate correlations were noted between erosions and dAB (r = 0.62, P = 0.03) in the talus but not in the distal tibia (P > 0.05). Whereas substantial to high correlations (r range: 0.70-0.94, P < 0.05) were observed between erosions, cartilage loss, HJHS and Pettersson scores both at the distal tibia and talus levels, moderate/borderline substantial (r range: 0.55-0.61, P < 0.05) correlations were noted between dAB/ThCtAB and clinical-radiographic constructs. Whereas the semiquantitative method of assessing cartilage status is closely associated with clinical-radiographic scores in cross-sectional studies of blood