WorldWideScience

Sample records for blood flow rate

  1. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions...

  2. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...

  3. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...

  4. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-06-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.

  5. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  6. Nocturnal variations in subcutaneous blood flow rate in lower leg of normal human subjects

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate was measured in the lower leg of 22 normal human subjects over 12- to 20-h ambulatory conditions. The 133Xe washout technique, portable CdTe(Cl) detectors, and a portable data storage unit were used. The tracer depot was applied on the medial aspect...

  7. Diurnal variations in lower leg subcutaneous blood flow rate in patients with chronic venous leg ulcers

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Kristensen, J K

    1991-01-01

    telluride (CdTe(Cl)) detectors. In both groups, the change from an upright to a supine position at the beginning of the night period elicited an instantaneous increment in the blood flow rate of 30-40% with a decrease in the central and local postural sympathetic vasoconstrictor activity. After...

  8. Regional variations in nocturnal fluctuations in subcutaneous blood flow rate in the lower leg of man

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B

    1991-01-01

    aspect of the right lower leg of normal human subjects. In the present study subcutaneous adipose tissue blood flow rates were measured simultaneously in the right and left lower legs of 16 normal human subjects over 12-20 h ambulatory conditions. The 133Xe wash-out technique, portable CdTe(Cl) detectors...

  9. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  10. Cerebral Blood Flow, Heart Rate, and Blood Pressure Patterns during the Tilt Test in Common Orthostatic Syndromes

    Directory of Open Access Journals (Sweden)

    Peter Novak

    2016-01-01

    Full Text Available Objective. The head-up tilt test is widely used for evaluation of orthostatic intolerance. Although orthostatic symptoms usually reflect cerebral hypoperfusion, the cerebral blood flow velocity (CBFv profile in orthostatic syndromes is not well described. This study evaluated CBFv and cardiovascular patterns associated with the tilt test in common orthostatic syndromes. Methods. This retrospective study analyzed the tilt test of patients with history of orthostatic intolerance. The following signals were recorded: ECG, blood pressure, CBFv using transcranial Doppler, respiratory signals, and end tidal CO2. Results. Data from 744 patients were analyzed. Characteristic pattern associated with a particular orthostatic syndrome can be grouped into abnormalities predominantly affecting blood pressure (orthostatic hypotension, orthostatic hypertension syndrome, vasomotor oscillations, and neurally mediated syncope—cardioinhibitory, vasodepressor, and mixed, cerebral blood flow (orthostatic hypoperfusion syndrome, primary cerebral autoregulatory failure, and heart rate (tachycardia syndromes: postural tachycardia syndrome, paroxysmal sinus tachycardia, and inappropriate sinus tachycardia. Psychogenic pseudosyncope is associated with stable CBFv. Conclusions. The tilt test is useful add-on in diagnosis of several orthostatic syndromes. However diagnostic criteria for several syndromes had to be modified to allow unambiguous pattern classification. CBFv monitoring in addition to blood pressure and heart rate may increase diagnostic yield of the tilt test.

  11. Cerebral Blood Flow, Heart Rate, and Blood Pressure Patterns during the Tilt Test in Common Orthostatic Syndromes

    Science.gov (United States)

    2016-01-01

    Objective. The head-up tilt test is widely used for evaluation of orthostatic intolerance. Although orthostatic symptoms usually reflect cerebral hypoperfusion, the cerebral blood flow velocity (CBFv) profile in orthostatic syndromes is not well described. This study evaluated CBFv and cardiovascular patterns associated with the tilt test in common orthostatic syndromes. Methods. This retrospective study analyzed the tilt test of patients with history of orthostatic intolerance. The following signals were recorded: ECG, blood pressure, CBFv using transcranial Doppler, respiratory signals, and end tidal CO2. Results. Data from 744 patients were analyzed. Characteristic pattern associated with a particular orthostatic syndrome can be grouped into abnormalities predominantly affecting blood pressure (orthostatic hypotension, orthostatic hypertension syndrome, vasomotor oscillations, and neurally mediated syncope—cardioinhibitory, vasodepressor, and mixed), cerebral blood flow (orthostatic hypoperfusion syndrome, primary cerebral autoregulatory failure), and heart rate (tachycardia syndromes: postural tachycardia syndrome, paroxysmal sinus tachycardia, and inappropriate sinus tachycardia). Psychogenic pseudosyncope is associated with stable CBFv. Conclusions. The tilt test is useful add-on in diagnosis of several orthostatic syndromes. However diagnostic criteria for several syndromes had to be modified to allow unambiguous pattern classification. CBFv monitoring in addition to blood pressure and heart rate may increase diagnostic yield of the tilt test. PMID:27525257

  12. Improved determination of vascular blood-flow shear rate using Doppler ultrasound

    Science.gov (United States)

    Farison, James B.; Begeman, Garett A.; Salles-Cunha, Sergio X.; Beebe, Hugh G.

    1997-05-01

    Shear rate has been linked to endothelial and smooth muscle cell function, neointimal hyperplasia, poststenotic dilation and progression of atherosclerotic plaque. In vivo studies of shear rate have been limited in humans due to the lack of a truly accurate noninvasive method of measuring blood flow. In clinical vascular laboratories, the primary method of wall shear rate estimation is the scaled ratio between the center line systolic velocity and the local arterial radius. The present study compares this method with the shear rate calculated directly from data collected using a Doppler ultrasound scanner. Blood flow in the superficial femoral artery of 20 subjects was measured during three stages of distal resistance. Analysis and display programs were written for use with the MATLAB image processing software package. The experimental values of shear rate were calculated using the formal definition and then compared to the standard estimate. In all three states of distal resistance, the experimental values were significantly higher than the estimated values by a factor of approximately 1.57. These results led to the conclusion that the direct method of measuring shear rate is more precise and should replace the estimation model in the clinical laboratory.

  13. Daily rhythms in renal blood flow and urine production rate in the near-term sheep fetus

    NARCIS (Netherlands)

    Poortinga, FMI; Aarnoudse, JG

    2000-01-01

    Daily rhythmicity of renal blood flow (RBF) and urine flow (UF) was studied in fetal sheep between 121-125 d of gestation. Fetal arterial blood pressure, heart rate, UF, and right RBF were measured continuously for 24-h periods in 10 sheep, Rhythmic variations during a 24-h period were found for all

  14. Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J

    1990-01-01

    The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......-like immunoreactive nerve fibers were identified in the adventitia of canine coronary arteries. NPY (10(-9)-10(-6) M) supplied to isolated epicardial segments of the left anterior descending coronary artery induced a modest vasoconstriction, with a maximum tension of 0.95 mN, that was only 6.9% of the response to K...

  15. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  16. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation...

  17. Use of Audible and Chart-recorded Ultrasonography to Monitor Fetal Heart Rate and Uterine Blood Flow Parameters in Cattle

    Science.gov (United States)

    The objective of the present study was to evaluate the use of audible chart-recorded doppler ultrasonography (DUS) to monitor both uterine blood flow and fetal heart rate (FHR) during pregnancy in dairy cattle. Possible applications of DUS include the monitoring of fetal distress when a pregnancy be...

  18. The Effect of Insulating Blood Warmer Output Tubing on the Temperature of Packed Red Blood Cells at Low Flow Rates

    Science.gov (United States)

    1989-01-01

    as the most effective method to minimize the detrimental effects of hypothermia (Boyan & Howland, 1962; Aldrete , 1985; Fried, Satiani, & Zeeb, 1986...rates result in an increased heat loss in both non-insulated and insulated blood warmer output tubing. 62 References 63 References Aldrete , J. A. (1985

  19. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    Science.gov (United States)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  20. Effect of blood flow rate on internal filtration in a high-flux dialyzer with polysulfone membrane.

    Science.gov (United States)

    Sakiyama, Ryoichi; Ishimori, Isamu; Akiba, Takashi; Mineshima, Michio

    2012-09-01

    Internal filtration/backfiltration (IF/BF) of a dialyzer depends on several parameters. This study evaluated the effect of the blood flow rate (Q (B)) on the internal filtration flow rate (Q (IF)) measured using Doppler ultrasonography for a high-flux dialyzer with a polysulfone membrane, APS-15E. In an in vitro study, bovine blood was circulated through the dialyzer, at a Q (B) of 100-350 mL/min. The clearances (CL) of creatinine, β(2)-microglobulin, and α(1)-microglobulin were then investigated. Q (IF) increased with the Q (B) value. A good correlation was obtained between Q (IF) and the pressure difference between the pressures at the inlet of the blood compartment and the pressure at the outlet of the dialysate compartment. The creatinine CL values strongly depended on Q (B) because molecular diffusion was dominant. The β(2)-microglobulin CL also depended on Q (B), because its removal rate seemed to be affected by both diffusive and convective transport caused by the IF/BF. An extremely low CL value was obtained for α(1)-microglobulin because of its low diffusivity and membrane fouling induced by proteins plugging the membrane. In conclusion, the IF/BF in the dialyzer strongly depends on Q (B). Furthermore, the dependence of the solute clearance on Q (B) decreased with increasing molecular size of the solute because of the decrease in diffusivity through the membrane.

  1. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    Science.gov (United States)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  2. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Shi, Liang; Rugonyi, Sandra; Wang, Ruikang K.

    2012-09-01

    During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.

  3. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation

    Directory of Open Access Journals (Sweden)

    Shih Tzu-Ching

    2010-03-01

    Full Text Available Abstract Background Pennes Bio Heat Transfer Equation (PBHTE has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions. Methods In this paper, a countercurrent blood vessel network (CBVN model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels. Results This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model delivers the

  4. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  5. Effects of carbachol matching oral fluid resuscitation on intestinal mucosa blood flow and absorption rate of dogs suffered hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Lin LI

    2011-04-01

    Full Text Available Objective To investigate the effects of carbachol matching oral fluid resuscitation on intestinal mucosa blood flow(IMBF and intestinal absorption rate of dogs suffered hemorrhagic shock.Methods Twenty-four hours after a preliminary intubation of carotid artery,jugular vein and jejunum by asepsis,twelve Beagle dogs were subjected to a loss of 40% total blood volume to establish animal model of hemorrhagic shock.Animals were then divided into oral resuscitation group and carbachol group(6 each.Dogs in oral resuscitation group were given by gastric tube the glucose-electrolyte solution(GES,which was 3 times volume of blood loss,within 24h after bleeding;while dogs in carbachol group were given GES added carbachol(0.25μg/kg.The IMBF and intestinal absorption rate of water before hemorrhage(0h and 2,4 and 8h after hemorrhage were measured.All the animals were sacrificed at 8h after hemorrhage to record the intestinal GES volume.Results The intestinal absorption rate of water remarkably decreased after hemorrhage in both groups,while in carbachol,group it was obviously higher than that in oral resuscitation group(P < 0.05.The GES volume absorbed by intestine in carbachol group was high than that in oral resuscitation group 8h after hemorrhage(P < 0.05.The IMBF decreased significantly in the both groups after hemorrhage,and then increased gradually 2h after hemorrhage.The IMBF in carbachol group was obviously higher than that in oral resuscitation group(P < 0.05.Conclusion Carbachol in oral resuscitation with GES can improve intestinal absorption rate of water and GES,and increase IMBF in dogs with 40% blood loss.

  6. Solution Concentration and Flow Rate of Fe3+-modified Porphyrin (Red Blood Model) on Giant Magnetoresistance (GMR) Sensor Efficiency

    Science.gov (United States)

    Aminudin, A.; Tjahyono, D. H.; Suprijadi; Djamal, M.; Zaen, R.; Nandiyanto, A. B. D.

    2017-03-01

    Red blood has been of great interest for scientists since it relates to human’ and living creature’s life sustainability. One of the important compounds in red blood is porphyrin. Here, the purpose of this study was to develop a method for detecting porphyrin concentration using the assistance of giant magnetoresistance. In short of the method, we added Fe3+ solution to the porphyrin, and the mixed solution was introduced to the magnetic field. Next, the magnetized solution was introduced to the magnetic sensor to indicate the existence of porphyrin in the solution. To confirm the effectiveness of our method in detecting porphyrin, we varied the flow rate and concentration of Fe3+-modified porphyrin solution. The result showed that the more concentration and the slower flow rate affected the higher sensitivity gained. Since this developed method is simple but effective for detecting porphyrin concentration, we believe that further development of this method will be benefit for many applications, specifically relating to the medical uses.

  7. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fox, P.T.; Raichle, M.E.

    1984-05-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H/sub 2/(/sup 15/)O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H/sub 2/(/sup 15/)O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2(/sup 15/)O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism.

  8. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G

    2014-01-01

    venous noradrenaline, and falling arterial carbon dioxide tension (P aCO 2) (R(2) ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were related to elevated blood temperature. In conclusion, dehydration accelerated the decline in CBF by decreasing P aCO 2 and enhancing vasoconstrictor activity. However......Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle...... cerebral artery velocity (MCA Vmean), arterial-venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38...

  9. Blood flow and microgravity

    Science.gov (United States)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  10. Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep.

    Science.gov (United States)

    Blood, Arlin B; Hunter, Christian J; Power, Gordon G

    2003-12-15

    Exposure of the fetal sheep to moderate to severe hypoxic stress results in both increased cortical blood flow and decreased metabolic rate. Using intravenous infusion of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist that is permeable to the blood brain barrier, we examine the role of adenosine A1 receptors in mediating cortical blood flow and metabolic responses to moderate hypoxia. The effects of DPCPX blockade are compared to controls as well as animals receiving intravenous 8-(p-sulfophenyl)-theophylline) (8-SPT), a non-selective adenosine receptor antagonist which has been found to be blood brain barrier impermeable. Laser Doppler flow probes, tissue PO2, and thermocouples were implanted in the cerebral cortices of near-term fetal sheep. Catheters were placed in the brachial artery and sagittal sinus vein for collection of samples for blood gas analysis. Three to seven days later responses to a 30-min period of fetal hypoxemia (arterial PO2 10-12 mmHg) were studied with administration of 8-SPT, DPCPX, or vehicle. Cerebral metabolic rate was determined by calculation of both brain heat production and oxygen consumption. In response to hypoxia, control experiments demonstrated a 42 +/- 7 % decrease in cortical heat production and a 35 +/- 10 % reduction in oxygen consumption. In contrast, DPCPX infusion during hypoxia resulted in no significant change in brain heat production or oxygen consumption, suggesting the adenosine A1 receptor is involved in lowering metabolic rate during hypoxia. The decrease in cerebral metabolic rate was not altered by 8-SPT infusion, suggesting that the response is not mediated by adenosine receptors located outside the blood brain barrier. In response to hypoxia, control experiments demonstrated a 35 +/- 7 % increase in cortical blood flow. DPCPX infusion did not change this increase in cortical blood flow, however 8-SPT infusion attenuated increases in flow, indicating that hypoxic

  11. Resting cerebral blood flow

    Science.gov (United States)

    Ances, B M.; Sisti, D; Vaida, F; Liang, C L.; Leontiev, O; Perthen, J E.; Buxton, R B.; Benson, D; Smith, D M.; Little, S J.; Richman, D D.; Moore, D J.; Ellis, R J.

    2009-01-01

    Objective: HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). Methods: This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV− subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. Results: rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV− subjects. A 2-tiered CART approach using either LN rCBF ≤50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF ≤37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV− controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. Conclusion: Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment. GLOSSARY AEH = acute/early HIV infection; ANOVA = analysis of variance; ASL-MRI = arterial spin labeling MRI; CART = classification and regression tree; CBF = cerebral blood flow; CH = chronic HIV

  12. Saline-induced natriuresis and renal blood flow in conscious dogs: effects of sodium infusion rate and concentration

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2005-01-01

    saline loading simulating daily sodium intake, the rate of sodium excretion may increase 10-20-fold without any change in mean arterial blood pressure or in RBF. Regulatory responses to changes in total body NaCl levels appears, therefore, to be mediated primarily by neurohumoral mechanisms and may occur...

  13. Angiotensin II and renal prostaglandin release in the dog. Interactions in controlling renal blood flow and glomerular filtration rate.

    Science.gov (United States)

    Bugge, J F; Stokke, E S

    1994-04-01

    The relationship between angiotensin II and renal prostaglandins, and their interactions in controlling renal blood flow (RBF) and glomerular filtration rate (GFR) were investigated in 18 anaesthetized dogs with acutely denervated kidneys. Intrarenal angiotensin II infusion increased renal PGE2 release (veno-arterial concentration difference times renal plasma flow) from 1.7 +/- 0.9 to 9.1 +/- 0.4 and 6-keto-PGF1 alpha release from 0.1 +/- 0.1 to 5.3 +/- 2.1 pmol min-1. An angiotensin II induced reduction in RBF of 20% did not measurably change GFR whereas a 30% reduction reduced GFR by 18 +/- 8%. Blockade of prostaglandin synthesis approximately doubled the vasoconstrictory action of angiotensin II, and all reductions in RBF were accompanied by parallel reductions in GFR. When prostaglandin release was stimulated by infusion of arachidonic acid (46.8 +/- 13.3 and 15.9 +/- 5.4 pmol min-1 for PGE2, and 6-keto-PGF1 alpha, respectively), angiotensin II did not change prostaglandin release, but had similar effects on the relationship between RBF and GFR as during control. In an ureteral occlusion model with stopped glomerular filtration measurements of ureteral pressure and intrarenal venous pressure permitted calculations of afferent and efferent vascular resistances. Until RBF was reduced by 25-30% angiotensin II increased both afferent and efferent resistances almost equally, keeping the ureteral pressure constant. At greater reductions in RBF, afferent resistance increased more than the efferent leading to reductions in ureteral pressure. This pattern was not changed by blockade of prostaglandin synthesis indicating no influence of prostaglandins on the distribution of afferent and efferent vascular resistances during angiotensin II infusion. In this ureteral occlusion model glomerular effects of angiotensin II will not be detected, and it might well be that the shift from an effect predominantly on RBF to a combined effect on both RBF and GFR induced by inhibition

  14. Local Control of Blood Flow

    Science.gov (United States)

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  15. Blood Flow in the Microcirculation

    Science.gov (United States)

    Secomb, Timothy W.

    2017-01-01

    The microcirculation is an extensive network of microvessels that distributes blood flow throughout living tissues. Reynolds numbers are much less than 1, and the equations of Stokes flow apply. Blood is a suspension of cells with dimensions comparable to microvessel diameters. Highly deformable red blood cells, which transport oxygen, have a volume concentration (hematocrit) of 40–45% in humans. In the narrowest capillaries, these cells move in single file with a surrounding lubricating layer of plasma. In larger vessels, the red blood cells migrate toward the centerline, reducing the resistance to blood flow. Vessel walls are coated with a layer of macromolecules that restricts flow. At diverging bifurcations, hematocrit is not evenly distributed in the downstream vessels. Other particles are driven toward the walls by interactions with red blood cells. These physiologically important phenomena are discussed here from a fluid mechanical perspective.

  16. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only...

  17. Neuromodulation of cerebral blood flow

    NARCIS (Netherlands)

    ter Laan, Mark

    2014-01-01

    Dit proefschrift behandelt de modulatie van de cerebrale doorbloeding (cerebral blood flow, CBF) door cervicale elektrische stimulatie en de aanname dat het sympathisch zenuwstelsel hierin een specifieke rol speelt. Enkele resultaten met cervicale ruggenmergsstimulatie (spinal cord stimulation, SCS)

  18. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu T

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  19. Capillary permeability of 99mTc-DTPA and blood flow rate in the human myocardium determined by intracoronary bolus injection and residue detection

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Efsen, F; Haunsø, S

    1992-01-01

    of 99mTc-DTPA were quantitated during coronary angiography by the single injection, residue detection method. Eighteen patients undergoing a diagnostic coronary angiography because of uncharacteristic chest pain were studied. In 12 patients with angiographically normal epicardial coronary arteries...... myocardial blood flow rate in the human heart are in accordance with values obtained by other methods, and the PS product of 99mTc-DTPA is similar to results obtained in canine hearts. Localized coronary atheroma leading to insignificant coronary artery stenosis does not produce any measurable dysfunction...

  20. Chaotic advection in blood flow.

    Science.gov (United States)

    Schelin, A B; Károlyi, Gy; de Moura, A P S; Booth, N A; Grebogi, C

    2009-07-01

    In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation.

  1. Magnetohydrodynamics of blood flow.

    Science.gov (United States)

    Keltner, J R; Roos, M S; Brakeman, P R; Budinger, T F

    1990-10-01

    The changes in hydrostatic pressure and electrical potentials across vessels in the human vasculature in the presence of a large static magnetic field are estimated to determine the feasibility of in vivo NMR spectroscopy at fields as high as 10 T.A 10-T magnetic field changes the vascular pressure in a model of the human vasculature by less than 0.2%. An exact solution to the magnetohydrodynamic equations describing a conducting fluid flowing transverse to a static magnetic field in a nonconducting, straight, circular tube is used. This solution is compared to an approximate solution that assumes that no magnetic fields are induced in the fluid and that has led previous investigators to predict significant biological effects from static magnetic fields. Experimental results show that the exact solution accurately predicts the magnetohydrodynamic slowing of 15% NaCl flowing transverse to 2.3- and 4.7-T magnetic fields for fluxes below 0.5 liter/min while the approximate solution predicts a much more retarded flow.

  2. Skin blood flow changes during apneic spells in preterm infants

    NARCIS (Netherlands)

    Suichies, H.E.; Aarnoudse, J.G.; Okken, A.; Jentink, H.W.; Mul, de F.F.M.; Greve, J.

    1989-01-01

    Changes in skin blood flow during apneic spells were determined in 18 preterm infants using a diode laser Doppler flow meter without light conducting fibres. Heart rate, nasal air flow, impedance pneumography, skin and incubator temperature and laser Doppler skin blood flow were recorded simultaneou

  3. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S;

    1983-01-01

    Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used......., and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow.......Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used...

  4. Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia.

    Science.gov (United States)

    Ewing, James R; Wei, Ling; Knight, Robert A; Pawa, Swati; Nagaraja, Tavarekere N; Brusca, Thomas; Divine, George W; Fenstermacher, Joseph D

    2003-02-01

    The present study determined cerebral blood flow (CBF) in the rat using two different magnetic resonance imaging (MRI) arterial spin-tagging (AST) methods and 14C-iodoantipyrine (IAP)-quantitative autoradiography (QAR), a standard but terminal technique used for imaging and quantitating CBF, and compared the resulting data sets to assess the precision and accuracy of the different techniques. Two hours after cerebral ischemia was produced in eight rats via permanent occlusion of one middle cerebral artery (MCA) with an intraluminal suture, MRI-CBF was measured over a 2.0-mm coronal slice using single-coil AST, and tissue magnetization was assessed by either a spin-echo (SE) or a variable tip-angle gradient-echo (VTA-GE) readout. Subsequently ( approximately 2.5 hours after MCA occlusion), CBF was assayed by QAR with the blood flow indicator 14C-IAP, which produced coronal images of local flow rates every 0.4 mm along the rostral-caudal axis. The IAP-QAR images that spanned the 2-mm MRI slice were selected, and regional flow rates (i.e., local CBF [lCBF]) were measured and averaged across this set of images by both the traditional approach, which involved reader interaction and avoidance of sectioning artifacts, and a whole film-scanning technique, which approximated total radioactivity in the entire MRI slice with minimal user bias. After alignment and coregistration, the concordance of the CBF rates generated by the two QAR approaches and the two AST methods was examined for nine regions of interest in each hemisphere. The QAR-lCBF rates were higher with the traditional method of assaying tissue radioactivity than with the MRI-analog approach; although the two sets of rates were highly correlated, the scatter was broad. The flow rates obtained with the whole film-scanning technique were chosen for subsequent comparisons to MRI-CBF results because of the similarity in tissue "sampling" among these three methods. As predicted by previous modeling, "true" flow rates

  5. An implantable blood pressure and flow transmitter.

    Science.gov (United States)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  6. [Investigation of biophysical features of interaction between 0.1 Hz oscillations in heart rate variability and distal blood flow variability].

    Science.gov (United States)

    Kiselev, A R; Khorev, V S; Gridnev, V I; Prokhorov, M D; Karavaev, A S; Posnenkova, O M; Ponomarenko, V I; Bezruchko, B P; Shvarts, V A

    2012-01-01

    We studied biophysical features of interaction between 0.1 Hz oscillations in heart rate variability (HRV) and distal blood flow (DBF) variability in healthy subjects and patients after acute myocardial infarction (MI). 125 patients after acute MI (72 male and 53 female) aged between 30 and 83 years and 33 healthy subjects (23 male and 10 female) aged between 20 and 46 years were included in the study. The duration of prospective study of MI patients was one year. We estimated the delay in coupling between 0.1 Hz oscillations in H RV and DBF variability. It is found out that in healthy subjects the delay in coupling from heart rate to DBF is less than delay in coupling from DBF to heart rate. Acute MI results mainly in disruption of coupling from heart rate to DBF. This coupling is partially restored in one year after acute MI, but the delay in coupling remains significantly smaller than in healthy subjects. The features of coupling from DBF to heart rate are restored in MI patients within three weeks after infarction. After this period the delay in this coupling in MI patients is approximately the same as it is in healthy subjects.

  7. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang; Lou, Yaxian; Pan, Zhiying; Liu, Ya [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Aivil Aviation, Nanjing, Jiangsu (China); Wen, Jiqiu; Li, Xue; Zhang, Zhe [Medical School of Nanjing University, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, Jiangsu (China); Lu, Hanzhang [University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX (United States); Liu, Wei [Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong (China); Liu, Hui [Siemens MR NEA Collaboration, Siemens Ltd., Shanghai (China); Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China)

    2016-06-15

    To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO{sub 2} was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min{sup -1} 100 g{sup -1}, P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO{sub 2} (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O{sub 2} min{sup -1} 100 g{sup -1}, P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO{sub 2}. Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO{sub 2}. There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO{sub 2}. Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. (orig.)

  8. Ocular Blood Flow Autoregulation Mechanisms and Methods

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2015-01-01

    Full Text Available The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described.

  9. The effect of hyperosmotic solutions on the hepatic blood flow

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik Sahl; Tygstrup, N

    1993-01-01

    The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous infus...... for these osmotic effects are not known, but they have to be taken into consideration in studies of the portal and hepatic blood flow.......The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous...

  10. Ocular Blood Flow Autoregulation Mechanisms and Methods

    OpenAIRE

    Xue Luo; Yu-meng Shen; Meng-nan Jiang; Xiang-feng Lou; Yin Shen

    2015-01-01

    The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and va...

  11. Lattice BGK Simulations of the Blood Flow in Elastic Vessels

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-Yang; YI Hou-Hui; CHEN Ji-Yao; FANG Hai-Ping

    2006-01-01

    @@ The lattice Boltzmann method is applied to study the flow in elastic blood vessels. The volume-flow rate increases considerably when the compliance constant of the blood vessel is below a critical value. There is a region of the compliance constant in which the average volume-flow rate is dramatically enhanced. A harmonic perturbation of the pressure does not change the behaviour of the average volume-flow rate while the harmonic wave attenuates very quickly along the tube when the resonant period is close to that of the input wave. The model, together with the simulation results, is expected to be helpful to understand the mechanism of the blood volume-flow rate related to the compliance constant of the blood vessel, especially on the dependence of the flux of human blood vessel under weather changes, which has medical significance.

  12. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubula...

  13. Dexmedetomidine decreases the oral mucosal blood flow.

    Science.gov (United States)

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors.

  14. PERFORMANCE MODELING AND ANALYSIS OF BLOOD FLOW IN ELASTIC ARTERIES

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L. Varshney; G.C. Sharma

    2005-01-01

    Two different non-Newtonian models for blood flow are considered, first a simple power law model displaying shear thinning viscosity, and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous-elasticity. These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field. The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient. The governing equations have been solved by Crank-Niclson scheme. The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view. For physiological flow simulation in the aorta, an increase in mean wall shear stress, but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form. Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.

  15. Quantitative Cerebral Blood Flow Measurements Using MRI

    OpenAIRE

    Muir, Eric R; Watts, Lora Talley; Tiwari, Yash Vardhan; Bresnen, Andrew; Timothy Q Duong

    2014-01-01

    Magnetic resonance imaging utilized as a quantitative and noninvasive method to image cerebral blood flow. The two most common techniques used to detect cerebral blood flow are dynamic susceptibility contrast (DSC) perfusion MRI and arterial spin labeling perfusion MRI. Herein we describe the use of these two techniques to measure cerebral blood flow in rodents, including methods, analysis, and important considerations when utilizing these techniques.

  16. Mucosal/submucosal blood flow in the gut wall determined by local washout of 133Xenon

    DEFF Research Database (Denmark)

    Mortensen, Peter; Olsen, J; Bülow, J

    1991-01-01

    the initial slope of the washout was used for measuring blood flow rate. Blood flow rate was simultaneously measured by microsphere entrapment technique. There was an excellent correlation between the blood flow rate determined by the two techniques the correlation coefficient R being 0.89 in the small...

  17. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  18. Columbus Payloads Flow Rate Anomalies

    Science.gov (United States)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  19. The effect of hyperosmotic solutions on the hepatic blood flow

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik; Tygstrup, N

    1993-01-01

    The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous...... infusions of hyperosmotic galactose (50%, 84-100 ml) and mannitol (25%, 100 ml), with physiological saline (100 ml) as control. Portal blood flow increased to a peak value of (39% [P = 0.06] galactose and 37%, [P = 0.06], mannitol) soon after stop of the hyperosmotic infusion. For galactose the change ended...... somewhat earlier than for mannitol. Saline induced a minor increase (15%). Similarly, increments of, on average, 144% of the hepatic blood flow rate was seen in six patients with cirrhosis, following infusion of hyperosmotic galactose, the increase being more pronounced than in the pigs. The causes...

  20. Experimental comparison of mammalian and avian blood flow in microchannels

    Science.gov (United States)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  1. Pancreatic islet blood flow and its measurement.

    Science.gov (United States)

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.

  2. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  3. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  4. Mechanics of blood flow in the microcirculation.

    Science.gov (United States)

    Secomb, T W

    1995-01-01

    The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

  5. Fisetin-Rich Extracts of Rhus verniciflua Stokes Improve Blood Flow Rates in Mice Fed Both Normal and High-Fat Diets.

    Science.gov (United States)

    Im, Won Kyun; Park, Hyun Jung; Lee, Kwang Soo; Lee, Jung Hoon; Kim, Young Dong; Kim, Kyeong-Hee; Park, Sang-Jae; Hong, Seokmann; Jeon, Sung Ho

    2016-02-01

    Although it has been previously reported that Rhus verniciflua Stokes (RVS) possesses in vitro anti-inflammatory activity, the precise in vivo mechanisms of RVS extracts and a main active component called fisetin have not been well elucidated. In this study, using newly developed protocols, we prepared urushiol-free but fisetin-enriched RVS extracts and investigated their effects on the vascular immune system. We found that the water-soluble fractions of detoxified RVS with the flavonoid fisetin can inhibit lipopolysaccharide-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Furthermore, RVS can reduce inducible nitric oxide synthase and COX2 gene expression levels, which are responsible for NO and PGE2 production, respectively, in RAW264.7 macrophage cells. Because inflammation is linked to the activation of the coagulation system, we hypothesized that RVS and its active component fisetin possess anticoagulatory activities. As expected, we found that both RVS and fisetin could inhibit the coagulation of human peripheral blood cells. Moreover, in vivo RVS treatment could return the retarded blood flow elicited by a high-fat diet (HFD) back to the normal level in mice. In addition, RVS treatment has significantly reduced body weight gained by HFD in mice. Taken together, the fisetin-rich RVS extracts have potential antiplatelet and antiobesity activities and could be used as a functional food ingredient to improve blood circulation.

  6. Dynamics of blood flow in a microfluidic ladder network

    Science.gov (United States)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  7. ANALYSIS OF PULSATILE BLOOD FLOW IN AXIALLY MOVING ARTERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to study motional properties of pulsatile blood flow in axially moving arteries, the authors derived some expressions of the pulsatile blood flow from the basic equations of motion for blood and vascular walls, including an axial blood velocity equation, a flow rate equation and a wall shear stress equation, which described not only the overall axial movement of the arteries but also the elastic properties of the vascular walls, discussed the effects of the arterial wall elasticity on the wall shear stress in coronary arteries in terms of these expressions, and analyzed changes of motional properties of pulsatile blood flow between an elastic arterial tube model and a rigid tube model. The results proved the inference by J.E. Moore Jr. et al. (1994) that the axial movement of arteries be as important in determining coronary artery hemodynamics as the elastic property of the vascular wall.

  8. Mesenteric, coeliac and splanchnic blood flow in humans during exercise

    DEFF Research Database (Denmark)

    Perko, M J; Nielsen, H B; Skak, C;

    1998-01-01

    1. Exercise reduces splanchnic blood flow, but the mesenteric contribution to this response is uncertain. 2. In nineteen humans, superior mesenteric and coeliac artery flows were determined by duplex ultrasonography during fasting and postprandial submaximal cycling and compared with the splanchnic...... blood flow as assessed by the Indocyanine Green dye-elimination technique. 3. Cycling increased arterial pressure, heart rate and cardiac output, while it reduced total vascular resistance. These responses were not altered in the postprandial state. During fasting, cycling increased mesenteric, coeliac...... and splanchnic resistances by 76, 165 and 126 %, respectively, and it reduced corresponding blood flows by 32, 50 and 43 % (by 0.18 +/- 0.04, 0.42 +/- 0.03 and 0.60 +/- 0.04 l min-1). Postprandially, mesenteric and splanchnic vascular resistances decreased, thereby elevating regional blood flow, while...

  9. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following this, three different...

  10. Ambulatory measurement of nocturnal fluctuations in subcutaneous blood flow rate in the lower leg of man during 12-h periods with the portable CdTe(Cl) detector. Methodological considerations

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B;

    1991-01-01

    Possible sources of error during long-term measurements of subcutaneous blood flow rate with the portable CdTe(Cl) detector system were ruled out in the present study. Local blood flow rates were recorded in the lower legs of normal human subjects by means of the 133Xe wash-out technique. A good...... correlation was found between the portable CdTe(Cl) and stationary NaI(Tl) detector systems both prior to (r = 0.88, P less than 0.0001) and after (r = 0.68, P = 0.07) day over night (12 h) measurements. Identical post-ischaemic reactive hyperaemia could be demonstrated by both detector systems 12 h after...... the application of the isotope depot. This indicates that blood flow rates and vascular reactivity can be measured over 12 h by the portable CdTe(Cl) detector. Identical results were obtained during the 12-h measurements performed with the portable CdTe(Cl) detector attached directly to the skin surface...

  11. Carbon dioxide and liver blood flow.

    Science.gov (United States)

    Dutton, R; Levitzky, M; Berkman, R

    1976-01-01

    This study was designed to determine blood flow to the liver during hypercapnia and combined hypercapnia-hypoxia with the portal vein and hepatic artery intact except for placement of an electromagnetic flow probe around these vessels. Twenty mongrel dogs weighing 30-45 kg were anesthetized with pentobarbital and flow probes and occluders were surgically implanted. Ten of these dogs were subjected to hypercapnia alone. During inspiration of 6% CO2 in room air, portal vein flow increased from 588 +/- 73 ml/min to 731 +/- 113 ml/min (p less than .05), while hepatic artery flow did not change significantly from its control mean of 221 +/- 38 ml/min. In the remaining dogs, inhalation of 6% O2 resulted in a reduction of portal blood flow within 30 min from 527 +/- 55 ml/min to 381 +/- 41 ml/min (p less than .01). Again, mean hepatic artery flow did not increase significantly above its control of 273 +/- 43 ml/min. Subsequent inhalation of 6% CO2 plus 6% O2 (combined hypercapniahypoxia) for 30 min in these same animals resulted in a significant increase of portal vein blood flow from 514 +/- 46 ml/min to 716 +/- 116 ml/min (p less than .05). Thus, hypercapnia alone increases total liver blood flow, primarily by an increase in portal vein flow. Hypoxia results in a decrease in portal vein flow. The superimposition of hypercapnia on hypoxia restores blood flow to a level close to that found with hypercapnia alone. Hypercapnia in the range of 63 +/- 4 mmHg PCO2 overwhelms the tendency toward a reduction of portal vein blood flow induced by an arterial PO2 of 42 +/- 5 mmHg in the presence of mild hypocapnia (PCO2 : 30.2 +/- 1 mmHg).

  12. Salt-gland secretion and blood flow in the goose.

    Science.gov (United States)

    Hanwell, A; Linzell, J L; Peaker, M

    1971-03-01

    1. Salt-gland blood flow in the domestic goose has been measured using a combination of Sapirstein's indicator fractionation technique for organ blood flow and Fegler's thermodilution method for cardiac output.2. Nasal salt secretion was induced by giving 0.5 M-NaCl or 0.154 M-NaCl I.V. or by giving artificial sea water by stomach tube into the proventriculus.3. During secretion, salt-gland blood flow increased from 82.7 +/- 21.9 ml./100 g tissue. min to as high as 2179 ml./100 g. min (mean 1209 +/- 140).4. The rate of secretion in response to salt loading was very variable and was not correlated with the rate of blood flow.5. From the data obtained, it could be calculated that the median values for the percentage extraction of ions from the arterial plasma were Na 15%, K 35%, Cl 21% and water 5.8%.6. Atropine abolished secretion but not the increase in blood flow produced by salt loading.7. Unilateral complete denervation abolished secretion from and the increase in blood flow through the operated but not the control gland.8. Anaesthesia, induced by pentobarbitone sodium, almost completely blocked secretion and the increase in blood flow in the salt-gland in response to salt loading.9. In geese given 0.5 or 0.154 M-NaCl I.V. a positive, significant correlation was found between the total amount of nasal secretion collected over 30 min and the concentrations of Na and Cl in the nasal fluid. However, when the time course of secretion was followed in any one bird, the rate of secretion was inversely related to the concentrations of Na and Cl.10. Harderian gland blood flow was not affected by salt loading.

  13. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J; Sosnovtseva, Olga; Pavlov, Alexey N;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...... of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of modulation...... TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation can...

  14. Regulation of blood flow by prostaglandins

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Risum, N;

    2004-01-01

    adaptation of connective tissues e.g. tendon. This review covers the role of PG for mediating tissue blood flow at rest and during increases in metabolic demand such as exercise and reactive hyperaemia. There is strong evidence that PGs contribute to elevate blood flow at rest and during reactive hyperaemia...... in a variety of tissues. Their role for regulating the large increases in muscle blood flow during exercise is less clear which may be explained by redundant mechanisms. Several interactions are known to exist between specific vasodilator substances, and therefore PGs can act in synergy with other substances...... and contribute to functional hyperaemia. Furthermore, there is evidence for differential, tissue-specific influences of PGs where their influence on blood flow during exercise may be profound....

  15. Blood flow and permeability in microvessels

    Science.gov (United States)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  16. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  17. Quantifying Blood Flow in the DIEP Flap: An Ultrasonographic Study

    Directory of Open Access Journals (Sweden)

    Joseph Richard Dusseldorp, BCom, MBBS(Hons

    2014-10-01

    Conclusions: This study confirms that perforator size is a critical factor in optimizing blood flow in perforator-based free tissue transfer. Further research is required to understand the flow dynamics of perforator flaps based on multiple perforators. However, surgeons should be cognizant that a single large perforator may have substantially higher flow rates than multiple small perforators. Routine FVI calculation is recommended to ensure complete flap survival.

  18. 21 CFR 870.2120 - Extravascular blood flow probe.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  19. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven...... arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range ... of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta....

  20. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  1. BLOOD FLOW AND MACROMOLECULAR TRANSPORT IN CURVED BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    WEI Lan; WEN Gong-bi; TAN Wen-chang

    2006-01-01

    A numerical analysis of the steady/pulsatile flow and macromolecular (such as LDL and Albumin) transport in curved blood vessels was carried out. The computational results predict that the vortex of the secondary flow is time-dependent in the aortic arch.The concentration of macromolecule concentrates at the region of sharp curve, and the wall concentration at the outer part is higher than that at the inner part. Atherosclerosis and thrombosis are prone to develop in such regions with sharp flow.

  2. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    Science.gov (United States)

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  3. Noninvasive miniaturized mass-flow meter using a curved cannula for implantable axial flow blood pump.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-01-01

    Blood flow should be measured to monitor conditions of patients with implantable artificial hearts continuously and noninvasively. We have developed a noninvasive miniaturized mass-flow meter using a curved cannula for an axial flow blood pump. The mass-flow meter utilized centrifugal force generated by the mass-flow rate in the curved cannula. Two strain gauges served as sensors. Based on the numerical analysis, the first gauge, attached to the curved area, measured static pressure and centrifugal force, and the second, attached to the straight area, measured static pressure for static pressure compensation. The mass-flow rate was determined by the differences in output from the two gauges. To compensate for the inertia force under the pulsatile flow, a 0.75-Hz low-pass filter was added to the electrical circuit. In the evaluation tests, numerical analysis and an actual measurement test using bovine blood were performed to evaluate the measurement performances. As a result, in the numerical analysis, the relationship between the differential pressure caused by centrifugal force and the flow rate was verified. In the actual measurement test, measurement error was less than ± 0.5 L/min, and the time delay was 0.12 s. We confirmed that the developed mass-flow meter was able to measure mass-flow rate continuously and noninvasively.

  4. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  5. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  6. Cerebral blood flow in the neonate.

    Science.gov (United States)

    Vutskits, Laszlo

    2014-01-01

    Ensuring adequate oxygenation of the developing brain is the cornerstone of neonatal critical care. Despite decades of clinical research dedicated to this issue of paramount importance, our knowledge and understanding regarding the physiology and pathophysiology of neonatal cerebral blood flow are still rudimentary. This review primarily focuses on currently available human clinical and experimental data on cerebral blood flow and autoregulation in the preterm and term infant. Limitations of systemic blood pressure values as surrogates for monitoring adequate cerebral oxygen delivery are discussed. Particular emphasis is placed on the high interindividual variability in cerebral blood flow values, vasoreactivity, and autoregulatory thresholds making the applications of normative values highly questionable. Technical and ethical difficulties to conduct such trials leave us with a near complete lack of knowledge on how pharmacological and surgical interventions impact on cerebral autoregulation. The ensemble of these works argues for the necessity of highly individualized care by taking advantage of continuous bedside monitoring of cerebral circulation. They also point to the urgent need for further studies addressing the exciting but difficult issue of cerebral blood flow autoregulation in the neonate.

  7. Blood flow characteristics in the aortic arch

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  8. Transcutaneous measurement of volume blood flow

    Science.gov (United States)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  9. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    Science.gov (United States)

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  10. Exchange Rate Forecasting with Information Flow Approach

    Directory of Open Access Journals (Sweden)

    Irena Mačerinskienė

    2016-06-01

    Full Text Available The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can forecast the exchange rate, the most significant information flows are distinguished. The results lead to further development of the information flow approach as a tool to forecast exchange rate fluctuations.

  11. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  12. Blood flow dynamics in the snake spectacle.

    Science.gov (United States)

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed.

  13. Regional cerebral blood flow in aphasia

    DEFF Research Database (Denmark)

    Soh, K; Larsen, B; Skinhøj, E

    1978-01-01

    Regional cerebral blood flow (rCBF) was studied in 13 aphasic patients with left hemisphere lesions, using the intracarotid xenon 133 injection method and a 254-detector gamma camera system. The rCBF was measured during rest and during various function tests, including a simple speech test...

  14. Effects of aortic irregularities on blood flow.

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects.

  15. Ergot alkaloids decrease rumen epithelial blood flow

    Science.gov (United States)

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  16. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  17. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, D.J.; Sosnovtseva, Olga; Pavlov, A.N.

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...

  18. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  19. Flow rate logging seepage meter

    Science.gov (United States)

    Reay, William G. (Inventor); Walthall, Harry G. (Inventor)

    1996-01-01

    An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.

  20. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  1. Regional neurohypophysial and hypothalamic blood flow in rats during hypercapnia

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, R.M. Jr.; Myers, C.L.; Page, R.B.

    1988-08-01

    Regional cerebral blood flow (rCBF) was measured in the neurohypophysis and hypothalamus in normocapnic and hypercapnic rats using (/sup 14/C)isopropyliodoamphetamine. Rats were surgically prepared using nitrous oxide and halothane and placed in plaster restraining casts. Hypercapnia was produced by increasing the fractional concentration of inspired CO/sub 2/ (FICO/sub 2/). rCBF in normocapnic rats was higher in the paraventricular nucleus, supraoptic nucleus, median eminence, and neural lobe than rates previously measured by use of diffusible tracers. During hypercapnia blood flow increased linearly with arterial PCO/sub 2/ (PACO/sub 2/) in all regions except the median eminence and neural lobe, which were not affected by hypercapnia. When rats were pretreated with phentolamine (1 mg/kg) to block the alpha-adrenergic receptors, blood flow in the median eminence and neural lobe increased significantly during hypercapnia. We conclude that blood flow in the cell bodies of the paraventricular nucleus and supraoptic nucleus is regulated differently during hypercapnia than blood flow in the nerve terminals in the median eminence and neural lobe. Furthermore, vasodilation produced by increased CO/sub 2/ is offset by alpha-receptor stimulation in the median eminence and neural lobe.

  2. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  3. Simulation of red blood cell aggregation in shear flow.

    Science.gov (United States)

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  4. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  5. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  6. Exchange Rate Forecasting with Information Flow Approach

    OpenAIRE

    Irena Mačerinskienė; Andrius Balčiūnas

    2016-01-01

    The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can for...

  7. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...... to the temperature difference between the solar collector and the bottom of the mantle - an increase of about 1% of the thermal performance is possible.Finally, calculations showed that the highest thermal performance for large SDHW systems with constant volume flow rates in the solar collector loops are achieved....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...

  8. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  9. Coronary blood flow during cardiopulmonary resuscitation in swine

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, R.F.; DeGuzman, L.R.; Pedersen, D.C.

    1984-01-01

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied: 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic (EMF) and radiomicrosphere (RMS)) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal.

  10. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  11. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  12. Cerebral blood flow and metabolism during sleep.

    Science.gov (United States)

    Madsen, P L; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

  13. Blood flow measurements and clot detection with nearinfrared spectroscopy

    OpenAIRE

    Rossow, MJ; Gatto, R.; D'amico, E.; Mantulin, WW; Gratton, E

    2006-01-01

    Detecting impeded blood flow and locating the clot causing it is a major challenge in neurosurgery. We propose an instrument that uses near-infrared spectroscopy to simultaneously detect clots and measure blood flow. © 2006 Optical Society of America.

  14. Measurement of temperature decrease caused by blood flow in focused ultrasound irradiation by thermal imaging method

    Science.gov (United States)

    Tsuchiya, Takenobu; Hatano, Yuichi; Mori, Yashunori; Shen, Rakushin; Endoh, Nobuyuki

    2016-07-01

    In this study, to estimate the local temperature changes caused by a thick blood vessel, the temperature distribution in a tissue phantom with a thick blood vessel during focused ultrasound irradiation was measured by a thermal imaging method. The blood flow rate in the simulated blood vessel was varied and the relationship between flow rate and temperature decrease was examined. The phantom using the thermal imaging method is divided into two parts, and the increases in temperature distribution as a function of blood flow rate are measured using a thermocamera under constant ultrasound irradiation. The irradiation conditions of ultrasound waves were a central frequency of 1 MHz, a wave number length of 200 cycles, and a duty ratio of 0.2. The irradiation duration was 5 min, and the ultrasound intensity I SPTA was 36 W/cm2. The amount of temperature decrease caused by the cooling effect of blood flow increased with the blood flow rate and it became constant at a certain threshold of blood flow rate. The threshold of blood flow rate is about 250 ml/min.

  15. Capital Flows, Exchange Rate Flexibility, and the Real Exchange Rate

    OpenAIRE

    Jean-Louis Combes; Patrick Plane; Tidiane Kinda

    2011-01-01

    This paper analyzes the impact of capital inflows and exchange rate flexibility on the real exchange rate in developing countries based on panel cointegration techniques. The results show that public and private flows are associated with a real exchange rate appreciation. Among private flows, portfolio investment has the highest appreciation effect-almost seven times that of foreign direct investment or bank loans-and private transfers have the lowest effect. Using a de facto measure of excha...

  16. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches....

  17. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, Aditya

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an "enabling technology" in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do no

  18. Laser Doppler flowmetry for bone blood flow measurement: correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Swiontkowski, M.F.; Tepic, S.; Perren, S.M.; Moor, R.; Ganz, R.; Rahn, B.A.

    1986-01-01

    Laser Doppler flowmetry (LDF) was used to measure bone blood flow in the rabbit femoral condyles. To correlate the LDF output signal blood cell flux to in vivo blood flow, simultaneous measurements using LDF and /sup 85/Sr-labeled microspheres were made in an adult rabbit model. There was no correlation between the two methods for blood flow in the femoral condyles and the correlation between the two methods for blood flow in the femoral head does not achieve statistical significance. An LDF signal of 0.4 V was approximately equal to a microsphere measured flow rate of 0.4 ml blood/g bone/min. The strength of the correlation in the latter case may have been affected by (a) large arteriovenous shunts, (b) inadequate mixing of the microspheres with a left ventricular injection, and (c) insufficient numbers of microspheres present in the bone samples. When LDF was used to evaluate the effect of elevated intracapsular pressure on femoral head blood flow in skeletally mature rabbits, femoral head subchondral bone blood flow declined with increasing intracapsular pressure from a baseline value of 0.343 +/- 0.036 to a value of 0.127 +/- 0.27 at 120 cm of water pressure. The decline in femoral head blood flow was statistically significant at pressures of 40 cm of water or higher (p less than 0.001), and evaluation of sections of the proximal femora made from preterminal disulphine blue injections confirmed these findings. Intracapsular tamponade has an adverse effect on femoral head blood flow beginning well below central venous pressure and should be considered in the pathophysiology of posttraumatic and nontraumatic necrosis of the femoral head. Laser Doppler flowmetry was easy to use and appears to be a reproducible technique for evaluating femoral head blood flow, offering distinct advantages over the microsphere technique for measuring bone blood flow.

  19. Experimental determination of blood permittivity and conductivity in simple shear flow.

    Science.gov (United States)

    Balan, Corneliu; Balut, Corina; Gheorghe, Liana; Gheorghe, Cristian; Gheorghiu, Eugen; Ursu, George

    2004-01-01

    The paper is concerned with the determination of blood permittivity and conductivity in Poiseuille and Couette simple shear flows. The experimental procedure, based on dielectric spectroscopy, evidences the sensitivity of blood electric properties to the applied frequency and local shear rate magnitude. The method evidences the possibility to correlate (for well-defined flow geometry) magnitude of shear rate, and consequently the shear stress level, with spectra permittivity of blood.

  20. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  1. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.

    2005-01-01

    , identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...

  2. Absolute quantification of myocardial blood flow.

    Science.gov (United States)

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  3. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  4. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  5. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood......-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke....

  6. Decorrelation-based blood flow velocity estimation: effect of spread of flow velocity, linear flow velocity gradients, and parabolic flow.

    NARCIS (Netherlands)

    Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de

    2002-01-01

    In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow us

  7. Skeletal blood flow in Paget's disease of bone and its response to calcitonin therapy.

    Science.gov (United States)

    Wootton, R; Reeve, J; Spellacy, E; Tellez-Yudilevich, M

    1978-01-01

    1. Blood flow to the skeleton was measured by the 18F clearance method of Wooton, Reeve & Veall (1976) in 24 patients with untreated Paget's disease. In every patient but one, resting skeletal blood flow was increased. There was a significant positive correlation between skeletal blood flow and serum alkaline phosphatase and between skeletal blood flow and urinary total hydroxyproline excretion. 2. Fourteen patients were re-studied after they had received short-term (7 days or less) or long-term (7 weeks or more) calcitonin. Skeletal blood flow, alkaline phosphatase and urinary hydroxy-proline excretion fell towards normal in every case. There was some evidence from the short-term studies that calcitonin produced a more rapid fall in skeletal blood flow than in alkaline phosphatase. 3. Glomerular filtration rate appeared to increase transiently in response to calcitonin.

  8. Effect of blood flow on muscle lactate release studied in perfused rat hindlimb

    DEFF Research Database (Denmark)

    Pilegaard, H; Bangsbo, Jens; Henningsen, P;

    1995-01-01

    The influence of blood flow on muscle lactate and H+ release as well as muscle glyconeogenesis was studied in the perfused rat hindlimb. After 2 min of supramaximal stimulation the perfusate flow rate was 7 (F7), 12 (F12), or 18 (F18) ml/min for 30 min. Perfusate samples were drawn frequently...... between H+ and lactate release was larger (P flow in each of the muscles. The present data suggest that 1) in the range of blood...... flow rates from 0.61 to 0.92 ml.min-1.g-1, lactate and H+ release are independent of the flow rate, whereas at a lower flow rate (0.36 ml.min-1.g-1) release of these substances is decreased; 2) low blood flow influences lactate efflux more than H+ release; and 3) muscle glyconeogenesis from lactate...

  9. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  10. Cerebral blood flow tomography with xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  11. Tissue blood flow mapping using laser technology

    Science.gov (United States)

    Wardell, Karin; Linden, Maria; Nilsson, Gert E.

    1995-03-01

    By the introduction of the laser Doppler perfusion imager (LDPI) the microvascular blood flow in a tissue area can be mapped by sequentially moving a laser beam over the tissue. The measurement is performed without touching the tissue and the captured perfusion values in the peripheral circulation are presented as a color-coded image. In the ordinary LDPI-set-up, 64 X 64 measurement sites cover an area in the range of about 10 - 150 cm2 depending on system settings. With a high resolution modification, recordings can be done on tissue areas as small as 1 cm2. This high resolution option has been assessed in animal models for the mapping of small vessels. To be able to record not only spatial but also temporal perfusion components of tissue blood flow, different local area scans (LAS) have been developed. These include single point recording as well as integration of either 2 X 2, 3 X 3, or 4 X 4 measurement sites. The laser beam is repeatedly moved in a quadratic pattern over the small tissue area of interest and the output value constitutes the average perfusion of all captured values within the actual region. For the evaluation, recordings were performed on healthy volunteers before and after application of a vasodilatating cream on the dorsal side of the hand.

  12. Structural analysis of red blood cell aggregates under shear flow.

    Science.gov (United States)

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  13. Methods for blood flow measurements using ultrasound contrast agents

    Science.gov (United States)

    Fowlkes, J. Brian

    2003-10-01

    Blood flow measurements using ultrasound contrast agents are being investigated for myocardial perfusion and more recently in other organ systems. The methods are based largely on the relative increase in echogenicity due to the concentration of bubbles present in the ultrasound beam. In the simplest form, regional differences in blood volume can be inferred but the possibility exists to extract perfusion from the transit of contrast agent through tissue. Perfusion measurements rely on determining the flux of blood through a tissue volume and as such require knowledge of the fractional blood volume (FBV), i.e., ml blood/g tissue and the rate of exchange, commonly measured as the mean transit time (MTT). This presentation will discuss methods of determining each of these values and their combination to estimate tissue perfusion. Underlying principles of indicator-dilution theory will be provided in the context of ultrasound contrast agents. Current methods for determining MTT will include imaging of the intravenous bolus, in-plane contrast disruption with interval and real-time contrast recovery imaging, and control of contrast agent flow using arterial disruption (contrast interruption). The advantages and limitations of the methods will be examined along with current applications. [Work supported in part by NIH.

  14. An approach to automatic blood vessel image registration of microcirculation for blood flow analysis on nude mice.

    Science.gov (United States)

    Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Wu, Tung-Hsin; Lin, Yang-Hsien; Huang, Tzung-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2011-04-01

    Image registration is often a required and a time-consuming step in blood flow analysis of large microscopic video sequences in vivo. In order to obtain stable images for blood flow analysis, frame-to-frame image matching as a preprocessing step is a solution to the problem of movement during image acquisition. In this paper, microscopic system analysis without fluorescent labelling is performed to provide precise and continuous quantitative data of blood flow rate in individual microvessels of nude mice. The performance properties of several matching metrics are evaluated through simulated image registrations. An automatic image registration programme based on Powell's optimisation search method with low calculation redundancy was implemented. The matching method by variance of ratio is computationally efficient and improves the registration robustness and accuracy in practical application of microcirculation registration. The presented registration method shows acceptable results in close requisition to analyse red blood cell velocities, confirming the scientific potential of the system in blood flow analysis.

  15. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms.

  16. Flow rate measurements by means of tracers

    Energy Technology Data Exchange (ETDEWEB)

    Mosetti, F. (Trieste Univ. (Italy). Istituto di Geodesia e Geofisica)

    The application of some sources of diffusion for the flow rate measurement of water or other fluids is here presented. The laminar instantaneous source, obtained in practice with easy devices, is very useful in river or channel measurements. The analysis of the measurements could supply the flow rate and the presence of water losses or recharges. The section of the channel can also be determined by such a method.

  17. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...

  18. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)

    1989-11-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  19. Intraoperative cerebral blood flow imaging of rodents

    Science.gov (United States)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  20. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.

  1. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  2. The application of blood flow measurements to the study of aging muscle.

    Science.gov (United States)

    McCully, K K; Posner, J D

    1995-11-01

    Blood flow to skeletal muscle is a potentially important factor in the reduction of muscle function associated with aging (sarcopenia). The main influence of reduced blood flow capacity on muscle function is in limiting oxidative metabolism. Direct measures of blood flow include: intravital-microscopy, plethysmography, radioactive microspheres, 133Xenon washout, thermodilution, and Doppler ultrasound. Indirect measurement of blood flow includes arm-to-ankle pressure index and the rate of phosphocreatine recovery after exercise. Several new methodologies have been developed to evaluate muscle blood flow, including color-Doppler imaging, magnetic resonance imaging/angiography (MRI/MRA), and near-infrared spectroscopy (NIRS). As adaptations of traditional techniques, these methods promise more precise information under less invasive conditions. MRI is an expensive and technically challenging method able to measure vessel location, blood flow, and wall diameter in blood vessels throughout the cardiac cycle. Color-Doppler provides excellent temporal resolution blood flow throughout the cardiac cycle, along with some anatomical information. NIRS is an inexpensive and portable technology that can measure changes in oxygen saturation and provide information on tissue oxygen delivery in studies of frailer and more difficult-to-study subjects. Muscle blood flow is not thought to limit oxidative metabolism under normal conditions in young individuals. However, it is not clear what happens to muscle blood flow in healthy older individuals. Reduced capillary density, less maximal blood flow, and a slower hyperemic flow response have been reported in some, but not all, studies. Further studies with the newer methodologies are needed to re-examine age-related changes in muscle blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation

    DEFF Research Database (Denmark)

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed;

    2017-01-01

    Current clinical ultrasound systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the Transverse Oscillation (TO) method, a 32 x 32 element matrix array, and the experimental ultrasound scanner SARUS...... is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames per second in a plane, and was used to estimate 3-D vector flow in a cross sectional image plane....... The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom (ø = 8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow...

  4. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  5. Dynamic Effect of Rolling Massage on Blood Flow

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing; FANG Hai-Ping

    2009-01-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases.Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation.The simulation results show that when the frequency is smaller than or comparable to the putsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small.On the contrast, if the frequency is twice or more times of the putsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency.Similar behavior has also been observed on the shear stress on the blood vessel waits.The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  6. Dynamic Effect of Rolling Massage on Blood Flow

    Science.gov (United States)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  7. Dynamical Modes of Deformed Red Blood Cells and Lipid Vesicles in Flows

    Science.gov (United States)

    Noguchi, H.

    Red blood cells and lipid vesicles exhibit rich behaivor in flows.Their dynamics were studied using a particle-based hydrodynamic simulation method, multi-particle collision dynamics. Rupture of lipid vesicles in simple shear flow was simulated by meshless membrane model. Several shape transitions of lipid vesicles and red blood cells are induced by flows. Transition of a lipid vesicle from budded to prolate shapes with increasing shear rate and ordered alignments of deformed elastic vesicles in high density are presented.

  8. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  9. Effect of carbachol on intestinal mucosal blood flow, activity of Na+-K+-ATPase, expression of aquaporin-1, and intestinal absorption rate during enteral resuscitation of burn shock in rats.

    Science.gov (United States)

    Bao, Chengmei; Hu, Sen; Zhou, Guoyong; Tian, Yijun; Wu, Yan; Sheng, Zhiyong

    2010-01-01

    We investigated the effect of carbachol (CAR, a cholinergic agent) on intestinal mucosal blood flow (IMBF), activity of Na-K-ATPase, expression of aquaporin (AQP)-1, and intestinal absorption rate during enteral resuscitation of a 35%TBSA scald in rats with a glucose electrolyte solution (GES). One hundred male Wistar rats were randomly divided into five groups: sham scald (N group); scald without fluid resuscitation (S group); scald resuscitated with enteral GES alone (GES group); scald resuscitated with enteral CAR alone (CAR group); and scald resuscitated with enteral CAR plus GES (GES/CAR group). The rats were inflicted 35%TBSA third degree of scald injury on the back with boiling water (100 degrees C, 15 seconds) in all groups, except the sham scald group. A catheter was inserted into the proximal duodenum (5 cm distal to pylorus) and distal ileum (5 cm proximal to cecum), of each rats through laparotomy, thus a segment of intestine was virtually isolated to form a loop for inlet and outlet of introduced fluid. In N, GES, and GES/CAR groups, fluids were introduced 30 minutes after scald injury. The speed of fluid infusion was 4 ml/kg/1%TBSA for 4 hours. CAR (60 microg/kg) was injected into the intestinal lumen at 30-minute after injury in CAR and GES/CAR groups. At 2 and 4 hours after scald, intestinal absorption rate of water and Na, and IMBF were determined, respectively. Then, animals were killed, and specimens of intestinal tissue were obtained for the determination of the activity of Na-K-ATPase, hematoxylin-eosin coloring, and expression of AQP-1. The intestinal absorption rate was reduced markedly in GES group compared with sham scald group at 2 and 4 hours after scald, and absorption rate of small intestine in GES/CAR was significantly higher than that in GES group (P absorption rate of water and Na by improving IMBF, ATPase activity, and AQP-1 expression in gut mucosa during resuscitation with enteral GES of burn shock in rats.

  10. High Blood Pressure Rates Have Doubled Worldwide Since 1975

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162069.html High Blood Pressure Rates Have Doubled Worldwide Since 1975 Most of ... News) -- The number of people worldwide with high blood pressure has nearly doubled over the past 40 years, ...

  11. Negative Policy Rates, Banking Flows and Exchange Rates

    OpenAIRE

    Khayat, Anwar

    2015-01-01

    Setting negative nominal rates is one of the unconventional policies implemented after the Great Recession to overcome the Zero Lower Bound. Using data from the euro area and Denmark, I assess the impact of introducing a negative interest rate on reserves. I find that it did put a depreciation pressure on the currency due to a reversal in banking flows. This effect is not only caused by policy differentials, but also by a distinct impact of going into negative territory from lowering interest...

  12. EFFECT OF INCREASED WHOLE-BLOOD VISCOSITY ON REGIONAL BLOOD FLOWS IN CHRONICALLY HYPOXEMIC LAMBS

    NARCIS (Netherlands)

    DALINGHAUS, M; KNOESTER, H; GRATAMA, JWC; VANDERMEER, J; ZIJLSTRA, WG; KUIPERS, JRG

    1994-01-01

    In chronic hypoxemia blood flow and oxygen supply to vital organs are maintained, but to nonvital organs they are decreased. We measured organ blood flows (microspheres) and whole blood viscosity in 10 chronically hypoxemic lambs, with an atrial septal defect and pulmonary stenosis, and in 8 control

  13. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik;

    2008-01-01

    speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present......Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...

  14. Rotating permanent magnet excitation for blood flow measurement.

    Science.gov (United States)

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  15. Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2011-03-01

    The feasibility of making spatially resolved measurements of blood flow using pulsed photoacoustic Doppler techniques has been explored. Doppler time shifts were quantified via cross-correlation of pairs of photoacoustic waveforms generated within a blood-simulating phantom using pairs of laser light pulses. The photoacoustic waves were detected using a focussed or planar PZT ultrasound transducer. For each flow measurement, a series of 100 waveform pairs was collected. Previous data processing methods involved rejection of poorly correlated waveform pairs; the modal velocity value and standard deviation were then extracted from the selected distribution of velocity measurements. However, the data selection criteria used in this approach is to some extent arbitrary. A new data analysis protocol, which involves averaging the 100 cross-correlation functions and thus uses all of the measured data, has been designed in order to prevent exclusion of outliers. This more rigorous approach has proved effective for quantifying the linear motion of micron-scale absorbers imprinted on an acetate sheet moving with velocities in the range 0.14 to 1.25 ms-1. Experimental parameters, such as the time separation between the laser pulses and the transducer frequency response, were evaluated in terms of their effect on the accuracy, resolution and range of measurable velocities. The technique was subsequently applied to fluid phantoms flowing at rates less than 5 mms-1 along an optically transparent tube. Preliminary results are described for three different suspensions of phenolic resin microspheres, and also for whole blood. Velocity information was obtained even under non-optimal conditions using a low frequency transducer and a low pulse repetition frequency. The distinguishing advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made. This offers the prospect of mapping flow within the microcirculation and thus

  16. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  17. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    Science.gov (United States)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  18. Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis.

    Science.gov (United States)

    Boyajian, R A; Schwend, R B; Wolfe, M M; Bickerton, R E; Otis, S M

    1995-01-01

    Ultrasound-derived volumetric flow analysis may be useful in answering questions of basic physiological interest in the cerebrovascular circulation. Using this technique, the authors have sought to describe quantitatively the complete concurrent flow relations among all four arteries supplying the brain. The aim of this study of normal subjects was to determine the relative flow contributions of the anterior (internal carotid arteries) and posterior (vertebral arteries) cerebral circulation. Comparisons between the observed and theoretically expected anterior and posterior flow distribution would provide an opportunity to assess traditional rheological conceptions in vivo. Pulsed color Doppler ultrasonography was used to measure mean flow rates in the internal carotid and vertebral arteries in 21 normal adults. The anterior circulation (internal carotid arteries bilaterally) carried 82% of the brain's blood supply and comprised 67% of the total vascular cross-sectional area. These values demonstrate precise concordance between observations in vivo and the theoretically derived (Hagen-Poiseuille) expected flow distribution. These cerebrovascular findings support the traditional conception of macroscopic blood flow. Further studies using ultrasound-derived volumetric analysis of the brain's arterial flow relations may illuminate the vascular pathophysiology underlying aging, cerebral ischemia, and dementias.

  19. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  20. Cerebellar blood flow in methylmercury poisoning (Minamata disease).

    Science.gov (United States)

    Itoh, K; Korogi, Y; Tomiguchi, S; Takahashi, M; Okajima, T; Sato, H

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part.

  1. Interscapular brown adipose tissue blood flow in the rat. Determination with 133xenon clearance compared to the microsphere method

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Madsen, J

    1984-01-01

    values obtained concomitantly by the microsphere technique in 17 cold acclimated rats, at ISBAT blood flows between 0.1 and 6 ml X g-1 X min-1. Variations in blood flows were obtained by infusion of noradrenaline at different rates. The blood flow values obtained from the xenon clearance method showed...... a close correlation to the blood flow values determined with microspheres. Y = 0.98. X + 0.15 (r = 0.96, P less than 0.001). The Xe clearance method has the advantages compared to the microsphere technique that it permits continuous monitoring of the blood flow and does not require the sacrifice...

  2. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    Science.gov (United States)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  3. Facial skin blood flow responses during exposures to emotionally charged movies.

    Science.gov (United States)

    Matsukawa, Kanji; Endo, Kana; Ishii, Kei; Ito, Momoka; Liang, Nan

    2017-01-21

    The changes in regional facial skin blood flow and vascular conductance have been assessed for the first time with noninvasive two-dimensional laser speckle flowmetry during audiovisually elicited emotional challenges for 2 min (comedy, landscape, and horror movie) in 12 subjects. Limb skin blood flow and vascular conductance and systemic cardiovascular variables were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by the subjective rating from -5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Facial skin blood flow and vascular conductance, especially in the lips, decreased during viewing of comedy and horror movies, whereas they did not change during viewing of a landscape movie. The decreases in facial skin blood flow and vascular conductance were the greatest with the comedy movie. The changes in lip, cheek, and chin skin blood flow negatively correlated (P blood flow and vascular conductance and systemic hemodynamics correlated with the subjective ratings. The mental arithmetic task did not alter facial and limb skin blood flows, although the task influenced systemic cardiovascular variables. These findings suggest that the more emotional status becomes pleasant or conscious, the more neurally mediated vasoconstriction may occur in facial skin blood vessels.

  4. Evaluation of changes of intracranial blood flow after carotid artery stenting using digital subtraction angiography flow assessment

    Institute of Scientific and Technical Information of China (English)

    Hajime; Wada; Masato; Saito; Kyousuke; Kamada

    2015-01-01

    AIM: To evaluate the changes of intracranial blood flow after carotid artery stenting(CAS), using the flow assessment application "Flow-Insight", which was developed in our department.METHODS: Twenty patients treated by CAS participated in this study. We analyzed the change in concentration of the contrast media at the anterior-posterior and profile view image with the flow assessment application "Flow-Insight". And we compared the results with N-isopropyl-p-[123I] iodoamphetamine-single-photon emission computed tomography(IMP SPECT) performed before and after the treatment. RESULTS: From this study, 200% of the parameter "blood flow" change in the post/pre-treatment is suggested as the critical line of the hyperperfusion syndrome arise. Although the observed blood flow increase in the digital subtraction angiography system did not strongly correlate with the rate of increase of SPECT, the "Flow-Insight" reflected the rate of change of the vessels well. However, for patients with reduced reserve blood flow before CAS, a highly elevated site was in agreement with the site analysis results. CONCLUSION: We concluded that the cerebral angiography flow assessment application was able to more finely reveal hyperperfusion regions in the brain after CAS compared to SPECT.

  5. Subcutaneous blood flow during insulin-induced hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-01-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms...... compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha......-receptor blockade abolished the vasoconstrictor response. We suggest that circulating catecholamines stimulating vascular alpha-receptors are probably responsible for flow reduction in the subcutaneous tissue during hypoglycaemia....

  6. Pulsatile blood flow in Abdominal Aortic Aneurysms

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  7. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function.

  8. Blood Flow Restricted Exercise and Vascular Function

    Directory of Open Access Journals (Sweden)

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  9. Comparison of detection pattern of HCC by ferumoxide-enhanced MRI and intratumoral blood flow pattern

    Energy Technology Data Exchange (ETDEWEB)

    Itou, Naoki; Kotake, Fumio [Tokyo Medical Coll., Ami, Ibaraki (Japan). Kasumigaura Hospital; Saitou, Kazuhiro; Abe, Kimihiko

    2000-08-01

    We compared the detection rate and pattern of ferumoxide-enhanced magnetic resonance imaging (Fe-MRI) with the intratumoral blood flow pattern determined by CT angiography (CTA) and CT portography (CTAP) in 124 nodes (34 cases) diagnosed as hepatocellular carcinoma (HCC) or borderline HCC, based on the clinical course. Sequences to obtain a T1-weighted images (T1W), proton density-weighted images (PDW), T2-weighted images (T2W), T2*-weighted images (T2*W) were used in Fe-MRI. In nodes shown to be hypervascular on CTA, the detection rate by Fe-MRI was 69.7%. In nodes shown to be avascular by CTAP, the detection rate by Fe-MRI was 67.3%. These rates were higher than with other flow patterns. In nodes showing high signal intensity (HSI) on any sequences, arterial blood flow was increased and portal blood flow decreased in comparison with nodes without high signal intensity. All nodes showing HSI, both on Fe-MRI T2W and T2*W, were hypervascular on CTA, and portal blood flow was absent on CTAP. Nodes showing HSI on both T2*W and T2W were considered to have greater arterial blood flow and decreased portal blood flow compared with nodes appearing as HSI on T2*W, but only as iso- or low signal intensity on T2W (Mann-Whitney U-test; p<0.05). (author)

  10. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...

  11. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  12. Tracking flow of leukocytes in blood for drug analysis

    Science.gov (United States)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  13. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.

    2014-01-01

    , posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...... the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques....

  14. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos.

    Science.gov (United States)

    Lee, Jung Yeop; Ji, Ho Seong; Lee, Sang Joon

    2007-10-01

    The hemodynamic characteristics of blood flow are important in the diagnosis of circulatory diseases, since such diseases are related to wall shear stress of cardiovascular vessels. In chicken embryos at early stages of development, it is possible to directly visualize blood flow inside blood vessels. We therefore employed a micro-PIV technique to assess blood flow in extraembryonic venous and arterial blood vessels of chicken embryos, using red blood cells (RBCs) as tracers and obtaining flow images of RBCs using a high-speed CMOS camera. The mean velocity field showed non-Newtonian flow characteristics. The blood flow in two venous vessels merged smoothly into the Y-shaped downstream vein without any flow separation or secondary flow. Vorticity was high in the inner regions, where the radius of curvature varied greatly. A periodic variation of temporally resolved velocity signals, due to beating of the heart, was observed in arterial blood vessels. The pulsating frequency was obtained by fast Fourier transform analysis using the measured velocity data. The measurement technique used here was useful in analyzing the hemodynamic characteristics of in vivo blood flow in chicken embryos.

  15. Exploration of 4D MRI blood flow using stylistic visualization.

    Science.gov (United States)

    van Pelt, Roy; Oliván Bescós, Javier; Breeuwer, Marcel; Clough, Rachel E; Gröller, M Eduard; ter Haar Romenij, Bart; Vilanova, Anna

    2010-01-01

    Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.

  16. Form, shape and function: segmented blood flow in the choriocapillaris

    Science.gov (United States)

    Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J.

    2016-10-01

    The development of fluid transport systems was a key event in the evolution of animals and plants. While within vertebrates branched geometries predominate, the choriocapillaris, which is the microvascular bed that is responsible for the maintenance of the outer retina, has evolved a planar topology. Here we examine the flow and mass transfer properties associated with this unusual geometry. We show that as a result of the form of the choriocapillaris, the blood flow is decomposed into a tessellation of functional vascular segments of various shapes delineated by separation surfaces across which there is no flow, and in the vicinity of which the transport of passive substances is diffusion-limited. The shape of each functional segment is determined by the distribution of arterioles and venules and their respective relative flow rates. We also show that, remarkably, the mass exchange with the outer retina is a function of the shape of each functional segment. In addition to introducing a novel framework in which the structure and function of the metabolite delivery system to the outer retina may be investigated in health and disease, the present work provides a general characterisation of the flow and transfers in multipole Hele-Shaw configurations.

  17. Blood flow controls bone vascular function and osteogenesis

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  18. Mammary blood flow regulation in the nursing rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  19. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  20. Autoregulation of cerebral blood flow in orthostatic hypotension

    Science.gov (United States)

    Novak, V.; Novak, P.; Spies, J. M.; Low, P. A.

    1998-01-01

    BACKGROUND AND PURPOSE: We sought to evaluate cerebral autoregulation in patients with orthostatic hypotension (OH). METHODS: We studied 21 patients (aged 52 to 78 years) with neurogenic OH during 80 degrees head-up tilt. Blood flow velocities (BFV) from the middle cerebral artery were continuously monitored with transcranial Doppler sonography, as were heart rate, blood pressure (BP), cardiac output, stroke volume, CO2, total peripheral resistance, and cerebrovascular resistance. RESULTS: All OH patients had lower BP (PTPR (P.75) but with a flat slope. An expansion of the "autoregulated" range was seen in some patients. The OH_AF group was characterized by a profound fall in BFV in response to a small reduction in BP (mean deltaBP .75). CONCLUSIONS: The most common patterns of cerebral response to OH are autoregulatory failure with a flat flow-pressure relationship or intact autoregulation with an expanded autoregulated range. The least common pattern is autoregulatory failure with a steep flow-pressure relationship. Patients with patterns 1 and 2 have an enhanced capacity to cope with OH, while those with pattern 3 have reduced capacity.

  1. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  2. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2011-08-01

    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  3. Monitoring blood flow and photobleaching during topical ALA PDT treatment

    Science.gov (United States)

    Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.

    2009-02-01

    Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.

  4. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    Science.gov (United States)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  5. The effects of fenoldopam on coronary conduit blood flow after coronary artery bypass graft surgery.

    LENUS (Irish Health Repository)

    Halpenny, M

    2012-02-03

    OBJECTIVE: To quantify the effects of fenoldopam, 0.1 microg\\/kg\\/min, on left internal mammary artery (LIMA) and saphenous vein blood flow after coronary anastomosis. DESIGN: Prospective, randomized, double-blind, placebo-controlled trial. SETTING: University teaching hospital, single institution. PARTICIPANTS: Thirty-one American Society of Anesthesiologists III patients undergoing elective coronary revascularization. INTERVENTIONS: A perivascular ultrasonic flow probe (Linton Instrumentation, Norfolk, UK) was placed around the LIMA and saphenous vein graft after coronary anastomosis. MEASUREMENTS AND MAIN RESULTS: Immediately before and at 5-minute intervals for 15 minutes after starting the infusion, blood flow was measured in the LIMA and one saphenous vein graft using a transit time ultrasonic flow probe. Heart rate, blood pressure, and central venous pressure were documented at these time points. Administration of fenoldopam, 0.1 microg\\/kg\\/min, did not alter heart rate or blood pressure. A small, nonsignificant increase in LIMA blood flow occurred during the 15-minute study period (30 +\\/- 12 to 35 +\\/- 10 mL\\/min) in patients who received fenoldopam. No significant changes occurred in the placebo group. CONCLUSIONS: The findings indicate that fenoldopam, 0.1 microg\\/kg\\/min, did not influence coronary conduit blood flow to a clinically significant extent. The small increase in LIMA blood flow may be of greater importance in high-risk patients or in the prevention of coronary arterial spasm.

  6. Regional patterns of cortical blood flow distinguish extraverts from introverts

    OpenAIRE

    Stenberg, Georg; Risberg, Jarl; Warkentin, S.; Rosén, Ingmar

    1990-01-01

    Eysenck's hypothesis of higher cortical arousal in introverts was examined using regional cerebral blood flow measurement in 37 healthy subjects . The measurement was made at rest, using the133Xe-inhalation method. Estimates of gray matter flow were obtained for 32 brain regions. There was no significant evidence of personality differences in general arousal, as measured by the mean flow level, averaged over all regions. There were, however, regional differences. An overall test of the blood ...

  7. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik;

    2014-01-01

    Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation...

  8. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  9. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider

    Institute of Scientific and Technical Information of China (English)

    Robert; GUIDOIN

    2008-01-01

    Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the ve- locity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  10. Simulation of blood flow in a small-diameter vascular raft model with a swirl (spiral) flow guider

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhiGuo; FAN YuBo; DENG XiaoYan; WANG GuiXue; ZHANG He; Robert GUIDOIN

    2008-01-01

    Small-dlameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider couldindeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the ve-locity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  11. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per;

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...

  12. Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study

    Science.gov (United States)

    Raine-Fenning, N. J.; Ramnarine, K. V.; Nordin, N. M.; Campbell, B. K.

    2004-01-01

    Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler ‘vascularity’ indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating ‘vascularity indices’ with flow.

  13. Study on relationship between perifollicular blood flow and in vitro fertilization-embryo transfer

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Jing Yang; Wangming Xu

    2008-01-01

    Objective: To study the relationship between perifoUicular blood flow and follicule development, oocyte maturing rate, fertilizing rate, cleaving rate, embryo quality and the outcomes of embryo transfer. Methods: The samples were selected from 66 suffers who underwent in vitro fertilization(IVF)or intracytoplasmic sperm injection(ICSI). Eeach patients' perifollicular blood flow(diameter≥12mm )was estimated on the day of human chorionic gonadotropin(HCG)administration. Results:Among 66 cycles, 26(39.4%) cycles resulted in pregnancy, perifollicular blood flow resistance index(Rl), peak systolic velocity/end diastasis velocity(S/D) of non-preg-nant group was significantly higher than that of the pregnant group (P < 0.004). When RI<0.49, the pregnancy rates, fecundation rates, fertilization rates, metaphase numbers for the of second meiosis oocytes increased evidently(P<0.05), but there were no statistical difference in gonadotropin dosage, cycle frequency, infertility years, ages, estradiol(E2)on the day of HCG administration,numbers of oocyet retrieved and high-quality embryo rates (P > 0.05 ). There were no statistical difference between non-pregnant group and pregnant group in S and D (P>0.05). There was no correlation between periFollicular blood flow RI and follicular diameter by linear regression analysis. Conclusion:Our study shows that perifollicular blood flow RI and S/D are effective indices of predicting the pregnancy outcome of IVF-ET.

  14. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    2004-01-01

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  15. Effects of non Newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  16. Non-Newtonian model study for blood flow through a tapered artery with a stenosis

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2016-03-01

    Full Text Available The blood flow through a tapered artery with a stenosis is analyzed, assuming the blood as tangent hyperbolic fluid model. The resulting nonlinear implicit system of partial differential equations is solved analytically with the help of perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of power law index m, Weissenberg number We, shape of stenosis n and stenosis size δ are discussed different type of tapered arteries.

  17. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method

    Institute of Scientific and Technical Information of China (English)

    JI Yu-Pin; KANG Xiu-Ying; LIU Da-He

    2010-01-01

    @@ Blood flow under various conditions of vessel is simulated as a non-Newtonian fluid by the two-dimensional Lattice Boltzmann method,in which the Casson model is used to express the relationship between viscosity and shear rate of the blood.The flow field distributions at certain sites near the narrowing and bifurcation of the vessel explain the hemodynamic mechanism of the preclilection of the atherosclerotic lesions for these sites which are consistent with that found by medical studies.

  18. Spontaneous oscillations of capillary blood flow in artificial microvascular networks.

    Science.gov (United States)

    Forouzan, Omid; Yang, Xiaoxi; Sosa, Jose M; Burns, Jennie M; Shevkoplyas, Sergey S

    2012-09-01

    Previous computational studies have suggested that the capillary blood flow oscillations frequently observed in vivo can originate spontaneously from the non-linear rheological properties of blood, without any regulatory input. Testing this hypothesis definitively in experiments involving real microvasculature has been difficult because in vivo the blood flow in capillaries is always actively controlled by the host. The objective of this study was to test the hypothesis experimentally and to investigate the relative contribution of different blood cells to the capillary blood flow dynamics under static boundary conditions and in complete isolation from the active regulatory mechanisms mediated by the blood vessels in vivo. To accomplish this objective, we passed whole blood and re-constituted blood samples (purified red blood cells suspended in buffer or in autologous plasma) through an artificial microvascular network (AMVN) comprising completely inert, microfabricated vessels with the architecture inspired by the real microvasculature. We found that the flow of blood in capillaries of the AMVN indeed oscillates with characteristic frequencies in the range of 0-0.6 Hz, which is in a very good agreement with previous computational studies and in vivo observations. We also found that the traffic of leukocytes through the network (typically neglected in computational modeling) plays an important role in generating the oscillations. This study represents the key piece of experimental evidence in support of the hypothesis that spontaneous, self-sustained oscillations of capillary blood flow can be generated solely by the non-linear rheological properties of blood flowing through microvascular networks, and provides an insight into the mechanism of this fundamentally important microcirculatory phenomenon.

  19. Modified Beer-Lambert law for blood flow

    Science.gov (United States)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  20. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity...... in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P

  1. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy.

    Directory of Open Access Journals (Sweden)

    Rickson C Mesquita

    Full Text Available Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively. However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.

  2. Electromechanically Actuated Valve for Controlling Flow Rate

    Science.gov (United States)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  3. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    LIUZhao-rong; XUGang; CHENYong; TENGZhong0=zhao; QINKai-rong

    2003-01-01

    Blood flow in artery was treated as the flow under equilibriums state(the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small,so that the equations of vesse wall motion under the pulsatile pressure could be established here.Through solving both the vessel equations and the linear Navier-Stokes equations,the analytic expressions of the blood flow velocities and the vascular displacements were obtained.The influence of the difference between vascular circumferentia and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  4. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    柳兆荣; 徐刚; 陈泳; 滕忠照; 覃开蓉

    2003-01-01

    Blood flow in artery was treated as the flow under equilibrium state ( the steady flow under mean pressure ) combined with the periodically small pulsatile flow. Using vascular strain energy function advanced by Fung, the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile pressure could be established here. Through solving both the vessel equations and the linear NavierStokes equations, the analytic expressions of the blood flow velocities and the vascular displacements were obtained. The influence of the difference between vascular circumferential and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  5. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers.

    Science.gov (United States)

    Schneditz, Daniel; Zierler, Edda; Vanholder, Raymond; Eloot, Sunny

    2014-01-01

    It was the aim to examine the fluid flow in blood and dialysate compartments of highly permeable hollow fiber dialyzers where internal filtration contributes to solute removal but where excessive filtration bears a risk of cell activation and damage. Flow characteristics of high- (HF) and low-flux (LF) dialyzers were studied in lab-bench experiments using whole bovine blood. Measurements obtained under different operating conditions and under zero net ultrafiltration were compared to theoretical calculations obtained from a mathematical model. Experimental resistances in the blood compartment were within ±2% of those calculated from the model when dialysate was used as a test fluid. With whole blood, the experimental resistances in the blood compartment were only 81.8 ± 2.8% and 83.7 ± 4.3% of those calculated for the LF and HF dialyzer, respectively. Surprisingly, measured blood flow resistance slightly but significantly decreased with increasing flow rate (p filtration fraction, while overall internal filtration increased. The increase in internal filtration when increasing blood flow is associated with a beneficial reduction in internal filtration fraction. Concerns of increased hemoconcentration when increasing blood flow therefore appear to be unwarranted.

  6. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...

  7. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.

  8. Wall Shear Rates in Taylor Vortex Flow

    Directory of Open Access Journals (Sweden)

    V. Sobolik

    2011-01-01

    Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.

  9. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1......) identification of the extent of a multivessel coronary artery disease (CAD) burden, 2) patients with balanced 3-vessel CAD, 3) patients with subclinical CAD, and 4) patients with regional flow variance, despite of a high global MFR. A more accurate assessment of the ischemic burden in patients with intermediate...

  10. Large-Eddy simulation of pulsatile blood flow.

    Science.gov (United States)

    Paul, Manosh C; Mamun Molla, Md; Roditi, Giles

    2009-01-01

    Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology.

  11. Reduced myocardial blood flow in acute and chronic digitalization.

    Science.gov (United States)

    Steiness, E; Bille-Brahe, N E; Hansen, J F; Lomholt, N; Ring-Larsen, H

    1978-07-01

    The myocardial blood flow was measured by the 133Xenon disappearance curve from the left ventricular wall following an injection of 133Xenon in the left coronary artery in 8 dogs without digoxin pretreatment and in 8 chronically digitalized dogs. The myocardial blood flow was significantly less (30%) in the digitalized dogs than in the dogs without pretreatment. In the digitalized dogs as well as in those without pretreatment an intravenous injection of digoxin resulted in a further significant decrease of the myocardial blood flow of about 20% and a significant increase of the coronary vascular resistance. The reduced myocardial blood flow both during acute and chronic digitalization is beleived to be of clinical importance.

  12. Skeletal Blood Flow in Bone Repair and Maintenance

    Institute of Scientific and Technical Information of China (English)

    Ryan E.Tomlinson; Matthew J.Silva

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato-my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.

  13. Study Links Stuttering to Less Blood Flow in Brain

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162922.html Study Links Stuttering to Less Blood Flow in Brain The more ... to speech may put people at risk for stuttering, a small study suggests. There are also signs ...

  14. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma

    OpenAIRE

    Mohindroo, Chirayu; Ichhpujani, Parul; Kumar, Suresh

    2016-01-01

    Glaucoma may be caused by an interplay of elevated intraocular pressure (IOP), vascular, genetic, anatomical, brain, and immune factors. The direct assessment of ocular hemodynam-ics offers promise for glaucoma detection, differentiation, and possibly new treatment modalities. All the methods currently in use to measure ocular blood flow have inherent limitations and measure different aspects of ocular blood flow. This review article attempts to provide detailed information on ocular perfu-si...

  15. APPLICATION OF THE THEORY OF INTERACTING CONTINUA TO BLOOD FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Kim, Jeongho; Hund, Samuel J.; Antaki, James F.

    2011-01-01

    Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), and other unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

  16. 4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat

    Science.gov (United States)

    Correia, Mafalda; Provost, Jean; Tanter, Mickael; Pernot, Mathieu

    2016-12-01

    We present herein 4D ultrafast ultrasound flow imaging, a novel ultrasound-based volumetric imaging technique for the quantitative mapping of blood flow. Complete volumetric blood flow distribution imaging was achieved through 2D tilted plane-wave insonification, 2D multi-angle cross-beam beamforming, and 3D vector Doppler velocity components estimation by least-squares fitting. 4D ultrafast ultrasound flow imaging was performed in large volumetric fields of view at very high volume rate (>4000 volumes s-1) using a 1024-channel 4D ultrafast ultrasound scanner and a 2D matrix-array transducer. The precision of the technique was evaluated in vitro by using 3D velocity vector maps to estimate volumetric flow rates in a vessel phantom. Volumetric Flow rate errors of less than 5% were found when volumetric flow rates and peak velocities were respectively less than 360 ml min-1 and 100 cm s-1. The average volumetric flow rate error increased to 18.3% when volumetric flow rates and peak velocities were up to 490 ml min-1 and 1.3 m s-1, respectively. The in vivo feasibility of the technique was shown in the carotid arteries of two healthy volunteers. The 3D blood flow velocity distribution was assessed during one cardiac cycle in a full volume and it was used to quantify volumetric flow rates (375  ±  57 ml min-1 and 275  ±  43 ml min-1). Finally, the formation of 3D vortices at the carotid artery bifurcation was imaged at high volume rates.

  17. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Eva Kochhan

    Full Text Available After the initial formation of a highly branched vascular plexus, blood vessel pruning generates a hierarchically structured network with improved flow characteristics. We report here on the cellular events that occur during the pruning of a defined blood vessel in the eye of developing zebrafish embryos. Time-lapse imaging reveals that the connection of a new blood vessel sprout with a previously perfused multicellular endothelial tube leads to the formation of a branched, Y-shaped structure. Subsequently, endothelial cells in parts of the previously perfused branch rearrange from a multicellular into a unicellular tube, followed by blood vessel detachment. This process is accompanied by endothelial cell death. Finally, we show that differences in blood flow between neighboring vessels are important for the completion of the pruning process. Our data suggest that flow induced changes in tubular architecture ensure proper blood vessel pruning.

  18. Blood flow and microdialysis in the human femoral head

    DEFF Research Database (Denmark)

    Bøgehøj, Morten; Emmeluth, Claus; Overgaard, Søren

    2007-01-01

    BACKGROUND: If it would be possible to detect lack of flow and/or the development of ischemia in bone, we might have a way of predicting whether a broken bone will heal. We established microdialysis (MD) and laser Doppler (LD) flow measurement in the human femoral head in order to be able to detect...... ischemia and measure changes in blood flow. MATERIAL AND METHODS: In 9 patients undergoing total hip arthroplasty for primary osteoarthrosis, two MD catheters were inserted into the femoral head through two drill holes after the blood flow had been visualized by LD. Then primary samples were collected...... detected within 2 h of cessation of blood flow in most patients....

  19. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  20. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    Science.gov (United States)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  1. Hepatic and intestinal blood flow following thermal injury

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Tompkins, R.G.; Burke, J.F.

    1988-07-01

    Because cardiac output decreases after burn injuries, investigators have assumed, based upon dye clearance techniques, that hepatic and intestinal blood flow are also decreased following these injuries. Blood flow to the liver, stomach, small intestine, and kidney was determined by the uptake of 201thallium and 125I-labeled fatty acid (para-125I-phenyl-3-methyl pentanoic acid) in a 20% body surface area scald injury that also included plasma volume replacement resuscitation. Uptake of these radioisotopes was determined 15 minutes, 18 hours, and 72 hours after injury. The uptake of the 201thallium and 125I-labeled fatty acid by the gastrointestinal tissues was not statistically different at any of the time periods after comparison of the injured and control (sham-treated) animals. 201Thallium uptake by the kidney was significantly diminished 15 minutes after the burn injury (P less than 0.01). Based on these blood flow measurement techniques, the data suggest that the 20% body surface area scald injury did not alter blood flow to the liver or gastrointestinal tract within the initial 72 hours after the burn injury even though a decrease in renal blood flow was easily detected. These results suggest that the dysfunction of the gastrointestinal system or hepatic system observed after an acute burn injury is not simply the result of hypovolemic shock, which reduces both renal and mesenteric blood flow. These gastrointestinal and hepatic alterations may be related to a factor or factors other than intestinal ischemia.

  2. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    Science.gov (United States)

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  3. Blood flows and metabolic components of the cardiome.

    Science.gov (United States)

    Bassingthwaighte, J B; Li, Z; Qian, H

    1998-01-01

    This is a plan for the first stage of The Cardiome Project. The cardiome is the representation, in quantitative, testable form, of the functioning of the normal heart and its responses to intervention. The goal is to integrate the efforts of many years into a comprehensive understandable scheme. Past efforts have spanned the fields of transport within blood vessels, the distributions of regional coronary blood flows, permeation processes through capillary and cell walls, mediated cell membrane transport, extra- and intracellular diffusion, cardiac electrophysiology, the uptake and metabolism of the prime substrates (fatty acid and glucose), the metabolism of the purine nucleosides and nucleotides (mainly adenosine and ATP), the regulation of the ionic currents and of excitation-contraction coupling and finally the regulation of contraction. The central theme is to define the coronary flows and metabolic components of a computer model that will become a part of a three-dimensional heart with appropriate fibre shortening and volume ejection. The components are: (a) coronary flow distributions with appropriate heterogeneity, (b) metabolism of the substrates for energy production, (c) ATP, PCr and energy metabolism and (d) calcium metabolism as it relates to excitation-contraction coupling. The modeling should provide: (1) appropriate responses to regional ischemia induced by constriction of a coronary artery, including tissue contractility loss and aneurysmal dilation of the ischemic region; (2) physiological responses to rate changes such as treppe and changes in metabolic demand and (3) changes in local metabolic needs secondary to changes in the site of pacing stimulation and shortening inactivation or stretch activation of contraction.

  4. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors...... find decreases of both CBF and CMRO(2) but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO(2) and CBF in 66 healthy volunteers aged 21 to 81......, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions...

  5. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki (National Central Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan))

    1992-05-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO{sub 2}) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO{sub 2} were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author).

  6. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    Science.gov (United States)

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications.

  7. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  8. Increasing granular flow rate with obstructions

    Directory of Open Access Journals (Sweden)

    Alan Murray

    2016-03-01

    Full Text Available We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstrate that the model exhibits clogging, intermittent and continuous flow, and that it can be used as a tool for further investigations in granular flow. Received: 22 November 2015, Accepted: 19 February 2016; Edited by: L. A. Pugnaloni; Reviewed by: C. M. Carlevaro, Instituto de Física de Líquidos y Sistemas Biológicos, La Plata, Argentina; DOI: http://dx.doi.org/10.4279/PIP.080003 Cite as: A Murray, F Alonso-Marroquin, Papers in Physics 8, 080003 (2016

  9. Relative blood flow changes measured using calibrated frequency-weighted Doppler power at different hematocrit levels.

    Science.gov (United States)

    Wallace, Sean; Logallo, Nicola; Faiz, Kashif W; Lund, Christian; Brucher, Rainer; Russell, David

    2014-04-01

    In theory, the power of a trans-cranial Doppler signal may be used to measure changes in blood flow and vessel diameter in addition to velocity. In this study, a flow index (FI) of relative changes in blood flow was derived from frequency-weighted Doppler power signals. The FI, plotted against velocity, was calibrated to the zero intercept with absent flow to reduce the effects of non-uniform vessel insonation. An area index was also calculated. FIs were compared with actual flow in four silicone tubes of different diameter at increasing flow rates and increasing hematocrit (Hct) in a closed-loop phantom model. FI values were strongly correlated with actual flow, at constant Hct, but varied substantially with changes in Hct. Percentage changes in area indexes, relative to the 4-mm tube, were strongly correlated with tube cross-sectional area. The implications of these results for in vivo use are discussed.

  10. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    Science.gov (United States)

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  11. Mathematical model for blood flow through a bifurcated artery using couple stress fluid.

    Science.gov (United States)

    Srinivasacharya, D; Madhava Rao, G

    2016-08-01

    In this article, the blood flow through a bifurcated artery with mild stenosis is investigated taking blood as couple stress fluid. The artery configuring bifurcation is assumed to be symmetric about the axis of the artery and straight cylinders of finite length. The governing equations are non-dimensionalized and coordinate transformation is used to convert the irregular boundary to a regular boundary. The resulting system of equations is solved numerically using the finite difference method. The variation of shear stress, flow rate and impedance near the apex with pertinent parameters are studied graphically. It has been noticed that shear stress, flow rate and impedance have been changing suddenly with all the parameters on both sides of the apex. This occurs because of the backflow of the streaming blood at the onset of the lateral junction and secondary flow near the apex in the daughter artery.

  12. Blood flow regulation and oxygen uptake during high intensity forearm exercise.

    Science.gov (United States)

    Nyberg, Stian Kwak; Berg, Ole Kristian; Helgerud, Jan; Wang, Eivind

    2017-01-05

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25±2yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO2diff) during 6-minutes bouts of 60, 80 and 100% of maximal work rate (WRmax), respectively. Blood flow and oxygen uptake increased (pBlood velocity (49.5±11.5 cm∙sec(-1) to 58.1±11.6 cm∙sec(-1)) and brachial diameter (0.49±0.05cm to 0.50±0.06 cm) showed concomitant increases (pblood flow from 60% to 80%WRmax, while no differences were observed in a-vO2diff Shear rate also increased (pblood flow (60%WRmax:50±22s; 80%WRmax:51±20s; 100%WRmax:51±23s) than a-vO2diff (60%WRmax:29±9s; 80%WRmax:29±5s; 100%WRmax:20±5s), but not different from oxygen uptake (60%WRmax:44±25s; 80%WRmax:43±14s; 100%WRmax:41±32s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WRmax and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations.

  13. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Vang, Kim; Bergersen, Linda H

    2012-01-01

    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR...

  14. Determination of Rate and Causes of Wastage of Blood and Blood Products in Iranian Hospitals

    Directory of Open Access Journals (Sweden)

    Rafat Mohebbi Far

    2014-06-01

    Full Text Available OBJECTIVE: The purpose of this study was to determine the rate and causes of wastage of blood and blood products (packed red cells, plasma, platelets, and cryoprecipitate in Qazvin hospitals. METHODS: The study was conducted in all hospitals in Qazvin, including 5 teaching hospitals, 2 social welfare hospitals, 3 private hospitals, 1 charity hospital, and 1 military hospital. This descriptive study was based on available data from hospital blood banks in the province of Qazvin. The research instrument was a 2-part questionnaire. The first part was related to demographic characteristics of hospitals and the second part elicited information about blood and blood component wastage. The collected data were then analyzed using descriptive statistic methods and SPSS 11.5. RESULTS: Blood wastage may occur for a number of reasons, including time expiry, wasted imports, blood medically or surgically ordered but not used, stock time expired, hemolysis, or miscellaneous reasons. Data indicated that approximately 77.9% of wasted pack cell units were wasted for the reason of time expiry. Pack cell wastage in hospitals is reported to range from 1.93% to 30.7%. Wastage at all hospitals averaged 9.8% among 30.913 issued blood products. Overall blood and blood product (packed red cells, plasma, platelets, and cryoprecipitate wastage was 3048 units and average total wastage per participant hospital for all blood groups was 254 units per year. CONCLUSION: Blood transfusion is an essential part of patient care. The blood transfusion system has made significant advancements in areas such as donor management, storage of blood, cross-matching, rational use of blood, and distribution. In order to improve the standards of blood banks and the blood transfusion services in Iran, comprehensive standards have been formulated to ensure better quality control in collection, storage, testing, and distribution of blood and its components for the identified major factors

  15. Methods for measurement of cerebral blood flow in man

    DEFF Research Database (Denmark)

    Lassen, N A

    1976-01-01

    A survey of the currently available methods for the measurement of cerebral blood flow in man is given. Many of the clinically important brain diseases such as tumors, stroke, brain trauma or epilepsy entail focal or regional flow alterations. Therefore a special emphasis is placed on methods all...

  16. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    Science.gov (United States)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  17. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik;

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  18. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  19. Metabolic control of resting hemispheric cerebral blood flow is oxidative, not glycolytic

    OpenAIRE

    Powers, William. J.; Videen, Tom O.; Markham, Joanne; Walter, Vonn; Perlmutter, Joel S.

    2011-01-01

    Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO2) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO2, CMRglc, and other covariates as predictors of resting ...

  20. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  1. Evaluation of the return rate of volunteer blood donors

    Directory of Open Access Journals (Sweden)

    Adriana de Fátima Lourençon

    2011-06-01

    Full Text Available BACKGROUND: To convert first-time blood donors into regular volunteer donors is a challenge to transfusion services. OBJECTIVES: This study aims to estimate the return rate of first time donors of the Ribeirão Preto Blood Center and of other blood centers in its coverage region. METHODS: The histories of 115,553 volunteer donors between 1996 and 2005 were analyzed. Statistical analysis was based on a parametric long-term survival model that allows an estimation of the proportion of donors who never return for further donations. RESULTS: Only 40% of individuals return within one year after the first donation and 53% return within two years. It is estimated that 30% never return to donate. Higher return rates were observed among Black donors. No significant difference was found in non-return rates regarding gender, blood type, Rh blood group and blood collection unit. CONCLUSIONS: The low percentage of first-time donors who return for further blood donation reinforces the need for marketing actions and strategies aimed at increasing the return rates.

  2. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  3. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60 degrees. The flow in the rig was laminar and had a parabolic flow-profile with a peak velocity of 0.09 m/s. The mean relative standard...

  4. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model......Hz in which, in addition, there are autonomous oscillations in TGF. Higher amplitude forcings in this band were attenuated by autoregulatory mechanisms, but low-amplitude forcings entrained the autonomous oscillations and provoked amplified oscillations in blood flow, showing an effect of TGF on whole kidney...

  5. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 h

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J

    1984-01-01

    A method is presented which allows for continuous registration of forefoot blood flow over 24 h. Blood flow was estimated by the radioactive Xenon washout method and a portable CdTe detector system was used to measure the tracer disappearance rate. Since the semiconductor detector is placed very...

  6. Coagulation on biomaterials in flowing blood: some theoretical considerations.

    Science.gov (United States)

    Basmadjian, D; Sefton, M V; Baldwin, S A

    1997-12-01

    Are truly inert biomaterials feasible? Recent mathematical models of coagulation which are reviewed here suggest that such materials are impossible. This conclusion, which is certainly consistent with our collective experimental evidence, arises from the calculation that conversion of Factor XI to XIa never drops to zero even at the highest flow rates and with virtually no Factor XIIa bound to a surface. Residual amounts of XIa are still formed which can in principle kick-off the coagulation cascade. Furthermore, if the flow rates and corresponding mass transfer coefficients are low and in spite of these near-vanishing levels of the initiating coagulants, the surprising result is that substantial amounts of thrombin are produced. On the contrary, under slightly higher flow conditions, there can be more substantial levels of initiating coagulants, yet paradoxically thrombin production is near zero. This article presents a theoretical understanding of the events which take place during the interaction of biomaterials with flowing blood. We follow these events from the time of first contact to the final production of thrombin. The effect of flow and surface activity on the contact phase reactions is examined in detail and the two are found to be intertwined. The common pathway is also examined and here the main feature is the existence of three flow dependent regions which produce either high or very low levels of thrombin, as well as multiple thrombin steady states. In a final analysis we link the two segments of the cascade and consider the events which result. In addition, we note that multiple steady states arise only in the presence of two (thrombin) feedback loops. Single loops or the bare cascade will produce only single steady states. With some imagination one can attribute to the feedback loops the role of providing the cascade with a mechanism to produce high thrombin levels in case of acute need (e.g. bleeding) or to allow levels to subside to 'stand

  7. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    JI Yu-Pin; KANG Xiu-Ying; LIU Da-He

    2009-01-01

    The Programmed model of non-Newtonian blood flow (the Casson model) at arterial bifurcations is established by the lattice Boltzmann method. The blood flow field under different Reynolds numbers is simulated, and distri-bution of dynamic factors such as flow velocity, shear stress, pressure and shear rate are presented. The existence of the fluid separation zone is analyzed. This provides a basis for further studies of the relationship between hemodynamic factors and pathogenesis, as well as a reference for a better understanding of the pathological changes and location of sediments, and the plague factor in arteries.

  8. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue....... Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure...

  9. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use...

  10. Measurements of blood flow and blood concentration change using laser speckle in fiber illumination and its application to estimation of stress condition

    Science.gov (United States)

    Yokoi, Naomichi; Shinohara, Tomomi; Funamizu, Hideki; Kyoso, Masaki; Shimatani, Yuichi; Yuasa, Tomonori; Aizu, Yoshihisa

    2016-11-01

    Speckle imaging method is useful for monitoring of blood flow in living bodies. We have proposed so far the method for simultaneous imaging of blood flow and blood concentration change using laser speckle patterns at two wavelengths. However, our conventional measurement system has difficulty in adjusting the illuminating optical axis of two laser sources. Therefore, we introduce a novel arrangement using a coaxial fiber illumination in the detection of speckle patterns in two wavelengths. By this arrangement, the blood flow can be stably analyzed with a frame rate using an estimation parameter proposed by the authors based on the spatial contrast of speckle patterns. This parameter is useful for estimating an autonomic nervous function which reflects stress conditions caused by tension and excitement. In this study, we present measurements of the blood flow and blood concentration change in the fiber illumination, and its application to estimation of stress condition.

  11. Subcutaneous blood flow in the temporal region of migraine patients

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks.

  12. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.

  13. 轴流式血泵流场CFD仿真%Flow field CFD analysis of axial flow blood pump

    Institute of Scientific and Technical Information of China (English)

    谢雄; 谭建平

    2014-01-01

    In the development of axial flow blood pump,the arterial partial flow field may produce an area with very low flow shear rate,so it is necessary to consider the non-Newtonian charac-teristics of blood fluid.In this paper,a model of axial flow blood pump was established,and flow and rotate-speed’s impacts on the inlet and outlet of the flow field in the blood pump were ana-lyzed through Computational Fluid Dynamics (CFD)simulation,as wel as the influence of the guide vane on the flow field.By the pump water experiment of the designed blood pump,its out-put flow and pressure were measured;the results show that the designed blood pump is consist-ent on the law with the simulation.%在轴流式血泵的研发过程中,动脉局部流场中可能产生流动剪切率非常低的区域,因此有必要考虑血液的非牛顿特性。建立了轴流式血泵模型,通过CFD仿真分析得到血泵转速和流量的变化对血泵出入口压力分布和速度分布的影响,并采用水和甘油(2∶1)的混合流体替代血液,对设计的血泵进行驱动实验,测量了轴流式血泵输出流量和压力参数。结果表明:所设计的血泵在规律上和仿真是相符的。

  14. Dramatic Increase in Cerebral Blood Flow following Soman Intoxication If Signs of Symptoms Can Be Seen

    Directory of Open Access Journals (Sweden)

    Ann Göransson Nyberg

    2015-01-01

    Full Text Available Organophosphate poisoning is associated with adverse effects on the central nervous system such as seizure/convulsive activity and long term changes in neuronal networks. This study report an investigation designed to assess the consequences of Soman, a highly toxic organophosphorus compound, exposure on regional blood flow in the rat brain and peripheral organs. We performed repeated blood flow measurements in the same animal, using the microspheres technique, to characterize changes in regional blood flow at different times after Soman intoxication. In addition, the cardiopulmonary effects of Soman were followed during the intoxication. Administration of Soman (1 LD50; 90 µg/kg, s.c. to anaesthetized rats produced a decrease in blood acetylcholinesterase activity in all animals tested. Although, only six out of ten rats showed signs of poisoning like a decrease in respiratory rate, the results show that only animals with significant signs of poisoning demonstrated an increase in cerebral blood flow. We conclude that it is of great importance to treat all data individually. An overall mean can easily be misinterpreted and conceal important effects. We also conclude that the increase in cerebral blood flow has an important role in the effect on respiration and that this effect is independent of the blood acetylcholinesterase activity.

  15. Fantofarone (SR33557): effects on myocardial oxygen consumption and coronary blood flow.

    Science.gov (United States)

    Hodeige, D; Chatelain, P; Manning, A

    1994-01-01

    We have investigated the effects of a novel calcium antagonist, fantofarone (SR 33557) on myocardial oxygen consumption (MO2C) and coronary blood flow in anaesthetized dogs during periods of normal and elevated heart rate. 25 micrograms/kg i.v. fantofarone induced a transient increase in coronary blood flow (+25% after 2 min; p MO2C (-50% after 5 min; p MO2C was reduced by 67% after 5 min (p MO2C was observed during the pacing periods (32% after 10 min; p MO2C consumption during periods of elevated heart rate.

  16. Peripheral blood flow control in diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, Jannik

    1991-01-01

    Long term diabetes has a profound effect on the peripheral circulation. This has been demonstrated to be due to the presence of angiopathy and autonomic neuropathy, affecting autoregulation and distensibility of the vessels as well as local and central reflex regulation of the vascular resistance....... Whereas the hemodynamic consequences of vascular denervation are well known (causing blood pressure maladaptation to a number of stimuli such as standing, exercise and agonist infusion) (Hilsted 1985), the consequences of disturbances in autoregulation and distensibility remain to be established....

  17. Design and Simulation of Axial Flow Maglev Blood Pump

    Directory of Open Access Journals (Sweden)

    Huachun Wu

    2011-03-01

    Full Text Available The axial flow maglev blood pump (AFMBP has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element analysis, and puts forward a method to design the magnetic suspension and impeller of axial flow blood pump, which tacks into account the small volume of axial blood pump. The magnetic bearing’s characteristics are evaluated by electromagnetic finite element analysis. The Blades have been designed by calculating aerofoil bone line, and make simulation analysis for different thicken ways of blade by Fluent software, and make a conclusion that the blade thickened with certain rules has better characteristics in the same conditions. The results will provide some guidance for design of axial flow maglev blood pump, and establish theoretical basis for application of the implantable artificial heart pump.

  18. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard;

    A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... patterns can be visualised and quantified with real-time in vivo vector flow. Good agreement between visual evaluation and the quantitative method has been shown. A standard deviation of vector angle estimates above 30 is proposed to define complex blood flow....

  19. [The landmarks of the measurement of cerebral blood flow].

    Science.gov (United States)

    István, Nyáry

    2008-01-30

    History of the measurement of local cerebral blood flow may cover a period of one and a half centuries. Parallel forthcoming of both theoretical and technical development were the key elements of ensuing progress resulting in the present state, when by the aid of in vivo blood flow and metabolic maps, we can visualize locales of brain functioning and their interconnections. Two theoretical landmarks should be mentioned in this historic process. First, the work of Adolf Fick, as the starter of quantitative measurements in this field, and Seymour Kety's model of a single, homogenously perfused tissue element. The solution of this model, in the form of Kety's equation is still fundamental to present day blood flow mapping techniques. Among the numerous investigators over the past years, two Hungarian scientist can be named as major contributors. Kálmán Sántha made substantial studies with continuous registration of local cerebral blood flow by the aid of thermocouples, while Emil P6sztor invented the hydrogen clearance method for the measurement of local cerebral blood flow both in human and in animal studies.

  20. An analysis of the sluicing gate in pulmonary blood flow.

    Science.gov (United States)

    Fung, Y C; Zhuang, F Y

    1986-05-01

    For pulmonary blood flow in zone 2 condition, in which the blood pressure in the venule (pven) is lower than the alveolar gas pressure (pA), the blood exiting from the capillary sheet and entering a venule must go through a sluicing gate. The sluicing gate exists because the venule remains patent while the capillaries will collapse when the static pressure of blood falls below the alveolar gas pressure. In the original theory of sheet flow the effect of the tension in the interalveolar septa on the flow through the sluicing gate was ignored. Since the tension multiplied by the curvature of the membrane is equivalent to a lateral pressure tending to open the gate, and since the curvature of the capillary wall is high in the gate region, this effect may be important. The present analysis improves the original theory and demonstrates that the effect of membrane tension is to cause flow to increase when the venous pressure continues to decrease. The shape of the sluicing gate resembles that of a venturi tube, and can be determined by an iterative integration of the differential equations. The result forms an important link in the theory of pulmonary blood flow in zone 2 condition.

  1. Effects of Aortic Irregularities on the Blood Flow

    Science.gov (United States)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  2. Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation.

    Science.gov (United States)

    Deussen, A; Flesche, C W; Lauer, T; Sonntag, M; Schrader, J

    1996-07-01

    The effects of adrenergic stimulation on local myocardial blood flow in the left ventricle were studied in 13 anaesthetized Beagle dogs using the tracer microsphere technique. Adrenergic stimulation was induced by intravenous infusion of orciprenaline (1-2 microg kg-1 min-1) over 15 min or by electrical stimulation of the left ansa subclavia (10 Hz, 1 ms, 4-8 V) over 5 min. Local myocardial blood flow was analysed in 256 samples with an average (+/-SD) mass of 318+/-49 mg from the left ventricular myocardium using a standardized dissection procedure. Orciprenaline increased the average myocardial blood flow from 0.85+/-0.18 to 1.73+/-0.27 ml min-1 g-1, while oxygen consumption and the pressure-rate product increased by 129 and 119% respectively. The coefficients of variation of local myocardial blood flow, a measure of spatial blood flow heterogeneity, were 0.21 and 0.18 under control and orciprenaline respectively. Except for a slight transmural gradient (endomyocardium/epimyocardium flow ratio 1.19) myocardial blood flow did not exhibit significant spatial gradients. Stimulation with orciprenaline increased the average blood flow in all regions of the left ventricle by comparable extents. However, local blood flow during orciprenaline was significantly lower in samples from regions which had a lower blood flow under resting control conditions. A significant positive relationship was obtained between local myocardial blood flow under resting conditions and orciprenaline (r=0.45+/-0.18). Moreover, after recovery from orciprenaline stimulation (i.e. 40-112 min after the end of orciprenaline infusion) local myocardial blood flow exhibited a high degree of correlation with local flow before orciprenaline (r=0.71+/-0.08). Comparable results were obtained with electrical stimulation of the left ansa subclavia. For the comparison stimulation vs. control, the correlation coefficient of local blood flow was 0.52+/-0.04 and for recovery vs. control 0.77+/-0.06. From these

  3. Effects of adrenergic and nitrergic blockade on theophylline-induced increase in peripheral blood flow in rat ear.

    Science.gov (United States)

    Sanae, F; Hayashi, H

    1998-11-01

    A bolus injection of theophylline produced a significant increase in peripheral blood flow in anesthetized rat ear, monitored by laser-Doppler flowmetry, with increases in arterial blood pressure and heart rate. These effects were attenuated by previous treatment with reserpine, but reserpine had no effect on the blood flow increase produced by acetylcholine. A dose of propranolol, which caused attenuation of the theophylline-induced increase in heart rate, did not change the peripheral blood flow. The higher dose of propranolol, which nearly canceled the increases in blood pressure and heart rate, caused attenuation of the blood flow increase but did not cancel it. However, the theophylline-induced flow increase was completely reversed by a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester, which alone had no effect, without any change in arterial blood pressure and heart rate. Treatment of the rats with the dose of inhibitor slightly and significantly reduced the response of peripheral blood flow to acetylcholine. The other isomer, NG-nitro-D-arginine methyl ester, and the other inhibitor, NG-monomethyl-L-arginine, did not have such an effect. These results suggest that the flow increase is due to an independent effect on the heart with modification by autonomic reflexes and involves the adrenergic and nitrergic pathways.

  4. Nonuniform blood flow in the canine left ventricle.

    Science.gov (United States)

    Flynn, A E; Coggins, D L; Austin, R E; Muehrcke, D D; Aldea, G S; Goto, M; Doucette, J W; Hoffman, J I

    1990-11-01

    In order to investigate the relationship between coronary perfusion pressure and blood flow distribution in the left ventricle (LV), we measured myocardial blood flow in small regions using radioactive microspheres in six anesthetized, open-chest dogs. Mean coronary perfusion pressure (CPP) was controlled with a femoral artery to left main coronary artery shunt which included a pressurized, servo-controlled blood reservoir. In each dog, we measured flow in 192 regions of the LV free wall (mean weight per region = 206 +/- 38 mg) at different perfusion pressures. At CPP = 80 mm Hg, blood flow to individual regions varied fourfold (0.30 to 1.18 ml/min/g; relative dispersion (RD) = 21.8 +/- 2.3%). At CPP = 50 mm Hg, flow varied over sevenfold (0.08 to 0.60 ml/min/g; RD = 42.8 +/- 10%; P less than 0.01 vs 80 mm Hg). This relationship between flow variability and CPP was present within individual LV layers as well between layers and is much higher than the error associated with the microsphere technique. We conclude that blood flow to small regions of the LV is markedly nonuniform. This heterogeneity becomes more profound at lower CPP. These findings suggest that (1) global measurements of coronary flow must be interpreted with caution, and (2) even in hearts with normal coronary arteries some regions of the LV are more susceptible to ischemia than others. In addition, these findings may help explain the patchy nature of myocardial damage that occurs following periods of low coronary pressure or inadequate myocardial protection during cardiopulmonary bypass.

  5. Coded Ultrasound for Blood Flow Estimation Using Subband Processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael Bachamnn

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded...... for velocity estimation is compared with a conventional approach transmitting a narrow-band pulse. The study was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60°. The flow in the rig...

  6. Laser speckle contrast imaging for monitoring changes in microvascular blood flow

    DEFF Research Database (Denmark)

    Ambrus, Rikard; Strandby, Rune B.; Svendsen, Lars Bo;

    2016-01-01

    BACKGROUND/AIMS: Microvascular blood flow is essential for healing and predicts surgical outcome. The aim of the current study was to investigate the relation between fluxes measured with the laser speckle contrast imaging (LSCI) technique and changes in absolute blood flow. In addition, we studied...... the reproducibility of the LSCI technique when assessing the intra-abdominal microcirculation of the pig. METHODS: During trial 1, a fish gill arch was mechanically perfused with heparinized fish blood under controlled stepwise-altered flow rates alongside mechanically induced movement artefacts. The microcirculation...... = 6.0, 3.2, and 6.4%, respectively). CONCLUSION: Due to the non-contact and real-time assessment over large areas, LSCI is a promising technique for the intraoperative assessment of intra-abdominal microcirculation. A linear correlation between flux and volumetric flow was found, in accordance...

  7. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    CERN Document Server

    Brust, M; Thiebaud, M; Flormann, D; Verdier, C; Kaestner, L; Laschke, M W; Selmi, H; Benyoussef, A; Podgorski, T; Coupier, G; Misbah, C; Wagner, C

    2014-01-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These pers...

  8. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    The aspect of correlation among the blood velocities in time and space has not received much attention in previous blood velocity estimators. The theory of fluid mechanics predicts this property of the blood flow. Additionally, most estimators based on a cross-correlation analysis are limited...... of simulated and in vivo data from the carotid artery. The estimator is meant for two-dimensional (2-D) color flow imaging. The resulting mathematical relation for the estimator consists of two terms. The first term performs a cross-correlation analysis on the signal segment in the radio frequency (RF......)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...

  9. Mediators of increased blood flow in porcine skin

    Directory of Open Access Journals (Sweden)

    H. D. Moore

    1992-01-01

    Full Text Available Nicotinates and benzalkonium chloride (B.Cl cause inflammatory changes in human skin, thought to be dependent upon prostaglandin formation. This study has examined the effects of hexyl-nicotinate (HN and B.Cl on blood flow in porcine skin. The role of prostaglandins and interleukin (IL-1 in the blood flow response has been investigated. Blood flow was increased by both HN and B.Cl, the response to B.Cl being more protracted. Cyclooxygenase inhibitor pretreatment reduced these responses. IL-1-like biological activity was identified in normal porcine epidermis and the amounts recovered from inflamed skin were similar. Thus prostaglandin formation in HN or B.Cl-induced inflammation, if IL-1 dependent, is not associated with the loss of significant amounts of the cytokine from the epidermis.

  10. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  11. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  12. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.

    Science.gov (United States)

    Biswas, Dipankar; Casey, David M; Crowder, Douglas C; Steinman, David A; Yun, Yang H; Loth, Francis

    2016-07-01

    Blood is a complex fluid that, among other things, has been established to behave as a shear thinning, non-Newtonian fluid when exposed to low shear rates (SR). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high SR (>200 s-1). Shear thinning fluids have been shown to exhibit differences in transition to turbulence (TT) compared to that of Newtonian fluids. Incorrect prediction of the transition point in a simulation could result in erroneous hemodynamic force predictions. The goal of the present study was to compare velocity profiles near TT of whole blood and Newtonian blood analogs in a straight rigid pipe with a diameter 6.35 mm under steady flow conditions. Rheology was measured for six samples of whole porcine blood and three samples of a Newtonian fluid, and the results show blood acts as a shear thinning non-Newtonian fluid. Measurements also revealed that blood viscosity at SR = 200 s-1 is significantly larger than at SR = 1000 s-1 (13.8%, p measure velocity profiles for blood and Newtonian samples at different flow rates to produce Reynolds numbers (Re) ranging from 1000 to 3300 (based on viscosity at SR = 1000 s-1). Two mathematically defined methods, based on the velocity profile shape change and turbulent kinetic energy (TKE), were used to detect TT. Results show similar parabolic velocity profiles for both blood and the Newtonian fluid for Re blood and Newtonian fluid velocity profiles for larger Re. The Newtonian fluid had blunt-like velocity profiles starting at Re = 2403 ± 8 which indicated transition. In contrast, blood did not show this velocity profile change until Re = 2871 ± 104. The Newtonian fluid had large velocity fluctuations (root mean square (RMS) > 20%) with a maximum TKE near the pipe center at Re = 2316 ± 34 which indicated transition. In contrast, blood results showed the maximum TKE at Re = 2806

  13. Intraoperative multi-exposure speckle imaging of cerebral blood flow.

    Science.gov (United States)

    Richards, Lisa M; Kazmi, Sm Shams; Olin, Katherine E; Waldron, James S; Fox, Douglas J; Dunn, Andrew K

    2017-01-01

    Multiple studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable cerebral blood flow monitoring technique during neurosurgery. However, the quantitative accuracy and sensitivity of LSCI is limited, and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study ( n = 8) recorded multiple exposure times from the same cortical tissue area spanning 0.5-20 ms, and evaluated images individually as single-exposure LSCI and jointly using the MESI model. This study demonstrated that the MESI estimates provided the broadest flow sensitivity for sampling the flow magnitude in the human brain, closely followed by the shorter exposure times. Conservation of flow analysis on vascular bifurcations was used to validate physiological accuracy, with highly conserved flow estimates (blood flow changes after tissue cautery. Results from this study demonstrate that intraoperative MESI can be performed with high quantitative accuracy and sensitivity for cerebral blood flow monitoring.

  14. Diabetes augments in vivo microvascular blood flow dynamics after stroke.

    Science.gov (United States)

    Tennant, Kelly A; Brown, Craig E

    2013-12-04

    Stroke usually affects people with underlying medical conditions. In particular, diabetics are significantly more likely to have a stroke and the prognosis for recovery is poor. Because diabetes is associated with degenerative changes in the vasculature of many organs, we sought to determine how hyperglycemia affects blood flow dynamics after an ischemic stroke. Longitudinal in vivo two-photon imaging was used to track microvessels before and after photothrombotic stroke in a diabetic mouse model. Chronic hyperglycemia exacerbated acute (3-7 d) ischemia-induced increases in blood flow velocity, vessel lumen diameter, and red blood cell flux in peri-infarct regions. These changes in blood flow dynamics were most evident in superficial blood vessels within 500 μm from the infarct, rather than deeper or more distant cortical regions. Long-term imaging of diabetic mice not subjected to stroke indicated that these acute stroke-related changes in vascular function could not be attributed to complications from hyperglycemia alone. Treating diabetic mice with insulin immediately after stroke resulted in less severe alterations in blood flow within the first 7 d of recovery, but had more variable results at later time points. Analysis of microvessel branching patterns revealed that stroke led to a pruning of microvessels in peri-infarct cortex, with very few instances of sprouting. These results indicate that chronic hyperglycemia significantly affects the vascular response to ischemic stroke and that insulin only partially mitigates these changes. The combination of these acute and chronic alterations in blood flow dynamics could underlie diabetes-related deficits in cortical plasticity and stroke recovery.

  15. Assessment of blood coagulation under various flow conditions with ultrasound backscattering.

    Science.gov (United States)

    Huang, Chih-Chung; Wang, Shyh-Hau

    2007-12-01

    Several in vitro studies have employed ultrasonic techniques to detect varying properties of coagulating blood under static or stirred conditions. Most of those studies mainly addressed on the development and feasibility of modalities and however were not fully considering the effect of blood flow. To better elucidate this issue, ultrasonic backscattering were measured from the coagulating porcine blood circulated in a mock flow loop with various steady laminar flows at mean shear rates from 10 to 100 s(-1). A 3 ml of 0.5 M CaCl2 solution for inducing blood coagulation was added to that of 30 ml blood circulated in the conduit. For each measurement carried out with a 10-MHz transducer, backscattered signals digitized at 100-MHz sampling frequency were acquired for a total of 20 min at temporal resolution of 50 A-lines per s. The integrated backscatter (IB) was calculated for assessing backscattering properties of coagulating blood. The results show that blood coagulation tended to be increased corresponding to the addition of CaCl2 solution: the IB was increased approximately 6.1 +/- 0.6 (mean +/- standard deviation), 5.4 +/- 0.9, and 4.5 +/- 1.2 dB at 310 +/- 62, 420 +/- 88, and 610 +/- 102 s associated with mean shear rates of 10, 40, and 100 s(-1), respectively. The rate of increasing IB for evaluating the growth of clot was estimated to be 0.075 +/- 0.017, 0.052 +/- 0.027, and 0.038 +/- 0.012 delta dB delta s(-1) corresponding to the increase of mean shear rates. These results consistently demonstrate that higher shear rate tends to prolong the duration for the flowing blood to be coagulated and to decrease the rate of IB. Moreover, the laminar flow was changed to turbulent flow during that the blood was clotting discerned by spatial variations of ultrasound backscattering in the conduit. All these results validate that ultrasound backscattering is feasible to be utilized for detecting and assessing blood coagulation under dynamic conditions.

  16. Fontan Outcomes and Pulmonary Blood Flow at Birth.

    Science.gov (United States)

    Evans, William N; Acherman, Ruben J; Reardon, Leigh C; Ciccolo, Michael L; Galindo, Alvaro; Rothman, Abraham; Winn, Brody J; Yumiaco, Noel S; Restrepo, Humberto

    2016-01-01

    We previously noted, in a small group of post-Fontan patients, a possible association between hepatic fibrosis scores and the status of pulmonary blood flow at birth. To further explore this observation, we examined data from all Fontan patients seen in our center from July 2010 to March 2015. We identified 200 patients for analysis. Of the 200 patients, 56 underwent transvenous-hepatic biopsy. Of the 200 patients, 13 (6.5%) had protein-losing enteropathy. We divided both the 56 biopsy patients and the entire cohort of 200 patients into 4 groups: (1) unobstructed pulmonary blood flow at birth with functional left ventricles, (2) unobstructed pulmonary blood flow at birth with functional right ventricles, (3) obstructed pulmonary blood flow at birth with functional left ventricles, and (4) obstructed pulmonary blood flow at birth with functional right ventricles. Analysis of the 56 liver-biopsy patient groups showed median hepatic total-fibrosis scores for the 4 groups of 2 (0-6), 2 (0-8), 3 (2-6), and 4 (1-8), respectively, with statistical significance between groups 4 and 1 (p = 0.031). For the entire cohort of 200 patients, we analyzed the incidence of protein-losing enteropathy for each of the four groups and found protein-losing enteropathy percent occurrences of 0, 2.9, 8.8, and 16.1, respectively, with statistical significance between groups 4 and 2 (p = 0.031) and between groups 4 and 1 (p = 0.025). A history of obstructed pulmonary blood flow at birth, coupled with a functional right ventricle, may predict a poorer long-term Fontan outcome.

  17. Adrenergic influence on gastric mucosal blood flow in gastric fistula dogs

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Gottrup, F;

    1984-01-01

    by an initial increase in mucosal blood flow and in the last two periods a decrease in blood flow. alpha-Blockade (phentolamine) reduced the pentagastrin stimulated gastric acid secretion and gastric mucosal blood flow but the ratio between blood flow and acid secretion was increased, indicating a relatively...

  18. Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow.

    Science.gov (United States)

    Austin, R E; Aldea, G S; Coggins, D L; Flynn, A E; Hoffman, J I

    1990-08-01

    We examined the ability of individual regions of the canine left ventricle to increase blood flow relative to baseline rates of perfusion. Regional coronary flow was measured by injecting radioactive microspheres over 90 seconds in seven anesthetized mongrel dogs. Preliminary experiments demonstrated a correlation between the regional distributions of blood flow during asphyxia and pharmacological vasodilatation with adenosine (mean r = 0.75; 192 regions in each of two dogs), both of which resulted in increased coronary flow. Subsequent experiments, during which coronary perfusion pressure was held constant at 80 mm Hg, examined the pattern of blood flow in 384 regions (mean weight, 106 mg) of the left ventricular free wall during resting flow and during maximal coronary flow effected by intracoronary adenosine infusion. We found that resting and maximal flow patterns were completely uncorrelated to each other in a given dog (mean r = 0.06, p = NS; n = 3 dogs). Furthermore, regional coronary reserve, defined as the ratio of maximal to resting flow, ranged from 1.75 (i.e., resting flow was 57% of maximum) to 21.9 (resting flow was 4.5% of maximum). Thus, coronary reserve is spatially heterogeneous and determined by two distinct perfusion patterns: the resting (control) pattern and the maximal perfusion pattern. Normal hearts, therefore, contain small regions that may be relatively more vulnerable to ischemia. This may explain the patchy nature of infarction with hypoxia and at reduced perfusion pressures as well as the difficulty of using global parameters to predict regional ischemia. Despite the wide dispersion of coronary reserve, we found, by autocorrelation analysis, that reserve in neighboring regions (even when separated by a distance of several tissue samples) was significantly correlated. This also applied to patterns of resting myocardial flow. Thus, both resting coronary blood flow and reserve appear to be locally continuous and may define functional

  19. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L;

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin...

  20. Age and gender related differences in aortic blood flow

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work is to investi......The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work...

  1. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascular control of blood flow is illustrated by local dilation of terminal arterioles during contraction of muscle fibers and conduction of vasodilation upstream. Endothelial-derived vasodilator mechanisms are known...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...

  2. Cerebral blood flow and oxidative metabolism during human endotoxemia

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Qvist, Jesper;

    2002-01-01

    The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), has been suggested to mediate septic encephalopathy through an effect on cerebral blood flow (CBF) and metabolism. The effect of an intravenous bolus of endotoxin on global CBF, metabolism, and net flux of cytokines...... and catecholamines was investigated in eight healthy young volunteers. Cerebral blood flow was measured by the Kety-Schmidt technique at baseline (during normocapnia and voluntary hyperventilation for calculation of subject-specific cerebrovascular CO reactivity), and 90 minutes after an intravenous bolus...

  3. A New Technology for Detecting Cerebral Blood Flow

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Guo, Song; Jensen, Lars T;

    2012-01-01

    There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate...... changes in CBF using a cerebral blood flow index (CFI). Changes over time for UT-NIRS CFI and (133)Xenon single photon emission computer tomography ((133)Xe-SPECT) CBF data were assessed in 10 healthy volunteers after an intravenous bolus of acetazolamide. UT-NIRS CFI was measured continuously and SPECT...

  4. Accurate blood flow measurements: are artificial tracers necessary?

    Directory of Open Access Journals (Sweden)

    Christian Poelma

    Full Text Available Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case, as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements. These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  5. Accurate blood flow measurements: are artificial tracers necessary?

    Science.gov (United States)

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  6. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E;

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were...... studied both during a seizure and (in the same setting) in the interictal period; six patients were studied only in the interictal period, and one patient was studied only during a seizure. Studies during seizures all showed marked flow increases in areas presumed to participate in the seizure activity....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  7. Improved technique for blood flow velocity measurement using Doppler effect

    Science.gov (United States)

    Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.

    2002-04-01

    The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.

  8. Numerical reconstruction of pulsatile blood flow from 4D computer tomography angiography data

    CERN Document Server

    Lovas, Attila; Csobo, Elek; Szilágyi, Brigitta; Sótonyi, Péter

    2015-01-01

    We present a novel numerical algorithm developed to reconstuct pulsatile blood flow from ECG-gated CT angiography data. A block-based optimization method was constructed to solve the inverse problem corresponding to the Riccati-type ordinary differential equation that can be deduced from conservation principles and Hooke's law. Local flow rate for 5 patients was computed in 10cm long aorta segments that are located 1cm below the heart. The wave form of the local flow rate curves seems to be realistic. Our approach is suitable for estimating characteristics of pulsatile blood flow in aorta based on ECG gated CT scan thereby contributing to more accurate description of several cardiovascular lesions.

  9. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.

    Science.gov (United States)

    Lázaro, Guillermo R; Hernández-Machado, Aurora; Pagonabarraga, Ignacio

    2014-10-07

    We analyze the rheology of dilute red blood cell suspensions in pressure driven flows at low Reynolds number, in terms of the morphologies and elasticity of the cells. We focus on narrow channels of width similar to the cell diameter, when the interactions with the walls dominate the cell dynamics. The suspension presents a shear-thinning behaviour, with a Newtonian-behaviour at low shear rates, an intermediate region of strong decay of the suspension viscosity, and an asymptotic regime at high shear rates in which the effective viscosity converges to that of the solvent. We identify the relevant aspects of cell elasticity that contribute to the rheological response of blood at high confinement. In a second paper, we will explore the focusing of red blood cells while flowing at high shear rates and how this effect is controlled by the geometry of the channel.

  10. "Stolen" blood flow: effect of an open arterial filter purge line in a simulated neonatal CPB model.

    Science.gov (United States)

    Wang, Shigang; Miller, Akemi; Myers, John L; Undar, Akif

    2008-01-01

    The purpose of this study was to evaluate the effect of different flow rates and pressures on the degree of shunting of blood flow by the arterial filter purge line in a simulated neonatal cardiopulmonary bypass circuit. The circuit was primed with heparinized bovine blood (hematocrit 24%) and postfilter pressure was varied from 60-180 mm Hg (20 mm Hg increments) using a Hoffman clamp. Trials were conducted at flow rates ranging from 200-600 ml/min (100 ml/min increments). During trials conducted at a postfilter pressure of 60 mm Hg, 42.6% of blood flow was shunted through the purge line at a flow rate of 200 ml/min, whereas only 12.8% of flow was diverted at a flow rate 600 ml/min. During trials conducted at a postfilter pressure of 180 mm Hg, 82.8% of blood flow at 200 ml/min and 25.9% of blood flow at 600 ml/min was diverted through the open arterial purge line. The results of this study confirm that a significant amount of flow is diverted away from the patient when the arterial purge line is open. Shunting of blood flow through the arterial purge line could result in less effective tissue perfusion, particularly at low flow rates and high postfilter pressures. To minimize hypoperfusion injury, a flow probe (distal to the arterial filter) may be used to monitor real-time arterial flow in the setting of an open arterial filter purge line.

  11. Blood plasma separation in a long two-phase plug flowing through disposable tubing.

    Science.gov (United States)

    Sun, Meng; Khan, Zeina S; Vanapalli, Siva A

    2012-12-21

    We report a simple technique to separate plasma from blood in a flowing immiscible plug. We investigate the effect of various control parameters such as blood dilution, injection flow rate, observation time and fluid properties on plasma separation. We find that the technique works best for diluted blood samples at low plug velocities and long observation times. We postulate that the main mechanism responsible for efficient separation is the sedimentation of blood cells in the plug and their subsequent collection by the moving plug causing a significant accumulation of cells at the rear of the plug. We discuss the time scales determining the sedimentation, advection and collection of a blood cell in the immiscible plug and propose a phase diagram that is able to predict the operating space for effective plasma separation. We demonstrate that the technique allows for the extraction of more than 60% of the plasma by volume from 1 μL of diluted blood. We show the practical significance of this method by compartmentalizing the separated plasma into discrete microfluidic droplets and detecting cholesterol. This technique features low consumption of blood (nL-scale) and low shear rate (∼1 s(-1)). It is inexpensive, easy to use, and has the potential to be developed as an efficient point-of-care device for blood diagnostics in resource-poor environments. More advanced applications could also be envisioned by integrating our plasma separation method into existing microfluidic drop manipulation techniques.

  12. Age and gender related differences in aortic blood flow

    Science.gov (United States)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  13. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  14. Nocturnal variations in lower-leg subcutaneous blood flow in paraplegic men

    DEFF Research Database (Denmark)

    Sindrup, J H; Wroblewski, H; Kastrup, J

    1992-01-01

    1. Lower-leg subcutaneous adipose tissue blood flow rates were measured over 12-20 h under ambulatory conditions by means of the 133Xe-washout technique in nine paraplegic men, all with complete spinal cord lesions at or below the Th 6 level, and in nine age-matched healthy men. Portable CdTe(Cl)...

  15. [Measurement of cerebral blood flow by thermal diffusion using a flow probe with a Peltier stack].

    Science.gov (United States)

    Yamagata, S; Kikuchi, H; Hashimoto, K; Minamikawa, J; Watanabe, Y

    1987-05-01

    In order to evaluate the blood flow by means of thermal diffusion, relationship between blood flow and parameters induced by thermal diffusion was investigated. Flow probe employed for measurement by thermal diffusion incorporated a Peltier stack which contained a small semiconductor and two L-shaped gold plates. These two plates were attached to both sides of the semiconductor by one side of each gold plate and the other side was surfaced with a tissue to be measured. Temperature gradient is created with current applied to the Peltier stack between two plates, one cooled and the other heated, and it is affected only by tissue blood flow. Two kinds of parameters of thermal diffusion were subjected to compare to blood flow. One was temperature gradient when the constant current was applied to the Peltier stack. The other was a current required to maintain a definite temperature gradient which was determined before hand. From the theoretical principle in thermodynamics, the correlations between blood flow and each of thermal diffusion parameters were defined by the following equations: (Formula: see text) where F is blood flow, delta V is voltage converted from temperature gradient, and Ci and Cv are constants. Each of phi v and phi i indicates the characteristics of each probe. Experimental study was carried out to confirm the above relationship using cortex of experimental animals. Under the general anesthesia, a cat was placed in prone position. After the craniotomy, dura mater was opened and a small flow probe, 10 mm in diameter, 5 mm in height and 5 g in weight, was placed on the cortex and blood flow was continuously evaluated by two parameters.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Noradrenaline: Central inhibitory control of blood pressure and heart rate

    NARCIS (Netherlands)

    Jong, Wybren de

    1974-01-01

    Noradrenaline injected bilaterally into the brainstem in the area of the nucleus tractus solitarii decreased systemic arterial blood pressure and heart rate of anesthetized rats. The effect of noradrenaline was prevented by a preceding injection of the α-adrenergic blocking agent phentolamine, at th

  17. Erythrocyte sedimentation rate in tropical intraerythrocytic blood infection

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2009-01-01

    Erythrocyte sedimentation rate (ESR)determination is a classical hematological test.Although it is a non spe-cific laboratory parameter it is still widely used in present medicine.The author hereby briefly reviews and dis-cuses on clinical importance of ESR test for important tropical intraerythrocytic blood infection (malaria,leish-maniasis and babesiosis).

  18. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    Science.gov (United States)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  19. Development of a miniature intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Renal blood flow in experimental septic acute renal failure

    NARCIS (Netherlands)

    Langenberg, C.; Wan, L.; Egi, M.; May, C. N.; Bellomo, R.

    2006-01-01

    Reduced renal blood flow (RBF) is considered central to the pathogenesis of septic acute renal failure (ARF). However, no controlled experimental studies have continuously assessed RBF during the development of severe septic ARF. We conducted a sequential animal study in seven female Merino sheep. F

  1. Increased cerebral blood flow in preeclampsia with magnetic resonance imaging

    NARCIS (Netherlands)

    Zeeman, GG; Hatab, MR; Twickler, DM

    2004-01-01

    Objective: The purpose of this study was to compare third trimester and nonpregnant cerebral blood flow of women with preeclampsia to normotensive control subjects with the use of magnetic resonance imaging techniques. Study design: Nine normotensive pregnant women and 12 untreated women with preecl

  2. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    Science.gov (United States)

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  3. Nocturnal foot blood flow in patients with arterial insufficiency

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Tønnesen, K H

    1984-01-01

    was on average the same in patients with normal circulations and in patients with different degrees of arterial insufficiency (mean: 2.0 +/- 0.8 ml min-1 100 g-1). During sleep the blood flow nearly doubled in patients with normal circulations; no systematic change was seen in patients with intermittent...

  4. [Measurement of cerebral blood flow using phase-contrast MRI].

    Science.gov (United States)

    Obata, T; Shishido, F; Koga, M; Ikehira, H; Kimura, F; Yoshida, K

    1997-07-01

    The development of phase-contrast magnetic resonance imaging(P-C MRI) provides a noninvasive method for measurement of volumetric blood flow(VFR). The VFR of the left and right internal carotid arteries and basilar artery were measured using P-C MRI, and total cerebral blood flow(tCBF) was calculated by summing up the VFR values in three vessels. We investigated the changes in these blood flows as influenced from age, head size, height, weight, body surface area and handedness. Moreover, regional CBF(rCBF) was measured by combining with the single photon emission computed tomography(SPECT) of 123I. The blood flows were 142 +/- 58 mL/ min(mean +/- SD) in the basilar artery, 229 +/- 86 mL/min in the left, 223 +/- 58 mL/min in the right internal carotid artery, and tCBF was 617 +/- 128 mL/min(Ref. Magn Resn Imaging 14:P. 1143, 1996). Significant increases were observed in head-size-related change of VFR in the basilar artery and height-related change of tCBF. The value of rCBF was easily acquired in combination with SPECT. Phase-contrast MRI is useful for a noninvasive and rapid analysis of cerebral VFR and has potential for clinical use.

  5. Cerebral blood flow response to propranolol in streptozotocin diabetic rats

    DEFF Research Database (Denmark)

    Lass, Preben; Knudsen, G M

    1990-01-01

    The influence of propranolol on cerebral blood flow (CBF) was tested in streptozotocin diabetic rats and in control animals. Resting CBF values were 40% lower in the diabetic rats compared with controls. Intravenous injection of propranolol (2 mg kg-1) decreased CBF significantly in the control...

  6. Influence of blood flow on the coagulation cascade

    DEFF Research Database (Denmark)

    The influence of diffusion and convetive flows on the blood coagulation cascade is investigated for a controlled perfusion experiment. We present a cartoon model and reaction schemes for parts of the coagulation cascade with sunsequent set up of a mathematical model in two space dimensions plus one...

  7. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  8. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...

  9. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  10. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  11. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, F.; Udesen, J.; Jensen, J.A.;

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded sign...

  12. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with {sup 15}O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, 980-8575, Aoba-Ku, Sendai (Japan); Kanno, Iwao [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Kato, Chietsugu [Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Sasaki, Toshiaki [Cyclotoron Research Center, Iwate Medical University, Morioka (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo (Japan); Ouchi, Yasuomi [Positron Medical Center, Hamamatsu Medical Center, Hamakita (Japan); Iida, Akihiko [Nagoya City Rehabilitation Center, Nagoya (Japan); Okazawa, Hidehiko [PET Unit, Research Institute, Shiga Medical Center, Moriyama (Japan); Hayashida, Kohei [Department of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Tsuyuguchi, Naohiro [Department of Neurosurgery, Osaka City University Medical School, Osaka (Japan); Ishii, Kazunari [Division of Imaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Kuwabara, Yasuo [Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka (Japan); Senda, Michio [Department of Image-based Medicine, Institute of Biomedical Research and Innovation, Kobe (Japan)

    2004-05-01

    Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C{sup 15}O{sub 2}) or {sup 15}O-labelled water (H{sub 2}{sup 15}O), {sup 15}O-labelled carbon monoxide (C{sup 15}O) and {sup 15}O-labelled oxygen ({sup 15}O{sub 2}) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of {sup 15}O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C{sup 15}O{sub 2} (or H{sub 2}{sup 15}O) and {sup 15}O{sub 2}. All used C{sup 15}O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8{+-}15.1 years). Overall mean{+-}SD values for cerebral cortical regions were: CBF=44.4{+-}6.5 ml 100 ml{sup -1} min{sup -1}; CBV=3.8{+-}0.7 ml 100 ml{sup -1}; OEF=0.44{+-}0.06; CMRO{sub 2}=3.3{+-}0.5 ml 100 ml{sup -1} min{sup -1}. Significant between-centre variation was observed in CBV, OEF and CMRO{sub 2} by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO{sub 2} was acceptably small. Building a database of normal cerebral haemodynamics obtained by the{sup 15}O-PET methods may be practicable. (orig.)

  13. Modeling of human colonic blood flow for a novel artificial anal sphincter system

    Institute of Scientific and Technical Information of China (English)

    Peng ZAN; Guo-zheng YAN; Hua LIU

    2008-01-01

    A novel artificial anal sphincter system has been developed to simulate the normal physiology of the human anorectum. With the goal of engineering a safe and reliable device, the model of human colonic blood flow has been built and the relationship between the colonic blood flow rate and the operating occlusion pressure of the anorectum is achieved. The tissue ischemia is analyzed based on constitutive relations for human anorectum. The results suggest that at the planned operating occlusion pressure of less than 4 kPa the artificial anal sphincter should not risk the vaseularity of the human colon.

  14. Estimation of rat muscle blood flow by microdialysis probes perfused with ethanol, [14C]ethanol, and 3H2O

    DEFF Research Database (Denmark)

    Stallknecht, B; Donsmark, M; Enevoldsen, L H;

    1999-01-01

    We used the perfused rat hindquarter to evaluate whether the microdialysis ethanol technique can be used to qualitatively estimate nutritive skeletal muscle blood flow. Four microdialysis probes were inserted in different hindlimb muscles in each of 16 rats. Hindquarters were perfused at blood flow...... rates ranging from 0 to 21 ml. 100 g-1. min-1. The microdialysis probes were perfused at 2 microliter/min with perfusate containing ethanol, [14C]ethanol, and 3H2O. Within and between experiments outflow-to-inflow ratios (o/i) generally varied inversely with blood flow. When a low flow or no flow...... was maintained in hindquarters, o/i ratios first increased with time (for at least 60 min) and then leveled off. The long time constant impaired detection of rapid oscillations in blood flow, especially at low blood flow rates. Contractions per se apparently decreased o/i ratios independent of blood flow...

  15. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.

    Science.gov (United States)

    Karantonis, Dean M; Cloherty, Shaun L; Mason, David G; Ayre, Peter J; Lovell, Nigel H

    2007-01-01

    A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min. Taking the pump feedback signals of speed and power, together with the HCT level, as input parameters, several flow estimate models were developed via system identification methods. Three autoregressive with exogenous input (ARX) model structures were evaluated: structures I and II used the input parameters directly; structure II incorporated additional terms for HCT; and the third structure employed as input a non-pulsatile flow estimate equation. Optimal model orders were determined, and the associated models yielded minimum mean flow errors of 5.49% and 0.258 L/min for structure II, and 5.77% and 0.270 L/min for structure III, when validated on unseen data. The models developed in this study present a practical method of accurately estimating iRBP flow in a pulsatile environment.

  16. Quantitating error in blood flow measurements with radioactive microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R.E. Jr.; Hauck, W.W.; Aldea, G.S.; Flynn, A.E.; Coggins, D.L.; Hoffman, J.I.

    1989-07-01

    Accurate determination of the reproducibility of measurements using the microsphere technique is important in assessing differences in blood flow to different organs or regions within organs, as well as changes in perfusion under various experimental conditions. The sources of error of the technique are briefly reviewed. In addition, we derived a method for combining quantifiable sources of error into a single estimate that was evaluated experimentally by simultaneously injecting eight or nine sets of microspheres (each with a different radionuclide label) into four anesthetized dogs. Each nuclide was used to calculate blood flow in 145-190 myocardial regions. We compared each flow determination (using a single nuclide label) with a weighted mean for the piece (based on the remaining nuclides). The difference was defined as ''measured'' error. In all, there were a total of 5,975 flow observations. We compared measured error with theoretical estimates based on the Poisson error of radioactive disintegration and microsphere entrapment, nuclide separation error, and reference flow error. We found that combined estimates based on these sources completely accounted for measured error in the relative distribution of microspheres. In addition, our estimates of the error in measuring absolute flows (which were established using microsphere reference samples) slightly, but significantly, underestimated measured error in absolute flow.

  17. A Mathematical Study on Three Layered Oscillatory Blood Flow Through Stenosed Arteries

    Institute of Scientific and Technical Information of China (English)

    Dharmendra Tripathi

    2012-01-01

    A mathematical model is constructed to examine the characteristics of three layered blood flow through the oscillatory cylindrical tube (stenosed arteries).The proposed model basically consists three layers of blood (viscous fluids with different viscosities) named as core layer (red blood cells),intermediate layer (platelets/white blood cells) and peripheral layer (plasma).The analysis was restricted to propagation of small-amplitude harmonic waves,generated due to blood flow whose wave length is larger compared to the radius of the arterial segment.The impacts of viscosity of fluid in peripheral layer and intermediate layer on the interfaces,average flow rate,mechanical efficiency,trapping and reflux are discussed with the help of numerical and computational results.This model is the generalized form of the preceding models.On the basis of present discussion,it is found that the size of intermediate and peripheral layers reduces in expanded region and enhances in contracted region with the increasing viscosity of fluid in peripheral layer,whereas,opposite effect is observed for viscosity of fluid in intermediate layer.Final conclusion is that the average flow rate and mechanical efficiency increase with the increasing viscosity of fluid in both layers,however,the effects of the viscosity of fluid in both layers on trapping and reflux are opposite to each other.

  18. Microheterogeneity of blood flow in the rat urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Takahiro [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2002-08-01

    The microheterogeneity of blood flow in the mucous membrane of the urinary bladder and that in the detrusor muscle in anesthetized rats (n=8) were investigated at an extremely high spatial resolution (0.1 x 0.1 mm{sup 2}) using digital radiography combined with the {sup 3}H-labeled desmethylimipramine deposition technique. The spatial pattern of flow distribution was quantified by the coefficient of variation regional flow (CV: standard deviation/mean). The results showed muscle blood flow to be lower than mucous blood flow (muscle: mucosa=2.9:5), with the distribution of the former being more heterogeneous than that of the latter (CV in muscle vs. CV in mucosa=0.33{+-}0.033 vs. 0.16{+-}0.019, p<0.001) at the capillary level. It was therefore considered that the muscle would more easily experience mechanical irritation and be more easily influenced by arterial tonus than the mucous membrane, ant it was thought that this difference reflected a difference in regional perfusion. (author)

  19. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole L

    2013-01-01

    Studies have shown decreased cerebral oxygen metabolism (CMRO(2)) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood...... ammonia concentration and cerebral metabolic rate of blood ammonia (CMRA). We addressed these questions in a paired study design by investigating patients with cirrhosis during and after recovery from an acute episode of HE type C. CMRO(2), CBF, and CMRA were measured by dynamic positron emission...

  20. Quantitative blood flow velocity imaging using laser speckle flowmetry

    Science.gov (United States)

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-04-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion.

  1. Blood flow in the cerebral venous system: modeling and simulation.

    Science.gov (United States)

    Miraucourt, Olivia; Salmon, Stéphanie; Szopos, Marcela; Thiriet, Marc

    2017-04-01

    The development of a software platform incorporating all aspects, from medical imaging data, through three-dimensional reconstruction and suitable meshing, up to simulation of blood flow in patient-specific geometries, is a crucial challenge in biomedical engineering. In the present study, a fully three-dimensional blood flow simulation is carried out through a complete rigid macrovascular circuit, namely the intracranial venous network, instead of a reduced order simulation and partial vascular network. The biomechanical modeling step is carefully analyzed and leads to the description of the flow governed by the dimensionless Navier-Stokes equations for an incompressible viscous fluid. The equations are then numerically solved with a free finite element software using five meshes of a realistic geometry obtained from medical images to prove the feasibility of the pipeline. Some features of the intracranial venous circuit in the supine position such as asymmetric behavior in merging regions are discussed.

  2. Blood collection procedures influence contamination rates in blood culture: a prospective study

    Institute of Scientific and Technical Information of China (English)

    GE Ying; LIU Xiao-qing; XU Ying-chun; XU Shan; YU Min-hong; ZHANG Wei; DENG Guo-hua

    2011-01-01

    Background Blood culture contamination is a significant adverse event.The aim of this project was to evaluate the efficacy of a strict blood collection procedure in reducing the blood culture contamination rate.Methods A prospectively controlled study was performed in two different medical areas in Peking Union Medical College Hospital (PUMCH) for 16 months (from May 2006 to September 2007).In test group,a strict blood collection procedure was carried out by trained nurses with the veinpuncture sites were scrupulously disinfected with 2.5% tincture of iodine plus 70% alcohol.In control group,commonly used procedure in PUMCH was performed with 0.45% chlorhexidine acetate plus 0.2% iodine.Blood culture positive results for 4 target organisms (Coagulase-negative staphylococci,Propionibacterium acnes,Corynebacterium species and Bacillus species) were further assessed by physicians from infectious department to determine whether a sample was true positive (pathogen) or false positive (contamination).Results Total 9321 blood culture collections were analyzed.The blood culture contamination rate in test group was significantly lower than that in control group (5/3177 (0.16%) vs.77/6144 (1.25%); x2=13.382,P <0.001).The most common contaminant was Coagulase-negative staphylococcus (76.83%).The average cultural time during which contaminated samples became positive was longer than that for true pathogen samples (42.0 hours vs.13.9 hours,P=0.041).Conclusion Using a strict blood collection procedure can significantly reduce blood culture contamination rate.

  3. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    Science.gov (United States)

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

  4. THE PECULIARITIES OF CEREBRAL BLOOD FLOW IN PATIENTS WITH CHRONIC HEPATITIS

    Directory of Open Access Journals (Sweden)

    V. E. Kulikov

    2015-12-01

    Full Text Available Aim. To study extra- and intracranial hemodynamics in patients with chronic hepatitis of different activity.Material and methods. Ultrasonography of the cerebral blood flow was performed in 576 patients with chronic hepatitis.Results. Contralateral hemyspherical asymmetry (more than 30 % of the maximum linear rate of blood flow in the medium cerebral arteries and decrease in resistance index (0,55±0,09 and pulsativity index (1,34±0,66 were found in 33,8 % of patients with chronic hepatitis of high activity. Collateral blood flow reduction through connecting arteries of Willis circle was revealed in 13,8 % of patients. The tortuosity of arteries and thickening of intima-media complex was found in patients with chronic hepatitis (mainly of high activity. It leads to decline of cerebral blood flow.Conclusion. Symptomatic and asymptomatic cerebral blood flow disturbances were observed in 23,2% and 38,8% of patients with active chronic hepatitis respectively.

  5. THE PECULIARITIES OF CEREBRAL BLOOD FLOW IN PATIENTS WITH CHRONIC HEPATITIS

    Directory of Open Access Journals (Sweden)

    V. E. Kulikov

    2007-01-01

    Full Text Available Aim. To study extra- and intracranial hemodynamics in patients with chronic hepatitis of different activity.Material and methods. Ultrasonography of the cerebral blood flow was performed in 576 patients with chronic hepatitis.Results. Contralateral hemyspherical asymmetry (more than 30 % of the maximum linear rate of blood flow in the medium cerebral arteries and decrease in resistance index (0,55±0,09 and pulsativity index (1,34±0,66 were found in 33,8 % of patients with chronic hepatitis of high activity. Collateral blood flow reduction through connecting arteries of Willis circle was revealed in 13,8 % of patients. The tortuosity of arteries and thickening of intima-media complex was found in patients with chronic hepatitis (mainly of high activity. It leads to decline of cerebral blood flow.Conclusion. Symptomatic and asymptomatic cerebral blood flow disturbances were observed in 23,2% and 38,8% of patients with active chronic hepatitis respectively.

  6. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B;

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours for postopera......Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...... than 0.03) in the other five patients as the level of sensory analgesia regressed postoperatively. These data suggest that changes in epidural blood flow during continuous epidural infusion of bupivacaine, and thus changes in rates of vascular absorption of bupivacaine from the epidural space, may...

  7. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    Science.gov (United States)

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump.

  8. Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma

    Science.gov (United States)

    Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.

    2017-02-01

    Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10–200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.

  9. Blood flow simulation on a role for red blood cells in platelet adhesion

    Science.gov (United States)

    Shimizu, Kazuya; Sugiyama, Kazuyasu; Takagi, Shu

    2016-11-01

    Large-scale blood flow simulations were conducted and a role for red blood cells in platelet adhesion was discussed. The flow conditions and hematocrit values were set to the same as corresponding experiments, and the numerical results were compared with the measurements. Numerical results show the number of platelets adhered on the wall is increased with the increase in hematocrit values. The number of adhered platelets estimated from the simulation was approximately 28 (per 0.01 square millimeter per minute) for the hematocrit value of 20%. These results agree well with the experimental results qualitatively and quantitatively, which proves the validity of the present numerical model including the interaction between fluid and many elastic bodies and the modeling of platelet adhesion. Numerical simulation also reproduces the behavior of red blood cells in the blood flow and their role in platelet adhesion. Red blood cells deform to a flat shape and move towards channel center region. In contrast, platelets are pushed out and have many chances to contact with the wall. As a result, the large number of adhered platelets is observed as hematocrit values becomes high. This result indicates the presence of red blood cells plays a crucial role in platelet adhesion.

  10. Cerebral blood flow in migraine and cortical spreading depression

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, M.

    1987-01-01

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evalution. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon/sup 133/ into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm/sup 2/ providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon/sup 133/ was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate wheter this phenomenon could explain the blood flow changes in migraine. (/sup 14/C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and lambda. (EG).

  11. Assessment of maternal cerebral blood flow in patients with preeclampsia

    Directory of Open Access Journals (Sweden)

    Mandić Vesna

    2005-01-01

    Full Text Available Introduction Systemic vasoconstrktion in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA in severe preeclampsia due to: 1 severity of clinical symptoms, 2 the beginning of eclamptic attack and 3 the application of anticonvidsive therapy. Material and methods A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30, mild preeclampsia (n=33, and severe preeclampsia (n=29. We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi, resistance index (Ri, Systolic/diastolic ratio (S/D, and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups: subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%; while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%. All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4, and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p < 0.05. Results Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia. After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. Discussion In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in

  12. The nucleus of endothelial cell as a sensor of blood flow direction

    Directory of Open Access Journals (Sweden)

    Eugene Tkachenko

    2013-08-01

    Hemodynamic shear stresses cause endothelial cells (ECs to polarize in the plane of the flow. Paradoxically, under strong shear flows, ECs disassemble their primary cilia, common sensors of shear, and thus must use an alternative mechanism of sensing the strength and direction of flow. In our experiments in microfluidic perfusion chambers, confluent ECs developed planar cell polarity at a rate proportional to the shear stress. The location of Golgi apparatus and microtubule organizing center was biased to the upstream side of the nucleus, i.e. the ECs polarized against the flow. These in vitro results agreed with observations in murine blood vessels, where EC polarization against the flow was stronger in high flow arteries than in veins. Once established, flow-induced polarization persisted over long time intervals without external shear. Transient destabilization of acto-myosin cytoskeleton by inhibition of myosin II or depolymerization of actin promoted polarization of EC against the flow, indicating that an intact acto-myosin cytoskeleton resists flow-induced polarization. These results suggested that polarization was induced by mechanical displacement of EC nuclei downstream under the hydrodynamic drag. This hypothesis was confirmed by the observation that acute application of a large hydrodynamic force to ECs resulted in an immediate downstream displacement of nuclei and was sufficient to induce persistent polarization. Taken together, our data indicate that ECs can sense the direction and strength of blood flow through the hydrodynamic drag applied to their nuclei.

  13. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-01

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  14. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-18

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  15. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    Institute of Scientific and Technical Information of China (English)

    YI Hou-Hui; XU Shi-Xiong; QIAN Yue-Hong; FANG Hai-Ping

    2005-01-01

    @@ The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results,is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  16. Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood

    Institute of Scientific and Technical Information of China (English)

    Zhi-Guo Zhang; Xi-Wen Zhang; Ying-Xi Liu

    2012-01-01

    The effect of disturbed flow on the mass transfer from arterial surface to flowing blood was studied numerically,and the results were compared with that of our previous work.The arterial wall was assumed to be viscoelastic and the blood was assumed to be incompressible and non-Newtonian fluid,which is more close to human arterial system.Numerical results indicated that the mass transfer from the arterial surface to flowing blood in regions of disturbed flow is positively related with the wall shear rates and it is significantly enhanced in regions of disturbed flow with a local minimum around the reattachment point which is higher than the average value of the downstream.Therefore,it may be implied that the accumulation of cholesterol or lipids within atheromatous plaques is not caused by the reduced efflux of cholesterol or lipids,but by the infiltration of the LDL (low-density lipoprotein) from the flowing blood to the arterial wall.

  17. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.

    Science.gov (United States)

    Benard, Nicolas; Perrault, Robert; Coisne, Damien

    2006-08-01

    In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.

  18. Effects of Kaempferia parviflora extracts on reproductive parameters and spermatic blood flow in male rats.

    Science.gov (United States)

    Chaturapanich, G; Chaiyakul, S; Verawatnapakul, V; Pholpramool, C

    2008-10-01

    Krachaidum (KD, Kaempferia parviflora Wall. Ex. Baker), a native plant of Southeast Asia, is traditionally used to enhance male sexual function. However, only few scientific data in support of this anecdote have been reported. The present study investigated the effects of feeding three different extracts of KD (alcohol, hexane, and water extracts) for 3-5 weeks on the reproductive organs, the aphrodisiac activity, fertility, sperm motility, and blood flow to the testis of male rats. Sexual performances (mount latency, mount frequency, ejaculatory latency, post-ejaculatory latency) and sperm motility were assessed by a video camera and computer-assisted sperm analysis respectively, while blood flow to the testis was measured by a directional pulsed Doppler flowmeter. The results showed that all extracts of KD had virtually no effect on the reproductive organ weights even after 5 weeks. However, administration of the alcohol extract at a dose of 70 mg/kg body weight (BW)/day for 4 weeks significantly decreased mount and ejaculatory latencies when compared with the control. By contrast, hexane and water extracts had no influence on any sexual behavior parameters. All types of extracts of KD had no effect on fertility or sperm motility. On the other hand, alcohol extract produced a significant increase in blood flow to the testis without affecting the heart rate and mean arterial blood pressure. In a separate study, an acute effect of alcohol extract of KD on blood flow to the testis was investigated. Intravenous injection of KD at doses of 10, 20, and 40 mg/kg BW caused dose-dependent increases in blood flow to the testis. The results indicate that alcohol extract of KD had an aphrodisiac activity probably via a marked increase in blood flow to the testis.

  19. MR assessment of absolute myocardial blood flow and vasodilator flow reserve in patients with hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kawada, Nanaka; Sakuma, Hajime; Takeda, Kan; Nakagawa, Tsuyoshi; Yamakado, Tetsu; Nakano, Takeshi [Mie Univ., Tsu (Japan). School of Medicine

    1997-04-01

    Absolute coronary blood flow per myocardial mass and coronary flow reserve for the entire left ventricle were evaluated in normals and in patients with hypertrophic cardiomyopathy (HCM) by using fast cine MR imaging and fast velocity encoded cine (VENC) MR imaging. Nine healthy volunteers and 8 patients with HCM were studied with a 1.5 T imager. Breath-hold cine MR images encompassing the whole left ventricle were acquired on short axis imaging planes in order to evaluate myocardial mass. A fast VENC MR images were obtained to measure blood flow volume in the coronary sinus before and after dipyridamole administration (TR/TE=15/5 ms, FOV=28 x 22 cm, slice thickness=5 mm). Coronary flow reserve was calculated as a ratio of hyperemic to baseline coronary flow volumes. In the baseline state, coronary blood flow per myocardial mass was significantly lower in patients with HCM than in normal myocardium (0.56{+-}0.23 vs. 0.78{+-}0.27 ml/min/g, p<0.05). After dipyridamole administration, coronary blood flow per myocardial mass in patients with HCM increased substantially less than that in healthy subjects (0.99{+-}0.38 vs. 2.22{+-}0.55 ml/min/g, p<0.01), resulting in the significantly decreased coronary flow reserve ratio in HCM in comparison with that in normal myocardium (1.86{+-}0.56 vs. 3.11{+-}1.37, p<0.05). In conclusion, breath-hold velocity encoded cine MR imaging is a noninvasive technique which can provide assessments of altered coronary blood flow volume per myocardial mass and vasodilator flow reserve in patients with HCM. (author)

  20. Laser speckle imaging of blood flow in microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Haiying; Luo Qingming; Liu Qian; Lu Qiang; Gong Hui; Zeng Shaoqun [Key Laboratory of Biomedical Photonics of Ministry of Education of China, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2004-04-07

    Monitoring the spatio-temporal characteristics of microcirculation is crucial for studying the functional activities of biotissue and the mechanism of disease. However, conventional methods used to measure blood flow suffer from limited spatial resolution or the injection of exogenous substances or the need of scanning to obtain the dynamic of regional blood flow. Laser speckle imaging (LSI) technique makes up these disadvantages by obtaining the regional blood flow distribution with high spatio-temporal resolution without the need to scan. In this paper, LSI was introduced to investigate the dynamic responses of the rat mesenteric microcirculation to an incremental dose of phentolamine. The results showed that when the dose of phentolamine was less than 4 {mu}g ml{sup -1}, local application of phentolamine on the mesentery would increase the blood perfusion as the concentration increased. When the dose increased further, the improvement decreased. At a dose of 200 {mu}g ml{sup -1}, a microcirculation impediment was caused. At the same time, different responses between veinules and arterioles were manifested. These suggested that LSI is promising to be a useful contribution to drug development and testing.

  1. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2004-01-01

    Full Text Available Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14 was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14 were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1 basal (before ozone therapy, 2 after session #3 and 3 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001 and by 29% 1 week later (P = 0.039. In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001 and by 15% 1 week later (P = 0.035, whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001 and by 18% 1 week later (P = 0.023. This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  2. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Science.gov (United States)

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  3. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound

    Directory of Open Access Journals (Sweden)

    Jaeseong Jang

    2015-01-01

    Full Text Available Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance.

  4. A miniature intraventricular axial flow blood pump that is introduced through the left ventricular apex.

    Science.gov (United States)

    Yamazaki, K; Umezu, M; Koyanagi, H; Kitamura, M; Eishi, K; Kawai, A; Tagusari, O; Niinami, H; Akimoto, T; Nojiri, C

    1992-01-01

    A new intraventricular axial flow blood pump has been designed and developed as an implantable left ventricular assist device (LVAD). The pump consists of a tube housing (10 cm in length and 14 mm in diameter), a three-vane impeller combined with a guide vane, and a DC motor. This pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged into the ascending aorta. A pump flow of > 8 L/min was obtained against 90 mmHg differential pressure in the mock circulatory system. In an acute dog model, this pump could produce a sufficient output of 200 ml/kg/min. In addition, the pump flow profile demonstrated a pulsatile pattern, although the rotation speed was fixed. This is mainly due to the changes in flow rate during a cardiac cycle--that is, during systole, the flow rate increases to the maximum, while the differential pressure between the LV and the aorta decreases to the minimum. Thus, this simple and compact axial flow blood pump can be a potential LVAD, with prompt accessibility and need for less invasive surgical procedures.

  5. Narcolepsy: regional cerebral blood flow during sleep and wakefulness

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Meyer, J.S.; Karacan, I.; Yamaguchi, F.; Yamamoto, M.

    1979-01-01

    Serial measurements of regional cerebral blood flow were made by the 135Xe inhalation method during the early stages of sleep and wakefulness in eight normal volunteers and 12 patients with narcolepsy. Electroencephalogram, electro-oculogram, and submental electromyogram were recorded simultaneously. In normals, mean hemispheric gray matter blood flow (Fg) during stages I and II sleep was significantly less than waking values. Maximum regional blood flow decreases during sleep occurred in the brainstem-cerebellar, right inferior temporal, and bilateral frontal regions. In patients with narcolepsy, mean hemispheric Fg while awake was 80.5 +- 13 ml per 100 gm brain per minute. During REM sleep, mean hemispheric Fg increased concurrently with large increases in brainstem-cerebellar region flow. During stages I and II sleep without REM, there were significant increases in mean hemispheric Fg and brainstem-cerebellar Fg, just the opposite of changes in normals. In narcolepsy, there appears to be a reversal of normal cerebral deactivation patterns, particularly involving the brainstem, during stages I and II sleep.

  6. Occlusion-free Blood Flow Animation with Wall Thickness Visualization.

    Science.gov (United States)

    Lawonn, Kai; Glaßer, Sylvia; Vilanova, Anna; Preim, Bernhard; Isenberg, Tobias

    2016-01-01

    We present the first visualization tool that combines pathlines from blood flow and wall thickness information. Our method uses illustrative techniques to provide occlusion-free visualization of the flow. We thus offer medical researchers an effective visual analysis tool for aneurysm treatment risk assessment. Such aneurysms bear a high risk of rupture and significant treatment-related risks. Therefore, to get a fully informed decision it is essential to both investigate the vessel morphology and the hemodynamic data. Ongoing research emphasizes the importance of analyzing the wall thickness in risk assessment. Our combination of blood flow visualization and wall thickness representation is a significant improvement for the exploration and analysis of aneurysms. As all presented information is spatially intertwined, occlusion problems occur. We solve these occlusion problems by dynamic cutaway surfaces. We combine this approach with a glyph-based blood flow representation and a visual mapping of wall thickness onto the vessel surface. We developed a GPU-based implementation of our visualizations which facilitates wall thickness analysis through real-time rendering and flexible interactive data exploration mechanisms. We designed our techniques in collaboration with domain experts, and we provide details about the evaluation of the technique and tool.

  7. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  8. In vivo photoacoustic imaging of transverse blood flow using Doppler broadening of bandwidth

    OpenAIRE

    Yao, Junjie; Maslov, Konstantin I.; Shi, Yunfei; Taber, Larry A.; Lihong V. Wang

    2010-01-01

    A new method is proposed to measure transverse blood flow using photoacoustic Doppler broadening of bandwidth. By measuring bovine blood flowing through a plastic tube, the linear dependence of the broadening on the flow speed was validated. The blood flow of the microvasculature in a mouse ear and a chicken embryo (stage 16) was also studied.

  9. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth

    OpenAIRE

    Yao, Junjie; Maslov, Konstantin I.; Shi, Yunfei; Taber, Larry A.; Lihong V. Wang

    2010-01-01

    A method is proposed to measure transverse blood flow by using photoacoustic Doppler broadening of bandwidth. By measuring bovine blood flowing through a plastic tube, the linear dependence of the broadening on the flow speed was validated. The blood flow of the microvasculature in a mouse ear and a chicken embryo (stage 16) was also studied.

  10. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    Science.gov (United States)

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  11. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow

    NARCIS (Netherlands)

    Abeelen, A.S.S. van den; Beek, A.H. van; Slump, C.H.; Panerai, R.B.; Claassen, J.A.H.R.

    2014-01-01

    Cerebral autoregulation (CA) is a key mechanism to protect the brain against excessive fluctuations in blood pressure (BP) and maintain cerebral blood flow. Analyzing the relationship between spontaneous BP and cerebral blood flow velocity (CBFV) using transfer function analysis is a widely used tec

  12. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments

    DEFF Research Database (Denmark)

    Udesen, J.; Gran, F.; Hansen, K.L.

    2008-01-01

    Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...... approximately followed the vessel wall, and that maximum velocity was approximately 1 m/s, which is a normal value for a healthy person. To further evaluate the method, the test person was scanned with magnetic resonance (MR) angiography. The volume flow derived from the MR scanning was compared with that from...

  13. 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch: Investigation of Non-Newtonian Characteristics of Human Blood

    CERN Document Server

    Sultanov, Renat A; Engelbrekt, Brent; Blankenbecler, Richard

    2008-01-01

    Methods of Computational Fluid Dynamics are applied to simulate pulsatile blood flow in human vessels and in the aortic arch. The non-Newtonian behaviour of the human blood is investigated in simple vessels of actual size. A detailed time-dependent mathematical convergence test has been carried out. The realistic pulsatile flow is used in all simulations. Results of computer simulations of the blood flow in vessels of two different geometries are presented. For pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and widely used method in literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, wall sear stress distribution, is found in the region of the aortic arch. We consider this result as theoretical evidence that supports existing clinical observations and those models not using non-Newtonian treatment underestimate the risk of disru...

  14. Anisodamine augments mucosal blood flow during gut ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Hu Sen; Sheng Zhiyong

    2002-01-01

    Objective: To determine if anisodamine is able to augment mucosal perfusion during gut ischemia-reperfusion (I/R). Methods: A jejunal sac was formed in Sprague Dawley rat. A Laser Doppler probe and a tonometer were inserted into the sac which was filled with saline. The superior mesenteric artery was occluded (SMAO) for 60minutes followed by 90 minutes of reperfusion. At the end of 60 minutes of SMAO, either 0.2mg/kg of anisodmine or dobutamine was injected into the jejunal sac. Laser Doppler mucosal blood flow and regional PCO2 (PrCO2) measurements were made. Results: Mucosal blood flow was significantly increased at 30,60 and 90 minutes of reperfusion (R30, R60, R90 ) when intraluminal anisodamine or dobutamine was introduced compared to intraluminal saline only (44±3.3)% or (48±4.1)% vs. (37±2.6) % at R30, (57±5.0)% or (56±4.7)% vs. (45±2.7)% at R60, (64±3.3) % or (56 ± 4.2) % vs. (48 ± 3.4) % at R90 , respectively P<0.05). Blood flow changes were also reflected by lowering of jejunal PrCO2 measurements after intraluminal anisodamine or dobutamine compared with that of the saline controls (41±3. 1)mmHg or (44±3.0)mmHg vs. (49±3.7) mmHg at R30 , (38±3.7)mmHg or (40±2. 1)mmHg vs. (47±3.8) mmHgat R60, (34±2.1) mmHg or (39± 3.0) mmHg vs. (46±3.4) mmHg at R90, respectively,P<0. 05). The most interesting finding was that there were significantly higher mucosal blood flow and lower jejunal PrCO2 in anisodamine group than those in dobutamine group at 90 minutes of reperfusion (64± 3.3) %vs. (56±4.2)% for blood flow or (34 ± 2.1)mmHg vs. (39 ± 3.0)mmHg for PrCO2, respectively, P<0.05),suggesting that anisodamine had more lasting effect on mucosal perfusion than dobutamine. Conclusions:Intraluminal anisodamine can augment mucosal blood flow during gut I/R, and it may provide the protective effect on gut from ischemia and reperfusion injury.

  15. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    Science.gov (United States)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  16. Blood Flow Imaging in Maternal and Fetal Arteries and Veins

    Science.gov (United States)

    Ricci, S.; Urban, G.; Vergani, P.; Paidas, M. J.; Tortoli, P.

    Maternal and fetal blood circulation has been investigated for nearly a decade through ultrasound (US) techniques. Evaluation of the spectrogram related to a single sample volume has been proven valuable for the assessment of fetal well-being and for prediction of pregnancy complications. In this work, an alternative technique, called Multigate Spectral Doppler Analysis (MSDA), is proposed. In this approach, 128 sample volumes aligned along the same scan line are simultaneously investigated to detect the blood velocity profile with high resolution. Profiles obtained through MSDA reveal features not detectable with the standard US technique, thus representing a more accurate flow signature. Some preliminary illustrative results are reported here.

  17. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...

  18. Effect of pregnancy on regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Ikeda, Tomoaki; Mori, Norimasa [Miyazaki Medical Coll., Kiyotake (Japan)

    1993-12-01

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by {sup 133}Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. P{sub co2} concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author).

  19. Holographic laser Doppler imaging of pulsatile blood flow

    CERN Document Server

    Bencteux, Jeffrey; Kostas, Thomas; Bayat, Sam; Atlan, Michael

    2015-01-01

    We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second, and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

  20. Tomographic cerebral blood flow measurement during carotid surgery

    DEFF Research Database (Denmark)

    Rathenborg, Lisbet Knudsen; Vorstrup, Sidsel; Olsen, K S

    1994-01-01

    OBJECTIVES: The aim of the study was to depict regional cerebral blood flow (rCBF) during carotid cross clamping using 99mTechnetium-hexamethylpropylene amine oxime (TcHMPAO). This tracer rapidly passes the blood-brain barrier and is retained for hours in the brain tissue. Injecting TcHMPAO during...... RESULTS: We found a significant correlation between stump pressure and enhancement of side-to-side asymmetry in rCBF due to carotid cross clamping. Pronounced variations were seen in which regions were deprived of perfusion during clamping. CONCLUSION: TcHMPAO allows tomographic assessment of CBF during...

  1. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    g/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V-mean) in the middle cerebral artery (MCA), as well as the heart......Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (h alpha CGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of haCGRP (2 mu...

  2. Encircling endocardial ventriculotomy for refractory ischemic ventricular tachycardia. II. Effects on regional myocardial blood flow.

    Science.gov (United States)

    Ungerleider, R M; Holman, W L; Stanley, T E; Lofland, G K; Williams, J M; Smith, P K; Quick, G; Cox, J L

    1982-06-01

    Previous experimental studies of the encircling endocardial ventriculotomy (EEV) have shown a significant alteration of normal local electrical activity within the encompassed region. Although this procedure may result in isolation of ventricular arrhythmias, the data are more suggestive of a less specific effect on regional myocardial blood flow. This study examines the effect of EEV on local myocardial blood flow using the radioactive tracer microsphere technique in 10 dogs. Flows were determined before and after an EEV with the animals on cardiopulmonary bypass at controlled perfusion pressures, temperatures, and heart rates. Blood flow was studied at subepicardial and subendocardial levels inside, outside, and bordering the EEV. Prior to performance of the EEV, subepicardial blood flow in the left ventricular myocardium ranged from 0.81 +/- 0.07 to 0.89 +/- 0.08 ml/gm/min. Subendocardial flows ranged from 0.80 +/- 0.07 to 0.91 +/- 0.09 ml/gm/min. There was no significant difference between any of the flows across each respective layer of myocardium. Following the EEV procedure, blood flow to the subendocardium within the EEV fell to 0.33 +/- 0.07 ml/gm/min, while flow to the subendocardium of the normal regions of the same hearts actually increased to 1.21 +/- 0.23 ml/gm/min. Similar changes occurred at subepicardial levels, with flow at the center of the EEV falling to 0.66 +/- 0.10 ml/gm/min despite a tendency for normal subepicardial flow to increase to 1.78 +/- 0.24 ml/gm/min. Superimposed ischemia to the EEV-encompassed myocardium, created by occlusion of the distal left anterior descending coronary artery (LAD), accentuated this abnormality by demonstrating that the region continues to receive some flow from epicardially based coronary vessels. The data from this study show that the EEV decreased regional blood flow to the encompassed myocardium and suggests that myocardial ischemia may be responsible for ablation of the delicate re-entrant mechanisms

  3. Validation of a new blood-mimicking fluid for use in Doppler flow test objects.

    Science.gov (United States)

    Ramnarine, K V; Nassiri, D K; Hoskins, P R; Lubbers, J

    1998-03-01

    A blood-mimicking fluid (BMF) suitable for use in Doppler flow test objects is described and characterised. The BMF consists of 5 microns diameter nylon scattering particles suspended in a fluid base of water, glycerol, dextran and surfactant. The acoustical properties of various BMF preparations were measured under uniform flow to study the effects of particle size, particle concentration, surfactant concentration, flow rate and stability. The physical properties, (density, viscosity and particle size), and acoustical properties (velocity, backscatter and attenuation) of the BMF are within draft International Electrotechnical Commission requirements.

  4. Skin temperature and subcutaneous adipose blood flow in man

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Madsen, J

    1980-01-01

    The abdominal subcutaneous adipose tissue blood flow (ATBF) was measured bilaterally by the 133Xe washout method. At one side of the skin (epicutaneous) temperature was varied with a temperature blanket, the other side served as control. There was a significant (P less than 0.001) positive...... correlation between skin temperature and ATBF. In the range from 25 to 37 degrees CATBF increased 9% of the control flow on average per centigrade increase in skin temperature. ATBF at the control side was uninfluenced by the contralateral variations in skin temperature. Although no better correlation could...

  5. Case with stenosis of internal carotid artery detected as a region of decreased blood flow by Tc-99m HMPAO cerebral blood flow scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, K.; Nishimura, T.; Uehara, T.; Imakita, S.; Yokota, I.; Ogura, H.; Oka, H.; Hayashi, M.; Kikuchi, H.

    1987-04-01

    Tc-99m hexamethylpropyleneamine oxime (= HMPAO) is expected to be an excellent agent as blood flow tracer of brain because it passes through blood brain barrier and is retained in brain parenchyma for several hours. Tc-99m HMPAO scintigraphy was applied to a patient complaining of transient ischemic attack without neurological findings. Left hemispheric hypoperfusion was detected by Tc-99m HMPAO cerebral blood flow scintigraphy. Although it was normal in CT and MRI, it was proved to be a 99 % stenosis of left internal carotid artery by digital subtraction angiography. Tc-99m HMPAO cerebral blood flow scintigraphy is useful for detecting abnormality of cerebral blood flow.

  6. Modeling of the blood rheology in steady-state shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Alex J.; Beris, Antony N., E-mail: beris@udel.edu [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  7. Coriolis-induced cutaneous blood flow increase in the forearm and calf.

    Science.gov (United States)

    Cheung, B; Hofer, K

    2001-04-01

    Using venous occlusion plethysmography, Sunahara et al. reported that Coriolis-induced nausea was accompanied by an increase in forearm blood flow, suggesting a decrease in sympathetic activity to this vascular bed. No significant blood pressure and heart rate changes were observed. Vasodilation of the limbs theoretically impairs orthostatic tolerance, particularly if blood flow is shown to increase simultaneously in the lower limbs. This study examined the latter possibility. Seventeen subjects were exposed to the Coriolis cross-coupling effects induced by 20 RPM yaw rotation, and a simultaneous 45 degrees pitch forward head movement in the sagittal plane every 12 s. Forearm and calf skin blood flow were monitored in real-time using laser Doppler flowmetry (PeriFlux 4001). Our results indicated a significant (p Coriolis cross-coupling across all 15 susceptible subjects. No significant changes in blood pressure and heart rate were observed. Coriolis-induced cardiovascular changes may confound previous reports on reduced G tolerance using ground-based centrifuges that invariably evoke cross-coupling effects.

  8. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    Science.gov (United States)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  9. Chronic intestinal ischemia and splanchnic blood-flow

    DEFF Research Database (Denmark)

    Zacho, Helle Damgaard; Henriksen, Jens Henrik; Abrahamsen, Jan

    2013-01-01

    -1390), and this value increased significantly to 1787 mL/min after the meal in healthy volunteers (P ...-induced increase in SBF was equal to 282 mL/min + 5.4 mL/min × bodyweight, (P = 0.025). The SO₂U in healthy volunteers and patients was 50.7 mL/min and 48.0 mL/min, respectively, and these values increased to 77.5 mL/min and 75 mL/min postprandially, respectively. Both baseline and postprandial SO₂U were directly......AIM: To determine the splanchnic blood flow and oxygen uptake in healthy-subjects and patients and to relate the findings to body-composition. METHODS: The total splanchnic blood flow (SBF) and oxygen uptake (SO₂U) were measured in 20 healthy volunteers (10 women) and 29 patients with suspected...

  10. Subcutaneous blood flow in early male pattern baldness

    Energy Technology Data Exchange (ETDEWEB)

    Klemp, P.; Peters, K.; Hansted, B.

    1989-05-01

    The subcutaneous blood flow (SBF) was measured by the /sup 133/Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness.

  11. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  12. Clitoral blood flow increases following vaginal pressure stimulation.

    Science.gov (United States)

    Lavoisier, P; Aloui, R; Schmidt, M H; Watrelot, A

    1995-02-01

    The vascular responses of clitoral arteries to vaginal pressure stimulation in 10 volunteer women were evaluated by Doppler ultrasonography. Pressure stimulations (20-160 mm Hg) along the lower third of the vagina increased blood velocity and flow into clitoral arteries in 9 of the 10 women. The latency and duration of the Doppler responses ranged from 0.1 to 1.6 sec and from 3.2 to 9.5 sec, respectively, and the response was associated with a blood flow increase of 4 to 11 times the baseline prestimulation level. This response parallels that recorded in the cavernous arteries in men when a similar range of pressure stimulations are applied to the glans penis. Similar responses evoked in the male and female suggest a sexual synergy that may occur during intercourse in that such physiological responses and reflexes may be reciprocally reinforced.

  13. Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries.

    Science.gov (United States)

    Mustapha, Norzieha; Amin, Norsarahaida; Chakravarty, Santabrata; Mandal, Prashanta Kumar

    2009-10-01

    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases.

  14. Efficacy, Safety and Mechanisms of Blood Flow Restricted Exercise

    Science.gov (United States)

    Ploutz-Snyder, Lori

    2009-01-01

    This 20 minute talk will review studies in the peer-reviewed literature related to the effectiveness of blood flow restricted exercise as an exercise training program. There is controversy regarding the talk with cover the effectiveness of various exercise protocols and these differences will be compared and contrasted. Unpublished data from my laboratory at Syracuse University will be presented (see other abstract), as well as some unpublished work from the labs of Manini, Clark and Rasmussen (none are NASA funded).

  15. Time-resolved X-ray PIV measurements of hemodynamic information of real pulsatile blood flows

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2015-11-01

    X-ray imaging technique has been used to visualize various bio-fluid flow phenomena as a nondestructive manner. To obtain hemodynamic information related with circulatory vascular diseases, a time-resolved X-ray PIV technique with high temporal resolution was developed. In this study, to embody actual pulsatile blood flows in a circular conduit without changes in hemorheological properties, a bypass loop is established by connecting a microtube between the jugular vein and femoral artery of a rat. Biocompatible CO2 microbubbles are used as tracer particles. After mixing with whole blood, CO2 microbubbles are injected into the bypass loop. Particle images of the pulsatile blood flows in the bypass loop are consecutively captured by the time-resolved X-ray PIV system. The velocity field information are obtained with varying flow rate and pulsataility. To verify the feasibility of the use of CO2 microbubbles under in vivo conditions, the effects of the surrounding-tissues are also investigated, because these effects are crucial for deteriorating the image contrast of CO2 microbubbles. Therefore, the velocity information of blood flows in the abdominal aorta are obtained to demonstrate the visibility and usefulness of CO2 microbubbles under ex vivo conditions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  16. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations.

    Science.gov (United States)

    Wu, Y; Nieuwenhoff, M D; Huygen, F J P M; van der Helm, F C T; Niehof, S; Schouten, A C

    2017-05-01

    Small nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to quantitatively characterize the control mechanism of small nerve fibers in regulating skin blood flow in response to local thermal perturbation. The skin of healthy subjects' hand dorsum (n=8) was heated to 42°C with an infrared lamp, and then naturally cooled down. The distance between the lamp and the hand was set to three different levels in order to change the irradiation intensity on the skin and implement three different skin temperature rise rates (0.03°C/s, 0.02°C/s and 0.01°C/s). A laser Doppler imager (LDI) and a thermographic video camera recorded the temporal profile of the skin blood flow and the skin temperature, respectively. The relationship between the skin blood flow and the skin temperature was characterized by a vasomotor response model. The model fitted the skin blood flow response well with a variance accounted for (VAF) between 78% and 99%. The model parameters suggested a similar mechanism for the skin blood flow regulation with the thermal perturbations at 0.03°C/s and 0.02°C/s. But there was an accelerated skin vasoconstriction after a slow heating (0.01°C/s) (p-value<0.05). An attenuation of the skin vasodilation was also observed in four out of the seven subjects during the slow heating (0.01°C/s). Our method provides a promising way to quantitatively assess the function of small nerve fibers non-invasively and non-contact.

  17. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2015-09-15

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  18. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    Science.gov (United States)

    Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.

    2014-03-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.

  19. Blood flow distribution with adrenergic and histaminergic antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.

    1989-03-01

    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects.

  20. Predicting Endometrium Receptivity with Parameters of Spiral Artery Blood Flow

    Institute of Scientific and Technical Information of China (English)

    GONG Xuehao; LI Quanshui; ZHANG Qingping; ZHU Guijin

    2005-01-01

    Summary: In order To evaluate whether the parameters of spiral artery blood flow, as measured by transvaginal color Doppler, may be used to assess endometrium receptivity prior to embryo transfer (ET), a retrospective study of 94 infertile women who had undergone ART treatments with different outcomes (pregnant or nonpregnant) was done. Subendometrial blood flow was evaluated. The resistance index (RI), systolic/diastolic ratio (S/D) and pulsatility index (PI) were significantly lower in those who achieved pregnancy as compared with those who did not: 0.62±0.04 vs 0.68±0.04 (P<0.001), 2.66±0.33 vs 3.19±0.39 (P<0.01) and 1.15±0.17 vs 1.34±0.22 (P<0.05), respectively. Furthermore, when RI>0.72, PI>1.6, and S/D>3.6, no pregnancy occurred. These data suggest that the parameters of spiral artery blood flow could be used as a new assay in predicting endometrial receptivity before ET.

  1. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  2. A novel concept of measuring mass flow rates using flow induced stresses

    Indian Academy of Sciences (India)

    P I Jagad; B P Puranik; A W Date

    2015-08-01

    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  3. Continuum modeling of rate-dependent granular flows in SPH

    Science.gov (United States)

    Hurley, Ryan C.; Andrade, José E.

    2016-09-01

    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

  4. Continuum modeling of rate-dependent granular flows in SPH

    Science.gov (United States)

    Hurley, Ryan C.; Andrade, José E.

    2017-01-01

    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

  5. Dopexamine increases internal mammary artery blood flow following coronary artery bypass grafting.

    LENUS (Irish Health Repository)

    Flynn, Michael J

    2012-02-03

    OBJECTIVE: Vasoactive agents and inotropes influence conduit-coronary blood flow following coronary artery bypass grafting (CABG). It was hypothesized that dopexamine hydrochloride, a dopamine A-1 (DA-1) and beta(2) agonist would increase conduit-coronary blood flow. A prospective randomized double blind clinical trial was carried out to test this hypothesis. DA-1 receptors have previously been localized to human left ventricle. METHODS: Twenty-six American Society of Anaesthesiology class 2-3 elective coronary artery bypass graft patients who did not require inotropic support on separation from cardiopulmonary bypass (CPB) were studied. According to a randomized allocation patients received either dopexamine (1 microg\\/kg per min) or placebo (saline) by intravenous infusion for 15 min. Immediately prior to and at 5,10 and 15 min of infusion, blood flow through the internal mammary and vein grafts (Transit time flow probes, Transonic Ltd.), heart rate, cardiac index, mean arterial pressure and pulmonary haemodynamics were noted. The data were analysed using multivariate analysis of variance. RESULTS: Low-dose dopexamine (1 microg\\/kg per min) caused a significant increase in mammary graft blood flow compared to placebo at 15 min of infusion (P=0.028, dopexamine group left internal mammary artery (LIMA) flow of 43.3+\\/-14.2 ml\\/min, placebo group LIMA flow at 26.1+\\/-16.3 ml\\/min). Dopexamine recipients demonstrated a non-significant trend to increased saphenous vein graft flow (P=0.059). Increased heart rate was the only haemodynamic change induced by dopexamine (P=0.004, dopexamine group at 85.2+\\/-9.6 beats\\/min and placebo group at 71.1+\\/-7.6 beats\\/min after 15 min of infusion). CONCLUSION: This study demonstrates that administration of dopexamine (1 microg\\/kg per min) was associated with a significant increase in internal mammary artery graft blood flow with mild increase in heart rate being the only haemodynamic change. Low-dose dopexamine may

  6. Effect of flow rate on diameter of electrospun nanoporous fibers

    Directory of Open Access Journals (Sweden)

    Tang Xiao-Peng

    2014-01-01

    Full Text Available The effect of flow rate on the diameter of the charged jet in the electrospinning process is studied theoretically. The obtained theoretical results offer in-depth physical understanding and mechanism of nanoporous fibers. It also reveals that the morphology and diameter of nanoporous microspheres can be controlled by the flow rate.

  7. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095 Section 23.1095 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system...

  8. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja;

    2014-01-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF...... and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1......) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...

  9. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C;

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...... that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein......., corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...

  10. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    CERN Document Server

    Shit, G C; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...

  11. Laser speckle contrast imaging to measure changes in cerebral blood flow.

    Science.gov (United States)

    Winship, Ian R

    2014-01-01

    Laser speckle contrast imaging (LSCI) is a powerful tool capable of acquiring detailed maps of blood flow in arteries and veins on the cortical surface. Based on the blurring of laser speckle patterns by the motion of blood cells, LSCI can be combined with a variety of optical imaging preparations to acquire high-spatiotemporal resolution images of blood flow, and track changes in blood flow over time, using relatively simple instrumentation. Here, we describe methods for LSCI of cerebral blood flow via a thin skull imaging preparation in mice or rats. This preparation allows precise semiquantitative mapping of changes in blood flow over time using straightforward surgical protocols and equipment.

  12. PERFUSION PRESSURE AND RENAL BLOOD FLOW: THEIR RELATIONSHIP AND DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Carlos G. Musso, MD. PhD.1,2, Manuel Vilas, MD.

    2014-05-01

    Full Text Available The concepts of renal perfusion pressure (RPP and renal blood flow (RBF are usually confused, but although they are intimately related, they are not strictly the same. RPP originates from the minute cardiac volume and is, therefore, the cause of RBF, which generates glomerular filtration and as a consequence, also induces the urinary flow. On the other hand, whereas RPP can be subject to fluctuations, the same happens to RBF though at a much lower level due to the existence of physiological mechanisms, such as self-regulation of the flow and tubule-glomerular feed-back. We conclude that there is a dependence of the RBF in relation with RPP, with the former acting as the final responsible of the glomerular filtration.

  13. Renal blood flow and metabolism after cold ischaemia

    DEFF Research Database (Denmark)

    Henriksen, J H; Petersen, H K

    1984-01-01

    Peroperative measurements of renal blood flow (RBF), renal O2-uptake, and renal venous lactate/pyruvate (L/P) ratio were performed before and after a period of 30-71 min of hypothermic (10-15 degrees C) renal ischaemia in nine patients, undergoing surgery for renal calculi. Before ischaemia, RBF.......01) immediately after re-established perfusion and 36% (P less than 0.02) 30 min later. In one additional patient, who had a short warm ischaemia (8 min), the flow pattern was the same. As arterial pressure remained constant, the reduced RBF signifies an increased renal vascular resistance. Renal O2-uptake...... and renal venous L/P ratio were almost constant, indicating no significant anaerobic processes being involved in the flow response. None of the patients showed any signs of reactive hyperaemia. It is concluded that hypothermic renal ischaemia may be followed by an increased renal vascular resistance even...

  14. Renal blood flow, early distal sodium, and plasma renin concentrations during osmotic diuresis

    DEFF Research Database (Denmark)

    Leyssac, P P; Holstein-Rathlou, N H; Skøtt, O

    2000-01-01

    .6 mmHg. Urine flow increased 10-fold, and sodium excretion increased by 177%. Plasma renin concentration (PRC) increased by 58%. Renal blood flow and glomerular filtration rate decreased, however end-proximal flow remained unchanged. After a similar volume of hypotonic glucose (152 mM), ED......(NaCl) increased by 3.6 mM, (P sodium excretion rate, or PRC. Infusion of 300 micromol NaCl in a smaller volume caused ED(NaCl) to increase by 6.4 mM without significant changes in PRC. Urine flow and sodium excretion increased significantly....... There was a significant inverse relationship between superficial nephron ED(NaCl) and PRC. We conclude that ED(Na) decreases during osmotic diuresis, suggesting that the increase in PRC was mediated by the macula densa. The results suggest that the natriuresis during osmotic diuresis is a result of impaired sodium...

  15. Responses of prawn to water flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Vascotto, G.L.; Nilas, P.U.

    1987-05-28

    An aquarium study to determine the responses of postlarval macrobrachium rosenbergii to varying water changes was carried out. Six week old postlarvae were raised in glass aquaria receiving 0, 1.15, 7.2 and 14.4 water changes per day over a 12 week period. The treatments had significant influences on survival, biomass, and average size of the animals. Maximum survival and highest biomass were found in the 1.15 water turnover treatment; however, this treatment also produced the smallest average size animals. Early high mortalities were attributed to poor growing conditions in the high and low flow treatments, while later mortality appeared to be biomass dependent.

  16. A model of blood flow in the mesenteric arterial system

    Directory of Open Access Journals (Sweden)

    Cheng Leo K

    2007-05-01

    Full Text Available Abstract Background There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure mainly due to the highly unspecific nature of the disease. Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool which can help clinicians during the diagnosis process. As a first step towards this final goal, a computational model of the gastrointestinal system has been developed and used to simulate realistic blood flow during normal conditions. Methods An anatomically and biophysically based model of the major mesenteric arteries has been developed to be used to simulate normal blood flows. The computational mesh used for the simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This scheme, together with a constitutive pressure-radius relationship, has been solved numerically for pressure, vessel radius and velocity for the entire mesenteric arterial network. Results The computational model developed shows close agreement with physiologically realistic geometries other researchers have recorded in vivo. Using this model as a framework, results were analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a periodic input varying between 10.2 kPa (77 mmHg and 14.6 kPa (110 mmHg at the abdominal aorta are presented. An analytical solution has been developed to model blood flow in tapering vessels and when compared with the numerical solution, showed excellent agreement. Conclusion An

  17. Recent advances in blood flow vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Udesen, Jesper;

    2011-01-01

    investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method...... been acquired using a commercial implementation of the method (BK Medical ProFocus Ultraview scanner). A range of other methods are also presented. This includes synthetic aperture imaging using either spherical or plane waves with velocity estimation performed with directional beamforming or speckle...... Medical 8804 transducer. This resulted in a relative standard deviation of 1.2% for a fully transverse flow. Plane wave imaging was also implemented on the RASMUS scanner and a 100 Hz frame rate was attained. Several vector velocity image sequences of complex flow were acquired, which demonstrates...

  18. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  19. Cuff inflation during ambulatory blood pressure monitoring and heart rate

    Directory of Open Access Journals (Sweden)

    Mia Skov-Madsen

    2008-11-01

    Full Text Available Mia Skov-Madsen, My Svensson, Jeppe Hagstrup ChristensenDepartment of Nephrology, Aarhus University Hospital, Aalborg, DenmarkIntroduction: Twenty four-hour ambulatory blood pressure monitoring is a clinically validated procedure in evaluation of blood pressure (BP. We hypothesised that the discomfort during cuff inflation would increase the heart rate (HR measured with 24-h ambulatory BP monitoring compared to a following HR measurement with a 24-h Holter monitor.Methods: The study population (n = 56 were recruited from the outpatient’s clinic at the Department of Nephrology, Aalborg Hospital, Aarhus University Hospital at Aalborg, Denmark. All the patients had chronic kidney disease (CKD. We compared HR measured with a 24-h Holter monitor with a following HR measured by a 24-h ambulatory BP monitoring.Results: We found a highly significant correlation between the HR measured with the Holter monitor and HR measured with 24-h ambulatory blood pressure monitoring (r = 0.77, p < 0.001. Using the Bland-Altman plot, the mean difference in HR was only 0.5 beat/min during 24 hours with acceptable limits of agreement for both high and low HR levels. Dividing the patients into groups according to betablocker treatment, body mass index, age, sex, angiotensin-converting enzyme inhibitor treatment, statins treatment, diuretic treatment, or calcium channel blocker treatment revealed similar results as described above.Conclusion: The results indicate that the discomfort induced by cuff inflation during 24-h ambulatory BP monitoring does not increase HR. Thus, 24-h ambulatory BP monitoring may be a reliable measurement of the BP among people with CKD.Keywords: ambulatory blood pressure monitoring, Holter monitoring, heart rate, chronic kidney disease, hypertension

  20. Fetal blood flow measurements in severe rhesus isoimmunization. A case report.

    Science.gov (United States)

    Stiller, R J; Ashmead, G G; Paul, D; Weiner, S

    1987-06-01

    Maternal isoimmunization can result in fetal anemia. Current management of isoimmunized pregnancies involves amniocentesis and spectrophotometry. Pulsed Doppler ultrasound can provide fetal blood flow determinations from the fetal umbilical vein. A pregnancy complicated by severe rhesus isoimmunization was studied with Doppler ultrasound. Increased fetal umbilical blood flow was associated with increased fetal hemolysis. Umbilical vein blood flow decreased after intrauterine transfusion. Doppler ultrasound assessment of fetal blood flow is a useful noninvasive adjunct in isoimmunized pregnancies.

  1. Quantification of myocardial blood flow and blood flow reserve in the presence of arterial dispersion: a simulation study.

    Science.gov (United States)

    Schmitt, Melanie; Viallon, Magalie; Thelen, Manfred; Schreiber, Wolfgang G

    2002-04-01

    Myocardial blood flow (MBF) can be quantified using dynamic T1-weighted MRI of diffusible tracers and a mathematical model of underlying vasculature. Quantification of MBF by means of T1- weighted MRI requires knowledge of the arterial input function (AIF). The AIF can be estimated from the left ventricular (LV) cavity. However, dispersion may occur between the LV and the tissue of interest because of the laminar blood flow profiles, branching of venules, and because of stenosis. To evaluate the influence of dispersion on the results of MBF quantification, a simulation study was performed. The dispersion was described as a convolution of the AIF with an exponential residue function. Synthetic tissue and AIF curves were analyzed and the derived parameters fit to the simulated parameters. The results show that an unaccounted dispersion may result in a systematic underestimation of MBF up to approximately 50%. Underestimation increases with increasing dispersion and with increasing MBF. Assuming equal dispersion at rest and during hyperemia, myocardial perfusion reserve (MPR) estimates are also susceptible to underestimation of approximately 20%. An unaccounted dispersion therefore can lead to systematic underestimation of both blood flow and perfusion reserve.

  2. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-04-01

    Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate.

  3. ASSESSMENT OF VERTEBRAL ARTERIES BLOOD FLOW SPECTRAL DOPPLER INDICES IN COMPARISON WITH INTERNAL AND COMMON CAROTID ARTERIES BLOOD FLOW SPECTRAL DOPPLER INDICES

    Directory of Open Access Journals (Sweden)

    H. Mazaher

    2007-05-01

    Full Text Available Vertebrobasilar insufficiency is the cause of cerebrovascular accidents in 20% of cases. There are few reports regarding spectral Doppler indices (SDIs of vertebral arteries (VAs normal blood flow. The objective of this study was to provide basic reference data about SDIs of VAs normal blood flow separately and in comparison with internal carotid arteries (ICAs and common carotid arteries (CCAs normal blood flows SDIs. This cross-sectional study performed on 70 normal patients. Color Doppler sonography (CDS and spectral Doppler sonography (SDS of right and left VAs (RVA and LVA, right and left CCAs (RCCA and LCCA, right and left ICAs (RICA and LICA, were performed. The mean PSV, EDV, and RI values of RVA blood flow were as 41.60 ± 9.6 cm/s, 14.60 ± 3.7 cm/s and 0.65 ± 0.06, and the mean PSV, EDV and RI values of LVA blood flow were as 42.20 ± 10.2 cm/s, 15.20 ± 4.2 cm/s, and 0.64 ± 0.05, respectively. There was not statistically significant difference between the mean PSV, EDV and RI values of RVA and LVA blood flows. The mean PSV and EDV values of VAs blood flows were significantly lower than the values of CCAs and ICCAs blood flows, respectively. The mean RI value of VAs blood flows was significantly lower than the mean RI Value of CCAs blood flows, but there was not statistically significant difference between the mean RI value of VAs blood flows and the mean RI value of ICAs blood flows.

  4. Cerebral blood flow assessment of preterm infants during respiratory therapy with the expiratory flow increase technique

    Directory of Open Access Journals (Sweden)

    Mariana Almada Bassani

    2016-06-01

    Full Text Available Abstract Objective: To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. Methods: This is an intervention study, which included 40 preterm infants (≤34 weeks aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5min. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Results: Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50, the end diastolic flow velocity (p=0.17, the mean flow velocity (p=0.07, the resistance index (p=0.41 and the pulsatility index (p=0.67 over time. Conclusions: The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants.

  5. COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS

    Institute of Scientific and Technical Information of China (English)

    Xu Bing; Ma Jien; Lin Jianjie

    2005-01-01

    The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.

  6. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    Science.gov (United States)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  7. Numerical Simulations of Blood Flows in the Left Atrium

    Science.gov (United States)

    Zhang, Lucy

    2008-11-01

    A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.

  8. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov;

    2008-01-01

    Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1......) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...

  9. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  10. THE STUDY OF BLOOD FLOW DYNAMICS IN TIBIAL SUBCHONDRAL EPIPHYSEAL ZONE OF PATIENTS WITH GONARTHROSIS AFTER TUNNELIZATION AND INFUSING AUTOLOGOUS BLOOD WITH BONE MARROW ELEMENTS

    Directory of Open Access Journals (Sweden)

    E. N. Shchurova

    2016-01-01

    Full Text Available Introduction. The knee osteoarthrosis leads to a significant reduction of working ability. as well as to disability of working-age people. Arthroplasty is dominated the main method in treatment of such patients. However, many orthopedists are more and more inclined to the surgeries which allow to preserve the knee anatomic-and-functional integrity and to delay the surgery of the knee total replacement for later periods. Subchondral tunnelization with infusing autologous blood with bone marrow elements is one of such methods. of treatment for the patients of this category.Purpose to study the dynamics of the blood flow in the tibial epiphyseal subchondral zone after tunnelization and infusing autologous blood with bone marrow elements and its effect on the rehabilitation process of patients with gonarthrosis.Material and methods. The work was based on the results of studying 26 patients with Degree grade 2-3 gonarthrosis. Surgical treatment included performing tunnelization of femoral and tibial condyles with infusing autologous blood containing bone marrow elements. Circulation of tibial subchondral epiphyseal zone was studied in the operation room, before surgery, after tunnelization and after infusing autologous blood. Blood flow registered using high-frequency ultrasonic Dopplerography. The patient functional condition and the pathology severity analyzed using complex index score.Results. The significant (42-108%, р<0.05 increase in blood flow registered in tibial subchondral epiphyseal zone in patients with gonarthrosis after tunnelization of femoral and tibial condyles in 46.2% of cases, and the increased blood flow persisted after infusing autologous blood with bone marrow elements in 58% of the patients from this group. In patients with significant blood flow increase the index score rate of gait, muscle strength and mean rehabilitation criterion was reliably 23% (р<0.05, 21% (р<0.05 and 17.4% (р<0.05 more, respectively, comparing

  11. PET imaging of blood flow and glucose metabolism in localized musculoskeletal tumors of the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Paula, E-mail: paula.lindholm@tyks.f [Department of Oncology and Radiotherapy, Turku University Hospital, Turku FI-20521 (Finland); Turku PET Centre, Turku (Finland); Sutinen, Eija [Department of Oncology and Radiotherapy, Turku University Hospital, Turku FI-20521 (Finland); Turku PET Centre, Turku (Finland); Oikonen, Vesa [Turku PET Centre, Turku (Finland); Mattila, Kimmo [Department of Radiology, Turku University Hospital, Turku FI-20521 (Finland); Tarkkanen, Maija [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kallajoki, Markku [Department of Pathology, Turku University Hospital, Turku FI-20521 (Finland); Aro, Hannu [Department of Orthopaedic Surgery, Turku University Hospital, Turku FI-20521 (Finland); Boehling, Tom [Department of Pathology, Helsinki University Central Hospital, Helsinki (Finland); Kivioja, Aarne [Department of Orthopaedic Surgery, Helsinki University Central Hospital, Helsinki, FI-00029 (Finland); Elomaa, Inkeri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Minn, Heikki [Department of Oncology and Radiotherapy, Turku University Hospital, Turku FI-20521 (Finland); Turku PET Centre, Turku (Finland)

    2011-02-15

    Introduction: Little is known about blood flow in sarcomas. Our purpose was to study glucose metabolism and blood flow in untreated localized musculoskeletal tumors of the extremities using [{sup 18}F]fluorodeoxyglucose (FDG), oxygen-15 labeled water ([15O]H{sub 2}O) and positron emission tomography (PET). Methods: Six patients with high-grade osteosarcoma (OS), two with soft-tissue sarcoma (STS) and one with aneurysmal bone cyst had PET studies with [15O]H{sub 2}O and FDG. Arterial blood sampling and autoradiography calculation method were used to define blood flow as milliliters per 100 g times minutes. Tumor FDG uptake was measured as standardized uptake values (SUVs) and regional metabolic rates for FDG (rMRFDG). Two patients also had FDG PET studies during (one patient) and after (two patients) preoperative chemotherapy. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The PET findings were compared with the clinical follow-up data and results of DCE-MRI. Results: Blood flow in bone tumors was 31.7-75.2 ml/(100 gxmin) and in STS 9.0-45.9 ml/(100 gxmin). [{sup 18}F]-Fluorodeoxyglucose uptake and rMRFDG in untreated bone tumors were 5.4-18.4 and 10.9-57.4 {mu}mol/100 g/min, respectively. [{sup 18}F]-Fluorodeoxyglucose uptake and rMRFDG in STS were 2.6-11.5 and 5.6-32.2 {mu}mol/100 g/min, respectively. Four of five sarcomas with SUV>9.0 have already relapsed. High blood flow in untreated OS was related to long overall survival, while the predictive power of glucose metabolism was less apparent. Good histopathological response to therapy was not associated with long survival. Conclusions: Measurement of blood flow in musculoskeletal tumors appears to be feasible by PET and [{sup 15}O]H{sub 2}O. The influence of tumor blood flow and glucose metabolism on the final outcome in sarcoma is variable and needs further research.

  12. Theoretical model of blood flow measurement by diffuse correlation spectroscopy

    Science.gov (United States)

    Sakadžić, Sava; Boas, David A.; Carp, Stefan

    2017-02-01

    Diffuse correlation spectroscopy (DCS) is a noninvasive method to quantify tissue perfusion from measurements of the intensity temporal autocorrelation function of diffusely scattered light. However, DCS autocorrelation function measurements in tissue better match theoretical predictions based on the diffusive motion of the scatterers than those based on a model where the advective nature of blood flow dominates the stochastic properties of the scattered light. We have recently shown using Monte Carlo (MC) simulations and assuming a simplistic vascular geometry and laminar flow profile that the diffusive nature of the DCS autocorrelation function decay is likely a result of the shear-induced diffusion of the red blood cells. Here, we provide theoretical derivations supporting and generalizing the previous MC results. Based on the theory of diffusing-wave spectroscopy, we derive an expression for the autocorrelation function along the photon path through a vessel that takes into account both diffusive and advective scatterer motion, and we provide the solution for the DCS autocorrelation function in a semi-infinite geometry. We also derive the correlation diffusion and correlation transfer equation, which can be applied for an arbitrary sample geometry. Further, we propose a method to take into account realistic vascular morphology and flow profile.

  13. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes.

    Science.gov (United States)

    Tokarev, A A; Butylin, A A; Ataullakhanov, F I

    2011-02-16

    The efficacy of platelet adhesion in shear flow is known to be substantially modulated by the physical presence of red blood cells (RBCs). The mechanisms of this regulation remain obscure due to the complicated character of platelet interactions with RBCs and vascular walls. To investigate this problem, we have created a mathematical model that takes into account shear-induced transport of platelets across the flow, platelet expulsion by the RBCs from the near-wall layer of the flow onto the wall, and reversible capture of platelets by the wall and their firm adhesion to it. This model analysis allowed us to obtain, for the first time to our knowledge, an analytical determination of the platelet adhesion rate constant as a function of the wall shear rate, hematocrit, and average sizes of platelets and RBCs. This formula provided a quantitative description of the results of previous in vitro adhesion experiments in perfusion chambers. The results of the simulations suggest that under a wide range of shear rates and hematocrit values, the rate of platelet adhesion from the blood flow is mainly limited by the frequency of their near-wall rebounding collisions with RBCs. This finding reveals the mechanism by which erythrocytes physically control platelet hemostasis.

  14. Regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE).

    Science.gov (United States)

    Gückel, Friedemann J; Brix, Gunnar; Hennerici, Michael; Lucht, Robert; Ueltzhöffer, Christine; Neff, Wolfgang

    2007-10-01

    The aim of the present study was a detailed analysis of the regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE) by means of functional magnetic resonance imaging (MRI). A group of 26 patients with SAE and a group of 16 age-matched healthy volunteers were examined. Using a well-established dynamic susceptibility contrast-enhanced MRI method, the regional cerebral blood flow (rCBF) and blood volume (rCBV) were quantified for each subject in 12 different regions in the brain parenchyma. As compared to healthy volunteers, patients with SAE showed significantly reduced rCBF and rCBV values in white matter regions and in the occipital cortex. Regions containing predominantly grey matter show almost normal rCBF and rCBV values. In conclusion, quantitative analysis of rCBF and rCBV values demonstrates clearly that SAE is a disease that is associated with a reduced microcirculation predominantly in white matter.

  15. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    Directory of Open Access Journals (Sweden)

    Abulon DJK

    2015-02-01

    Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System

  16. Rate of seroconversion in repeat blood donors at the national blood centre, kuala lumpur.

    Science.gov (United States)

    Nafishah, A; Asiah, M Nor; Syimah, A T Nur; Mohd Zahari, T H; Yasmin, A; Normi, M; Anza, E; Shahnaz, M; Narazah, M Y

    2014-06-01

    The World Health Organization (WHO) recommend that all donated blood are to be screened for at least three viral infections [human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV)]. The National Blood Centre, Kuala Lumpur (NBCKL) aims to reduce transfusion transmitted infections (TTI) as it still remains as one of the major risk for blood transfusion. A cross sectional study was conducted at the National Blood Centre, Kuala Lumpur from 1st January 2009 to 31st June 2010. Data from 581,020 donors were analyzed from year 2004 to 2008. All data were retrieved from NBCKL Blood Bank Information System (BBIS). A total of 201 repeat donors were included in the study based on the inclusion criteria but only 132 repeat donors agreed to participate. Information on sociodemographic, risk factors, knowledge of donors and high risk behavior were extracted from standardize questionnaire. Data were analyzed using SPSS version 14.0. The aim of this study was to determine the predictors of the seropositive infectivity among repeat blood donors at the NBCKL. The results showed Syphilis accounts for the highest and increasing seroconversion rate among other infections from 20.83 % in year 2004 to 44.6 % in year in year 2008. HIV and HCV infection also showed increasing seroconversion rate in 5 years' time from 6.41 % in year 2004 to 17.54 % in year 2008 and 4.8 % in year 2004 to 5.94 % in year 2008 respectively. However, HBV infection alone showed a decreasing seroconversion rate from 20.83 % in year 2004 to 10.4 % in year 2008. Level of donors' awareness regarding high risk factors (activities or behaviour) can lead to higher risk of TTI with significant p value in this predictors model(p < 0.05). Repeat blood donors with high risk activities are more likely to have seropositive results for HBV, HIV and Syphilis. This study found that the frequency of HCV seropositivity is higher among lapsed donor. Socio demographic factors such as male and

  17. Cerebral blood flow autoregulation in experimental liver failure

    DEFF Research Database (Denmark)

    Dethloff, T.J.; Larsen, F.S.; Knudsen, Gitte Moos

    2008-01-01

    Patients with acute liver failure (ALF) display impairment of cerebral blood flow (CBF) autoregulation, which may contribute to the development of fatal intracranial hypertension, but the pathophysiological mechanism remains unclear. In this study, we examined whether loss of liver mass causes...... impairment of CBF autoregulation. Four rat models were chosen, each representing different aspects of ALF: galactosamine (GlN) intoxication represented liver necrosis, 90% hepatectomy (PHx90) represented reduction in liver mass, portacaval anastomosis (PCA) represented shunting of blood....../toxins into the systemic circulation thus mimicking intrahepatic shunting in ALF, PCA+NH(3) provided information about the additional effects of hyperammonemia Rats were intubated and sedated with pentobarbital. We measured CBF with laser Doppler, intracranial pressure (ICP) was measured in the fossa posterior...

  18. [Evaluation of the hypomagnetic environment effects on capillary blood circulation, blood pressure and heart rate].

    Science.gov (United States)

    Gurfinkel, Iu I; Vasin, A L; Matveeva, T A; Sasonko, M L

    2014-01-01

    Impact of attenuated magnetic field (MF) on human health is a hard-core issue of present-day cosmonautics. A series of experiments with animals exposed in attenuated MF revealed violent disorders in cardiovascular system development. Purpose of the work was to study effects of the hypomagnetic environment (HME) on capillary blood circulation, blood pressure (BP) and heart rate (HR) in normal people. Participants (n = 34) were 24 men and 10 women free from cardiovascular symptoms. Mean age was 43.3 +/- 15.4 years. Thirteen participants, i.e. 8 men and 5 women, were randomly selected for a repeated investigation in the usual conditions (imaginary exposure); mean age in the group made up 47.9 +/- 18 years. Cardiac rhythm and heart rate were recorded using cardiac monitor Astrocard (Russia). BP was measured with the help of automatic blood pressure monitor Tonocard (Russia). Capillary circulation was determined using a digital capillaroscope (Russia) with high-speed CMOS-camera (100 frames/s). Time of HME exposure was 60 min. It was demonstrated that in healthy people free from cardiovascular symptoms HME increases capillary circulation rate by 22.4% as compared with records made under the usual conditions. There was a reliable HR reduction by the end of HME exposure with reference to the measurements taken at the onset. At the end of exposure, diastolic BP dropped considerably relative to mid-exposure values and systolic BP, on the contrary, made a significant rise.

  19. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian; Hanigan, Mark D

    2012-01-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated...... means (RMSPE) of 5.86, 5.75, 11.3, and 4.12, respectively. The epithelial blood flow was predicted with 26.3% RMSPE. Sensitivity analyses indicated that when ruminal butyrate concentration increased from 4.0 to 37.4 mmol/L, blood flow of the epithelium increased 47% and the ruminal disappearance rate...... of propionate increased 11%. The concentration gradient of propionate between ruminal fluid and epithelium was no more than 3:1 and increased with increasing blood flow. In conclusion, a dynamic model based on rumen epithelial blood flow and bidirectional fluxes of VFA between ruminal fluid and epithelium gave...

  20. COMPUTATIONAL TECHNIQUE FOR FLOW IN BLOOD VESSELS WITH POROUS EFFECTS

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L.Varshney; G.C.Sharma

    2005-01-01

    A finite element solution for the Navier-Stokes equations for steady flow under the porosity effects through a double branched two-dimensional section of a threedimensional model of a canine aorta was obtained. The numerical solution involves transforming a physical coordinates to a curvilinear boundary fitted coordinate system. The steady flow, branch flow and shear stress under the porous effects were discussed in detail.The shear stress at the wall was calculated for Reynolds number of 1 000 with branch to main aortic flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and it has been observed that our results are very close to the exact solutions. This work is in fact an improvement of the work of Sharma et al. (2001) in the sense that computational technique is economic and Reynolds number is large.

  1. Endoscopic retrograde cholangiopancreatography causes reduced myocardial blood flow

    DEFF Research Database (Denmark)

    Christensen, M; Hendel, H W; Rasmussen, V;

    2002-01-01

    ). PATIENTS AND METHODS: 11 patients scheduled for ERCP were monitored with a Holter tape recorder and underwent myocardial perfusion scintigraphies, to evaluate myocardial perfusion at rest and during ERCP. RESULTS: Ten patients completed the study. Eight patients had no sign of myocardial ischemia...... with either of the two methods, while two patients developed signs of ischemia during ERCP with both the Holter tape recording and on myocardial scintigraphy (P = 0.02). CONCLUSIONS: Patients undergoing ERCP may develop true myocardial ischemia with reduced myocardial blood flow. Although this is a small...

  2. Oscillations and chaos in renal blood flow control

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1993-01-01

    In normotensive, halothane-anesthetized rats, oscillations can be found both in the single-nephron blood flow and in the tubular pressure. Experimental data and computer simulations support the hypothesis that the oscillations are caused by the tubuloglomerular feedback (TGF) mechanism. Model...... to the other. In renovascular and spontaneously hypertensive rats, regular oscillations give way to highly irregular, chaotic fluctuations. The chaotic fluctuations appear to have the same mechanism as the regular TGF-mediated oscillations. The irregular fluctuations most likely represent a parameter...

  3. Skin blood flow with elastic compressive extravehicular activity space suit.

    Science.gov (United States)

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  4. Dynamics of renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    Two separate components could be resolved in tests of the dynamic autoregulation of renal blood flow. The slow component corresponds to the frequency at which spontaneous proximal tubular pressure oscillations are found, and are most likely due to the operation of the TGF. The high frequency...... component most likely represents an intrinsic vascular, myogenic, mechanism. The gain maximum of the admittance in the frequency range corresponding to the autonomous tubular oscillations indicates that the dynamic characteristics responsible for the occurrence of the spontaneous tubular oscillations must...

  5. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view...... (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter....... In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle...

  6. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification--Blood).

    Science.gov (United States)

    Schweers, Brett A; Old, Jennifer; Boonlayangoor, P W; Reich, Karl A

    2008-06-01

    Human blood is the body fluid most commonly encountered at crime scenes, and blood detection may aid investigators in reconstructing what occurred during a crime. In addition, blood detection can help determine which items of evidence should be processed for DNA-STR testing. Unfortunately, many common substances can cause red-brown stains that resemble blood. Furthermore, many current human blood detection methods are presumptive and prone to false positive results. Here, the developmental validation of a new blood identification test, Rapid Stain Identification--Blood (RSID--Blood), is described. RSID--Blood utilizes two anti-glycophorin A (red blood cell membrane specific protein) monoclonal antibodies in a lateral flow strip test format to detect human blood. We present evidence demonstrating that this test is accurate, reproducible, easy to use, and highly specific for human blood. Importantly, RSID--Blood does not cross-react with ferret, skunk, or primate blood and exhibits no high-dose hook effect. Also, we describe studies on the sensitivity, body fluid specificity, and species specificity of RSID--Blood. In addition, we show that the test can detect blood from a variety of forensic exhibits prior to processing for DNA-STR analysis. In conclusion, we suggest that RSID--Blood is effective and useful for the detection of human blood on forensic exhibits, and offers improved blood detection when compared to other currently used methods.

  7. Blood coagulation screening using a paper-based microfluidic lateral flow device.

    Science.gov (United States)

    Li, H; Han, D; Pauletti, G M; Steckl, A J

    2014-10-21

    A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition.

  8. In-vitro laser anemometry blood flow systems

    Science.gov (United States)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  9. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  10. Cerebral blood flow in patients with dementia of Alzheimer's type

    DEFF Research Database (Denmark)

    Postiglione, A; Lassen, N A; Holman, B L

    1993-01-01

    In the normal brain as well as in Alzheimer's disease (AD), regional cerebral blood flow (CBF) is coupled to metabolic demand and, therefore, changes in CBF reflect variations in neuronal metabolism. The use of radionuclide techniques, such as positron emission tomography (PET) and single photon...... of the disease. Lateral CBF asymmetry is also very frequent; speech disorders are highly characteristic of left-sided flow reduction, while visuospatial apraxia is dominating in the right-sided cases. In advanced and severe cases of AD, CBF and metabolism tend to be more uniformly reduced throughout the cortex......, sparing only the primary visual and sensory-motor cortices. PET and SPECT measurement of brain perfusion and metabolism has added a new dimension to the knowledge of dementia disorders, with a better differential diagnosis between AD and other forms of dementia. The correlation with neuropsychological...

  11. Validation of Blood Flow Simulations in Intracranial Aneurysms

    Science.gov (United States)

    Yu, Yue; Anor, Tomer; Baek, Hyoungsu; Jayaraman, Mahesh; Madsen, Joseph; Karniadakis, George

    2010-11-01

    Catheter-based digital subtraction angiography (DSA) is the most accurate diagnostic procedure for investigating vascular anomalies and cerebral blood flow. Here we describe utilization of DSA in a patient with an intracranial aneursysm to validate corresponding spectral element simulations. Subsequently, we examine via visualization the structure of flow in internal carotid arteries laden with three different types of aneurysms: (1) a wide-necked saccular aneurysm, (2) a narrower-necked saccular aneurysm, and (3) a case with two adjacent saccular aneurysms. We have found through high resolution simulations that in cases (1) and (3) in physiological conditions a hydrodynamic instability occurs during the decelerating systolic phase resulting in a high frequency oscillation (20-50 Hz). We use the in-silico dye visualization to discriminate among different physical mechanisms causing the instability and contrast their effect with case (2) for which an instability arises only at much higher flowrates.

  12. On the complex dynamics of a red blood cell in simple shear flow

    CERN Document Server

    Vlahovska, Petia M; Danker, Gerrit; Misbah, Chaouqi

    2010-01-01

    Motivated by the reported peculiar dynamics of a red blood cell in shear flow, we develop an analytical theory for the motion of a nearly--spherical fluid particle enclosed by a visco--elastic incompressible interface in linear flows. The analysis explains the effect of particle deformability on the transition from tumbling to swinging as the shear rate increases. Near the transition, intermittent behavior is predicted only if the particle has a fixed shape; the intermittency disappears for a deformable particle. Comparison with available phenomenological models based on the fixed shape assumption highlights their physical foundations and limitations.

  13. Designing and Constructing Blood Flow Monitoring System to Predict Pressure Ulcers on Heel

    Directory of Open Access Journals (Sweden)

    Akbari H.

    2014-06-01

    Full Text Available Background: A pressure ulcer is a complication related to the need for the care and treatment of primarily disabled and elderly people. With the decrease of the blood flow caused by the pressure loaded, ulcers are formed and the tissue will be wasted with the passage of time. Objective: The aim of this study was to construct blood flow monitoring system on the heel tissue which was under external pressure in order to evaluate the tissue treatment in the ulcer. Methods: To measure the blood flow changes, three infrared optical transmitters were used at the distances of 5, 10, and 15 mm to the receiver. Blood flow changes in heels were assessed in pressures 0, 30, and 60 mmHg. The time features were extracted for analysis from the recorded signal by MATLAB software. Changes of the time features under different pressures were evaluated at the three distances by ANOVA in SPSS software. The level of significance was considered at 0.05. Results: In this study, 15 subjects, including both male and female, with the mean age of 54±7 participated. The results showed that the signal amplitude, power and absolute signal decreased significantly when pressure on the tissue increased in different layers (p<0.05. Heart rate only decreased significantly in pressures more than 30 mmHg (p=0.02. In pressures more than 30 mmHg, in addition to a decrease in the time features, the pattern of blood flow signal changed and it wasn’t the same as noload signal. Conclusion: By detecting the time features, we can reach an early diagnosis to prognosticate the degeneration of the tissue under pressure and it can be recommended as a method to predict bedsores in the heel.

  14. Analytically computed rates of seepage flow into drains and cavities

    Science.gov (United States)

    Fujii, N.; Kacimov, A. R.

    1998-04-01

    The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are inverted using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction.

  15. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  16. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.

    Science.gov (United States)

    Watanabe, Nobuo; Masuda, Takaya; Iida, Tomoya; Kataoka, Hiroyuki; Fujimoto, Tetsuo; Takatani, Setsuo

    2005-01-01

    Secondary flow in the centrifugal blood pump helps to enhance the washout effect and to minimize thrombus formation. On the other hand, it has an adverse effect on pump efficiency. Excessive secondary flow may induce hemolytic effects. Understanding the secondary flow is thus important to the design of a compact, efficient, biocompatible blood pump. This study examined the secondary flow in a radial coupled centrifugal blood pump based on a simple particle tracking velocimetry (PTV) technique. A radial magnetically coupled centrifugal blood pump has a bell-shaped narrow clearance between the impeller inner radius and the pump casing. In order to vary the flow levels through the clearance area, clearance widths of 0.25 mm and 0.50 mm and impeller washout holes with diameters of 0 mm, 2.5 mm, and 4 mm were prepared. A high-speed video camera (2000 frames per second) was used to capture the particle images from which radial flow components were derived. The flow in the space behind the impeller was assumed to be laminar and Couette type. The larger the inner clearance or diameter of washout hole, the greater was the secondary flow rate. Without washout holes, the flow behind the impeller resulted in convection. The radial flow through the washout holes of the impeller was conserved in the radial as well as in the axial direction behind the impeller. The increase in the secondary flow reduced the net pump efficiency. Simple PTV was successful in quantifying the flow in the space behind the impeller. The results verified the hypothesis that the flow behind the impeller was theoretically Couette along the circumferential direction. The convection flow observed behind the impeller agreed with the reports of other researchers. Simple PTV was effective in understanding the fluid dynamics to help improve the compact, efficient, and biocompatible centrifugal blood pump for safe clinical applications.

  17. Design and Implementation of Automatic Air Flow Rate Control System

    Science.gov (United States)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  18. Exchange Flow Rate Measurement Technique in Density Different Gases

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2012-04-01

    Full Text Available Buoyancy-driven exchange flows of helium-air through inclined a narrow tube was investigated. Exchange flows may occur following the opening of a window for ventilation, as well as when a pipe ruptures in a high temperature gas-cooled reactor. The experiment in this paper was carried out in a test chamber filled with helium and the flow was visualized using the smoke wire method. A high-speed camera recorded the flow behavior. The image of the flow was transferred to digital data, and the slow flow velocity, i.e. micro flow rate was measured by PIV software. Numerical simulation was carried out by the code of moving particle method with Lagrange method.

  19. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    Science.gov (United States)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  20. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.

    Science.gov (United States)

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V; Karniadakis, George Em

    2015-08-01

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.

  1. Studies on pressure losses and flow rate optimization in vanadium redox flow battery

    Science.gov (United States)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2014-02-01

    Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.

  2. Patterns of fetal lamb regional cerebral blood flow during and after prolonged hypoxia.

    Science.gov (United States)

    Ashwal, S; Majcher, J S; Vain, N; Longo, L D

    1980-10-01

    In an effort to determine to what extent cerebral blood flow (CBF) varies in different parts of the brain during prolonged fetal hypoxia, we measured flow to 34 regions in 12 chronically catheterized fetal lambs 130 to 140 days gestation. Control values of PO2, PCO2 pH, heart rate, and blood pressure were obtained, and CBF was measured by use of radioactive labeled microspheres during a control period, during (15-, 30-, and 90-min) reduction of maternal inspired O2 concentration (fetal arterial PO2 was maintained at 12 to 15 torr), and 60 min after returning the ewe to room air. control blood flow to cortical, subcortical, and brainstem structures equaled 134, 186, and 254 ml x min-1 x 100 g-1, respectively. During hypoxia, CBF increased 92%, and 60 min after fetal oxygenation was restored, it remained 50% above control values. We noted a similar response in regional CBF to the cortex, subcortex, and brainstem during and after hypoxia. Blood flow to smaller areas within the three major regions were quite homogenous and had a similar pattern of response to hypoxia. We conclude that: (1) significant fetal regional CBF differences occurred in utero with brainstem and subcortical flows being substantially greater than flows to other regions of the brain; (2) during prolonged intrauterine hypoxia, total regional CBF increased 92%; (3) 1 hr after fetal oxygenation was restored, CBF still remained 50% above control values; and finally, (4) there was no significant preferential shunting of regional CBF during prolonged hypoxia in utero.

  3. Adaptation of blood flow during the rest to work transition in humans.

    Science.gov (United States)

    Shoemaker, J K; Hughson, R L

    1999-07-01

    Beat-by-beat measurements show that limb blood flow rises rapidly and in a biphasic manner at the onset of rhythmic exercise in humans. In this review the time course of change in limb flow with the onset of exercise is described and the mechanisms that may or may not contribute to its regulation are discussed. The pumping action of contracting skeletal muscle appears to form an important regulator of increasing flow with the first contraction. However, evidence from human studies suggests that vasodilation begins with the first contraction. Whether this early dilation is regulated by neural recruitment of motor fibers and/or muscle contraction per se is discussed, but the mechanism(s) remains unclear. Finally, the contribution of endothelial-derived relaxation factors to the exponential increase in flow at the exercise onset is examined. Based on studies in humans with intra-arterial infusion of blocking drugs, neither acetylcholine, nitric oxide, nor prostaglandins appear to be essential for a normal dynamic flow response on going from rest to exercise. Overall, evidence from human studies supports the hypothesis that the rate of increase in blood flow during rhythmic voluntary exercise is closely coupled to motor unit recruitment with dilation beginning at the first contraction.

  4. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  5. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  6. Clustering of microscopic particles in constricted blood flow

    CERN Document Server

    Bächer, Christian; Gekle, Stephan

    2016-01-01

    A mixed suspension of red blood cells (RBCs) and microparticles flows through a cylindrical channel with a constriction mimicking a stenosed blood vessel. Our three-dimensional Lattice-Boltzmann simulations show that the RBCs are depleted right ahead and after the constriction. Although the RBC mean concentration (hematocrit) is 16.5% or 23.7%, their axial concentration profile is very similar to that of isolated tracer particles flowing along the central axis. Most importantly, however, we find that the stiff microparticles exhibit the opposite behavior. Arriving on a marginated position near the channel wall, they can pass through the constriction only if they find a suitable gap to dip into the dense plug of RBCs occupying the channel center. This leads to a prolonged dwell time and, as a consequence, to a pronounced increase in microparticle concentration right in front of the constriction. For biochemically active particles such as drug delivery agents or activated platelets this clustering may lead to p...

  7. Clustering of microscopic particles in constricted blood flow

    Science.gov (United States)

    Bächer, Christian; Schrack, Lukas; Gekle, Stephan

    2017-01-01

    A mixed suspension of red blood cells (RBCs) and microparticles flows through a cylindrical channel with a constriction mimicking a stenosed blood vessel. Our three-dimensional Lattice-Boltzmann simulations show that the RBCs are depleted right ahead of and after the constriction. Although the RBC mean concentration (hematocrit) is 16.5% or 23.7%, their axial concentration profile is very similar to that of isolated tracer particles flowing along the central axis. Most importantly, however, we find that the stiff microparticles exhibit the opposite behavior. Arriving on a marginated position near the channel wall, they can pass through the constriction only if they find a suitable gap to dip into the dense plug of RBCs occupying the channel center. This leads to a prolonged dwell time and, as a consequence, to a pronounced increase in microparticle concentration right in front of the constriction. For biochemically active particles such as drug delivery agents or activated platelets this clustering may have important physiological consequences, e.g., for the formation of microthrombi.

  8. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  9. Local blood flow measured by fluorescence excitation of nonradioactive microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Payne, B.D.; Aldea, G.S.; McWatters, C.; Husseini, W.; Mori, H.; Hoffman, J.I.; Kaufman, L. (Univ. of California, San Francisco (USA))

    1990-05-01

    An X-ray fluorescence system with low Compton background and high counting efficiency was developed to measure regional blood flow with nonradioactive microspheres. The performance of the system was tested in vitro by counting mixed aqueous solutions of either Mo, Ag, and I; Nb, Ag, and Ba; or Zr, Mo, Rh, Ag, Sn, I, and Ba, as well as a mixture of Ag and Ba nonradioactive microspheres. Mixtures containing 2-20 ppm of each element were counted for 10 min by the fluorescence system, and the individual elements in mixtures of three to seven nonradioactive elements were measured with high accuracy. The best counting statistics were obtained for Ag. For 10-min counts, the system measures as few as 120 Ag microspheres with 30% standard deviation but measures 800 Ag microspheres per sample with 3.6% standard deviation. We compared regional myocardial blood flows determined simultaneously by fluorescence and radioactive microsphere methods; the latter samples were counted by a 3-in. NaI (Tl) well detector and pulse-height analyzer. The radioactive and nonradioactive measurements showed good correlations.

  10. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2012-12-01

    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  11. Image-based modeling of blood flow and oxygen transfer in feto-placental capillaries

    Science.gov (United States)

    Pearce, Philip; Jensen, Oliver

    2016-11-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through the placenta. At the smallest scale of the feto-placental vasculature are the "terminal villi", bulbous structures that are thought to be the main sites for oxygen transfer in the final trimester of pregnancy. The objective of this study is to investigate blood flow and oxygen transfer in the terminal villi of the placenta. Three-dimensional representations of villous and capillary surfaces, obtained from confocal laser scanning microscopy, are converted to finite-element meshes. Simulations of blood flow and oxygen transfer are performed to calculate the vascular flow resistance of the capillaries and the total oxygen transfer rate from the maternal blood. Scaling arguments, which predict the oxygen transfer across a range of Peclet numbers, are shown to be an efficient tool for quantifying the effect of statistical variability and experimental uncertainty. The effect of commonly observed localised dilations in the fetal vasculature on oxygen transfer is quantified using an idealised model in a simplified geometry. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximised by an optimal shape of the dilation, leading to an increase in oxygen transfer of up to 15%.

  12. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    Science.gov (United States)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  13. Scan Manifestations and Blood Clearance Rates in Typhoid Liver

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee; Ahn, Jae Sung; Kim, Soon Hi [St. Mary' s Hospital, Catholic Medical College, Seoul (Korea, Republic of)

    1970-09-15

    Fourteen patients with typhoid fever studied by scanning and clearance-rate measurements of subcritical dose colloidal radiogold ({sup 198}Au). Mild to moderate enlargement of the liver and spleen was noted in 78.6 and 64.3 percent of patients, respectively; and splenic and spinal bone-marrow uptake was seen in 78.6 and 57.1 percent of cases, respectively. Typically, these scan changes occurred concomitantly (57.1%) and are considered to represent increased phagocytic activity of the RE cells which is characteristic of typhoid fever. The half clearance-time was significantly shortened during the first 10-day period of the illness indicating an increase in the hepatic blood in the early phase of typhoid infection. Hepatomegaly, splenomegaly and extrahepatic uptakes along with an accelerated (or less a normal) clearance time are characteristic of typhoid fever.

  14. The Acute Effect of Resistance Exercise with Blood Flow Restriction with Hemodynamic Variables on Hypertensive Subjects

    Directory of Open Access Journals (Sweden)

    Araújo Joamira P.

    2014-12-01

    Full Text Available The purpose of this study was to analyze systolic blood pressure (SBP, diastolic blood pressure (DBP and the heart rate (HR before, during and after training at moderate intensity (MI, 50%-1RM and at low intensity with blood flow restriction (LIBFR. In a randomized controlled trial study, 14 subjects (average age 45±9,9 years performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA were used to identify significant variables (2 x 5; group x time. The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity.

  15. Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT.

    Science.gov (United States)

    Iida, H; Eberl, S

    1998-01-01

    Thallium-201 has been used extensively as a myocardial perfusion agent and to assess myocardial viability. Unlike other 99mTc-labeled agents such as 99mTc-sestamibi and 99mTc-tetrofosmine, the regional concentration of 201Tl varies with time, and its kinetics make it a potential candidate for estimating absolute physiologic parameters with kinetic model analysis. This article outlines a strategy for quantitative assessment of regional myocardial blood flow in man using 201Tl and dynamic single photon emission computed tomography (SPECT). Quantitatively accurate SPECT images that are proportional to the true radioactivity distribution are prerequisites for model-based kinetic analysis. Our technique for quantitative SPECT includes ordered-subset maximum likelihood-expectation maximization (ML-EM) reconstruction with transmission data-based attenuation correction and transmission-dependent convolution subtraction scatter correction. A three-compartment model was found to reproduce the observed regional time-activity curves well, and dog experiments demonstrated that influx rate constant (K1) values estimated from the dynamic SPECT data correlated well with absolute myocardial blood flow determined by in vitro microspheres for a physiologically wide range of flows. Several possible strategies for simplifying the study procedures, without compromising accuracy, are also presented, which should make absolute quantitation of regional myocardial blood flow feasible using 201Tl and a conventional SPECT camera in a clinical setting.

  16. Treatment of Chronic Renal Failure by Supplementing the Kidney and Invigorating Blood Flow

    Institute of Scientific and Technical Information of China (English)

    张勉之; 张大宁; 张文柱; 刘树松; 张敏英

    2004-01-01

    Objective: To evaluate the effectiveness of treatment of chronic renal failure by supplementing the kidney and invigorating blood flow. Method: The eligible patients were assigned to a treatment group (N =120)treated with the above principle and a control group (N = 128) treated with western drugs, and the effectiveness was evaluated when the study was completed in one year. Results: The total effective rate of 92.5% was achieved in the treatment group, better than that in the control group (49.2%); the difference was significant (P<0.01), especially in patients of stage Ⅰ and Ⅱ. Conclusion: The treatment of chronic renal failure by supplementing the kidney and invigorating blood flow proved to be very effective.

  17. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper;

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  18. A simple model of cerebral blood flow dependence on arterial blood pressure

    CERN Document Server

    Gersten, Alexander

    2011-01-01

    It is shown that the dependence of the cerebral blood flow (CBF) on mean arterial blood pressure (MABP) can be described with a simple model having the following assumptions. Below certain MABP (denoted as MABP1) there are no autoregulatory or feedback mechanisms influencing CBF. Between MABP1 and MABP2 (MABP at which breakthrough accurs) there is a linear (on MABP) dependent feedback with a sloap depending very much on the individual considered. The classical autoregulation model with a plateau in between MABP1 and MABP2 is a particular case of this model. The model describes well the experiments performed on dogs (Harper 1966), for which the individual feedback sloap parameter varied to great extent, indicating the importance of mesurments on individuals against averaged mesurments (or measurments on diffent individuals) which superficially support the classical autoregulation. New effect of decreased CBF, while increasing MABP, was observed.

  19. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda;

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... to baseline ventilation, whereas CMR(glu) increased. CONCLUSION: In patients with acute bacterial meningitis, we found variable levels of CBF and cerebrovascular CO(2) reactivity, a low a-v DO(2), low cerebral metabolic rates of oxygen and glucose, and a cerebral lactate efflux. In these patients...

  20. Effect of labetalol on cerebral blood flow and middle cerebral arterial flow velocity in healthy volunteers

    DEFF Research Database (Denmark)

    Schroeder, T; Schierbeck, Jens; Howardy, P;

    1991-01-01

    in normotensive subjects. Neither does it affect CO2 reactivity. The uniform results obtained with the two methods suggest TCD as a usable alternative to conventional CBF technique in the assessment of cerebral vasoactivity of various drugs in subjects with a normal cerebral circulation.......The effect of labetalol, a combined alpha- and beta-adrenoceptor antagonist, on the cerebral circulation was investigated in 7 normotensive subjects. Cerebral blood flow (CBF) was measured with the intravenous 133Xe method and mean flow velocity (Vmean) in the middle cerebral artery was determined...

  1. Absolute counting of neutrophils in whole blood using flow cytometry.

    Science.gov (United States)

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens.

  2. Retrobulbar blood flow and visual field alterations after acute ethanol ingestion

    Directory of Open Access Journals (Sweden)

    Weber A

    2013-08-01

    Full Text Available Anke Weber, Andreas Remky, Marion Bienert, Klaudia Huber-van der Velden, Thomas Kirschkamp, Corinna Rennings, Gernot Roessler, Niklas Plange Department of Ophthalmology, RWTH Aachen University, Aachen, Germany Background: The purpose of this study was to test the effect of ethyl alcohol on the koniocellular and magnocellular pathway of visual function and to investigate the relationship between such visual field changes and retrobulbar blood flow in healthy subjects. Methods: In 12 healthy subjects (mean age 32 ± 4 years, color Doppler imaging, short-wavelength automated perimetry, and frequency doubling perimetry was performed before and 60 minutes after oral intake of 80 mL of 40 vol% ethanol. Mean and pattern standard deviations for short-wavelength automated and frequency doubling perimetry were assessed. End diastolic velocity (EDV and peak systolic velocity (PSV were measured in the central retinal and ophthalmic arteries using color Doppler imaging. Systemic blood pressure, heart rate, intraocular pressure, and blood alcohol concentration were determined. Results: Mean PSV and EDV in the central retinal artery showed a significant increase after alcohol intake (P = 0.03 and P = 0.02, respectively. Similarly, we found a significant acceleration of blood flow velocity in the ophthalmic artery (P = 0.02 for PSV; P = 0.04 for EDV. Mean intraocular pressure decreased by 1.0 mmHg after alcohol ingestion (P = 0.01. Retinal sensitivity in short-wavelength automated perimetry did not alter, whereas in frequency doubling perimetry, the mean deviation decreased significantly. Systolic and diastolic blood pressure did not change significantly. Mean blood alcohol concentration was 0.38 ± 0.16 g/L. Conclusion: Although ethanol is known to cause peripheral vasodilation, our subjects had no significant drop in systemic blood pressure. However, a significant increase of blood flow velocity was seen in the retrobulbar vessels. Regarding visual function

  3. Assessing regional cerebral blood flow in depression using 320-slice computed tomography.

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    Full Text Available While there is evidence that the development and course of major depressive disorder (MDD symptomatology is associated with vascular disease, and that there are changes in energy utilization in the disorder, the extent to which cerebral blood flow is changed in this condition is not clear. This study utilized a novel imaging technique previously used in coronary and stroke patients, 320-slice Computed-Tomography (CT, to assess regional cerebral blood flow (rCBF in those with MDD and examine the pattern of regional cerebral perfusion. Thirty nine participants with depressive symptoms (Hamilton Depression Rating Scale 24 (HAMD24 score > 20, and Self-Rating Depression Scale (SDS score > 53 and 41 healthy volunteers were studied. For all subjects, 3 ml of venous blood was collected to assess hematological parameters. Transcranial Doppler (TCD ultrasound was utilized to measure parameters of cerebral artery rCBFV and analyse the Pulsatility Index (PI. 16 subjects (8 =  MDD; 8 =  healthy also had rCBF measured in different cerebral artery regions using 320-slice CT. Differences among groups were analyzed using ANOVA and Pearson's tests were employed in our statistical analyses. Compared with the control group, whole blood viscosity (including high\\middle\\low shear rateand hematocrit (HCT were significantly increased in the MDD group. PI values in different cerebral artery regions and parameters of rCBFV in the cerebral arteries were decreased in depressive participants, and there was a positive relationship between rCBFV and the corresponding vascular rCBF in both gray and white matter. rCBF of the left gray matter was lower than that of the right in MDD. Major depression is characterized by a wide range of CBF impairments and prominent changes in gray matter blood flow. 320-slice CT appears to be a valid and promising tool for measuring rCBF, and could thus be employed in psychiatric settings for biomarker and treatment response purposes.

  4. Trigeminal cardiac reflex and cerebral blood flow regulation

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    2016-10-01

    Full Text Available The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals. During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart and brain, and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is requested within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing.The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min by jaw extension in rats produces interesting effects both at systemic and cerebral level, reducing the arterial blood pressure and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activated the nitric oxide release by vascular endothelial. Therefore the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension, because produced opposite effects compared to those elicited by the diving reflex as it induces hypotension and modulation of cerebral arteriolar tone.

  5. Trigeminal Cardiac Reflex and Cerebral Blood Flow Regulation

    Science.gov (United States)

    Lapi, Dominga; Scuri, Rossana; Colantuoni, Antonio

    2016-01-01

    The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals). During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart, and brain and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is sequestered within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing. The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min) by jaw extension in rats produces interesting effects both at systemic and cerebral levels, reducing the arterial blood pressure, and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activate the nitric oxide release by vascular endothelial cells. Therefore, the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension. Opposite effects, such as hypotension, and modulation of cerebral arteriolar tone, were observed, when these responses were compared to those elicited by the diving reflex. PMID:27812317

  6. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon

    DEFF Research Database (Denmark)

    Strandgaard, S; Jones, J V; MacKenzie, E T;

    1975-01-01

    The effect of arterial hypertension on cerebral blood flow was studied by the intracarotid 133Xe clearance method in baboons. The arterial blood pressure was raised in gradual steps with angiotensin. Baboons with renal hypertension of 8-12 weeks duration were studied along with normotensive baboons....... In initially normotensive baboons, cerebral blood flow remained constant until the mean arterial blood pressure had risen to the range of 140 to 154 mm Hg; thereafter cerebral blood flow increased with each rise in mean arterial blood pressure. In the chronically hypertensive baboons, cerebral blood flow...... remained constant until the mean arterial blood pressure had been elevated to the range of 155 to 169 mm Hg. Thus, in chronic hypertension it appears that there are adaptive changes in the cerebral circulation which may help to protect the brain from further increases in arterial blood pressure....

  7. Theory to predict shear stress on cells in turbulent blood flow.

    Science.gov (United States)

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  8. Dynamic Modeling of Renal Blood Flow in Dahl Hypertensive and Normotensive Rats

    DEFF Research Database (Denmark)

    Knudsen, Torben; Elmer, H.; Knudsen, Morten;

    2004-01-01

    A method is proposed in this paper which allows characterisation of renal autoregulatory dynamics and efficiency using quantitative mathematical methods. Based on data from rat experiments, where arterial blood pressure and renal blood flow are measured, a quantitative model for renal blood flow ...

  9. Sympathetic reflex control of subcutaneous blood flow in tetraplegic man during postural changes

    DEFF Research Database (Denmark)

    Skagen, K; Jensen, K; Henriksen, O

    1982-01-01

    1. The effect of head-up tilt upon subcutaneous blood flow in the distal arm and leg was studied in 12 patients with complete traumatic spinal cord transection at the cervical level. 2. Blood flow was measured by the local 133Xe washout technique. 3. Leg lowering induced a 47% decrease in blood f...

  10. The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    裴吉; 袁寿其; 袁建平; 王文杰

    2013-01-01

    To design a single-blade pump with a good performance in a wide operational range and to increase the pump reliability in the multi-conditional hydraulic design process, an understanding of the unsteady flow behaviors as related with the flow rate is very important. However, the traditional design often considers only a single design condition, and the unsteady flow behaviors have not been well studied for single-blade pumps under different conditions. A comparison analysis of the flow unsteadiness behaviors at di-fferent flow rates within the whole flow passage of the pump is carried out in this paper by solving the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with the Shear Stress Transport (SST) turbulence model. A definition of the unsteadi-ness in the pump is made and applied to analyze the unsteady intensity distributions, and the flow rate effect on the complex unsteady flow in the pump is studied quantitatively while the flow mechanism is also analyzed. The CFD results are validated by experimental data collected at the laboratory. It is shown that a significant flow rate effect on the time-averaged unsteadiness and the turbulence in-tensity distribution can be observed in both rotor and stator domains including the side chamber. The findings would be useful to re-duce the flow unsteadiness and to increase the pump reliability under multi-conditions.

  11. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  12. Outcome of splanchnic blood flow determination in patients with suspected chronic intestinal ischaemia. A retrospective survey

    DEFF Research Database (Denmark)

    Møller, Søren; Madsen, Jan Lysgård

    2002-01-01

    flow: A, normal response (splanchnic blood flow > or = 200 ml/min); B, possible abnormal response (splanchnic blood flow 51-199 ml/min); and C, definitive abnormal response (splanchnic blood flow place, the type of operation was noted. RESULTS: Forty patients had...... a normal meal-induced response, 23 patients had a possible abnormal response and 10 patients had a definitive abnormal response, which gave evidence of chronic intestinal ischaemia. In the total patient population, the increase in splanchnic blood flow was significantly correlated to an increase in hepatic...

  13. Glucagon-like peptide-2 increases mesenteric blood flow in humans

    DEFF Research Database (Denmark)

    Bremholm, Lasse; Hornum, Mads; Henriksen, Birthe Merete;

    2008-01-01

    OBJECTIVE: Mesenteric blood flow is believed to be influenced by digestion and absorption of ingested macronutrients. We hypothesized that the intestinotrophic hormone, GLP-2 (glucagons-like peptide 2), may be involved in the regulation of mesenteric blood flow. Changes in mesenteric blood flow...... were measured by Doppler ultrasound scanning of the superior mesenteric artery (SMA). The aim of the study was to demonstrate the influence of GLP-2 on this flow, expressed as changes in resistance index (RI). MATERIAL AND METHODS: A homogeneous group of 10 fasting healthy volunteers completed a 2-day...... support the hypothesis that GLP-2 is an important regulator of mesenteric blood flow....

  14. The value of combined detecting S/D of umbilical blood flow and monitoring fetal hart rate in predicting perinatal outcomes%孕产妇脐血流S/D值测定联合胎心监护对胎儿预后的评估价值

    Institute of Scientific and Technical Information of China (English)

    巫可珍; 周小钰

    2012-01-01

    目的 探讨B超脐血流联合胎心监护预测围产儿结局的价值.方法 对我院门诊产检并住院分娩的单胎妊娠妇女286例临床资料进行回顾性分析,比较不同脐动脉血流收缩期最大血流速度与舒张末期血流速度的比值(S/D)(<3和≥3)和胎心监测结果(正常和异常)孕妇的围产儿结局:胎儿娩出后1-min Apgar评分、羊水污染情况和剖宫产率.结果 286例中,S/D值<3者240例(212例胎心正常,28例胎心异常),S/D≥3者46例(25例胎心正常,21例胎心异常).与S/D值<3、胎心监护正常比较,S/D值≥3,尤其是合并胎心异常的围产儿,1-min Apgar评分≤7发生率增高(19.1% vs.0),羊水污染率(61.9%vs.1.4%)和剖宫产率也明显增高(81.0% vs.37.3%)(P<0.05或P<0.01).结论 B超脐血流S/D值测定联合胎心监护是临床预测围产儿结局的有效方法.%To investigate the value of combined detecting S/D of umbilical blood flow and fetal hart rate(FHR) in predicting perinatal outcomes. Methods Data of 286 cases underwent clinical predelivery examination and parturition in hospital were retrospectively analyzed. The perinatal outcomes such as 1-min Apgar score after birth, amniotic fluid contamination and Cesarean section were compared in the gravida with the S/D ratio (the ratio of the maxium systolic blood flow velocity to the end-diastolic blood flow velocity of the umbilical artery) of <3 or ≥3 and in those with normal or abnormal FHR during pregnancy. Results Of 286 cases, 240 cases were with the S/D ratio <3, in whom 212 cases had normal FHR ,and 28 cases had abnormal FHR, and 46 cases were with the S/D ratio ≥3,in whom 212 cases had normal FHR and 28 cases had abnormal FHR Compared to the gravida with the S/D ratio rates of neonatal 1-min Apgar score =SC7 after birth(19. 1% vs. 0),amniotic fluid contamination(61. 9% vs. 1

  15. Systolic and diastolic changes in human coronary blood flow during Valsalva manoeuvre.

    Science.gov (United States)

    Federici, A; Ciccone, M; Gattullo, D; Losano, G

    2000-01-01

    Valsalva manoeuvre is reported to be sometimes successful for the relief of angina pectoris. The present study investigated how haemodynamic changes produced by Valsalva manoeuvre can interact to improve the relationship between cardiac work and coronary blood flow. Ten male subjects aged 53 +/- 12 years (SD) were considered. Blood velocity in the internal mammary artery, previously anastomosed to the left descending coronary artery, was studied with Doppler technique. The subjects performed Valsalva manoeuvres by expiring into a tube connected to a mercury manometer, to develop a pressure of 40 mmHg. The arterial blood pressure curve was continuously monitored with a Finapres device from a finger of the left hand. During expiratory effort, an increase in heart rate and a decrease in arterial pulse pressure were followed by a more delayed and progressive increase in mean and diastolic pressures. Systolic blood velocity markedly decreased along with the reduction in pulse pressure and increase in heart rate. By contrast, diastolic and mean coronary blood velocities did not show any significant change. Since it is known that the Valsalva manoeuvre strongly reduces stroke volume and cardiac output, it is likely that a reduction in cardiac work also takes place. Since in diastole, i.e. when the myocardial wall is better perfused, coronary blood velocity did not show any significant reduction, it is likely that unchanged perfusion in the presence of reduced cardiac work is responsible for the relief from angina sometimes observed during Valsalva manoeuvre. It is also likely that the increase in heart rate prevents the diastolic and mean blood coronary velocity from decreasing during the expiratory strain, when an increased sympathetic discharge could cause vasoconstriction through the stimulation of the coronary alpha-receptors.

  16. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  17. Flow of granular materials-I. Discharge rates from hoppers

    Energy Technology Data Exchange (ETDEWEB)

    Nedderman, R.M. (Univ. of Cambridge, England); Tuezuen, U.; Savage, S.B.; Houlsby, G.T.

    1982-01-01

    This was the first of a set of three review papers on the flow of granular materials. The objective of the papers was to review the published literature in these fields. Much information was drawn from a body of unpulished work represented by internal reports of the Chemical Engineering Department at Cambridge. This paper discussed the experimental results for hopper discharge rates and the correlations of these results. Then theoretical analyses that have been advanced to explain the observations were presented. Also the effects of interstitial pressure gradients were discussed, both those that arise due to deliberate pressurization of the hopper and those caused by the dilation of the flowing material. The flow of coarse, free-flowing materials through orifices seemed to have been adequately investigated experimentally and the correlation of Beverloo or minor modifications of it appeared to predict the flow rates with acceptable precision. Some difficulties were however encountered with narrow angled conical hoppers or in cases where the orifice is close to a vertical wall. The effects of an imposed gas flow were also correlated to reasonable precision at least for modest gas flow rates. Though the correlations seemed satisfactory, there was no really adequate theoretical explanations of the observations. Several theories exist that give qualitative trends in accord with obsrvation but there is no theory that can be used without empirical adjustments of the coefficients. However, with fine particles many more difficulties are encountered. 6 figures. (DP)

  18. Contributions of collision rate and collision efficiency to erythrocyte aggregation in postcapillary venules at low flow rates.

    Science.gov (United States)

    Kim, Sangho; Zhen, Janet; Popel, Aleksander S; Intaglietta, Marcos; Johnson, Paul C

    2007-09-01

    Red blood cell aggregation at low flow rates increases venous vascular resistance, but the process of aggregate formation in these vessels is not well understood. We previously reported that aggregate formation in postcapillary venules of the rat spinotrapezius muscle mainly occurs in a middle region between 15 and 30 microm downstream from the entrance. In light of the findings in that study, the main purpose of this study was to test two hypotheses by measuring collision frequency along the length of the venules during low flow. We tested the hypothesis that aggregation rarely occurs in the initial 15-microm region of the venule because collision frequency is very low. We found that collision frequency was lower than in other regions, but collision efficiency (the ratio of aggregate formation to collisions) was almost nil in this region, most likely because of entrance effects and time required for aggregation. Radial migration of red blood cells and Dextran 500 had no effect on collision frequency. We also tested the hypothesis that aggregation was reduced in the distal venule region because of the low aggregability of remaining nonaggregated cells. Our findings support this hypothesis, since a simple model based on the ratio of aggregatable to nonaggregatable red blood cells predicts the time course of collision efficiency in this region. Collision efficiency averaged 18% overall but varied from 0 to 52% and was highest in the middle region. We conclude that while collision frequency influences red blood cell aggregate formation in postcapillary venules, collision efficiency is more important.

  19. Suitable image parameters and analytical method for quantitatively measuring cerebral blood flow volume with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Handa H

    1999-02-01

    Full Text Available The aim of this study was to determine suitable image parameters and an analytical method for phase-contrast magnetic resonance imaging (PC-MRI as a means of measuring cerebral blood flow volume. This was done by constructing an experimental model and applying the results to a clinical application. The experimental model was constructed from the aorta of a bull and circulating isotonic saline. The image parameters of PC-MRI (repetition time, flip angle, matrix, velocity rate encoding, and the use of square pixels were studied with percent flow volume (the ratio of actual flow volume to measured flow volume. The most suitable image parameters for accurate blood flow measurement were as follows: repetition time, 50 msec; flip angle, 20 degrees; and a 512 x 256 matrix without square pixels. Furthermore, velocity rate encoding should be set ranging from the maximum flow velocity in the vessel to five times this value. The correction in measuring blood flow was done with the intensity of the region of interest established in the background. With these parameters for PC-MRI, percent flow volume was greater than 90%. Using the image parameters for PC-MRI and the analytical method described above, we evaluated cerebral blood flow volume in 12 patients with occlusive disease of the major cervical arteries. The results were compared with conventional xenon computed tomography. The values found with both methods showed good correlation. Thus, we concluded that PC-MRI was a noninvasive method for evaluating cerebral blood flow in patients with occlusive disease of the major cervical arteries.

  20. Numerical method of characteristics for one-dimensional blood flow

    CERN Document Server

    Acosta, Sebastian; Riviere, Beatrice; Penny, Daniel J; Rusin, Craig G

    2014-01-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time-step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the ...

  1. Laser Doppler flowmetry to measure changes in cerebral blood flow.

    Science.gov (United States)

    Sutherland, Brad A; Rabie, Tamer; Buchan, Alastair M

    2014-01-01

    Laser Doppler flowmetry (LDF) is a method by which relative cerebral blood flow (CBF) of the cortex can be measured. Although the method is easy to employ, LDF only measures relative CBF, while absolute CBF cannot be quantified. LDF is useful for investigating CBF changes in a number of different applications including neurovascular and stroke research. This chapter will prepare the reader for rodent experiments using LDF with two preparations. The closed skull preparation can be used to monitor CBF with an intact skull, but in adult rats, thinning of the skull is required to obtain an accurate cortical CBF signal. The open skull preparation requires a craniotomy to expose the surface of the brain and the LDF probe is held close to the surface to measure cerebral perfusion.

  2. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... nephrons act in parallel, each simulation was performed with 125 parallel versions of the model. The key parameters of the 125 versions of the model were chosen randomly within the physiological range. None of the constituent models, i.e., the TGF and the myogenic, could alone reproduce the experimental...... observations. However, in combination they reproduced most of hte features of the various transfer functions calculated from the experimental data. The major discrepancy was the presence of a bimodal distribution of the admittance phase in the simulations. This is not consistent with most of the experimental...

  3. Peculiarities of Brain's Blood Flow : Role of Carbon Dioxide

    CERN Document Server

    Gersten, Alexander

    2011-01-01

    Among the major factors controlling the cerebral blood flow (CBF), the effect of PaCO2 is peculiar in that it violates autoregulatory CBF mechanisms and allows to explore the full range of the CBF. This research resulted in a simple physical model, with a four parameter formula, relating the CBF to PaCO2. The parameters can be extracted in an easy manner, directly from the experimental data. With this model earlier experimental data sets of Rhesus monkeys and rats were well fitted. Human data were also fitted with this model. Exact formulae were found, which can be used to transform the fits of one animal to the fits of another one. The merit of this transformation is that it enable us the use of rats data as monkeys data simply by rescaling the PaCO2 values and the CBF data. This transformation makes possible the use of experimental animal data instead of human ones.

  4. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  5. Urinary bladder blood flow. I. Comparison of clearance of locally injected 99mtechnetium pertechnate and radioactive microsphere technique in dogs

    DEFF Research Database (Denmark)

    Krøyer, Kristian; Bülow, J; Nielsen, S L

    1990-01-01

    The blood flow of the dog urinary bladder measured by radioactive microsphere technique was compared to the clearance of locally injected 99mTechnetium pertechnate (99mTc) in the bladder wall. In semilogarithmic plots the 99mTc washout curves showed a multiexponential course. From the initial...... slopes (median 5.7 min) the bladder blood flow was calculated to be only 30-62% of the results obtained from the radioactive microsphere technique (blood flow in the muscular layer 21.7-44.8 ml/100 g/min). These lower values imply that the rate of removal of the hydrophilic tracer 99mTc at these flow...

  6. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    Science.gov (United States)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  7. Doppler Assessment of Uterine Blood Flow in Recurrent Pregnancy Loss

    Directory of Open Access Journals (Sweden)

    Maryam Barzin

    2011-05-01

    Full Text Available Recurrent spontaneous abortion affects 2%-5% of"ncouples. Uterine perfusion is considered as one of the"nfactors that influences the success of implantation."nDuring the normal menstrual cycle, the impedance"nto uterine artery blood flow diminishes progressively"nduring the luteal phase, reaching the lowest values"nin the period coinciding with the implantation time."nImpedance of uterine arteries is a good indicator of"nthe possibility of a subsequent pregnancy. High blood"nflow resistance is associated with a reduced conception"nrate and women with lower pulsatility index values"nhave the highest possibility of becoming pregnant. An"nimpaired uterine perfusion could play a major role in"nthe pathogenesis of recurrent spontaneous abortion. In"nthis study, we examined sixty women with recurrent"nspontaneous abortion and a control group including"nthirty normal women with at least one previous"nuncomplicated pregnancy and without history of any"nabortion. Transvaginal sonography associated with"nDoppler flow measurement was performed during"nthe midluteal phase of a cycle in all women. The"nmeasurement of the ascending branch of both right"nand left uterine arteries was taken lateral to the cervix"nat the level of the internal os. The pulsatility and"nresistance index of both uterine arteries were calculated"nand compared in both groups. In this presentation we"nreport our finding in two groups. We also explain the"nexact method of study and present some interesting"ncases

  8. Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine;

    2006-01-01

    skeletal muscle. Skeletal muscle blood flow was measured in seven healthy young men using near-infrared spectroscopy and indocyanine green and muscle glucose uptake using positron emission tomography and 2-fluoro-2-deoxy-D-[(18)F]glucose without and with local blockade of NO and PG at rest and during one-legged...... dynamic knee-extension exercise. Local blockade was produced by infusing nitro-L-arginine methyl ester and indomethacin directly in the muscle via a microdialysis catheter. Blood flow and glucose uptake were measured in the region of blockade and in two additional regions of vastus lateralis muscle 1......Synergic action of nitric oxide (NO) and prostaglandins (PG) in the regulation of muscle blood flow during exercise has been demonstrated. In the present study, we investigated whether these vasodilators also regulate local blood flow, flow heterogeneity, and glucose uptake within the exercising...

  9. Role of cerebral blood flow in extreme breath holding

    Directory of Open Access Journals (Sweden)

    Bain Anthony R.

    2016-01-01

    Full Text Available The role of cerebral blood flow (CBF on a maximal breath-hold (BH in ultra-elite divers was examined. Divers (n = 7 performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg. Arterial blood gases and CBF were measured prior to (baseline, and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2 by about 26% (p < 0.01. Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04. In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa. The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01. These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.

  10. Doppler-Based Flow Rate Sensing in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Liron Stern

    2014-09-01

    Full Text Available We design, fabricate and experimentally demonstrate a novel generic method to detect flow rates and precise changes of flow velocity in microfluidic devices. Using our method we can measure flow rates of ~2 mm/s with a resolution of 0.08 mm/s. The operation principle is based on the Doppler shifting of light diffracted from a self-generated periodic array of bubbles within the channel and using self-heterodyne detection to analyze the diffracted light. As such, the device is appealing for variety of “lab on chip” bio-applications where a simple and accurate speed measurement is needed, e.g., for flow-cytometry and cell sorting.

  11. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Green, Stefan Mathias;

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...... by dye dilution, arterial pressure by an arterial catheter-transducer, and muscle and peritendinous O2 saturation by spatially resolved spectroscopy (SRS). 3. Calf blood flow rose 20-fold with exercise, reaching 44 +/- 7 ml (100 g)-1 min-1 (mean +/- s.e.m. ) at 9 W, while Achilles' peritendinous flow...

  12. Subcutaneous blood flow in man during sleep with continous epdural anaesthesia

    DEFF Research Database (Denmark)

    Sindrup, JH; Petersen, Lars Jelstrup; Kastrup, Jens;

    1996-01-01

    BACKGROUND: Subcutaneous blood flow increases during sleep and we evaluated if this increase is affected by epidural anaesthesia. METHODS: Lower leg subcutaneous blood flow was determined by 133Xenon clearance in ten subjects during continous epidural anaesthesia at L2-L3 including eight hours...... of sleep, while the opper abdominal subcutaneous blood flow served as control. RESULTS: Epidural anaesthesia to the level of the umbilicus was followed by an increase in the lower leg subcutaneous blood flow fra 3.4 (1.8-6.3) to 7.8 (3.6-16.9) ml min-1 (median and range; P...-1 100 g-1 after 34 (29-70) min (Pepidural anaesthesia induced only a temporary increase in lower leg subcutaneous blood flow, it hindered the rise in subcutaneous blood flow normally manifest...

  13. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks

    DEFF Research Database (Denmark)

    Olesen, J; Friberg, L; Olsen, T S

    1990-01-01

    and statistically significant spatial relations. The first observable event was a decrease of regional cerebral blood flow posteriorly in one cerebral hemisphere. Further development of this pathological process was accompanied by the aura symptoms. Thereafter headache occurred while regional cerebral blood flow...... remained decreased. During the headache phase, regional cerebral blood flow gradually changed from abnormally low to abnormally high without apparent change in headache. In some patients headache disappeared while regional cerebral blood flow remained increased. Although regional cerebral blood flow...... reduction and aura symptoms in the great majority of patients were unilateral, one-third had bilateral headache. Unilateral headache usually localized to the side on which regional cerebral blood flow was reduced and from which the aura symptoms originated (i.e., aura symptoms were perceived to occur...

  14. [Blood flow measurement in arteriovenous fistula. Comparison of 2 ultrasonic methods, direct and indirect by compression of the fistula].

    Science.gov (United States)

    Deklunder, G; Goullard, L; Lecroart, J L; Foulard, M; Houdas, Y

    1990-05-19

    Measuring blood flow in arteriovenous fistulae in patients under chronic dialysis is of interest to evaluate the repercussions of the fistula on the heart. The apparently simplest method is direct measurement of the mean blood flow velocity by the pulsed doppler technique and ot the cross-section area by ultrasonography, the product of these two values being the blood flow rate. Another method has been proposed, which consists of measuring the cardiac output before and after compression of the fistula, the difference between the two values being supposed to represent the blood flow rate in the fistula. A comparative study of these two methods was conducted in 17 patients aged from 2 to 21 years (mean: 14 years). The direct method gave a figure of 475 ml.min-1.m-2 (SD = 240), while the figure obtained with the indirect method was 471 ml.min-1.m-2 (SD = 227); the difference was statistically not significant. In terms of concept, however, the indirect method is open to much more severe criticism than the direct method, and whenever possible the latter should be preferred when measuring blood flow in arteriovenous fistulae.

  15. Quantification of volumetric cerebral blood flow using hybrid laser speckle contract and optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Valim, Niksa; Dunn, Andrew K.

    2016-03-01

    Studying neurovascular blood flow function in cerebrovascular activities requires accurate visualization and characterization of blood flow volume as well as the dynamics of blood cells in microcirculation. In this study, we present a novel integration of laser speckle contrast imaging (LSCI) and spectral domain optical coherence tomography (SD-OCT) for rapid volumetric imaging of blood flow in cortical capillaries. LSCI uses the illumination of wide-field near infrared light (NIR) and monitors back scattered light to characterize the relative dynamics of blood flow in microcirculation. Absolute measurement of blood cells and blood volume requires high-resolution volumetric structural information. SD-OCT system uses coherence gating to measure scattered light from a small volume within high structural resolution. The structural imaging system rapidly assesses large number of capillaries for spatio-temporal tracking of red blood cells (RBC). A very fast-ultra resolution SD-OCT system was developed for imaging high-resolution volumetric samples. The system employed an ultra wideband light source (1310 ± 200 nm in wavelength) corresponding to an axial resolution of 3 micrometers in tissue. The spectrometer of the SD-OCT was customized for a maximum scanning rate of 147,000 line/s. We demonstrated a fast volumetric OCT angiography algorithm to visualize large numbers of vessels in a 2-mm deep sample volume. A LSCI system that has been developed previously in our group was integrated to the imaging system for the characterization of dynamic blood cells. The conjunction data from LSCI and SD-OCT systems imply the feasibility of accurate quantification of absolute cortical blood flow.

  16. Physiological non-Newtonian blood flow through single stenosed artery

    Science.gov (United States)

    Mamun, Khairuzzaman; Rahman, Mohammad Matiur; Akhter, Most. Nasrin; Ali, Mohammad

    2016-07-01

    A numerical simulation to investigate the Non-Newtonian modelling effects on physiological flows in a three dimensional idealized artery with a single stenosis of 85% severity. The wall vessel is considered to be rigid. Oscillatory physiological and parabolic velocity profile has been imposed for inlet boundary condition. Where the physiological waveform is performed using a Fourier series with sixteen harmonics. The investigation has a Reynolds number range of 96 to 800. Low Reynolds number k - ω model is used as governing equation. The investigation has been carried out to characterize two Non-Newtonian constitutive equations of blood, namely, (i) Carreau and (ii) Cross models. The Newtonian model has also been investigated to study the physics of fluid. The results of Newtonian model are compared with the Non-Newtonian models. The numerical results are presented in terms of pressure, wall shear stress distributions and the streamlines contours. At early systole pressure differences between Newtonian and Non-Newtonian models are observed at pre-stenotic, throat and immediately after throat regions. In the case of wall shear stress, some differences between Newtonian and Non-Newtonian models are observed when the flows are minimum such as at early systole or diastole.

  17. Airway blood flow response to dry air hyperventilation in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  18. In Vitro Model of Physiological and Pathological Blood Flow with Application to Investigations of Vascular Cell Remodeling.

    Science.gov (United States)

    Elliott, Winston; Scott-Drechsel, Devon; Tan, Wei

    2015-11-03

    Vascular disease is a common cause of death within the United States. Herein, we present a method to examine the contribution of flow dynamics towards vascular disease pathologies. Unhealthy arteries often present with wall stiffening, scarring, or partial stenosis which may all affect fluid flow rates, and the magnitude of pulsatile flow, or pulsatility index. Replication of various flow conditions is the result of tuning a flow pressure damping chamber downstream of a blood pump. Introduction of air within a closed flow system allows for a compressible medium to absorb pulsatile pressure from the pump, and therefore vary the pulsatility index. The method described herein is simply reproduced, with highly controllable input, and easily measurable results. Some limitations are recreation of the complex physiological pulse waveform, which is only approximated by the system. Endothelial cells, smooth muscle cells, and fibroblasts are affected by the blood flow through the artery. The dynamic component of blood flow is determined by the cardiac output and arterial wall compliance. Vascular cell mechano-transduction of flow dynamics may trigger cytokine release and cross-talk between cell types within the artery. Co-culture of vascular cells is a more accurate picture reflecting cell-cell interaction on the blood vessel wall and vascular response to mechanical signaling. Contribution of flow dynamics, including the cell response to the dynamic and mean (or steady) components of flow, is therefore an important metric in determining disease pathology and treatment efficacy. Through introducing an in vitro co-culture model and pressure damping downstream of blood pump which produces simulated cardiac output, various arterial disease pathologies may be investigated.

  19. Flow Rate of He Ⅱ Liquid-Vapor Phase Separator

    Institute of Scientific and Technical Information of China (English)

    Xingen YU; Qing LI; Qiang LI; Zhengyu LI

    2005-01-01

    Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.

  20. Relationship between salivary flow rates and Candida albicans counts.

    Science.gov (United States)

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.