WorldWideScience

Sample records for blood flow rate

  1. Cutaneous blood flow rate in areas with and without arteriovenous anastomoses during exercise

    DEFF Research Database (Denmark)

    Midttun, M.; Sejrsen, Per

    Arteriovenous anastomoses, capillaries, cutaneous bllod flow rate, exercise, finger blood flow, skin blood flow......Arteriovenous anastomoses, capillaries, cutaneous bllod flow rate, exercise, finger blood flow, skin blood flow...

  2. [Synchonization of the blood flow rate in arterial with the changing rate of space of blood pressure with time].

    Science.gov (United States)

    Zhang, Shenghua; Qin, Renjia

    2012-10-01

    In physiology-related books, there are many relationship curves about blood flow rate in arteries and blood pressure changes with time, but there are not much explanation about such relationship. This is the very the question that the present article tries to answer. We clarified the relations between blood flow rate and blood pressure gradient using the experimental curves as the basis, using Poiseuille Law and relative knowledge of phisics and mathematics, and using analysis and reasoning. Based on the study, it can be concluded that in every course of cardiac cycle, the blood flow rate of any section in artery blood vessel is roughly synchronized with changing rate of space and time of the blood pressure, but blood flow rate is not synchronized with blood pressure. PMID:23198422

  3. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage uni...... than 0.0001). The synchronism of the nocturnal subcutaneous hyperemia and the decrease in systemic mean arterial blood pressure point to a common, possibly central nervous or humoral, eliciting mechanism.......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...

  4. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas;

    2015-01-01

    reducing EBFR on BP exists and data are conflicting. The aim of this study was to evaluate the effect and the potential mechanism(s) involved by investigating the impact of changes in EBFR on BP, pulse rate (PR) and cardiac output (CO) in HD patients with arteriovenous-fistulas (AV-fistulas). METHODS: We...

  5. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  6. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    OpenAIRE

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-01-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy...

  7. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump.

    Science.gov (United States)

    Kim, Nahn Ju; Diao, Chenguang; Ahn, Kyung Hyun; Lee, Seung Jong; Kameneva, Marina V; Antaki, James F

    2009-06-01

    Phenomenological studies on mechanical hemolysis in rotary blood pumps have provided empirical relationships that predict hemoglobin release as an exponential function of shear rate and time. However, these relations are not universally valid in all flow circumstances, particularly in small gap clearances. The experiments in this study were conducted at multiple operating points based on flow rate, impeller speed, and tip gap clearance. Fresh bovine red blood cells were resuspended in phosphate-buffered saline at about 30% hematocrit, and circulated for 30 min in a centrifugal blood pump with a variable tip gap, designed specifically for these studies. Blood damage indices were found to increase with increased impeller speed or decreased flow rate. The hemolysis index for 50-microm tip gap was found to be less than 200-microm gap, despite increased shear rate. This is explained by a cell screening effect that prevents cells from entering the smaller gap. It is suggested that these parameters should be reflected in the hemolysis model not only for the design, but for the practical use of rotary blood pumps, and that further investigation is needed to explore other possible factors contributing to hemolysis. PMID:19473143

  8. On the shear-thinning and viscoelastic effects of blood flow under various flow rates

    Czech Academy of Sciences Publication Activity Database

    Bodnár, Tomáš; Sequeira, A.; Prosi, M.

    2011-01-01

    Roč. 217, č. 11 (2011), s. 5055-5067. ISSN 0096-3003 Institutional research plan: CEZ:AV0Z20760514 Keywords : non - Newtonian * viscoelastic * Oldroyd-B * finite-volume * blood flow Subject RIV: BK - Fluid Dynamics Impact factor: 1.317, year: 2011 http://www.sciencedirect.com/science/article/pii/S009630031000799X

  9. Diagnostic of flow rate of the tumors of the boobs at increment of the blood pressure

    International Nuclear Information System (INIS)

    54 patients with ultrasonography evident tumors of the mammary glands were examined by angiography on flow rate of the blood in the tumor (14 patients with benign tumor and 40 patients with carcinoma at increment of the blood pressure. At evaluating of the findings 4 characteristic curves were obtained: first type was typical for malignant tumors; second type was characteristic for benign findings and third and fourth types were non-specific. (authors)

  10. Effects of shear rate, confinement, and particle parameters on margination in blood flow

    Science.gov (United States)

    Mehrabadi, Marmar; Ku, David N.; Aidun, Cyrus K.

    2016-02-01

    The effects of flow and particle properties on margination of particles in red blood cell (RBC) suspensions is investigated using direct numerical simulation (DNS) of cellar blood flow. We focus on margination of particles in the flow of moderately dense suspensions of RBCs. We hypothesize that margination rate in nondilute suspensions is mainly driven by the RBC-enhanced diffusion of marginating particles in the RBC-filled region. We derive a scaling law for margination length in a straight channel. Margination length increases cubically with channel height and is independent of shear rate. We verify this scaling law for margination length by DNS of flowing RBCs and marginating particles. We also show that rigidity and size both lead to particle margination with rigidity having a more significant effect compared to size within the range of parameters in this study.

  11. Diurnal variations in lower leg subcutaneous blood flow rate in patients with chronic venous leg ulcers

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Kristensen, J K

    1991-01-01

    telluride (CdTe(Cl)) detectors. In both groups, the change from an upright to a supine position at the beginning of the night period elicited an instantaneous increment in the blood flow rate of 30-40% with a decrease in the central and local postural sympathetic vasoconstrictor activity. After...

  12. Regional variations in nocturnal fluctuations in subcutaneous blood flow rate in the lower leg of man

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B

    1991-01-01

    aspect of the right lower leg of normal human subjects. In the present study subcutaneous adipose tissue blood flow rates were measured simultaneously in the right and left lower legs of 16 normal human subjects over 12-20 h ambulatory conditions. The 133Xe wash-out technique, portable CdTe(Cl) detectors...

  13. Nocturnal variations in subcutaneous blood flow rate in lower leg of normal human subjects

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate was measured in the lower leg of 22 normal human subjects over 12- to 20-h ambulatory conditions. The 133Xe washout technique, portable CdTe(Cl) detectors, and a portable data storage unit were used. The tracer depot was applied on the medial aspect of...

  14. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans

    OpenAIRE

    Wingo, Jonathan E.; David A Low; Keller, David M.; Brothers, R. Matthew; Shibasaki, Manabu; Crandall, Craig G.

    2010-01-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdial...

  15. Intrapericardial denervation - Radial artery blood flow and heart rate responses to LBNP

    Science.gov (United States)

    Mckeever, Kenneth H.; Skidmore, Michael G.; Keil, Lanny C.; Sandler, Harold

    1990-01-01

    The effects of intrapericardial denervation on the radial artery blood flow velocity (RABFV) and heart rate (HR) responses to LBNP in rhesus monkeys were investigated by measuring the RABFV transcutaneously by a continuous-wave Doppler ultrasonic flowmeter in order to derive an index of forearm blood flow response to low (0 to -20 mm Hg) and high (0 to -60 mm Hg) ramp exposures during supine LBNP. Four of the eight subjects were subjected to efferent and afferent cardiac denervation. It was found that, during low levels of LBNP, monkeys with cardiac denervation exhibited no cardiopulmonary baroreceptor-mediated change in the RABFV or HR, unlike the intact animals, which showed steady decreases in RABFV during both high- and low-pressure protocols. It is suggested that forearm blood flow and HR responses to low-level LBNP, along with pharmacological challenge, are viable physiological tests for verifying the completeness of atrial and cardiopulmonary baroreceptor denervation.

  16. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia.

    Science.gov (United States)

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-06-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (V˙O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% V˙O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% V˙O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. PMID:26038470

  17. Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J; Mikkelsen, J D; Paaske, W P; Sejrsen, P; Haunsø, S

    The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY-like immunoreac......The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......-like immunoreactive nerve fibers were identified in the adventitia of canine coronary arteries. NPY (10(-9)-10(-6) M) supplied to isolated epicardial segments of the left anterior descending coronary artery induced a modest vasoconstriction, with a maximum tension of 0.95 mN, that was only 6.9% of the response to K...

  18. Daily rhythms in renal blood flow and urine production rate in the near-term sheep fetus

    NARCIS (Netherlands)

    Poortinga, FMI; Aarnoudse, JG

    2000-01-01

    Daily rhythmicity of renal blood flow (RBF) and urine flow (UF) was studied in fetal sheep between 121-125 d of gestation. Fetal arterial blood pressure, heart rate, UF, and right RBF were measured continuously for 24-h periods in 10 sheep, Rhythmic variations during a 24-h period were found for all

  19. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  20. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.

    Science.gov (United States)

    Huang, Chih-Chung; Chang, Yu-Chang

    2011-02-01

    Ultrasonic backscatter has recently been used extensively to investigate erythrocyte aggregation, which is an inherent hematological phenomenon in the blood circulation system. The size of rouleaux can be estimated by measuring certain parameters of signals backscattered from flowing blood. However, most measurements of backscatter from blood use a constant value for the attenuation coefficient to compensate for the loss of ultrasound energy. This correction may be inaccurate because the attenuation varies with the blood properties, which prompted us to explore the effects of hemodynamic properties on ultrasonic attenuation and backscatter to better understand the blood rheological behaviors. Experiments were performed on porcine whole blood in a Couette flow apparatus. Ultrasonic attenuation and the backscattering coefficient of blood were measured at various frequencies (from 10 to 50 MHz), hematocrits (from 0 to 60%), and shear rates (from 0.1 to 200 s⁻¹). The results indicated that the attenuation and backscattering coefficients of blood are highly variable, depending in a complex manner on shear rate, hematocrit, and the measurement ultrasound frequency. The attenuation of blood decreased rapidly with increasing shear rates, eventually reaching a steady state asymptotically, and increased linearly with the hematocrit from 10 to 50 MHz at various shear rates, and also with the ultrasound frequency. The effect of erythrocyte aggregation means that the change in ultrasonic attenuation in blood with shear rate may be attributed to the absorption mechanism, which is enhanced by the increased blood viscosity at lower shear rates. Compensating the measured backscattering coefficients of blood for the shear-rate-dependent attenuation coefficient increased the accuracy of erythrocyte aggregation assessments. Together, the experimental results suggest that the shear-rate-dependent attenuation coefficient should be considered in future developments of ultrasonic

  1. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow and...... not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation...

  2. Increases in muscle sympathetic nerve activity, heart rate, respiration and skin blood flow during passive viewing of exercise

    OpenAIRE

    RachaelBrown; VaughanGMacefield

    2013-01-01

    The cardiovascular and respiratory effects of exercise have been widely studied, as have the autonomic effects of imagined and observed exercise. However, the effects of observed exercise in the first person have not been documented, nor have direct recordings of muscle sympathetic nerve activity (MSNA) been obtained during observed or imagined exercise. The aim of the current study was to measure blood pressure, heart rate, respiration, skin blood flow, sweat release and muscle sympathetic ...

  3. Increases in muscle sympathetic nerve activity, heart rate, respiration, and skin blood flow during passive viewing of exercise

    OpenAIRE

    Brown, Rachael; Kemp, Ursula; Macefield, Vaughan

    2013-01-01

    The cardiovascular and respiratory effects of exercise have been widely studied, as have the autonomic effects of imagined and observed exercise. However, the effects of observed exercise in the first person have not been documented, nor have direct recordings of muscle sympathetic nerve activity (MSNA) been obtained during observed or imagined exercise. The aim of the current study was to measure blood pressure, heart rate, respiration, skin blood flow, sweat release, and MSNA (via microelec...

  4. Characterization of blood flow rate in dental pulp by speckle patterns of backscattered light from an in vivo tooth

    Science.gov (United States)

    Dick, Sergey K.; Chistyakova, Galina G.; Terekh, Alex S.; Smirnov, Alex V.; Salimi Zadeh, Mehrnush M.; Barun, Vladimir V.

    2014-10-01

    Experimental data on the hemodynamics of dental pulp at different stages of caries treatment are given. Observations of speckle patterns in backscattered laser light are used as a measurement method to qualitatively characterize changes in blood flow rate through the dental pulp. The measurements were made by the author-designed experimental setup. Theoretical estimations showed that stationary reflected light from an in vivo tooth contains a negligibly small information body on changes in the pulpal blood flow due to the shadowing of the pulp by optically thick enamel and dentin. Therefore, the temporal variations in the speckle patterns are the only possible way that can provide monitoring of blood conditions in the pulp by using backscattered light. Various statistical characteristics of the random reflected light fields are studied as indicators of blood flow rate changes. There were selected five statistical parameters of backscattered speckle images that give self-consistent data on these changes. The parameters include four combinations of integrals of the Fourier transforms of the observed temporal variations as well as the speckle image contrast. The selected parameters are shown to qualitatively agree with general considerations on the effects of reduced or increased blood flow rates on the selected integral quantities.

  5. Acute effects of electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate in the cat: an evaluation of safety.

    OpenAIRE

    Eyre, J A; Flecknell, P. A.; Kenyon, B R; Koh, T H; Miller, S.

    1990-01-01

    The influence of repeated high intensity electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate has been investigated in the cat, to evaluate the safety of the method. The observations have been made in preparations under propofol anaesthesia before, during and after periods of anoxia. Electromagnetic stimulation of the brain evoked activity in descending motor pathways and was recorded by activity in the median nerve and by muscle tw...

  6. The effects of heart rate on blood flow in intracranial aneurysms

    OpenAIRE

    2013-01-01

    Introduction: An aneurysm is an acquired, abnormal dilation of a blood vessel. Computational fluid dynamics (CFD) have been used to try and understand this phenomena. CFD studies use assumptions in the simulation model and pick variables to look at. A variable that seldom gets much attention in these studies is the heart rate. We have investigated the differences between high and low heart rate. Method: We used twelve different patient specific aneurysms. Three simulations were done pe...

  7. Measurement of mean cerebral blood flow using SPECT and dementia rating scales in the memory clinic

    International Nuclear Information System (INIS)

    We investigated the association between mean cerebral blood flow (mCBF) values using single photon emission computed tomography (SPECT) and cognitive performance scores of three dementia rating scales (ADAS, MMSE, HDS-R). Mean CBF was measured by the 123I-IMP-ARG method in a selected group of 51 out-patients aged 41 to 90 years and by the 99mTc-ECD method in the other group of 57 out-patients aged 51 to 91 years. Simple regressions were calculated for each of the neuropsychological clusters and mCBF values. In 123I-IMP-ARG-SPECT study, there was a significant correlation between the mCBF values and HDS-R scores (R=0.37, p=0.01). 99mTc-ECD-SPECT study revealed statistically significant correlations between the mCBF values and ADAS scores (R=-0.48, p123I-IMP-ARG-SPECT study and 99mTc-ECD-SPECT study showed the progressive declines of mCBF with advancing cognitive dysfunctions. Using the cut-off point study (23/24 scores in MMSE and 20/21 scores in HDS-R), we have found that the patients with cognitive dysfunctions had lower mCBF values than the patients with those in each group of aged 60-69 years, 70-79 years, and 80-89 years. However, the difference of mCBF values between the groups with cognitive dysfunctions and without those had decreased gradually with advancing age. The present study suggests that SPECT can provide important functional informations to assess the cognitive impairment in patients with the memory disturbance. (author)

  8. Effects of bee venom acupuncture on heart rate variability, pulse wave, and cerebral blood flow for types of Sasang Constitution

    Directory of Open Access Journals (Sweden)

    Lee Sang-min

    2009-03-01

    Full Text Available 1. Objectives: To evaluate effects of bee venom acupuncture on cardiovascular system and differences according to each constitution. 2. Methods: Heart rate variability, pulse wave and the velocity of cerebral blood flow were measured before bee venom acupuncture(BVA, right after and after 30 minuets, had been applied to 20 subjects. 3. Results: 1. BVA did not have effects on measurement variables of heart rate variability. 2. BVA had effects on pulse wave, showing total time, radial augmentation index up and height of percussion wave, time to percussion wave, sum of pulse pressure down. 3. BVA did not have effects on the cerebral blood flow velocity when considering not Sasang Constitution 4. Considering Sasang Constitution, BVA demonstrates different responses in time to preincisura wave, mean blood flow velocity, peak systolic velocity and end diastolic velocity. 4.Conclusion: From those results, the following conclusions are obtained. Cause BVA alters pulse wave and makes differences in the cerebral blood flow velocity according to Sasang Constitution. Various methods of BVA treatment are needed considering Sasang Constitution.

  9. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G;

    2014-01-01

    Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle...... cerebral artery velocity (MCA Vmean), arterial-venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38...... decline in cerebral perfusion with dehydration was accompanied by increased O2 extraction (P < 0.05), resulting in a maintained cerebral metabolic rate for oxygen (CMRO2). In all conditions, reductions in ICA and MCA Vmean were associated with declining cerebral vascular conductance, increasing jugular...

  10. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    International Nuclear Information System (INIS)

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood. (paper)

  11. Effects of cold exposure on blood pressure, heart rate and forearm blood flow in normotensives during selective and non-selective beta-adrenoceptor blockade.

    OpenAIRE

    Houben, H; Thien, T; Wijnands, G; van T'Laar, A

    1982-01-01

    Haemodynamic effects of a cold pressor test (foot immersion for 6 min in water at 5 degrees C) without medication and after the non-selective beta-adrenoceptor blocker propranolol and the selective beta-adrenoceptor blocker metoprolol were studied in 17 volunteers. In the control study as well as in the study with the beta-adrenoceptor blockers cold exposure caused comparable changes, namely a blood pressure rise and a reduction of forearm blood flow. The increase in heart rate during cold ex...

  12. Increases in muscle sympathetic nerve activity, heart rate, respiration and skin blood flow during passive viewing of exercise

    Directory of Open Access Journals (Sweden)

    RachaelBrown

    2013-06-01

    Full Text Available The cardiovascular and respiratory effects of exercise have been widely studied, as have the autonomic effects of imagined and observed exercise. However, the effects of observed exercise in the first person have not been documented, nor have direct recordings of muscle sympathetic nerve activity (MSNA been obtained during observed or imagined exercise. The aim of the current study was to measure blood pressure, heart rate, respiration, skin blood flow, sweat release and muscle sympathetic nerve activity (via microelectrodes inserted into the common peroneal nerve, during observation of exercise from the first person point of view. It was hypothesised that the moving stimuli would produce robust compensatory increases in the above-mentioned parameters as effectively as those generated by mental imagery and - to a lesser extent - actual exercise. Nine subjects watched a first-person running video, allowing them to view the action from the perspective of the runner rather than viewing someone else perform the exercise. On average, statistically significant increases from baseline during the running phase were seen in heart rate, respiratory rate, skin blood flow and burst amplitude of muscle sympathetic nerve activity. These results suggest that observation of exercise in the first person is a strong enough stimulus to evoke “physiologically appropriate” autonomic responses that have a purely psychogenic origin.

  13. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  14. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation

    Directory of Open Access Journals (Sweden)

    Shih Tzu-Ching

    2010-03-01

    Full Text Available Abstract Background Pennes Bio Heat Transfer Equation (PBHTE has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions. Methods In this paper, a countercurrent blood vessel network (CBVN model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels. Results This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model delivers the

  15. Blood Flow Multiscale Phenomena

    OpenAIRE

    Agić, Ante; Mijović, Budimir; Nikolić, Tatjana

    2007-01-01

    The cardiovascular disease is one of most frequent cause deaths in modern society. The objective of this work is analyse the effect of dynamic vascular geometry (curvature, torsion,bifurcation) and pulsatile blood nature on secondary flow, wall shear stress and platelet deposition. The problem was examined as multi-scale physical phenomena using perturbation analysis and numerical modelling. The secondary flow determined as influence pulsatile pressure, vascular tube time-dependen...

  16. Saline-induced natriuresis and renal blood flow in conscious dogs: effects of sodium infusion rate and concentration

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2005-01-01

    AIM: This study focused on static and dynamic changes in total renal blood flow (RBF) during volume expansion and tested whether a change in RBF characteristics is a necessary effector mechanism in saline-induced natriuresis. METHODS: The aortic flow subtraction technique was used to measure RBF ...

  17. Blood Pressure vs. Heart Rate

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Blood Pressure vs. Heart Rate Updated:Aug 30,2016 Blood ... was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  18. Capillary permeability of 99mTc-DTPA and blood flow rate in the human myocardium determined by intracoronary bolus injection and residue detection

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Efsen, F; Haunsø, S

    1992-01-01

    .7 ml.(100 g.min)-1 (SD 13.0). Similar values of blood flow rate, capillary extraction fraction and the PS product were determined in 6 patients with localized coronary atheroma without hemodynamically significant coronary artery stenosis (25-50% luminal narrowing). The values for the regional...... myocardial blood flow rate in the human heart are in accordance with values obtained by other methods, and the PS product of 99mTc-DTPA is similar to results obtained in canine hearts. Localized coronary atheroma leading to insignificant coronary artery stenosis does not produce any measurable dysfunction of...

  19. Erythrocyte aggregation in flowing blood

    International Nuclear Information System (INIS)

    This paper addresses the issue of whether nonionic contrast media (CM) promote thrombosis by the formation of large, irregular red blood cell aggregates with videomicroscopy and a flow chamber, red blood cell aggregates adjacent to an endothelial cell monolayer were imaged at 17 sec-1 in dilute suspensions (hematocrit, --8) at 370C in plasma with 20% CM by non-red blood cell volume. All aggregates were rouleaux (<100 μm) readily dispersed at higher shear rates. Aggregate length in eight experiments was increased 11% by ioxaglate (320 mg of iodine per milliliter), decreased 58% by diatrizoate (370 mg of iodine per milliliter) but reduced similarly (16%) by iohexol (350 mg of iodine per milliliter) and saline. Iohexol did not enhance platelet aggregation on injured monolayers

  20. Gastric mucosal blood flow measurement

    International Nuclear Information System (INIS)

    Pertechnetate clearance (C/sub Tc/) by the stomach before and after betazole stimulation was compared to regional measurements of gastric blood flow utilizing nuclide (Chromium-51 and Cerium-141)-labeled microspheres in five piglets. Pertechnetate clearance closely correlated (correlation coefficient 0.926) with mucosal blood flow in the gastric corpus measured by the microsphere technique. Betazole increased blood flow in the corpus region by 100 percent but did not alter this relationship. Except in one experiment, microsphere blood flow valves in the antrum and fundus were unchanged by betazole and did not significantly correlate with pertechnetate clearance. Pertechnetate clearance appears to be a reliable method of determining gastric mucosal blood flow in experimental animals and may be considered as a noninvasive method for measuring such flow in humans. (U.S.)

  1. Local Control of Blood Flow

    Science.gov (United States)

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  2. ACUTE EFFECT OF A SINGLE HIGH-FAT MEAL ON FOREARM BLOOD FLOW, BLOOD PRESSURE AND HEART RATE IN HEALTHY MALE ASIANS AND CAUSASIANS: A PILOT STUDY

    OpenAIRE

    Bui, Chumjit; Petrofsky, Jerrold; Berk, Lee; Shavlik, David; Remigio, Wilton; Montgomery, Susanne

    2010-01-01

    Research has shown that ingestion of a single high-fat (HF) meal causes postprandial lipemia and produces a reduced brachial artery blood flow response to vascular occlusion in Caucasians. However, the forearm BF response to occlusion in Caucasian and Asian populations after a single HF meal has not been compared. Eleven healthy male Asians, mean age 26.4 (±4.2) years, height 174.2 (±7.4) cm, and weight 73.8 (±5.7) kg and eight Caucasians, mean age 26.8 (±4.6) years, height 182.9 (±5.9) cm, a...

  3. Mammary blood flow and nutrient uptake

    OpenAIRE

    Farmer, Chantal; Trottier, N.L.; Dourmad, Jean-Yves

    2015-01-01

    Sow milk is the major source of nutrients for suckling piglets and taking into account the large litter sizes of our current sow genotypes, it is imperative to maximize nutrient use by the mammary gland. The amount of nutrients available to mammary tissue is dependent upon the concentrations of nutrients in blood and the rate of its flow to the lactating glands. Nutrient availability to the udder may be estimated by measuring mammary arteriovenous differences, and mammary blood flow can be me...

  4. A new hemodynamic model shows that temporal perturbations of cerebral blood flow and metabolic rate of oxygen cannot be measured individually using functional near-infrared spectroscopy

    International Nuclear Information System (INIS)

    A recent dynamic model relates the functional near-infrared spectroscopy (fNIRS) measurements to hemodynamic and metabolic parameters. This note reports modified expressions of the new model in terms of cerebral blood volume (CBV), blood flow (CBF) and metabolic rate of oxygen (CMRO2). On the basis of these modified expressions, the new model reproduces known steady state relationships between hemoglobin concentration, CBF and CMRO2, and yields time-dependent relationships that describe transient changes. This new model allows for the translation of the fNIRS measurements into dynamic measures of ΔCBV/CBV0 and the difference ΔCBF/CBF0 – ΔCMRO2/CMRO2|0, provided that some baseline physiological parameters and a relationship between overall, arterial and venous blood volume changes are assumed. (note)

  5. Blood flow in the choriocapillaris

    OpenAIRE

    Zouache, M. A.; Eames, I; Luthert, P J

    2015-01-01

    The choriocapillaris is a capillary bed located in a thin layer adjacent to the outer retina and is part of the oxygen delivery system to the photoreceptors of the eye. The blood flow is approximately planar and is serviced by microvessels, which join the choriocapillaris through inlets perpendicular to its plane. Capillaries are densely organised and separated by avascular septal posts, which direct the blood flow. The capillary bed is composed of a juxtaposition of tessellating vascular uni...

  6. Vasogen's immune modulation therapy (IMT) improves postischemic foot skin blood flow and transcutaneous pO(2) recovery rates in patients with advanced peripheral arterial occlusive disease

    DEFF Research Database (Denmark)

    Edvinsson, L I; Edvinsson, M L; Angus Deveber, G

    2003-01-01

    or Vasogen's IMT over a 9-week period. Dorsal foot skin blood flow was assessed directly using laser Doppler fluxmetry (LDF) and indirectly using measurement of transcutaneous pO(2) (tcpO(2)). Key outcome measures of skin blood flow were, for LDF: resting values, peak postischemic values, and the total time...... to reach peak values following release from 4 min of total foot ischemia and, for tcpO(2): resting values and the time for tcpO(2) to reach 50% of the pre-ischemia value. Measurements were carried out at baseline, at weeks 3, 6, and 9, and at 2 months post-therapy. RESULTS: No significant differences were...... in time to peak blood flow (p=0.026) vs a 7.9 s decrease in the placebo group (p=ns). Similar but less striking results were achieved for tcpO(2) recovery time to 50% of pre-ischemia values (treated group, p=0.035; placebo group, p=ns). CONCLUSION: Vasogen's IMT improved recovery rates of postischemic...

  7. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu Tyagi

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  8. SPECT of brain blood flow

    International Nuclear Information System (INIS)

    Morphological observation of the brain became possible by CT and various informations on vascularity and damages in brain blood barrier (BBB) became obtainable by the combined use of contrast medium. Then the appearance of MRI had enabled to discriminate the cortex and the medula of the brain and to perform MR angiography. However, it was still difficult to observe the cerebral tissue in detail. Recently, nuclear medical procedures have been developed and applied to diagnosis. SPECT images attributable to the distribution of γ-ray from a tracer, which monitors the blood flow and various metabolisms. Thus, investigations of cerebral functions including blood flow metabolism and neural transmission etc. became possible by the technique. Here, SPECT by Xe-133 clearance and 99mTc HMPAO methods were reviewed. For Xe-133 method, subjects positioned in SPECT instrument underwent bolus inhalation of Xe-133, 1850 Mbq followed by washout respiration of room air. During these treatment, cerebral projection and determination of the concentration of Xe-133 CO2 in the expired air were continuously carried out. And the blood flow level per pixel was estimated from SPECT images and the end-tidal Xe-133 concentration curve. This method was thought to be the most excellent method for the determination of local blood flow in respect of accuracy and reproducibility. The tracer distribution expressed the functional level of the stagnant state of blood flow. SPECT provides useful informations to investigate the physiological functions and pathology in the brain. (M.N.)

  9. Cutaneous blood flow in psoriasis

    International Nuclear Information System (INIS)

    The disappearance rate of 133Xe was studied in 20 patients with psoriasis vulgaris, using an epicutaneous labeling technique in involved skin lesions or normal-appearing skin of the proximal extensor site of the forearm. Control experiments were performed in 10 normal subjects. Calculations of the cutaneous blood flow (CBF) in psoriatic skin lesions were performed using a tissue-to-blood partition coefficient for 133Xe, lambda c,pso, of 1.2 ml/100 g/min. lambda c,pso was estimated after the relative content of water, lipids, and proteins had been analyzed in psoriatic skin biopsies of 6 patients with untreated psoriasis. The mean relative content of water was markedly reduced to 23.5 +/- 1.5% (SEM), and lipids and proteins were markedly increased to 2.5 +/- 0.7% and 74.0 +/- 2.2, respectively, compared to previously published data for normal skin (water 72.5%, lipids 1%, proteins 26.5%). Mean CBF in untreated psoriatic skin was 63.5 +/- 9.0 ml/100 g/min. This was significantly higher than the mean CBF in 10 normal subjects, 6.3 +/- 0.5 ml/100 g/min (p much less than 0.0001). Mean CBF in normal-appearing skin in patients with psoriasis was 11.0 +/- 1.3 ml/100 g/min. This was significantly higher than CBF in normal subjects (p less than 0.0002)

  10. In vivo determination of bone blood flow

    International Nuclear Information System (INIS)

    Quantitative measurement of bone blood flow is vital to understand the hemodynamics of bone systems especially in the study of asceptic bone necroses. These ''silent bends'' result from micro-emboli in femoral arterioles from small nitrogen bubbles released from lipids during a diver's ascent. A technique to determine bone blood flow in vivo has been developed by measuring the rate of inert gas washout of Ar-41 (t /sub 1/2/ = 1.83 h, E = 1293 keV) from the bone mineral matrix. Argon gas is formed in vivo by neutron activation of Ca-44 using 14.3 MeV neutrons, following the reaction Ca-44(n, α)Ar-41. The blood flow in the irradiated bone is determined by measuring the clearance rate of Ar-41 using gamma-ray spectroscopy. To date, measurements have been made on dead and living rats (weight 300g). The results indicated that in the no-flow situation the clearance rate is consistent with the physical half-life of Ar-41, while for the live rats the clearance rate for argon is dependent on the flow of blood in the bone. The observed clearance times correspond to flows greater than 3 ml of blood per 100 ml of argon distribution volume/min (F/pV), with the bone-blood partition coefficient for argon approximately one. In addition, measurements of the partitioning of argon and other gases with bone have been measured in order to understand blood-bone systems more fully

  11. Doppler blood flow indicator

    OpenAIRE

    Byrtus, David

    2014-01-01

    This bachelor´s thesis deals with basis of ultra-acoustics. The project presents basic information about Doppler effect. It describes the methods of processing and analyzing of velocity and direction of blood at doppler’s systems with modulated and unmodulated carrier wave. The project presents the system design of non-directional doppler indicator with unmodulated carrier wave for 8 MHz frequency, generating intensity of ultrasound 100 mW/cm2 and diameter D-shaped transmitting transducer 8 m...

  12. Subcutaneous blood flow in psoriasis

    International Nuclear Information System (INIS)

    The simultaneously recorded disappearance rates of 133xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant in NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for 133Xe was therefore measured--using a double isotope washout method (133Xe and [131I]antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin

  13. New blood flow radiopharmaceutical

    International Nuclear Information System (INIS)

    Our program for research into the causes of mental disorders such as schizophrenia, manic depressive illness and senile dementia has led us to the development of a new radiopharmaceutical agent, IDNNA (4-iodo-2,5-dimethoxy-N,N-dimethylamphetamine). A series of some 15 different 131I labeled molecules with various substitutions on the amine were synthesized and tested, and the uptake of the 131I labeled conpounds in rats was measured. The dimethyl amine (IDNNA) had the best brain uptake and brain/blood ratio. When injected into a dog and scanned with a whole-body scanner, the uptake in the brain could be clearly seen and quantified. Plasma sampling at the same time showed that the maximum brain/blood ratio of 8.7 occurred at 8 min after injection, and the concentration in brain remained high for at least 15 min. Labeling is achieved by reacting 131ICl and the precursor, 2,5-dimethoxy-N,N-dimethyl amphetamine, in glacial acetic acid; the reaction is complete in less than one minute

  14. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes.

    Science.gov (United States)

    Greyling, Arno; Schreuder, Tim H A; Landman, Thijs; Draijer, Richard; Verheggen, Rebecca J H M; Hopman, Maria T E; Thijssen, Dick H J

    2015-03-01

    Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P FMD% (P FMD can be prevented by local heating (P FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia. PMID:25593286

  15. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S;

    1983-01-01

    Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used...... sampling, and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow....

  16. Regulation of pulpal blood flow

    International Nuclear Information System (INIS)

    The regulation of blood flow of the dental pulp was investigated in dogs and rats anesthetized with sodium pentobarbital. Pulpal blood flow was altered by variations of local and systemic hemodynamics. Macrocirculatory blood flow (ml/min/100 g) in the dental pulp was measured with both the 133Xe washout and the 15-microns radioisotope-labeled microsphere injection methods on the canine teeth of dogs, to provide a comparison of the two methods in the same tooth. Microcirculatory studies were conducted in the rat incisor tooth with microscopic determination of the vascular pattern, RBC velocity, and intravascular volumetric flow distribution. Pulpal resistance vessels have alpha- and beta-adrenergic receptors. Activation of alpha-receptors by intra-arterial injection of norepinephrine (NE) caused both a reduction in macrocirculatory Qp in dogs and decreases in arteriolar and venular diameters and intravascular volumetric flow (Qi) in rats. These responses were blocked by the alpha-antagonist PBZ. Activation of beta-receptors by intra-arterial injection of isoproterenal (ISO) caused a paradoxical reduction of Qp in dogs. In rats, ISO caused a transient increase in arteriolar Qi followed by a flow reduction; arteriolar dilation was accompanied by venular constriction. These macrocirculatory and microcirculatory responses to ISO were blocked by the alpha-antagonist propranolol

  17. Effects of flow geometry on blood viscoelasticity.

    Science.gov (United States)

    Thurston, George B; Henderson, Nancy M

    2006-01-01

    The viscoelastic properties of blood are dominated by microstructures formed by red cells. The microstructures are of several types such as irregular aggregates, rouleaux, and layers of aligned cells. The dynamic deformability of the red cells, aggregation tendency, cell concentration, size of confining vessel and rate of flow are determining factors in the microstructure. Viscoelastic properties, viscosity and elasticity, relate to energy loss and storage in flowing blood while relaxation time and Weissenberg number play a role in assessing the importance of the elasticity relative to the viscosity. These effects are shown herein for flow in a large straight cylindrical tube, a small tube, and a porous medium. These cases approximate the geometries of the arterial system: large vessels, small vessels and vessels with many branches and bifurcations. In each case the viscosity, elasticity, relaxation time and Weissenberg number for normal human blood as well as blood with enhanced cell aggregation tendency and diminished cell deformability are given. In the smaller spaces of the microtubes and porous media, the diminished viscosity shows the possible influence of the Fåhraeus-Lindqvist effect and at high shear rates, the viscoelasticity of blood shows dilatancy. This is true for normal, aggregation enhanced and hardened cells. PMID:17148856

  18. Phase Flow Rate Measurements of Annual Flows

    OpenAIRE

    Al-Yarubi, O.S.; Lucas, Gary

    2009-01-01

    The Annular flow regime makes measurement of the total liquid flow rate difficult. It is even more difficult to measure the individual flow rate of either the oil or the water. In a vertical Perspex tube (i.d. = 50 mm) using a newly-designed flow loop in the University of Huddersfield, annular flow was established and different measurements were carried out. One possible on-line measurement technique to achieve the oil volume fraction measurement is an automated bypass...

  19. Ocular Blood Flow Autoregulation Mechanisms and Methods

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2015-01-01

    Full Text Available The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described.

  20. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study

    International Nuclear Information System (INIS)

    To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO2 was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min-1 100 g-1, P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO2 (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O2 min-1 100 g-1, P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO2. Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO2. There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO2. Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. (orig.)

  1. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang; Lou, Yaxian; Pan, Zhiying; Liu, Ya [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Aivil Aviation, Nanjing, Jiangsu (China); Wen, Jiqiu; Li, Xue; Zhang, Zhe [Medical School of Nanjing University, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, Jiangsu (China); Lu, Hanzhang [University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX (United States); Liu, Wei [Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong (China); Liu, Hui [Siemens MR NEA Collaboration, Siemens Ltd., Shanghai (China); Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China)

    2016-06-15

    To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO{sub 2} was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min{sup -1} 100 g{sup -1}, P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO{sub 2} (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O{sub 2} min{sup -1} 100 g{sup -1}, P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO{sub 2}. Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO{sub 2}. There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO{sub 2}. Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. (orig.)

  2. Lattice BGK Simulations of the Blood Flow in Elastic Vessels

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-Yang; YI Hou-Hui; CHEN Ji-Yao; FANG Hai-Ping

    2006-01-01

    @@ The lattice Boltzmann method is applied to study the flow in elastic blood vessels. The volume-flow rate increases considerably when the compliance constant of the blood vessel is below a critical value. There is a region of the compliance constant in which the average volume-flow rate is dramatically enhanced. A harmonic perturbation of the pressure does not change the behaviour of the average volume-flow rate while the harmonic wave attenuates very quickly along the tube when the resonant period is close to that of the input wave. The model, together with the simulation results, is expected to be helpful to understand the mechanism of the blood volume-flow rate related to the compliance constant of the blood vessel, especially on the dependence of the flux of human blood vessel under weather changes, which has medical significance.

  3. Local aggregation characteristics of microscale blood flows

    Science.gov (United States)

    Kaliviotis, Efstathios; Sherwood, Joseph M.; Dusting, Jonathan; Balabani, Stavroula

    2015-11-01

    Erythrocyte aggregation (EA) is an important aspect of microvascular flows affecting blood flow and viscosity. Microscale blood flows have been studied extensively in recent years using computational and microfluidic based approaches. However, the relationship between the local structural characteristics of blood and the velocity field has not been quantified. We report simultaneous measurements of the local velocity, aggregation and haematocrit distributions of human erythrocytes flowing in a microchannel. EA was induced using Dextran and flows were imaged using brightfield microscopy. Local aggregation characteristics were investigated using statistical and edge-detection image processing techniques while velocity profiles were obtained using PIV algorithms. Aggregation intensity was found to strongly correlate with local variations in velocity in both the central and wall regions of the channel. The edge detection method showed that near the side wall large aggregates are associated with high local velocities and low local shear rates. In the central region large aggregates occurred in regions of low velocity and high erythrocyte concentration. The results demonstrate the combined effect of haematocrit and velocity distributions on local aggregation characteristics.

  4. Dexmedetomidine decreases the oral mucosal blood flow.

    Science.gov (United States)

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors. PMID:23958351

  5. Phase flow rate measurements of annular flows

    OpenAIRE

    Al-Yarubi, Qahtan

    2010-01-01

    In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to c...

  6. A Discussion on the Regulation of Blood Flow and Pressure.

    Science.gov (United States)

    Wolff, Christopher B; Collier, David J; Shah, Mussadiq; Saxena, Manish; Brier, Timothy J; Kapil, Vikas; Green, David; Lobo, Melvin

    2016-01-01

    This paper discusses two kinds of regulation essential to the circulatory system: namely the regulation of blood flow and that of (systemic) arterial blood pressure. It is pointed out that blood flow requirements sub-serve the nutritional needs of the tissues, adequately catered for by keeping blood flow sufficient for the individual oxygen needs. Individual tissue oxygen requirements vary between tissue types, while highly specific for a given individual tissue. Hence, blood flows are distributed between multiple tissues, each with a specific optimum relationship between the rate of oxygen delivery (DO2) and oxygen consumption (VO2). Previous work has illustrated that the individual tissue blood flows are adjusted proportionately, where there are variations in metabolic rate and where arterial oxygen content (CaO2) varies. While arterial blood pressure is essential for the provision of a sufficient pressure gradient to drive blood flow, it is applicable throughout the arterial system at any one time. Furthermore, It is regulated independently of the input resistance to individual tissues (local arterioles), since they are regulated locally, that being the means by which the highly specific adequate local requirement for DO2 is ensured. Since total blood flow is the summation of all the individually regulated tissue blood flows cardiac inflow (venous return) amounts to total tissue blood flow and as the heart puts out what it receives cardiac output is therefore determined at the tissues. Hence, regulation of arterial blood pressure is independent of the distributed independent regulation of individual tissues. It is proposed here that mechanical features of arterial blood pressure regulation will depend rather on the balance between blood volume and venous wall tension, determinants of venous pressure. The potential for this explanation is treated in some detail. PMID:26782204

  7. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2012-01-01

    femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... contralateral leg. In conclusion, resting femoral bone blood flow increases by physical exercise, but appears to level off with increasing exercise intensities. Moreover, while moderate systemic hypoxia does not change bone blood flow at rest or during exercise, intra-arterially administered adenosine during......Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured in...

  8. PERFORMANCE MODELING AND ANALYSIS OF BLOOD FLOW IN ELASTIC ARTERIES

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L. Varshney; G.C. Sharma

    2005-01-01

    Two different non-Newtonian models for blood flow are considered, first a simple power law model displaying shear thinning viscosity, and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous-elasticity. These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field. The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient. The governing equations have been solved by Crank-Niclson scheme. The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view. For physiological flow simulation in the aorta, an increase in mean wall shear stress, but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form. Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.

  9. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured at rest using the 133Xe inhalation technique in 40 DSM-III-diagnosed schizophrenics (22 males, 18 females: mean age 35.0 years, range 20-49 years) and 31 age-and sex-matched normal controls (16 males, 15 females: mean age 34.3 years, range 21-49 years). The absolute value (AV) and the percent value (PV) of the rCBF in schizophrenics were compared with those in controls. Correlations between rCBF and the Brief Psychiatric Rating Scale (BPRS) scores or the performance of Wisconsin Card Sorting Test (WCST) were examined in schizophrenics. Schizophrenics showed significantly lower AVs in all brain regions examined and a significantly lower PV in the left superior frontal region than controls. The hyperfrontal rCBF distribution which was found in both hemispheres in controls, was absent in the left hemisphere in schizophrenics. In schizophrenics, superior frontal blood flows were significantly negatively correlated with the negative symptom scores of the BPRS but not with the total scores and the positive symptom scores of the BPRS. In schizophrenics, inferior frontal blood flows were significantly correlated with the number of sorting categories achieved. These results indicate that rCBF in schizophrenia is reduced in the whole brain and especially in the left superior frontal region. These findings suggest a frontal lobe dysfunction in schizophrenia. (author)

  10. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  11. Mucosal/submucosal blood flow in the gut wall determined by local washout of 133Xenon

    DEFF Research Database (Denmark)

    Mortensen, Peter; Olsen, J; Bülow, J; Hage, E; Edelfors, Sven

    1991-01-01

    . Therefore the initial slope of the washout was used for measuring blood flow rate. Blood flow rate was simultaneously measured by microsphere entrapment technique. There was an excellent correlation between the blood flow rate determined by the two techniques the correlation coefficient R being 0.89 in the...

  12. Influence of posture on hepatic blood flow

    International Nuclear Information System (INIS)

    Hepatic blood flow was measured in 28 patients in supine and prone positions using the 133Xe-inhalation washout method. Even though the reactions in individual patients were considerably different, a man blood flow of 60.9 ml/100 g/min was unaltered in both positions. This constancy of hepatic blood flow values is valid for patients without liver disease with chronic hepatitis, and with liver cirrhosis. (orig.)

  13. Measurement of normal portal venous blood flow by Doppler ultrasound.

    OpenAIRE

    Brown, H S; Halliwell, M; Qamar, M.; Read, A. E.; Evans, J. M.; Wells, P N

    1989-01-01

    The volume flow rate of blood in the portal vein was measured using a duplex ultrasound system. The many errors inherent in the duplex method were assessed with particular reference to the portal vein and appropriate correction factors were obtained by in vitro calibration. The effect of posture on flow was investigated by examining 45 healthy volunteers in three different positions; standing, supine and tilted head down at 20 degrees from the horizontal. The mean volume blood flow in the sup...

  14. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions

  15. Ambulatory measurement of nocturnal fluctuations in subcutaneous blood flow rate in the lower leg of man during 12-h periods with the portable CdTe(Cl) detector. Methodological considerations.

    Science.gov (United States)

    Sindrup, J H; Kastrup, J; Jørgensen, B; Bülow, J; Tønnesen, K H

    1991-07-01

    Possible sources of error during long-term measurements of subcutaneous blood flow rate with the portable CdTe(Cl) detector system were ruled out in the present study. Local blood flow rates were recorded in the lower legs of normal human subjects by means of the 133Xe wash-out technique. A good correlation was found between the portable CdTe(Cl) and stationary NaI(Tl) detector systems both prior to (r = 0.88, P less than 0.0001) and after (r = 0.68, P = 0.07) day over night (12 h) measurements. Identical post-ischaemic reactive hyperaemia could be demonstrated by both detector systems 12 h after the application of the isotope depot. This indicates that blood flow rates and vascular reactivity can be measured over 12 h by the portable CdTe(Cl) detector. Identical results were obtained during the 12-h measurements performed with the portable CdTe(Cl) detector attached directly to the skin surface and with the detector elevated above the skin surface. Therefore, geometrical changes were without any influence on our measurements. We conclude that measurements of subcutaneous blood flow rates in the lower leg of human subjects can be performed under out-patients conditions by means of the 133Xe wash-out technique and portable CdTe(Cl) detectors. A skin area greater than or equal to 4 cm should be labelled by means of the atraumatic, epicutaneous labelling technique and the detector attached directly to the skin surface with a single layer of a 20-micron thick gas-tight Mylar membrane interposed between the skin surface and the detector. The investigation of the subcutaneous blood flow rate should not be initiated until at least 90 min after labelling.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1914438

  16. Effect of plasma exchange on blood viscosity and cerebral blood flow.

    OpenAIRE

    Brown, M M; Marshall, J

    1982-01-01

    The effects of plasma exchange using a low viscosity plasma substitute on blood viscosity and cerebral blood flow were investigated in eight subjects with normal cerebral vasculature. Plasma exchange resulted in significant reductions in plasma viscosity, whole blood viscosity, globulin and fibrinogen concentration without affecting packed cell volume. The reduction in whole blood viscosity was more pronounced at low shear rates suggesting an additional effect on red cell aggregation. Despite...

  17. 21 CFR 870.2120 - Extravascular blood flow probe.

    Science.gov (United States)

    2010-04-01

    ... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  18. Laminar blood flow in stenotic microchannels

    OpenAIRE

    Calejo, Joana A. C.; Garcia, Valdemar; Fernandes, Carla S.

    2015-01-01

    In this work, Newtonian and non-Newtonian laminar blood flow in rectangular microchannels with symmetric and asymmetric atheroma were numerically studied. It was observed that the impact of symmetry of the atheroma is almost negligible and the non-Newtonian properties of blood leads to higher pressure drops and wall shear stresses than the ones obtained for Newtonian flows.

  19. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-07-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries. PMID:26414530

  20. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  1. Dynamics of blood flow in a microfluidic ladder network

    Science.gov (United States)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  2. Development of miniaturized mass flow meter for an axial flow blood pump.

    Science.gov (United States)

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yamane, Takashi

    2007-05-01

    To grasp the conditions of patients and implantable artificial hearts, it is essential to monitor the blood flow rate continuously and noninvasively. However, it is difficult to monitor the pump flow rate in an implantable artificial heart, because the conventional flow meter is too large to implant into the human body, and the flow estimation method is influenced by changes in the blood characteristics and the pump performance. In particular, the power consumption has neither linearity nor uniqueness with respect to the pump flow rate in an axial flow blood pump. In this research, we develop a prototype miniaturized mass flow meter that uses centrifugal force F(c) for discharged patients with an axial flow blood pump. This flow meter measures the F(c) corresponding to the mass flow rate, and implements compensation for static pressure. Because the strain gauges are attached outside of the curved tube, this mass flow meter has no blood contact point, resulting in a compact design. To evaluate the measurement accuracy and the tracking performance, the mass flow meter was compared with the conventional ultrasonic flow meter in a mock-up circulation study. As a result, the measurement error ranging from 0.5 to 5.0 L/min was less than +/-10% with respect to the maximum flow rate. The tracking performance of pulsation flow was approximately equivalent to that of the conventional flow meter. These experiments demonstrated that the prototype miniaturized mass flow meter using F(c) could accurately measure the mass flow rate continuously and noninvasively. PMID:17470214

  3. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention...... with the L-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following...

  4. Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Jensen, Bjarke; Elfwing, Magnus; Elsey, Ruth M; Wang, Tobias; Crossley, Dane A

    2016-01-01

    Coronary circulation of the heart evolved early within ectothermic vertebrates and became of vital importance to cardiac performance in some teleost fish, mammals and birds. In contrast, the role and function of the coronary circulation in ectothermic reptiles remains largely unknown. Here, we investigated the systemic and coronary arterial responses of five anesthetized juvenile American alligators (Alligator mississippiensis) to hypoxia, acetylcholine, adenosine, sodium nitroprusside, isoproterenol, and phenylephrine. We recorded electrocardiograms, monitored systemic blood pressure, blood flows in both aortae, and blood flow in a major coronary artery supplying most of the right ventricle. Coronary arterial blood flow was generally forward, but there was a brief retrograde flow during a ventricular contraction. Blood pressure was significantly changed in all conditions. Acetylcholine decreased coronary forward flow, but this response was confounded by the concomitant lowered work of the ventricles due to decreased heart rate and blood pressure. Coronary forward flow was poorly correlated with heart rate and mean arterial pressure across treatments. Overall changes in coronary forward flow, significant and not significant, were generally in the same direction as mean arterial pressure and ventricular power, approximated as the product of systemic cardiac output and mean arterial pressure. PMID:26436857

  5. Mathematical Model of Blood Flow in Small Blood Vessel in the Presence of Magnetic Field

    Directory of Open Access Journals (Sweden)

    Rekha Bali

    2011-02-01

    Full Text Available A mathematical model for blood flow in the small blood vessel in the presence of magnetic field is presented in this paper. We have modeled the two phase model for the blood flow consists of a central core of suspended erythrocytes and cell-free layer surrounding the core. The system of differential equations has been solved analytically. We have obtained the result for velocity, flow rate and effective viscosity in presence of peripheral layer and magnetic field .All the result has been obtained and discussed through graphs.

  6. Ambulatory measurement of nocturnal fluctuations in subcutaneous blood flow rate in the lower leg of man during 12-h periods with the portable CdTe(Cl) detector. Methodological considerations

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B;

    1991-01-01

    Possible sources of error during long-term measurements of subcutaneous blood flow rate with the portable CdTe(Cl) detector system were ruled out in the present study. Local blood flow rates were recorded in the lower legs of normal human subjects by means of the 133Xe wash-out technique. A good...... correlation was found between the portable CdTe(Cl) and stationary NaI(Tl) detector systems both prior to (r = 0.88, P less than 0.0001) and after (r = 0.68, P = 0.07) day over night (12 h) measurements. Identical post-ischaemic reactive hyperaemia could be demonstrated by both detector systems 12 h after the...... application of the isotope depot. This indicates that blood flow rates and vascular reactivity can be measured over 12 h by the portable CdTe(Cl) detector. Identical results were obtained during the 12-h measurements performed with the portable CdTe(Cl) detector attached directly to the skin surface and with...

  7. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J; Sosnovtseva, Olga; Pavlov, Alexey N;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation of...... the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of...... from one TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation...

  8. Measurement of bone blood flow in sheep

    International Nuclear Information System (INIS)

    Bone blood flow in sheep tibia has been estimated via the measurement of the perfusion limited clearance of 41Ar from the bone mineral matrix following fast neutron activation of 44Ca. Tibia blood flows were estimated for the intact sheep, and after the installation of an intramedullary pressure tap to elevate bone marrow pressure by saline infusion. The results indicate that normal blood flow in the tibia is in the range of 1.1 to 3.7 ml/100ml-min in the intact animal and at normal marrow pressure. With an elevated intramedullary pressure of approximately 100 mmHg, the bone blood flow measured varied around 0.5 to 1.1 ml/100ml-min. 12 refs., 5 figs., 1 tab

  9. Clinical relevance of intermittent tumour blood flow

    International Nuclear Information System (INIS)

    One of the goals of translational cancer research is to understand basic 'phenomena' so that tumour response to therapy can be improved. One such phenomenon is intermittent tumour blood flow. The impact of the transient hypoxia that results from decreased tumour blood flow is now beginning to be appreciated in preclinical systems, and also receiving some attention in clinical practise. Thus in this article we review the nature and frequency of microregional blood flow changes in preclinical and clinical tumours and examine the impact of those changes on response to both radiotherapy and chemotherapy. Additionally, the implications of non-constant blood flow for both the growth of the unperturbed tumour and the regrowth of surviving tumour clonogens during and after therapy are examined

  10. Algorithm for Controlling Blood Pump Flow Rate Adaptively with Requirement of Human Body%与人体血液需求量自适应的血泵流量控制算法

    Institute of Scientific and Technical Information of China (English)

    陈宁宁; 谷凯云; 轩艳娇; 常宇

    2011-01-01

    目的 为了使血泵驱动器能够根据患者的生理需求调节血泵输出,提出基于心率的自适应血泵控制算法,该算法得出的算法流量能随着生理需求而变化.方法 基于心率与心输出量之间的关系,将血泵输出流量设计成为心率的函数,根据文献中提供的正常人体心率与心输出量的数据,利用最小二乘法求得算法中的常量系数.为验证算法的准确性,计算出根据算法所得到的血泵输出流量与正常人体自然心脏心输出量之间的最大误差和相关系数.结果 当心率为75次/min时,根据上述算法得到的流量能达到5.01L/min;在50~120次/min心率范围内,算法中流量会随着心率的提高而增大;算法流量与自然心脏心输出量的相对误差为1%,相关系数为0.997.结论 以上结果表明,该算法可以根据受试者的血液需求量自动调整血泵工作状态.%Objective In order to regulate the blood pump responsing to the demand of patient ' s cardio output, we proposed an adaptive blood pump control algorithm based on heart rate, so that the blood flow derived from the algorithm varies with the physiological needs. Methods Based on the relationship between heart rate and cardiac output, the algorithm was designed as a function of the heart rate. According to the data of heart rate and cardiac output derived from literatures, the constant coefficients were obtained through the least squares algorithm. To verify the accuracy of the algorithm, we calculated the maximum error and the correlation coefficient between the pump flow and cardiac output. Results With the algorithm , , the blood pump flow rate was 5. O1L/min when heart rate of 75 beats/min, and the blood pump flow rate gradually became larger with the increase of heart rate within heart rate range from 50 to 120 times / min. The relative error between blood pump flow rate obtained from algorithm and cardiac output was 1% . Conclusion These results suggest

  11. Retinal blood flow in diabetic retinopathy.

    OpenAIRE

    Patel, V.; Rassam, S; NEWSOM, R.; Wiek, J; Kohner, E.

    1992-01-01

    OBJECTIVES--(a) To report on the basic parameters of retinal blood flow in a population of diabetic patients with and without retinopathy and non-diabetic controls; (b) to formulate a haemodynamic model for the pathogenesis of diabetic retinopathy from this and other studies. DESIGN--Laser-Doppler velocimetry and computerised image analysis to determine retinal blood flow in a large cross sectional study. SETTING--Diabetic retinopathy outpatient clinic. SUBJECTS--24 non-diabetic controls and ...

  12. Pancreatic blood flow in experimental acute pancreatitis

    International Nuclear Information System (INIS)

    The etiology and pathogenesis of acute necrotizing hemorrhagic pancreatitis remain controversial. Recent work has suggested that an early fall in pancreatic blood flow, causing ischemia, may be the initiating factor. Using an established rat model of hemorrhagic pancreatitis and the fractional indicator distribution technique with 86RbCl, pancreatic blood flow and tissue perfusion have been measured at various times in the condition. Six groups of ten rats were studied: control sham operation and pancreatitis groups were sacrificed at 1, 6, and 24 hr. Pancreatic blood flow (% of cardiac output) and perfusion (blood flow/g tissue) were measured. Blood flow was increased by a maximum of 53% at 1 hr (P less than 0.001) and remained elevated for 24 hr, and perfusion was increased by a maximum of 70% (P less than 0.001) at 1 hr and remained elevated at 6 hr. Pancreatic perfusion declines after 6 hr due to increasing gland edema. The results demonstrate a significant increase in pancreatic blood flow and perfusion in experimentally induced acute pancreatitis, suggesting a primary inflammatory response, and refute the ischemic etiological theory

  13. Cerebral blood flow and metabolism during sleep

    DEFF Research Database (Denmark)

    Madsen, Peter Lund; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness......, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different...... levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent...

  14. Transplacental diffusion and blood flow of gravid bovine uterus

    International Nuclear Information System (INIS)

    Electromagnetic blood flow transducers and uterine arterial, uterine venous, umbilical venous, fetal femoral arterial, and fetal femoral venous catheters were implanted in 11 cows on day 161 +/- 4 of gestation. Antipyrine (0.66 M) plus NaCl (0.16 M) dissolved in deuterium oxide (D2O), or H2O, was infused at a constant rate into the fetal femoral vein catheter. Concentrations of antipyrine and D2O in uterine arterial and venous blood and antipyrine in fetal arterial and umbilical venous blood, as well as middle uterine arterial blood flow (electromagnetic transducer), were determined. Antipyrine and D2O gave similar estimates (steady-state diffusion method) of gravid uterine blood flow. In addition, the slope of the regression of D2O on antipyrine estimates was not different from one. Electromagnetic transducers gave estimates of uterine blood flow that were 32-42% of those obtained with steady-state diffusion but were correlated with estimates obtained by use of both antipyrine and D2O. The transplacental clearance rate of antipyrine was similar (per kg placenta) to that observed in ewes. It was suggested that the maternal and fetal microvasculatures of the bovine placenta could have a concurrent arrangement with vascular shunts or maldistribution of flows, as has been suggested for the ewe

  15. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven t...... of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta....

  16. Regional cerebral blood flow in schizophrenic patients

    International Nuclear Information System (INIS)

    Seventy-six schizophrenic patients were examined by a Xe-133 inhalation method to determine regional cerebral blood flow. A decreased blood flow was observed in the frontal lobe, especially in the right inferior part. In a study on the relationship between disease subtypes and regional cerebral blood flow, negative symptoms were found more predominantly associated with dissolution type than delusion type. In the group of dissolution type, a decreased blood flow was observed in both the right inferior frontal lobe and the right upper hemisphere, in comparison to the group of delution type. Patients presenting with auditory hallucination had a significantly higher incidence of both negative and positive symptoms, as compared with those not presenting with it. In such patients, a significantly decreased blood flow was also seen in the left upper frontal lobe and the bilateral parietal lobe. Xe-133 inhalation method should assist in evaluating brain function in schizophrenic patients, thus leading to the likelihood of developing a new treatment modality. (N.K.)

  17. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    OpenAIRE

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was perfo...

  18. Measurement of directed blood flow by laser speckle

    Science.gov (United States)

    Hirst, Evan R.; Thompson, Oliver B.; Andrews, Michael K.

    2011-03-01

    Recent success in reconciling laser Doppler and speckle measurements of dermal perfusion by the use of multi-exposure speckle has prompted an investigation of speckle effects arising from directed blood flow which might be expected in the small blood vessels of the eye. Unlike dermal scatter, the blood in retinal vessels is surrounded by few small and stationary scatterers able to assist the return of light energy by large-angle scatter. Returning light is expected to come from multiple small angle scatter from the large red blood cells which dominate the fluid. This work compares speckle measurements on highly scattering skin, with measurements on flow in a retinal phantom consisting of a glass capillary which is itself immersed in an index matching fluid to provide a flat air-phantom interface. Brownian motion dominated measurements when small easily levitated scatters were used, and flow was undetectable. With whole-blood, Brownian motion was small and directed flows in the expected region of tens of mm/s were detectable. The nominal flow speed relates to the known pump rate; within the capillary the flow will have a profile reducing toward the walls. The pulsatile effects on laser speckle contrast in the retina are discussed with preliminary multi-exposure measurements on retinal vessels using a fundus camera. Differences between the multiple exposure curves and power spectra of perfused tissue and ordered flow are discussed.

  19. Regulation of blood flow by prostaglandins

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Risum, N; Kjaer, M

    2004-01-01

    Prostaglandins (PGs) belong to the family of prostanoids together with thromboxanes and are produced mainly from arachadonic acid by the enzyme cyclooxygenase. PGs are known to stimulate platelet aggregation, mediate inflammation and edema, play a role in bone metabolism and in biological...... adaptation of connective tissues e.g. tendon. This review covers the role of PG for mediating tissue blood flow at rest and during increases in metabolic demand such as exercise and reactive hyperaemia. There is strong evidence that PGs contribute to elevate blood flow at rest and during reactive hyperaemia...... in a variety of tissues. Their role for regulating the large increases in muscle blood flow during exercise is less clear which may be explained by redundant mechanisms. Several interactions are known to exist between specific vasodilator substances, and therefore PGs can act in synergy with other...

  20. Cerebral blood flow velocity changes after rapid administration of surfactant.

    OpenAIRE

    Cowan, F.; Whitelaw, A; D. Wertheim; Silverman, M

    1991-01-01

    A computer linked Doppler system was used to make continuous measurements of cerebral blood flow velocity (CBFV) from the middle cerebral artery, mean arterial blood pressure (MAP) from the umbilical artery, and heart rate before, during, and for 20 minutes after the endotracheal administration of 200 mg/kg of porcine surfactant in 10 preterm infants with respiratory distress syndrome. Within two minutes of surfactant administration, there was a median fall of 6 mm Hg (15%) fall in MAP and 36...

  1. Venous flow velocity, venous volume and arterial blood flow

    International Nuclear Information System (INIS)

    The relationship of arterial blood flow and venous volume to venous flow velocity was studied in normal subjects. The effects of current modes of treatment in venous thrombosis and of a vasodilator drug on venous flow velocity were also investigated. Total calf flow and venous volume were measured by venous occlusion plethysmography while venous flow axial velocity was determined by the transit time of 131I albumin from calf to inguinal region. Local intravenous epinephrine administration induced venoconstriction and increased venous flow velocity. Intra-arterial isoproterenol and angiotensin increased and decreased arterial flow, respectively, with no change in venous flow velocity or volume, but local heat increased arterial flow and venous flow velocity with no change in venous volume. Local cold, despite venoconstriction, decreased venous flow velocity accompanied by decreased arterial flow. Intravenous heparin did not affect venous flow velocity. Intravenous but not oral nylidrin increased venous flow velocity. Therefore venous flow velocity can be significantly increased by venoconstriction, by large increases in arterial flow (local heat), and by a parenteral vasodilator drug. These experiments indicate that there is a basis for applying heat but not cold in the prevention and treatment of venous thrombosis

  2. Shear stress related blood damage in laminar couette flow.

    Science.gov (United States)

    Paul, Reinhard; Apel, Jörn; Klaus, Sebastian; Schügner, Frank; Schwindke, Peter; Reul, Helmut

    2003-06-01

    Artificial organs within the blood stream are generally associated with flow-induced blood damage, particularly hemolysis of red blood cells. These damaging effects are known to be dependent on shear forces and exposure times. The determination of a correlation between these flow-dependent properties and actual hemolysis is the subject of this study. For this purpose, a Couette device has been developed. A fluid seal based on fluorocarbon is used to separate blood from secondary external damage effects. The shear rate within the gap is controlled by the rotational speed of the inner cylinder, and the exposure time by the amount of blood that is axially pumped through the device per given time. Blood damage is quantified by the index of hemolysis (IH), which is calculated from photometric plasma hemoglobin measurements. Experiments are conducted at exposure times from texp=25 - 1250 ms and shear rates ranging from tau=30 up to 450 Pa ensuring Taylor-vortex free flow characteristics. Blood damage is remarkably low over a broad range of shear rates and exposure times. However, a significant increase in blood damage can be observed for shear stresses of tau>or= 425 Pa and exposure times of texp>or= 620 ms. Maximum hemolysis within the investigated range is IH=3.5%. The results indicate generally lower blood damage than reported in earlier studies with comparable devices, and the measurements clearly indicate a rather abrupt (i.e., critical levels of shear stresses and exposure times) than gradual increase in hemolysis, at least for the investigated range of shear rates and exposure times. PMID:12780506

  3. Electromechanical Model of Blood Flow in Vessels

    OpenAIRE

    Ivo Cap; Barbora Czippelova

    2008-01-01

    The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical cir...

  4. Electromechanical Model of Blood Flow in Vessels

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2008-01-01

    Full Text Available The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical circuit has been designed

  5. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar; Vang, Kim; Rodell, Anders B; Jónsdottir, Kristjana Y; Møller, Arne; Ashkanian, Mahmoud; Vafaee, Manouchehr S; Iversen, Peter; Johannsen, Peter; Gjedde, Albert

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors...

  6. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  7. Dynamic Modes of Red Blood Cells in Oscillatory Shear Flow

    OpenAIRE

    Noguchi, Hiroshi

    2009-01-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle $\\theta$, and phase angle $\\phi$ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. i) tank-treading (TT): $\\phi$ rotates while the shape and $\\theta$ oscillate. ii) tumbling (TB): $\\theta$ rotates while the shape and $\\phi$ oscillate. iii) intermediate ...

  8. The effects of flosequinan on regional blood flow in normal man.

    OpenAIRE

    Scott, R. A.; Woods, K. L.; Barnett, D B

    1991-01-01

    1. The effects of 100 mg and 200 mg flosequinan on limb, hepatic and renal blood flow were investigated in 14 healthy male volunteers in a placebo controlled double-blind randomised three-way crossover study. 2. Heart rate, blood pressure, forearm blood flow and venous capacitance measured by volume plethysmography, were recorded sequentially over 4 h, after oral dosing. 3. Apparent hepatic and renal blood flows were estimated 2 h post-dose by indocyanine green dye clearance and clearance of ...

  9. Regional cerebral blood flow in aphasia

    DEFF Research Database (Denmark)

    Soh, K; Larsen, B; Skinhøj, E;

    1978-01-01

    Regional cerebral blood flow (rCBF) was studied in 13 aphasic patients with left hemisphere lesions, using the intracarotid xenon 133 injection method and a 254-detector gamma camera system. The rCBF was measured during rest and during various function tests, including a simple speech test. In...

  10. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A;

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  11. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, D.J.; Sosnovtseva, Olga; Pavlov, A.N.;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation of ...

  12. High speed optical holography of retinal blood flow

    Science.gov (United States)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  13. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  14. Xenon computed tomographic blood flow mapping

    International Nuclear Information System (INIS)

    Xenon CT flow information appears to be clinically useful in the diagnosis and management of a broad spectrum of clinical disorders. It also appears to be a useful tool for the experimental study of the cerebral circulation, with recent work also extending to application to the study of solid abdominal organs. The authors therefore found xenon CT CBF mapping to be a useful new blood flow methodology and are of the opinion that as CT technology improves, one will be able to obtain still better flow information with less accompanying radiation exposure and/or a reduction in the level of xenon inhalation required

  15. Verapamil buffering effect on the abrupt elevation in blood pressure, linkage with microcirculatory blood flow.

    Science.gov (United States)

    Gmitrov, J

    2008-01-01

    1 We studied the effects of verapamil on sudden elevation in blood pressure, microcirculation and arterial baroreflex sensitivity (BRS). 2 Thirty experiments (10 controls and 20 with verapamil) were performed in rabbits sedated using pentobarbital infusion (5 mg kg(-1) h(-1)). 3 BRS, mean femoral artery blood pressure (MAP), heart rate (HR) and ear lobe skin microcirculatory blood flow, estimated using microphotoelectric plethysmography (MPPG), were simultaneously measured during 30 min of verapamil infusion (20 mug kg(-1) min(-1)). BRS was assessed from HR and MAP responses to intravenous phenylephrine (Ph) and by power spectral analysis using transfer function (TF) from MAP to the HR (BRS(Ph,TF)). 4 Verapamil significantly increased microcirculatory blood flow, and decreased BRS(Ph,TF) and phenylephrine-induced abrupt elevation in MAP (MAP(AE)). 5 A significant inverse correlation was found between verapamil-induced changes in MAP(AE), BRS and in microcirculatory blood flow, measured before phenylephrine blood pressure ramps (DeltaMAP(AE) with DeltaBRS(TF), r = -0.47, P < 0.036; DeltaMAP(AE) with DeltaMPPG, r = -0.49, P < 0.025). 6 These results suggest involvement of the arterial baroreflex and vascular blood pressure-buffering mechanisms, their enhancement by verapamil, and thus a potential benefit of verapamil in cardiovascular conditions where patients present with abrupt high elevations in blood pressure. PMID:18598288

  16. A numerical study of blood flow using mixture theory.

    Science.gov (United States)

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM(®) was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  17. Modeling of blood flow in arterial trees.

    Science.gov (United States)

    Anor, Tomer; Grinberg, Leopold; Baek, Hyoungsu; Madsen, Joseph R; Jayaraman, Mahesh V; Karniadakis, George E

    2010-01-01

    Advances in computational methods and medical imaging techniques have enabled accurate simulations of subject-specific blood flows at the level of individual blood cell and in complex arterial networks. While in the past, we were limited to simulations with one arterial bifurcation, the current state-of-the-art is simulations of arterial networks consisting of hundreds of arteries. In this paper, we review the advances in methods for vascular flow simulations in large arterial trees. We discuss alternative approaches and validity of various assumptions often made to simplify the modeling. To highlight the similarities and discrepancies of data computed with different models, computationally intensive three-dimensional (3D) and inexpensive one-dimensional (1D) flow simulations in very large arterial networks are employed. Finally, we discuss the possibilities, challenges, and limitations of the computational methods for predicting outcomes of therapeutic interventions for individual patients. PMID:20836052

  18. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk;

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...... and velocity magnitudes the blood flow patterns were visualised with streamlines in Matlab (Mathworks, Natick, MA, USA). The rotational flow was quantified by the angular frequency for each cardiac cycle, and the mean rotational frequencies and standard deviations were calculated for the abdominal aorta f-1...

  19. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  20. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-133. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission...... other tracers for CBF tomography using SPECT is summarized with emphasis on the 99mTc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers....

  1. Regional blood flow studies with radioisotopes

    International Nuclear Information System (INIS)

    The methodological approaches to blood flow analysis include (1) diffusible indicator methods, (2) clearance techniques and (3) nondiffusible indicator methods. In each case, accurate measurements of blood flow can be obtained by developing mathematical models which relate the time-dependent observation derived from following the fate of a radiotracer as a function of time to the physiological process itself. Application of these models to biological systems involves constraints and necessitates compromises which may affect the validity of the measurements. Nevertheless, when these techniques are carefully applied and adequately validated, they have provided critical physiological information about such organ systems as the brain and kidney and promise to provide diagnostic information in patients with suspected coronary and peripheral vascular disease

  2. Caffeine reduces myocardial blood flow during exercise.

    Science.gov (United States)

    Higgins, John P; Babu, Kavita M

    2013-08-01

    Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes. PMID:23764265

  3. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  4. 133Xenon absorption into rubber-protected portable cadmium telluride (CdTe(Cl)) detectors invalidating the 133Xenon washout method for measurement of cutaneous and subcutaneous blood flow rates in man.

    Science.gov (United States)

    Sørensen, J L

    1991-01-01

    The importance of 133Xenon absorption into rubber detector caps during cutaneous and subcutaneous blood flow measurement was investigated in 46 experiments involving 38 persons. 133Xenon was administered atraumatically. Cutaneous and subcutaneous washout rates were registered by portable Cadmium Telluride detectors without rubber caps, with rubber caps, and with rubber caps with Mylar membranes interposed between the rubber and the tissue investigated. No difference in rate constants obtained by means of various detector types was detected. The accumulation of 133Xenon in the rubber caps was found to take place within the first few minutes after the detectors had been brought into position. The 133Xenon then diffused back into the tissue exhibiting a great variation regarding rate constants. The 133Xenon diffused form rubber into air and perfused tissue tracing a monoexponential course; and again the rate constants would vary considerably. No correlation was found between elimination rates obtained with detectors with and without 133Xenon polluted caps, and no way of correcting for the 133Xenon content in the rubber caps was found. Relative changes in rate constants could still be recognized, but absolute values were not obtainable. PMID:1789123

  5. Blood flow-restricted exercise in space

    OpenAIRE

    Hackney, Kyle J; Everett, Meghan; Scott, Jessica M; Ploutz-Snyder, Lori

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise tr...

  6. Surfactant bolus instillation: effects of different doses on blood pressure and cerebral blood flow velocities

    OpenAIRE

    Rey, M.; Segerer, Hugo; Kiessling, C.; Obladen, Michael

    1994-01-01

    Fifteen preterm infants suffering from respiratory distress syndrome were randomly allocated to receive either high-dose (200 mg/kg) or low-dose (100 mg/kg) surfactant treatment. Retreatments were done with the low dose. Blood pressure, blood gases and cerebral blood flow velocities were determined before and after 24 bolus instillations. With the high dose mean blood pressure and mean cerebral blood flow velocity dropped significantly. With the low dose only mean cerebral blood flow velocity...

  7. Coronary blood flow during cardiopulmonary resuscitation in swine

    International Nuclear Information System (INIS)

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied: 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic [EMF] and radiomicrosphere [RMS]) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal

  8. Margination of leukocytes in blood flow through small tubes.

    Science.gov (United States)

    Goldsmith, H L; Spain, S

    1984-03-01

    Leukocyte margination in the vessels of the microcirculation has been attributed to a flow-dependent interaction with red cells. To determine the extent of this effect, experiments with human blood were done in 100- to 180-micron tubes to detect changes in cell distribution as a function of hematocrit and flow rate. Using a flow visualization technique, the leukocyte concentration distribution was determined in 45% ghost cell suspensions. Migration of cells toward the wall was observed at centerline velocities greater than 1 mm sec-1 and increased with increasing flow rate. The effect was probably due to a more rapid inward migration of ghosts than leukocytes because of fluid inertia and cell density differences. Experiments were therefore carried out in whole blood at hematocrits from 20 to 60%, measuring the number concentration of leukocytes and erythrocytes within the tube, nt, and comparing it to that in the infusing reservoir, no, (Fahraeus effect). At mean tube shear rates G less than 100 sec-1, nt/no less than 1 for both leukocytes and erythrocytes showing net migration of cells away from the wall, although at nearly all hematocrits there was an enrichment of leukocytes relative to erythrocytes in the tubes. At G less than 50 sec-1, nt/no remained less than 1 for erythrocytes but increased to greater than 1 for leukocytes showing migration toward the wall, the increase being greatest at 20% hematocrit in the 100-micron tubes. The nature of the effect was revealed by cine films which showed that, as the flow rate decreased, erythrocytes formed rouleaux which migrated inward creating a core and displacing leukocytes to the periphery. In control experiments using washed blood cells in phosphate buffer-albumin, nt/no less than 1 for both leukocytes and erythrocytes at all G and hematocrits, and leukocytes were now distributed. Cine films of washed blood confirmed that, in the absence of rouleaux, no significant inward migration of erythrocytes occurred. PMID

  9. Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypoosmolar distill water to normal individuals and to patients with type-2 diabetes mellitus or hypertension: their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate.

    Science.gov (United States)

    Al-Waili, N

    2003-07-31

    Safety and effect intrapulmonary administration (by inhalation) of 60 % honey solution, 10% dextrose or distill water on blood sugar, plasma insulin and C-peptide, blood pressure, heart rate, and peaked expiratory flow rate (PEFR) in normal or diabetic subjects were studied. - Twenty-four healthy subjects, 16 patients with type 11 diabetes mellitus and six patients with hypertension were entered for study. They were underwent complete physical examination and laboratory investigations. Twelve healthy subjects were subjected for distill water inhalation for 10 min, and after one week they received inhalation of honey solution (60% wt/v) for 10 min. Another 12 healthy subjects received inhalation of 10% dextrose for 10 min. Blood glucose level, plasma insulin and C-peptide, blood pressure, heart rate and PEFR were estimated before inhalation and during 2-3 hrs after inhalation, at 30 min intervals. Random blood glucose level was estimated in eight patients with poorly controlled diabetes mellitus, and repeated 30 min after honey inhalation. One week later, fasting blood glucose level was estimated in each patient and blood glucose level was re-estimated during three hrs after honey inhalation, at 30 min intervals. Glucose tolerance test was performed in another eight patients with type-2 diabetes mellitus, and after one week the procedure was repeated with inhalation of honey, which was started immediately after ingestion of glucose. Six hypertensive patients received honey inhalation for 10 min; supine blood pressure and heart rate were measured before and after inhalation. - Results showed that in normal subjects distill water caused mild elevation of blood glucose level, mild lowering of plasma insulin, and significant reduction of plasma C-peptide. 10% dextrose inhalation caused mild reduction of plasma insulin and C-peptide and unremarkable changes in blood glucose level. No significant changes were obtained in blood pressure, heart rate or PEFR after distill

  10. Regional cerebral blood flow in childhood headache

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical

  11. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    Science.gov (United States)

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  12. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    Directory of Open Access Journals (Sweden)

    John P Ryan

    Full Text Available Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05. Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01. Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  13. Flow rate measuring devices for gas flows

    Science.gov (United States)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  14. Blood flow dynamics in heart failure

    Science.gov (United States)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (Pblood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  15. Influence of restoration adjustments on prefrontal blood flow

    OpenAIRE

    Sasaguri, Kenichi; Otsuka, Takero; Tsunashima, Hiroyuki; Shimazaki, Tateshi; Kubo, Kin-Ya; Onozuka, Minoru

    2015-01-01

    Objective The aim of this study was to examine, after setting several restorations, the influence of adjusted occlusal interference during gum chewing on blood flow in the prefrontal area as determined using near-infrared spectroscopy. Material and methods The physiological rate was assessed using a visual analog scale (VAS) questionnaire. We selected 16 patients who desired prosthetic restorative treatment on the lateral dentition, and eight healthy volunteers. Subjects were divided into thr...

  16. Regional cerebral blood flow in diabetic patients

    International Nuclear Information System (INIS)

    N-isopropyl-p-123I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies. A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA1c levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author)

  17. Regional cerebral blood flow in diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Ono, Shinnichi; Nishikawa, Takushi (Nichinan Hospital of Miyazaki Prefecture (Japan)) (and others)

    1993-02-01

    N-isopropyl-p-[sup 123]I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies). A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA[sub 1c] levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author).

  18. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  19. Problems with cerebral blood flow measurement in man

    International Nuclear Information System (INIS)

    Measuring cerebral blood flow in man is usually thought to be of great physiological and pathological interest. Thus, since 30 years, attemps to quantify the cerebral blood flow have given rise to a growing field of research. But, none of the proposed methods has never been currently used as a means of diagnosis or as a test of cerebral function. Methodological and technical difficulties greatly account for this failure. First, a steady flow must be ensured, while measuring it. This requires the operator to keep lung ventilation and cerebral activity to a constant level. Second, the classical models, the stochastic or the compartimental one, imperfectly fit the clearance curves. The calculations based on these models involve systematic errors, specially with low flows. Third, no tracer has been found to quite satisfactory. 133Xe remains the most commonly used radiotracer. But its low solubility in vivo gives low cerebral count-rates. If the actual local partition coefficient is unknown, cerebral blood flow cannot be accurately quantified. Recently, positron emitters have been employed and their advantages begin to be exploited. The most reliable results have been obtained using an intracarotid injection. Finally, the characteristics of the detecting part of the stationary and tomographic systems vary greatly. But, till now, no study has shown what is the best compromise between good statistics and good spatial resolution

  20. Cerebral blood flow in humans following resuscitation from cardiac arrest

    International Nuclear Information System (INIS)

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and may indicate the onset of irreversible brain damage

  1. Blood flow changes in Alzheimer's disease induced by lactate

    International Nuclear Information System (INIS)

    Full text: Lactate, as metabolite of the glycolysis is a source of energy of the nerves. In vitro and in vivo experiments showed the neuroprotective effect of lactate and improvement of brain function after ischaemic injury. Intravenous infusion of lactate increases the global cerebral blood flow (CBF). In Alzheimer disease (AD) characteristic regional blood flow abnormalities and in the cerebrospinal fluid abnormal lactate levels were detected. Since disturbed CBF and vasoregulation was found in AD the effect of intravenous Na-lactate on CBF and related metabolic parameters was examined in order to assess the CBF response in the AD brain. In twenty (14 woman, 6 man, age ± SD.: 74 ± 7 years) patients with Alzheimer's disease (DSM IV, MMT.:13 ± 6) self-control study was performed. rCBF SPECT (99mTc-HMPAO) investigations were fulfilled during 5 mg/kg body weight 0.5 M Na-lactate infusion and in control state (0.9 % saline infusion) one week apart. The rCBF changes visually and by statistical parametric mapping were analyzed. ECG, blood pressure, heart rate, venous blood pH, pCO2, bicarbonate, serum lactate and cortisol level were measured before and after the SPECT investigation. Acute panic inventory and anxiety rating scales were used to access the psychiatric effect of lactate. The serum lactate levels increased in average from 0.8 mmol/L to 4.6 mmol/L, and 6.1 mmol/L 10 and 20 minutes after lactate infusion respectively. Compensatory changes were found in the venous blood pH, pCO2 and bicarbonate levels. Significant psychiatric symptoms and blood pressure and heart rate increase were not observed. The serum cortisol level remained unchanged. At the baseline investigation all of the patients have bilateral temporal or parietal hypoperfused areas in 8 patients with other additional localization of abnormalities. In 12 patients the global cerebral blood flow increased, in 8 decreased rCBF was detected by visual evaluation. According to the SPM analysis the

  2. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  3. Mechanical axial flow blood pump to support cavopulmonary circulation.

    Science.gov (United States)

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  4. Effects of vasoactive stimuli on blood flow to choroid plexus

    International Nuclear Information System (INIS)

    The goal of this study was to examine effects of vasoactive stimuli on blood flow to choroid plexus. The authors used microspheres to measure blood flow to choroid plexus and cerebrum in anesthetized dogs and rabbits. A critical assumption of the microsphere method is that microspheres do not pass through arteriovenous shunts. Blood flow values obtained with simultaneous injection of 15- and 50-μm microspheres were similar, which suggest that shunting of 15-μm microspheres was minimal. Blood flow to choroid plexus under control conditions was 287 ± 26 (means ± SE) ml · min-1 · 100 g-1 in dogs and 385 ± 73 ml · min-1 100 g-1 in rabbits. Consecutive measurements under control conditions indicated that values for blood flow are reproducible. Adenosine did not alter blood flow to cerebrum but increased blood flow to choroid plexus two- to threefold in dogs and rabbits. Norepinephrine and phenylephrine did not affect blood flow to choroid plexus and cerebrum but decreased blood flow to choroid plexus by ∼ 50%. The authors suggest that (1) the microsphere method provides reproducible valid measurements of blood flow to the choroid plexus in dogs and rabbits and (2) vasoactive stimuli may have profoundly different effects on blood flow to choroid plexus and cerebrum

  5. Blood flow in healed and inflamed periodontal tissues of dogs

    International Nuclear Information System (INIS)

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow. (author)

  6. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  7. Subcutaneous blood flow during insulin-induced hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-01-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms...... compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha...

  8. Gas flow meter and method for measuring gas flow rate

    Science.gov (United States)

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  9. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms. PMID:27472604

  10. Influence of Gravity on Blood Volume and Flow Distribution

    Science.gov (United States)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  11. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.

    Science.gov (United States)

    Chen, Yangsheng; Kent, Timothy L; Sharp, M Keith

    2013-03-01

    Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends. PMID:23419169

  12. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)

    1989-11-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  13. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  14. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.

  15. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    International Nuclear Information System (INIS)

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO2 did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow

  16. Chronic effects of metoprolol and methyldopa on calf blood flow in intermittent claudication.

    OpenAIRE

    Lepäntalo, M

    1984-01-01

    In a placebo-controlled double-blind study 14 hypertensive patients with intermittent claudication were treated with metoprolol (100-200 mg daily) and methyldopa (500-1000 mg daily) for 3 weeks and their effects on heart rate, blood pressure as well as on resting and hyperaemic calf blood flow and vascular resistance were compared. In their antihypertensive effect metoprolol and methyldopa did not differ significantly. In 23 diseased limbs the calf blood flow and vascular resistance remained ...

  17. Topical menthol increases cutaneous blood flow.

    Science.gov (United States)

    Craighead, Daniel H; Alexander, Lacy M

    2016-09-01

    Menthol, the active ingredient in several topically applied analgesics, activates transient receptor potential melastatin 8 (TRPM8) receptors on sensory nerves and on the vasculature inducing a cooling sensation on the skin. Ilex paraguariensis is also a common ingredient in topical analgesics that has potential vasoactive properties and may alter the mechanisms of action of menthol. We sought to characterize the microvascular effects of topical menthol and ilex application and to determine the mechanism(s) through which these compounds may independently and combined alter cutaneous blood flow. We hypothesized that menthol would induce vasoconstriction and that ilex would not alter skin blood flow (SkBF). Three separate protocols were conducted to examine menthol and ilex-mediated changes in SkBF. In protocol 1, placebo, 4% menthol, 0.7% ilex, and combination menthol+ilex gels were applied separately to the skin and red cell flux was continuously measured utilizing laser speckle contrast imaging (LSCI). In protocol 2, seven concentrations of menthol gel (0.04%, 0.4%, 1%, 2%, 4%, 7%, 8%) were applied to the skin to model the dose-response curve. In protocol 3, placebo, menthol, ilex, and menthol+ilex gels were applied to skin under local thermal control (34°C) both with and without sensory nerve blockage (topical lidocaine 4%). Post-occlusive reactive hyperemia (PORH) and local heating (42°C) protocols were conducted to determine the relative contribution of endothelium derived hyperpolarizing factors (EDHFs)/sensory nerves and nitric oxide (NO), respectively. Red cell flux was normalized to mean arterial pressure expressed as cutaneous vascular conductance (CVC: flux·mmHg(-1)) in all protocols. Topical menthol application increased SkBF compared to placebo (3.41±0.33 vs 1.1±0.19CVC: peffect, p<0.05) with an ED50 of 1.0%. Similarly, SkBF was increased after menthol application during PORH (3.62±0.29 vs. 2.50±0.21flux·mmHg(-1); p<0.001), but not local heating

  18. Laser Doppler measurement of cutaneous blood flow

    International Nuclear Information System (INIS)

    Laser Doppler velocimetry is an instrument system which has only recently been applied to the evaluation and quantitation of perfusion in the micro-vascular bed. The instrument is based on the Doppler principle, but uses low power laser light rather than the more commonly used ultrasound, and has a sample volume of approximately 1 mm/sup 3/. As it is non-invasive, it can be used on any skin surface or exposed microvascular bed and provides a continuous semi-quantitative measure of microcirculatory perfusion, it has a number of advantages as compared to other cutaneous blood flow measurement techniques. Initial studies have shown that it is easily used, and it has demonstrated good correlation with both xenon radio-isotope clearance and microsphere deposition techniques. Areas of current evaluation and utilization are in most major areas of medicine and surgery and include plastic, vascular and orthopaedic surgery, dermatology, gastro-enterology, rheumatology, burns and anaesthesiology

  19. Laser Speckle Imaging of Cerebral Blood Flow

    Science.gov (United States)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  20. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis. PMID:26968145

  1. Measurement of Flow Properties of Mammalian Blood with Different Hematocrit Values Using Falling Needle Rheometer

    Directory of Open Access Journals (Sweden)

    Takamasa Suzuki

    2014-08-01

    Full Text Available The development of viscometry with high accuracy and quick operation, as well as the establishment of a data evaluation method by pathology are largely required. Especially, the flow properties of human blood are an important factor in the evaluation of blood disease on the medicine, but the method of viscometry and the data collection are not so easy. This study has been described on the viscosity measurement and their evaluations for mammalian blood (rabbit, pig and horse including human blood. A compact-sized falling needle rheometer (FNR and a flow analysis method using this device for blood have been developed, and the relationship between the apparent viscosity and physical properties (density, hematocrit value of blood have also been evaluated. Measured flow properties of blood are evaluated as a flow curve showing the relationship between the shear stress and shear rate. Observed flow curves of mammalian bloods show three typical fluid regions, these are, the Non-newtonian fluid region for a low shear rate range, the transition region and the Newtonian fluid region for a high shear rate range. Flow properties of blood in the Casson fluid region and the apparent viscosity (μ in the Newtonian fluid region are measured, and they are compared between mammals.

  2. Dynamic Effect of Rolling Massage on Blood Flow

    International Nuclear Information System (INIS)

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  3. Dynamic Effect of Rolling Massage on Blood Flow

    Science.gov (United States)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  4. Effective RES blood flow changes in children with homozygous β-thalassemia in relation to blood transfusion

    International Nuclear Information System (INIS)

    Denatured radioiodinated human serum albumin (DHA) clearance studies at a dose of 1 mg/kg body wt., were carried out in 16 thalassemic children, prior to and 7-10 days following blood transfusion, to investigate changes of the effective RES blood flow which might accompany the posttransfusion spleen size diminution. A statistically significant increase (P<0.001) of the DHA plasma clearance rate was observed 7-10 days following blood transfusion denoting an increase of the blood flow to the effective RES while at the same time the spleen diminished in size. It is suggested that changes in the effective RES blood flow in these patients are directly related to changes in the intrasplenic circulatory capacity. (orig.)

  5. Quantifying Blood Flow in the DIEP Flap: An Ultrasonographic Study

    Science.gov (United States)

    Pennington, David G.

    2014-01-01

    Background: The maximum weight of tissue that a single perforator can perfuse remains an important question in reconstructive microsurgery. An empirically based equation, known as the flap viability index (FVI), has been established to determine what weight of tissue will survive on one or more perforators. The equation is FVI = Sum d(n)^4/W, where d is the internal diameter of each perforator and W is the final weight of the flap. It has been shown that if FVI exceeds 10, total flap survival is likely, but if under 10, partial flap necrosis is probable. The aim of this study was to measure absolute flow rates in deep inferior epigastric perforator (DIEP) flap pedicles and assess correlation with the determinants of the FVI, perforator diameter and flap weight. Methods: Color Doppler ultrasound was used to quantify arterial flow in 10 consecutive DIEP flap pedicles 24 hours after anastomosis. Results: In single-perforator DIEP flaps, flow rate was highly correlated with perforator diameter (r = 0.82, P = 0.01). Mean arterial flow rate was significantly reduced in DIEP flaps with 2 or more perforators (6 vs 38 cm3/min; P perforator size is a critical factor in optimizing blood flow in perforator-based free tissue transfer. Further research is required to understand the flow dynamics of perforator flaps based on multiple perforators. However, surgeons should be cognizant that a single large perforator may have substantially higher flow rates than multiple small perforators. Routine FVI calculation is recommended to ensure complete flap survival. PMID:25426345

  6. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  7. Melatonin differentially affects vascular blood flow in humans

    OpenAIRE

    Cook, Jonathan S.; Sauder, Charity L.; Ray, Chester A.

    2010-01-01

    Melatonin is synthesized and released into the circulation by the pineal gland in a circadian rhythm. Melatonin has been demonstrated to differentially alter blood flow to assorted vascular beds by the activation of different melatonin receptors in animal models. The purpose of the present study was to determine the effect of melatonin on blood flow to various vascular beds in humans. Renal (Doppler ultrasound), forearm (venous occlusion plethysmography), and cerebral blood flow (transcranial...

  8. Radionuclide renogram as a predictor of relative renal blood flow

    International Nuclear Information System (INIS)

    Radionuclide renograms obtained with Tc-99m-DTPA were used to calculate relative renal blood flow in 16 dogs. In 13 of these dogs, relative blood flow ratios (R:L) calculated from the renograms were correlated with ratios measured with an electromagnetic flowmeter or with radiolabeled microspheres. The results indicate that Tc-99m-DTPA renograms can be used to make an accurate prediction of relative renal blood flow

  9. [Effects of volume and rate of blood loss on indicators of auto-hemodilution].

    Science.gov (United States)

    Koval'skaia, K S; Baluev, E P; Krivitskiĭ, N M

    1991-06-01

    The results of synchronous monitoring of blood impedance versus body impedance in dog experiments showed that the speed of physiological hemodilution related to blood loss up to 30 ml/kg is poorly dependent on the rate of blood loss (0.4-1.0 ml/kg/min) and averages 0.186 +/- 0.02 ml/min/kg. Termination of blood loss is followed by marked reduction in the rate of auto-hemodilution. In bloodletting the studies revealed a linear dependence between the volume of blood loss up to 30 ml/kg and tissue fluid volume entering the blood stream. In blood loss intestinal absorption of fluid does not block the fluid introduction from the interstice. When associated, both these flows increase volume of fluid filling vascular bed and promote stable recovery of the baseline circulating blood volume. PMID:1893173

  10. Noninvasive method of estimating human newborn regional cerebral blood flow

    International Nuclear Information System (INIS)

    A noninvasive method of estimating regional cerebral blood flow (rCBF) in premature and full-term babies has been developed. Based on a modification of the 133Xe inhalation rCBF technique, this method uses eight extracranial NaI scintillation detectors and an i.v. bolus injection of 133Xe (approximately 0.5 mCi/kg). Arterial xenon concentration was estimated with an external chest detector. Cerebral blood flow was measured in 15 healthy, neurologically normal premature infants. Using Obrist's method of two-compartment analysis, normal values were calculated for flow in both compartments, relative weight and fractional flow in the first compartment (gray matter), initial slope of gray matter blood flow, mean cerebral blood flow, and initial slope index of mean cerebral blood flow. The application of this technique to newborns, its relative advantages, and its potential uses are discussed

  11. Effect of banana on cold stress test & peak expiratory flow rate in healthy volunteers.

    Science.gov (United States)

    Sarkar, C; Bairy, K L; Rao, N M; Udupa, E G

    1999-07-01

    The effect of banana on cold stress induced hypertension, peak expiratory flow rate and plasma ACE activity in healthy human volunteers was tested. Systolic blood pressure (P banana treatment compared to controls subjected to cold stress. There was no significant changes in heart rate and peak expiratory flow rate but only significant decrease in plasma ACE activity after banana treatment. Banana decreased the rise of systolic blood pressure and diastolic blood pressure in healthy volunteers subjected to cold stress test without much effect on heart rate and peak expiratory flow rate. PMID:10709336

  12. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease

    International Nuclear Information System (INIS)

    In this review I summarize observations of PET and SPECT studies about cerebral blood flow and metabolic abnormalities in Alzheimer's disease (AD). In very early AD flow or metabolism reduces first in the posterior cingulate gyrus and precuneus. This reduction may arise from functional deafferentation caused by primary neural degeneration in the remote area of the entorhinal cortex that is the first to be pathologically affected in AD. Then medial temporal structures and parietotemporal association cortex show flow or metabolic reduction as disease processes. The reason why flow or metabolism in medial temporal structures shows delay in starting to reduce in spite of the earliest pathological affection remains to be elucidated. It is likely that anterior cingulate gyrus is functionally involved, since attention is the first non-memory domain to be affected, before deficits in language and visuospatial functions. However few reports have described involvement in the anterior cingulate gyrus. Relationship between cerebral blood flow or metabolism and apolipoprotein E (APOE) genotype has been investigated. Especially, the APOEε4 allele has been reported to increase risk and to lower onset age as a function of the inherited dose of the ε4 allele. Reduction of flow or metabolism in the posterior cingulate gyrus and precuneus has been reported even in presymptomatic nondemented subjects who were cognitively normal and had at least a single ε4 allele. On the contrary the relation of ε4 allele to the progression rate of AD has been controversial from neuroimaging approaches. PET and SPECT imaging has become to be quite useful for assessing therapeutical effects of newly introduced treatment for AD. Recent investigations observed significant regional flow increase after donepezil hydrochloride treatment. Most of these observations have been made by applying computer assisted analysis of three-dimensional stereotactic surface projection or statistical parametric mapping

  13. Numerical simulation of the blood flow behavior in the circle of Willis

    Directory of Open Access Journals (Sweden)

    Razavi Seyyed Esmail

    2014-06-01

    Full Text Available Introduction: This paper represents the numerical simulation of blood flow in the circle of Willis (CoW. Circle of Willis is responsible for the oxygenated blood distribution into the cerebral mass. To investigate the blood behavior, two Newtonian and non-Newtonian viscosity models were considered and the results were compared under steady state conditions. Methods: Methodologically, the arterial geometry was obtained using 3D magnetic resonance angiography (MRA data. The blood flow through the cerebral vasculature was considered to be steady and laminar, and the Galerkin’s finite element method was applied to solve the systems of non-linear Navier-Stokes equations. Results: Flow patterns including flow rates and shear rates were obtained through the simulation. The minimal magnitude of shear rates was much greater than 100 s-1 through the larger arteries; thus, the non-Newtonian blood viscosity tended to approach the constant limit of infinite shear viscosity through the CoW. So, in larger arteries the non-Newtonian nature of blood was less dominant and it would be treated as a Newtonian fluid. The only exception was the anterior communicating artery (ACoA in which the blood flow showed different behavior for the Newtonian and non-Newtonian cases. Conclusion: By comparing the results it was concluded that the Newtonian viscosity assumption of blood flow through the healthy, complete circle of Willis under the normal and steady conditions would be acceptably accurate.

  14. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    International Nuclear Information System (INIS)

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  15. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    Science.gov (United States)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  16. Quantitative evaluation of coronary blood flow by PET in the human heart

    International Nuclear Information System (INIS)

    Conventional nuclear medicine procedures such as T1-201 scintigraphy allow only qualitative assessment of regional myocardial blood flow. PET provides attenuation-corrected images of myocardial tracer distribution and thus the potential for quantitative measurement of tracer kinetics. Dynamic PET imaging with high temporal resolution (10 sec/frame) after intravenous injection of the blood flow tracer N-13 ammonia was applied to seven healthy human subjects at rest and after intravenous dipyradamole. A three-compartmental tracer kinetic model was used to fit regional myocardial time-activity curves yielding estimates of blood flow and rate constants for tracer retention. At rest, blood flow averaged 64 +- 10 mL/min/100 g and increased after intravenous application of dipyridamole to 274 +- 84 mL/min/100 G. These PET values agree well with invasively measured coronary blood flow

  17. Recycling-flow rate control device

    International Nuclear Information System (INIS)

    Purpose: To make reactor-core-flow rate control excellent in stability, rapid response and transient response without using reactor-core-flow rate measuring signals in BWR type reactors. Constitution: The speed of internal pump is controlled during normal operation by the neutron flux controller (which performs proportional integration for the deviation between the reactor power setting value and the neutron flux feedback signal to output pump speed demand signal). Then, the control is carried out by the combination of the reactor-core-flow rate controller and the neutron flux controller only upon occurrence of transient changes in which reactor parameters vary rapidly. (Ikeda, J.)

  18. Flow, diffusion, and rate processes

    International Nuclear Information System (INIS)

    This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed

  19. Development of a flow rate monitoring method for the wearable ventricular assist device driver.

    Science.gov (United States)

    Ohnuma, Kentaro; Homma, Akihiko; Sumikura, Hirohito; Tsukiya, Tomonori; Takewa, Yoshiaki; Mizuno, Toshihide; Mukaibayashi, Hiroshi; Kojima, Koichi; Katano, Kazuo; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2015-06-01

    Our research institute has been working on the development of a compact wearable drive unit for an extracorporeal ventricular assist device (VAD) with a pneumatically driven pump. A method for checking the pump blood flow on the side of the drive unit without modifying the existing blood pump and impairing the portability of it will be useful. In this study, to calculate the pump flow rate indirectly from measuring the flow rate of the driving air of the VAD air chamber, we conducted experiments using a mock circuit to investigate the correlation between the air flow rate and the pump flow rate as well as its accuracy and error factors. The pump flow rate was measured using an ultrasonic flow meter at the inflow and outflow tube, and the air flow was measured using a thermal mass flow meter at the driveline. Similarity in the instantaneous waveform was confirmed between the air flow rate in the driveline and the pump flow rate. Some limitations of this technique were indicated by consideration of the error factors. A significant correlation was found between the average pump flow rate in the ejecting direction and the average air flow rate in the ejecting direction (R2 = 0.704-0.856), and the air flow rate in the filling direction (R2 = 0.947-0.971). It was demonstrated that the average pump flow rate was estimated exactly in a wide range of drive conditions using the air flow of the filling phase. PMID:25500948

  20. Regional cerebral blood flow in neuropediatrics

    International Nuclear Information System (INIS)

    Single photon emission computed tomography can effectively and non-invasively measure regional blood flow. Mostly used 99mTc-HMPAO is a safe brain imaging agent for pediatric applications. The radiation dose is acceptable. Knowledge of the normal rCBF pattern, including normal asymmetries and variations due to age, is necessary prerequisite for the evaluation and reporting of the results of 99mTc-HMPAO brain SPECT studies in clinical practice. The interpretation of he rCBF study in a child requires knowledge of normal brain maturation. The aim of the present review is to focus on the contribution to clinical developmental neurology of SPECT The clinical use of SPECT in developmental neurology are epilepsy, brain death, acute neurological loss including stroke, language disorders, cerebral palsy, high-risk neonates, hypertension due to renovascular disease, traumatic brain injury, migraine, anorexia nervosa, autism, Gilles de la Tourette syndrome, attention deficit disorder-hyperactivity, and monitoring therapy. Sedation is not routinely used, rather each child is evaluated. However, drug sedation is mandatory in some uncooperative children. (author)

  1. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  2. Pulsatile blood flow in Abdominal Aortic Aneurysms

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  3. Regional cerebral blood flow in depression

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured in patients with endogenous depression by the single photon emission computed tomography (SPECT) using N-isopropyl-p-[123I] iodoamphetamine (IMP). The subjects were 32 patients with endogenous depression and 20 normal controls. These 32 patients, who were divided into 10 unmedicated group and 22 medicated group, were reexamined when the depressed patients reverted to a euthymic state (remission). The value of rCBF was assessed by the corticocerebellar ratio (CCR), which was expressed as a ratio of activity per pixel in the cerebral regions of interests (ROIs) to the activity per pixel in the cerebellum. The depressive patients showed a decrease in rCBF all over the cerebral regions and, especially, the lower rCBF in the left than in the right hemisphere. These changes turned toward normal in a remitted state following treatments, though there was no significant difference in rCBF between the medicated and unmedicated patients. There was a significantly negative correlation between the severity of depressive symptoms and the mean rCBF in a total of patients with depression. These results suggest that psychiatric symptoms in the depressive patients might be related to the left hemispheric dysfunction. (author)

  4. Blood Flow Restricted Exercise and Vascular Function

    Directory of Open Access Journals (Sweden)

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  5. Blood viscosity during coagulation at different shear rates

    OpenAIRE

    Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina

    2014-01-01

    Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR ...

  6. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  7. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.; Jensen, Jørgen Arendt

    The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation...

  8. Chronic intestinal ischemia and splanchnic blood-flow

    DEFF Research Database (Denmark)

    Zacho, Helle Damgaard; Henriksen, Jens Henrik; Abrahamsen, Jan

    2013-01-01

    AIM: To determine the splanchnic blood flow and oxygen uptake in healthy-subjects and patients and to relate the findings to body-composition. METHODS: The total splanchnic blood flow (SBF) and oxygen uptake (SO₂U) were measured in 20 healthy volunteers (10 women) and 29 patients with suspected...

  9. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E;

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were...

  10. Blood flow velocity in migraine attacks - a transcranial Doppler study

    International Nuclear Information System (INIS)

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs

  11. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge;

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...

  12. Historical river flow rates for dose calculations

    International Nuclear Information System (INIS)

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS's, EID'S, SAR'S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants

  13. Flow rate measurements by means of tracers

    Energy Technology Data Exchange (ETDEWEB)

    Mosetti, F. (Trieste Univ. (Italy). Istituto di Geodesia e Geofisica)

    The application of some sources of diffusion for the flow rate measurement of water or other fluids is here presented. The laminar instantaneous source, obtained in practice with easy devices, is very useful in river or channel measurements. The analysis of the measurements could supply the flow rate and the presence of water losses or recharges. The section of the channel can also be determined by such a method.

  14. Evaluation of changes of intracranial blood flow after carotid artery stenting using digital subtraction angiography flow assessment

    Institute of Scientific and Technical Information of China (English)

    Hajime; Wada; Masato; Saito; Kyousuke; Kamada

    2015-01-01

    AIM: To evaluate the changes of intracranial blood flow after carotid artery stenting(CAS), using the flow assessment application "Flow-Insight", which was developed in our department.METHODS: Twenty patients treated by CAS participated in this study. We analyzed the change in concentration of the contrast media at the anterior-posterior and profile view image with the flow assessment application "Flow-Insight". And we compared the results with N-isopropyl-p-[123I] iodoamphetamine-single-photon emission computed tomography(IMP SPECT) performed before and after the treatment. RESULTS: From this study, 200% of the parameter "blood flow" change in the post/pre-treatment is suggested as the critical line of the hyperperfusion syndrome arise. Although the observed blood flow increase in the digital subtraction angiography system did not strongly correlate with the rate of increase of SPECT, the "Flow-Insight" reflected the rate of change of the vessels well. However, for patients with reduced reserve blood flow before CAS, a highly elevated site was in agreement with the site analysis results. CONCLUSION: We concluded that the cerebral angiography flow assessment application was able to more finely reveal hyperperfusion regions in the brain after CAS compared to SPECT.

  15. Mammary blood flow regulation in the nursing rabbit

    International Nuclear Information System (INIS)

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit

  16. Coriolis mass flow rate meters for low flows

    OpenAIRE

    Mehendale, Aditya

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an "enabling technology" in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do not need complicated translation or linearization tables to compensate for other physical parameters (e.g. density, state, temperature, heat capacity, viscosity, etc.) of the medium that they measure...

  17. Design and Simulation of Axial Flow Maglev Blood Pump

    OpenAIRE

    Huachun Wu; Ziyan Wang; Xujun Lv

    2011-01-01

    The axial flow maglev blood pump (AFMBP) has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element an...

  18. Computational Biorheology of Human Blood Flow in Health and Disease

    OpenAIRE

    Fedosov, Dmitry A.; Dao, Ming; Karniadakis, George Em; Suresh, Subra

    2013-01-01

    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on diss...

  19. MUSCLE METABOLISM WITH BLOOD FLOW RESTRICTION IN CHRONIC FATIGUE SYNDROME

    OpenAIRE

    McCully, Kevin K; Smith, Sinclair; Rajaei, Sheeva; Leigh, John S.; Natelson, Benjamin H

    2003-01-01

    The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to CDC criteria (n=19) were compared to normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle using 31P magnetic resonance spectroscopy (MRS). Muscle oxygen saturation and blood vo...

  20. Stability of flow focusing: The minimum attainable flow rate

    Science.gov (United States)

    Montanero, J. M.; Rebollo, N.; Acero, A.; Ferrera, C.; Herrada, M. A.; Ganan-Calvo, A. M.

    2011-11-01

    We analyze both theoretically and experimentally the stability of the steady jetting regime reached when liquid jets are focused by coaxial gas streams. In the low-viscosity case, viscous dissipation in the feeding capillary and liquid meniscus seem to be the origin of the instability. For high-viscosity liquids, the breakdown of the jetting regime takes place when the pressure drop cannot overcome the resistance force offered by surface tension. The characteristic flow rates for which the tapering menisci become unstable do not depend on the pressure drop applied to the system to produce the micro-jet. They increase (decrease) with viscosity for very low (high) viscosity liquids. Experiments confirmed the validity of the above conclusions. For each applied pressure drop, there is a minimum liquid flow rate below which the liquid meniscus drips. The minimum flow rates become practically independent of the applied pressure drop for sufficiently large values of this quantity. There exists an optimum value of the capillary-to-orifice distance for which the minimum flow rate attains a limiting value, which constitutes the lowest flow rate attainable with a given configuration in the steady jetting regime. A two-dimensional stability map with a high degree of validity is plotted on the plane defined by the Reynolds and capillary numbers based on the limiting flow rate.

  1. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    Science.gov (United States)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  2. Effect of exercise on maternal hemodynamics and placental blood flow in healthy women.

    Science.gov (United States)

    Rauramo, I; Forss, M

    1988-01-01

    Intervillous placental blood flow responses to standardized exercise during late pregnancy were studied using a Xenon technique in 25 healthy women. Thirteen of them were studied twice between the 32nd and 38th weeks of pregnancy, with mean 32 (range 22 to 40) days between the studies. At the end of a 6-min exercise, mean maternal heart rate had risen from 77 +/- 10 (SD) to 154 +/- 11 beats/min, amounting to 63% of maximal oxygen uptake. Stroke volume rose by 9%, cardiac output by 65% and cardiac index by 71% as a consequence of exercise, but peripheral vascular resistance declined by 41%. The placental blood flow was at a similar level after the exercise as before the exercise, being 95 +/- 19 (mean +/- SD) ml/min/100 ml of intervillous space before, 98 +/- 24 one min after, and 93 +/- 16 30 min after the cessation of exercise. No change was found in the level of placental blood flow between the 32-34th and 37-38th weeks of pregnancy. The placental blood flow had a positive correlation with maternal weight, mean arterial blood pressure and with diastolic blood pressure. Maternal heart rate, cardiac output, cardiac index, placental weight and the birth weight of the infant was not correlated with placental blood flow. It is concluded that in normal pregnancy a short submaximal exercise has little effect on placental blood flow measured after exercise. PMID:3176909

  3. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131I or sup(99m)Tc, 113In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers (133Xe, 85Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed

  4. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    Science.gov (United States)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  5. The effects of fenoldopam on coronary conduit blood flow after coronary artery bypass graft surgery.

    LENUS (Irish Health Repository)

    Halpenny, M

    2012-02-03

    OBJECTIVE: To quantify the effects of fenoldopam, 0.1 microg\\/kg\\/min, on left internal mammary artery (LIMA) and saphenous vein blood flow after coronary anastomosis. DESIGN: Prospective, randomized, double-blind, placebo-controlled trial. SETTING: University teaching hospital, single institution. PARTICIPANTS: Thirty-one American Society of Anesthesiologists III patients undergoing elective coronary revascularization. INTERVENTIONS: A perivascular ultrasonic flow probe (Linton Instrumentation, Norfolk, UK) was placed around the LIMA and saphenous vein graft after coronary anastomosis. MEASUREMENTS AND MAIN RESULTS: Immediately before and at 5-minute intervals for 15 minutes after starting the infusion, blood flow was measured in the LIMA and one saphenous vein graft using a transit time ultrasonic flow probe. Heart rate, blood pressure, and central venous pressure were documented at these time points. Administration of fenoldopam, 0.1 microg\\/kg\\/min, did not alter heart rate or blood pressure. A small, nonsignificant increase in LIMA blood flow occurred during the 15-minute study period (30 +\\/- 12 to 35 +\\/- 10 mL\\/min) in patients who received fenoldopam. No significant changes occurred in the placebo group. CONCLUSIONS: The findings indicate that fenoldopam, 0.1 microg\\/kg\\/min, did not influence coronary conduit blood flow to a clinically significant extent. The small increase in LIMA blood flow may be of greater importance in high-risk patients or in the prevention of coronary arterial spasm.

  6. Ultrasonic rate measurement of multiphase flow

    Science.gov (United States)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  7. Changes in human cerebral blood flow and myocardial blood flow during mental stress measured by dual positron emission tomography

    International Nuclear Information System (INIS)

    Mental stress causes a substantial sympathetic response, thus increasing myocardial blood flow (MBF). However, the effects of mental stress on global cerebral blood flow (CBF) have not been elucidated. In this study, changes in CBF and MBF in relation to mental stress were measured by a dual positron emission tomography system that can measure CBF and MBF simultaneously. CBF and MBF were measured in 10 healthy men with O-15 labeled water at rest (baseline) and during the performance of a mental task that required subtraction of 7s serially from a four-digit number. Baseline global CBF and values obtained during the mental activity were 0.42±0.05 and 0.45±0.06 ml/ml/min (mean±SD), respectively. Baseline MBF and values obtained during mental activity were 0.61±0.12 and 1.09±0.58 ml/ml/min, respectively. Percent changes in CBF and MBF during mental stress were 6±11% and 78±73%, respectively. No significant difference was observed in arterial carbon dioxide tension (PaCO2) level between the mental stress and baseline conditions. MBF, blood pressure, heart rate, and plasma concentrations of adrenaline and noradrenaline increased significantly during mental stress. Sympathetic stimulation is reported to cause cerebral vasoconstriction and reduce CBF in animals. Although such a sympathetic response was observed in relation to mental stress, no significant change in CBF was observed in our subjects. (author)

  8. Reactor core flow rate measuring device

    International Nuclear Information System (INIS)

    Purpose: To accurately measure the reactor core flow rate of coolants compulsorily circulated to the reactor core. Constitution: The discharge flow rate from internal pumps has been measured by disposing a flow nozzle, an orifice, etc. to the suction or discharge port of the internal pump and determining the pressure difference thereof or by the pumping stroke. Although such a method enables easy measurement, it involves problems in view of accuracy and maintenance. According to the present invention, a post-like member of a definite length is disposed to the opening of the reactor core shroud support leg just before an internal pump and the vortex frequency emitted from the member is measured to thereby determine the flow velocity and thus the flow rate. the vortex frequency is in proportion with the flow velocity, not depending on the composition, density, temperature, pressure of fluid. The vortex frequency is measured by a piezoelectric sensor or a strain gage. Accordingly, it is possible to accurately measure the discharge flow rate of individual internal pumps to thereby easily control the reactor core power. (K.M.)

  9. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  10. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik;

    2014-01-01

    Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation...

  11. Study on relationship between perifollicular blood flow and in vitro fertilization-embryo transfer

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Jing Yang; Wangming Xu

    2008-01-01

    Objective: To study the relationship between perifoUicular blood flow and follicule development, oocyte maturing rate, fertilizing rate, cleaving rate, embryo quality and the outcomes of embryo transfer. Methods: The samples were selected from 66 suffers who underwent in vitro fertilization(IVF)or intracytoplasmic sperm injection(ICSI). Eeach patients' perifollicular blood flow(diameter≥12mm )was estimated on the day of human chorionic gonadotropin(HCG)administration. Results:Among 66 cycles, 26(39.4%) cycles resulted in pregnancy, perifollicular blood flow resistance index(Rl), peak systolic velocity/end diastasis velocity(S/D) of non-preg-nant group was significantly higher than that of the pregnant group (P < 0.004). When RI<0.49, the pregnancy rates, fecundation rates, fertilization rates, metaphase numbers for the of second meiosis oocytes increased evidently(P<0.05), but there were no statistical difference in gonadotropin dosage, cycle frequency, infertility years, ages, estradiol(E2)on the day of HCG administration,numbers of oocyet retrieved and high-quality embryo rates (P > 0.05 ). There were no statistical difference between non-pregnant group and pregnant group in S and D (P>0.05). There was no correlation between periFollicular blood flow RI and follicular diameter by linear regression analysis. Conclusion:Our study shows that perifollicular blood flow RI and S/D are effective indices of predicting the pregnancy outcome of IVF-ET.

  12. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  13. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    International Nuclear Information System (INIS)

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field

  14. Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Raine-Fenning, N J [School of Human Development, Queens Medical Centre, University of Nottingham, Nottingham (United Kingdom); Ramnarine, K V [Department of Medical Physics, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Nordin, N M [School of Human Development, Queens Medical Centre, University of Nottingham, Nottingham (United Kingdom); Campbell, B K [School of Human Development, Queens Medical Centre, University of Nottingham, Nottingham (United Kingdom)

    2004-01-01

    Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler 'vascularity' indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating 'vascularity indices' with flow.

  15. Heart blood flow simulation: a perspective review.

    Science.gov (United States)

    Doost, Siamak N; Ghista, Dhanjoo; Su, Boyang; Zhong, Liang; Morsi, Yosry S

    2016-01-01

    Cardiovascular disease (CVD), the leading cause of death today, incorporates a wide range of cardiovascular system malfunctions that affect heart functionality. It is believed that the hemodynamic loads exerted on the cardiovascular system, the left ventricle (LV) in particular, are the leading cause of CVD initiation and propagation. Moreover, it is believed that the diagnosis and prognosis of CVD at an early stage could reduce its high mortality and morbidity rate. Therefore, a set of robust clinical cardiovascular assessment tools has been introduced to compute the cardiovascular hemodynamics in order to provide useful insights to physicians to recognize indicators leading to CVD and also to aid the diagnosis of CVD. Recently, a combination of computational fluid dynamics (CFD) and different medical imaging tools, image-based CFD (IB-CFD), has been widely employed for cardiovascular functional assessment by providing reliable hemodynamic parameters. Even though the capability of CFD to provide reliable flow dynamics in general fluid mechanics problems has been widely demonstrated for many years, up to now, the clinical implications of the IB-CFD patient-specific LVs have not been applicable due to its limitations and complications. In this paper, we review investigations conducted to numerically simulate patient-specific human LV over the past 15 years using IB-CFD methods. Firstly, we divide different studies according to the different LV types (physiological and different pathological conditions) that have been chosen to reconstruct the geometry, and then discuss their contributions, methodologies, limitations, and findings. In this regard, we have studied CFD simulations of intraventricular flows and related cardiology insights, for (i) Physiological patient-specific LV models, (ii) Pathological heart patient-specific models, including myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and hypoplastic left heart syndrome. Finally, we

  16. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    2004-01-01

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  17. Changes in pulmonary blood flow do not affect gas exchange during intermittent ventilation in resting turtles

    DEFF Research Database (Denmark)

    Wang, Tobias; Hicks, James W.

    2008-01-01

    The breathing pattern of many different air-breathing vertebrates, including lungfish, anuran amphibians, turtles, crocodiles and snakes, is characterized by brief periods of lung ventilation interspersed among apnoeas of variable duration. These intermittent ventilatory cycles are associated......2 excretion did not correlate with changes in pulmonary blood flow. We conclude that increases in pulmonary blood flow associated with ventilation are not required to maintain resting rates of oxygen uptake and CO2 excretion in resting animals....

  18. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik;

    2008-01-01

    Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present in the...

  19. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T; Schmidt, J F; Secher, N H; Wildschiødtz, Gordon; Holm, S; Lassen, N A

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow...... velocity in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise...

  20. Increased bone marrow blood flow in polycythemia vera

    Energy Technology Data Exchange (ETDEWEB)

    Lathinen, R.; Lathinen, T.; Hyoedynmaa, S.

    1983-01-01

    Bone marrow blood flow was measured in polycythemia vera, in compensatory and in relative polycythemia with a /sup 133/Xe washout method. In the treated polycythemia vera bone marrow blood flow was significantly increased compared with the age-matched controls. The fraction of blood flow entering the bone and flowing through the hematopoietic marrow was markedly increased in both the untreated and the treated polycythemia vera. Although the number of observations in compensatory and relative polycythemia was small, the results suggest that bone marrow blood flow is not markedly increased in these diseases. The results also suggest that in older patients the simple /sup 133/Xe method may support the diagnosis of polycythemia vera.

  1. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider

    Institute of Scientific and Technical Information of China (English)

    Robert; GUIDOIN

    2008-01-01

    Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the ve- locity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  2. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    Science.gov (United States)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  3. Complex 3D Blood Flow Pathways in Two Cases of Aorta to Right Heart Fistulae: a 4D Flow MRI study

    OpenAIRE

    Thakrar, Darshit; Popescu, Andrada; Gupta, Suraj; de Freitas, Andrew; Russell, Hyde; Carr, James; Markl, Michael

    2013-01-01

    We present an analysis of 3D blood flow in two cases of Sinus of Valsalva to right heart fistulae based on 4D flow MRI. Despite similar underlying pathology, 3D visualization revealed intricate differences in flow patterns connecting the systemic and pulmonary circulation. The cases illustrates the potential of 4D flow MRI to complement the evaluation of complex structural heart disease by assessing complex flow dynamics and providing quantitative information of flow ratios and flow rates.

  4. Modified Beer-Lambert law for blood flow

    Science.gov (United States)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  5. Uterine artery blood flow, fetal hypoxia and fetal growth

    OpenAIRE

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow i...

  6. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  7. Determination of Rate and Causes of Wastage of Blood and Blood Products in Iranian Hospitals

    Directory of Open Access Journals (Sweden)

    Rafat Mohebbi Far

    2014-06-01

    Full Text Available OBJECTIVE: The purpose of this study was to determine the rate and causes of wastage of blood and blood products (packed red cells, plasma, platelets, and cryoprecipitate in Qazvin hospitals. METHODS: The study was conducted in all hospitals in Qazvin, including 5 teaching hospitals, 2 social welfare hospitals, 3 private hospitals, 1 charity hospital, and 1 military hospital. This descriptive study was based on available data from hospital blood banks in the province of Qazvin. The research instrument was a 2-part questionnaire. The first part was related to demographic characteristics of hospitals and the second part elicited information about blood and blood component wastage. The collected data were then analyzed using descriptive statistic methods and SPSS 11.5. RESULTS: Blood wastage may occur for a number of reasons, including time expiry, wasted imports, blood medically or surgically ordered but not used, stock time expired, hemolysis, or miscellaneous reasons. Data indicated that approximately 77.9% of wasted pack cell units were wasted for the reason of time expiry. Pack cell wastage in hospitals is reported to range from 1.93% to 30.7%. Wastage at all hospitals averaged 9.8% among 30.913 issued blood products. Overall blood and blood product (packed red cells, plasma, platelets, and cryoprecipitate wastage was 3048 units and average total wastage per participant hospital for all blood groups was 254 units per year. CONCLUSION: Blood transfusion is an essential part of patient care. The blood transfusion system has made significant advancements in areas such as donor management, storage of blood, cross-matching, rational use of blood, and distribution. In order to improve the standards of blood banks and the blood transfusion services in Iran, comprehensive standards have been formulated to ensure better quality control in collection, storage, testing, and distribution of blood and its components for the identified major factors

  8. Collateral sources of costal and crural diaphragmatic blood flow

    International Nuclear Information System (INIS)

    We measured the contribution of aortic, internal mammary, and intercostal arteries to the blood flow to the costal and crural segments of the diaphragm and other respiratory muscles in seven dogs breathing against a fixed inspiratory elastic load. We used radiolabeled microspheres to measure the blood flow with control circulation, occlusion of the aorta distal to the left subclavian artery, combined occlusion of the aorta and both internal mammary arteries, and occlusion of internal mammary arteries alone. With occlusion of the aorta distal to the left subclavian artery, blood flow to the crural diaphragm decreased from 40.3 to 23.5 ml . min-1 X 100 g-1, whereas costal flow did not change significantly (from 41.7 to 38.1 ml . min-1 . 100 g-1). Blood flows to the sternomastoid and scalene muscles (above the occlusion) increased by 200 and 340%, respectively, whereas flows to the other respiratory muscles did not change significantly. Blood flows to organs above the occlusion either remained unchanged or increased, whereas flows to those below the occlusion all decreased. When the internal mammary artery was also occluded, flows to the crural segment decreased further to 12.1 and costal flow decreased to 20.4 ml X min-1 X 100 g-1. Internal mammary arterial occlusion alone in two dogs had no effect on diaphragmatic flow. In conclusion, intercostal collateral vessels are capable of supplying a significant proportion of blood flow to both segments of the diaphragm but the costal segment is better served than the crural segment

  9. Low cerebral blood flow in hypotensive perinatal distress

    International Nuclear Information System (INIS)

    Hypoxic brain injury is the most important neurological problem in the neonatal period and accounts for more neurological deficits in children than any other lesion. The neurological deficits are notably mental retardation, epilepsy and cerebral palsy. The pathogenesis has hitherto been poorly understood. Arterial hypoxia has been taken as the obvious mechanism but this does not fully explain the patho-anatomical findings. In the present investigation we have examined the arterial blood pressure and the cerebral blood flow in eight infants a few hours after birth. The 133Xe clearance technique was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays a crucial role in the development of perinatal hypoxic brain injury. (author)

  10. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1...... diagnose and risk stratify CAD patients, while assessing the potential of the modality in clinical practice.......) identification of the extent of a multivessel coronary artery disease (CAD) burden, 2) patients with balanced 3-vessel CAD, 3) patients with subclinical CAD, and 4) patients with regional flow variance, despite of a high global MFR. A more accurate assessment of the ischemic burden in patients with intermediate...

  11. Skeletal Blood Flow in Bone Repair and Maintenance

    Institute of Scientific and Technical Information of China (English)

    Ryan E.Tomlinson; Matthew J.Silva

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato-my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.

  12. Aging, regional cerebral blood flow, and neuropsychological functioning

    International Nuclear Information System (INIS)

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the 133xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning

  13. Aging, regional cerebral blood flow, and neuropsychological functioning

    Energy Technology Data Exchange (ETDEWEB)

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-10-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the /sup 133/xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning.

  14. Effect of inhibition of prostaglandin synthesis on breathing movements and pulmonary blood flow in fetal sheep.

    Science.gov (United States)

    Savich, R D; Guerra, F A; Lee, C C; Kitterman, J A

    1995-02-01

    During transition from fetal to extrauterine life, respiration increases in incidence and magnitude as pulmonary blood flow dramatically increases. To determine whether alterations in pulmonary blood flow in utero are directly related to alterations in fetal breathing movements (FBM), we studied six chronically instrumented fetal sheep late in gestation to assess the effects of continuous FBM caused by a 4-h infusion of meclofenamate, a prostaglandin synthase inhibitor, on mean pulmonary blood flow to the fetus. We found a striking increase in FBM from 46 +/- 15% (SD) of the time during control to > 85% of the time by 1 h (P < 0.001), with the fetuses exhibiting continuous FBM by the last 1 h of infusion. The mean pulmonary blood flow also increased significantly during the first 90 min of the infusion as the incidences of FBM were increasing (26 +/- 14 and 56 +/- 23 ml.min-1.kg-1 for control and infusion, respectively; P < 0.01). Despite the simultaneous initial increase in FBM and mean pulmonary blood flow, the increase in left pulmonary artery blood flow was not sustained and decreased back to baseline by 2 h, even though the incidence of FBM continued to increase at this time. During the infusion, the mean pulmonary blood flow was not different between the presence or absence of FBM. There were no changes in fetal heart rate or pulmonary or systemic blood pressures during the infusion nor in arterial pH or blood gas tensions. We conclude that this increase in mean pulmonary blood flow in utero was not solely related to the increase in breathing movements. PMID:7759422

  15. Exchange Rate, Equity Prices and Capital Flows

    OpenAIRE

    Harald Hau; Helene Rey

    2002-01-01

    We develop an equilibrium model in which exchange rates, stock prices and capital flows are jointly determined under incomplete forex risk trading. Incomplete hedging of forex risk, documented for U.S. global mutual funds, has three important implications: 1) exchange rates are almost as volatile as equity prices when the forex liquidity supply is not infinitely price elastic; 2) higher returns in the home equity market relative to the foreign equity market are associated with a home currency...

  16. Exchange Rates, Equity Prices and Capital Flows

    OpenAIRE

    Hau, Harald; Rey, Hélène

    2003-01-01

    We develop an equilibrium model in which exchange rates, stock prices and capital flows are jointly determined under incomplete forex risk trading. Incomplete hedging of forex risk, documented for US global mutual funds, has three important implications: 1) exchange rates are almost as volatile as equity prices when the forex liquidity supply is not infinitely price elastic; 2) higher returns in the home equity market relative to the foreign equity market are associated with a home currency d...

  17. Exchange rates, equity returns and capital flows

    OpenAIRE

    Helene Rey; Harald Hau

    2004-01-01

    We develop an equilibrium model in which exchange rates, stock prices and capital flows are jointly determined under incomplete forex risk trading. Incomplete hedging of forex risk, documented for U.S. global mutual funds, has three important implications: 1) exchange rates are almost as volatile as equity prices when the forex liquidity supply is not infinitely price elastic; 2) higher returns in the home equity market relative to the foreign equity market are associated with a home currency...

  18. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.;

    2002-01-01

    . Global cerebral blood flow at rest and during exercise on a bicycle ergometer was measured by the Kety-Schmidt technique. Cerebral metabolic rates of oxygen, glucose, and lactate were calculated by the Fick principle. Cerebral function was assessed by a computer-based measurement of reaction time...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...... and oxidative metabolism are unaltered after high-altitude acclimatization from sea level, despite marked changes in breathing and other organ functions....

  19. Acupuncture Affects Regional Blood Flow in Various Organs

    OpenAIRE

    Harumi Hotta; Sae Uchida

    2008-01-01

    In this review, our recent studies using anesthetized animals concerning the neural mechanisms of vasodilative effect of acupuncture-like stimulation in various organs are briefly summarized. Responses of cortical cerebral blood flow and uterine blood flow are characterized as non-segmental and segmental reflexes. Among acupuncture-like stimuli delivered to five different segmental areas of the body; afferent inputs to the brain stem (face) and to the spinal cord at the cervical (forepaw), th...

  20. Hyperbaric hyperoxia reduces exercising forearm blood flow in humans

    OpenAIRE

    Casey, Darren P.; Joyner, Michael J.; Claus, Paul L.; Curry, Timothy B.

    2011-01-01

    Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O2 at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seven subjects (6 men/1 woman; 25 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and h...

  1. Effect of tropicamide on ocular blood flow in the rabbit

    International Nuclear Information System (INIS)

    Intracardiac injection of 15 microspheres labeled with 85Sr (strontium) and 141Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed

  2. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    Science.gov (United States)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  3. Hepatic and intestinal blood flow following thermal injury

    International Nuclear Information System (INIS)

    Because cardiac output decreases after burn injuries, investigators have assumed, based upon dye clearance techniques, that hepatic and intestinal blood flow are also decreased following these injuries. Blood flow to the liver, stomach, small intestine, and kidney was determined by the uptake of 201thallium and 125I-labeled fatty acid (para-125I-phenyl-3-methyl pentanoic acid) in a 20% body surface area scald injury that also included plasma volume replacement resuscitation. Uptake of these radioisotopes was determined 15 minutes, 18 hours, and 72 hours after injury. The uptake of the 201thallium and 125I-labeled fatty acid by the gastrointestinal tissues was not statistically different at any of the time periods after comparison of the injured and control (sham-treated) animals. 201Thallium uptake by the kidney was significantly diminished 15 minutes after the burn injury (P less than 0.01). Based on these blood flow measurement techniques, the data suggest that the 20% body surface area scald injury did not alter blood flow to the liver or gastrointestinal tract within the initial 72 hours after the burn injury even though a decrease in renal blood flow was easily detected. These results suggest that the dysfunction of the gastrointestinal system or hepatic system observed after an acute burn injury is not simply the result of hypovolemic shock, which reduces both renal and mesenteric blood flow. These gastrointestinal and hepatic alterations may be related to a factor or factors other than intestinal ischemia

  4. Microfluidic Flow Chambers Using Reconstituted Blood to Model Hemostasis and Platelet Transfusion In Vitro.

    Science.gov (United States)

    Van Aelst, Britt; Feys, Hendrik B; Devloo, Rosalie; Vandekerckhove, Philippe; Compernolle, Veerle

    2016-01-01

    Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion. PMID:27023054

  5. Measuring bovine mammary gland blood flow using a transit time ultrasonic flow probe.

    Science.gov (United States)

    Gorewit, R C; Aromando, M C; Bristol, D G

    1989-07-01

    Lactating cattle were used to validate a transit time ultrasonic blood flow metering system for measuring mammary gland arterial blood flow. Blood flow probes were surgically placed around the right external pudic artery. An electromagnetic flow probe was implanted in tandem with the ultrasonic probe in two cows for comparative measurements. The absolute accuracy of the implanted flow probes was assessed in vivo by mechanical means on anesthetized cows after 2 to 3 wk of implantation. The zero offset of the ultrasonic probes ranged from -12 to 8 ml/min. When the ultrasonic probe was properly implanted, the slopes of the calibration curves were linear and ranged from .92 to .95, tracking absolute flow to within 8%. The transit time instrument's performance was examined under a variety of physiological conditions. These included milking and hormone injections. The transit time ultrasonic flow meter accurately measured physiological changes in mammary arterial blood flow in chronically prepared conscious cattle. Blood flow increased 29% during milking. Epinephrine decreased mammary blood flow by 90 to 95%. Oxytocin doses increased mammary blood flow by 15 to 24%. PMID:2674232

  6. Blood flow and arterial endothelial dysfunction: Mechanisms and implications

    Science.gov (United States)

    Barakat, Abdul I.

    2013-06-01

    The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.

  7. Evaluation of the return rate of volunteer blood donors

    Directory of Open Access Journals (Sweden)

    Adriana de Fátima Lourençon

    2011-06-01

    Full Text Available BACKGROUND: To convert first-time blood donors into regular volunteer donors is a challenge to transfusion services. OBJECTIVES: This study aims to estimate the return rate of first time donors of the Ribeirão Preto Blood Center and of other blood centers in its coverage region. METHODS: The histories of 115,553 volunteer donors between 1996 and 2005 were analyzed. Statistical analysis was based on a parametric long-term survival model that allows an estimation of the proportion of donors who never return for further donations. RESULTS: Only 40% of individuals return within one year after the first donation and 53% return within two years. It is estimated that 30% never return to donate. Higher return rates were observed among Black donors. No significant difference was found in non-return rates regarding gender, blood type, Rh blood group and blood collection unit. CONCLUSIONS: The low percentage of first-time donors who return for further blood donation reinforces the need for marketing actions and strategies aimed at increasing the return rates.

  8. MRI of cerebral blood flow under hyperbaric conditions in rats.

    Science.gov (United States)

    Cardenas, Damon P; Muir, Eric R; Duong, Timothy Q

    2016-07-01

    Hyperbaric oxygen (HBO) therapy has a number of clinical applications. However, the effects of acute HBO on basal cerebral blood flow (CBF) and neurovascular coupling are not well understood. This study explored the use of arterial spin labeling MRI to evaluate changes in baseline and forepaw stimulus-evoked CBF responses in rats (n = 8) during normobaric air (NB), normobaric oxygen (NBO) (100% O2 ), 3 atm absolute (ATA) hyperbaric air (HB) and 3 ATA HBO conditions. T1 was also measured, and the effects of changes in T1 caused by increasing oxygen on the CBF calculation were investigated. The major findings were as follows: (i) increased inhaled oxygen concentrations led to a reduced respiration rate; (ii) increased dissolved paramagnetic oxygen had significant effects on blood and tissue T1 , which affected the CBF calculation using the arterial spin labeling method; (iii) the differences in blood T1 had a larger effect than the differences in tissue T1 on CBF calculation; (iv) if oxygen-induced changes in blood and tissue T1 were not taken into account, CBF was underestimated by 33% at 3 ATA HBO, 10% at NBO and HBO, HB and NBO were similar (p > 0.05) and all were higher than CBF under NB by ~40% (p HBO, similar to NB, supporting the notion that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism. CBF MRI provides valuable insights into the effects of oxygen on basal CBF and neurovascular coupling under hyperbaric conditions. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27192391

  9. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO2) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO2 were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author)

  10. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki (National Central Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan))

    1992-05-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO{sub 2}) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO{sub 2} were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author).

  11. Effect of anxiety on cortical cerebral blood flow and metabolism

    International Nuclear Information System (INIS)

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using 18Flurodeoxyglucose (18FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance

  12. Determinants of resting cerebral blood flow in sickle cell disease.

    Science.gov (United States)

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  13. Changes in blood pressure, heart rate and blood constituents during heat exposure in men with elevated blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gaebelein, C.J.; Senay, L.C. Jr.; Ladd, C.M.

    1985-01-01

    Although the vascular volume response of hypertensive men during exercise has been rather well characterized, the effect of resting heat exposure in this patient population has not been examined. This was done in the present report in seven men with high blood pressure (BP) (i.e., diastolic pressure greater than 12 kPa (90 mmHg) upon initial interview) and 5 normotensive control subjects. 50 min after each subject had consumed an amount of water equal to 1% of his body weight, he reclined on a cot. 10 min later the subject was carried into an environmental chamber equilibrated at Tdb = 45 degrees C, Twb = 28 degrees C. Free-flowing venous blood samples were obtained from a cubital vein, and BP and heart rate were measured, before the heat exposure and at 15 min intervals during the experiment. Within 30 min systolic, diastolic and mean BP of the high BP subjects had decreased to normal levels; no BP changes were detected in normotensive subjects. Accompanying this depressor response was an exaggerated elevation in plasma glucose concentration. No alterations were found with haematocrit, plasma osmolality or electrolytes, or total protein and albumin. The data suggest that heat exposure may have been more stressful for the subjects with high BP than for their controls. This finding implies that phasic depressor responses may be as important as phasic pressor episodes in the aetiology of established essential hypertension.

  14. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  15. Mathematical Analysis of Blood Flow in Porous Tubes: A Comparative Study

    OpenAIRE

    Sankar, D. S.; Nagar, Atulya K.

    2013-01-01

    The steady flow of Herschel-Bulkley and Casson fluids for blood flow in tubes filled with homogeneous porous medium with (i) constant and (ii) variable permeability is analyzed. The expression for the shear stress is obtained first by general iteration method and then using numerical integration; the solutions for velocity and flow rate are obtained. It is noticed that the shear stress and plug core radius are considerably higher in the case of variable permeability than those of the constant...

  16. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.

    Science.gov (United States)

    Huang, Chih-Chung

    2009-08-01

    It was shown previously that ultrasonic scattering from whole blood varies during the flow cycle under pulsatile flow both in vitro and in vivo. It has been postulated that the cyclic variations of the backscattering signal are associated with red blood cell (RBC) aggregation in flowing whole blood. To obtain a better understanding of the relationship between blood backscattering and RBC aggregation behavior for pulsatile flowing blood, the present study used high-frequency ultrasound to characterize blood properties. The backscattering signals from both whole blood and an RBC suspension at different peak flow velocities (from 10 to 30 cm/s) and hematocrits (20% and 40%) under pulsatile flow (stroke rate of 20 beats/min) were measured with 3 single-element transducers at frequencies of 10, 35, and 50 MHz in a mock flow loop. To avoid the frequency response problem of a Doppler flowmeter, the integrated backscatter (IB) and flow velocity as functions of time were calculated directly using RF signals from flowing blood. The experimental results showed that cyclic variations of the IB curve were clearly observed at a low flow velocity and a hematocrit of 40% when using 50 MHz ultrasound, and that these variations became weaker as the peak flow velocity increased. However, these cyclic variations were detected only at 10 cm/s when using 10 MHz ultrasound. These results demonstrate that a high flow velocity can stop the formation of rouleaux and that a high hematocrit can promote RBC aggregation to produce cyclic variations of the backscattering signal under pulsatile flow. In addition, slight cyclic variations of the IB curve for an RBC suspension were observed at 35 and 50 MHz. Furthermore, the peak of the IB curve from whole blood led the peak of the velocity waveform when using high-frequency ultrasound, which could be explained by the assumption that a rapid flow can promote RBC aggregation under pulsatile flow. Together, the experimental results showed that the

  17. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik;

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats. A...... reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  18. Decreased myocardial blood volume is a cause of reduced myocardial blood flow reserve in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    The purposes of this study are to know whether myocardial blood volume (MBV) is decreased in the left ventricular myocardium of patients with hypertrophic cardiomyopathy (HCM), and to elucidate which of the decreased MBV or of the reduced rate (mean transit rate of the blood) of myocardial blood flow (MBF), is the cause of the reduced MBF at reactive hyperemia. Subjects were 22 non-obstructive HCM patients (M16/F6, mean age 54 y) exhibiting asymmetric ventricular septum hypertrophy in echocardiography (EC) and 9 male age-matched healthy volunteers. The machine used for EC was Sonos 5500 (Philips Medical Systems) and myocardial contrast EC (MCE) was conducted also with the machine and S3 probe with 1.3/2.6 MHz to get harmonic power Doppler image. The contrast medium was Levovist (Schering AG), which was intravenously infused continuously during EC, and adenosine 5'-triphosphate (ATP) was similarly given to induce the reactive hyperemia. MCE images were processed by the software VoluMap-445 (YD LTD) for calculating MBV (%; mL/100 mL). For obtaining MBF (mL/min/g), positron emission tomography (PET) was done with the machine Siemens/CTI ECAT EXACT HR+Scanner, using 15O-water prepared in Sumitomo cyclotron CYPRIS-HM18, in 13 patients and all volunteers. The mean transit rate was calculated by (MBF/MBV) x 1.67/sec. It was found that MBV was decreased relatedly with the local wall thickness of HCM patients' left ventricular myocardium and MBF was reduced dependently on the decreased MBV at the reactive hyperemia. (R.T.)

  19. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    International Nuclear Information System (INIS)

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min−1 for an input blood flow rate of 12.5 µl min−1. The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min−1. Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems. (technical note)

  20. Two-phase non-linear model for the flow through stenosed blood vessels

    International Nuclear Information System (INIS)

    Pulsatile flow of a two-phase model for blood flow through arterial stenosis is analyzed through a mathematical analysis. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood, assuming the blood in the core region as a Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian fluid, are discussed. A perturbation method is used to solve the resulting system of non-linear quasi-steady differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. It is noticed that the plug core radius and resistance to flow increase as the stenosis size increases while all other parameters held constant The wall shear stress increases with the increase of yield stress while keeping other parameters as invariable. It is observed that the velocity increases with the axial distance in the stenosed region of the tube upto the maximum projection of the stenosis

  1. Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery

    Science.gov (United States)

    Zaman, Akbar; Ali, Nasir; Sajid, M.

    2016-01-01

    Slip effects on unsteady non-Newtonian blood hydro-magnetic flow through an inclined catheterized overlapping stenotic artery are analyzed. The constitutive equation of power law model is employed to simulate the rheological characteristics of the blood. The governing equations giving the flow derived by assuming the flow to be unsteady and two-dimensional. Mild stenosis approximation is employed to obtain the reduced form of the governing equations. Finite difference method is employed to obtain the solution of the non-linear partial differential equation in the presence of slip at the surface. An extensive quantitative analysis is performed for the effects of slip parameter, Hartmann number, cathetered parameter and arterial geometrical parameters of stenosis on the quantities of interest such as axial velocity, flow rate, resistance impedance and wall shear stress. The streamlines for the blood flow through the artery are also included.

  2. Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery

    Directory of Open Access Journals (Sweden)

    Akbar Zaman

    2016-01-01

    Full Text Available Slip effects on unsteady non-Newtonian blood hydro-magnetic flow through an inclined catheterized overlapping stenotic artery are analyzed. The constitutive equation of power law model is employed to simulate the rheological characteristics of the blood. The governing equations giving the flow derived by assuming the flow to be unsteady and two-dimensional. Mild stenosis approximation is employed to obtain the reduced form of the governing equations. Finite difference method is employed to obtain the solution of the non-linear partial differential equation in the presence of slip at the surface. An extensive quantitative analysis is performed for the effects of slip parameter, Hartmann number, cathetered parameter and arterial geometrical parameters of stenosis on the quantities of interest such as axial velocity, flow rate, resistance impedance and wall shear stress. The streamlines for the blood flow through the artery are also included.

  3. Research Advances: DRPS--Let The Blood Flow!

    Science.gov (United States)

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  4. Application of the iodide clearance technique to monitor local changes in periodontal ligament blood flow

    International Nuclear Information System (INIS)

    The present study was undertaken to validate a newly developed technique for monitoring blood flow changes with local clearance of 125I in the periodontal ligament (PDL). The tracer substance was allowed to diffuse into the intact PDL via a cavity that was drilled from the root canal out towards the root surface. Electric stimulation of the cervical sympathetic trunk caused a reduction in the clearance rate of the tracer from the cavity in a frequency-dependent manner. Intra-arterial infusions of noradrenaline also induced decreases in clearance rate. Intra-arterial infusions of the vasodilators substance P and vasoactive intestinal peptide induced increases in clearance rate. The present technique makes it possible to monitor local blood flow changes in the intact PDL during both decreases and increases in blood flow

  5. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality

    International Nuclear Information System (INIS)

    Biological signals often exhibit self-similar or fractal scaling characteristics which may reflect intrinsic adaptability to their underlying physiological system. This study analysed fractal dynamics of cerebral blood flow in patients supported with ventricular assist devices (VAD) to ascertain if sustained modifications of blood pressure waveform affect cerebral blood flow fractality. Simultaneous recordings of arterial blood pressure and cerebral blood flow velocity using transcranial Doppler were obtained from five cardiogenic shock patients supported by VAD, five matched control patients and five healthy subjects. Computation of a fractal scaling exponent (α) at the low-frequency time scale by detrended fluctuation analysis showed that cerebral blood flow velocity exhibited 1/f fractal scaling in both patient groups (α = 0.95 ± 0.09 and 0.97 ± 0.12, respectively) as well as in the healthy subjects (α = 0.86 ± 0.07). In contrast, fluctuation in blood pressure was similar to non-fractal white noise in both patient groups (α = 0.53 ± 0.11 and 0.52 ± 0.09, respectively) but exhibited 1/f scaling in the healthy subjects (α = 0.87 ± 0.04, P < 0.05 compared with the patient groups). The preservation of fractality in cerebral blood flow of VAD patients suggests that normal cardiac pulsation and central perfusion pressure changes are not the integral sources of cerebral blood flow fractality and that intrinsic vascular properties such as cerebral autoregulation may be involved. However, there is a clear difference in the fractal scaling properties of arterial blood pressure between the cardiogenic shock patients and the healthy subjects

  6. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis

    Science.gov (United States)

    Nadeem, S.; Noreen Sher, Akbar

    2010-06-01

    We analyze the blood flow through a tapered artery, assuming the blood to be a second order fluid model. The resulting nonlinear implicit system of partial differential equations is solved by the perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The physical behavior of different parameters is also discussed, as are trapping phenomena.

  7. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 h

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J

    1984-01-01

    A method is presented which allows for continuous registration of forefoot blood flow over 24 h. Blood flow was estimated by the radioactive Xenon washout method and a portable CdTe detector system was used to measure the tracer disappearance rate. Since the semiconductor detector is placed very...

  8. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics

    Science.gov (United States)

    Choi, Bernard; Ramírez-San-Juan, Julio C.; Lotfi, Justin; Nelson, J. S.

    2006-07-01

    Noninvasive blood flow imaging can provide critical information on the state of biological tissue and the efficacy of approaches to treat disease. With laser speckle imaging (LSI), relative changes in blood flow are typically reported, with the assumption that the measured values are on a linear scale. A linear relationship between the measured and actual flow rate values has been suggested. The actual flow rate range, over which this linear relationship is valid, is unknown. Herein we report the linear response range and velocity dynamic range (VDR) of our LSI instrument at two relevant camera integration times. For integration times of 1 and 10 ms, the best case VDR was 80 and 60 dB, respectively, and the worst case VDR was 20 and 50 dB. The best case VDR values were similar to those reported in the literature for optical Doppler tomography. We also demonstrate the potential of LSI for monitoring blood flow dynamics in the rodent dorsal skinfold chamber model. These findings imply that LSI can provide accurate wide-field maps of microvascular blood flow rate dynamics and highlight heterogeneities in flow response to the application of exogenous agents.

  9. Aortic pressure reduction redistributes transmural blood flow in dog left ventricle

    International Nuclear Information System (INIS)

    The authors studied the effect of graded aortic blood pressure reduction on left ventricular (LV) blood flow in anesthetized, autonomically blocked, open-chest dogs at constant heart rate and mean left atrial pressure. Aortic diastolic pressure (ADP) was lowered from rest to 90, 75, and 60 mmHg with an arteriovenous fistula. Global and regional LV blood flow was measured with radioactive microspheres. Mean LV blood flow fell stepwise from 145 ml · min-1 · 100 g-1 at rest to 116 ml · min-1 · 100 g-1 at ADP of 60 mmHg, whereas the endocardial-to-epicardial flow ratio decreased from 1.20 to 084. The transmural redistribution of LV blood flow was not accompanied by increases in LV oxygen extraction, depression of LV contractility, LV dilatation or LV electrical dysfunction and also occurred in the presence of considerable coronary vasodilator flow reserve. Electrical evidence of subendocardial ischemia appeared at ADP of 32 mmHg and an endocardial-to-epicardial flow ratio of 0.41 in a subgroup of animals. They conclude that the redistribution of LV flow during moderate aortic pressure reduction was an appropriate physiological adjustment to uneven transmural alterations in regional LV wall stress and that it preceded a more pronounced redistribution evident with myocardial ischemia

  10. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps. PMID:2312140

  11. Occlusion cuff for routine measurement of digital blood pressure and blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Krähenbühl, B; Hirai, M

    1977-01-01

    A miniaturized blood pressure cuff made of plastic material and applicable to fingers and toes is described. The cuff was compared to rubber cuffs and to bladder-free cuffs. It was found to be more reliable than the former type and much easier to use than the latter type. It is recommended for us...... in conjunction with a mercury-in-Silastic strain gauge for routine measurement of digital blood pressure and blood flow in patients with arterial disease....

  12. The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension.

    Science.gov (United States)

    Ogoh, Shigehiko; Hirasawa, Ai; Sugawara, Jun; Nakahara, Hidehiro; Ueda, Shinya; Shoemaker, J Kevin; Miyamoto, Tadayoshi

    2015-09-01

    The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulation during normocapnic and hypercapnic (5%) conditions, the change in middle cerebral artery mean blood flow velocity was analyzed during acute hypotension caused by two methods: 1) thigh-cuff occlusion release (without change in central blood volume); and 2) during the recovery phase immediately following release of lower body negative pressure (LBNP; -50 mmHg) that initiated an acute increase in central blood volume. In the thigh-cuff occlusion release protocol, as expected, hypercapnia decreased the rate of regulation, as an index of dynamic cerebral autoregulation (0.236 ± 0.018 and 0.167 ± 0.025 s(-1), P = 0.024). Compared with the cuff-occlusion release, the acute increase in central blood volume (relative to the LBNP condition) with LBNP release attenuated dynamic cerebral autoregulation (P = 0.009). Therefore, the hypercapnia-induced attenuation of dynamic cerebral autoregulation was not observed in the LBNP release protocol (P = 0.574). These findings suggest that an acute change in systemic blood distribution modifies dynamic cerebral autoregulation during acute hypotension. PMID:26159757

  13. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile. PMID:26792174

  14. Application of the Carreau viscosity model to the oscillatory flow in blood vessels

    Science.gov (United States)

    Tabakova, Sonia; Kutev, Nikolay; Radev, Stefan

    2015-11-01

    When studying the oscillatory flow in different types of blood vessels it is very important to know what type of the blood viscosity model has to be used. In general the blood viscosity is defined as a shear-thinning liquid, for which there exist different shear-dependent models, for example the Carreau model, which represents the viscosity as a non-linear function of the shear-rate. In some cases, however, the blood viscosity could be regarded as constant, i.e., the blood is treated as Newtonian fluid. The aim of the present work is to show theoretically and numerically some approximate limits of the Newtonian model application, when the blood vessel is assumed as a 2D straight tube. The obtained results are in agreement with other authors' numerical results based on similar blood viscosity models.

  15. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...

  16. Subcutaneous blood flow in the temporal region of migraine patients

    International Nuclear Information System (INIS)

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks. (author)

  17. Flow rate measurement in aggressive conductive fluids

    Science.gov (United States)

    Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian

    2014-03-01

    Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.

  18. The Piecewise Linear Reactive Flow Rate Model

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P; Souers, P C

    2005-07-22

    Conclusions are: (1) Early calibrations of the Piece Wise Linear reactive flow model have shown that it allows for very accurate agreement with data for a broad range of detonation wave strengths. (2) The ability to vary the rate at specific pressures has shown that corner turning involves competition between the strong wave that travels roughly in a straight line and growth at low pressure of a new wave that turns corners sharply. (3) The inclusion of a low pressure de-sensitization rate is essential to preserving the dead zone at large times as is observed.

  19. Relative flow rates of explosive powders

    Energy Technology Data Exchange (ETDEWEB)

    Willson, V.P.

    1988-05-31

    A study was performed to determine the relative flow rates of various explosive powders and evaluate their adaptability for use in automated dispensing systems. Results showed that PBX 9407, LX-15, RX-26-BH, and HNAB are potential candidates for use in these systems. It was also shown that powders with graphite and stearate additives generated the least amount of static and were the easiest to handle.

  20. Increasing granular flow rate with obstructions

    OpenAIRE

    Alan Murray; Fernando Alonso-Marroquin

    2016-01-01

    We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstr...

  1. Centrifugal compressor flow instabilities at lowmass flow rate

    OpenAIRE

    Sundström, Elias

    2016-01-01

    Turbochargers play an important role in increasing the energetic efficiency andreducing emissions of modern power-train systems based on downsized recipro-cating internal combustion engines (ICE). The centrifugal compressor in tur-bochargers is limited at off-design operating conditions by the inception of flowinstabilities causing rotating stall and surge. They occur at reduced enginespeeds (low mass flow rates), i.e. typical operating conditions for a betterengine fuel economy, harming ICEs...

  2. One dimensional blood flow in a planetocentric orbit

    Science.gov (United States)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2012-05-01

    All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.

  3. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments

    DEFF Research Database (Denmark)

    Udesen, J.; Gran, F.; Hansen, K.L.;

    2008-01-01

    blood flow approximately followed the vessel wall, and that maximum velocity was approximately 1 m/s, which is a normal value for a healthy person. To further evaluate the method, the test person was scanned with magnetic resonance (MR) angiography. The volume flow derived from the MR scanning was......Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1...... program, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations...

  4. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... during exercise where systemic blood flow is not limited by cardiac output, thereby improving O2 delivery and allowing for an enhanced energy production from oxidative metabolism. The mechanisms underlying the increase in blood flow with regular physical activity include improved endothelial function...

  5. 轴流式血泵流场CFD仿真%Flow field CFD analysis of axial flow blood pump

    Institute of Scientific and Technical Information of China (English)

    谢雄; 谭建平

    2014-01-01

    In the development of axial flow blood pump,the arterial partial flow field may produce an area with very low flow shear rate,so it is necessary to consider the non-Newtonian charac-teristics of blood fluid.In this paper,a model of axial flow blood pump was established,and flow and rotate-speed’s impacts on the inlet and outlet of the flow field in the blood pump were ana-lyzed through Computational Fluid Dynamics (CFD)simulation,as wel as the influence of the guide vane on the flow field.By the pump water experiment of the designed blood pump,its out-put flow and pressure were measured;the results show that the designed blood pump is consist-ent on the law with the simulation.%在轴流式血泵的研发过程中,动脉局部流场中可能产生流动剪切率非常低的区域,因此有必要考虑血液的非牛顿特性。建立了轴流式血泵模型,通过CFD仿真分析得到血泵转速和流量的变化对血泵出入口压力分布和速度分布的影响,并采用水和甘油(2∶1)的混合流体替代血液,对设计的血泵进行驱动实验,测量了轴流式血泵输出流量和压力参数。结果表明:所设计的血泵在规律上和仿真是相符的。

  6. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    International Nuclear Information System (INIS)

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  7. Hall effect in electrolyte flow measurements: introduction to blood flow measurements.

    Science.gov (United States)

    Szwast, Maciej; Piatkiewicz, Wojciech

    2012-06-01

    The Hall effect has been applied to electrolyte flow measurement. It has been proven that Hall voltage does not depend on electrolyte concentration; however, there is a linear relationship between Hall voltage and flow velocity. Obtained results for electrolyte allow us to suppose that Hall effect can be used to determine blood flow. Research on blood will be conducted as the next step. PMID:22145845

  8. Effect of Smoking on Blood Pressure and Resting Heart Rate

    DEFF Research Database (Denmark)

    Linneberg, Allan; Jacobsen, Rikke K; Skaaby, Tea;

    2015-01-01

    BACKGROUND: -Smoking is an important cardiovascular disease risk factor, but the mechanisms linking smoking to blood pressure are poorly understood. METHODS AND RESULTS: -Data on 141,317 participants (62,666 never, 40,669 former, 37,982 current smokers) from 23 population-based studies were...... included in observational and Mendelian randomisation (MR) meta-analyses of the associations of smoking status and smoking heaviness with systolic and diastolic blood pressure (SBP, DBP), hypertension, and resting heart rate. For the MR analyses, a genetic variant rs16969968/rs1051730 was used as a proxy...... association of smoking heaviness with higher level of resting heart rate, but not with blood pressure. These findings suggest that part of the cardiovascular risk of smoking may operate through increasing resting heart rate....

  9. Electromechanically Actuated Valve for Controlling Flow Rate

    Science.gov (United States)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  10. Measurement of cerebral blood flow in the pig by the Xe-133 clearance technique

    International Nuclear Information System (INIS)

    The Xe-133 clearance technique is used to measure cerebral blood flow in the pig, which often serves as an experimental animal for cardiovascular research. The clearance curves are fitted by a two-exponential model. However, the fitted parameters are incompatible with a two-compartmental model: the values found for the parameters depend on the length of the clearance curve analysed. The discrepancies are thought to be consequences of the heterogeneity of cerebral blood flow and of mathematical problems of parameter identification. The non-validity of the relative weight of the fast clearance component as an anatomical or functional parameter is demonstrated. The use of the mean time constant, mean transit time, mean decay constant and initial slope for determination of cerebral blood flow rates is discussed. The mean cerebral blood flow of the anaesthetized pig measured by the clearance technique is found to be lower than the blood flow measured by means of a flow probe around the common carotid artery (with the external carotid artery tied off). The existence of a significant arteriovenous shunt flow is postulated. (orig.)

  11. Variable tumour blood flow influences tumour growth and hypoxia in rodents and humans

    International Nuclear Information System (INIS)

    We are studying the causes and implications of variable tumour blood flow in clinical and xenografted tumours using immunohistochemical techniques with flow cytometry and image analysis. Both established tumour xenograft systems and biopsies of in-situ cervical cancer after pimonidazole administration have been evaluated. In the laboratory, enzymatic reduction of part of the biopsy to a single cell suspension has been followed by pulse labelling with iododeoxyuridine, then fixation for flow analysis of DNA content. The remaining material, like that from xenografts infused with Hoechst 33342 to indicate blood flow, has been analyzed by image cytometry after staining with proliferation (IUdR, PCNA or Ki-67/MIB1) or structural (cytokeratin, CD31, CD104, etc.) markers. The variability of tumour blood flow that can be easily documented in xenografts leads to discontinuities in proliferation and hypoxia that appear to be duplicated in the clinic. Interestingly, more than half of the tumours with substantial pimonidazole labelling showed hypoxic cells capable of incorporating IUdR in vitro, thus suggesting transient hypoxia in in-situ human tumours. Other evidence also suggests that tumour blood flow is non-constant in patients. Two preliminary conclusions are emerging: 1) non-constant blood flow that provides an additional restriction on tumour growth rate in the pre-treatment situation may lead to rapidly accelerated repopulation following the initiation of chemo- or radiotherapy, and 2) a significant fraction of human cervix cancers may express both 'acute' and 'chronic' hypoxia. Both observations are consistent with non-constant blood flow leading to dynamic time-dependent changes in hypoxia and proliferation patterns. With our xenograft systems, we are now undertaking 3-D assessments of tumour vasculature and its function that are expected to provide an improved understanding of the tumour-level factors that result in non-constant tumour blood flow

  12. Ultrasonic observation of blood disturbance in a stenosed tube: effects of flow acceleration and turbulence downstream.

    Science.gov (United States)

    Nam, Kweon-Ho; Paeng, Dong-Guk; Choi, Min Joo; Shung, K Kirk

    2008-01-01

    Red blood cell (RBC) aggregation is known to be highly dependent on hemodynamic parameters such as shear rate, flow turbulence and flow acceleration under pulsatile flow. The effects of all three hemodynamic parameters on RBC aggregation and echogenicity of porcine whole blood were investigated downstream of an eccentric stenosis in a mock flow loop using B-mode images with Doppler spectrograms of a commercial ultrasonic system. A hyperechoic parabolic profile appeared downstream during flow acceleration, yielding another piece of evidence suggesting that the enhancement of rouleaux formation may be caused by flow acceleration. It was also found that echogenicity increased locally at a distance of three tube diameters downstream from the stenosis. The local increase of echogenicity is thought to be mainly due to flow turbulence. The hypoechoic "black hole" was also seen at the center of the tube downstream of the stenosis where blood flow was disturbed, and this may be caused by the compound effect of flow turbulence and shear rate. PMID:17900794

  13. Echogenicity variations from porcine blood II: the "bright ring" under oscillatory flow.

    Science.gov (United States)

    Paeng, Dong-Guk; Chiao, Richard Y; Shung, K Kirk

    2004-06-01

    Echogenicity variations from porcine blood were observed in a mock flow loop under pulsatile flow in a series of experiments (Paeng et al. 2004). In this paper, oscillatory flow was generated to further investigate the cyclic and radial variation of blood echogenicity and its origin and mechanisms by several parameters, including stroke volume, stroke rate, mean steady flow and transducer angle, using a GE LOGIQ 700 Expert system. The echogenicity at the center of the tube was enhanced during acceleration and lower during deceleration, and the expansion and collapse of the "bright ring" was observed twice per cycle. The "black hole," a central echo-poor zone surrounded by a hyperechoic zone, was barely observable under oscillatory flow, and these patterns differed from those under pulsatile flow. The cyclic and radial variation of echogenicity under oscillatory flow was affected by such hemodynamic parameters as stroke volume, stroke rate and mean steady flow. It was suggested that rouleaux might be aligned at an angle of about 25 degrees relative to the tube axis during the acceleration phase, based on the experimental results reaching a maximum of the echogenicity variation at a transducer angle of 25 degrees. Radial distribution of rouleaux alignments was proposed to be another important factor to blood echogenicity variation, in addition to combined effects of shear rate and flow acceleration on erythrocyte aggregation and blood echogenicity. The weak cyclic variation of echogenicity was also observed from the porcine erythrocyte suspensions under pure oscillatory flow, but not under pulsatile flow. It is postulated that the echogenicity variations from erythrocyte suspensions are from red cell deformation. PMID:15219961

  14. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    CERN Document Server

    Brust, M; Thiebaud, M; Flormann, D; Verdier, C; Kaestner, L; Laschke, M W; Selmi, H; Benyoussef, A; Podgorski, T; Coupier, G; Misbah, C; Wagner, C

    2014-01-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These pers...

  15. [Evaluation on blood clearance and hepatic uptake of 99mTc-GSA in rats with blood flow conversion].

    Science.gov (United States)

    Ohno, K

    1997-05-01

    This study was aimed to clarify a contribution of the hepatic blood flow in hepatic accumulation of 99mTc-DTPA-galactosyl serum albumin (99mTc-GSA). The experiment was performed in rats by the blood flow conversion with an external scintillation gamma camera and laser doppler flowmeter. Rats were divided into 4 groups: hepatic artery ligation (HAL, n = 10), portal vein ligation (PVL, n = 8), both hepatic artery and portal vein ligation (HAL+PVL, n = 9), and control (CONT, n = 10) groups. The scintigraphic data were obtained in each group for 10 minutes after intravenous injection of 99mTc-GSA (50 micrograms/100 g B.W). The regions of interest were assigned over the heart and whole liver and the time activity curves (TAC) were generated. Five parameters of HH 4, LHL 4, KH1, KH2, KL, were calculated as blood clearance and hepatic accumulation from TAC in each rat. HH4 as blood clearance index in CONT, HAL, PVL and HAL+PVL was 0.58 +/- 0.04 (mean +/- SE), 0.63 +/- 0.04, 0.85 +/- 0.04, 0.97 +/- 0.001, respectively. HH 4 between CONT vs PVL, HAL+PVL was statistically significant (p hepatic uptake index in CONT, HAL, PVL and HAL+PVL was 0.96 +/- 0.001, 0.93 +/- 0.01, 0.71 +/- 0.07, 0.41 +/- 0.04, respectively. This parameter was also statistically significant between CONT vs PVL and HAL+PVL groups. Another parameter of KH1 for blood clearance and KL for hepatic uptake were also significant between CONT vs PVL and HAL+PVL groups. All parameters obtained in 99mTc-GSA study correlated well with the hepatic flow rate which was measured with a laser doppler flowmeter and reflected the reduction rate of the hepatic tissue blood flow 4 minutes after the ligation of target vessels. These result suggest that blood clearance and hepatic uptake of 99mTc-GSA are significantly affected by hepatic blood inflow. 99mTc-GSA scintigraphy may be useful in evaluating hepatic tissue blood flow. PMID:9226469

  16. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.;

    2005-01-01

    We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length...... vasomotor oscillation. There are nonlinear interactions between TGF and the myogenic mechanism, which include the modulation of the frequency and amplitude of the myogenic oscillation by TGF. The prediction of modulation is confirmed in a companion study ( 28)....

  17. Wall Shear Rates in Taylor Vortex Flow

    Directory of Open Access Journals (Sweden)

    V. Sobolik

    2011-01-01

    Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.

  18. Factors affecting radioactive microsphere measurement of blood flow in pregnant guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S.; Sparks, J.W.; Makowski, E.L.

    1986-10-01

    Comparative blood flow studies were performed in pregnant guinea pigs using radioactive microspheres to test the effects of different sphere sizes on blood flow measurements and the relationship between flows obtained intraoperatively and those performed after 5 days of recovery from anesthesia and surgery. We observed that 1.5% of the cardiac output was shunted through the microcirculation of the carcass, gut, skin and endomyometrium when 15 mu microspheres were used. Intraoperative measurements of heart rate, cardiac output and placental blood flow are significantly lower than measurements made after 5 days recovery. These reductions were ameliorated with the addition of a continuous infusion of isoproterenol and the deletion of atropine from the anesthetic.

  19. Factors affecting radioactive microsphere measurement of blood flow in pregnant guinea pigs

    International Nuclear Information System (INIS)

    Comparative blood flow studies were performed in pregnant guinea pigs using radioactive microspheres to test the effects of different sphere sizes on blood flow measurements and the relationship between flows obtained intraoperatively and those performed after 5 days of recovery from anesthesia and surgery. We observed that 1.5% of the cardiac output was shunted through the microcirculation of the carcass, gut, skin and endomyometrium when 15 mu microspheres were used. Intraoperative measurements of heart rate, cardiac output and placental blood flow are significantly lower than measurements made after 5 days recovery. These reductions were ameliorated with the addition of a continuous infusion of isoproterenol and the deletion of atropine from the anesthetic

  20. Effect of pregnancy on regional cerebral blood flow

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by 133Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. Pco2 concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author)

  1. Face cooling with mist water increases cerebral blood flow during exercise: Effect of changes in facial skin blood flow

    Directory of Open Access Journals (Sweden)

    ShigehikoOgoh

    2012-08-01

    Full Text Available Facial cooling (FC increases cerebral blood flow (CBF at rest and during exercise; however, the mechanism of this response remains unclear. The purpose of the present study was to test our hypothesis that FC causes facial vasoconstriction that diverts skin blood flow (SkBFface towards the middle cerebral artery (MCA Vmean at rest and to a greater extent during exercise. Nine healthy young subjects (20 ± 2 yrs. underwent 3 minutes of FC by fanning and spraying the face with a mist of cold water (~4˚C at rest and during steady-state exercise (heart rate of 120 bpm. We focused on the difference between the averaged data acquired from 1 min immediately before FC and last 1 min of FC. SkBFface, MCA Vmean and MAP were higher during exercise than at rest. As hypothesized, FC decreased SkBFface at rest (-32 ± 4 % and to a greater extent during exercise (-64 ± 10%, P=0.012. Although MCA Vmean was increased by FC (Rest, +1.4 ± 0.5 cm/s; Exercise, +1.4 ± 0.6 cm/s, the amount of the FC-evoked changes in MCA Vmean at rest and during exercise differed among subjects. In addition, changes in MCA Vmean with FC did not correlate with concomitant changes in SkBFface (r=0.095, P=0.709. MAP was also increased by FC (Rest, +6.2 ± 1.4 mmHg; Exercise, +4.2 ± 1.2 mmHg. These findings suggest that the FC induced increase in CBF during exercise could not be explained only by change in SkBFface.

  2. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    Science.gov (United States)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  3. Uteroplacental blood flow during alkalosis in the sheep

    International Nuclear Information System (INIS)

    Uteroplacental blood flow was measured by the radioactive-microsphere technique in eight near-term pregnant ewes during a normal control period and during maternal metabolic alkalosis. All measurements were made on awake, unanesthetized animals. Alkalosis, defined for this study as an arterial pH of 7.60 or greater, was produced by the oral administration of sodium bicarbonate, 3 g/kg body wt. The rise in pH thus produced was unaccompanied by significant changes in systemic arterial blood pressure and cardiac output, while maternal arterial P/sub CO2/ rose slightly from control levels. Cotyledonary blood flow declined from a control value of 1.177 ml/min to 1.025 ml/min during alkalosis. This decline of 13 percent in cotyledonary blood flow is significant (P less than 0.02). Blood flow to the remaining uterine tissue, or noncotyledonary uterus, did not change with alkalosis, being maintained at approximately 195 ml/min. It is concluded that maternal alkalosis, unaccompanied by major changes in P /sub CO2/ and systemic arterial pressure, causes a small increase in the resistance of the uteroplacental circulation

  4. Pulmonary blood flow distribution in transposition of the great arteries

    International Nuclear Information System (INIS)

    Pulmonary blood flow distribution was studied by scintillation scanning of the lungs after the infusion of iodine-131-labeled macroaggregates of human albumin before and after the Mustard operation in 53 patients with transposition of the great arteries. The patients were classified as follows: Group 1 (24 infants with uncomplicated transposition of the great arteries); Group II (18 patients with transposition and ventricular septal defect); and Group III (11 patients with transposition, ventricular septal defect and pulmonary obstruction). Before operation, 21 patients had a normal distribution of pulmonary blood flow, 10 had preferential flow to the right lung and 2 had preferential flow to the left lung. After operation, 19 had a normal pattern of pulmonary blood flow, 21 had preferential flow to the right lung and 3 had preferential flow to the left lung. The scanning studies have proved helpful in follow-up of patients to rule out recurrence of the shunt, pulmonary or systemic venous obstruction, development of pulmonary hypertension and occlusion of a palliative systemic-pulmonary shunt

  5. Cerebral blood flow in asymptomatic individuals

    International Nuclear Information System (INIS)

    We studied the relationship between cortical grey matter flow (CBF) and age, cerebrovascular risk factors and the severity of subcortical hypersignals (HS, hyperintensity score in MRI) in 47 asymptomatic subjects with cerebrovascular risk factors. Multiple regression analysis revealed that HS was most strongly related to CBF, and that hematocrit, age and evidence of ischemic change detected in the electrocardiogram also appeared to be independent determinants of CBF. Both the severity and location of hypersignals were correlated with CBF. The most significant negative correlation observed was that between CBF and HS in the basal ganglia-thalamic region, where the degree of signal abnormality was modest. Decreased CBF in asymptomatic subjects with cerebrovascular risk factors may be related to microcirculatory disturbance associated with elevated hematocrit and an increase in the number of risk factors, and functional suppression of cerebral cortex due to the neuronal disconnection associated with subcortical lesions. In addition, impaired cerebral circulation may be related to MRI signal abnormalities. (author)

  6. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;

    2014-01-01

    that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input...... increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the...

  7. Measurement of tumor blood flow following neutron irradiation

    International Nuclear Information System (INIS)

    Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurements technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment. Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions have been answered through both theoretical calculation and measurement. The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique. In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients

  8. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.

    Science.gov (United States)

    Smirl, Jonathan D; Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N

    2016-03-01

    The cerebral pressure-flow relationship can be quantified as a high-pass filter, where slow oscillations are buffered (TFA) findings (altered phase or intact gain). This study aimed to determine whether these previous findings accurately represent this relationship. Both younger (20-30 yr; n = 10) and older (62-72 yr; n = 9) adults were examined. To enhance the signal-to-noise ratio, large oscillations in blood pressure (via oscillatory lower body negative pressure; OLBNP) were induced during steady-state moderate intensity supine exercise (∼45-50% of heart rate reserve). Beat-to-beat blood pressure, cerebral blood velocity, and end-tidal Pco2 were monitored. Very low frequency (0.02-0.07 Hz) and low frequency (0.07-0.20 Hz) range spontaneous data were quantified. Driven OLBNP point estimates were sampled at 0.05 and 0.10 Hz. The OLBNP maneuvers augmented coherence to >0.97 at 0.05 Hz and >0.98 at 0.10 Hz in both age groups. The OLBNP protocol conclusively revealed the cerebrovascular system functions as a high-pass filter during exercise throughout aging. It was also discovered that the older adults had elevations (+71%) in normalized gain (+0.46 ± 0.36%/%: 0.05 Hz) and reductions (-34%) in phase (-0.24 ± 0.22 radian: 0.10 Hz). There were also age-related phase differences between resting and exercise conditions. It is speculated that these age-related changes in the TFA metrics are mediated by alterations in vasoactive factors, sympathetic tone, or the mechanical buffering of the compliance vessels. PMID:26586907

  9. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  10. Computational biorheology of human blood flow in health and disease.

    Science.gov (United States)

    Fedosov, Dmitry A; Dao, Ming; Karniadakis, George Em; Suresh, Subra

    2014-02-01

    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829

  11. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.

  12. Numerical reconstruction of pulsatile blood flow from 4D computer tomography angiography data

    CERN Document Server

    Lovas, Attila; Csobo, Elek; Szilágyi, Brigitta; Sótonyi, Péter

    2015-01-01

    We present a novel numerical algorithm developed to reconstuct pulsatile blood flow from ECG-gated CT angiography data. A block-based optimization method was constructed to solve the inverse problem corresponding to the Riccati-type ordinary differential equation that can be deduced from conservation principles and Hooke's law. Local flow rate for 5 patients was computed in 10cm long aorta segments that are located 1cm below the heart. The wave form of the local flow rate curves seems to be realistic. Our approach is suitable for estimating characteristics of pulsatile blood flow in aorta based on ECG gated CT scan thereby contributing to more accurate description of several cardiovascular lesions.

  13. Blood flow simulation using smoothed particle hydrodynamics: application to thrombus generation

    OpenAIRE

    AL-SAAD, Mohammed; Kulasegaram, Sivakumar; Bordas, Stéphane

    2016-01-01

    Blood flow rheology is considered to be a complex phenomenon. In order to understand the characteristics of blood flow, it is important to identify key parameters those influence the flow behaviour of blood. Further, the characterisation of blood flow will also enable us to understand flow parameters associated with physiological conditions such as atherosclerosis. Thrombosis plays a crucial role in atherosclerosis, or to stop bleeding when a blood vessel is injured. This article focuses on u...

  14. Effect of blood flow parameters on flow patterns at arterial bifurcations--studies in models.

    Science.gov (United States)

    Liepsch, D W

    1990-01-01

    Atherosclerotic lesions are found primarily at arterial bends and bifurcations. Flow disturbances at these anatomic sites play a major role in atherogenesis. How hemodynamic factors such as vessel geometry, the pulsatile nature of blood flow, vessel wall elasticity and the non-Newtonian flow behavior of blood influence the flow field at these sites must be clarified. We have performed fundamental studies using a birefringent solution in a simplified rigid 90 degree T-bifurcation and pulsatile flow. The velocity distribution was measured with a laser Doppler anemometer. Flow in an elastic abdominal aorta model has been visualized using magnetic resonance imaging. In both flow studies, zones with negative velocity were found. These model measurements demonstrate that no flow parameter can be neglected. Further detailed studies are necessary to examine the interaction between fluid dynamic and cellular surface properties. PMID:2404201

  15. Increasing granular flow rate with obstructions

    Directory of Open Access Journals (Sweden)

    Alan Murray

    2016-03-01

    Full Text Available We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstrate that the model exhibits clogging, intermittent and continuous flow, and that it can be used as a tool for further investigations in granular flow. Received: 22 November 2015, Accepted: 19 February 2016; Edited by: L. A. Pugnaloni; Reviewed by: C. M. Carlevaro, Instituto de Física de Líquidos y Sistemas Biológicos, La Plata, Argentina; DOI: http://dx.doi.org/10.4279/PIP.080003 Cite as: A Murray, F Alonso-Marroquin, Papers in Physics 8, 080003 (2016

  16. Nocturnal variations in lower-leg subcutaneous blood flow in paraplegic men

    DEFF Research Database (Denmark)

    Sindrup, J H; Wroblewski, H; Kastrup, J;

    1992-01-01

    1. Lower-leg subcutaneous adipose tissue blood flow rates were measured over 12-20 h under ambulatory conditions by means of the 133Xe-washout technique in nine paraplegic men, all with complete spinal cord lesions at or below the Th 6 level, and in nine age-matched healthy men. Portable CdTe...

  17. The flow of red blood cells in stenosed microvessels and the influence of red blood cells on wall-bounded rolling motion of microparticles

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2015-11-01

    In the first part of this work, we consider a 3D computational study of the flow of deformable red blood cells in stenosed microvessels. We observe that the apparent viscosity of blood increases by several folds, and the rate of increase with increasing vessel diameter is also higher than that in non-stenosed vessels, implying an enhancement of the well-known Fahraeus-Lindqvist effect. The flow of the red blood cells causes time-dependent fluctuations in the blood flow rate. The RMS of the flow rate oscillations in the stenosed vessel is observed to be significantly higher than that in the non-stenosed vessel. Furthermore, several folds increase in the Eulerian velocity fluctuations and a transient flow reversal upstream the stenosed region are also observed, which would not occur in absence of the cells. In the second part, we consider the adhesive rolling motion of wall-bounded microparticles in presence of flowing red blood cells in microvessels. We observe two contradictory role of the red blood cells: On one hand, the cells facilitate the establishment of the particle-wall contact, and, thereby, initiation of adhesion. On the other hand, they augment the rolling velocity of the particles. Implications of these results on the optimal design of drug carriers are discussed.

  18. Hypertension, blood pressure, cognition and cerebral blood flow in the cohort of "Men born 1914"

    OpenAIRE

    Reinprecht, Faina

    2006-01-01

    "Men born 1914" is a population based cohort study of the epidemiology of cardiovascular disease. Five hundred men, born 1914, were examined at the age of 68 and 185 of them were re-examined at 81 years of age. Examination included a medical and a psychological investigation, ultrasonographic measurement of carotid arteries, 24-hour ambulatory blood pressure monitoring, regional cerebral blood flow, and cardiovascular risk factors. It is well known that hypertension plays a major et...

  19. Results of Pancreatic Blood Shunting into the Systemic Blood Flow in Insulin-Dependent Diabetics

    OpenAIRE

    Galperin, E. I.; Diuzheva, T. G.; Petrovsky, P. F.; A. Yu. Chevokin; Dokuchayev, K. V.; Rabinovich, S. E.; Gitel, E. P.; Kuzovlev, N. F.; Platonov, L. V.

    1996-01-01

    A new surgical method of treating patients with unstable insulin-dependent diabetes (IDD) has been developed-that of surgically shunting pancreatic blood into the systemic blood flow with the purpose of creating a more optimal interaction of subcutaneously administered insulin and pancreas-secreted glucagon. The long term results of the operation depend on the patency of a splenorenal anastomosis. This has been studied by following up 137 patients over periods from half a year to three years....

  20. Rheological and dynamical characterization of blood analogue flows in a slit

    International Nuclear Information System (INIS)

    Highlights: • We study blood analogue potential of H2O/glycerine/xanthan mixtures through viscosity. • Water/glycerine (35% w/w)/xanthan (0.02% w/w) solution mimics well blood viscosity. • We characterize dynamics of blood analogue flows in open slits with μPIV and CFD. • Results refer to flow rates 4.3 ⩽ Q ⩽ 25.3 L/h. • Wall shear stresses are bellow haemolysis threshold but may trigger thrombus formation. - Abstract: Thrombus formation and haemolysis are blood destructive phenomena depending on the flow hydrodynamics, particularly the shear stresses. This work addresses this issue by characterizing experimentally (using the micro-PIV technique) and numerically (using CFD) steady-state Newtonian (water and water/glycerine solutions) fluid flows and non-Newtonian (water/glycerine/xanthan) blood analogue flows, in a slit with a height of 1.3 mm and a width of 30 mm. The results obtained may provide useful information in the design of extracorporeal devices manipulating blood for diagnosis and therapeutics. Results from CFD showed that the Herschel–Bulkley viscosity model yields velocity predictions in excellent agreement with the experimental data obtained with the micro-PIV. Viscosity measurements evidenced that the water/glycerine (35% w/w)/xanthan (0.02% w/w) solution mimics well the blood global viscosity, exhibiting velocity profile shapes in fully developed flows flattened at the centre, typical of shear-thinning fluids. The maximum shear stresses obtained experimentally (1.39–3.11 Pa) for the blood analogue flows at the studied rates (6.7–25.3 L/h) evidence that haemolysis is unlikely to occur since lysis threshold values are 150 Pa for erythrocytes, 10 Pa for leucocytes and 7.5 Pa for platelets. However, the smallest flow rate cases may be of concern in blood circulation by yielding clot formation near the walls since the shear stresses there are bellow the thrombus/coagulation threshold (1.0–1.8 Pa)

  1. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    Science.gov (United States)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  2. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L;

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an approximately 20-fold increase (P ...-blockade group vs. the control group, hormones, metabolites, VO(2), and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 +/- 0.12, ACE blockade; 1.59 +/- 0.18 l/min, control) decreased during moderate exercise (0.78 +/- 0.07, ACE...

  3. Regional cerebral blood flow studies in patients with pituitary tumours

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured in seven patients with pituitary tumours, in one patient with a craniopharyngioma, and in one patient with an empty sella; rCB was increased only in patients with gonadotrophin deficiency. The preliminary conclusion is that this is perhaps related to the pituitary tumour itself, and in particular to the endocrine state. (author)

  4. Regional cerebral blood flow in primary degenerative dementia

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was examined, using SPECT by Xe-133 inhalation, in patients with primary degenerative dementia who were subgrouped according to predominant symptoms with respect to amnesia, apraxia, agnosia, aphasia, and personality changes. Also the effect of sex and age at dementia onset on the rCBF patterns was assessed. (author). 26 refs.; 1 fig.; 7 tabs

  5. Nocturnal foot blood flow in patients with arterial insufficiency

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Tønnesen, K H

    1984-01-01

    Twenty-four hour continuous recording of xenon (133Xe) wash-out from the forefoot was performed on patients with normal circulations (n = 10) and on patients with different degrees of arterial insufficiency (n = 36). During day hours the calculated subcutaneous blood flow in the forefoot was on a...

  6. Cerebral blood flow in patients with dementia of Alzheimer's type

    DEFF Research Database (Denmark)

    Postiglione, A; Lassen, N A; Holman, B L

    1993-01-01

    In the normal brain as well as in Alzheimer's disease (AD), regional cerebral blood flow (CBF) is coupled to metabolic demand and, therefore, changes in CBF reflect variations in neuronal metabolism. The use of radionuclide techniques, such as positron emission tomography (PET) and single photon...

  7. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N;

    2011-01-01

    simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...

  8. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    Science.gov (United States)

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  9. Ascending aortic blood flow dynamics following intense exercise.

    Science.gov (United States)

    Kilgour, R D; Sellers, W R

    1990-10-01

    The purpose of this study was to compare and contrast aortic blood flow kinetics during recovery from intense aerobic (maximal oxygen uptake test) and anaerobic (Wingate anaerobic power test) exercise. Fifteen healthy male subjects (VO2max = 56.1 +/- 5.8 mk/kg/min) participated in this study. Beat-to-beat peak aortic blood flow velocity (pkV) and acceleration (pkA) measurements were obtained by placing a 3.0 MHz continuous-wave ultrasonic transducer on the suprasternal notch at rest and during recovery (immediately post-exercise, 2.5 min, and 5.0 min) following the two exercise conditions. Peak velocity and acceleration significantly increased (p less than 0.01) from rest to immediately post-exercise and remained elevated throughout the 5-min recovery period. No differences were observed between the aerobic and anaerobic tests. Stroke distance significantly declined (p less than 0.01) immediately following exercise and progressively rose during the 5-min recovery period. The results indicate that: 1) aortic blood flow kinetics remained elevated during short-term recovery, and 2) intense aerobic and anaerobic exercise exhibit similar post-exercise aortic blood flow kinetics. PMID:2262232

  10. Age and gender related differences in aortic blood flow

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-01-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work is to investi...

  11. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  12. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...... functioning synthetic aperture scanner can be made...

  13. Velocity estimation using synthetic aperture imaging [blood flow

    OpenAIRE

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully functioning synthetic aperture scanner can be made

  14. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    To determine whether externally monitored early renal uptake of 131I-hippurate is proportional to renal blood flow, the renal uptake of 131-hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131I-hippurate, about 1 μCi of either 85Sr- or 95Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131I-hippurate

  15. Cerebral blood flow measurements using electron beam computed tomography (EBT)

    International Nuclear Information System (INIS)

    In close collaboration with the participants of the TEMPUS-Project Nr. 11117 a new technical and theoretical approach was developed to estimate cerebral blood flow using i.v. applied contrast agent and evaluating the cerebral time density curves using EBT as imaging method. This new approach and first clinical results are described. (author)

  16. Modeling of human colonic blood flow for a novel artificial anal sphincter system

    Institute of Scientific and Technical Information of China (English)

    Peng ZAN; Guo-zheng YAN; Hua LIU

    2008-01-01

    A novel artificial anal sphincter system has been developed to simulate the normal physiology of the human anorectum. With the goal of engineering a safe and reliable device, the model of human colonic blood flow has been built and the relationship between the colonic blood flow rate and the operating occlusion pressure of the anorectum is achieved. The tissue ischemia is analyzed based on constitutive relations for human anorectum. The results suggest that at the planned operating occlusion pressure of less than 4 kPa the artificial anal sphincter should not risk the vaseularity of the human colon.

  17. Caffeine and human cerebral blood flow: A positron emission tomography study

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased paCO2 and increased systolic blood pressure significantly; the change in paCO2 did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed

  18. 中空纤维透析器清除率与血液流率关系研究%Research of the Relationship Between Clearance and Blood Flow Rate of Hollow Fiber Dialysers

    Institute of Scientific and Technical Information of China (English)

    吴静标; 何晓帆; 胡相华; 田莉艳; 蓝建华; 罗洁伟

    2014-01-01

    中空纤维透析器是血液净化透析治疗中的重要组成部分,而超滤率和清除率是评价透析器治疗效果的两大性能指标。本文使用膜面积相等、同为高通量的三种不同材料透析器(三醋酸纤维透析器、聚醚砜透析器与聚砜透析器)作为实验材料,测试并比较三种材料透析器对小分子代表物质(尿素、肌酐)和中分子代表物质(磷酸盐、维生素B12)的清除率,以及血液流率与清除率之间的相关关系,以期对透析器的临床使用及国内透析器制备行业的发展等提供参考性建议。%Hol ow ifber dialyser is an important part of blood puriifcation dialysis, ultraifltration rate and clearance are two performance indexes to evaluate the treatment effect of dialyser. Equal, this article USES the membrane area with high lfux of three different materials dialyser (3 acetate ifber dialyser, polyether sulfone dialyser and polysulfone dialyser) as experiment material, test and compare the three kinds of material dialyser for smal molecules on behalf of the molecules of a material (urea and creatinine) and on behalf of the material (clearance, phosphate, vitamin B12) and blood lfow velocity and clearance of the relationship between, to the clinical use of dialyser and improvement direction of dialysis membrane preparation to provide reference suggestion.

  19. Effects of midazolam on cerebral blood flow in human volunteers

    International Nuclear Information System (INIS)

    The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the 133Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension

  20. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models.

    Science.gov (United States)

    Mann, D E; Tarbell, J M

    1990-01-01

    The influence of non-Newtonian rheology on wall shear rate in steady and oscillatory flow through rigid curved and straight artery models was studied experimentally. Wall shear rates measured by flush mounted hot film anemometry under nearly identical flow conditions are reported for the following four fluids: aqueous glycerin (Newtonian), aqueous polyacrylamide (shear thinning, highly elastic), aqueous Xanthan gum (shear thinning, moderately elastic), and bovine blood. For steady flow conditions there was little difference at any measurement site in the wall shear rate levels measured for the four fluids. However, large differences were apparent for oscillatory flows, particularly at the inner curvature 180 degrees from the entrance of the curved artery model. At that position the peak wall shear rate for polyacrylamide was 5-6 times higher than for glycerin and 2-3 times higher than for bovine blood. It is concluded that polyacylamide is too elastic to provide a good model of blood flow under oscillatory conditions, particularly when there is wall shear reversal. Xanthan gum and glycerin are better analog fluids, but neither is entirely satisfactory. PMID:2271763

  1. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    Science.gov (United States)

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations. PMID:18794967

  2. Effect of somatostatin analogue 201-995 on blood flow to endocrine tumors

    International Nuclear Information System (INIS)

    The analogue of somatostatin inhibits gastroenteropancreatic tumor hormone secretions and may inhibit tumor growth, but no direct actions have been observed. The authors postulate that the effects of somatostatin are mediated by reducing tumor blood flow. This was evaluated with angiography before and after administration of somatostatin in five patients: two with gastrinomas, one with carcinoid, one with Vipoma, and one with an occult insulinoma. In three patients with hepatic metastases and one with a primary benign intrahepatic gastrinoma, a subcutaneous dose of 100 μg of somatostatin decreased tumor blood flow, an effect observed within 45 minutes and persisting for up to 2 hours. Parallel reductions in hormone secretion, symptoms, and tumor size were observed. The Vipoma infarcted within 3 months of treatment. In contrast, somatostatin had no vascular effects on a primary pancreatic carcinoma. The authors' data suggest that somatostatin may slow the rate of tumor growth or even cause regression by reducing blood flow

  3. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B;

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours for postopera......Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...... than 0.03) in the other five patients as the level of sensory analgesia regressed postoperatively. These data suggest that changes in epidural blood flow during continuous epidural infusion of bupivacaine, and thus changes in rates of vascular absorption of bupivacaine from the epidural space, may...

  4. The effect of rapid decompression on femur blood flow of rabbits

    International Nuclear Information System (INIS)

    PURPOSE: To study the influence of regional blood flow in femur trochanter (FT) of rabbits' under rapid decompression after exposure to hyperbaric air. METHODS: Rabbits were placed in a hyperbaric chamber and exposed to the pressure of 0.5 MPa for 1.5 h, and the pressure was reduced to the atmosphere pressure at a uniform rate of 0.03 mPa/min. The regional blood flow of FT in rabbits were measured with 133Xe washout methods. RESULTS: The normal average regional blood flow in left and right FT were 14.5 +- 1.7 and 14.1 +- 1.9 ml/(min·100g) respectively. After exposure to hyperbaric air with rapid decompression, the average regional blood flow of left and right FT were 11.1 +- 1.2 and 10.5 +- 1.6 ml/(min·100g) respectively. But the symptoms of dysbarism in these rabbits were various each other. CONCLUSIONS: After being exposed to hyperbaric air with rapid decompression, the blood flow of rabbits' femur trochanter were noticeably reduced

  5. Cerebral blood flow mapping in children with sickle cell disease

    International Nuclear Information System (INIS)

    A cerebral blood flow mapping system was applied to the evaluation of cerebral blood flow (CBF) in 21 patients with sickle cell cerebrovascular disease, by means of a Picker xenon computed tomographic (CT) scanner. Results indicate that (1) xenon CT is a safe and reliable procedure in children with cerebrovascular diseases; (2) CBF in the gray matter of children seems to be higher than in previously reported data obtained with use of isotopes; and (3) regional CBF can be altered significantly by changing the size of the region of interest (ROI). The term regional CBF probably has to be carefully defined in xenon CT flow mapping. Correlation with anatomy by means of CT or magnetic resonance imaging and comparison with the ROI of the contralateral side and/or adjacent sections is important

  6. Determination of uteroplacental blood flow by a radionuclide technique

    International Nuclear Information System (INIS)

    The placental blood flow was determined using a non-invasive radioisotopic approach, with the intravenous administration of 113mIn (37 MBq). The method was employed in 20 normal pregnancies, in 24 patients with intrauterine growth retardation, in 8 patients with iso-Rh-incompatibility and in 9 patients with gestational diabetes. In the group with intrauterine growth retardation 2 pregnancies with extensive fetal malformations were included. In one case without evident histological placental alteration the index was 3.94 at 34 weeks of gestation and 5.62 at 36 weeks of gestation. In the second one with placental infarcts the index was 3.46 at 38 weeks of gestation. Normal pregnancies showed a flow index of 5.50 ± 1.57 units compared to the pathological pregnancies value of 2.74 ± 0.90 units. The method is very well suited to clinical evaluation of placental blood flow. (author)

  7. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  8. Comparison of obstructing blood flow interventional embolectomy and simple interventional embolectomy for acute lower limb arterial embolism

    International Nuclear Information System (INIS)

    Objective: To evaluate the effects (mortality, amputation rate, the length and expense of hospital stay, etc)of the obstructing blood flow interventional embolectomy and simple interventional embolectomy for acute lower limb arterial embolism. Methods: 79 cases of acute lower limb arterial embolism including 23 cases of two sites puncturing and obstructing blood flow interventional embolectomy and 56 cases treated by simple interventional embolectomy were retrospectively analyzed and compared. Results: Embolisms were removed in all 79 cases and arteries were reopened successfully. The mortality and the amputation rates of the simple and the obstructing blood flow embolectomies were 5.36%, 19.6%, and 4.35%, 8.70% respectively. Conclusion: Two sites puncturing and obstructing blood flow interventional embolectomy for acute lower limb arterial embolism is simple, safe and effective, comparing with the simple interventional embolectomy, with lower amputation rate, quicker recovery and lower expense, however with no statistical significance in mortalities. (authors)

  9. High-frequency photoacoustic imaging of erythrocyte aggregation and oxygen saturation: probing hemodynamic relations under pulsatile blood flow

    Science.gov (United States)

    Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.

    2015-03-01

    In this paper, we investigate the feasibility of high-frequency photoacoustic (PA) imaging to study the shear rate dependent relationship between red blood cell (RBC) aggregation and oxygen saturation (SO2) in a simulated blood flow system. The PA signal amplitude increased during the formation of aggregates and cyclically varied at intervals corresponding to the beat rate (30, 60, 120, 180 and 240 bpm) for all optical wavelengths of illumination (750 and 850 nm).The SO2 also cyclically varied in phase with the PA signal amplitude for all beat rates. In addition, the mean blood flow velocity cyclically varied at the same interval of beat rate, and the shear rate (i.e. the radial gradient of flow velocity) also cyclically varied. On the other hand, the phase of the cyclic variation in the shear rate was reversed compared to that in the PA signal amplitude. This study indicates that RBC aggregation induced by periodic changes in the shear rate can be correlated with the SO2 under pulsatile blood flow. Furthermore, PA imaging of flowing blood may be capable of providing a new biomarker for the clinical application in terms of monitoring blood viscosity, oxygen delivery and their correlation.

  10. Fast blood flow monitoring in deep tissues with real-time software correlators

    Science.gov (United States)

    Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.

    2016-01-01

    We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588

  11. In vitro validation of volumetric blood flow measurement using Doppler flow wire.

    Science.gov (United States)

    Jenni, R; Kaufmann, P A; Jiang, Z; Attenhofer, C; Linka, A; Mandinov, L

    2000-10-01

    Determination of any volumetric blood flow requires assessment of mean blood flow velocity and vessel cross-sectional area. For evaluation of coronary blood flow and flow reserve, however, assessment of average peak velocity alone is widely used, but changes in velocity profile and vessel area are not taken into account. We studied the feasibility of a new method for calculation of volumetric blood flow by Doppler power using a Doppler flow wire. An in vitro model with serially connected silicone tubes of known lumen diameters (1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mm) and pulsatile blood flow ranging from 10 to 200 mL/min was used. A Doppler flow wire was connected to a commercially available Doppler system (FloMap(R), Cardiometrics) for online calculation of the zeroth (M(0)) and the first (M(1)) Doppler moment, as well as mean flow velocity (V(m)). Two different groups of sample volumes (at different gate depths) were used: 1. two proximal sample volumes lying completely within the vessel were required to evaluate the effect of scattering and attenuation on Doppler power, and 2. distal sample volumes intersecting completely the vessel lumen to assess the vessel cross-sectional area. Area (using M(0)) and V(m) (using M(1)/M(0)) obtained from the distal gates were corrected for scattering and attenuation by the data obtained from the proximal gates, allowing calculation of absolute volumetric flow. These results were compared to the respective time collected flow. Correlation between time collected and Doppler-derived flow measurements was 0.98 (p measurements in each individual tube. The mean paired flow difference between the two techniques was 1.5 +/- 9.0 mL/min (ns). Direct volumetric blood flow measurement from received Doppler power using a Doppler flow wire system is feasible. This technique may potentially be of great clinical value because it allows an accurate assessment of coronary flow and flow reserve with a commercially available flow wire system. PMID

  12. Radioisotope penile plethysmography: Technique for evaluating corpora cavernosal blood flow during early tumescence in patients with erectile dysfunction

    International Nuclear Information System (INIS)

    Radioisotope penile plethysmography is a new adaptation of technetium-labeled red blood cell imaging. It is designed to assess penile corpora cavernosal blood flow during early tumescence in patients with erectile dysfunction. Peak corporal flow rates and volume changes in the penis were analyzed and compared with arterial integrity (arteriography) and venous-sinusoidal competence (cavernosometry). Peak corporal flow rates correlated most accurately with arterial integrity (r =.01). No significant correlation was identified with venous leakage variables (r =.01) The significant correlation of peak corporal flow and arteriography suggests that radioisotope penile plethysmography may assist in the evaluation of arterial inflow disorders in patients with erectile dysfunction

  13. Cerebral blood flow in migraine and cortical spreading depression

    International Nuclear Information System (INIS)

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evaluation. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon133 into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm2 providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon133 was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate whether this phenomenon could explain the blood flow changes in migraine. (14C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and λ. (EG)

  14. Assessment of maternal cerebral blood flow in patients with preeclampsia

    Directory of Open Access Journals (Sweden)

    Mandić Vesna

    2005-01-01

    Full Text Available Introduction Systemic vasoconstrktion in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA in severe preeclampsia due to: 1 severity of clinical symptoms, 2 the beginning of eclamptic attack and 3 the application of anticonvidsive therapy. Material and methods A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30, mild preeclampsia (n=33, and severe preeclampsia (n=29. We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi, resistance index (Ri, Systolic/diastolic ratio (S/D, and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups: subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%; while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%. All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4, and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p < 0.05. Results Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia. After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. Discussion In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in

  15. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    Science.gov (United States)

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump. PMID:22040356

  16. CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease

    Science.gov (United States)

    Sharifi, Alireza; Charjouei Moghadam, Mohammad

    2016-01-01

    Introduction: Buerger’s disease is an occlusive arterial disease that occurs mainly in medium and small vessels. This disease is associated with Tobacco usage. The existence of corkscrew collateral is one of the established characteristics of the Buerger’s disease. Methods: In this study, the computational fluid dynamics (CFD) simulation of blood flow within the corkscrew artery of the Buerger’s disease is conducted. The geometry of the artery is constructed based on the actual corkscrew artery of a patient diagnosed with the Buerger’s disease. The blood properties are the same as the actual blood properties of the patient. The blood flow rate is taken from the available experimental data in the literature. Results: The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. Conclusion: It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered. PMID:27340623

  17. INDIVIDUAL-TYPOLOGICAL FEATURES OF BLOOD FLOW AND VASCULAR REACTIVITY IN FEMALE STUDENTS

    Directory of Open Access Journals (Sweden)

    Horban D. D.

    2014-12-01

    Full Text Available The study of functional state of the microcirculation in the female body by laser Doppler flux-metry (LDF, which allows evaluating the state of the tissue blood flow and detecting signs of microcirculation changes under the influence of various factors were done. Studying individual typological features of blood circulation during recording LDF-grams in girl’s students, most of them recorded mainly of high LDF-grams with severe vasomotor waves of the second order. Parameter of microcirculation (PM of each blood flow ranged from 3.4 to 27.4 perf. ed.; on average it was 19,0 ± 0,43 perf. units. The level of tissue blood flow oscillations – SCR ranged from 0.57 to 3.23 perf. units., accounting for an average of 2,06 ± 0,05 perf. units. The coefficient of variation on average was 13,2 ± 0,51. We identified three types of LDF-grams, corresponding to different types of blood. We also determined the relationship of the thermal hyperemia with the phases of the menstrual cycle and daily dynamics of changes of microcirculation blood. Data on the peculiarities of microcirculation in female students have important theoretical and practical significance for understanding the mechanisms of regulation of tissue blood flow. The normative indicators of blood microcirculation of female students would much easier identify the functional changes in human body by using of non-invasive methods. The data on blood circulation in females can be used as standard rates of LDF measuring the study of pathological processes in medicine.

  18. Effects of Kaempferia parviflora extracts on reproductive parameters and spermatic blood flow in male rats.

    Science.gov (United States)

    Chaturapanich, G; Chaiyakul, S; Verawatnapakul, V; Pholpramool, C

    2008-10-01

    Krachaidum (KD, Kaempferia parviflora Wall. Ex. Baker), a native plant of Southeast Asia, is traditionally used to enhance male sexual function. However, only few scientific data in support of this anecdote have been reported. The present study investigated the effects of feeding three different extracts of KD (alcohol, hexane, and water extracts) for 3-5 weeks on the reproductive organs, the aphrodisiac activity, fertility, sperm motility, and blood flow to the testis of male rats. Sexual performances (mount latency, mount frequency, ejaculatory latency, post-ejaculatory latency) and sperm motility were assessed by a video camera and computer-assisted sperm analysis respectively, while blood flow to the testis was measured by a directional pulsed Doppler flowmeter. The results showed that all extracts of KD had virtually no effect on the reproductive organ weights even after 5 weeks. However, administration of the alcohol extract at a dose of 70 mg/kg body weight (BW)/day for 4 weeks significantly decreased mount and ejaculatory latencies when compared with the control. By contrast, hexane and water extracts had no influence on any sexual behavior parameters. All types of extracts of KD had no effect on fertility or sperm motility. On the other hand, alcohol extract produced a significant increase in blood flow to the testis without affecting the heart rate and mean arterial blood pressure. In a separate study, an acute effect of alcohol extract of KD on blood flow to the testis was investigated. Intravenous injection of KD at doses of 10, 20, and 40 mg/kg BW caused dose-dependent increases in blood flow to the testis. The results indicate that alcohol extract of KD had an aphrodisiac activity probably via a marked increase in blood flow to the testis. PMID:18614624

  19. 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch: Investigation of Non-Newtonian Characteristics of Human Blood

    CERN Document Server

    Sultanov, Renat A; Engelbrekt, Brent; Blankenbecler, Richard

    2008-01-01

    Methods of Computational Fluid Dynamics are applied to simulate pulsatile blood flow in human vessels and in the aortic arch. The non-Newtonian behaviour of the human blood is investigated in simple vessels of actual size. A detailed time-dependent mathematical convergence test has been carried out. The realistic pulsatile flow is used in all simulations. Results of computer simulations of the blood flow in vessels of two different geometries are presented. For pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and widely used method in literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, wall sear stress distribution, is found in the region of the aortic arch. We consider this result as theoretical evidence that supports existing clinical observations and those models not using non-Newtonian treatment underestimate the risk of disru...

  20. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2004-01-01

    Full Text Available Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14 was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14 were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1 basal (before ozone therapy, 2 after session #3 and 3 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001 and by 29% 1 week later (P = 0.039. In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001 and by 15% 1 week later (P = 0.035, whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001 and by 18% 1 week later (P = 0.023. This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  1. Measurement of limb blood flow using technetium-labelled red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, A; Robinson, P.J.; Wiggins, P.A.; Leveson, S.H.; Salter, M.C.P.; Matthews, I.F.; Ware, F.M.

    1986-05-01

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with /sup 99/Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4 +- 3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1 +- 2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain.

  2. The measurement of limb blood flow using technetium-labelled red blood cells

    International Nuclear Information System (INIS)

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with 99Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4+-3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1+-2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain. (author)

  3. Transcutaneous partial oxygen tension and skin blood flow monitoring: Continuous, noninvasive measures of cardiorespiratory change

    OpenAIRE

    Mark W. Greenlee; Akita, M.

    1985-01-01

    Transcutaneous partial oxygen tension (tc pO₂) and skin blood flow (via heat clearance) were measured noninvasively in 22 male subjects who performed stress-inducing tasks (i.e. hand-grip exercise, cold pressor test, breath holding, hyperventilation and mirror-tracing). An analysis of variance and covariance was conducted for tc pO₂ heat clearance, heart rate, respiration rate, finger pulse volume and systolic/diastolic blood pressure. Results indicate that tc pO₂ can depict phasic cardioresp...

  4. Occlusion-free Blood Flow Animation with Wall Thickness Visualization.

    Science.gov (United States)

    Lawonn, Kai; Glaßer, Sylvia; Vilanova, Anna; Preim, Bernhard; Isenberg, Tobias

    2016-01-01

    We present the first visualization tool that combines pathlines from blood flow and wall thickness information. Our method uses illustrative techniques to provide occlusion-free visualization of the flow. We thus offer medical researchers an effective visual analysis tool for aneurysm treatment risk assessment. Such aneurysms bear a high risk of rupture and significant treatment-related risks. Therefore, to get a fully informed decision it is essential to both investigate the vessel morphology and the hemodynamic data. Ongoing research emphasizes the importance of analyzing the wall thickness in risk assessment. Our combination of blood flow visualization and wall thickness representation is a significant improvement for the exploration and analysis of aneurysms. As all presented information is spatially intertwined, occlusion problems occur. We solve these occlusion problems by dynamic cutaway surfaces. We combine this approach with a glyph-based blood flow representation and a visual mapping of wall thickness onto the vessel surface. We developed a GPU-based implementation of our visualizations which facilitates wall thickness analysis through real-time rendering and flexible interactive data exploration mechanisms. We designed our techniques in collaboration with domain experts, and we provide details about the evaluation of the technique and tool. PMID:26529724

  5. Narcolepsy: regional cerebral blood flow during sleep and wakefulness

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Meyer, J.S.; Karacan, I.; Yamaguchi, F.; Yamamoto, M.

    1979-01-01

    Serial measurements of regional cerebral blood flow were made by the 135Xe inhalation method during the early stages of sleep and wakefulness in eight normal volunteers and 12 patients with narcolepsy. Electroencephalogram, electro-oculogram, and submental electromyogram were recorded simultaneously. In normals, mean hemispheric gray matter blood flow (Fg) during stages I and II sleep was significantly less than waking values. Maximum regional blood flow decreases during sleep occurred in the brainstem-cerebellar, right inferior temporal, and bilateral frontal regions. In patients with narcolepsy, mean hemispheric Fg while awake was 80.5 +- 13 ml per 100 gm brain per minute. During REM sleep, mean hemispheric Fg increased concurrently with large increases in brainstem-cerebellar region flow. During stages I and II sleep without REM, there were significant increases in mean hemispheric Fg and brainstem-cerebellar Fg, just the opposite of changes in normals. In narcolepsy, there appears to be a reversal of normal cerebral deactivation patterns, particularly involving the brainstem, during stages I and II sleep.

  6. Holographic laser Doppler imaging of pulsatile blood flow

    CERN Document Server

    Bencteux, Jeffrey; Kostas, Thomas; Bayat, Sam; Atlan, Michael

    2015-01-01

    We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second, and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

  7. Blood Flow Imaging in Maternal and Fetal Arteries and Veins

    Science.gov (United States)

    Ricci, S.; Urban, G.; Vergani, P.; Paidas, M. J.; Tortoli, P.

    Maternal and fetal blood circulation has been investigated for nearly a decade through ultrasound (US) techniques. Evaluation of the spectrogram related to a single sample volume has been proven valuable for the assessment of fetal well-being and for prediction of pregnancy complications. In this work, an alternative technique, called Multigate Spectral Doppler Analysis (MSDA), is proposed. In this approach, 128 sample volumes aligned along the same scan line are simultaneously investigated to detect the blood velocity profile with high resolution. Profiles obtained through MSDA reveal features not detectable with the standard US technique, thus representing a more accurate flow signature. Some preliminary illustrative results are reported here.

  8. Single-photon tomographic determination of regional cerebral blood flow in psychiatric disorders

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured by single-photon emission computed tomography (SPECT) of 133-Xe washout in 29 normal volunteers, 22 unipolar endogenous depressives (UPE), 9 unipolar nonendogenous depressives (UPNE), 13 bipolar depressed patients (BPD), and 14 schizophrenic patients (SCHZ). RCBF was measured 2 and 6 cm above and parallel to the cantho-meatal line and quantitated in 14 gray matter regions. Most subjects were drug-free for 4-14 days. Diagnoses were made by experienced clinicians employing the Research Diagnostic Criteria, the Hamilton Rating Scale, and the dexamethasone suppression test. SCHZ were rated with the Brief Psychiatric Rating Scale. UPE had reduced flow compared to normals in the right parietal and temporal lobes and a nonsignificant trend toward left temporal flow reductions. UPNE were not different from normal or other patient groups. BPD had significant flow elevations in the left hemisphere relative to normal, and in both hemispheres relative to UPE. SCHZ were not significantly different from normal or other patient groups. Anterior-posterior flow shifts were evaluated by subtracting parietal or temporal flows from frontal flows. SCHZ demonstrated a greater posterior shift (lower relative frontal lobe flow) in comparison to both UPE and UPNE. The most significant regional flow abnormalities were observed as frontal flow reductions in individual SCHZ, although these were not significant in the whole group in comparison to normal

  9. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  10. Effects of rotary speed and pressure changes of blood pump on flow rate base on two cascaded neural networks%基于两级级联神经网络估计血泵转速及压力变化对血流量的影响

    Institute of Scientific and Technical Information of China (English)

    轩艳姣; 常宇

    2011-01-01

    BACKGROUND: In clinical applications, the timely and accurate detection of the output flow of artificial heart is very necessary,as it is directly related to the effects of zoopery and clinical application. However, it is difficult to achieve.OBJECTIVE: To explore how cardiovascular hemodynamic parameters reflect the blood pump's working status during the process of assist circulation and obtain the neural network results which grasp the characteristics of the output flow of blood pump by experiments and theoretical analysis.METHODS: In order to estimate and test the working condition of the blood pump in ventricular assist device correctly, two types of neural networks were established, and the effects of changing rotary speed and pressu re on flow rate of the pump were estimated. In the first order, the flow rate affected by continuously changing blood pressure at different rotational speed was estimated by the BP neural network. In the second order, radial basis function neural network was applied to estimate the flow rate of the pump at different rotational speed of the blood pump.RESULTS AND CONCLUSION: This method showed a better estimation ability to estimate the flow rate according to different rotational speed and blood pressure compared with previous methods.%背景:对人工心脏输出流量进行及时精确的检测直接关系到人工心脏在动物实验及临床应用中的效果,但实现起来却比较困难.目的:探究辅助循环过程中,心血管血流动力学参数如何反映血泵的工作状态?通过体外辅助循环实验,结合理论分析法,以得到掌握血泵流量特性的神经网络结果.方法:为了正确地评估和检测心室辅助装置中血泵的工作状态,建立两种不同类型的神经网络级联模型,评估血泵转速、压力的连续变化对流量的影响.在第一级中,运用BP神经网络来评估在血泵不同转速下连续变化的压力对流量的影响;在第二级中,运用径向基网络

  11. Relations of blood pressure and head injury to regional cerebral blood flow.

    Science.gov (United States)

    Kisser, Jason E; Allen, Allyssa J; Katzel, Leslie I; Wendell, Carrington R; Siegel, Eliot L; Lefkowitz, David; Waldstein, Shari R

    2016-06-15

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults - 69% men, 90% white, mean age=66.9years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness ≤30min resulting from an injury to the head, and free of major medical (other than hypertension), neurological or psychiatric comorbidities. All engaged in clinical assessment of systolic and diastolic blood pressure (SBP, DBP) and single photon emission computed tomography (SPECT). Computerized coding of the SPECT images yielded relative ratios of blood flow in left and right cortical and select subcortical regions. Cerebellum served as the denominator. Sex-stratified multiple regression analyses, adjusted for age, education, race, alcohol consumption, smoking status, and depressive symptomatology, revealed significant interactions of blood pressure and head injury to cerebral blood flow in men only. Specifically, among men with a history of head injury, higher systolic blood pressure was associated with lower levels of perfusion in the left orbital (β=-3.21, p=0.024) and left dorsolateral (β=-2.61, p=0.042) prefrontal cortex, and left temporal cortex (β=-3.36, p=0.014); higher diastolic blood pressure was marginally associated with lower levels of perfusion in the left dorsolateral prefrontal cortex (β=-2.79, p=0.051). Results indicate that men with a history of head injury may be particularly vulnerable to the impact of higher blood pressure on cerebral perfusion in left anterior cortical regions, thus potentially enhancing risk for adverse brain and neurocognitive outcomes. PMID:27206865

  12. Modeling of the blood rheology in steady-state shear flows

    International Nuclear Information System (INIS)

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling

  13. Modeling of the blood rheology in steady-state shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Alex J.; Beris, Antony N., E-mail: beris@udel.edu [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  14. Analysis of blood flow dynamics in the abdominal aorta based on MR images

    International Nuclear Information System (INIS)

    Images of the abdominal aorta including peri-renal artery by PCMRA (phase contrast magnetic resonance angiography) were analyzed to calculate WSS (wall shear stress) and its OSI (oscillatory shear index) in order to visually elucidate the cause of aneurysm formation. PCMRA was conducted for acquisitions of vascular morphology in one cardiac cycle of a healthy male 30s with cardiac gating, and of blood flow rates from 3 directions. Images were median-filtered to reduce noises and regions of interest of rectangular parallelepiped were defined to involve the aorta. WSS, the parameter representing the intensity of friction stress to the vessel wall of blood flow, and OSI, the degree of oscillatory WSS change, were calculated firstly by the reported Snake model for the vessel morphology and then by applying its local information to blood flow rate information from 3 directions. Color-displayed images revealed that both WSS and OS were high at the highest incidental region of aortic aneurysm formation around the peri-renal artery. The finding was in good agreement with the result of computed bio-dynamic simulation that the strong WSS by elevated swirling of blood flow is generated at the region. Thus WSS and OS can be significant factors of aneurismal formation, which should be further confirmed from aspects of increased case number and precision. (T.T.)

  15. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    Science.gov (United States)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  16. Regional cerebral blood flow after hemorrhagic hypotension in the preterm, near-term, and newborn lamb.

    Science.gov (United States)

    Szymonowicz, W; Walker, A M; Yu, V Y; Stewart, M L; Cannata, J; Cussen, L

    1990-10-01

    Developmental changes in regional cerebral blood flow (CBF) responses to hemorrhagic hypotension during normoxia and normocapnia were determined using radioactively labeled microspheres to measure flow to the cortex, brainstem, cerebellum, white matter, caudate nucleus, and choroid plexus in three groups of chronically catheterized lambs: 90- to 100-d preterm fetal lambs (n = 9); 125- to 136-d near-term fetal lambs (n = 9); and newborn lambs 5- to 35-d-old (n = 8). Heart rate, central venous pressure, and arterial blood pressure were monitored continuously and arterial blood gas tensions, pH, Hb, and oxygen saturation together with regional CBF were measured periodically. Hemorrhagic hypotension produced a mean decrease in arterial blood pressure of 27 +/- 4, 23 +/- 2, and 41 +/- 4% in the three groups, respectively, whereas reinfusion of the lamb's blood resulted in a return to control blood pressure within 3% in all three groups. In the pre-term fetal lamb, CBF decreased significantly in all regions during hypotension. In the near-term fetal lamb, only blood flow to the cortex decreased significantly during hypotension. In the newborn lamb, only the choroid plexus demonstrated a significant decrease in blood flow during hypotension. The lower limit of regional CBF autoregulation was identical to the resting mean arterial pressure in fetal life but significantly lower in newborn lambs. These experiments demonstrate for the first time that vulnerability to hypotension decreases with increasing maturity and that the brainstem, the phylogenetically oldest region of the brain, is the least vulnerable to the effects of hypotension at any age in the lamb model. PMID:2235134

  17. Effects of Heat Stress on Ocular Blood Flow During Exhaustive Exercise

    Directory of Open Access Journals (Sweden)

    Tsukasa Ikemura

    2014-03-01

    Full Text Available The hypothesis that heat stress reduces the ocular blood flow response to exhaustive exercise was tested by measuring ocular blood flow, blood pressure, and end- tidal carbon dioxide partial pressure (PETCO2 in 12 healthy males while they performed cycle ergometer exercise at 75% of the maximal heart rate at ambient temperatures of 20°C (control condition and 35°C (heat condition, until exhaustion. The blood flows in the retinal and choroidal vasculature (RCV, the superior temporal retinal arteriole (STRA and the superior nasal retinal arteriole (SNRA were recorded at rest and at 6 and 16 min after the start of exercise period and at exhaustion [after 16 ± 2 min (mean ± SE and 24 ± 3 min of exercise in the heat and control condition, respectively]. The mean arterial pressure at exhaustion was significantly lower in the heat condition than in the control condition at both 16 min and exhaustion. The degree of PETCO2 reduction did not differ significantly between the two thermal conditions at either 16 min or exhaustion. The blood flow velocity in the RCV significantly increased from the resting baseline value at 6 min in both thermal conditions (32 ± 6% and 25 ± 5% at 20°C and 35°C, respectively. However, at 16 min the increase in RCV blood flow velocity had returned to the resting baseline level only in the heat condition. At exhaustion, the blood flows in the STRA and SNRA had decreased significantly from the resting baseline value in the heat condition (STRA: -19 ± 5% and SNRA: -30 ± 6%, and SNRA blood flow was lower than that in the control condition (-14 ± 6% vs -30 ± 6% at 20°C and 35°C, respectively, despite the finding that both thermal conditions induced the same reductions in PETCO2 and vascular conductance. These findings suggested that the heat condition decreases or suppresses ocular blood flow via attenuation of pressor response during exhaustive exercise.

  18. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    Science.gov (United States)

    Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.

    2014-03-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.

  19. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R; Hancke, B; Madsen, P L; Friberg, L

    1993-01-01

    This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized on electroencepha......This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized on...... electroencephalography, the regional neuronal activity expressed as rCBF unexpectedly was markedly asymmetrical in one of the cases. These findings demonstrated that the 99mTc-HMPAO technique makes it possible to discriminate intraictal variation in cortical and subcortical activation between the hemispheres during...

  20. Subcutaneous blood flow in early male pattern baldness

    International Nuclear Information System (INIS)

    The subcutaneous blood flow (SBF) was measured by the 133Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness

  1. Pulmonary blood flow distribution measured by radionuclide computed tomography

    International Nuclear Information System (INIS)

    Distributions of pulmonary blood flow per unit lung volume were measured in sitting patients with a radionuclide computed tomography (RCT) by intravenously administered Tc-99m macroaggregates of human serum albumin (MAA). Four different types of distribution were distinguished, among which a group referred as type 2 had a three zonal blood flow distribution as previously reported (West and co-workers, 1964). The pulmonary arterial pressure (Pa) and the venous pressure (Pv) were determined in this group of distribution. These values showed satifactory agreements with the pulmonary artery pressure (Par) and the capillary wedged pressure (Pcw) measured by Swan-Ganz catheter in eighteen supine patients. Those good correlations enable to establish a noninvasive methodology for measurement of pulmonary vascular pressures

  2. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  3. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation......In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...

  4. Contribution of transient blood flow to tumour hypoxia in mice

    International Nuclear Information System (INIS)

    Tumours grown in mice typically exhibit regions of hypoxia believed to result from two different processes: chronic oxygen deprivation due to consumption/diffusion limitations, and periodic deprivation resulting from transient reductions in tumour blood flow. The relative contribution of each is, however, not generally known. We have addressed this issue in transplanted SCCVII squamous cell carcinomas in C3H mice, using a quantitative extension of the fluorescence 'mismatch' technique coupled with cell sorting from irradiated tumours. At least half of the vessels in these tumours exhibit transient perfusion changes. Additionally, a majority of the 15-20% of cells that are sufficiently hypoxic to be resistant to radiation in the SCCVII tumours appear to result from cyclic, not continuous (diffusion-limited) hypoxia. Since different strategies may be necessary to counteract cyclic hypoxia in tumours, the possibility of transient blood flow changes should not be ignored when planning cancer therapy for humans. (orig.)

  5. Subcutaneous blood flow in early male pattern baldness

    Energy Technology Data Exchange (ETDEWEB)

    Klemp, P.; Peters, K.; Hansted, B.

    1989-05-01

    The subcutaneous blood flow (SBF) was measured by the /sup 133/Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness.

  6. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov;

    2008-01-01

    . Finally, the common carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the...... blood flow approximately followed the vessel wall, and that maximum velocity was approximately 1 m/s, which is a normal value for a healthy person. To further evaluate the method, the test person was scanned with magnetic resonance (MR) angiography. The volume flow derived from the MR scanning was...

  7. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart.

    Directory of Open Access Journals (Sweden)

    Julien Vermot

    2009-11-01

    Full Text Available Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis.

  8. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per;

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... ultrasound. From the same data the mean standard deviation of the flow angles (MSTDA) were calculated and compared to the expert evaluations. Comparison between the combined experts evaluations and the MSTDA was performed. Using linear regression analysis, a correlation coefficient of 0.925 was found....... The upper and lower bounds for a 95% confidence interval of 0.974 and 0.792 respectively, were calculated. The MSTDA was below 25 for the common carotid artery and above 25 for the carotid bulb. Thus, the MSTDA value can distinguishing complex flow from non-complex flow and can be used as the basis...

  9. Gastric emptying, postprandial blood pressure, glycaemia and splanchnic flow in Parkinson’s disease

    Science.gov (United States)

    Trahair, Laurence G; Kimber, Thomas E; Flabouris, Katerina; Horowitz, Michael; Jones, Karen L

    2016-01-01

    AIM: To determine gastric emptying, blood pressure, mesenteric artery blood flow, and blood glucose responses to oral glucose in Parkinson’s disease. METHODS: Twenty-one subjects (13 M, 8 F; age 64.2 ± 1.6 years) with mild to moderate Parkinson’s disease (Hoehn and Yahr score 1.4 ± 0.1, duration of known disease 6.3 ± 0.9 years) consumed a 75 g glucose drink, labelled with 20 MBq 99mTc-calcium phytate. Gastric emptying was quantified with scintigraphy, blood pressure and heart rate with an automated device, superior mesenteric artery blood flow by Doppler ultrasonography and blood glucose by glucometer for 180 min. Autonomic nerve function was evaluated with cardiovascular reflex tests and upper gastrointestinal symptoms by questionnaire. RESULTS: The mean gastric half-emptying time was 106 ± 9.1 min, gastric emptying was abnormally delayed in 3 subjects (14%). Systolic and diastolic blood pressure fell (P Parkinson’s disease, gastric emptying is related to autonomic dysfunction and a determinant of the glycaemic response to oral glucose.

  10. Regional blood flow in rats after a single low-protein, high-carbohydrate test meal.

    Science.gov (United States)

    Glick, Z; Wickler, S J; Stern, J S; Horwitz, B A

    1984-07-01

    It was previously observed that a single low-protein, high-carbohydrate test meal results in increased in vitro thermic activity of brown adipose tissue. In the present study, we have examined whether such a meal increases the in vivo thermic activity, estimated from measurement of the rate of blood flow. With radioactively labeled microspheres, blood flows into brown fat and several other tissues were determined in meal-deprived (n = 11) and meal-fed (n = 11) rats. The microspheres were injected into the heart of anesthetized animals about 2-2.5 h after the test meal, one injection in the resting state and one during maximal norepinephrine stimulation. In the resting state, blood flow per gram tissue more than doubled in the brown fat (P less than 0.05) and was increased more than 50% in the heart (P less than 0.01) of the fed group. Blood flows into liver and retroperitoneal white fat were reduced by 40 (P less than 0.01) and 30%, respectively, in the fed group. During norepinephrine infusion, significant meal-associated increases in blood flow were evident only in brown fat (P less than 0.05) and the soleus muscle (P less than 0.05), whereas a significant decrease was observed in the liver (P less than 0.05). No statistically significant meal-associated changes in norepinephrine-stimulated blood flow were found in the other tissues examined (i.e., heart, gastrocnemius, and diaphragm muscles, kidneys, white fat, spleen, and adrenals). Our in vivo data thus support the view that brown fat plays a role in the thermic effect of a meal. PMID:6742226

  11. Cerebral blood flow and mental processes in schizophrenia.

    OpenAIRE

    Liddle, P F; Friston, K.J.; Frith, C D; Frackowiak, R S

    1992-01-01

    The patterns of cerebral blood flow associated with three syndromes of schizophrenic symptoms are compared with the loci of cerebral activation in normal subjects during the performance of mental processes implicated in the three syndromes. The psychomotor poverty syndrome, which has been shown to involve a diminished ability to generate words, is associated with decreased perfusion of the dorsolateral prefrontal cortex at a locus which is activated in normal subjects during the internal gene...

  12. Myocardial blood flow and metabolism in left ventricular ischemic dysfunction

    OpenAIRE

    Vanoverschelde, Jean-Louis

    1995-01-01

    Due to its inherent truly quantitative capabilities, its noninvasive nature and its nondestructive characteristics, PET has emerged as a unique investigative tool for the assessment and quantification of myocardial blood flow and metabolism in man. The present thesis reviews some of the insights gained with the use of PET into the pathophysiology of regional left ventricular ischemic dysfunction. Chapters 1 and 2 dealt with definitions and specific issues pertinent to the pathophysiologic...

  13. Feasibility of patient specific aortic blood flow CFD simulation.

    Science.gov (United States)

    Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts

    2006-01-01

    Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data. PMID:17354898

  14. Determination of cerebral blood flow with the EMI CT scanner

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF) determinations were made in seven baboons and two patients with the EMI CT dedicated head scanner. The method for determining the CBF was tested and measurements were made during physiological states elicited by changes in pCO2 and depth of anaesthesia. The method has a number of advantages, particularly for assessing CBF responses to pCO2 changes. (author)

  15. Flow of red blood cells in capillary networks

    OpenAIRE

    Couto, Ana; Teixeira, Lúcia; Leble, Vladimir; Lima, R.; Ribeiro, António E.; Dias, Ricardo

    2011-01-01

    In the present work we have studied the flow of red blood cells through a column packed with soda lime glass spheres with diameter of 337.5 micron (pore diameter 150 micron). The ratio between the average velocity of the RBCs and the average velocity of the carrying fluid (physiological saline) was close to 0.9. The RBCs migrated faster through the column than the carrying fluid mainly due to a hydrodynamic chromatographic effect.

  16. CEREBRAL BLOOD FLOW AND METABOLISM IN ANXIETY AND ANXIETY DISORDERS

    OpenAIRE

    Mathew, Roy J.

    1994-01-01

    Anxiety disorders are some of the commonest psychiatric disorders and anxiety commonly co-exists with other psychiatric conditions. Anxiety can also be a normal emotion. Thus, study of the neurobiological effects of anxiety is of considerable significance. In the normal brain, cerebral blood flow (CBF) and metabolism (CMR) serve as indices of brain function. CBF/CMR research is expected to provide new insight into alterations in brain function in anxiety disorders and other psychiatric disord...

  17. Pulsatile ocular blood flow in subjects with sleep apnoea syndrome

    OpenAIRE

    Nowak, Michal S.; Jurowski, Piotr; Gos, Roman; Prost, Marek E.; Smigielski, Janusz

    2011-01-01

    Introduction The aim of the study was to determine the correlation between pulsatile ocular blood flow (POBF) and sleep apnoea syndrome (SAS). Material and methods Patients were recruited from those who underwent polysomnography in the “Sleep Unit” of the physiology department (Medical University, Lodz, Poland). A total of 52 Caucasian patients, 34 with SAS and 18 age- and gender-matched controls, were included in the study. Comprehensive ophthalmic examination included the pulsatile ocular b...

  18. Interpretation of Doppler blood flow velocity waveforms using neural networks.

    OpenAIRE

    Baykal, N; Reggia, J. A.; Yalabik, N.; Erkmen, A.; Beksac, M. S.

    1994-01-01

    Doppler umbilical artery blood flow velocity waveform measurement is used in perinatal surveillance for the evaluation of pregnancy status. There is an ongoing debate on the predictive value of Doppler measurements concerning the critical effect of the selection of parameters for the evaluation of Doppler output. In this paper, we describe how neural network methods can be used both to discover relevant classification features and subsequently to classify patients. Classification accuracy var...

  19. Organ blood flow haemodynamics and metabolism of the albacore tuna Thunnus alalunga (Bonnaterre).

    Science.gov (United States)

    White, F C; Kelly, R; Kemper, S; Schumacker, P T; Gallagher, K R; Laurs, R M

    1988-01-01

    Metabolic haemodynamic, and organ blood flow measurements were made in tabled, partially anaesthetized albacore Thunnus alalunga. Heart rates were 115 +/- 9 beats/min: blood pressure 98/75 mm Hg (systolic/diastolic): cardiac output 36.1 +/- 5 (ml/min/kg): oxygen consumption 3.4 +/- 0.7 (ml O2/min/kg) and cardiac contractility (dP/dt) 6342 +/- 822 mm Hg/s. Organ blood flows were measured with radiolabelled microspheres. The red muscle, kidney, and spleen received the highest flows and the white-muscle the least. There was a flow gradient in the white-muscle with the inner portion near the red-muscle receiving the highest flows. Arterial and venous blood gas measurements showed a reverse temperature effect on arterial PO2 and a P50 of 15.9 Torr corrected to 37 degrees C. Red-muscle temperature was 7 degrees C higher than ambient water temperature. These measurements record the albacore's markedly high cardiovascular capability. PMID:3384072

  20. Acute responses of muscle protein metabolism to reduced blood flow reflect metabolic priorities for homeostasis.

    Science.gov (United States)

    Zhang, Xiao-Jun; Irtun, Oivind; Chinkes, David L; Wolfe, Robert R

    2008-03-01

    The present experiment was designed to measure the synthetic and breakdown rates of muscle protein in the hindlimb of rabbits with or without clamping the femoral artery. l-[ring-(13)C(6)]phenylalanine was infused as a tracer for measurement of muscle protein kinetics by means of an arteriovenous model, tracer incorporation, and tracee release methods. The ultrasonic flowmeter, dye dilution, and microsphere methods were used to determine the flow rates in the femoral artery, in the leg, and in muscle capillary, respectively. The femoral artery flow accounted for 65% of leg flow. A 50% reduction in the femoral artery flow reduced leg flow by 28% and nutritive flow by 26%, which did not change protein synthetic or breakdown rate in leg muscle. Full clamp of the femoral artery reduced leg flow by 42% and nutritive flow by 59%, which decreased (P < 0.05) both the fractional synthetic rate from 0.19 +/- 0.05 to 0.14 +/- 0.03%/day and fractional breakdown rate from 0.28 +/- 0.07 to 0.23 +/- 0.09%/day of muscle protein. Neither the partial nor full clamp reduced (P = 0.27-0.39) the intracellular phenylalanine concentration or net protein balance in leg muscle. We conclude that the flow threshold to cause a fall of protein turnover rate in leg muscle was a reduction of 30-40% of the leg flow. The acute responses of muscle protein kinetics to the reductions in blood flow reflected the metabolic priorities to maintain muscle homeostasis. These findings cannot be extrapolated to more chronic conditions without experimental validation. PMID:18089763

  1. Modeling study of terminal transients of blood flow

    Science.gov (United States)

    Stiukhina, Elena S.; Postnov, Dmitry E.

    2016-04-01

    In spite of growing body of experimental and theoretical results on blood flow (BF) patterns under the continuously sustained circulation, much less is known about BF dynamics under the exceptional, but still important cases of venous or arterial occlusion used in medical probes. Since these conditions finally lead to complete or nearly complete stop of red blood cells (RBC) motion, we term it as TTBF, being the Terminal Transients of Blood Flow. An extreme case of such transients is the ultimate extinction of BF after the stopping of heart contractions, during which it is governed by gravitation, some vascular-originated propulsion mechanisms, and, possibly, by RBC aggregation. Quite little is known about this process, while reports the detectable post-mortal motion of mice RBC during at least 2 hours. In our work we present the modeling study of TTBF patterns due to gravitational forces. We present the minimalistic model configuration of vasculature in order to simulate what happens immediately after the pumping of blood has been stopped. Our main findings are concerned to reversal of arterial BF, as well as to duration and non-monotonicity of transients.

  2. Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction.

    Science.gov (United States)

    Yazdani, Alireza; Karniadakis, George Em

    2016-05-11

    Platelet transport through arterial constrictions is one of the controlling processes influencing their adhesive functions and the formation of thrombi. We perform high-fidelity mesoscopic simulations of blood flow in microchannels with constriction, resembling arterial stenoses. The wall shear rates inside the constrictions reach levels as high as ≈8000 s(-1), similar to those encountered in moderate atherosclerotic plaques. Both red blood cells and platelets are resolved at sub-cellular resolution using the Dissipative Particle Dynamics (DPD) method. We perform a systematic study on the red blood cell and platelet transport by considering different levels of constriction, blood hematocrit and flow rates. We find that higher levels of constriction and wall shear rates lead to significantly enhanced margination of platelets, which may explain the experimental observations of enhanced post-stenosis platelet aggregation. We also observe similar margination effects for stiff particles of spherical shapes such as leukocytes. To our knowledge, such numerical simulations of dense blood through complex geometries have not been performed before, and our quantitative findings could shed new light on the associated physiological processes such as ATP release, plasma skimming, and thrombus formation. PMID:27087267

  3. Cerebral blood flow is reduced in patients with sepsis syndrome

    International Nuclear Information System (INIS)

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO2 in nine patients with sepsis syndrome using the 133Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, the specific reactivity of the cerebral vasculature to changes in CO2 was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study

  4. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Science.gov (United States)

    Shit, G. C.; Majee, Sreeparna

    2015-08-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank-Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance.

  5. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis

    International Nuclear Information System (INIS)

    We analyze the blood flow through a tapered artery, assuming the blood to be a second order fluid model. The resulting nonlinear implicit system of partial differential equations is solved by the perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The physical behavior of different parameters is also discussed, as are trapping phenomena. (cross-disciplinary physics and related areas of science and technology)

  6. Microvascular blood flow response in the intestinal wall and the omentum during negative wound pressure therapy of the open abdomen

    OpenAIRE

    Hlebowicz, Joanna; Hansson, Johan; Lindstedt, Sandra

    2011-01-01

    Purpose Higher closure rates of the open abdomen have been reported with negative pressure wound therapy (NPWT) compared with other wound therapy techniques. However, the method has occasionally been associated with increased development of intestinal fistulae. The present study measures microvascular blood flow in the intestinal wall and the omentum before and during NPWT. Methods Six pigs underwent midline incision and application of NPWT to the open abdomen. The microvascular blood flow in...

  7. Measurement of regional cerebral blood flow with H215O positron emission tomography during Matas test - report of three cases

    International Nuclear Information System (INIS)

    The authors carried out a Matas test with a regional cerebral blood flow (rCBF) study using H215O positron emission tomography (PET) for three cases of large internal carotid artery aneurysms. There is a likely correlation between the cerebral blood flow (CBF) reduction rate obtained by PET, and the mean stump pressure available from a conventional balloon occlusion test. The advantages of this noninvasive and quantitative method are presented in comparison with other methods. (author)

  8. Flow rate calibration for absolute cell counting rationale and design.

    Science.gov (United States)

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  9. Cuff inflation during ambulatory blood pressure monitoring and heart rate

    Directory of Open Access Journals (Sweden)

    Mia Skov-Madsen

    2008-11-01

    Full Text Available Mia Skov-Madsen, My Svensson, Jeppe Hagstrup ChristensenDepartment of Nephrology, Aarhus University Hospital, Aalborg, DenmarkIntroduction: Twenty four-hour ambulatory blood pressure monitoring is a clinically validated procedure in evaluation of blood pressure (BP. We hypothesised that the discomfort during cuff inflation would increase the heart rate (HR measured with 24-h ambulatory BP monitoring compared to a following HR measurement with a 24-h Holter monitor.Methods: The study population (n = 56 were recruited from the outpatient’s clinic at the Department of Nephrology, Aalborg Hospital, Aarhus University Hospital at Aalborg, Denmark. All the patients had chronic kidney disease (CKD. We compared HR measured with a 24-h Holter monitor with a following HR measured by a 24-h ambulatory BP monitoring.Results: We found a highly significant correlation between the HR measured with the Holter monitor and HR measured with 24-h ambulatory blood pressure monitoring (r = 0.77, p < 0.001. Using the Bland-Altman plot, the mean difference in HR was only 0.5 beat/min during 24 hours with acceptable limits of agreement for both high and low HR levels. Dividing the patients into groups according to betablocker treatment, body mass index, age, sex, angiotensin-converting enzyme inhibitor treatment, statins treatment, diuretic treatment, or calcium channel blocker treatment revealed similar results as described above.Conclusion: The results indicate that the discomfort induced by cuff inflation during 24-h ambulatory BP monitoring does not increase HR. Thus, 24-h ambulatory BP monitoring may be a reliable measurement of the BP among people with CKD.Keywords: ambulatory blood pressure monitoring, Holter monitoring, heart rate, chronic kidney disease, hypertension

  10. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  11. Dopexamine increases internal mammary artery blood flow following coronary artery bypass grafting.

    LENUS (Irish Health Repository)

    Flynn, Michael J

    2012-02-03

    OBJECTIVE: Vasoactive agents and inotropes influence conduit-coronary blood flow following coronary artery bypass grafting (CABG). It was hypothesized that dopexamine hydrochloride, a dopamine A-1 (DA-1) and beta(2) agonist would increase conduit-coronary blood flow. A prospective randomized double blind clinical trial was carried out to test this hypothesis. DA-1 receptors have previously been localized to human left ventricle. METHODS: Twenty-six American Society of Anaesthesiology class 2-3 elective coronary artery bypass graft patients who did not require inotropic support on separation from cardiopulmonary bypass (CPB) were studied. According to a randomized allocation patients received either dopexamine (1 microg\\/kg per min) or placebo (saline) by intravenous infusion for 15 min. Immediately prior to and at 5,10 and 15 min of infusion, blood flow through the internal mammary and vein grafts (Transit time flow probes, Transonic Ltd.), heart rate, cardiac index, mean arterial pressure and pulmonary haemodynamics were noted. The data were analysed using multivariate analysis of variance. RESULTS: Low-dose dopexamine (1 microg\\/kg per min) caused a significant increase in mammary graft blood flow compared to placebo at 15 min of infusion (P=0.028, dopexamine group left internal mammary artery (LIMA) flow of 43.3+\\/-14.2 ml\\/min, placebo group LIMA flow at 26.1+\\/-16.3 ml\\/min). Dopexamine recipients demonstrated a non-significant trend to increased saphenous vein graft flow (P=0.059). Increased heart rate was the only haemodynamic change induced by dopexamine (P=0.004, dopexamine group at 85.2+\\/-9.6 beats\\/min and placebo group at 71.1+\\/-7.6 beats\\/min after 15 min of infusion). CONCLUSION: This study demonstrates that administration of dopexamine (1 microg\\/kg per min) was associated with a significant increase in internal mammary artery graft blood flow with mild increase in heart rate being the only haemodynamic change. Low-dose dopexamine may

  12. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    CERN Document Server

    Shit, G C; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...

  13. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    G. C. Shit

    2014-01-01

    Full Text Available This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.

  14. Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing.

    Science.gov (United States)

    Tomlinson, Ryan E; Shoghi, Kooresh I; Silva, Matthew J

    2014-02-15

    Despite the strong connection between angiogenesis and osteogenesis in skeletal repair conditions such as fracture and distraction osteogenesis, little is known about the vascular requirements for bone formation after repetitive mechanical loading. Here, established protocols of damaging (stress fracture) and nondamaging (physiological) forelimb loading in the adult rat were used to stimulate either woven or lamellar bone formation, respectively. Positron emission tomography was used to evaluate blood flow and fluoride kinetics at the site of bone formation. In the group that received damaging mechanical loading leading to woven bone formation (WBF), (15)O water (blood) flow rate was significantly increased on day 0 and remained elevated 14 days after loading, whereas (18)F fluoride uptake peaked 7 days after loading. In the group that received nondamaging mechanical loading leading to lamellar bone formation (LBF), (15)O water and (18)F fluoride flow rates in loaded limbs were not significantly different from nonloaded limbs at any time point. The early increase in blood flow rate after WBF loading was associated with local vasodilation. In addition, Nos2 expression in mast cells was increased in WBF-, but not LBF-, loaded limbs. The nitric oxide (NO) synthase inhibitor N(ω)-nitro-l-arginine methyl ester was used to suppress NO generation, resulting in significant decreases in early blood flow rate and bone formation after WBF loading. These results demonstrate that NO-mediated vasodilation is a key feature of the normal response to stress fracture and precedes woven bone formation. Therefore, patients with impaired vascular function may heal stress fractures more slowly than expected. PMID:24356518

  15. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja;

    2014-01-01

    and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l......Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF...... min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2...

  16. Heart rate and blood lactate responses during competitive Olympic boardsailing.

    Science.gov (United States)

    Guével, A; Maïsetti, O; Prou, E; Dubois, J J; Marini, J F

    1999-02-01

    The rules of competitive boardsailing events were changed before the Atlanta Olympic Games. Pumping the sail (pulling repeatedly on the rig) is now allowed and the duration of races has been shortened. Eight members of the French national team (mean age 23+/-2.7 years) participated in this study. Their cardiac and metabolic responses were assessed by measuring heart rate and blood lactate concentration during various competitive events in two strengths of wind (light vs. moderate). Heart rate was higher in light (87.4+/-4.3% HRmax; mean racing time 37 min) than in moderate wind conditions (82.9+/-5.3% HRmax; mean racing time 33 min). The mean post-race blood lactate concentration (5.2+/-1.0 mmol x l(-1)) was not affected by the wind conditions. Mean heart rate was highest during downwind legs (88.0+/-3.1% HRmax; duration 7-10 min). The races consisted of two laps, the first of which induced significantly higher cardiac demands than the second. We conclude that the changes to the rules of competitive boardsailing have increased the cardiac and metabolic efforts involved. PMID:10069270

  17. Effect of alpha 1-adrenergic blockade on myocardial blood flow during exercise after myocardial infarction.

    Science.gov (United States)

    Herzog, C A; Dai, X Z; Bache, R J

    1991-08-01

    The effect of alpha 1-adrenergic blockade with prazosin on myocardial blood flow at rest and during two levels of treadmill exercise was assessed in 16 chronically instrumented dogs 9-14 days after myocardial infarction had been produced by occlusion of the left circumflex coronary artery. During resting conditions prazosin did not alter mean myocardial blood flow or the subendocardial-to-subepicardial flow ratio in either normally perfused or collateral-dependent myocardium. However, during exercise at comparable external work loads and comparable rate-pressure products, prazosin significantly increased blood flow to normally perfused (27% increase at the second level of exercise, P less than 0.001) and collateral-dependent myocardium (35% increase at the second level of exercise, P less than 0.001) compared with control. In addition, prazosin caused a small but significant decrease in the subendocardial-to-subepicardial flow ratio in both normal (1.27 +/- 0.04 to 1.19 +/- 0.04; P less than 0.01) and collateral-dependent myocardium (0.57 +/- 0.11 to 0.52 +/- 0.11; P less than 0.01) compared with control, reflecting a disproportionally greater increase in subepicardial flow in response to alpha 1-adrenergic blockade. These data demonstrate that alpha 1-adrenergic vasoconstriction inhibits coronary vasodilation during exercise, even in areas of collateral-dependent myocardium relatively early after coronary artery occlusion. PMID:1678929

  18. PERFUSION PRESSURE AND RENAL BLOOD FLOW: THEIR RELATIONSHIP AND DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Carlos G. Musso, MD. PhD.1,2, Manuel Vilas, MD.

    2014-05-01

    Full Text Available The concepts of renal perfusion pressure (RPP and renal blood flow (RBF are usually confused, but although they are intimately related, they are not strictly the same. RPP originates from the minute cardiac volume and is, therefore, the cause of RBF, which generates glomerular filtration and as a consequence, also induces the urinary flow. On the other hand, whereas RPP can be subject to fluctuations, the same happens to RBF though at a much lower level due to the existence of physiological mechanisms, such as self-regulation of the flow and tubule-glomerular feed-back. We conclude that there is a dependence of the RBF in relation with RPP, with the former acting as the final responsible of the glomerular filtration.

  19. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2015-09-15

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  20. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    International Nuclear Information System (INIS)

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  1. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-04-01

    Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate. PMID:26849955

  2. Effect of exercise on placental blood flow in pregnancies complicated by hypertension, diabetes or intrahepatic cholestasis.

    Science.gov (United States)

    Rauramo, I; Forss, M

    1988-01-01

    The effects of a standardized exercise test on intervillous placental blood flow were studied in 13 hypertensive, 10 diabetic and 8 cholestatic pregnant women in late pregnancy, and the results were compared with those of a normal control group. Analysis of variance for repeated measures revealed that in all the pathologic groups, placental blood flow was lower than in the controls. In all groups placental blood flow rose slightly 1 min after the cessation of exercise. The diabetics showed a decreased placental blood flow 30 min after the cessation of the exercise test (p less than 0.02). In diabetics, a fall was found in stroke volume, from 63 +/- 12 ml (mean +/- SD) before the exercise to 53 +/- 11 ml 30 min after the cessation of exercise (p less than 0.05), and a rise in peripheral vascular resistance, from 1540 +/- 200 (mean +/- SD) dynes/cm5 before exercise to 1750 +/- 390 dynes/cm5 30 min after the cessation of exercise (p less than 0.05). Pre-eclamptic patients had a higher peripheral vascular resistance than had normal controls. Pre-eclamptic, diabetic and cholestatic patients had lower cardiac index values than the normal subjects. The difference was significant in the pre-eclamptic and diabetic patients at 30 min after the cessation of exercise. Maternal heart rate, and systolic, diastolic and mean arterial blood pressures rose significantly from values at rest to values at the end of exercise in all groups. One of the pre-eclamptic patients showed a 74% decline in placental blood flow 1 min after the cessation of exercise coincident with fetal bradycardia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3176908

  3. ASSESSMENT OF VERTEBRAL ARTERIES BLOOD FLOW SPECTRAL DOPPLER INDICES IN COMPARISON WITH INTERNAL AND COMMON CAROTID ARTERIES BLOOD FLOW SPECTRAL DOPPLER INDICES

    Directory of Open Access Journals (Sweden)

    H. Mazaher

    2007-05-01

    Full Text Available Vertebrobasilar insufficiency is the cause of cerebrovascular accidents in 20% of cases. There are few reports regarding spectral Doppler indices (SDIs of vertebral arteries (VAs normal blood flow. The objective of this study was to provide basic reference data about SDIs of VAs normal blood flow separately and in comparison with internal carotid arteries (ICAs and common carotid arteries (CCAs normal blood flows SDIs. This cross-sectional study performed on 70 normal patients. Color Doppler sonography (CDS and spectral Doppler sonography (SDS of right and left VAs (RVA and LVA, right and left CCAs (RCCA and LCCA, right and left ICAs (RICA and LICA, were performed. The mean PSV, EDV, and RI values of RVA blood flow were as 41.60 ± 9.6 cm/s, 14.60 ± 3.7 cm/s and 0.65 ± 0.06, and the mean PSV, EDV and RI values of LVA blood flow were as 42.20 ± 10.2 cm/s, 15.20 ± 4.2 cm/s, and 0.64 ± 0.05, respectively. There was not statistically significant difference between the mean PSV, EDV and RI values of RVA and LVA blood flows. The mean PSV and EDV values of VAs blood flows were significantly lower than the values of CCAs and ICCAs blood flows, respectively. The mean RI value of VAs blood flows was significantly lower than the mean RI Value of CCAs blood flows, but there was not statistically significant difference between the mean RI value of VAs blood flows and the mean RI value of ICAs blood flows.

  4. Effects of exercise training with blood flow restriction on blood pressure in medicated hypertensive patients

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Cezar

    2016-06-01

    Full Text Available Abstract The development of non-pharmacological approaches to hypertension (HA is critical for both prevention and treatment. This study examined the hemodynamic and biochemical responses of medicated hypertensive women to resistance exercise with blood flow restriction (vascular occlusion. Twenty-three women were randomly assigned to one of three groups: High intensity strength training (n = 8; low-intensity resistance exercise with occlusion (n = 8; and control (n = 7. The first two groups underwent eight weeks of training performed twice a week, including three series of wrist flexion exercises with or without vascular occlusion. The exercised with occlusion group showed pre- to post-test reduction in systolic and diastolic blood pressure, mean arterial pressure, and double product, whereas the other groups showed no significant hemodynamic changes. In conclusion, resistance exercise during 8 weeks was effective in lowering blood pressure in medicated hypertensive subjects.

  5. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    Science.gov (United States)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  6. Protection of spermatogenisis during X-irradiation and chemotherapy by temporary blood flow interruption

    International Nuclear Information System (INIS)

    In an animal model the possibility was tested to interrupt the blood flow to the testis temporarily and repeatedly. Subsequently, it was investigated whether blood flow interuption during irradiation or during cytostatic drug administration could limit the damage induced to the spermatogonial stem cells. The effect of repeatedly blood flow interruptions on spermatogenesis was evaluated. (author). 192 refs.; 15 figs.; 11 tabs

  7. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    OpenAIRE

    Brito AF; Oliveira CV; Brasileiro-Santos MS; Santos AC

    2014-01-01

    Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular re...

  8. Regulation of local subcutaneous blood flow in patients with psoriasis and effects of antipsoriatic treatment on subcutaneous blood flow

    International Nuclear Information System (INIS)

    Local regulation of the doubled subcutaneous blood flow (SBF) rates in psoriatic lesional skin was studied in 8 patients using a traumatic epicutaneous 133Xe labeling washout technique. Venous stasis of 40 mm Hg induced a significant reduction in the SBF (-34%, p less than 0.01), i.e., a normal vasoconstrictor response. Limb elevation of 40 cm above heart level induced no statistical changes in the SBF (p = 0.50), i.e., a normal local autoregulation response. This indicates normal, local regulation mechanisms of SBF in psoriasis. In another 8 patients, the effect on SBF of a 4-week antipsoriatic treatment with tar was studied in lesional and symmetrically nonlesional skin areas. One patient was clear of psoriasis on day 22, and was followed only to that time. The mean pretreatment SBF in lesional skin areas was 3.87 +/- SD 0.78 ml X (100 g X min)-1, which was not statistically different from measurements on days 3, 7, 14, and 21 after treatment had started. Between day 21 and day 28, the SBF decreased significantly to 3.38 +/- SD 0.78 ml X (100 g X min)-1, p less than 0.05. The difference between the pretreatment SBF and SBF at the end of treatment was statistically significant, p less than 0.05. The changes in SBF in symmetrically nonlesional skin areas were statistically nonsignificant during the period of treatment. Pretreatment SBF was 2.60 +/- SD 1.08 (N = 8), and on day 28 was 1.91 +/- SD 0.74 ml X (100 g X min)-1 (N = 7). However, the tendency of a decreasing SBF at the end of treatment was a clear trend, since SBF in 6 of 7 patients decreased during the third week and in the patient who was discharged on day 22, a decrease in the SBF was observed on days 14 and 21

  9. Effects of modified pharmacologic stress approaches on hyperemic myocardial blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Czernin, J.; Auerbach, M.; Sun, K.T. [Univ. of California, Los Angeles, CA (United States)] [and others

    1995-04-01

    Pharmacologic stress testing with 0.56 mg/kg of intravenous dipyridamole is frequently used to noninvasively detect coronary artery disease (CAD). However, high-dose dipyridamole (0.80 mg/kg) or the combination of standard-dose dipyridamole (0.56 mg/kg) with the isometric handgrip maneuver might evoke a greater coronary hyperemic response. To evaluate the effect of modified pharmacologic stress tests, myocardial blood flow was quantified in 11 male subjects (mean age: 27 {plus_minus} 7 yr) during standard-dose dipyridamole (0.56 mg/kg), high-dose dipyridamole (0.80 mg/kg) and standard-dose dipyridamole combined with the isometric handgrip exercise using dynamic PET and a two-compartment model for {sup 13}N-ammonia. Systolic blood pressure, heart rate and rate pressure product remained unchanged from standard to high-dose dipyridamole but increased with the addition of the isometric handgrip. Myocardial blood flow was unchanged from standard to high-dose dipyridamole but was lower with the addition of the isometric handgrip. The hyperemic response induced by standard-dose dipyridamole cannot be further enhanced by high-dose dipyridamole. The addition of the isometric handgrip exercise results in a modest, but significant decline in hyperemic blood flow possibly due to increased extravascular resistive forces or an increase in a mediated coronary vasoconstriction associated with exercise. 31 refs., 2 figs., 1 tab.

  10. Mechanisms of temporal variation in single-nephron blood flow in rats

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H; Marsh, D J

    1993-01-01

    Modified laser-Doppler velocimetry was used to determine the number of different mechanisms regulating single-nephron blood flow. Two oscillations were identified in star vessel blood flow, one at 20-50 mHz and another at 100-200 mHz. Tubuloglomerular feedback (TGF) mediates the slower oscillation......, and the faster one is probably myogenic in origin. Acute hypertension increased autospectral power in the 20-50 mHz and 100-200 mHz frequency bands to 282 +/- 50 and 248 +/- 64%, respectively, of control even though mean single-nephron blood flow was autoregulated. Mean blood flow increased 24.6 +/- 6.......1% when TGF was inhibited by intratubular perfusion with furosemide, and it decreased 42.8 +/- 3.9% when TGF was saturated by tubular perfusion with artificial tubular fluid at high rates. Autospectral power in the low-frequency band decreased 50.5 +/- 9.6% during furosemide and decreased 74.9 +/- 5...

  11. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B;

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours for...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...... than 0.03) in the other five patients as the level of sensory analgesia regressed postoperatively. These data suggest that changes in epidural blood flow during continuous epidural infusion of bupivacaine, and thus changes in rates of vascular absorption of bupivacaine from the epidural space, may be...

  12. Critical contribution of KV1 channels to the regulation of coronary blood flow.

    Science.gov (United States)

    Goodwill, Adam G; Noblet, Jillian N; Sassoon, Daniel; Fu, Lijuan; Kassab, Ghassan S; Schepers, Luke; Herring, B Paul; Rottgen, Trey S; Tune, Johnathan D; Dick, Gregory M

    2016-09-01

    Ion channels in smooth muscle control coronary vascular tone, but the identity of the potassium channels involved requires further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch-clamp experiments demonstrated significant correolide-sensitive (1-10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n = 5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3-3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P metabolism and transient ischemia. PMID:27496159

  13. Structured Tree Outflow Condition for Blood Flow in Arteries

    Science.gov (United States)

    Olufsen, Mette

    1998-11-01

    Modeling blood flow and especially propagation of the pulse wave in the systemic arteries is of interests to the medical society because of the significance of the dicrotic wave. The pulse wave propagating along the larger arteries is reflected because of tapering and branching of the vessels, as well as the peripheral resistance, which is mainly stemming from the smaller arteries and arterioles. In order to avoid artificial reflections it is important to determine a boundary condition, representing the smaller arteries and arterioles, which is physiologically correct. In this work we have proposed a boundary condition based on a structured tree model. The result will be compared both with other modeling approaches as well as with results from measurements of flow and pressure at a number of locations along the larger arteries. The model for the larger arteries is based on the axisymmetrical Navier Stokes equations where the blood is assumed Newtonian and incompressible and the vessels are tapering. In the structured tree the model is based on a linearization of the axisymmetrical Navier-Stokes equations. The reason for setting up a structured tree is that the smaller arteries consist of an almost binary tree. Furthermore, the role of the smaller arteries is to allow blood perfusion of specific tissues. This is done in a structured and optimal way such that the smaller arteries cover the tissue evenly using a minimization principle.

  14. Validation of an optical flow algorithm to measure blood flow waveforms in arteries using dynamic digital x-ray images

    Science.gov (United States)

    Rhode, Kawal; Lambrou, Tryphon; Hawkes, David J.; Hamilton, George; Seifalian, Alexander M.

    2000-06-01

    We have developed a weighted optical flow algorithm for the extraction of instantaneous blood velocity from dynamic digital x-ray images of blood vessels. We have carried out in- vitro validation of this technique. A pulsatile physiological blood flow circuit was constructed using sections of silicone tubing to simulate blood vessels with whole blood as the fluid. Instantaneous recording of flow from an electromagnetic flow meter (EMF) provided the gold standard measurement. Biplanar dynamic digital x-ray images of the blood vessel with injection of contrast medium were acquired at 25 fps using a PC frame capture card. Imaging of a Perspex calibration cube allowed 3D reconstruction of the vessel and determination of true dimensions. Blood flow waveforms were calculated off-line on a Sun workstation using the new algorithm. The correlation coefficient between instantaneous blood flow values obtained from the EMF and the x-ray method was r equals 0.871, n equals 1184, p less than 0.0001. The correlation coefficient for average blood flow was r equals 0.898, n equals 16, p less than 0.001. We have successfully demonstrated that our new algorithm can measure pulsatile blood flow in a vessel phantom. We aim to use this algorithm to measure blood flow clinically in patients undergoing vascular interventional procedures.

  15. Development of a Flexible Implantable Sensor for Postoperative Monitoring of Blood Flow

    OpenAIRE

    Cannata, Jonathan M.; Chilipka, Thomas; Yang, Hao-Chung; Han, Sukgu; Ham, Sung W.; Rowe, Vincent L.; Weaver, Fred A; Shung, K. Kirk; Vilkomerson, David

    2012-01-01

    We have developed a blood flow measurement system using Doppler ultrasound flow sensors fabricated of thin and flexible piezoelectric-polymer films. These flow sensors can be wrapped around a blood vessel and accurately measure flow. The innovation that makes this flow sensor possible is the diffraction-grating transducer. A conventional transducer produces a sound beam perpendicular to its face; therefore, when placed on the wall of a blood vessel, the Doppler shift in the backscattered ultr...

  16. Alteration of pulmonary blood flow in tetralogy of Fallot

    International Nuclear Information System (INIS)

    The pulmonary blood distribution was examined in 17 patients with tetralogy of Fallot (TOF) pre and postoperatively with macroaggregates of 99mTC-labeled human serum albumin. Most of the patients with TOF demonstrated an abnormal preoperative distribution pattern. The abnormalities included not only an unbalanced distribution between the right and left lungs but also a maldistribution of peripheral vessels in each lung. The right/left lung counts ratio and pulmonary peripheral index (calculated in order to express the severity of peripheral maldistribution) correlated neither to the diameter nor the cross-sectional area of either right or left pulmonary arteries which were measured angiographically. Postoperatively, the pulmonary blood was shunted toward the developed side of the lung which further contributed to maldistribution of blood flow and unbalanced pulmonary growth. Since the patients with an unbalanced pulmonary blood distribution demonstrated a higher right ventricular pressure one year after the operation, a palliative operation facilitating the growth of the underdeveloped side of the lung might be considered as an effective procedure to precede intracardiac repair. (author)

  17. Blood coagulation screening using a paper-based microfluidic lateral flow device.

    Science.gov (United States)

    Li, H; Han, D; Pauletti, G M; Steckl, A J

    2014-10-21

    A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition. PMID:25144164

  18. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki;

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to...... fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples...... were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to...

  19. Effects of intramedullary reaming and nailing on blood flow in rat femora

    Energy Technology Data Exchange (ETDEWEB)

    Indrekvam, K.; Lekven, J.; Engesaeter, L.B.; Langeland, N. (University of Bergen, Surgical Research Laboratory, Orthopedic Division, Haukeland Hospital, Bergen (Norway))

    1992-01-01

    The right femur in 40 rats was reamed, and in 40 others it was additionally nailed. Analysis of bone blood flow was performed by the distribution of radiolabeled microspheres at different postoperative time intervals. Blood-flow measurements were accompanied by analyses of hydroxyproline and calcium contents. Immediately after reaming, the blood flow of the diaphyseal part of the femur was reduced to approximately one third of that of the intact femur, whereas the contents of hydroxyproline and calcium were reduced by 10 percent. Within 1 week, the blood flow was normal. This study provides evidence that the presence of a nail does not interfere with the restoration of bone blood flow. Restoration of blood flow in bone apparently is a rapid process. The replacement of hydroxyproline and calcium contents seemed to be linked to flow, as no increase in these constituents were found until the blood flow had approximated the level of the intact femur. (au).

  20. Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    OpenAIRE

    Krak, Nanda; Hoeven, John; Hoekstra, Otto; Twisk, Jos; Wall, Ernst; Lammertsma, A. A.

    2008-01-01

    textabstractObjective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tum...

  1. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

    OpenAIRE

    Richard D. Hoge; Atkinson, Jeff; Gill, Brad; Crelier, Gérard R.; Marrett, Sean; Pike, G Bruce

    1999-01-01

    The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1...

  2. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... vasodilators are both stimulated by several compounds, eg. adenosine, ATP, acetylcholine, bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other...... is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperemic response remains unexplained. It is plausible...

  3. Spatial mapping of blood flow and oxygen consumption in the human calf muscle using near-infrared spectroscopy

    Science.gov (United States)

    Fantini, Sergio; Hoimes, Matthew L.; Casavola, Claudia; Franceschini, Maria-Angela

    2001-05-01

    We have designed a new optical probe to perform spatially resolved measurements of blood flow and oxygen consumption over an area of about 4 x 4 cm2 of the lateral gastrocnemius muscle (calf muscle) of human subjects. The blood flow and the oxygen consumption were measured non- invasively with frequency-domain, near-infrared spectroscopy from the maximum rate of increase of the oxy- and deoxy- hemoglobin concentrations in the muscle during venous occlusion. In a preliminary test on one subject, involving measurements at rest and after exercise, we have found that the spatial variability of the measured blood flow and oxygen consumption is significantly greater than the variability of repeated measurements at a given tissue location. We have also observed a strong spatial dependence of the exercise-induced increase in blood flow and oxygen consumption.

  4. Abnormal resting regional cerebral blood flow patterns and their correlates in schizophrenia

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (CBF) was measured under resting conditions in 108 right-handed schizophrenic inpatients and a matched group of normal controls with the xenon 133 inhalation technique. Forty-six patients were free of all medication for two weeks. There were no significant differences in CBF to the two hemispheres. The patients showed a comparatively reduced anteroposterior (AP) gradient for CBF. Though there were no differences in frontal flow, the patients had higher flow to several postcentral brain regions, bilaterally. Cerebral blood flow in the patients correlated inversely with age and positively with carbon dioxide level. Women had higher flow than men. Duration of the illness was the only significant predictor of the reduced AP gradient in patients. Higher left temporal and right parietal flow were found to be the best discriminators between patients and controls. Mean hemispheric flow to both hemispheres and several brain regions correlated with the total score and the item, unusual thought content, of the Brief Psychiatric Rating Scale. There were no differences in regional CBF between medicated and unmedicated patients

  5. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.N.; Graham, M.M.; Ferency, G.F.; Miura, R.S.

    1989-04-01

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlated well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction.

  6. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    International Nuclear Information System (INIS)

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlated well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction

  7. Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension.

    Science.gov (United States)

    Lu, Xinran; Wood, David K; Higgins, John M

    2016-06-21

    The majority of morbidity and mortality in sickle cell disease is caused by vaso-occlusion: circulatory obstruction leading to tissue ischemia and infarction. The consequences of vaso-occlusion are seen clinically throughout the vascular tree, from the relatively high-oxygen and high-velocity cerebral arteries to the relatively low-oxygen and low-velocity postcapillary venules. Prevailing models of vaso-occlusion propose mechanisms that are relevant only to regions of low oxygen and low velocity, leaving a wide gap in our understanding of the most important pathologic process in sickle cell disease. Progress toward understanding vaso-occlusion is further challenged by the complexity of the multiple processes thought to be involved, including, but not limited to 1) deoxygenation-dependent hemoglobin polymerization leading to impaired rheology, 2) endothelial and leukocyte activation, and 3) altered cellular adhesion. Here, we chose to focus exclusively on deoxygenation-dependent rheologic processes in an effort to quantify their contribution independent of the other processes that are likely involved in vivo. We take advantage of an experimental system that, to our knowledge, uniquely enables the study of pressure-driven blood flow in physiologic-sized tubes at physiologic hematocrit under controlled oxygenation conditions, while excluding the effects of endothelium, leukocyte activation, adhesion, inflammation, and coagulation. We find that deoxygenation-dependent rheologic processes are sufficient to increase apparent viscosity significantly, slowing blood flow velocity at arterial oxygen tension even without additional contributions from inflammation, adhesion, and endothelial and leukocyte activation. We quantify the changes in apparent viscosity and define a set of functional regimes of sickle cell blood flow personalized for each patient that may be important in further dissecting mechanisms of in vivo vaso-occlusion as well as in assessing risk of patient

  8. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    OpenAIRE

    Mohsen Mehrabi; Saeed Setayeshi

    2012-01-01

    This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is gove...

  9. History of International Society for Cerebral Blood Flow and Metabolism

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Kanno, Iwao; Reivich, Martin;

    2012-01-01

    dealing with CBF and metabolism were arranged, and the fast growing research led to a demand for a specialized journal. In this scientific environment, the International Society for Cerebral Blood Flow and Metabolism (ISCBFM) and its official Journal of Cerebral Metabolism were established in 1981 and has...... grown within the society and is now an integrated part. The ISCBFM is a sound society, and support of young scientists is among its goals. Several awards have been established. Other activities including summer schools, courses, satellite meetings, and Gordon conferences have contributed to the success...

  10. Regional cerebral blood flow in psychiatry: Application to clinical research

    International Nuclear Information System (INIS)

    In the following sections, the authors describe aspects of the xenon-133 inhalation technique as it has been modified in their lab, as well as a number of considerations and prerequisites for setting up such a facility. The authors also discuss the processes by which they technically and clinically validated the methods used. Several case studies follow along with descriptions of the approaches they are taking in investigating psychiatric illnesses with rCBF. Since the concept of a relation between brain functional activity, metabolism, and blood flow has a long history, both in theory and in practice, they first briefly review some of this history and some of the principles involved

  11. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situation in vivo where a large number of individual...... observations. However, in combination they reproduced most of hte features of the various transfer functions calculated from the experimental data. The major discrepancy was the presence of a bimodal distribution of the admittance phase in the simulations. This is not consistent with most of the experimental...

  12. Methylphenidate decreases regional cerebral blood flow in normal human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.J.; Volkow, N.D. (Brookhaven National Lab., Upton, NY (United States) SUNY, Stony Brook, NY (United States)); Fowler, J.S.; Ferrieri, R.; Schlyer, D.J.; Alexoff, D.; Warner, D.; Wolf, A.P.; Pappas, N.; King, P.; Wong, C. (Brookhaven National Lab., Upton, NY (United States)); Hitzemann, R.J. (SUNY, Stony Brook, NY (United States)); Lieberman, J. (Hillside Hospital, Glen Oaks, NY (United States))

    1994-01-01

    To assess the effects of methylphenidate (MP) on cerebral blood flow (CBF), 5 healthy males were studied using [sup 15]O-water and positron emission tomography before and after MP (0.5mg/kg iv). MP significantly decreased whole brain CBF at 5-10 minutes (25[+-]11%) and at 30 minutes (20[+-]10%) after its administration. Decrements in CBF were homogeneous throughout the brain (regional decrements 23-30%) and probably reflect the vasoactive properties of MP. The vasoactive properties of MP should be considered when prescribing this drug chronically and/or when giving it to subjects with cerebrovascular compromise.

  13. Blood flow, substrate utilization and heat generation in tissues drained by the azygos vein in man.

    Science.gov (United States)

    Brundin, T; Hagenfeldt, L; Söderberg, R; Wahren, J

    1987-12-01

    The present study was undertaken to examine the blood flow, heat generation and substrate utilization in tissues drained by the azygos vein in healthy subjects. Catheters were inserted percutaneously into the azygos vein and the pulmonary artery in 10 healthy male subjects in the basal, post-absorptive state. Blood flow in the azygos vein was measured by thermodilution technique, blood temperature was recorded in both the azygos vein and the pulmonary artery and blood samples for the determination of oxygen content and substrate concentrations were collected from both vessels repeatedly at timed intervals. Free fatty acid (FFA) exchange was evaluated following the intravenous infusion of 14-C labelled oleic acid. The average azygos vein blood flow was 94 +/- 10 ml/min. The coefficient of variation for the flow determination was 3.6%. The blood temperature in the azygos vein was consistently higher than that in the pulmonary artery, indicating an average calculated net heat production in the tissues of 0.5 W. The oxygen uptake to the tissues drained by the azygos vein amounted to 6 +/- 1 ml/min. Significant amounts of glucose, FFA and ketone bodies were taken up in the azygos area, while both glycerol and FFA were released. The FFA uptake could, if oxidized, account for about half of the oxygen uptake. In conclusion, the findings indicate that, in the basal state, the tissues drained by the azygos vein utilize both glucose and FFA. Heat is generated within the area but the rate of generation is low and can largely be explained by the oxidative metabolism. The findings do not support an important role for brown adipose tissue metabolism in the interscapular region in man. PMID:3427881

  14. Volumetric liquid flow measurement through thermography to simulate blood flow in an artery

    Science.gov (United States)

    Villaseñor-Mora, Carlos; Rabell-Montiel, Adela; González-Vega, Arturo; Gutierrez-Juarez, Gerardo

    2015-09-01

    Encouraged to improve the procedure to measure the blood flow in cases with peripheral artery disease using thermography, that allows to evaluate several arteries simultaneously, it was developed an alternative to measure the volumetric flow through a conduit, it was studied the variation of the thermal energy computed from thermal images due to changes in flow at different temperatures, and it was observed that the measurement is not strongly influenced by the emissivity of the conduit, the ambient temperature and humidity, but that is necessary to establish an adequate calibration of the camera to can use it as measurement instrument.

  15. Skin temperature and subcutaneous adipose blood flow in man

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Madsen, J

    1980-01-01

    correlation between skin temperature and ATBF. In the range from 25 to 37 degrees CATBF increased 9% of the control flow on average per centigrade increase in skin temperature. ATBF at the control side was uninfluenced by the contralateral variations in skin temperature. Although no better correlation could......The abdominal subcutaneous adipose tissue blood flow (ATBF) was measured bilaterally by the 133Xe washout method. At one side of the skin (epicutaneous) temperature was varied with a temperature blanket, the other side served as control. There was a significant (P less than 0.001) positive...... be demonstrated between ATBF and subcutaneous temperature than between ATBF and skin temperature, arguments are presented in favour of the hypothesis that ATBF is influenced by the subcutaneous temperature rather than via reflexes from the skin. Infiltration of the 133Xe depots with 20 microgram...

  16. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  17. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  18. Evaluation of the Effects of Acupuncture on Blood Flow in Humans with Ultrasound Color Doppler Imaging

    OpenAIRE

    Takayama, Shin; WATANABE, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteer...

  19. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard;

    for the vector angle estimates was calculated for each box in every frame. For comparison three ultrasound experts evaluated the presence of complex flow in every box. The trial was blinded. For every sequence the mean standard deviation of the vector angle estimates were calculated for box1 {39......A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... transducer (8670, B-K Medical, Denmark) and a commercial vector flow ultrasound scanner (ProFocus 2202, B-K Medical). Eight video sequences of one cardiac cycle were obtained. In every frame boxes were placed to define the common carotid artery(box1) and the carotid bulb(box2). The standard deviation...

  20. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles

    OpenAIRE

    Ong, Peng Kai; Namgung, Bumseok; Johnson, Paul C.; Kim, Sangho

    2010-01-01

    Formation of a cell-free layer is an important dynamic feature of microcirculatory blood flow, which can be influenced by rheological parameters, such as red blood cell aggregation and flow rate. In this study, we investigate the effect of these two rheological parameters on cell-free layer characteristics in the arterioles (20–60 μm inner diameter). For the first time, we provide here the detailed temporal information of the arteriolar cell-free layer in various rheological conditions to bet...

  1. Two and Three Dimensional Blood Flow Simulations in Different Types of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Balazs ALBERT

    2015-12-01

    Full Text Available In this paper we present a synthesis of our results obtained on blood flow simulation in different types of blood vessels. We present first some remarks on the wall shear stress (WSS in the case of a human abdominal aortic aneurysm (AAA, and then we concentrate on the mechanical conditions which would lead to the “rupture” of the vascular vessel with aneurysm and implicitly to a possible stroke. We also make some investigations on the Fahraeus-Lindqvist effect in arterioles. Considering an axial-symmetric reservoir full of blood and which is linked to an arteriole (with the same particular geometry, we have pointed out the concentration of the red blood cells in this arteriole towards the core of the vessel. To improve our work we have considered a real three-dimensional geometry, which is a serious jump versus our previous results, where only the axial-symmetric geometries were considered. In this respect we have reconsidered the case of a carotid artery stenosis with and without a stent.

  2. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.

    Directory of Open Access Journals (Sweden)

    Kirill Lykov

    2015-08-01

    Full Text Available When blood flows through a bifurcation, red blood cells (RBCs travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.

  3. Xenon-133 determination of muscle blood flow in electrical injury

    International Nuclear Information System (INIS)

    Xe-133 washout determination of muscle blood flow (MBF) was used to detect muscle ischemia in electrical injury of an experimental animal model and three patients. The control MBF of rabbit hindlimbs, which averaged 11.29 +- 1.07 cc/min/100 gm, was significantly reduced by electrical injury, to 5.82 +- 1.49 cc/min/100 gm (p less than 0.001). An electrical injury of 4,000 watt-seconds or greater was associated with uniform MBF less than 1.00 cc/min/100 gm and with histopathologic alterations of muscle necrosis. Thenar MBF less than 1.00 cc/min/100 gm in two patients was associated with muscle necrosis requiring distal arm amputation. The remaining patient with sequential muscle blood flows above this level had uneventful healing of hand electrical injuries. Xe-133 determination of MBF may be a useful objective technique to determine the extent of electrical injury in muscle

  4. Radiohalogenated amphetamine analogs for blood flow and serotonin receptor studies

    International Nuclear Information System (INIS)

    The 4-radiohalo-2,5-dimethoxyamphetamine hallucinogens were first utilized in the 1970's for cerebral imaging studies by T. Sargent and A.T. Shulgin. Subsequently, other radioiodinated amphetamine analogs and distantly related diamines have been synthesized and used for clinical single photon studies of cerebral blood flow. A generator system for the production of the short-lived positron emitter 122I (3.5 min half-life) was developed, and several amphetamine and diamine compounds have been labeled with 122I for positron emission tomography (PET) studies of regional cerebral blood flow in animals and humans. The short half-life of 122I requires that the radiochemical syntheses be rapid and efficient. Both electrophilic deprotonation and demetallation reactions have been utilized to achieve this goal. Recently, there has been considerable evidence that some 4-halo-2,5-dimethoxyamphetamine analogs are highly specific serotonin receptor agonists. This has lead to the speculation that the binding of these agonists to a serotonin 5-HT2 receptor sub-type may be involved in hallucinogenesis. In an effort to help elucidate the role of these agents, several radioiodinated and radiobrominated 4-halo-2,5-dimethoxyamphetamine analogs have been synthesized for in vitro binding studies. Studies examining the in vivo interaction of these analogs with serotonin 5-HT2 receptors have been initiated with the synthesis of 4-(18F)fluoroalkyl-2,5-dimethoxyamphetamines

  5. Multiscale modeling and simulation of brain blood flow

    Science.gov (United States)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  6. Multiscale modeling and simulation of brain blood flow

    International Nuclear Information System (INIS)

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research

  7. Clustering of microscopic particles in constricted blood flow

    CERN Document Server

    Bächer, Christian; Gekle, Stephan

    2016-01-01

    A mixed suspension of red blood cells (RBCs) and microparticles flows through a cylindrical channel with a constriction mimicking a stenosed blood vessel. Our three-dimensional Lattice-Boltzmann simulations show that the RBCs are depleted right ahead and after the constriction. Although the RBC mean concentration (hematocrit) is 16.5% or 23.7%, their axial concentration profile is very similar to that of isolated tracer particles flowing along the central axis. Most importantly, however, we find that the stiff microparticles exhibit the opposite behavior. Arriving on a marginated position near the channel wall, they can pass through the constriction only if they find a suitable gap to dip into the dense plug of RBCs occupying the channel center. This leads to a prolonged dwell time and, as a consequence, to a pronounced increase in microparticle concentration right in front of the constriction. For biochemically active particles such as drug delivery agents or activated platelets this clustering may lead to p...

  8. Laser Doppler flowmetry: reproducibility, reliability, and diurnal blood flow variations.

    Science.gov (United States)

    Roeykens, Herman J J; Deschepper, Ellen; De Moor, Roeland J G

    2016-08-01

    The aim of this investigation was (1) to evaluate the reliability of laser Doppler flowmetry (LDF) taking into consideration the use of a silicone splint and the inclination of the probe towards the buccal surface of a human tooth and (2) to determine whether diurnal variations of pulpal blood flow can be registered by means of LDF. Forty-one splints were made by one and the same principal investigator for the registration of pulpal blood flow in vivo in a maxillary right central incisor. Thirty dentists, without experience in LDF recording, were then asked to drill a right-angled shaft in a pre-manufactured splint with a referral point at 2 mm from the enamel-cement border central on the buccal surface of the right central upper incisor. The remaining 11 splints were handled by the principal investigator. The shafts in the 30 splints were analysed using Cone Beam CT imaging of the axial and sagittal angles and compared these to the 11 shafts prepared by the trained principal investigator. LDF was recorded for 90 s in each splint and statistically analysed. LDF values without the use of a splint were statistically significantly different (p < 0.05) and the variance was greater, indicating the superiority of splint use. Significant diurnal variations on LDF values were observed, indicating that special attention should be paid to registration during the day, especially when multiple measurements are to be compared. PMID:27184153

  9. Adipose tissue and skeletal muscle blood flow during mental stress

    International Nuclear Information System (INIS)

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  10. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  11. Attenuated skin blood flow response to hyperthermia in paraplegic men.

    Science.gov (United States)

    Freund, P R; Brengelmann, G L; Rowell, L B; Halar, E

    1984-04-01

    To clarify how skin and internal temperatures interact in control of skin blood flow, five male paraplegic subjects (lesions at the level of thoracic vertebrae 1-11) (29-47 yr old) were heated in water-perfused suits to elevate oral temperature (To) 1-1.5 degrees C. In part I only the insensate skin was heated; sensate skin was kept at 32-34 degrees C. No appreciable elevation of forearm blood flow (FBF) or sweating occurred, even with To at 38 degrees C. In part II the suit was applied to the whole body so that skin temperature was 40 degrees C, except for one arm that remained at 32-34 degrees C for FBF measurement. Sweating was noted above the lesion in all but one subject. FBF increased in all subjects but was far below levels previously reported for hyperthermic normal men; also, thresholds appeared elevated. To the extent that effector connections are intact, attenuated FBF response implies that either 1) some vasoconstrictor bias associated with cardiovascular regulation is active or 2) thermoregulatory effector outflow is diminished. If the latter is true, it follows that the effector outflow reduction relates to diminished afferent input. But the component of the effector outflow contributed by peripheral thermoreception is small; thus these findings may indicate that what is lacking in the afferent input is central thermoreception from below the lesion, possibly from the spinal cord itself. PMID:6725058

  12. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  13. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  14. Cerebral blood flow effects of acute intravenous heroin administration.

    Science.gov (United States)

    Kosel, Markus; Noss, Roger S; Hämmig, Robert; Wielepp, Peter; Bundeli, Petra; Heidbreder, Rebeca; Kinser, Jane A; Brenneisen, Rudolf; Fisch, Hans-Ulrich; Kayser, Sarah; Schlaepfer, Thomas E

    2008-04-01

    We examined acute effects of intravenous diacetylmorphine (heroin) administration - which induces a characteristic biphasic response: A short rush-sensation associated with intense pleasurable feelings followed by a subjectively different period of euphoria on cerebral blood flow. This was assessed in nine male heroin dependent patients participating in a heroin maintenance program in a setting resembling everyday pattern of heroin abuse. 99mTc-HMPAO was administered 45 s (rush) and 15 min (euphoria) after administration of i.v. heroin and 45 s after administration of saline (placebo). Plasma concentration of diacetylmorphine and its metabolites were measured with high-pressure liquid chromatography (HPLC). Compared to the euphoria condition, rush was associated with blood flow increase in the left posterior cerebellar lobe, left anterior cingulate gyrus and right precuneus. Our results are in line with recent reports indicating that the cerebellum is an important component in functional brain systems subserving sensory and motor integration, learning, modulation of affect, motivation and social behaviour, which all play important roles in reinforcing properties of opioids. PMID:18207374

  15. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    International Nuclear Information System (INIS)

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19∼52 years, average age: 29.3±9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19∼53 years, average age: 31.4±9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  16. Regional cerebral blood flow in SPECT pattern in Parkinson's disease

    International Nuclear Information System (INIS)

    The purpose of our work was to compare the regional cerebral blood flow (rCBF) in SPECT examination in Parkinson's disease with (17 cases) and without (7 cases) dementia and in various clinical stages of the disease. The patients underwent SPECT examination 5-40 min after intravenous application of HMPAO (Ceretec, Amersham) with 740 Mbq (20 mCi) pertechnate 99mTc. SPECT was performed with a Siemens Diacam single-head rotating gamma camera coupled to a high resolution collimator and Icon computer system provided by the manufacturer. The results were defined in relative values of ROI in relation to cerebellum. Patients with Parkinson's disease showed hypoperfusion in cerebral lobes and in deep cerebral structures including the basal ganglia. Regional perfusion deficit in SPECT was seen with and without associated dementia and already in early stage of the disease. Parkinson's disease is provoked by the lesions of dopaminergic neurons of the central nervous system leading to domination of extrapyramidal symptoms. There are many indications that also the neurotransmitters associated with cognitive functions as acetylcholine demonstrate some abnormalities. However, only in some cases of Parkinson's disease dementia is the dominating symptom. Our results of regional cerebral blood flow testify that in Parkinson's disease the dysfunction of the central nervous system is more diffuse than has previously been suggested. (author)

  17. The Acute Effect of Resistance Exercise with Blood Flow Restriction with Hemodynamic Variables on Hypertensive Subjects

    Directory of Open Access Journals (Sweden)

    Araújo Joamira P.

    2014-12-01

    Full Text Available The purpose of this study was to analyze systolic blood pressure (SBP, diastolic blood pressure (DBP and the heart rate (HR before, during and after training at moderate intensity (MI, 50%-1RM and at low intensity with blood flow restriction (LIBFR. In a randomized controlled trial study, 14 subjects (average age 45±9,9 years performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA were used to identify significant variables (2 x 5; group x time. The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity.

  18. A simple model of cerebral blood flow dependence on arterial blood pressure

    CERN Document Server

    Gersten, Alexander

    2011-01-01

    It is shown that the dependence of the cerebral blood flow (CBF) on mean arterial blood pressure (MABP) can be described with a simple model having the following assumptions. Below certain MABP (denoted as MABP1) there are no autoregulatory or feedback mechanisms influencing CBF. Between MABP1 and MABP2 (MABP at which breakthrough accurs) there is a linear (on MABP) dependent feedback with a sloap depending very much on the individual considered. The classical autoregulation model with a plateau in between MABP1 and MABP2 is a particular case of this model. The model describes well the experiments performed on dogs (Harper 1966), for which the individual feedback sloap parameter varied to great extent, indicating the importance of mesurments on individuals against averaged mesurments (or measurments on diffent individuals) which superficially support the classical autoregulation. New effect of decreased CBF, while increasing MABP, was observed.

  19. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper;

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM...... groups. However, in contrast to nondiabetic hypertensive patients, intensive BP control reduced CBFV in T2DM- (58±9 to 54±12 cm · s-1) and T2DM+ (57±13 to 52±11 cm · s-1) at 3 months, but CBFV returned to baseline at 6 months only in T2DM-, whereas the reduction in CBFV progressed in T2DM+ (to 48±8 cm...

  20. Cutaneous and subcutaneous blood flow measurements in psoriasis

    International Nuclear Information System (INIS)

    The experiments - published in 7 papers in The Journal of Investigative Dermatology 1983-86 - have demonstrated: 1. The accuracy of the local 133Xe washout method is about 15% for estimation of the cutaneous blood flow (CBF), and about 10% for subcutaneous blood flow measurements (SBF). In measurements of absolute CBF values a graphic curve resolution of the washout curve should alwaus be performed. Otherwise the CBF might be considerably underestimated. 2. CdTe(Cl) mini-detectors can be attached directly to the skin, and might yield measurements of both CBF and SBF that can substitute for those made with conventional detectors. 3. The laser Doppler measurements could not be correlated to quantitative measurements of the CBF. 4. The tissue-to-blood partition coefficient for 133Xe of lesional psoriatic skin (LS) is increased. 5. In untreated, LS of patients with active psoriasis the CBF is about a factor of 10 times higher than the CBF of normal individuals. In non-lesional skin (NLS) of patients with active psoriasis the CBF is about a factor of 2 higher than the CBF of normal individuals. However, the CBF did not differ in NLS of patients with minimal skin manifestations. The high CBF decreases gradualy during antipsoriatic treatment. 6. A paradoxical autoregulation of the CBF was observed in LS. 7. The high CBF is not due to a maximally dilated vascular bed. 8. The SBF in LS areas was a factor of higher than the SBF in normal individuals. 9. A normal, local regulation of the SBF was found. (author)

  1. Semiquantitative imaging measurement of baseline and vasomodulated normal prostatic blood flow using sildenafil

    OpenAIRE

    Haaga, JR; Exner, A; Fei, B; Seftel, AD

    2006-01-01

    The physiologic variability of blood flow to the prostate has not been studied until this time. We report the vasoactive effects of sildenafil and phenylephrine on blood flow of the normal prostate. Sildenafil increases prostate blood flow by approximately 75% and phenylephrine reduces the flow incrementally. Administration of these drugs with dynamic contrast-enhanced magnetic resonance imaging may improve the diagnosis of cancerous tissue because according to the literature, tumor angiogeni...

  2. A novel concept of measuring mass flow rates using flow induced stresses

    Indian Academy of Sciences (India)

    P I Jagad; B P Puranik; A W Date

    2015-08-01

    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  3. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99Tcm-ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99Tcm-ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  4. Wall Shear Rates in Taylor Vortex Flow

    Czech Academy of Sciences Publication Activity Database

    Sobolík, V.; Jirout, T.; Havlica, Jaromír; Kristiawan, M.

    2011-01-01

    Roč. 4, č. 3 (2011), s. 25-31. ISSN 1735-3572 Grant ostatní: ANR:(FR) ANR-08-BLAN-0184-01 Institutional research plan: CEZ:AV0Z40720504 Keywords : taylor-couette flow * electrodiffusion diagnostics * membrane reactors Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jafmonline.net/modules/journal/journal_browse.php?EJjid=13

  5. Effect of spinal cord compression on local vascular blood flow and perfusion capacity.

    Directory of Open Access Journals (Sweden)

    Mohammed Alshareef

    Full Text Available Spinal cord injury (SCI can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.

  6. Effect of spinal cord compression on local vascular blood flow and perfusion capacity.

    Science.gov (United States)

    Alshareef, Mohammed; Krishna, Vibhor; Ferdous, Jahid; Alshareef, Ahmed; Kindy, Mark; Kolachalama, Vijaya B; Shazly, Tarek

    2014-01-01

    Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading. PMID:25268384

  7. Retrobulbar blood flow and visual field alterations after acute ethanol ingestion

    Directory of Open Access Journals (Sweden)

    Weber A

    2013-08-01

    Full Text Available Anke Weber, Andreas Remky, Marion Bienert, Klaudia Huber-van der Velden, Thomas Kirschkamp, Corinna Rennings, Gernot Roessler, Niklas Plange Department of Ophthalmology, RWTH Aachen University, Aachen, Germany Background: The purpose of this study was to test the effect of ethyl alcohol on the koniocellular and magnocellular pathway of visual function and to investigate the relationship between such visual field changes and retrobulbar blood flow in healthy subjects. Methods: In 12 healthy subjects (mean age 32 ± 4 years, color Doppler imaging, short-wavelength automated perimetry, and frequency doubling perimetry was performed before and 60 minutes after oral intake of 80 mL of 40 vol% ethanol. Mean and pattern standard deviations for short-wavelength automated and frequency doubling perimetry were assessed. End diastolic velocity (EDV and peak systolic velocity (PSV were measured in the central retinal and ophthalmic arteries using color Doppler imaging. Systemic blood pressure, heart rate, intraocular pressure, and blood alcohol concentration were determined. Results: Mean PSV and EDV in the central retinal artery showed a significant increase after alcohol intake (P = 0.03 and P = 0.02, respectively. Similarly, we found a significant acceleration of blood flow velocity in the ophthalmic artery (P = 0.02 for PSV; P = 0.04 for EDV. Mean intraocular pressure decreased by 1.0 mmHg after alcohol ingestion (P = 0.01. Retinal sensitivity in short-wavelength automated perimetry did not alter, whereas in frequency doubling perimetry, the mean deviation decreased significantly. Systolic and diastolic blood pressure did not change significantly. Mean blood alcohol concentration was 0.38 ± 0.16 g/L. Conclusion: Although ethanol is known to cause peripheral vasodilation, our subjects had no significant drop in systemic blood pressure. However, a significant increase of blood flow velocity was seen in the retrobulbar vessels. Regarding visual function

  8. Regional cerebral blood flow in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured in 36 patients with hypertensive intracerebral hemorrhage (putaminal hemorrhage) treated surgically, using the Xenon-133 intracarotid injection method. The correlations between CBF in four regions, (the hemisphere, the frontal region, the sensori-motor area and the focal area) and the duration from the operation, the conscious level, the hematoma volume and motor function were investigated. Mean cerebral blood flow (MCBF), rCBF in sensori-motor area and in the focal area showed a value below 30 ml/100g/min. for any duration after the operation within one year. However, in the frontal region rCBF tends to increase from 4 months after the operation. There was a close correlation between the conscious level and CBF, especially in the frontal region. The higher CBF was noted in the better consciousness group. In hematoma cases the larger the hematoma volume (especially those over 31 ml)the lower the CBF in all three regions. In the focal area rCBF showed the lowest value among these three regions and was dependent on the hematoma volume, while frontal region revealed the highest flow value of them all, even in cases with a hematoma volume over 81 ml. There was a significant difference in rCBF between cases with severe motor disturbance and cases with moderate motor disturbance, except in the focal area. In the frontal region rCBF coincides rather well to the degree of motor disturbance. While, rCBF in the focal area was less than 30 ml/100g/min., and showed no correlation to motor function. (J.P.N.)

  9. Treatment of Chronic Renal Failure by Supplementing the Kidney and Invigorating Blood Flow

    Institute of Scientific and Technical Information of China (English)

    张勉之; 张大宁; 张文柱; 刘树松; 张敏英

    2004-01-01

    Objective: To evaluate the effectiveness of treatment of chronic renal failure by supplementing the kidney and invigorating blood flow. Method: The eligible patients were assigned to a treatment group (N =120)treated with the above principle and a control group (N = 128) treated with western drugs, and the effectiveness was evaluated when the study was completed in one year. Results: The total effective rate of 92.5% was achieved in the treatment group, better than that in the control group (49.2%); the difference was significant (P<0.01), especially in patients of stage Ⅰ and Ⅱ. Conclusion: The treatment of chronic renal failure by supplementing the kidney and invigorating blood flow proved to be very effective.

  10. Caffeine and human cerebral blood flow: A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, O.G.; Modell, J.G.; Hariharan, M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  11. Type of aphasia and regional cerebral blood flow

    International Nuclear Information System (INIS)

    In 40 patients with aphasia due to cerebral infarction, regional cerebral blood flow (rCBF) was measured after 2 months of ictus with 133Xe inhalation method. There were 18 cases with motor aphasia and 22 with sensory aphasia. On the measurements of rCBF, 3 detectors were placed over frontal region (group F), 3 over temporal region (group T), and remaining 3 over parietal region (group P), of the dominant hemisphere. The flow values were compared with the rCBF values obtained from 21 control subjects who had no abnormality in CT scan and on neurological examinations. The control subjects revealed the hyperfrontal pattern of flow distribution; rCBF values in groups F, T and P, which were expressed as an initial slope index, were 50.0 +- 4.8, 48.0 +- 5.1 and 47.4 +- 4.5, respectively. The hyperfrontal pattern was absent in cases with motor aphasia. In this group, rCBF in groups F, T and P were 42.0 +- 8.3, 44.7 +- 8.4 and 41.0 +- 8.5, respectively, and rCBF in frontal region was significantly reduced compared with that in the control group. In sensory aphasia, rCBF values in groups F, T and P were all significantly reduced compared to the controls showing 44.0 +- 5.7, 42.8 +- 5.1 and 40.6 +- 5.4, respectively. In this group, the hyperfrontal pattern was maintained at a low flow level. When absolute rCBF values were compared between motor and sensory aphasia, there was no significant difference between these 2 groups. However, regional flow distribution in motor aphasia was significantly different from that of sensory aphasia, and the cases having the lowest value in group F were more frequently found in the former than in the latter. (J.P.N.)

  12. Renal cortical and medullary blood flow responses to altered NO-availability in humans

    DEFF Research Database (Denmark)

    Damkjaer, Mads; Vafaee, Manoucher; Møller, Michael Lehd;

    2010-01-01

    The objective was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned and regional renal blood flow determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed...... of one voxel were eliminated stepwise from the external surface of the VOI ('voxel peeling'), and the blood flow subsequently determined in each new, reduced VOI. Blood flow in the shrinking volumes of interest (VOIs) decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood...

  13. Assessing regional cerebral blood flow in depression using 320-slice computed tomography.

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    Full Text Available While there is evidence that the development and course of major depressive disorder (MDD symptomatology is associated with vascular disease, and that there are changes in energy utilization in the disorder, the extent to which cerebral blood flow is changed in this condition is not clear. This study utilized a novel imaging technique previously used in coronary and stroke patients, 320-slice Computed-Tomography (CT, to assess regional cerebral blood flow (rCBF in those with MDD and examine the pattern of regional cerebral perfusion. Thirty nine participants with depressive symptoms (Hamilton Depression Rating Scale 24 (HAMD24 score > 20, and Self-Rating Depression Scale (SDS score > 53 and 41 healthy volunteers were studied. For all subjects, 3 ml of venous blood was collected to assess hematological parameters. Transcranial Doppler (TCD ultrasound was utilized to measure parameters of cerebral artery rCBFV and analyse the Pulsatility Index (PI. 16 subjects (8 =  MDD; 8 =  healthy also had rCBF measured in different cerebral artery regions using 320-slice CT. Differences among groups were analyzed using ANOVA and Pearson's tests were employed in our statistical analyses. Compared with the control group, whole blood viscosity (including high\\middle\\low shear rateand hematocrit (HCT were significantly increased in the MDD group. PI values in different cerebral artery regions and parameters of rCBFV in the cerebral arteries were decreased in depressive participants, and there was a positive relationship between rCBFV and the corresponding vascular rCBF in both gray and white matter. rCBF of the left gray matter was lower than that of the right in MDD. Major depression is characterized by a wide range of CBF impairments and prominent changes in gray matter blood flow. 320-slice CT appears to be a valid and promising tool for measuring rCBF, and could thus be employed in psychiatric settings for biomarker and treatment response purposes.

  14. Clinical studies on cerebral blood flow in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF) and clinical symptoms were examined between pre- and post-operations in twenty-four patients with unilateral chronic subdural hematoma. The following results were obtained by intravenous 133Xe method : 1. There was a reducing tendency of the CBF (hemisphere) on hematoma side, in most cases. While, the groups of headache and disturbances of consciousness did not give a laterality between hematoma and opposite side without the group of hemiparesis. 2. The absolute values of the CBF in the groups of headache and disturbances of consciousness were correlated with the clinical symptoms. In the group of hemiparesis, the laterality between hematoma and opposite side was correlated with the clinical symptoms. 3. In the group of hemiparesis, the F-flow (fast-flow) had sensitive reaction more than the ISI (initial slope index) with symptomatic improvement. 4. It was found that there was not an increase in the absolute value of the CBF, which was under the normal limit between pre- and post-operations in the case without improvement. By SPECT (Method of IMP), the following results were obtained : 1. There was the area of defect at the location of hematoma and the CBF tended to reduce at the subcortical white matter and at the basal ganglia of hematoma side. 2. The CBF of the contralateral hematoma side in the hemisphere of cerebellum was also tended to reduce. (author)

  15. Renal blood flow distribution during E. coli endotoxin shock in dog.

    Science.gov (United States)

    Kirkebø, A; Tyssebotn, I

    1980-04-01

    The effect of endotoxin on renal blood flow distribution was studied in anesthetized dogs. Renal blood flow was measured as hydrogen clearance by platinum electrodes placed in outer and in inner halves of cortex and by electromagnetic flowmeter. Intravenous injection of E. coli endotoxin, 3-5 mg/kg b. wt., promptly reduced arterial blood pressure (AP) and renal blood flow. After a transient increase for 45 min AP and renal blood flow declined to about 50% of the control 2 1/2-3 h after injection. The reduction in outer cortical blood flow (OCF) was not significantly different from the reduction in inner cortical blood flow (ICF). The hematocrit (Hct) increased from 40.1 +/- 3.8% to 54.6 +/- 8%, but mean renal vascular resistance did not change. Total plasma protein concentration was not significantly elevated. A marked local flow variability was observed in some periods during the phase of shock with declining AP and total renal blood flow at high Hct. Thus renal blood flow showed phasic changes, but the OCF/ICF ratio was not changed during endotoxin shock. Local blood flow instability was observed periodically at high Hct. PMID:6998257

  16. Measurement of regional myocardial blood flow with multiple colored microspheres

    International Nuclear Information System (INIS)

    The use of radioactive microspheres (RM) for the measurement of regional myocardial blood flow (RMBF) is limited and inaccessible to many investigators due to radiation safety concerns and radioactive waste disposal problems. Therefore, a new method for the measurement of RMBF using colored microspheres (CM) was developed. Polystyrene spheres (diameter, 15 +/- 0.1 [SD] micron; density, 1.09 g/ml) were dyed with one of five colors. With the injection of CM into the left atrium or into a coronary perfusion line, RMBF and its distribution can be determined. CM are extracted from the myocardium and blood by digestion with potassium hydroxide and subsequent microfiltration. The dyes are then recovered from the CM within a defined volume of a solvent, and their concentrations are determined by spectrophotometry. The separation of composite absorbance spectra by spectrophotometry with the CM technique was as good as the separation of energy spectra by a gamma-counter using the RM technique. Leaching of dye from the CM was less than 0.1% during a 2-month period in vitro. Significant leaching of dye from the microspheres also did not occur during 8 hours in the blood and myocardium of four anesthetized dogs in vivo. For further validation of this method, pairs of CM and RM (15.5 +/- 0.1 [SD] microns) were simultaneously injected under five different RMBF conditions (range, 0-10 ml/[min.g]) into the left anterior descending coronary artery of four anesthetized pigs, with coronary inflow as a flow reference, or into the left atrium of four anesthetized dogs using aortic blood withdrawal as a reference. The relation between RMBF determined by CM and RM was CM = 0.01 + 1.00.RM (r = 0.98, n = 1,080 data points) in the pigs, and CM = -0.19 + 0.92.RM (r = 0.97, n = 1,813 data points) in the dogs. Measurement of RMBF with CM yields values very similar to those of RM

  17. A software technique for flow-rate measurement in horizontal two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Darwich, T.D.; Toral, H.; Archer, J.S. (Imperial Company (EG))

    1991-08-01

    This paper presents a software technique for measuring individual phase flow rates in two-phase flow. The technique is based on the extraction, classification, and identification of stochastic features from turbulent pressure and void-fraction waveforms. Experiments in a horizontal air/water loop showed that a set of stochastic features is uniquely related to the individual phase flow rates. The software flowmeter is calibrated in situ by compilation of feature sets related to individual phase flow rates in a data base. On-line flow-rate measurement is made by a pattern recognition technique that identifies the best match to the measured feature vector from the calibration data base.

  18. Multiscale modeling of red blood cell mechanics and blood flow in malaria.

    Directory of Open Access Journals (Sweden)

    Dmitry A Fedosov

    2011-12-01

    Full Text Available Red blood cells (RBCs infected by a Plasmodium parasite in malaria may lose their membrane deformability with a relative membrane stiffening more than ten-fold in comparison with healthy RBCs leading to potential capillary occlusions. Moreover, infected RBCs are able to adhere to other healthy and parasitized cells and to the vascular endothelium resulting in a substantial disruption of normal blood circulation. In the present work, we simulate infected RBCs in malaria using a multiscale RBC model based on the dissipative particle dynamics method, coupling scales at the sub-cellular level with scales at the vessel size. Our objective is to conduct a full validation of the RBC model with a diverse set of experimental data, including temperature dependence, and to identify the limitations of this purely mechanistic model. The simulated elastic deformations of parasitized RBCs match those obtained in optical-tweezers experiments for different stages of intra-erythrocytic parasite development. The rheological properties of RBCs in malaria are compared with those obtained by optical magnetic twisting cytometry and by monitoring membrane fluctuations at room, physiological, and febrile temperatures. We also study the dynamics of infected RBCs in Poiseuille flow in comparison with healthy cells and present validated bulk viscosity predictions of malaria-infected blood for a wide range of parasitemia levels (percentage of infected RBCs with respect to the total number of cells in a unit volume.

  19. COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS

    Institute of Scientific and Technical Information of China (English)

    Xu Bing; Ma Jien; Lin Jianjie

    2005-01-01

    The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.

  20. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining.

    Science.gov (United States)

    Kummrow, A; Theisen, J; Frankowski, M; Tuchscheerer, A; Yildirim, H; Brattke, K; Schmidt, M; Neukammer, J

    2009-04-01

    We present three-dimensional microfluidic structures with integrated optical fibers, mirrors and electrodes for flow cytometric analysis of blood cells. Ultraprecision milling technique was used to fabricate different flow cells featuring single-stage and two-stage cascaded hydrodynamic focusing of particles by a sheath flow. Two dimensional focussing of the sample fluid was proven by fluorescence imaging in horizontal and vertical directions and found to agree satisfactorily with finite element calculations. Focussing of the sample stream down to 5 microm at a particle velocity of 3 m s(-1) is accessible while maintaining stable operation for sample flow rates of up to 20 microL min(-1). In addition to fluorescence imaging, the micro-flow cells were characterised by measurements of pulse shapes and pulse height distributions of monodisperse microspheres. We demonstrated practical use of the microstructures for cell differentiation employing light scatter to distinguish platelets and red blood cells. Furthermore, T-helper lymphocytes labelled by monoclonal antibodies were identified by measuring side scatter and fluorescence. PMID:19294310